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Resumen

El óxido de titanio, con tres fases cristalinas diferentes, es uno de los óxidos metálicos de

transición más importante debido a sus propiedades fotocatalíticas, electrónicas e incluso bi-

ológicas1,2. Sin embargo, el rendimiento de los nanoclusters de TiO2 depende fuertemente de

su tamaño, forma y organización. Aunque los estudios teóricos de los nanoclusters de TiO2

se han realizado en gran medida3,4, aún se necesitan resolver algunos desafíos para utilizar sus

propiedades de la manera más práctica. Una combinación del método semi-empírico de densidad

funcional tight-binding (DFTB) con la teoría funcional de la densidad ab initio (DFT) nos per-

mitirán predecir y estudiar nanoclusters de TiO2, de manera que podamos predecir el nanocluster

con la topología más estable dadas dos restricciones: el número de moléculas de TiO2 y la

temperatura. Se aplican simulaciones de dinámica molecular para resolver la estructura atómica

más probable de los nanoclusters n(TiO 2) (n = 1–10) a temperatura ambiente. La estructura

electrónica de los candidatos más probables es calculadautilizando ab-initio DFT a nivel de el

funcional híbrido B3LYP. Propiedades fisico-químicas como la energía electrónica, repulsión nu-

clear, momento dipolar, momento cuadrupolo, polarizabilidad, HOMO, LUMO, becha de energy,

energía de punto cero y radio de giro también son predecidas.

Keywords:Teoría de densidad-funcional, método semi-empírico tight binding, nanoclusters,

estructura electrónica, dinámica molecular, efecto del tamaño.

vii





Abstract

Titanium oxide with three di�erent crystalline phases is an important transition metal oxide

due to its photocatalytic, electronic, and even biological properties1,2. However, the performance

of the TiO2 nanoclusters strongly depends on their size, shape, organization. Even though

theoretical studies of TiO2 nanoclusters have been largely performed3,4, some challenges are still

needed to solve in order to utilize its properties in the most practical way. A combination of

semi-empirical density-functional tight-binding (DFTB) with ab initio density-functional theory

(DFT) methods will allow us to predict and study TiO2 nanoclusters, such that we can resolve

the most stable nanocluster topology given two constrains: the number of TiO2 molecules and

the temperature T. Molecular dynamics simulations are applied to resolve the most likely atomic

structure of n(TiO2) (n = 1–10) nanoclusters at a room temperature. The electronic structure of

the most likely candidates are computed using ab-initio DFT at the level of hybrid functional

B3LYP. Physical-chemical properties like electronic energy, nuclear repulsion, dipole moment,

quadrupole moment, polarizability, HOMO, LUMO, band gap, zero-point energy and gyration

radius are also predicted.

Keywords: Density-functional theory, semi-empirical tight binding method, nanoclusters,

electronic-structure, molecular dynamics, size e�ect.
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Chapter 1

Introduction

Nanomaterials modeling has become one of the fastest-growing fields within the materials sci-

ences and solid-state physics in general, allowing the scientific community to make considerable

advances in the study of nanomaterials manipulations. This field of research makes possible the

creation of novel properties such as fluorescence, extreme anisotropy of electrical and mechani-

cal properties, high electron mobility, tunable band-gap, which in the past were not possible to

study7.

From the economics and social point of view, the impact of materials modeling has been

gaining importance through the years, resulting in materials and products that are manufactured

industrially and have the potential to become an improvement at many scales8. At a macro

scale, the novel properties found out through materials modeling are able to have an impact on

environmental emissions, waste production, natural resource depletion, innovation, economic

development, quality of life, etc9. At the nanoscale, it has catalyzed the enhancement of science

and technology, resulting in miniaturization, high computer performance chips, nano-based drug

delivery systems,etc7.

Density Functional Theory (DFT) has become one the most widely used tool in the field of

materials modeling, becoming quickly the most heavily cited concept in the physical sciences,

making part of the most cited papers in history, including two papers in the top1010. The

fundamental idea of DFT states that any atomic system formed by electrons and nuclei can be

described with enough accuracy within a certain tolerance by using only the total charge density.

This supposes a huge improvement since in the past it was thought that many-electron wave

1



2 �.�. PROBLEM STATEMENT

function that scientists were essential to complete any atomic description11. DFT applications are

very extensive, enabling to study chemistry, biochemistry, biology, nanosystems, and materials10.

In other words, DFT became one of the major breakthroughs for studying atoms, molecules, gases,

liquids, and solids. This work will concentrate on one particular atomic structure: Titanium

dioxide (TiO2) nanoclusters.

Nanostructured titanium dioxide has significant importance in the industry and scientific fields

due to its variety of properties and applications, such as energy conversion12, photocatalytic

degradation of pollutants1, sensor electronics for detection of gases, biological material, or

chemicals2, in drug delivery13,14, etc. In general, the physical and chemical properties of TiO2

are conditioned by the specific electronic structure of each cluster depending on its size, shape,

organization, etc14. Subsequently, figuring out the structure-property correlations is essential in

order to utilize its properties in the most practical way14. Even though theoretical studies of

TiO2 nanoclusters have been largely performed3,4, some challenges are still needed to solve, such

as the optimal cluster size to tackle some particular problems14. DFT calculations allow us to

perform extensive studies on nanostructured material such as clusters, which otherwise would

be impossible due to their scale14–17. In this sense, our goal is to study the electronic structure

properties of TiO2 nanoclusters employing state-of-the-art density functional theory methods.

1.1 Problem Statement

In general, it is a known fact that the properties of nanoparticles are significantly di�erent from

fine particles or bulk materials; then, it is not possible to extrapolate any results from those types

of studies. Moreover, most of the key physicochemical properties of nanoparticles can be easily

altered by changing the size of the structure. Then, it is essential to have a precise size-sensitive

property sense to exploit the various advantages and technological applications of nanoclusters.

However, there is currently a lack of consistent and detailed databases from where we find a

description for the size e�ect in the physicochemical properties of nanoparticles. Nevertheless,

carrying on with a study to obtain systematic data that reflect the change of the properties and

the size requires very time-consuming procedures and is experimentally costly. Furthermore, the

size e�ect in the nanoparticle properties makes it di�cult to study with the existing traditional

methodology. Then, this problem presents many favorable challenges that can be sorted with the



CHAPTER �. INTRODUCTION 3

appropriate implementations of di�erent procedures.

1.2 General and Specific Objectives

The main objective of this thesis is to compute with a semi-empirical density-functional tight

binding (DFTB) and ab inition density-functional theory the electronic structure of TiO2 nan-

oclusters. Specifically, we aim to:

• Explain the theoretical foundations of DFT with a focus on the B3LYP hybrid functional.

• Explain the methodology for studying TiO2 nanoclusters.

• Study the all the possible meta-stable configurations of TiO2 nanoclusters performing

molecular dynamics simulations at 298.15 K.

• Study the stability of all the possible meta-stable configurations of TiO2 through an all-

electron ab initio DFT full relaxation.

• Find trends and likely correlations between the size of the nanoclusters and physical-

chemical properties such as: total Energy(Etot), dipole moment(p), quadrupole moment

(Q), isotropic polarizability (P), electronic Energy (Eelec), nuclear repulsion (ENR), HOMO,

LUMO, energy gap (Eg), zero-point energy (ZPE).





Chapter 2

Theoretical Background

2.1 Many-body system Schrödinger equation

As a first step to understand the di�erent material properties of our system in a non-relativistic

we need to keep in mind that, at the atomic scale, they are just collections of electrons and nuclei

disposed in a characteristic electronic structure; such that this disposition gives us all the physical

properties of the solids18.

Then, in order to study the behavior of quantum particles we consider the many-body

Schrödinger equation:

Ĥ = [T̂ + V̂] = Êtot , (2.1)

Where Ĥ represents the Hamiltonian of the system, that contains the information of the kinetic

energy (T̂ ) and potential energy (V̂) operators, respectively.Êtot is the total energy operator, and

 is so called many-body wavefunction. Considering a M nuclei system with coordinates R1,

R2,..., RM and N electrons with coordinates r1, r2,... , rN , we obtain a wavefunction with shape:

 =  (r1, r2, . . . , rN; R1,R2, . . . ,RM) . (2.2)

Following the same notation, the kinetic energy operator (K̂) can be described as:

K = �
NX

i=1

~2

2me
r2

i �
MX

I=1

~2

2MI
r2

I , (2.3)

5
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Where MI are the masses of the nuclei, me is the mass of the electron, ~ is the reduced Planck’s

constant and r2
i and r2

I are the Laplacian operators acting on the electrons and nuclei respective

coordinates.

For the potential energy operator (V̂)we need to take in count three Coulombic interactions:

electron-electron V̂e�e, nuclei-nuclei V̂n�n and nuclei-electron V̂n�e:

V̂ = V̂e�e + V̂n�n + V̂n�e , (2.4)

First, we have the V̂e�e Coulombic repulsion, due to the negative charge of the electrons, which

is described as:

Ve�e =
1
2

X

i, j

e2

4⇡✏0

1
|ri � r j|

, (2.5)

Where e is the charge of the electron and ✏0 is the permeability in free space. The indices i and

j are defined in the range [1,N], and are always di�erent since an electron will never repeal to

itself. The 1
2 is introduced in order to count just one energy contribution per electron pair. Ve�e

is positive due to its repulsive nature.

Second, we have the V̂n�n Coulombic repulsion that is described as:

Vn�n =
1
2

X

I,J

e2

4⇡✏0

ZIZJ

|RI � RJ |
, (2.6)

Where ZI(J) represent the atomic numbers of each nuclei I(J). The index logic and contributions

of equation (2.5) applies for (2.6) too.

Third, we have the V̂e�nCoulombic attraction, due to the opposite charge nature of the electron

and nuclei, described as:

Ve�n = �
X

i,I

e2

4⇡✏0

ZI

|ri � RI |
, (2.7)

The same index logic in equations (2.5) and (2.6) applies for (2.5). This contribution is positive

due to its attractive nature.

Finally, substituting equations (2.3),(2.4),(2.5), (2.6) and (2.7) definitions in (2.1) we can

write the many-body Schrödinger equation as:
2
6666664�

NX

i=1

~2

2me
r2

i �
MX

I=1

~2

2MI
r2

I +
e2

4⇡✏0

0
BBBBBB@
1
2

X

i, j

1
|ri � r j|

+
1
2

X

I,J

ZIZJ

|RI � RJ |
�

X

i,I

ZI

|ri � RI |

1
CCCCCCA

3
7777775 = Etot .

(2.8)
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At this point, it is worth mentioning that the wavefunction for a specific set of coordinates (2.2)

cannot be measured in experiments, due to it is not a physical observable. For instance, the

quantity that is physically interesting is, in fact, the probability of simultaneously finding N
electrons in ri positions19, that is described as:

| |2 = | (r1, . . . , rN; R1, . . . ,RM)|2 . (2.9)

Then, the probability of finding any electron (indi�erently of the i label) at position r is18:

n(r) = N
Z
| |2dr2 . . . drNdR1 . . . dRM . (2.10)

Normalizing the wavefunction (2.2) to 1, we obtain:
Z
| |2dr2 . . . drNdR1 . . . dRM = 1 . (2.11)

Introducing the condition of equation (2.11) in (2.10), as you may have expected, we obtain that

integrating the electronic charge density through all the volume results in the total number of

electrons. Z
n(r)dr = N . (2.12)

Additionally, it is essential to mention that the solution of equation (2.8) for every system bigger

than the He atom remains practically impossible for analytic approaches, and numerical solutions

are too computationally expensive. This is due to the complexity of the solutions escalating

exponentially with the number of atoms in the system18,19.

2.1.1 Atomic units

Some simplifications can be applied to equation 2.8 using the atomic units to facilitate calculations.

First, we observe in (2.8) does not depend on any empirical parameter, therefore this is a ‘first-

principles approach’ for the study of material properties18. In contrast, the fundamental physical
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constants that intervene in these calculations are:

~ = 1.05457163 · 10�34J · s ,
me = 9.10938291 · 10�31kg ,

mp = 1.67262164 · 10�27kg ,

e = 1.60217649 · 10�19C ,

✏0 = 8.85418782 · 10�12F/m .

(2.13)

Additionally, let�s consider the Born radius a0 = 0.529 Å, which is the average radius of

electron orbital for hydrogen atom in its fundamental state.

Using the approach presented in ref.18, we can define he average Coulomb energy for an

electron–proton pair in terms of the previous fundamental constants(for more detailed derivation,

see ref.18:

EHa =
e2

4⇡✏0a0
=
~2

mea2
0
. (2.14)

Where, ‘Ha’ stands for ‘Hartree’. Moreover, it is obtained that kinetic energy for the Hydrogen

model is of the order of Hartree energy (EHa) , making it a natural unit of energy for many-body

Schrödinger equation.

Then, we take equation 2.8 and divide it by EHa. obtaining:
0
BBBBBB@�

NX

i=1

1
2

a2
0r2

i �
MX

I=1

1
2

a2
0

MI/me
r2

I +
1
2

X

i, j

a0
1

|ri � r j|
+

1
2

X

I,J

a0
ZIZJ

|RI � RJ |
�

X

i,I

a0
ZI

|ri � RI |

1
CCCCCCA =

Etot

EHa
 .

(2.15)

From here we will consider the following units to define energy, distances and masses, respec-

tively:

1Ha = 27.2114eV = 4.3597 · 1018J ,

1bohr = 0.529177Å = 0.529177 · 1010m ,

1a.u. = 9.10938291 · 1031kg .

(2.16)

Additionally, we will set electron charge e = 1. These set of units are the so-called Hartree atomic

units that will be used from now on. Rewriting equation 2.8 in terms of the Hartree unit we get

the following simplified form:
0
BBBBBB@�

NX

i=1

1
2
r2

i �
MX

I=1

1
2
r2

I

MI
+

1
2

X

i, j

1
|ri � r j|

+
1
2

X

I,J

ZIZJ

|RI � RJ |
�

X

i,I

ZI

|ri � RI |

1
CCCCCCA = Etot , (2.17)
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This form of the many-body Schrodinger equation is the most common in material modelling

from first-principles since the only parameter introduced are the atomic masses MI and the atomic

masses MI,J.

2.2 Solid state physics approximations

2.2.1 The Born-Oppenheimer (BO) approximation

Born-Oppenheimer approximation states that the many-body total wavefunction can be expressed

as the product of independent functions: the nuclear wavefunction � (depending only on nu-

clear coordinates keeping the electrons in some fixed state) and the electronic wavefunction  R

(depending only on electronic coordinates keeping the nuclei at fixed positions)20, as:

 (r1, . . . , rN; R1, . . . ,RM) ⇡ �(R1, . . . ,RM)|            {z            }
nuclei

⇥ R(r1, . . . , rN)|            {z            }
electrons

. (2.18)

Additionally, in this approximation is implied that the electrons contribute with potential energy

to the motion of the nuclei, while the moving nuclei deform the wavefunction of the electron

continuously, with no abrupt changes. Hence, BO approximation is also called adiabatic approx-

imation20.

In general, atoms’ masses are about 104-105 larger than electrons’ masses, consequently, the

electrons will be 102-103 faster than the nuclei at the same kinetic energy. Then, it is reasonable to

assume that electrons follow the motion of the nuclei almost instantaneously. Therefore, setting

MI ⇡ 1, the nuclei kinetic energy term in equation (2.17) becomes negligible.
MX

I=1

1
2
r2

I

MI
⇡ 0 . (2.19)

Let us also consider the following definitions for the energy of system and the Coulomb potential

of the nuclei experienced by the electrons18:

E = Etot �
1
2

X

I,J

ZIZJ

|RI � RJ |
, (2.20)

and,

Vn(r) = �
X

I

ZI

|r � RI |
. (2.21)
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For convenience, from now on the nuclear coordinates RI are regarded as external parameters,

such that  depends only on the electron coordinates. Taken together these definitions we can

replace then in equation (2.17) to rewrite is in a much more simple manner:
0
BBBBBB@�

NX

i=1

1
2
r2

i +
X

i

Vn(ri) +
1
2

X

i, j

1
|ri � r j|

1
CCCCCCA = E , (2.22)

2.2.2 Independent electron approximation

In order to study the electronic structure through equation (2.22) we will eliminate the electronic

Coulomb repulsion term, such that, electrons would not sense each other18.

First, let us define the many electron Hamiltonian as:

Ĥ(r1, . . . , rN) = �
NX

i=1

1
2
r2

i +
X

i

Vn(ri; R) +
1
2

X

i, j

1
|ri � r j|

. (2.23)

Transforming equation (2.22) in simply:

Ĥ = E . (2.24)

Looking at equation (2.23) results natural to define a single electron Hamiltonian:

Ĥ0(r) = �1
2
r2 + Vn(r) . (2.25)

Notice that in equation (2.25) electronic Coulomb integration is switched o� since we are

within the independent electron approximation. This dramatic simplification is necessary due

to the significant complications it carries for the analytical solving. Following these definitions,

Schrödinger equation within the independent electron approximation would become:
X

i

Ĥ0(ri) = E , (2.26)

For instance, since each electron is independent of the other, the probability of finding a particular

electron i at position ri will simply come from the product of the individual electronic probabilities

| �i(ri) |2. Therefore,  is redefined as:

 (r1, . . . , rN) = �1(r1) . . . �N(rN) , (2.27)
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For instance, each of the individual wave functions �i(ri) can be solved using the single electron

Hamiltonian (2.25). Hence, replacing definition (2.27) into equation (2.26) we get:

X

i

h
Ĥ0(ri)

i
�1(r1) . . . �N(rN) = E�1(r1) . . . �N(rN) , (2.28)

where the total energy E = "1 + "2 + ... + "N in which "i represent the energy eigenvalue of

each individual �i(ri) and "1 < "2 < ... < "N .

From here,under the independent electron approach, we can infer that the lowest energy

configuration of the system is reached when one electron fills each state starting from ground

state18.

It is essential to mention that, although the independent electron give us sense of the energy of

the electron, it carries two important drawbacks18. First, the wave function must obey the Pauli

exclusion Principle, which express that function has to change signs whenever we exchange two

electrons, and this does not apply to the definition of  in (2.27). Second, we need to consider

that the Coulumbic interaction term eliminated from equation (2.17) it is from the same order of

magnitude as the rest of them, such it is not negligible. These problems will be treated in the

following sections.

2.2.3 Hartree-Fock (HF) theory

As mentioned in the previous section, we have two main problems that we need to deal with in

this section. On one hand, we must consider the Pauli’s exclusion principle, which states: the

many-body wavefunction must be anti-symmetric with respect to any pair of electrons, such that

the wavefunction changes sign commuting any two electrons. To fulfill this requirement, the

simplest ansatz is to rewrite the product many-body wave function as a Slater determinant21:

 HF =  HF(r1�1, . . . , rN�N) =
1p
N!

���������������

�1(r1�1) �1(r2�2) · · · �1(rN�N)
�2(r1�1) �2(r2�2) · · · �2(rN�N)
...

...
. . .

...

�N(r1�1) �N(r2�2) · · · �N(rN�N)

���������������

, (2.29)

where the rows run for the electron and columns for the orbitals18. The prefactor with number

electrons N is introduced to correctly normalize the wavefunction. Then, the electron charge
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density will come from adding the individual probabilities of finding a electron in i state, as:

n(r) =
X

i

|�i(r)|2 . (2.30)

On the other hand, we have to introduce a term that takes into account the Coulomb repulsion

term, while maintaining the single-particle approach. We start considering the electronic charge

distribution n(r). In classical electrodynamics framework, the electron charge generates an

electrostatic potential �(r), which is replaced for a potential energy VH in Hartree units.

VH(r) = ��(r) (2.31)

This is reflected in the Poisson’s equation as:

r2VH(r) = �4⇡n(r) . (2.32)

Solving for VH we obtain the following solution:

VH(r) =
Z

dr0 n(r0)
|r � r0| , (2.33)

where VH is named the Hartree potential. Each of the electrons in the system feel VH which

is the average potential generated by their charge. This is the mean-field approximation. Taken

together the electronic charge density n(r) and the Hartree potential VH we can improve the

many-body Schrödinger equation as:
 
�r

2

2
+ Vn(r) + VH(r)

!
�i(r) = "i�i(r) , (2.34)

Taken together (2.30), (2.33), and (2.34) are the HF equations, necessary to simplify the many

body problem as we keep the single-particle framework18,21.

The electrons do interact indeed, but this interaction is not too strong, such that we can still

look for a solution in the form of a Slater determinant. Then, we find the individual wave functions

�i utilizing the "variational principle"21, such that we find the correct ones to minimize the E.

This is done considering the total HF wavefunction HF on ground state energy. Then, the energy

of the system is obtained as:

EHF =

Z
d(r)1...d(r)N 

⇤
HF Ĥ HF = h HF |Ĥ| HFi . (2.35)
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Equation of the right of (2.35) is described using the Dirac notation, which from now on we

will adopt for simplicity. Introducing the requirement that �i in the Slater determinant (2.29)

must be orthonormal, i.e normalized and orthogonal, the calculations are considerably simplified.

Then:

h�i|� ji = �i j (2.36)

With this condition we consider  HF automatically normalized.

Notice that equation (2.35) has an implicit dependence on phii, then we can say that the energy

EHF is a functional of the single-particle wave functions: EHF = EHF[�i]. Furthermore, we can

use this information to incorporate the Lagrange multipliers method that adds the following

constrain18,21:

L[�i, ✏i j] = EHF[�i] �
X

i

"i j[h�i|� ji � �i j] (2.37)

In here, "i j act as the Lagrange multipliers, such that the second term disappears due to the

orthonormal condition. In Lagrange’s method the constrained minimization problem is replaced

by:
�L
�"i j
= 0 (2.38)

and

�L
��i
= 0 (2.39)

Then, we notice two expressions: the Hartree potential (2.33) and a novel term, that we will

call the Fock exchange potential:

VX(r, r0) = �
X

j

�⇤j(r0)� j ⇤ r0)
|r � r0| , (2.40)

In order to improve the accuracy of our many-body we can take together all the previous results

in this section, such that we redefine equation (2.34), as:

 
�r

2

2
+ Vn(r) + VH(r)

!
�i(r) +

Z
dr0VX(r, r0)�i(r0) = "i�i(r) , (2.41)

In summary, the Hartree Fock theory gives three main equations, expressed in: 2.30,2.32 and

(2.41). Notice that these equations maintain relation with each other; the solutions �i should
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must be such that, if we introduce them in the density charge 2.30 and, consequently, in the

Poison‘s equation 2.32, the resulting potential VH include in (2.41) must give the same �i. For

this reason, this type of approach is named as self-consistent field (SCF) method, which is an

iterative procedure that updates the wave functions until it reaches the convergence18,21.

2.3 Density Functional Theory (DFT) principles

In the previous section we studied the problem of determining the quantum states for N-electron

systems, and the extreme challenge that supposes to solve the many-body Schrodinger equation

that involves 3N coordinates (r1,r2,r3,...,rN). The independent electron approximation allowed to

simplify the description of the many-electron system incorporating the product of single-particle

wavefunction �i instead of the complete wavefunction  . In this section, we will go beyond,

studying the Hohenberg-Kohn and Kohn-Sham that provide further and deeper approaches for

the many-body problem.

2.3.1 Hohenberg-Kohn Theorem

In general, the complexity of the computational calculations for the energy of any quantum state

is due to the fact that the energy E0 is a functional of the entire wavefunction  (r1, r2, ..., rN).
This means that to find the E0 a system of 3N variables must be solved. Hohenberg and Kohn

developed an alternative theory though we can calculate E0 depending on the electron density

n(r), which depends on 3 variables only. This statement goes under the Hoenberg–Kohn theorem.

In summary:

• Ground state energy E is functional of n(r):

E = F[n(r)]

• Excited state energy E is functional of the complete many-body wavefunction  :

E = F[ (r1, r2, ..., rN)]

The proof can be reduced to three statements:
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1. The external potential of the nuclei can be determined uniquely by the ground state electron

energy: n! Vn

2. The many-body wave function is uniquely determined by the external potential: Vn !  

3. The total energy is determined by the many body wavefunction:  ! E

4. Finally, by induction we conclude: n! Vn !  ! E 18 cite HK papers

It is worth mentioning that this simple proof crucially relies on the fact that the energy of the

ground state is the lowest possible energy of the system, and all other states are higher in energy.

Out of the three statements, the first one is the less intuitive, but it can be proved by reductio

ad absurdum. Basically, the idea is to start assuming that we can obtain the same ground-state

energy E from two di�erent external potential Vn, such as this guide us to an absurd18,21.

2.3.1.1 Hohenberg–Kohn variational principle

Previously in this section it was stated that the ground state energy E0 can be obtained from a

functional depending on the electron density n(r). For this to work, the ground state density n0

has to be the function that will minimize the total energy. This principle can be expressed as

the derivative of the functional with respect to the density evaluated exactly in the ground state

density:

�F[n]
�n

����
n0
= 0 (2.42)

2.3.2 Kohn-Sham theory

In previous section, we saw the Hohenberg theorems, however these theorems did not provide

any idea on how to construct that functional. In this sense, Kohn and Sham proposed to solve this

problem by adding up an exchange and correlation term that would account for the interactions

that are not taken into the independent electron approximation.

First, we begin by defining the kinetic energy and the Coulomb energy as operators:

T̂ = �
X

i

1
2
r2

i , Ŵ =
1
2

X

i, j

1
|ri � r j|

, (2.43)
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Using this notation, the energy (2.35) (taking the Ĥ in 2.23 and HK theorem) becomes:

E = F[n] =
Z

drn(r)Vn(r) + h [n]|T̂ + Ŵ | [n]i . (2.44)

The first term depends explicitly on n(r) while the kinetic and Coulomb term do it implicitly.

Kohn and Sham proposed to expand these term and add up an extra exchange correlation term to

account for the di�erence. Then, 2.44 becomes:

E = F[n] =

Total energy in the independent electron approximationz                                                                                }|                                                                                {Z
drn(r)Vn(r)

|            {z            }
External potential

�
X

i

Z
dr�⇤i (r)

r2

2
�i(r)

|                      {z                      }
Kinetic energy

+
1
2

"

drdr0n(r)n(r’)
|r � r0||                      {z                      }

Hartree energy

+ Exc[n]|{z}
XC energy

(2.45)

Here we see all the terms from the independent electron approximation plus the exchange

correlation energy Exc, which contains the all the contributions left out. Then, if we can figure

out Exc it is possible to calculate the ground-state energy by employing the electron density n(r).
Making use of the Hohenberg–Kohn variational principle we know that the ground-state electron

density n0 minimize the total energy functional F[n] as in (2.42). Then we can establish the

following constrain for the orbitals:

�F
��⇤i
=
�F
�n

�n
��⇤i
= 0 (2.46)

Applying this constrain we obtain a similar problem than in Hartree-Fock theory, which can be

approached using the Lagrange multipliers method if we incorporate the functional E = F[n].
Furthermore, we can apply the HK variational to obtain the individual wave functions �i(r) in

order to build the electron density n. Then, we obtain:

"
�1

2
r2 + Vn(r) + VH(r) + Vxc(r)

#
�i(r) = ✏i�i(r) (2.47)

Where all the terms are identical that in the Hartree-Fock equations just adding up the exchange

correlation potential Vxc(r). This new term is defined as:

Vxc(r) =
�Exc[n]
�n

����
n(r)

(2.48)
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The set of equations stated in (2.47) are named the Kohn-Sham equations that constitute the

base of the Kohn-Sham theory. In summary, Kohn-Sham theory describes a fictitious system of

only electrons that interact through the external potential. The main many-body interaction e�ects

are detailed in the theorem, while the unknown contributions are condensed in the exchange and

correlation energy Exc, and potential Vxc. Then, the accuracy on the calculations performed in

DFT will lie heavily on the constructions of the Exc.

2.3.3 Self-consistent calculations

In previous section, we saw the Kohn-Sham equations, that are fundamental ingredients of the

Density Functional Theory calculations. In principle, the fundamental idea behind DFT come

from applying self-consistent procedure in order to determine, as precisely as possible, the

ground-state electron density n0(r) and the corresponding energy E0[n]. In this sense, we can

use the Kohn-Sham equations () to construct a self-consistent algorithm to determine the optimal

choice for n0(r) and E0[n]18,19:

1. Calculate nuclear potential Vn starting from the nuclear coordinates. In general, this

information is provided by the crystallography of the material itself.

2. Propose an initial guess for the electron density n(r). A suitable approximation is con-

structed adding up the densities of completely isolated atoms arranged in the atomic

positions corresponding to the material.

3. Construct the Hartree and exchange-correlation potentials (VH and Vxc) incorporating the

electron density n(r).

4. Proceed to find the solutions of the Kohn–Sham equations through numerical methods to

find the corresponding wave functions �i.

5. Use the recently found �i to construct a better estimate of n(r) and E0[n].

6. This process is repeated iteratively until the newly calculated n(r) matches the old one

within a certain tolerance. At this point, we say the system reaches the self-consistency.

Otherwise, both densities are mixed to obtain a new guess of n(r) to be introduced in the

following iteration.
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2.4 Exchange-correlation functional Exc

DFT has been one of the most studied fields within the materials modelling context, due to this

many di�erent of methods have been developed in order to achieve solutions or approximates

for real problems. In this sense, we can say that the Kohn-Sham theory along with DFT (KS-

DFT), even though it increases the computational cost by several orders of magnitude due to

the orbitals incorporation, is one of the most successful and largely used theories in material

sciences22. Within KS theory, the only part that is still missing is the exchange-correlation

energy term Exc, which is commonly represented as the sum of the exchange functional Ex and

the correlation functional Ec
23. With the purpose of finding the optimal functional that fits in

any material context to a certain precision approximation methods have been developed, that can

be either: non-empirical (satisfy extra constraints) or semi-empirical (undetermined coe�cient

enhancing)22.

Unlike the many-body wave function, DFT is not systematically improvable, i.e. incorporating

extra contributions to fit more exact constraints into the model does not guarantee we will get

an improvement across all the relevant interactions, this supposes a major complication in DFT.

Another possibility to establish a DFT hierarchy was postulated by John Perdew named the

"Jacob’s Ladder"24(Fig. 2.1), which is based on postulations of the Hartree theory: making

the exchange correlation energy equal to zero and reducing the interaction between electrons

to purely classical22. In the following subsection we will overview the four lower rungs of the

Jacob’s Ladder, putting special attention to the fourth one: Hybrid level which contains the

B3LYP functional, which is the functional used in this work.

2.4.1 The local spin density approximation (LSDA)

The lowest level of Jacob’s ladder is the so called local-spin density approximation (LSDA), the

earliest and simplest of all the exchange-correlation energy approximations23–26. This approxi-

mation is based in consider the material as an electron gas assuming that the density at each point

is the same as that of the homogeneous electron gas27. As its name states LSDA approximation

uses only the local spin densities n" and n# to define exchange-correlation energy Exc as23:

ELS DA
xc [n", n#] =

Z
d3r n(r)✏uni f

xc (n", n#) , (2.49)
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Figure 2.1: Density-functional theory exchange-correlation functional approximations hierarchy

according to Jacob’s ladder. The base of the ladder is in the Hartree theory (earth) which ascends

to the chemical accuracy (heaven). In between there are five defined rungs, ordered according to

the precision and amount of contributions incorporated into the functional type. They are sorted

in ascending order, introducing in each level extra ingredients into their formulation. Figure

adapted from Mandirossian and Head-Gordon22

where ✏uni f
xc (n", n#) is the exchange-correlation energy per electron for the uniform electron

gas, with evenly distributed n" and n#). Due to this, LSDA results are successful predicting

exactly uniform electron gas properties but fail to predict other real systems as small ensembles

of atoms and molecules24,26. For example, LSDA is so accurate in the prediction of solids that is

still widely, that contrasts with its results of molecular atomization energies, that are unacceptably

high27. In other words, it is less useful for atoms and molecules, due to they resemble way less

to a uniform electron gas.
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2.4.2 The generalized gradient approximation (GGA)

The second level of Jacob’s ladder is the so-called generalized gradient approximation (GGA),

which contains an improved version of the LSDA for the exchange-correlation energy23,24,26,28,29.

In recent years, the GGA functional has become more popular and widely used in solid-state

physics and quantum chemistry communities23,30,31 (see cites of there). This functional incorpo-

rates extra terms with respect to the previous level, as we see in the following equation, it includes

semi-local information expressed in the gradients of the spin densities23:

EGGA
xc [n", n#] =

Z
d3r n(r)✏uni f

xc (n)Fxc(n", n#,rn",rn#) , (2.50)

where Fxc is the enhancement factor. The original motivation for the formulation of equation

(2.50) came from the second-order gradient expansion (GEA), which was only valid for the

slowly varying densities. Then, to solve this problem GGAs introduce additional local density

gradientsrn" andrn# in order to account also for the inhomogeneous density distribution problem

presented in LSDA26.

Even though GGA functional presents an evident improvement in the calculations with respect

to LSDA functional, most of the widely used GGAs are still limited23. For instance, the PBE

functional one of the most popular GGAs predicts lattice constants that are too long and its surface

energies and atomization energies are more accurate than LSDA. Then, we can say that GGAs

accuracy is reasonable for structures or energies, but not both, in other words: "the GGAs cannot

satisfy all the known exact constraints appropriate to a semilocal functional"23,26.

2.4.3 The meta-GGA

The third level of Jacob’s ladder is the so-called meta generalized gradient approximation

(mGGA), which is the naturally improved version with respect to the previous level by adding up

additional semilocal information23. The extra ingredients incorporated are the Laplacian of the

density r2n� or the kinetic energy densities ⌧�, obtaining the following form of the functional:

EMGGA
xc [n", n#] =

Z
d3r n(r)✏uni f

xc (n)Fxc(n", n#,rn",rn#,r2n",r2n#, ⌧", ⌧#) . (2.51)
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The Kohn-Sham orbital kinetic energy density for electrons of spin � ⌧� 27 is defined as:

⌧�(r) =
1
2

X

↵

✓(µ � ✏↵�)|r ↵�(r)|2 , (2.52)

where µ is the chemical potential. In general, mGGA functionals include either the Laplacian of

the density r2n� or the kinetic energy density ⌧�, however there are some cases too when it does

include both32,33. The cases in which ⌧� is included are predominant and this is due to two main

reasons: it arises naturally in the Taylor expansion of the exact spherically averaged exchange

hole34; it provides a straightforward way to make a correlation functional exactly one-electron

self-interaction free35. In resume, the incorporation of kinetic energy density ⌧� provides the

mGGA functionals the flexibility to deal with more exact constraints solving the structure-energy

dilemma experienced with GGA functionals23.

2.4.4 Hybrid functionals

The fourth level of Jacob’s ladder is the hybrid functionals36,37. At this level, it is necessary to

introduce more computationally expensive non-local functionals of the orbitals. In this level, the

extra ingredients added to the formulation are the exact exchange energy density or any quantity

from which we can obtain it23. Then, we shape of the functional is the following:

EMGGA
xc [n", n#] =

Z
d3r n(r)✏uni f

xc (n)Fxc(n", n#,rn",rn#,r2n",r2n#, ⌧", ⌧#, eexact
x ) . (2.53)

where

eexact
x (r) =

1
2

X

�

Z
d3r0(

n�
n

)
nx(r0�, r�)
|r0 � r| (2.54)

The exact energy density eexact
x (r) can be calculated from the occupied Kohn Sham orbitals27.

Another way to write the hybrid functional is a simpler way is to do it in terms of the previous

functionals, such as we express the hybrid functional including the fraction of the exact exchange

mixed with GGA exchange and correlation parts:

Ehyb
xc = aEexact

x + (1 � a)EGGA
x + EGGA

c . (2.55)

where the constant a can be fitted empirically or estimated theoretically . Some of the most

famous hybrid functionals include the B3LYP, B3PW91, or PBE0, that combine a determinate
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fraction of exact exchange with some GGA exchange and local hybrids. In general, global hybrid

functionals are remarkably accurate in the prediction of molecules and strongly inhomogeneous

solids, however,they do not satisfy any exact-constrain that is not already solved with standard

GGAs26. Despite this fact, Hybrid functional are the most accurate density functionals in use for

quantum chemical calculations27.

In this work we will focus on the B3LYP hybrid functional, which stands for Becke 3-parameter

Lee–Yang–Parr, which is expressed in terms of GGAs and LSDAs, as:

EB3LYP
xc = (1 � a)ELS DA

x + aEHF
x + b�EB

x + (1 � c)ELS DA
c + cELYP

c , (2.56)

where a = 0.20, b = 0.72, and c = 0.81, the three parameters that give name to the functional. The

exchange part is given by the Becke 88 exchange functional EB
x

38, while the correlation part is given

by the Lee, Yang and Parr correlation functional39, taken together we get B3LYP. Additionally, we

have ELS DA
x and ELS DA

c the local-spin density exchange and correlation functionals, respectively40.

2.5 Basis set

From the mathematical point of view, a basis set is defined as a collection of vectors that can

describe a complete space on which a problem is solved. Making this analogy, a basis set in

quantum computation can be seen as the one- particle function, such that a combination of them

constitutes molecular orbitals. In principle, all ab initio methods incorporate a certain basis set

depending on the calculations that will be performed, due to each basis set being optimized for

di�erent purposes. Since the molecular orbitals are described by the basis set, the smaller that

basis set is the poorer is the representation of the orbital, in other words, they have a considerable

influence on the accuracy of the calculations41. For instance, it is known that the computational

e�ort of ab initio methods scales as at least M4
basis, then it is essential to choose the basis set as

small as possible, such that it does not compromise the accuracy of the calculations42,43.

Additionally, basis sets need to accomplish the following constrains41:

• Basis sets are formulated such they reflect the nature of the problem they treat, providing

good accuracy in the calculations with few functions.

• Basis sets should be available in several hierarchical levels.
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• Basis sets should converge relatively fast and monotonically.

• Basis set should be optimized to deliver the target accuracy with the less computational

cost possible.

• Basis sets should ideally be universal, which means they have to be appropriate for di�erent

methods and properties,

• Be available for all atoms, or at least for a large fraction of the periodic table.

There exist di�erent types of basis sets, such as the Slater-Type orbitals (STO), Def2, the

Gaussian-Type orbitals (GTO), etc. In this work, we will focus on GTO, due to it is the one that

was incorporated in our calculations.

2.5.1 Gaussian-Type orbitals

The Gaussian-type orbitals4 are described in terms of the Cartesian coordinates as41:

�⇠,lx,ly,lz(x, y, z) = Nxlxylyzlze�⇠r
2

(2.57)

In this case, the lx, ly, and lz in Eq.2.57 would represent the parameters that determine the

type of orbital. If we sum them up as we would obtain the angular momentum of the atom L = lx

+ ly + lz. It is known that the r2 dependence in Eq.2.57 a�ects the GTO in two specific ways: (i)

GTO has zero slopes, then it is di�cult to study the behavior near the nucleus; (ii) GTO will fall

o� exponentially from then nucleus, making the representation of the wavefunction deficient41.

In any case, GTO is able to form a complete set, but due to the constraints explained above, it

will need more functions in order to achieve the desired accuracy, in comparison to other basis

sets. However, this is compensated widely by the ease with which the required integrals can be

calculated41. For this main reason, the GTOs are the preferred basis set in molecular electronic

structure calculations.

2.6 R�COSX Algorithm

The RÒCOSX algorithm is an approximation mainly used to speed up Hartree–Fock (HF) and

hybrid density functional calculations44,45. This is done by building the Coulomb and exchanging
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parts of the Fock matrix with di�erent approximations. First, the RI-J algorithm is in charge

of dealing with the Coulomb interaction, specifically, computing the near-field part calculations

with Gaussian basis functions. For instance, this algorithm is specially suitable for basis sets

that have many high angular momentum functions45. Second, we have the Chain-of-Spheres

Exchange (COSX) algorithm which is in charge of implementing a semi-numerical integration

techniques and density fitting for the exchange matrix46. Then, the combination of the COSX

exchange algorithm with the RI-J approximation for the Coulomb term is called RÒCOSX.

2.7 Tight Binding (TB)

In solid-state physics, the tight-binding model (TB) is an approach to calculate electronic-structure

properties of crystals and big molecules. The fundamental idea behind is TB model is using an

approximate basis set of wave functions considering they are in superposition within each other.

The overlapping of the wavefunction leads us to the energy level, such that for an N-atoms system,

N orbitals are formed for each orbital in the atom20. Taking this into count, we can say that there

are allowed and forbidden regions of energy for all the solids, and this already is a prediction of

the TB model20.

Density-functional Tight Binding (DFTB) methods represent a semi-empirical approximation

to the latter. For instance, the total energy is represented through a Taylor expansion around �⇢

= 047:

E[⇢] = E(0)[⇢0] + E(1)[⇢0, �⇢] + E(2)[⇢0, (�⇢)2] + E(3)[⇢0, (�⇢)3] + ... (2.58)

2.8 Molecular Dynamics (MD) theory

Classical molecular dynamics is a well-known and widely implemented process of computational

chemistry and materials modeling. In principle, MD follows a well-defined procedure, integrating

numerically Newton’s equations of motion for the atoms in the system. In order to perform a

proper MD it is necessary to set some constraints according to the purpose of the study, such as

the type of ensemble we will use and the time step of the MD. For instance, the time step is usually

determined by the highest frequency motion of the system48. Typically, the most important output
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of MD are the distributions of nuclear positions, velocities, and forces, hence, it is essential to

ensure that the initial configuration is not biased in any way.

2.8.1 Verlet algorithm

Verlet algorithm is implemented in order to obtain the position updates of the atoms from the

forces involved in the MD. In this procedure it is necessary to solve the Newtons’ equations of

motion, however, for any physical system with a certain level of complexity, these equations are

far too completed, then, it is more convenient to consider the numerical integration instead. A

simple way to do this is to use the Taylor expansion19:

ri(t + �t) = ri(t) +
dri(t)

dt
�t +

1
2

d2ri(t)
dt2 �t2 +

1
6

d3ri(t)
dt3 �t3 + O(�t4) (2.59)

Rewriting this equation in terms of the derivatives we get:

ri(t + �t) = ri(t) + vi(t)�t +
1
2

ai(t)�t2 +
1
6

d3ri(t)
dt3 �t3 + O(�t4) (2.60)

If we express this equation with a negative and positive time step and take the di�erence, we

obtain than:

ri(t + �t) ⇡ 2ri(t) � ri(t � �t) +
Fi(t)
mi

�t2 (2.61)

This is the so-called Verlet algorithm. Notice that providing a su�ciently small �t we can obtain

an accurate approximation to the true trajectory19.





Chapter 3

Methodology

In this chapter, we will present a detailed description of all the processes implemented in this

work. It is separated into two main sections: (i) Computational modelling methods, in which we

will describe the soft-wares used to process the clusters; (ii) Computational procedure for cluster

development, in which we will describe in detail the di�erent processes the clusters went through

and the selection criteria for them.

3.1 Computational modelling methods

3.1.1 Extended tight-binding (xT B) package

Extended tight binding is a semi-empirical quantum mechanical method (GFNn-xTB) which

basis wave functions5 consists in a minimal valence set of atom centered, contracted Gaussian

functions49. GFNn-xTB methods incorporate electrostatic interactions and exchange-correlation

e�ects up to second order when we need to deal with multipole expansion49,50 and unlike other

semi-empirical methods xTB incorporate a solid strategy with global and element-specific param-

eterization. In particular, this method focus specially in properties such as energy minimization,

geometries, vibrational frequencies, and non-covalent interactions. Considering this GFNn-xTB

methods are very well suited for simulating structures with molecular dynamics51. In this work we

take advantage of this feature by applying a molecular dynamics process to our TiO2 nanoclusters.

27
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Figure 3.1: Extended tight binding GFNn-xTB logo5.

3.1.2 ORCA

ORCA is a general-purpose ab initio quantum chemistry program package developed in 1999

by Frank Neese investigation group that implements virtually all modern electronic structure

methods, in particular, we are interested in the density functional theory semi-empirical methods6.

ORCA uses standard Gaussian basis functions and is fully parallelized. In this work ORCA is

implemented to accurately perform extensive relaxation over sets of nanoclusters and calculate

its corresponding electronic properties.

Figure 3.2: ORCA logo6.

3.2 Computational procedure for cluster development

In this subsection, we will explore step-by-step the process applied to each of the TiO2 nanoclusters

in order to obtain their electronic structure and other physical properties. To achieve this goal,

a general overview of the thesis procedure and methodology is outlined in Fig.3.3. Each of the
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steps will be developed in more detail in the following sections.

GFN2-xTB 
pre-relaxation 

of Arab et al. clusters

Molecular 
Dynamics 

 (1ns) at T=298.15 K

Most-stable 
structures 

relaxation with ORCA 
(high level all-
electron DFT)

Calculation 
of electronic 

properties: ET , Ee , 
ENR , HOMO, 
LUMO, Eg, …

# candidates

Figure 3.3: Schematic diagram of the process followed to obtain the electronic structure and other

physical properties from (TiO2)n (n = 1-10) nanoclusters obtained originally from Arab et al.15

3.2.1 Construction of the clusters in ASE

As a first step, it was necessary to make a proper selection of the clusters that we going to be

processed in this work. In this sense, we extracted the original structure from Arab et al.15 where

a variety of clusters (TiO2)n (n = 1 - 10) is presented, then we selected the clusters making sure to

take at least one of each n. Although, in this work a total of 27 clusters were processed following

exactly the same steps, for illustrative purposes we will just present the 6 f 2 cluster in this section.

Once the selection was completed, we proceeded to the construction itself of the clusters,

transforming the 2D information in Arab et al. into 3D models that we are able to manipulate.

For this purpose, we made use of the ASE software, which is widely used in the materials

modelling field and was convenient for us due to its intuitive and user-friendly interface. When

we are satisfied with the modelling of the clusters we save the ase files in Protein Data Bank
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(.pdb) format, for example: 6f2.pdb. Then, in order to make sure the integrity of the file was

not corrupted we open up 6f2.pdb and save it once again in turbomole format, as 6f2.turbomole.

Finally, we open up again the 6f2.turbomole file and save it in Cartesian coordinates format .xyz
as 6f2.xyz (Fig. 3.4). This last will be the actual formal that we will use from now on to describe

the positions of the atoms in the cluster. To save time we also open ase files by simply typing the

command line in Fig.3.5.

3.2.2 xTB pre-relaxation and Molecular Dynamics (MD).

Once we had the initial structure of the cluster we proceeded to perform on it a subtle pre-

relaxation using the xTB software. The command line to run this optimization is presented

in Fig.3.6. We obtain a xtbopt.xyz file once the pre-relaxation is done. A comparison between

before and after the pre-relaxation is presented in Fig.1, where we can easily notice a considerable

di�erence between before and after the process.

Figure 1. Before (le f t) and after (right) pre-relaxation in xTB package.

Following this, we proceed to perform a Molecular Dynamics (MD) simulation on the system.

The MD calculations are done with the xTB software using Gaussian basis wave functions at

room temperature (T = 278.15 K), for a total time of 1 nanosecond (ns). In this case, the we

occupy the canonical type of ensemble (NVT), in which the amount of substance (N), volume

(V) and temperature (T) are conserved . All the previous parameters are expressed in the md.inp
file (Fig.3.7). Taken together the xtbopt.xyz and md.inp are the input files to perform our MD.
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1 18 # number of atoms

2 Element x y z

3 O -4.98800000 2.87200000 -0.65000000 8

4 Ti -3.97400000 1.72300000 -0.49500000 22

5 O -2.47300000 2.03500000 -0.34600000 8

6 Ti -1.98600000 3.49600000 -0.35100000 22

7 O -3.00000000 4.64500000 -0.50600000 8

8 Ti -4.50100000 4.33300000 -0.65500000 22

9 Ti -5.08700000 2.94000000 1.04300000 22

10 O -4.09300000 1.76600000 1.11100000 8

11 Ti -2.58300000 2.04100000 1.24200000 22

12 O -2.06800000 3.49100000 1.30300000 8

13 Ti -3.06200000 4.66500000 1.23500000 22

14 O -4.57100000 4.39000000 1.10400000 8

15 O -1.83000000 1.31700000 1.96800000 8

16 O -6.12700000 2.70200000 1.67200000 8

17 O -2.67800000 5.62200000 1.71600000 8

18 O -4.19700000 0.81700000 -1.26100000 8

19 O -4.92700000 4.87600000 -1.65900000 8

20 O -0.50200000 3.61700000 -0.99200000 8

21

Figure 3.4: 6f2.xyz GFNn-xTB input file.

username:⇠$ ase gui -b 6f2.pdb

Figure 3.5: Command line for opening ASE.
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username:⇠$ xtb 6f2.xyz --opt tight -P 4 > results.out

Figure 3.6: Command line for pre-relaxation performed in xTB with 4 cores.

#Molecular dynamics GFN2-xTB input parameters
  $md
   temp=298.15 # in K
   time= 1000.0  # in ps
   dump= 50.0  # in fs
   step= 3.0  # in fs
   velo=false
   nvt =true 
   hmass=4
   shake=2
   sccacc=2.0
  $end

total run time 
 of simulation

time step  
for propagation

write out velocities

interval for  
trajectory printout

mass of  
hydrogen atoms accuracy of xTB  

calculation

perform simulation  
in NVT ensemble

SHAKE algorithm  
to constrain bonds 

thermostat  
temperature

Figure 3.7: A production input file used in GFN2-xTB to compute the molecular dynamics in

TiO2 nanoclusters.

Afterwards, the MD is finished we obtain di�erent output files, describing the topology,

charges, as well as the trajectory followed by the cluster, thought the simulation time (xtb.tr j)
which is simply a .xyz file repeated as many times as indicated in the md.inp file. The total energy

of the cluster in each specific configuration per step is also computed and plotted in Fig.3.8.In

here, we can notice some particular configurations of the clusters as the time passes. Specifically,

in 6 f 2 cluster, we can easily see a "stairs-kind of behavior" where the three most stable phases are

present, one per stair, and are pointing to the specific peak of energy where they are generated.

These three phases are topologically di�erent from each other and correspond to a single original
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cluster. We collected these most-stable configurations for each of the clusters to follow with the

next step of the processing.

  

Figure 3.8: Molecular dynamics (MD) at room temperature ( T = 298.15 K) for 1 ns of 6f2 TiO2

nanocluster. Notice the MD reaches the energy equilibrium, the structure stabilizes to a defined

range of energies for a period of time. In each of the stair-like regions the nanocluster remains

with a certain topology and it is pointing with an arrow to the correspondent energy peak in which

it is present, such that the they are the most stable configurations of each of their regions. Notice

that after two stair-like region we get a lowering in the range of the energies (phase transition)

and it is maintained for the rest of the MD time.

3.2.2.1 How to choose the time step �t for the MD?

In order to perform a proper MD, it is necessary to select the proper time step for propagation,

which will depend on the type of molecules or atoms we are simulating. The vibration frequency

of the atom and the time step for propagation have an inverse relationship, which means that for

atoms with high-frequency vibrations it is more convenient to use a low time step, such we are
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able to catch the rapid vibrations of the atom. For example, in the case of the Hydrogen atom

which are the lightest atoms in nature, the time step will have to be the lowest possible (0.5-1 fs).

For our particular case, we are dealing with TiO2 clusters, which means we have heavy atoms like

O and Ti. Then, we performed a series of MD with di�erent time steps to the same nanocluster

structure: 4c2. It is worth mentioning that the computational cost of the calculations increases

with lower time steps, taking this in count the selection criteria is to take the highest time step

that still catches the phase transitions and reaches the convergence in the calculations. The set of

MD performed on 4c2 nanocluster is presented in Fig.3.9.
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Figure 3.9: Molecular dynamics (MD) of 4c2 nanocluster at room temperature (T = 298.15 K)

for 0.5 ns , where each of the MD graphs correspond to an specific �t. A : 1 fs; B : 2 fs; C : 3

fs; D : 4 fs; E : 5 fs; F : 7 fs.

Notice that as we increase the time step the phase transition occurs earlier in the total MD

time until we reach to the �t = 4 f s which maintains the phase transition at almost the same level

as in �t = 3 f s (Fig.3.9 C-D). Going to higher time steps we miss the phase transition (Fig.3.9 E),

furthermore, we do not reach an energetic convergence (Fig.3.9 F). Applying the phase transition
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and energetic convergence criteria for the selection of the proper �t, it is straightforward to

conclude that our optimal time step would be �t = 3-4 fs (Fig.3.9 C-D). Since we will be dealing

with larger and more complex nanoclusters that 4c2, we selected �t = 3 fs for extra safety.

3.2.3 ORCA relaxation

In order to calculate the di�erent electronic properties, it is essential to perform a proper relaxation

to each set of stable structures per cluster of (TiO2)n.In this part we chose an all-electron relaxation

for our case. Then, for this purpose, we set up a code in ORCA6 an abinitio molecular dynamics

semi-empirical package, in order to ensure a much more extensive relaxation in comparison with

the pre-relaxation performed at the beginning.

Following the extensive relaxation process, we can finally begin to calculate the electronic

properties of the most-stable clusters. In particular, this code implements the high-level calcu-

lations of B3LYP hybrid functional within the RÒCOSX approximation with def2-TZVPP basis

set and def2/J auxiliary basis set. An overview of the input file is sketched in Fig.3.10

# Accurate DFT rx followed by freq & electronic prop calculations
! PAL8 Opt TightSCF B3LYP def2-TZVPP def2/J RIJCOSX Freq Printbasis
%freq
Hess2ElFlags 1,2,2,1 
end
%maxcore 2000 # Giving 2000 MB of memory per core.
%output
     print[p_mos] 1
 end #output

%elprop Dipole true
Quadrupole True
Polar 1
end

* xyzfile 0  1 6f2.xyz

comment line

8 parallel  
MPI-processes

structure 
relaxation

request tight 
convergence

functional basis set

RI-J auxiliary 
basis set

numerical integration  
for the exchange integrals

frequency  
calculation

print basis 
in output

start a keyword line
approximation for 

frequency calculation

setup 2GB memory

compute dipole,  
quadrupole and  

polarizability tensor

use xyz coordinates total charge is zero and multiplicity  
(2S+1) is 1 (no unpaired electrons) 

structure is found in  
this file .xyz 

print molecular 
orbitals

{
{
{

Figure 3.10: A production input file used in ORCA to compute the relaxation and the electronic

properties of the cluster.

ORCA generates a list of files, but the most important for our purposes are the 6 f 2.out file,
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within all the information is extensively detailed, and the 6 f 2.xyz file, which contain the relaxed

cluster coordinates. The electronic properties we aimed to obtain are detailed in the 6 f 2.out file,

then, we need to extract the relevant information from there. The results that are relevant for this

work are52:

• The electronic energy (Eelec): describes the electrostatic repulsion between the electrons.

• The nuclear repulsion energy (ENR): describes the electrostatic repulsion between the nuclei

and it is independent of the electron coordinates.

• The Dipole moment (D): They occur when there is a separation of charge and it is a

measure of the polarity of the molecule.

• The Quadrupole moment (Q): It is related to the shape of the nucleus and it indicates the

departure of nuclear charge from spherical symmetry.

• The Polarizability (P): Tendency of matter to acquire an electric dipole moment in presence

of an electric field.

• The zero-point energy (EZP): It is the lowest possible energy that a quantum mechanical

system may have represented by vibrations retained even at the absolute zero of temperature.

• The total energy of the system (Etot): Summation of all the energy contributions explained

above.

• The highest occupied molecular orbital energy (HOMO)

• The lowest unoccupied molecular orbital energy (LUMO)

• The HOMO-LUMO energy gap (Eg): Energy di�erence between HOMO-LUMO orbitals.

• The Gyration radius (Rg): The root-mean-square average of the distance of all scattering

elements from the center of the mass of the cluster.



Chapter 4

Results & Discussion

In this section, we will discuss the outcome of the semi-empirical MD simulations followed by ab

initio relaxation that we used to predict physical properties. It is important to stress that despite a

typical MD simulation requires a period of equilibration, we decided to consider all the structures

obtained during the 1 ns. Nonetheless, we only analyze the electronic structure of the most stable

phases of the MD as we expect that structure to be the most likely found at 298.15 K.

4.1 Molecular dynamics simulations and electronic structure
of (TiO2)n, n = 1 � 10 clusters and electronic distribution
calculations.

In this section is presented the results of the NVT molecular dynamics simulations (MD) at room

temperature for 1 ns and parallel it is analyzed the HOMO distribution in each of the cases.

Figure 4.1 displays the outcome of the MD for n = 2 clusters. Notice that none of the three

cases show phase transitions, keeping an linear-like structure during all the MD. Nonetheless, the

e�ect of the temperature allows those clusters to explore more stable configurations leading to the

same structure despite the di�erent initial configuration (c f . Table 4.1: 2a1, 2a2 and 2a3 along

the original structure column); this trend is clearly observed in Table 4.2, were the Etot for these

structures are -1999.951 Ha and Rg ⇠ 1.6 Å. The B3LYP computed electronic structure shows

the HOMO formed mainly by O-2p states.
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�TIO2�N , N = 1 � 10 CLUSTERS AND ELECTRONIC DISTRIBUTION CALCULATIONS.

Figure 4.1: Molecular dynamics of (TiO2)2 nanoclusters.A : 2a1; B : 2a2; C : 2a3.
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Figure 4.2 displays the outcome of the 1 ns MD for n = 3 clusters. The MD simulation yields

a linear-like structure for all the clusters. Nonetheless, HOMO distribution displays O-2p states

located along the O atoms that are lying in the same plane(Table 4.1). In particular, we notice that

3b1, 3b3 and 3b4 clusters converged to practically the same configuration after the relaxation;

this can be also observed in Table 4.2 were despite those structures have an Etot of ⇠ 3000 Ha

and Rg ⇠ 1.9 Å.

Figure 4.2: Molecular dynamics of (TiO2)3 nanoclusters.A : 3b1; B : 3b2; C : 3b3; D : 3b4.

Figure 4.3 displays the outcome of the 1ns MD for n = 4 clusters. The MD simulation yields

two pairs of similar structures: 4c1c and 4c2b; 4c3 and 4c4, that are stair-like. In 4c1 MD (Fig.4.3

A) there are three well-defined phases, each of them considerably separated in energy, one at the

very beginning and the most stable one almost at the end. In 4c2 MD (Fig.4.3 B) there are two

well-defined phases. Meanwhile, 4c3 and 4c4 MDs yield linear-like structures thought all the

MD time. Furthermore, notice in Table 4.1 that after relaxation all of them converge to the same

configuration, which makes sense due in Table 4.2 it is stated that Etot for these structures are
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-4000.079 Ha.

Figure 4.3: Molecular dynamics of (TiO2)4 nanoclusters.A : 4c1; B : 4c2; C : 4c3; D : 4c4.

Figure 4.4 displays the outcome of the 1ns MD for n = 5 clusters. The MD simulation yields

two similar structures (5d2 and 5d3). In 5d2 MD (Fig.4.4 B) there are three stair-like structures,

one occurring at the very begging of the MD time, and it presents some energy fluctuations in the

most-stable phase. In 5d3 MD (Fig.4.4 C) there are also three stair-like structures, one occurring

at the very begging of the MD time. Notably, the energy di�erence from one phase to the other

is considerable in this case. At last, we have a linear-like structure in 5d1 MD, that particularly

presents some fluctuations at the beginning. Additionally, 5d1, 5d2, and 5d3 converge to the same

configuration after relaxation (Table 4.1); this trend is also observed in Table 4.2 since the Etot

for these structures is around -5000.156 Ha, and Rg ⇠ 2.6. Also, note that HOMO distribution

displays O-2p states located along with the O atoms.
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Figure 4.4: Molecular dynamics of (TiO2)5 nanoclusters. A : 5d1; B : 5d2; C : 5d3.
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Figure 4.5 displays the outcome of the 1 ns MD for n = 6 clusters. First of all, we can notice

some very specific phase transitions for both 6f structures. In 6f1 MD (Fig.4.5 A) there are four

stair-like structures. In particular, there is one less-stable phase transition just after the original

one. In 6f2 MD (Fig.4.5 B) there are three stair-like structures. Notice that we get two rapid

phase transitions at the very begging and then it reaches the most-stable phase for most of the MD

time. Furthermore, notice in Table 4.1 the HOMO distribution is mainly formed by O-2p states.

Figure 4.5: Molecular dynamics of (TiO2)6 nanoclusters.A : 6f1; B : 6f2.

Figure 4.6 displays the outcome of the 1 ns MD for n = 7 clusters. The MD simulation yields

two similar structures (7g1 and 7g2) which are linear-like structures, however, 7g2 MD has a

particular shape that, although it does not become a phase transition, show a vibration-like shape.

Meanwhile, in 7g3 MD it is clear the presence of the a single well-defined phase transition.

Additionally, note in Table 4.1 that the major contribution to HOMO orbitals distribution are

O-2p states.
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Figure 4.6: Molecular dynamics of (TiO2)7 nanoclusters.A : 7g1; B : 7g2; C : 7g3.
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Figure 4.7 displays the outcome of the 1ns MD for n = 8 clusters. The MD simulation yields

two similar structures (8h3 and 8h4) which have a rapid stabilization period before the actual

stabilization to a linear-like structure (Fig.4.7 B-C). In contrast, 8h2 MD presents a complete

linear-like structure with no stabilization period as the other two(Fig.4.7 A). Furthermore, note

in Table 4.1 that 8h3 and 8h4 structures converge to a single configuration after the relaxation.

Also, the major contribution to the HOMO orbitals is given by the O-2p states.

Figure 4.7: Molecular dynamics of (TiO2)8 nanoclusters. A : 8h2; B : 8h3; C : 8h4.
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Figure 4.8 displays the outcome of the 1ns MD for n = 9 clusters. The 9i1 and 9i2 MD yields

linear-like structures with no phase transition present. Nonetheless, in Table 4.1 note that 9i1

and 9i2 structures converge to a single configuration after the relaxation. By consulting Table

4.2 this trend makes sense since Etot of these structures is around -9000.444 Ha and Rg ⇠ 3.2.

Furthermore, notice the HOMO orbitals major contributions are given by the O-2p states.

Figure 4.8: Molecular dynamics of (TiO2)9 nanoclusters.A : 9i1; B : 9i2.

Figure 4.9 displays the outcome of the 1 ns MD for n = 10 clusters. First of all, we can notice

that for all of the 10j structures exist clear phase transitions. In 10j1 MD (Fig.4.9 A) there are

four stair-like structures. In 10j2 MD (Fig.4.9 B) there are two stair-like structures, in particular,

this phase transition occurs almost at the end of the MD time. In 10j3 MD (Fig.4.9 C) there are

also two stair-like structures, but unlike 10j2, this phase transition occurs at the very beginning of

the MD time. Finally, in Table 4.1 it is displayed the HOMO distribution orbitals and are mainly

constituted by O-2p states lying in the same plane.
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Figure 4.9: Molecular dynamics of (TiO2)10 nanoclusters.A : 10j1; B : 10j2; C : 10j3.
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Table.4.1 displays a comparison of each original nanocluster with its corresponding most-

stable configuration including the HOMO distributions. As mentioned above, we observe some

structures with the same n to end having similar structures and properties after MD simulations.

Table 4.1: Summary of results, this table displays the initial structure relaxed at 0 K and most

stable structure from MD results including the HOMO distribution. The label on the left column

corresponds to the structure as labeled in Table 4.2. In all the figures, the isovalue of HOMO was

plotted at 0.06 e/a3
0; and the O (Ti) atoms are depicted by red (grey) spheres.

Cluster name Initial Structure Most Stable Structure + HOMO Label

2a1 2a1

2a2 2a2

2a3 2a3
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3b1 3b1

3b2 3b2

3b3 3b3

3b4 3b4
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4c1 4c1c

4c2 4c2b

4c3 4c3

4c4 4c4
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5d1 5d1

5d2 5d2c

5d3 5d3c

6f1 6f1d
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6f2 6f2c

7g1 7g1

7g2 7g2

7g3 7g3b
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8h2 8h2

8h3 8h3

8h4 8h4

9i1 9i1



CHAPTER �. RESULTS & DISCUSSION 53

9i2 9i2

10j1 10j1d

10j2 10j2b

4.2 Predicted physical properties of the clusters and correla-
tions.

In this section we will introduce the predicted physical properties calculated for each of the

clusters.

As we have seen in the previous subsection, MD allows us to compute di�erent phases that

come from a single nanocluster originally. In Figure 4.10 it is displayed a summary of all the

meta-stable and stable configurations per (TiO2)n nanocluster after MD and posterior ab initio

relaxation. Above each configuration, it is displayed the corresponding label.
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Figure 4.10: Summary of all possible configurations of (TiO2)n (n = 1 � 10) nanoclusters after

MD process during 1 ns at room temperature (T = 298.15 K).
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Following this, in Table 4.2 they are displayed all the physical properties calculated with ORCA

for all the possible configurations found in the MD. These properties are: total energy(Etot) in

Ha, dipole moment(D) in a.u., quadrupole moment (Q) in a.u., isotropic polarizability (P) in

a.u., electronic Energy (Eelec) in Ha, nuclear repulsion (ENR) in Ha, HOMO energy in Ha, LUMO

energy in Ha, energy gap (Eg) in Ha, zero-point energy (EZP) in Ha and Gyration radius (Rg) in

Å.

Table 4.2: DFT-B3LYP computed results: total Energy(Etot) , dipole moment(p), quadrupole

moment (Q), isotropic polarizability (P), electronic Energy (Eelec) , nuclear repulsion (ENR),

HOMO, LUMO, energy gap (Eg), zero-point energy (EZP) and Gyration radius (Rg). In this table,

p, Q and ↵ is given in a.u., the energies in Eh and Rg in Å.

Syst Etot D Q P Eelec ENR HOMO LUMO Eg EZP Rg

2a1 -1999.951 0.002 -40.985 66.537 -2524.296 524.331 -0.296 -0.113 0.183 0.014 1.66

2a2 -1999.951 0.008 -40.947 66.448 -2524.69 524.724 -0.296 -0.112 0.183 0.014 1.655

2a3 -1999.951 0.001 -40.959 66.583 -2524.186 524.22 -0.295 -0.113 0.183 0.014 1.64

3b1 -3000.018 3.623 -62.364 97.631 -4150.931 1150.89 -0.288 -0.152 0.136 0.023 1.922

3b2 -3000.004 2.397 -58.857 106.151 -4064.775 1064.748 -0.297 -0.119 0.178 0.022 2.406

3b3 -3000.018 3.55 -62.426 97.688 -4151.434 1151.393 -0.287 -0.153 0.134 0.023 1.908

3b4 -3000.018 3.55 -62.374 97.644 -4151.659 1151.618 -0.287 -0.153 0.134 0.023 1.909

4c1a -4000.06 0.223 -78.311 150.9 -5696.359 1696.269 -0.306 -0.124 0.182 0.031 3.104

4c1b -4000.062 1.328 -80.563 140.896 -5789.366 1789.274 -0.297 -0.139 0.158 0.031 2.595

4c1c -4000.078 4.813 -80.943 131.037 -5900.363 1900.255 -0.267 -0.154 0.112 0.03 2.117

4c2a -4000.048 0.245 -90.043 132.91 -5947.72 1947.642 -0.343 -0.18 0.163 0.03 2.229

4c2b -4000.078 4.844 -80.944 131 -5901.009 1900.901 -0.266 -0.155 0.112 0.031 2.238

4c3 -4000.078 4.863 -62.374 130.883 -5901.033 1900.924 -0.267 -0.154 0.112 0.031 2.126

4c4 -4000.078 4.842 -80.833 130.622 -5903.319 1903.211 -0.266 -0.154 0.112 0.031 2.135

5d1 -5000.156 1.622 -108.322 171.808 -7838.208 2838.012 -0.319 -0.142 0.177 0.039 2.606

5d2a -5000.115 2.373 -97.819 198.023 -7400.023 2399.869 -0.309 -0.127 0.182 0.039 3.897

5d2b -5000.116 3.487 -96.023 184.965 -7511.012 2510.857 -0.298 -0.141 0.157 0.039 3.308

5d2c -5000.157 1.655 -108.329 171.858 -7838.032 2837.836 -0.32 -0.143 0.177 0.039 2.615

5d3a -5000.102 0.952 -115.34 169.615 -7766.247 2766.107 -0.318 -0.173 0.145 0.038 2.588

5d3b -5000.106 1.152 -110.491 167.727 -7875.347 2875.203 -0.333 -0.164 0.169 0.038 2.395

5d3c -5000.157 1.581 -108.286 171.666 -7839.045 2838.849 -0.32 -0.142 0.178 0.039 2.612

6f1a -6000.236 4.692 -125.531 196.583 -9944.508 3944.225 -0.274 -0.153 0.121 0.047 2.703

6f1b -6000.202 4.184 -127.708 198.685 -9885.53 3885.281 -0.286 -0.159 0.127 0.047 2.746

6f1c -6000.263 2.416 -127.675 198.915 -9972.019 3971.707 -0.318 -0.146 0.171 0.048 2.867
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6f1d -6000.221 2.265 -134.087 207.213 -9813.578 3813.31 -0.327 -0.161 0.166 0.047 2.97

6f2a -6000.189 4.113 -132.015 197.262 -9943.749 3943.514 -0.325 -0.192 0.133 0.047 2.679

6f2b -6000.187 3.104 -129.567 202.832 -9832.189 3831.956 -0.298 -0.168 0.13 0.046 2.808

6f2c -6000.236 4.381 -125.035 204.268 -9813.972 3813.689 -0.302 -0.165 0.138 0.047 2.832

7g1 -7000.313 2.953 -150.672 239.193 -12152.857 5152.489 -0.311 -0.146 0.165 0.055 2.846

7g2 -7000.308 2.308 -147.425 241.865 -11909.032 4908.669 -0.31 -0.163 0.148 0.055 3.202

7g3 -7000.339 0.944 -149.608 236.466 -12136.623 5136.227 -0.321 -0.14 0.181 0.056 3.002

7g3b -7000.31 0.494 -150.362 238.767 -12015.293 5014.927 -0.321 -0.157 0.164 0.056 3.102

8h2 -8000.347 1.923 -174.325 279.869 -14272.981 6272.571 -0.326 -0.153 0.172 0.062 3.27

8h3 -8000.392 1.975 -174.107 283.123 -14261.86 6261.405 -0.315 -0.149 0.166 0.063 3.121

8h4 -8000.345 2.72 -174.231 278.413 -14329.248 6328.84 -0.323 -0.153 0.17 0.063 3.254

9i1 -9000.444 1.488 -195.741 311.845 -16920.518 7920.002 -0.319 -0.15 0.169 0.072 3.206

9i2 -9000.44 1.725 -195.527 307.151 -16972.994 7972.483 -0.324 -0.149 0.174 0.072 3.211

10j1a -10000.497 5.014 -217.14 348.488 -19180.405 9179.829 -0.297 -0.164 0.133 0.079 3.462

10j1b -10000.484 5.512 -212.922 333.269 -19630.357 9629.794 -0.315 -0.173 0.142 0.079 3.21

10j1c -10000.561 5.185 -211.581 338.88 -19412.476 9411.834 -0.304 -0.156 0.148 0.081 3.307

10j1d -10000.526 4.704 -218.502 345.46 -19293.608 9293.002 -0.309 -0.186 0.123 0.08 3.414

10j2a -10000.572 0.061 -229.921 351.681 -19262.094 9261.443 -0.338 -0.166 0.171 0.079 3.362

10j2b -10000.572 0.065 -229.937 351.682 -19262.256 9261.605 -0.338 -0.166 0.171 0.079 3.416

10j3a -10000.501 2.59 -220.999 342.615 -19501.178 9500.598 -0.329 -0.165 0.165 0.08 3.317

10j3b -10000.522 4.526 -215.514 348.665 -19249.656 9249.055 -0.308 -0.176 0.132 0.079 3.363

Figure 4.11, which displays a summary of the likely correlations that might appear on the

whole set of data presented in Table 4.2. Our main goals is to provide trends considering the size

of the (TiO2)n clusters described by Rg with the computed values. After applying statistically

analysis; we notice that Rg shows correlations above absolute 0.7 with Etot, Q, ↵, Eelec, ENR and

the EZP.

Furthermore, making use of this data we can explore the size-dependence of the physical

properties of the clusters, that in our case is expressed by the gyration ratio. Polynomial trends

were found for the following properties: electronic energy Eelec (Fig. 6.2), isotropic polarizability

P (Fig. 6.3), nuclear repulsion ENR (Fig. 6.4), quadrupole moment Q (Fig. 6.5), total energy Etot

(Fig. 6.1) and zero-point energy EZP (Fig. 6.6). The polynomial trends with their respective R2

are displayed in the appendix A section.
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Figure 4.11: Correlation matrix which relates the di�erent physical-chemical properties predicted

by B3LYP electronic structure calculations. Mind that the values presented here means that 1
(�1) indicates a perfectly positive (negative) linear correlation between two variables while 0

value indicates no correlation between variables.
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4.3 Stability of the clusters: Magic clusters.

In general, the total energy is not enough in order to determine the stability and abundance of

the clusters, specially when we want to establish an analysis depending on their size. We find a

solution for this exploiting the idea of the so-called magic clusters. Experimentally, the formation

of clusters is an stochastic process that yields systems of di�erent number of atoms. Depending

on the size, some clusters might have increased stability resulting in the formation of more clusters

of that specific size compared with other sizes53. We classify a cluster as magic if a pair of such

clusters is stable against the transfer of one atom between them. Then, stability can be determined

with respect to closest neighbour clusters though a second order numerical derivative, such that

if it is positive (negative) the cluster is magic (not magic) as stated bellow54:

�2E = E(n + 1) + E(n � 1) � 2E(n) > 0 (4.1)

Then, we took the most stable configuration per number of (TiO2)n molecules and applied

the stability criterion obtaining that clusters with n = 3,6,7,8 are predicted the most stable and

abundant as we can see in Figure 4.12. The thick blue line and red dots represent the stability of

the cluster based on the total energy including EZP. Meanwhile, the gray dashed line and black

points represent the stability criterion based on the total energy with out EZP.

Comparing these two cases allows us to analyze the role of the zero-point energy EZP on

the cluster stability. In principle, EZP comes from the Heisenberg uncertainty which states

that quantum systems fluctuate even at their lowest energy state, such that we get fundamental

vibrations even at 0 K. At first instance, we could think that adding EZP would stabilize the

clusters due to EZP is always positive, but in fact, this does not hold for all structures as we see

in Figure 4.12 where the total energy (red dot) is below the total energy without EZP (black dot)

for n = 3, 7, 9. An special case is portrayed in cluster (TiO2)8, which is unstable when EZP is

not considered (�2E < 0), but it becomes stable as we add this contribution (�2E > 0). Then,

including EZP or vibrational e�ects allow us to have more accurate prediction of the stability and

abundance.
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Figure 4.12: Energy stability (�2E) with respect to the number of (TiO2)n molecules. The blue

thick line and red points represents the energy stability computed with all contributions, whereas

the gray dashed line and black points represents the energy stability excluding the EZP. Notice

the predicted magic clusters (�2E > 0) are (TiO2)n with n = 3, 6, 7, 8.
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Conclusions & Outlook

In this thesis we have described the electronic and atomic of (TiO2 )n nanoclusters in di�erent

configurations (n = 1-10). First, we constructed all the di�erent configurations of the nanoclusters

using the ASE software. Then we performed an initial relaxation to each of the nanoclusters

with the semi-empirical GFNn-xTB package, obtaining already di�erent dispositions in some

of the clusters. Next, we performed molecular dynamics for 1 ns at room temperature (T =

278.15 K) using the GFNn-xTB package to detect all the possible meta- stable configurations

of each of the nanoclusters. In general, most of the nanoclusters presented at least one phase

transition during the molecular dynamic process, such that we obtained from 2 to 4 topologically

di�erent configurations for each cluster. Following, we performed an all-electron ab initio DFT

relaxation at 0 K on all the meta-stable and most-stable configurations detected in the molecular

dynamics. This was done in ORCA package implementing the B3LYP hybrid functional. Finally,

we calculate the electronic structure, total energy(Etot), dipole moment(P), quadrupole moment

(Q), isotropic polarizability (P), electronic energy (Eelec) , nuclear repulsion (ENR), HOMO,

LUMO, energy gap (Eg), zero-point energy (EZP) and gyration radius (Rg) of each of the relaxed

nanoclusters. Systematic analysis of the computed structures shows similarities in some cases;

the HOMO is observed to have O-2p character mainly. Statistical analysis of the computed

physical-chemical properties shows an important correlation of the characteristic size of the

cluster represented by Rg with Etot, Q, ↵, Eelec, ENR and the EZP.

Further analysis on the stability of the clusters based on size-dependant criterion (�2E)

determine the magic clusters, the most stable-abundant in nature. Furthermore, we portrait the
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role of the EZP in the stability of the clusters as they present a subtle yet appreciable di�erence

in their behavior when EZP is considered in the calculations. Finally, these results are a relevant

contribution towards the understanding of the size-induced properties of TiO2 nanoclusters for

the future design of nanoparticles with desired features.

Even thought some (TiO2)n clusters properties have been already studied theoretically thor-

ough DFT simulations55,56, using the B3LYP hybrid functional14,15, it is important to stress that

those studies developed their calculations inside the zero-point temperature frame, in other words,

the configurations presented are stable close to 0 K, but that does not guaranty they are present in

nature, since they may o may not be stable at higher temperatures. In contrast, we performed the

MD simulation which feature is to find stable and meta-stable configurations at room temperature,

as we have seen in the change of phases during the MD time. Incorporating this method as a

previous step to the full-relaxation with B3LYP give us a wider and more detailed spectrum,

since we can find not only the global zero-point structure, but more possible stable structures that

might be formed in experiments.

Finally, it is worth mentioning that the molecular modelling in this work was prepared in

agreement with European Materials Modelling Council (EMMC) document that describe the

standard modelling scheme, i.e., flowchart for materials modelling. The physical-based and

data-based models implemented for the computation and analysis of the results were developed

according to the recommendations by EMMC as a preliminary result for design of safer and more

e�cient TiO2 based photocatalysts in the line with safety and sustainability-by-design strategy.
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Appendix A

6.1 Size-Dependence of physical properties in clusters.

Figure 6.1: Size-dependence of the total energy (Etot) of the clusters with the gyration ratio (Rg).

Notice we get a polynomial relation with R2 = 76.63%
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Figure 6.2: Size-dependence of the electronic energy (Etot) of the clusters with the gyration ratio

(Rg). Notice we get a polynomial relation with R2 = 73.83%
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Figure 6.3: Size-dependence of the isotropic polarizability (P) of the clusters with the gyration

ratio (Rg). Notice we get a polynomial relation with R2 = 83.41%
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Figure 6.4: Size-dependence of the nuclear repulsion (ENR) of the clusters with the gyration ratio

(Rg). Notice we get a polynomial relation with R2 = 70.08%
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Figure 6.5: Size-dependence of the quadrupole moment (Q) of the clusters with the gyration ratio

(Rg). Notice we get a polynomial relation with R2 = 72.58%
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Figure 6.6: Size-dependence of the zero-point energy (EZP) of the clusters with the gyration ratio

(Rg). Notice we get a polynomial relation with R2 = 76.81%
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