

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Telf.: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

UNIVERSIDAD DE INVESTIGACIÓN DE

TECNOLOGÍA EXPERIMENTAL

YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO:

Vehicle Speed Estimation From Fixed Point

Camera Using Projective Geometry and Object

Tracking

Trabajo de integración curricular presentado como

requisito para la obtención

del título de Ingeniero en Tecnologías de la

Información

Autor:

Mejía Vallejo Héctor Andrés

Tutor:

Ph.D – Pineda Israel

Urcuquí, 05 de enero del 2022

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 1 de diciembre de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00030-AD

A los 1 días del mes de diciembre de 2021, a las 14:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal Calificador,
integrado por los docentes:

Presidente Tribunal de Defensa Dr. MOROCHO CAYAMCELA, MANUEL EUGENIO , Ph.D.

Miembro No Tutor Dr. CUENCA PAUTA, ERICK EDUARDO , Ph.D.

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.

El(la) señor(ita) estudiante MEJIA VALLEJO, HECTOR ANDRES, con cédula de identidad No. 0924656150, de la ESCUELA DE
CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN, aprobada
por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de videoconferencia, la
sustentación de su trabajo de titulación denominado: Vehicle Speed Estimation From Fixed Point Camera Using Projective
Geometry and Object Tracking., previa a la obtención del título de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la) estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y examinado por
los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de videoconferencia, que integró la
exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas por los miembros del Tribunal, se califica la
sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D. 10,0

Presidente Tribunal De Defensa Dr. MOROCHO CAYAMCELA, MANUEL
EUGENIO , Ph.D.

10,0

Miembro Tribunal De Defensa Dr. CUENCA PAUTA, ERICK EDUARDO , Ph.D. 10,0

Lo que da un promedio de: 10 (Diez punto Cero), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

MEJIA VALLEJO, HECTOR ANDRES
Estudiante

Dr. MOROCHO CAYAMCELA, MANUEL EUGENIO , Ph.D.
Presidente Tribunal de Defensa

Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.
Tutor

Dr. CUENCA PAUTA, ERICK EDUARDO , Ph.D.
Miembro No Tutor

MANUEL EUGENIO
MOROCHO
CAYAMCELA

Digitally signed by
MANUEL EUGENIO
MOROCHO CAYAMCELA
Date: 2021.12.01 15:42:15
-05'00'

ERICK EDUARDO
CUENCA PAUTA

Digitally signed by ERICK
EDUARDO CUENCA PAUTA
Date: 2021.12.01 15:46:41
-05'00'

Firmado electrónicamente por:

ISRAEL
GUSTAVO
PINEDA ARIAS

Firmado electrónicamente por:

HECTOR ANDRES
MEJIA VALLEJO

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc

DAYSY
MARGARITA
MEDINA BRITO

Firmado digitalmente
por DAYSY MARGARITA
MEDINA BRITO
Fecha: 2021.12.01
15:15:29 -05'00'

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Telf.: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

AUTORÍA

Yo, Héctor Andrés Mejía Vallejo, con cédula de identidad 0924656150, declaro

que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas,

definiciones y conceptualizaciones expuestas en el presente trabajo; así cómo, los

procedimientos y herramientas utilizadas en la investigación, son de absoluta

responsabilidad de el/la autora (a) del trabajo de integración curricular. Así

mismo, me acojo a los reglamentos internos de la Universidad de Investigación de

Tecnología Experimental Yachay.

Urcuquí, 05 de enero del 2022.

Héctor Andrés Mejía Vallejo

CI: 0924656150

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Telf.: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

AUTORIZACIÓN DE PUBLICACIÓN

Yo, Héctor Andrés Mejía Vallejo, con cédula de identidad 0924656150, cedo a

la Universidad de Investigación de Tecnología Experimental Yachay, los derechos

de publicación de la presente obra, sin que deba haber un reconocimiento

económico por este concepto. Declaro además que el texto del presente trabajo de

titulación no podrá ser cedido a ninguna empresa editorial para su publicación u

otros fines, sin contar previamente con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de

este trabajo de integración curricular en el repositorio virtual, de conformidad a lo

dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior

Urcuquí, 05 de enero del 2022.

Héctor Andrés Mejía Vallejo

CI: 0924656150

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Telf.: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dedicatoria

“Para quienes estuvieron ahí para mí, con toda su paciencia, con todo su

corazón: mis padres y mi hermana.

A los que me levantaron el ánimo cuando y me trajeron alegría tantas veces: mis

mejores amigos Peter, Francisco, Matthew, Julio y mis monos Bryan, Luis,

Demetrio, Fer, Cristhian e Isaac.

Para mis maestros más cercanos, que me dieron mucho a pesar de que teníamos

tan poco. Para mi abuela, Doménica y Diana, las personas más cariñosas que he

tenido. Finalmente, a los que vendrán mañana, trayendo nuevas oportunidades y

experiencias. Un millón de gracias, este hermoso capítulo de mi vida siempre

estará ahí dentro de mí. ¡Lo hice! Esto es para ustedes."

Héctor Andrés Mejía Vallejo

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Telf.: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Resumen

Cada año, aproximadamente 1,35 millones de personas mueren en las carreteras

del mundo debido a accidentes de tránsito. Muchas ciudades importantes han

implementado sistemas de cámaras que pueden usarse para estimar la velocidad

de vehículos.

Este trabajo propone un flujo de trabajo de tres componentes para tal propósito:

Primero, la estimación de homografía se emplea para retroproyectar las

coordenadas de la imagen a las coordenadas de longitud-latitud. Luego, se utiliza

un detector de objetos para localizar vehículos en la escena. Finalmente, un

rastreador de objetos recibe esas detecciones para dar seguimiento a los vehículos

y estimar su velocidad. El proceso de estimación de velocidad se realiza para cada

vehículo convirtiendo las ubicaciones del plano de la imagen en coordenadas del

mundo real utilizando la matriz de homografía, luego calculando la distancia entre

líneas y dividiéndola por un marco de tiempo de medio segundo. Además, se

compararon tres implementaciones de estimación de homografía: un algoritmo

básico de Transformación lineal directa (DLT), un DLT robusto que utiliza el

consenso de muestra aleatoria (RANSAC) y una metodología propuesta que

emplea algoritmos evolutivos para una búsqueda localizada de puntos óptimos,

así como dos versiones de un rastreador de objetos. El primero usa la distancia

euclidiana para asignar detecciones a las pistas, mientras que el segundo usa

Intersection over Union (IoU), más un umbral para minimizar la asignación

incorrecta de pistas.

Finalmente, los resultados muestran que el flujo que utiliza cualquiera de los tres

métodos de homografía y el rastreador de IoU puede registrar con éxito

distribuciones de velocidad para vehículos que están a la expectativa de acuerdo

con el entorno del tráfico urbano y también puede manejar cambios en la velocidad

del vehículo.

Palabras Clave:

Estimación de velocidad, Homografía, Detección de objetos, Rastreo de objetos.

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Telf.: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Abstract

Each year, approximately 1.35 million people die on roadways around the world

due to traffic accidents. Most major cities have implemented a grid of surveillance

cameras in areas of interest that can be used for vehicle speed estimation using

only image sequences as a source of input.

This work proposes a three-component workflow for such purpose: First,

homography estimation is employed to backproject image coordinates to

longitude-latitude coordinates. Then, an object detector is used to locate vehicles

in the scene. Finally, an object tracker receives those detections to create vehicle

tracks and estimate speed. The speed estimation process is done for each vehicle

by converting the image plane locations to real-world coordinates using the

homography matrix, then calculating haversine distance, and dividing by a time

frame of half a second. Furthermore, three implementations of homography

estimation were compared: a base Direct linear Transformation (DLT) algorithm,

a robust DLT using Random Sample Consensus (RANSAC), and a proposed

methodology that employs evolutionary algorithms for a localized search of

optimal points, as well as two versions of an object tracker. The first uses

euclidean distance to assign detections to tracks, while the second uses

Intersection over Union (IoU), plus a threshold to minimize wrong track

assignment.

Finally, results show that the workflow using any of the three homography

methods and the IoU tracker can successfully register speed distributions for

vehicles that are on expectation according to the urban traffic setting and can also

handle changes in vehicle speed.

Key Words:

Speed Estimation, Homography, Object Tracking, Object Detection.

Contents

Contents 1

List of Tables 3

List of Figures 5

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 3

2 Theoretical Framework 5
2.1 Deep Learning . 5

2.1.1 Deep Learning Overview . 5
2.1.2 Artificial Neural Networks Forward Pass 5
2.1.3 Activation Functions . 6
2.1.4 Weights Initialization of Neural Networks 7
2.1.5 Artificial Neural Networks Back-Propagation 7
2.1.6 Loss Functions . 11
2.1.7 Deep Convolutional Neural Networks 11
2.1.8 Residual Neural Networks . 13
2.1.9 Batch Normalization . 14

2.2 Projective Geometry . 15
2.2.1 Homography Transformation . 16

2.3 Object Detection . 17
2.3.1 Object Detection Techniques . 17
2.3.2 Object Detection Challenges . 18
2.3.3 Object Detection Performance Metrics 18

2.4 Object Tracking . 20
2.4.1 Tracking Techniques . 20
2.4.2 Tracking Challenges . 21
2.4.3 Tracking Results Evaluation . 21

1

School of Mathematical and Computational Sciences Yachay Tech University

3 State of the Art 25
3.1 Deep Convolutional Neural Networks . 25
3.2 Object Detection . 27
3.3 Object Tracking . 30
3.4 Homography Matrix Computation . 31

4 Methodology 35
4.1 Overview of the Proposed Solution . 35
4.2 Algorithm Design . 35

4.2.1 Homography Estimation for Camera Calibration 36
4.2.2 Object Detection with YOLOv4 . 37
4.2.3 Object Tracking Implementations 41

4.3 Implementation . 42
4.4 Experimental Setup . 45

5 Results 47
5.1 Calibration Errors . 47
5.2 Graphical Layout of the Method . 49
5.3 System Run for IoU Tracker Implementation 49
5.4 System Run for Euclidean Tracker Implementation 50

6 Discussion 75
6.1 Camera Calibration . 75
6.2 YOLOv4 Qualitative Analysis . 76
6.3 Speed Estimation Using IoU Tracker . 76
6.4 Speed Estimation Using Euclidean Tracker 77

7 Conclusions 79
7.1 Performance of the Method . 79
7.2 Evaluation of the Objectives . 79
7.3 Challenges . 80

7.3.1 Hardware . 80
7.3.2 Software . 80
7.3.3 Data . 80

7.4 Lessons Learned . 81
7.5 Future Work . 81

7.5.1 Data . 81
7.5.2 Object Tracking . 81
7.5.3 Object Detection . 82
7.5.4 Homography Estimation . 82

Bibliography 83

Appendices 88
.1 Appendix 1. 91

Information Technology Engineer 2 Graduation Project

List of Tables

2.1 Activation functions formulas and their first order derivatives. 8
2.2 Neural network initialization approaches. Source [1] 10
2.3 Most common loss functions used in deep learning 12
2.4 Brief overview of common object detection techniques. 18
2.5 Challenges in object detection. Source [2]. 19
2.6 Tracking methodologies currently used. 21
2.7 Challenges in object tracking. 22

4.1 Overview of the videos captured from Seattle Dept. of Transportation
https://web6.seattle.gov/travelers/. 44

5.1 Statistics computed over vehicles tracks using IoU tracker. 59
5.2 Speed statistics for all videos using IoU tracker. 62
5.3 Speed statistics for all videos crossing the virtual lines using IoU tracker. . 62
5.4 Statistics computed over vehicles tracks using euclidean tracker. 73
5.5 Speed statistics for all videos using euclidean tracker. 74
5.6 Speed statistics for all videos crossing the virtual lines using euclidean tracker. 74

3

https://web6.seattle.gov/travelers/

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 4 Graduation Project

List of Figures

2.1 Neural network with input (x), hidden layers (h1,h2), and output (y). . . . 6
2.2 Activation functions graphs . 9
2.3 Max pooling operation . 13
2.4 Average pooling operation . 14
2.5 Residual connection. 14
2.6 Railway image with a red dot indicating the vanishing point. Source https:

//unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=
referral&utm_content=creditShareLink 15

3.1 Methods for scaling neural networks. Extracted from [3] 26
3.2 Normal ResNet block (a), and modified block used in NFNets (b). 26
3.3 RCNN worflow. Source [4]. 27
3.4 Improved Fast-RCNN workflow. Source [5] 28
3.5 YOLO framework. Source [6]. 28
3.6 Swin Transformer architecture. Source [7]. 29
3.7 Tracking principle from IoU tracker. Source [8]. 30
3.8 Tracking principle from IoU tracker (a) with auxiliar visual system (b) for

track defragmentation (c). Source [9]. 31
3.9 FAMNet architecture. Source [10]. 31
3.10 Deep Afinity Network (DAN) architecture. Source [11]. 32
3.11 Architecture of the supervised deep learning homography estimation model.

Source [12]. 33
3.12 Architecture of the unsupervised deep learning homography estimation model.

Source [13]. 33

4.1 Proposed speed estimation workflow. 36
4.2 Darknet-53 architecture, as seen in YOLOv3 [14]. 37
4.3 CSPDarknet-53 architecture. 39
4.4 Spatial Pyramid Pooling application. Source [15]. 40
4.5 YOLOv4 architecture. 41
4.6 Capture of the scene of videos 1, 2, 5, 6, and 7, along with the virtual line

location. 45
4.7 Capture of the scene of videos 9, 11, 12, 13, and 14, along with the virtual

line location. 46

5.1 Projection error for each video. 47

5

https://unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink
https://unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink
https://unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

School of Mathematical and Computational Sciences Yachay Tech University

5.2 Calibration visualizations for Video 7. Red circumferences indicate the im-
age point estimations, while blue circumferences indicate ground truth. The
grid is a virtual model of the street. 48

5.3 Distance error for each video video. 49
5.4 Sample of frames while runing the methodology. 50
5.5 Histogram of registered speed values using IoU tracker, on virtual lines for

videos 1, 2, 5, 6, 7, and 9. 51
5.6 Histogram of registered speed values using IoU tracker, on virtual lines for

videos 11, 12, 13, and 14. 52
5.7 Speed distribution for videos 1, 2, 5, 6, 7, and 9 using IoU tracker. 53
5.8 Speed distribution for videos 11, 12, 13, and 14 using IoU tracker. 54
5.9 Histogram of samples per track using IoU tracker for videos 1, 2, 5, 6, 7,

and 9. 55
5.10 Histogram of samples per track using IoU tracker for videos 11, 12, 13, and

14. 56
5.11 IoU tracker speed time series for the 10 longest tracks on videos 1, 2, 5, 6. 57
5.12 IoU tracker speed time series for the 10 longest tracks on videos 7, 9, 11, 12. 58
5.13 IoU tracker speed time series for the 10 longest tracks on videos 13, and 14. 59
5.14 Boxplots of speed for the 10 longest tracks using IoU tracker on videos 1, 2,

5, 6, 7, and 9. 60
5.15 Boxplots of speed for the 10 longest tracks using IoU tracker on videos 11,

12, 13, and 14. 61
5.16 Histogram of registered speed values on virtual lines using euclidean tracker

for videos 1, 2, 5, 6, 7, and 9. 63
5.17 Histogram of registered speed values on virtual lines using euclidean tracker

for videos 11, 12, 13, and 14. 64
5.18 Speed distribution for videos 1, 2, 5, 6, 7, and 9 using euclidean tracker. . . 65
5.19 Speed distribution for videos 11, 12, 13, and 14 using euclidean tracker. . . 66
5.20 Boxplots of speed for the 10 longest tracks using euclidean tracker on videos

1, 2, 5, 6, 7, and 9. 67
5.21 Boxplots of speed for the 10 longest tracks using euclidean tracker on videos

11, 12, 13, and 14. 68
5.22 Histogram of samples per track using euclidean tracker for videos 1, 2, 5, 6,

7, and 9. 69
5.23 Histogram of samples per track using euclidean tracker for videos 11, 12, 13,

and 14 . 70
5.24 Euclidean tracker speed time series for the 10 longest tracks on videos 1, 2,

5, 6. 71
5.25 Euclidean tracker speed time series for the 10 longest tracks on videos 7, 9,

11, 12. 72
5.26 Euclidean tracker speed time series for the 10 longest tracks on videos 13

and, 14. 73

1 Base calibrations for the most representative videos. Blue circumferences
indicate ground truth, while red circumferences indicate image point esti-
mations. The grid is a virtual model of the street. 91

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2 RANSAC calibrations for the most representative videos. Blue circumfer-
ences indicate ground truth, while red circumferences indicate image point
estimations. The grid is a virtual model of the street. 92

3 Proposed method calibrations for the most representative videos. Blue cir-
cumferences indicate ground truth, while red circumferences indicate image
point estimations. The grid is a virtual model of the street. 93

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 8 Graduation Project

Chapter 1

Introduction

1.1 Background
Currently, the standard for vehicle speed estimation on urban areas and highways is the use
of radar or lidar speed signs. They can be costly to buy, install and maintain. Therefore,
they have to be placed only on limited, strategic areas. With the rise of artificial intelli-
gence, the internet of things, and scientific computing in general, backed by increasingly
sophisticated frameworks and massive parallelization of computation, lies an opportunity
in developing novel systems that can serve as an alternative to traditional methods. In
addition, most major cities already implement networks of traffic surveillance cameras,
placed on a fixed position, next to traffic lights or at the side of the road, that can be
utilized for vehicle speed estimation using computer vision.

In this work, such system is studied, designed and implemented. Specifically, the pro-
posed method is composed of three main components that work together to enable speed
estimation using a camera. First, it uses projective geometry to estimate a homography
matrix that can translate image coordinates from the camera into longitude-latitude co-
ordinates. This is done through robust optimization methods on top of Direct Linear
Transform, with image coordinates - world coordinates correspondences given beforehand.
Then, after camera calibration, a deep learning based object detector is used to recognize
and extract the location of vehicles on the video feed. In this work, YOLOv4 model is used
as the detector. Furthermore, a distance based tracking algorithm takes those detections
as input, and frame by frame establishes tracks for each unique object identified. The
distance metrics to be tested are euclidean distance, and Intersection over Union (IoU).
Moreover, the same tracker is designed to calculate the speed of vehicles by estimating the
distance traveled over a fixed period of time, and continuously being updated using the
same time frame until the object leaves the scene. Note that speed, not velocity, is the
variable to estimate since only magnitudes are relevant, regardless of the direction of the
vehicles.

Finally, a compilation of records taken from 14 different live feeds from the United
States city of Seattle are used to test the proposed method. These live feeds are available
to the public and provided by the Department of Transportation of that city. Finally,
after all frames are processed, speed information is stored and aggregated for computing
statistics and visualizations that will assess the performance of the system.

1

School of Mathematical and Computational Sciences Yachay Tech University

1.2 Problem Statement
The inspiration for the development of this work arose from the increasing accidents on
the streets caused by irresponsible speeding drivers, becoming threats for other people,
potential public or private property destruction, further traffic congestion and many other
consequences. In addition, the solution proposed by this work can also help monitor
and alleviate traffic congestion and other related problems when integrated with other
technologies. Nowadays, major cities already have implemented infrastructure that enables
novel solutions. Thus the question becomes: How can we leverage that?

According to the Centers for Disease Control and Prevention (CDC), each year, 1.35
million people die on roadways around the world. Almost 3700 people die in crashes
involving cars, buses, motorcycles, bicycles, trucks or pedestrians every day. Moreover,
it is also estimated that fatal and nonfatal crash injuries will cost the world economy
approximately 1.8 trillion dollars. This places a special toll on low and middle-income
countries, that lack resources to mitigate further consequences. In addition, a report on
the analysis of driving speed as a risk factor from the Pan American Health Organization
(PAHO) and the World Health Organization (WHO) [16] says that both the probability
of fatal injuries for a pedestrian by car hits and stopping distance for emergency braking
increase exponentially as driving speed increases. For instance, an individual hit by a
vehicle, traveling at 40 km/h, has 60% of survival probability, while a hit by a vehicle that
travels at 70 km/h is almost always fatal.

There are also economic and environmental consequences derived from traffic congestion
and non-optimized traffic management. For instance, added fuel consumption, increase in
delivery times and loss of productivity for industries that rely on transportation [17]. This,
in particular, happens at rush hours and there are no widespread IoT solutions that can
mitigate these problems in real time.

Finally, the development of intelligent systems that can measure speed while also having
visual information are becoming increasingly important, as they enable public authorities
to make informed decisions much faster, and could serve as a basic platform for new
technologies that can tackle the aforementioned problems. For instance, with such solution,
one can also produce intelligent traffic lights to better manage traffic, implement public
displays that could advise drivers to take alternate routes in real-time. The benefits of
implementing these intelligent systems are explained on Section 4.1

1.3 Objectives

1.3.1 General Objective
Implement a vehicle speed estimation solution using cameras in unconstrained environ-
ments. That is using video feeds, regardless of acquisition hardware, environmental condi-
tions and without limiting scenes based on visual characteristics.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1.3.2 Specific Objectives
• Compare two different tracking implementations. One using Euclidean distance, and

the other using Intersection over Union for track assignment.

• Compare three robust methods for homography estimation to transform image co-
ordinates into real longitude-latitude coordinates: a base Direct Linear Transforma-
tion (DLT) algorithm, a robust DLT algorithm using Random Sample Consensus
(RANSAC) and a proposed methodology using evolutionary algorithms.

• Extend a classic tracking algorithm to also store real world plane locations, as well
as speed measures.

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

2.1 Deep Learning

2.1.1 Deep Learning Overview
Deep learning is a subfield of machine learning that employs a collection of computational
models called deep neural networks used both for supervised or unsupervised tasks. Tradi-
tionally, the performance of machine learning models highly relied on feature engineering
to describe data. Moreover, bad representations most likely result in a model achiev-
ing low performance. Deep learning is a shift in this paradigm as it tries to generate
automatic, high-level abstractions from data as features. This has the cost of high com-
putational and data demands, since these models need large volumes of samples, in the
range from thousands to millions, to be able to generalize knowledge for a specific task.
For instance, an image classification model generally needs thousands of image samples
to achieve high performance [18]. In addition, these algorithms require computationally
intensive matrix operations across all its layers. However, deep learning has become pop-
ular in recent years due to the birth of technologies that harness graphics cards to achieve
massive parallelization of computations. One example of such technologies is CUDA, or
Compute Unified Device Architecture, specifically built for Nvidia Graphics Processing
Units (GPUs) that enables general-purpose programming on this kind of hardware [19].
Finally, neural networks has shown impressive performance in the fields machine vision, for
multi object detection [20, 21, 22], and image classification [23, 24, 20]; in speech process-
ing, for speech-to-text systems [25, 26]; in natural language processing for topic modeling,
text classification, summarization [27], and many other fields.

2.1.2 Artificial Neural Networks Forward Pass
Neural networks are connectionist systems as they loosely mimic human brain connections.
Their structure consists of multiple layers: input, hidden layers, and output. Each layer is
composed of artificial-mathematical neurons as seen in Definition 1.

Definition 1. Let m− 1 be the number of input variables in a single neuron with signals
x2, x3, ..., xm and a bias term x1 = 1. Let the weight vectors be w1,w2...,wm and an

5

School of Mathematical and Computational Sciences Yachay Tech University

activation function σ. Then, the output of such neuron is defined by:

yj = σ(
m∑
i=0

wi,jxi). (2.1)

Furthermore, with j = 0, 1, ..., k, where k is the number of neurons on a neural network
layer, the forward pass of that same layer can be written as:

y = σ(xT ·W). (2.2)

From Equation 2.2, in the forward pass of a multi-layered fully connected neural network
of l layers, the inputs of layer l, are the outputs from l − 1:

h1 = σ(xT ·W1),

h2 = σ(h1 ·W2),
...

y = σ(hl−1 ·Wl−1).
Finally, a diagram of these formulations is represented in Figure 2.1.

Figure 2.1: Neural network with input (x), hidden layers (h1,h2), and output (y).

2.1.3 Activation Functions
Activation functions are an essential component of deep learning. Without them, each
neuron reduces to a linear model. Since a neural network is a composition of functions,
then the overall model would only be able to learn linear patterns, as stated in Theorem
1.

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Theorem 1. Let f : Rn → Rn and g : Rn → Rn be two linear transformations. Then
g ◦ f : Rn → Rn is also a linear transformation.

Proof. Let x, y ∈ Rn and α ∈ R. Then:

(f ◦ g)(x+ y) = f(g(x+ y))

= f(g(x) + g(y))

= f(g(x)) + f(g(y))

= (f ◦ g)(x) + (f ◦ g)(y)

(2.3)

(f ◦ g)(αx) = f(g(αx)) = f(αg(x)) = αf(g(x)) = α(f ◦ g)(x) (2.4)

Activation functions let a deep learning model learn complex, non-linear patterns and
specializes hidden neurons to learn different features from input data [28]. Furthermore,
these functions aid in neural network convergence. The most popular activation functions
are rectified linear unit (ReLU), exponential linear unit (ELU), leaky ReLU, sigmoid (lo-
gistic), softmax, hyperbolic tangent (tanh), and a recently developed function by Google
called Swish [29].

All rectifier units, along with Swish, are used in hidden layers because of fast conver-
gence and can model sparse, complex patterns easily [30]. On the other hand, sigmoid
and hyperbolic tangent are mostly used in binary classification. In particular, a sigmoid
function transforms an input into a probability. All these functions have the signature
f : R → R. Finally, softmax is a generalization of sigmoid function that enables multi-
class classification, and has f : Rn → Rn signature. Table 2.1 defines all formulas for each
activation function, along with their derivatives.

In addition, Figure 2.2 depicts all plots for each activation function.

2.1.4 Weights Initialization of Neural Networks
It is well known that proper weights initialization is crucial for network convergence since
a bad strategy could lead to exploding gradients, vanishing gradients, and even leaving the
network unable to update its weights. Some of the most popular initialization techniques
are described Table 2.2, following the work of Boulila et al. [1].

These methods are applicable when neural networks are trained from scratch. However,
there is active research [31] in reusing previously trained model weights for any general
task, and fine-tuning for a more specific or similar version of the former. This is especially
beneficial when there is a small number of training examples or when facing training time
constraints.

2.1.5 Artificial Neural Networks Back-Propagation
Machine Learning is an important shift as a programming paradigm. It lets a model learn
from data without explicitly defining rules in advance. In general, most problems of this

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.1: Activation functions formulas and their first order derivatives.

Function
name

Formula Derivative formula

Rectified
Linear Unit
(ReLU) f(x) =

0 x ≤ 0

x x > 0
f ′(x) =

0 x < 0

1 x > 0

Sigmoid-
Logistic f(x) = 1

1 + e−x f ′(x) = f(x)(1− f(x))

Hyperbolic
Tangent
(Tanh)

f(x) = ex − e−x

ex + e−x f ′(x) = 1− f(x)2

Leaky ReLU

f(x) =

αx x ≤ 0

x x > 0
f(x) =

α x < 0

1 x > 0

Exponential
Linear Unit
(ELU) f(x) =

α(ex − 1) x ≤ 0

x x > 0
f(x) =

αex x < 0

1 x > 0

Google Swish
f(x) = x

1 + e−x f(x) = 1 + e−x + xe−x

(1 + e−x)2

kind can be written as a finite sum:

f(Θ) = 1
n

n∑
i=1

fi(Θ), (2.5)

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

-2 -1 0 1 2
-1

0

1

2

z

f(z)

logistic(z)

(a) Logistic or Sigmoid activation function.

-2 -1 0 1 2
-1

0

1

2

z

f(z)

tanh(z)

(b) Hyperbolic Tangent activation function.

-2 -1 0 1 2
-1

0

1

2

z

f(z)
ReLU(z)

(c) Rectified Linear Unit activation func-
tion.

-2 -1 0 1 2
-1

0

1

2

z

f(z)
LeakyReLU(z)

(d) Leaky ReLU activation function.

-2 -1 0 1 2
-1

0

1

2

z

f(z)
ELU(z)

(e) Exponential Linear Unit activation func-
tion.

-2 -1 0 1 2
-1

0

1

2

z

f(z)
Swish(z)

(f) Swish activation function.

Figure 2.2: Activation functions graphs

with Θ being the model parameters, f is a defined and differentiable loss function that
measures how distant a model output is from a true label, and n, the total number of
samples on a dataset. This formulation is convenient since the most popular optimization

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.2: Neural network initialization approaches. Source [1]

Initialization
Method

Advantages Disadvantages

All-Zeros/Constants Simplicity Symmetry problem leading neu-
rons to learn the same features

Uniformly at ran-
dom

Improves the symmetry-
breaking process of con-
stant initialization

Could lead to vanishing gradients.
The gradient is small, and could
cause slow gradient descent con-
vergence, or no convergence.

LeCun Solves growing variance and
gradient problems

Not useful in constant width net-
works, and takes into account the
forward propagation of the input
signal.

Xavier Decreases the probability of
experiencing vanishing or
exploding gradient

Can result in dying neurons prob-
lem during training.

He Solves dying neurons prob-
lem

Not useful for layers with differ-
entiable activation functions like
ReLU.

technique used in artificial intelligence currently is Gradient Descent, which uses formula-
tions of this kind. The core concept is to find the minimum of f , traveling in the opposite
direction of the gradient. Thus, the finite sum, described in Equation 2.6, becomes an
optimization problem with the following form:

min
Θ
f(Θ) = 1

n

n∑
i=1

fi(Θ). (2.6)

In the domain of deep learning, this concept is also applicable. See Definition 2.

Definition 2. Let f be a loss function, yi, i = 1, ..., n a true data label; D is a deep
learning model that maps a data point x ∈ Rn into a prediction ŷ ∈ Rn with weights Θ.
The learning process on a deep neural network using gradient descent can be formulated as:

min
Θ
f(Θ) = 1

n

n∑
i=1

f(yi,D(x; Θi)), (2.7)

with D(x; Θi) = ŷi.

In this sense, the weights of a neural network can be fitted to output predictions as close
to a true training label as possible, while being generalizable to unseen examples. These

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

weights, or neural network parameters are updated using a Gradient Descent iteration as
seen in Definition 3.

Definition 3. Let Θ = {θ(1), ..., θ(l)} be the set of model parameters of a model with l layers,
t the gradient descent iteration index, f the loss function, and η ∈ (0, 1], the learning rate
that is going to limit the computed gradients; then the parameters update is given by:

Θt+1 ← Θt − η∇f(Θ), (2.8)

or more explicitly:
Θt+1 ← Θt − η

∂f(Θ)
∂Θ . (2.9)

2.1.6 Loss Functions
In each forward propagation, a neural network produces a numerical output. On the train-
ing phase of the model, these estimations are compared against the true labels of a dataset
to produce a distance using a loss function. These loss values are then used to correct the
weights in the backpropagation stage, and to monitor the optimization process. Generally,
it is expected that these values drop dramatically on the first training iterations and to
finally stagnate on later stages. However, vanishing or exploding gradients can disrupt this
process making the loss value settle before reaching a minima or to unexpectedly increase.

Multiple loss functions are employed according to two general tasks: regression for
continuous value predictions, or classification for categorical values. Moreover, the most
common functions are defined in Table 2.3.

2.1.7 Deep Convolutional Neural Networks
In the past, most computer vision research revolved around feature engineering, since tra-
ditional machine learning models required tailored features for a single task. For instance,
scale-invariant feature transform (SIFT) [32], histogram of oriented gradients (HOG) [33],
and many other descriptors were needed for computer vision tasks like face recognition.
However, the rise of convolutional neural networks revolutionized the field, focusing the re-
search on building better deep learning architectures, rather than designing features. These
new generation of models dramatically outperformed their traditional machine learning
counterparts on computer vision benchmarks like COCO [34] and Imagenet [35].

The most basic convolutional neural networks are composed of convolutional, pooling,
fully connected, and output layers.

Convolutional layers apply two dimensional correlations between a set of filters and
inputs, that along with an activation function produces a feature map. Taking into account
that image features are restricted to certain areas of the image, a fully connected layer would
be impractical, since it produces a combination of all neurons. Moreover, introducing
convolutions are a much more efficient approach, as it produces feature maps only on its
receptive field. Definition 4 explains how a convolutional layer is forward propagated on a
single input region.

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.3: Most common loss functions used in deep learning

Function
Name

Task Formula

Mean
Squared
Error

Regression Let n ∈ N the number of examples and
y, ŷ ∈ Rn be the true labels and estimates,
respectively. Then:

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2

Root Mean
Squared
Error

Regression Let n ∈ N the number of examples and
y, ŷ ∈ Rn be the true labels and estimates,
respectively. Then:

L(y, ŷ) =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2

Categorical
Cross-
Entropy

Classification Let n ∈ N be the number of exam-
ples, m ∈ N the number of classes, and
Y, Ŷ ∈ Mn×m(N) be the true labels and
estimates, respectively. Then:

L(Y, Ŷ) = −
n∑
i=0

m∑
j=0

(yi,jlog(ŷi,j))

Definition 4. Let Wz ∈Mm×m×c(R) be any convolutional filter with W = {W1, ...,Wn},
the set of all filters in the layer; m ∈ N the width and height of the filter, and c ∈ N the
number of channels in the filter. Let X ∈Ms×s×c(R) be an input image with s, c ∈ N, s is
the width and height of the image, and c is also the number of channels of the image. Let
bz ∈ R be any bias term with B = {b1, ..., bn}, the set of all biases in the layer. Finally, let
σ be an activation function. Then a single output pixel of a convolutional layer with X as
input, centered at x, y ∈ N is given by:

C(X,Wz, bz)x,y = σ(bz +
m∑
i=1

m∑
j=1

c∑
k=1

Wzi,j,kXx+i−1,t+j−1,k). (2.10)

Pooling layers are non-trainable layers that perform a downsampling operation, spa-
tially reducing the size of the image. The purpose is to introduce translation invariance

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

to the feature maps and reduce the number of computations on later layers of the net-
work. Similar to a convolutional layer, it also needs filter size, stride, and padding hy-
perparameters. Moreover, there exist two kinds of pooling operations: max-pooling and
average-pooling. When the kernel is over an image region, the maximum or the average
is taken according to the defined operation. Figures 2.3 and 2.4 depict max-pooling and
average-pooling respectively.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 2.3: Max pooling operation

Finally, using max-pooling and convolutional layers, one can build convolutional neural
networks like AlexNet [36] architecture.

2.1.8 Residual Neural Networks
As networks increase in depth, their performance increase as well since the feature maps
can be more robust and specialized. Nevertheless, they present a problem at training time
as gradients in earlier layers start to vanish. Resnet [37] was proposed to solve this problem,
introducing skip connections or shortcuts between layers, as explained in Definition 5 to
let the error propagate more easily and reduce accuracy saturation.

Definition 5. Let fi, fj be two neural network layer functions with xi the input to fi, and
j > i. Then the input xj of fj is given by:

xj = fi(xi) + xi. (2.11)

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 2.4: Average pooling operation

Note that, in the context of neural networks, some f can be a composition of layers
and therefore, residual connections are not necessarily constrained to consecutive layers.
They can be further apart, as depicted in Figure 2.5.

Figure 2.5: Residual connection.

2.1.9 Batch Normalization
Training deep learning models is complicated as the network has to continuously adapt to
the changing distribution of the inputs on each layer. This phenomenon is known as the
internal covariance shift. To solve this problem, batch normalization [38] was proposed.
Described in Definition 6, this layer transforms each input dimension to have zero mean

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

and unit variance, resulting in a dramatic increase in training speed.

Definition 6. Let x ∈ Rn the input of a neural network layer. The normalization is
performed in each dimension and is given by:

x̂(k) = x(k) − E[x(k)]√
V ar[x(k)]

, (2.12)

where k is the layer index, E[x(k)] is the expected value, and V ar[x(k)] is the variance of
the input. Consequently, the normalized value is scaled and shifted:

y(k) = γ(k)x̂(k) + β(k), (2.13)

where β ∈ R and γ ∈ R are trainable parameters.

Note that the expectation and variance are computed over the training dataset only.

2.2 Projective Geometry
The first studies about the geometry of perspective relate to the Renaissance era, intro-
ducing the concepts of points at infinity, and how parallel lines when applied a perspective
transformation converged to those points at infinity [39]. This early concept is very intu-
itive, as can be seen in Figure 2.6, a landscape with a straight railroad heading right to the
horizon line. Such parallel lines meet at one vanishing point, belonging to the horizon.

Figure 2.6: Railway image with a red dot indicating the vanishing point. Source
https://unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=
referral&utm_content=creditShareLink

Nowadays this field is extensively being studied since it enables applications like GPS
systems, radar, satellite, and civilian that require locations in real time [40].

Information Technology Engineer 15 Graduation Project

https://unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink
https://unsplash.com/photos/S5jD0E8DOC0?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

School of Mathematical and Computational Sciences Yachay Tech University

2.2.1 Homography Transformation
A homography refers to the transformation between two planes. Under the image process-
ing setting, it provides a means for camera calibration that describes a projection from
world points into image points. Moreover, it is possible to explain this mapping in terms
of matrix multiplications using homogeneous coordinates from the viewing point and the
point on the image plane. See Definition 7.

Definition 7. Let s ∈ R be a scale factor, p′ =
(
x′ y′ 1

)T
and p =

(
x y z 1

)T
be

the homogeneous coordinates of a point in the image and world plane, respectively. Then
a homography is expressed as:

sp′ = MQp,

s

x′

y′

1

 =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

x

y

z

1

 , (2.14)

with M the matrix of intrinsic camera parameters: fx, fy ∈ R, (cx, cy) ∈ N2 and Q is the
extrinsic camera matrix with parameters rij; ti for i = 1, 2, 3; j = 1, 2, 3 [41].

A unique solution for the reverse transformation would seem impossible since there are
more equations than variables to map points from the image plane to the world plane. At
most, an image point would represent a ray in real-world coordinates, as we lose depth
information when the image is captured. However, the transformation is assumed to take
place on a planar region of interest, and hence, a simplification where Z = 0 can be
performed. Furthermore, Equation 2.14 can be rewritten as follows:

s

x
′

y′

1

 = H

xy
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy

1

 , (2.15)

sp′ = Hp. (2.16)
Now, the homography matrix H can be solved using Direct Linear Transformation (DLT)
[42], by rearranging Equation 2.15:

sx′ = h11x+ h12y + h13

h31x+ h32y + h33
,

sy′ = h21x+ h22y + h23

h31x+ h32y + h33
,

then, setting h33 = 1 to enforce 8 degrees of freedom:

x′ = h11x+ h12y + h13

h31x+ h32y + 1 ,

y′ = h21x+ h22y + h23

h31x+ h32y + 1 ,

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(h31x+ h32y + 1)x′ = h11x+ h12y + h13,

(h31x+ h32y + 1)y′ = h21x+ h22y + h23.

Thus:
x′ = h11x+ h12y + h13 − h31xx

′ − h32yx
′, (2.17)

y′ = h21x+ h22y + h23 − h31xy
′ − h32yy

′. (2.18)
From equations 2.17 and 2.18, it is clear that to find all parameters in H, a minimum of
four points on both planes are needed. Moreover:

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 x3y
′
3 −y3y

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x4 y4 1 x4y
′
4 −y4y

′
4

...
xn yn 1 0 0 0 −xnx′n −ynx′n
0 0 0 xn yn 1 xny

′
n −yny′n

h11
h12
h13
h21
h22
h23
h31
h32

=

x′1
y′1
x′2
y′2
x′3
y′3
x′4
y′4
...
x′n
y′n

. (2.19)

The previous Equation 2.19 has the structure of a system:

Ah = b,

then by solving h, using the known point correspondences, all the parameters of H can be
found.

2.3 Object Detection
Object detection refers to the computer vision technique that focuses on locating all objects
of interest on an image frame. Those objects have semantic importance in the scene, such
as people, buildings, vehicles, and traffic signs in urban areas. Currently, this technology
already offers a wide range of applications, including video surveillance in static or moving
cameras, face detection and recognition, commercial logo recognition, autonomous vehicles,
and so forth. An object detector may also be a precursor to tracking by detection systems,
becoming a two-phase technique that recognizes objects and also records their trajectories.

2.3.1 Object Detection Techniques
This computer vision task has been an active research field for many years before the
widespread adoption of deep convolutional neural networks, using traditional features that
leveraged the unique shape or color of an object, and positioning on the image. Currently,
this workflow has been replaced by deep learning, which is more robust to changes in image
quality due to varying acquisition hardware, external conditions, etc. The most popular
object detection techniques are summarized in Table 2.4.

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.4: Brief overview of common object detection techniques.

Methodology Description
Viola-Jones
Detection
Framework

A framework that uses Haar cascade features computed from inter-
mediate representations of images, called ”Integral Images”. These
representations contain the sum of the pixels above and to the left of
a coordinate, for each coordinate. After the features are retrieved,
an Adaboost ensemble model is trained [43].

Scale Invari-
ant Feature
Transform

This method requires a prior database of keypoints extracted from
reference images. Then, an object is recognized on a new image
by finding features that match the original object in the database
using euclidean distances of the feature vectors [44].

Region Pro-
posal and
Classification

A two-stage methodology that uses the family of R-CNN deep
learning models that first proposes regions for possible objects, then
classification is performed [45].

End-to-End
Deep Object
Detection

This methodology is performed using deep learning models like You
Only Look Once (YOLO) [6] that divide an image into a grid, then
simultaneously estimates the bounding box of each object along
with its confidence and object class.

2.3.2 Object Detection Challenges
An object detection model should be robust enough to detect targets in unconstrained
scenarios. Some of the problems that can affect the quality of images or target visibility,
and therefore affect the performance of the model are depicted in Table 2.5.

2.3.3 Object Detection Performance Metrics
Once the detection model is fitted, a test must be carried on unseen data, to determine
performance. One of the most common performance metrics used in object detection is
average precision (AP) [46], and to obtain this value, one must first perform a series of
steps.

First, correct and incorrect detections should be defined, and intersection over union
(IoU) metric, defined in Definition 8, is a common way to establish boundaries for such
task.

Definition 8. let bp, bg ∈ N4 be the prediction bounding box, and ground truth bounding
box, respectively. The intersection over union (IoU) metric is given by:

IOU(bp, bg) = area(bp ∩ bg)
area(bp ∪ bg) . (2.20)

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.5: Challenges in object detection. Source [2].

Challenge Description
Changes in illumi-
nation

Shadows, absence or excess of light.

Background clut-
ter

Background near target is similar in color or texture as
the target.

Target occlusion When target visibility is blocked by another object.
Low resolution Pixel quantity inside target bounding box is low.
Scale variation Caused by perspective on a scene.
Change in target
position

Target may be rotated, deformed or moved.

Fast motion Motion causes noise on image sequences.
Environment
changes

Weather conditions like rain, can affect the image qual-
ity.

Objects agglomer-
ation

Multiple objects on close area.

Hardware changes Image quality variability due to capturing device.

By giving an IoU threshold, a detection can be classified as being correct or not. Then,
performance is assessed in terms of precision and recall [47], respectively described in
definitions 9 and 10.

Definition 9. The precision value p is defined as:

p = |TP |
|TP |+ |FP | , (2.21)

where TP and FP are the sets of true positive and false positive detections.

Definition 10. The recall value r is defined as:

r = |TP |
|TP |+ |FN | , (2.22)

where TP and FN are the sets of true positives and false negatives detections.

Moreover, a precision-recall curve can be generated using precision and recall values
for different confidence scores associated with the predicted bounding boxes. Ideally, the
precision of an object detector should stay high as recall increases, meaning that as false
negatives decrease, false positives remain low as well. Finally, the average precision is
defined as the area under the curve of such graph as seen in Definition 11.

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Definition 11. Given a precision-recall curve. The average precision (AP) is defined as:

AP =
∫ 1

0
p(r)dr. (2.23)

For practical purposes on computing average precision, n evenly spaced recall values
are taken, instead of the whole domain, then the interpolated precision values are averaged:

APn = 1
n

∑
r∈R

pinterp(r). (2.24)

In Equation 2.24, R is the set of n recall values evenly spaced and pinterp is given by:

pinterp(r) = max
r̂:r̂≥r

p(r̂).

Finally, for a multi-class object detection, AP values are retrieved for each class. These
values are then averaged to compute the mean average precision (mAP), as stated in
Definition 12.

Definition 12. Let i ∈ N be the object class index. The mean average precision (mAP)
formula is given by:

mAP = 1
N

N∑
i=1

APi, (2.25)

where N is the number of object classes and APi is the average precision value for class
index i.

2.4 Object Tracking
Object tracking is a step for an image processing workflow that aims at using multiple
objects detections across image sequences, capturing individual features like appearance,
position or motion to assign an ID to such objects. Currently, it is an active research field
in computer vision, with numerous applications in augmented reality, traffic detection,
vehicle navigation, autonomous driving, object identification, and so forth.

2.4.1 Tracking Techniques
An image sequence is rich in information for a tracking method to identify multiple objects.
For instance, the spatial dimension provides features like color or shape, and temporal
information can unveil features from motion. Some of the various approximations in object
tracking are explained in Table 2.6.

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.6: Tracking methodologies currently used.

Methodology Description
Shape Based Rep-
resentation

Edges and silhouettes from objects are
used for tracking objects. Histogram of
oriented gradients (HOG) is a useful tool
in this method.

Appearance Based
Representation

Color cues from objects are widely used in
object tracking. Histograms from RGB,
HSV, and other color spaces are employed
as appearance descriptors.

Motion Based
Tracking

Useful for articulating, or moving objects.
Optical flow is employed on non-rigid ob-
jects, while residual flow is used on the
rigid counterparts.

Tracking by De-
tection

Performing multi object detection on ev-
ery frame of a sequence and trajectories
are estimated across frames. Currently,
deep learning models play a major role
on object detection.

Composite
Method

Robust tracking methods that employ a
combination of some, or all the methods
explained. Weights can be assigned to
features to limit their contribution.

2.4.2 Tracking Challenges
Tracking is an active area of research, since real-world applications, demand methods that
are robust enough to maintain high performance in unconstrained environments. For in-
stance, autonomous vehicles and sensible military systems that depend on these technolo-
gies could cause major incidents, if all possible sources of error are not taken into account.
Some of the challenges are explained in Table 2.7, extended from the work of Islam, Md.
et al. [48].

2.4.3 Tracking Results Evaluation
A tracking algorithm should find all objects at all timestamps, and keep a record of their
trajectories. Additionally, every object has to be assigned a unique ID that remains con-
stant throughout its appearance duration on the video. According to Bernardin and Rainer
[49], it is expected that to measure the performance of a tracker a metric should:

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 2.7: Challenges in object tracking.

Challenge Description Example

Hijacking
Problem

If two objects that share similar features
used for a certain tracking methodology
come close enough, the tracker of one ob-
ject may wrongly associate to the other,
leaving the original untracked.

Centralization
Problem

Occurs when two objects are in almost the
same position, or if one is occluding the
other. Furthermore, the tracker misses to
identify each object individually

Drifting
Problem

For tracking methodologies that estimate
future object positions, a sudden change
in direction can difficult the correct esti-
mation of trajectory.

• Have as few adjustable parameters as possible to keep evaluations straightforward.

• Be clear, easily understandable, and behave according to human intuition.

• Be as general as possible to allow comparisons across many kinds of tracking method-
ologies. Some examples were explained in Table 2.6.

• Be practical for large evaluations and yet complete and expressive in meaning.

Based on these considerations, the two most common performance metrics are explained
in definitions 13 and 14.

Definition 13. Let i, t ∈ N be the target and frame index. The multiple object tracking
precision (MOTP) [49] is defined as:

PMOTP =
∑
i,t d

i
t∑

t ct
, (2.26)

where ct denotes the number of matches at frame t, and dit is the bounding box overlap of
target i with its assigned ground truth object.

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Definition 14. Let t ∈ N be the frame index. Then the multiple object tracking accuracy
(MOTA) [49] is defined by:

PMOTA = 1−
∑
t(fnt + fpt +mt)∑

t gt
, (2.27)

where gt is the number of ground truth objects at index t and fnt + fpt +mt are the number
of false negatives, false positives, and misses at index t, respectively.

There are other qualitative markers for the performance of tracking algorithms. Each
target trajectory can be labeled as mostly tracked (MT), mostly lost (ML) or partially
tracked (PT). A target is said to be mostly tracked if its trajectory is successfully recovered
for at least 80%. On the other hand, it is said to be mostly missed, if it is only tracked
20% of its true trajectory; otherwise, it is partially tracked. Moreover, it is desirable to
maximize MT while minimizing ML for all targets [50].

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 24 Graduation Project

Chapter 3

State of the Art

3.1 Deep Convolutional Neural Networks
The field of Computer Vision is constantly being revolutionized by novel convolutional
neural network architectures, maximizing feature map quality and meaning, while making
the networks more efficient. These networks are used in image classification by conecting
a dense layer with softmax activation, and are also very important in object detection,
since convolutional networks are the backbone of those models. They are the main feature
extractors that will provide the detection heads with meaningful features to recognize
objects on the image.

One example of such models is the work of Tan and Le [3], introducing a family of
convolutional nets called EfficientNets. Based on the premise that scaling neural networks
often increases performance, they developed a method that uniformly scales network depth
d, width w and resolution r, as seen in Figure 3.1, using a compound coefficient φ. First,
the authors defined a baseline architecture using neural architecture search that optimizes
accuracy and FLOPS. This baseline is called EfficientNet-B0. Then, this model is scaled
up using a two step framework: Considering d = αφ, w = βφ, r = γφ, fix φ = 1 and do a
grid search to find α, β and γ constants. Furthermore, with these known constants, the
scaling is performed with varying values of φ to obtain EfficientNet-B1 to B7. The results
are a significant improvement in image classification with imagenet dataset when compared
to previous leading architectures, obtaining a top-1 accuracy of 84.3% and top-5 accuracy
of 97% for Efficientnet-B7.

Other authors question the status-quo of current works looking for better ways to in-
crease model performance. Such is the case of Brock et al. introducing another family
of models called NFNets [20] that stands for Normalizer Free ResNets. The main prob-
lem is that recent computer vision models rely on batch normalization for better training
performance, but batch normalization itself posses three disadvantages: it increases time
required to evaluate gradient in some networks, introduces discrepancy between the behav-
ior of the model during training and inference time and most importantly, batch normal-
ization breaks independence between training examples on the minibatch. Furthermore,
that work proposes adaptive gradient clipping, which clips gradients based on unit-wise
ratio of gradient norms to parameter norms, enabling larger batch sizes and stronger data
augmentations. As for the architecture, the authors started using SE-ResNeXt-D [51] as

25

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.1: Methods for scaling neural networks. Extracted from [3]

base model, changing how many bottleneck blocks to allocate on each network stage, i.e
residual blocks whose activations are the same width and resolution. Figure 3.2 shows
a comparison between normal residual blocks, and the modified blocks used in NFNets.
Moreover, the results obtained are even better than that of the EfficientNets, with top-1
accuracy of 86% and top-5 accuracy of 97.9% for the NFNet-F5, which is the biggest model,
while maintaining similar training speeds.

(a) (b)

Figure 3.2: Normal ResNet block (a), and modified block used in NFNets (b).

There are other works that instead of advancing performance by creating new archi-
tectures, they present novel learning techniques to increase existing models’ performances.
Pham, H. et al. present a semi-supervised learning method called meta pseudo labels [23]
that improves on self-training. The starting concept is that there exists two networks:
one that acts as a teacher and the other as a student. The pre-trained teacher generates
pseudo-labels on unlabeled images and are combined with labeled images to train the stu-
dent. The objective is that the student becomes better than the teacher network. However,
if pseudo-labels are inaccurate, this objective might not be reached. Moreover, this work

Information Technology Engineer 26 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

utilizes the feedback signals from the student to inform the teacher to generate better
pseudo labels. These signals are the performance of the student on the labeled dataset. As
for the results, using a network called EfficientNet-L2 with meta pseudo labels scheme, a
top-1 accuracy of 90.2% and a top-5 accuracy of 98.8% were obtained on imagenet dataset
for image classification, and currently holds the first place on the leaderboard.

It should be noticed that these improvements, although reported increases in perfor-
mance on image classification tasks, they are not constrained on this domain. Since improv-
ing network performance leads to models being able to learn better features from images,
these models can also be used as backbones for others tasks like image segmentation or
object detection, which is highly beneficial for computer vision as a whole.

3.2 Object Detection
Object detection task on images taken from unconstrained environments is hard. The
COCO dataset object detection benchmark has not even reached 60% on Box Average
Precision. However, these models are still practical for use and are constantly improving.

The first major improvement that set object detection apart from traditional machine
learning methods came from the work of Girshick et al. with R-CNN [4], which is a three
module system, depicted in Figure 3.3. The first module consist in region proposal to
determine objects locations on the image. The second module involves a pre-trained CNN
to compute a fixed length feature vector from each proposed region. Finally, n support
vector machines, one for each object class, takes these vectors and determines the object
class. R-CNN reported mean average precision of 53.3%, a performance value 30% higher
that the previous best result on PASCAL VOC dataset [52].

Figure 3.3: RCNN worflow. Source [4].

R-CNN poses many problems, since it takes a large amount of time to train the feature
extractor CNN, making the model unsuitable for real time inference, and most importantly,
the region proposal method is not a trainable model, but rather a fixed algorithm. This
in turn may lead to bad object candidates. From these observations, fast R-CNN [5] was
created by the same author as the original R-CNN. The difference is that instead of feeding
patches of the image corresponding to the object proposal region, the entire image is sent
to the network along with the proposals to compute feature maps that are then converted
to fixed length vectors by means of a RoI pooling layer. The improved workflow is shown
in Figure 3.4. This approach results in dramatic drops in training and inference time and
higher detection quality with 65.7% mAP for PASCAL VOC 2012 dataset.

Information Technology Engineer 27 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.4: Improved Fast-RCNN workflow. Source [5]

Even after these improvements, these models were still composed of various stages
before getting detections and were not suitable for real time video processing. For this
reason, the work of Redmon et al., with You Only Look Once (YOLO) [6] object detection
framework, was a major change on the field. It proposed an end-to-end convolutional
network that receives images and outputs bounding boxes, object classes and confidences
for each detection on a single stage. This is done by splitting the image into an S×S grid.
If an object falls into a grid cell, then that cell is responsible for detecting that object.
The backbone for feature map extraction was inspired from GoogLeNet model for image
classification [53], but instead of inception modules, a 1 × 1 reduction layers, followed by
3 × 3 convolutional layers were employed for a total of 24 convolutional layers. Moreover
the final predictions are encoded as a S×S× (B ∗ 5 +C) tensor, where B is the maximum
number of objects a grid cell can detect and C are the number of object classes. This
procedure is depicted in Figure 3.5. Furthermore, the result is an object detector capable
of processing 45 frames per second, instead of 0.5 fps achieved by fast R-CNN and an mAP
value of 57.9% on PASCAL VOC 2012.

Figure 3.5: YOLO framework. Source [6].

The same author presented improved versions of YOLO to tackle the limitations of
the first version. That is: the small number of objects that can be detected on each
grid cell, difficulty to detect small objects and low recall. The second version, YOLOv2
[54] introduced batch normalization, higher image resolution and convolutions with anchor

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

boxes, instead of fully connected layers trying to predict every bounding box from scratch.
The third iteration, YOLOv3 [14] introduced 53 convolutional layers instead of 19, residual
blocks and up-sampling layers, making the model slower than previous version, but much
more robust in terms of capability to detect small objects and the number of objects that
can be detected per grid cell.

Further work on this model was carried out by different authors. Bochkovskiy et al.
created YOLOv4 [55], an object detection model composed of a backbone convolutional
net called CSPDarknet53, followed by a spatial pyramid pooling block [15] and finally the
head of YOLOv3, composed of 53 additional convolutional layers. The backbone is derived
from the same Darknet-53 network used on the previous YOLO version, but introducing
the concept of a cross stage partial network (CSPNet) [56], which enhances the learning
process by increasing gradient paths. Experiments show that this model is 10% better
in terms of average precision and 12% faster than previous version in MS COCO object
detection benchmark.

Finally, there are other works that diverge completely from aforementioned architec-
tures, introducing novel frameworks for object detection. For instance, Liu et al. introduces
Swin transformer [7]. This model, observed in Figure 3.6, takes the concepts of transform-
ers used in natural language processing and adapts it to computer vision. Transformers
are neural architectures that implement attention mechanisms to model dependencies in
data. In addition, Swin Transformer constructs hierarchical feature maps, starting from
small image patches and gradually merging neighboring patches on deeper layers. This
model scales linearly against input due to the self-attention mechanism, which makes it
very efficient for object detection. As for the performance, the variant Swin-L, the biggest
model, achieved 58.0 mAP on COCO dataset.

Figure 3.6: Swin Transformer architecture. Source [7].

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

3.3 Object Tracking
Currently, tracking by detection is one of the most common computer vision tasks since
object detection models are increasingly improving in performance and when utilized with
a tracker, they allow object identification across an image sequence. There are simple,
yet sophisticated ways to track objects. For instance, Bochinski et al. created an object
tracker based on intersection over union [8]. The algorithm receives detections, frame by
frame, and starts by assigning each detection of the initial frame to different object tracks.
Furthermore, for newer frames, each detection is compared against most recent bounding
box location for each track and assigned to the one with maximum IoU value, as seen in
Figure 3.7. Using this metric, assignment thresholds are made possible so that wrongly
associations are minimized. This method achieved 16% MOTA and 38.3% MOTP values
when combined with R-CNN object detector for UA-DETRAC dataset.

Figure 3.7: Tracking principle from IoU tracker. Source [8].

The same authors extended IoU tracking by adding visual information [9]. This im-
proved version of the algorithm uses the same original mechanism, but with an additional
visual tracking system in the event of missing objects detections for a pre-defined maximum
number of frames. This principle is depicted in Figure 3.8. Moreover, the objective is to
avoid trajectory fragmentation and to reduce the number of ID switches. As a result, this
method obtained an MOTA of 30.7%% and MOTP of 37.0% and is the best open-source
tracking system on UA-DETRAC leaderboard. In general, this model retrieved more rele-
vant matches than the previous method, but it is only suited for offline tracking since the
visual component is initialized on the last known position and then goes backwards in the
sequence.

There are works that differ from the concept of designing a tracking algorithm that
works on detections from a deep learning object detector. Instead, they intend to develop
a single stage method, reducing design complexity and the number of hyperparameters that
need to be tuned. For instance, Chu and Ling created FAMNet, a neural network that
performs feature extraction, object affinity estimation, and multi-dimensional assignment
[10]. The architecture, as seen in Figure 3.9, consists in various specialized modules.
The first module is a convolutional sub-network that fuses discriminative appearance and
motion information to generate affinity tensors for hypothesized object trajectories. The
second one is a R1TA power iteration layer that uses the aforementioned affinity tensors to
estimate a set of optimal assignments. Finally, the output of this layer are passed trough
an `1 normalization layer to satisfy data constraints. The reported performance on KITTI-
car benchmark, was 77.1% MOTA and 78.8% MOTP, while on UA-DETRAC those values
were 19.8% and 36.7% for MOTA and MOTP, respectively.

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.8: Tracking principle from IoU tracker (a) with auxiliar visual system (b) for track
defragmentation (c). Source [9].

Figure 3.9: FAMNet architecture. Source [10].

Sun et al. also developed an end-to-end style system called Deep Affinity Network
(DAN) that is capable of associating objects that may not be detected on consecutive
frames [11]. This model learns compact, yet discriminant features of pre-detected objects
at several layers of abstraction and performs exhaustive pairing permutations of those
features in any two frames to predict object affinities. The architecture is depicted in
Figure 3.10 and follows a modified version of VGG16 CNN [57], replacing its fully connected
layers by convolution layers to better encode spatial features. Furthermore, this network
is replicated in a siamese configuration, sharing its weights to receive two different frames
at the same time and computing a single concatenated feature tensor. This tensor is then
transformed by a compression network composed of five convolutional layers with 1 × 1
kernels. This approached achieved 53.42% MOTA and 76.90% MOTP for MOT17 tracking
dataset. Moreover, for UA-DETRAC benchmark, the model reaches 20.2% MOTA and
26.3% MOTP.

3.4 Homography Matrix Computation
Homography lets us define transformations between two planes given a minimum of four
sets of points. The simplest method is to define the system and perform Direct Linear
Transform to get the matrix parameters. However, given the choice of points, noise can be
introduced into the solution, resulting in inaccurate homography matrices.

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.10: Deep Afinity Network (DAN) architecture. Source [11].

There are robust methods that account for this issue, designed as optimization problems
where the goal is to minimize the re-projection error from transforming a set of points on
one plane into its representation on the other plane.

A survey on planar homography estimation techniques [58] presents some of those
methods that, although fall into traditional machine learning worflows, they are still widely
used by popular computer vision frameworks like OpenCV [59]. For instance, robust
estimation can be achieved using RANSAC [60]. This iterative method finds those points
that do not fit into the model, and are labeled as outliers to a gaussian distribution that
explains the error on the measurements. Then, if there are points in between planes that
are mismatched, the model will discard them. Another robust method is least-squares
optimization [61], widely used of its practicality and computational simplicity. Ideally,
given correspondences of points in two different planes (xi, x′i), i = 1, 2, ..., n, the objective
is to minimize Ah = 0, obtained by converting Equation 2.19 into a homogeneous system.
Furthermore vector h contains all entries of the homography matrix H.

Now that deep learning is advancing almost all aspects of computer vision, it is natural
for researchers to develop new architectures to solve the problem of finding a homography
matrix for a scene with two different perspective views. The work of DeTone et al. defines
a supervised deep neural network that estimates the relative homography between a pair of
images [12]. This model, as depicted in Figure 3.11, is composed of 8 convolutional layers
with max pooling between each pair and two fully connected layers, with the last acting
as regressor for the homography matrix. This approach achieved a mean average corner
error of 9.2 pixels on warped MS-COCO 14 test set.

These novel methods for estimating homography that depart from traditional methods,
also poses new problems. Since deep learning is characterized for requiring large volumes of
data to be able to generalize its knowledge, the process of compiling such datasets become
very difficult. However, in the work of Nguyen et al. an unsupervised deep homography
estimation is proposed [13]. Inspired by the aforementioned work, it starts with the same
architecture, but includes additional layers enabling its unsupervised nature. Specifically,

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.11: Architecture of the supervised deep learning homography estimation model.
Source [12].

it includes a tensor Direct Linear Transform (DLT) layer, that maps a fully holography
parameterization of 4×4, into a 3×3 version. Then, a spatial transformation layer applies
the output from the tensor DLT layer to the pixel coordinates to get warped coordinates.
This architecture can be seen in Figure 3.12. Moreover, the results are 15.6 Root Mean
Squared Error on aerial UAV images.

Figure 3.12: Architecture of the unsupervised deep learning homography estimation model.
Source [13].

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 34 Graduation Project

Chapter 4

Methodology

4.1 Overview of the Proposed Solution
With the increasingly fast development of the Internet of Things (IoT), artificial intelli-
gence, and big data, large volumes of information can now be captured in connected cities
and processed to solve many problems in ways that were not possible a few years ago.
It is common for big cities to have a network of cameras installed in strategic places for
surveillance. Some of those places include street intersections, above traffic lights, on free-
ways, or simply placed at the side of a street pointing to vehicles. Moreover, camera feeds
can prove to be valuable sources of information that are still not being properly exploited.
Using A.I software for object detection, moving vehicles on the road can be tracked and
analyzed. Furthermore, a mathematical model can be used to transform pixel coordinates
of the scene into real longitude and latitude measurements. As a result, vehicle speeds
can be measured by means of a single camera and a computing machine. Therefore, the
departments of transportation on cities that implement this framework could make speed
limit enforcement widespread, where surveillance cameras are present, instead of limiting
the application to certain areas using lidars, reducing the probability of traffic accidents.
In addition, from this video processing scheme, entities in charge of traffic management can
make informed decisions based on traffic data to alleviate transportation problems related
to traffic congestion. For instance, based on the count of vehicles on streets that meet on
an intersection, intelligent traffic lights can be implemented to favor the street that have
significantly higher number of cars, while reducing the time where green light is on for the
street with fewer traffic. The same system can also use the average speed of the vehicles
on a certain street, to indicate whether taking that street is optimal for travel time, or to
better take alternate routes, using public displays.

4.2 Algorithm Design
This method has three critical components: homography matrix estimation, object detec-
tion, and object tracking. Figure 4.1 depicts the system workflow with the aforementioned
components, along with all its inputs and outputs, which are going to be explained in detail
in the following subsections.

35

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.1: Proposed speed estimation workflow.

4.2.1 Homography Estimation for Camera Calibration
The homography estimation is performed to obtain a camera calibration matrix assuming
the region of interest lies on a flat road, i.e Z = 0. Given a scene i, a set of n points are
manually identified both from the pixel coordinates from a reference image of the scene,
and from latitude/longitude coordinates taken from Google Maps. Moreover, each set of
points between planes should represent the exact same spot on the scene. Furthermore, a
system

Ah = b,

is built according to Equation 2.19. This system can be solved using Direct Linear Trans-
formation to find the parameters of h, and ultimately derive in homography matrix H.
However, in practice, the point correspondences between image and latitude-longitude
plane are prone to error since a human operator selects those points manually. Further-
more, a robust method must be utilized to minimize inaccuracies on H. In this work, three
methods are evaluated for such purpose. A base homography extraction with no robust
method for error minimization, a RANSAC optimized method, and a new technique to find
the homography matrix, proposed in this work and explained as follows. The reason for
selecting DLT and its RANSAC version for comparison with the proposed calibration, is
that these two algorithms are widely known traditional methods implemented in OpenCV
[59] and will serve as baselines.

Given the initial manual annotations, the proposed calibration method consists of an
iterative localized search for the pixel coordinates that best relates to its longitude-latitude
coordinate, guided by the projection error:

ε = 1
n

n∑
i=1
||pi − p̂i||2,

where pi is a point selected by a human operator on the image plane, and p̂i is the estimated
point given a longitude-latitude coordinate pw. The search is made by an evolutionary al-
gorithm called Estimation of Density. It works by establishing an initial population N of

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

point correspondences with a pre-defined range where a random variation of the original
points can be generated. Then, generation by generation, K individuals are selected with
the least projection error. Each generation, the mean and variance of the survivors are cal-
culated to generate offspring and the process repeats until error convergence. This process
is depicted in Algorithm 1. Note that, although all points from both planes are manually
selected, it is enough to correct the annotations on the longitude-latitude coordinates as
the points on the image plane serve as ground truth.

4.2.2 Object Detection with YOLOv4
To be able to detect vehicles on the scene, YOLOv4 detection model was utilized. It is a
deep convolutional neural network, widely known for its performance in real-time scenarios
when compared to other detection models [55], that consists of three main components:
backbone, neck, and head. First, a network called CSPDarknet53 is embedded into YOLO
as its feature extractor backbone. Based on its original version Darknet-53, it contains 53
convolutional layers with additional residual connections in between, an average pooling
layer to convert feature maps into a single vector, a fully connected layer, and a softmax
layer for classification. However, these final layers that use vectors are removed before
being connected to the other components of the detector, since it is going to be used as a
feature extractor for the images and not as a classifier. The architecture of Darknet can
be visualized in Figure 4.2.

(a) Conv2D specification.

(b) Darknet-53 layers with Conv2D following (filter size, stride, filters).

Figure 4.2: Darknet-53 architecture, as seen in YOLOv3 [14].

In addition to the previous architecture, CSPDarknet53 implements the Cross Stage
Partial Network (CSPNet) [56] concept depicted in Figure 4.3.

Information Technology Engineer 37 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Algorithm 1: Proposed homography estimation procedure.
Input : Initial set of image points X ′ and world points X; Individuals created

for each generation N ; Individuals to survive generation K; lower
boundary l = (lx, ly), and upper boundary h = (hx, hy) of initial search
range; convergence threshold τ

Output: Homography matrix with minimum average back-projection error H
1 Start
2 ε̄previous =∞
3 WorldPointSets = Emptylist()
4 for i=0 to N , step=+1 do
5 X̂ = EmptyList()
6 for x in X do
7 x̂ = UniformRandomSample(x, l, u)
8 X̂ = X̂ ∪ x̂

9 WorldPointSets = WorldPointSets ∪ X̂

10 while not converge do
11 for X̂ in WorldPointSets do
12 Ĥ = EstimateHomography(X̂, X ′)
13 X̂ ′ = EmptyList()
14 Errors = EmptyList()
15 for x̂ in X̂ do
16 x̂′ = Ĥx̂

17 X̂ ′ = X̂ ′ ∪ x̂′

18 ε = calcProjectionError(X̂ ′, X ′)
19 Errors = Errors ∪ ε
20 Associate ε with the corresponding X̂ that produced X̂ ′

21 ε̄current = Mean(Errors)
22 stdε = STD(Errors)
23 if ε̄previous × τ > |ε̄current − ε̄previous| then
24 converge

25 sort WorldPointSets according to their associated ε

26 keep first K world points x̂ in WorldPointSets

The partial transition layer from Figure 4.3 is designed to maximize the difference of
gradient combination by using a hierarchical feature fusion mechanism that truncates the
gradient flow to prevent distinct layers from learning duplicate information. It is mainly

Information Technology Engineer 38 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

27

28 σx, σy = PerCoordVar(WorldPointSets)
29 µx, µy = PerCoordMean(WorldPointSets)
30 lx = µx − σx
31 hx = µx + σx

32 ly = µy − σy
33 hy = µy + σy

34 l = (lx, ly); h = (hx, hy)
35 for i=0 to N , step=+1 do
36 X̂ = EmptyList()
37 for x in X do
38 x̂ = UniformRandomSamplePerCoord(x, l, h)
39 X̂ = X̂ ∪ x̂

40 WorldPointSets = WorldPointSets ∪ X̂)

41 X̂ = WorldPointSets.firstSet
42 Ĥ = EstimateHomography(X̂, X ′)
43 End

Figure 4.3: CSPDarknet-53 architecture.

composed of a 1× 1 convolutional layer, followed by a pooling layer.
For the neck of the detector, a Spatial Pyramid Pooling (SPP) block was included

over the backbone. Traditionally, to convert 2D feature maps into vectors a single global
average or max-pooling operation is performed. However, this approach results in variable
size vectors depending on input images sizes. Thus, fully connected layers will not work
in this scenario. On the other hand, SPP blocks generate a fixed-length representation

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

regardless of image size by pooling in local spatial bins. These spatial bins have sizes
proportional to the image size, so the number of bins remain constant [15]. Figure 4.4
shows the architecture of SPP block.

Figure 4.4: Spatial Pyramid Pooling application. Source [15].

YOLOv4 detector also performs feature extraction at three spatial dimensions, to im-
prove detection at varying sizes. The mechanism follows that of a Feature Pyramid Network
(FPN) [62] in which the feature maps gradually decrease in the spatial dimension, but are
later up-scaled with deconvolution layers. These upscaled feature maps are concatenated
with previous feature maps that match in dimensions. In addition, a bottom-up augmented
path is also included, starting from the lowest feature level dimension of the FPN and grad-
ually approaching the highest level. In each stage, a 3× 3 convolutional layer is employed
with stride 2, to decrease spatial dimension. The motivation for this additional path is
that neurons in high layers respond to entire objects, while other neurons are more likely
to be activated by local patterns. Thus, augmenting the top-down path allows propagation
of semantically strong features and enhances localization [63].

Up until this point, the goal was to extract features from the input images, but the
head of YOLOv4 is in charge of the actual detection. Its design is taken from YOLOv3,
the previous version, in which each output feature map is subjected to a 1×1 convolutional
layer with shape 1×1× (B(5+C)), where B is the number of objects that can be detected
on each image cell and C is the number of classes. Recall that YOLO divides the images on
an S×S grid, where each cell is in charge of detecting objects. The final output is a tensor
of shape S×S×(B(5+C)) that encodes bounding box coordinates, confidence scores, and
class scores for each detected object in each image cell. Furthermore, these coordinates
are not estimated directly by the network, as it would have an unstable training process.
Instead, pre-defined bounding box anchors in each cell are used, and the network just
outputs offsets with respect to those anchors. To predict if an object is in fact present, the
confidence needs to be higher than a predefined threshold. The final model is depicted in
Figure 4.5.

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.5: YOLOv4 architecture.

4.2.3 Object Tracking Implementations
The object tracker, the last module in the speed estimation system, follows a modified
tracking by detection scheme, inspired from the work of Bochinski et al. [8] which has
the best tracking performance on UA-DETRAC dataset as open-source implementation.
It records the location history of all objects frame by frame, but it also keeps track of the
speed in km/h along the path of the objects and when crossing a predefined virtual line.
At the first image frame, the tracker assigns all detections to new active tracks. Then, the
algorithm updates itself each frame by receiving new detections and assigning to each track
the new location of the object that is the closest to its last recorded location according to
a specific metric. A track may be terminated if no new detection is assigned to it and has
a minimum number of locations recorded. Moreover, the metrics implemented in this work
are Euclidean Distance

de(p, q) =
√

(qx − px)2 + (qy − py)2,

using the bounding box centroids and Intersection over Union

IOU(bp, bg) = area(bp ∩ bg)
area(bp ∪ bg) ,

using bounding boxes directly. However, using bounding boxes in the tracker is beneficial
since the assignment of thresholds can be easily implemented to avoid identity hijacking or
location jumps and thus, possible unreal peaks in speed estimation. Moreover, the speed
estimation process is made every K number of frames for each track independently using:

S = d(p, q)
t

= d(p, q)
f−1
s

× 3600
1000 ,

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

where d(p, q) is distance in meters, fs is the number of frames per second taken by the
camera, and f−1

s represent the time spent each speed estimation. Each time the speed
estimation is performed for a vehicle, p takes the value of q, and q becomes the newest
location available for that vehicle. To calculate distances, recorded locations in image
points have to be transformed to the real world plane as follows:

p = H−1p′,

where p is the location in world points, H is the estimated homography matrix, and p′ is
the location in image points. Then, the distance in meters between the newest real-world
location q and the previous real-world point p is computed using the Haversine distance.
The reason for using this distance function is that world coordinate system is in longitude-
latitude units in radians and the inaccuracies of using planes to represent the world are
minimized using this metric. The Haversine distance is expressed as follows:

dh(p, q) = 2arcsin

√√√√sin2

(
px − qx

2

)
+ cos(px)cos(qx)sin2

(
py − qy

2

)
,

where px, qx are latitudes and py, qy are longitudes. The full tracking algorithm using
the IoU metric is depicted in Algorithm 2. Furthermore, the euclidean implementation is
similar, but does not apply a threshold to assign detections to objects.

4.3 Implementation
To be able to compute homography matrices, a video dataset with both image and world
points representing the same spots is needed or at least contain location metadata of each
scene to find these points manually. At the time of writing this work, no such dataset could
be found. Instead, a compilation of 14 live feeds from different cameras with unknown
hardware specifications were recorded using the Department of Transportation of Seattle
portal. These videos have a framerate of 25 frames per second, an average length of 10
minutes (15000 frames), and street addresses from each scene were extracted as well. Then,
those addresses were visited on google maps to find the scene and manually extract world
points that matched the image plane. Moreover, as the dataset was built from scratch,
no beforehand speed annotations of the vehicles are available. Table 4.1 summarizes the
dataset metadata.

It can be seen that only 10 videos were usable for the experimentation, as videos 3,4,8,
and 10 presented problems. Moreover, all the visual scenes from the remaining videos
can be observed in figures 4.6 and 4.7. Each scene has a green line in it, representing
the virtual line that will trigger a speed recording. Furthermore, once the data is ready,
homographies are estimated using the three methods mentioned in the methodology: base,
RANSAC, and proposed, which are implemented in C++ with OpenCV library. Once the
camera calibrations are obtained, the best homography method in terms of mean error
is picked to be used in the whole workflow. For the object detection module, YOLOv4
was implemented in Python3.8 using Tensorflow 2.4. In addition, the tracking algorithm
was initially intended to be in the same workflow as the detection, but due to hardware
limitations, detections were precomputed and saved on pickle files. Then, at runtime, the

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Algorithm 2: Tracking implementation with IoU metric.
Data: LinePoints (p1, p2), Min detections τ , IOU threshold β, Homography matrix

H, EMA alpha α, Update rate K, Bounding boxes B, Tracks active Ta
Result: Finished tracks Tf

1 Start;
2 Tu = EmptyList()
3 for t in Ta do
4 if B is not empty then
5 best match = max({IOU(t.boxes.last, b)/b ∈ B})
6 if IOU(t.boxes.last, best match) ≥ β then
7 t.boxes = t.boxes ∪ best match
8 p′ = centroid(best match)
9 t.newRealLoc = H−1p′

10 t.count = t.count+ 1
11 if t.count == K then
12 S = d(t.prevRealLoc,t.newRealLoc)

Kf−1
s

13 t.speed = t.speed ∪ S
14 t.prevRealLoc = t.newRealLoc

15 t.count = 0

16 if p′ intersects virtualLine then
17 speedsLine = speedsLine ∪ t.speed.last

18 Tu = Tu ∪ t

19 if Tu is empty or t is not Tu.last then
20 if t.boxes.size ≥ τ then
21 Tf = Tf ∪ t

22 for box in remaining boxes do
23 tnew.boxes = {box}
24 tnew.prevRealLoc =H−1centroid(box)
25 tnew.newRealLoc =∞
26 tnew.speed = EmptyList()
27 tnew.count = 0
28 Tn = Tn ∪ tnew

29 Ta = Tu ∪ Tn

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 4.1: Overview of the videos captured from Seattle Dept. of Transportation https:
//web6.seattle.gov/travelers/.

Video
Id

Date of
record-
ing

Address
Number of
Points Ex-
tracted

Observation

1
February,
22, 2021

2nd Ave & Marion
St

8 None

2
February,
22, 2021

E Marginal Way S
& S Idaho St

8 None

3
February,
22, 2021

Alaskan Way &
Pike St

0
Points not clearly visible from
Google Maps

4
February,
22, 2021

5th Ave N &
Broad St

0
Points not clearly visible from
image frame

5
February,
22, 2021

23rd Ave E & E
Madison St EW

7 None

6
February,
22, 2021

1st Ave S & S
Royal Brougham
Way

7 None

7
February,
22, 2021

Airport Way S &
S Industrial Way

7 None

8
February,
22, 2021

Aurora Ave N & N
103rd St

0 Video feed corrupted

9
March,
10, 2021

23rd Ave S & S
Jackson St

4
Placed only 4 points to form a
polygon surrounding the road

10
March,
10, 2021

Elliott Ave W &
W Mercer Pl

0
Points not clearly visible from
image frame

11
March,
10, 2021

Airport Way S &
S Lander St

4
Placed only 4 points to form a
polygon surrounding the road

12
March,
10, 2021

E Marginal Way S
@ Hudson St

4
Placed only 4 points to form a
polygon surrounding the road

13
March,
10, 2021

1st Ave & Seneca
St

4
Placed only 4 points to form a
polygon surrounding the road

14
March,
10, 2021

Fairview Ave &
Denny Way

4
Placed only 4 points to form a
polygon surrounding the road

Information Technology Engineer 44 Graduation Project

https://web6.seattle.gov/travelers/
https://web6.seattle.gov/travelers/

School of Mathematical and Computational Sciences Yachay Tech University

detections were loaded using a traditional loop and fed to the tracker, which is based on
the work of [8], modified to perform updates, frame by frame and implementing the speed
estimation functionality. Finally, all speed data was serialized and stored on pickle files as
well as aggregated for visualizations using Matplotlib library for Python 3.

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7

Figure 4.6: Capture of the scene of videos 1, 2, 5, 6, and 7, along with the virtual line
location.

4.4 Experimental Setup
All experimentation was performed on an Acer Aspire-E5-576G laptop running Ubuntu
20.10 with Intel® Core™ i5-8250U Central Processing Unit (CPU), Nvidia GeForce MX150

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 9 (b) Video 11

(c) Video 12 (d) Video 13

(e) Video 14

Figure 4.7: Capture of the scene of videos 9, 11, 12, 13, and 14, along with the virtual line
location.

GPU with CUDA enabled, 12 Gb of DDR4 Random Access Memory (RAM), and 500 GB
Solid State Drive M.2 Non Uniform Memory Access (NVME). Although CUDA is enabled,
it could not be used for deep learning acceleration due to the limited graphics memory
available.

Information Technology Engineer 46 Graduation Project

Chapter 5

Results

5.1 Calibration Errors
Upon camera calibration, projection errors from longitude-latitude to pixel coordinates
were computed for each video to assess how much the estimated points diverge when
the homography matrix is applied. Figure 5.1 presents quatitative results for the base,
RANSAC and proposed versions of the calibration.

Figure 5.1: Projection error for each video.

In addition, Figure 5.2 depicts some examples of how well the estimated image points,
as red circumferences, match the ground truth image points in blue, as well as a grid of
points adapted to the perspective of the whole region of interest in a particular scene, using
the computed homographies. Some of the most representative scenes in the dataset and
their models of the street can also be seen on figures 1, 2, and 3 from Appendix .1 for base,
RANSAC, and proposed calibration algorithms, respectively.

Furthermore, as distance computation is fundamental to computing speed, distance
differences were calculated from actual longitude-latitude points and estimated coordinates
in the same world units using the haversine distance. These distance errors can be seen in
Figure 5.3.

47

School of Mathematical and Computational Sciences Yachay Tech University

(a) Base calibration. (b) Ransac calibration.

(c) Proposed calibration.

Figure 5.2: Calibration visualizations for Video 7. Red circumferences indicate the image
point estimations, while blue circumferences indicate ground truth. The grid is a virtual
model of the street.

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.3: Distance error for each video video.

5.2 Graphical Layout of the Method
The proposed method is kept running until the current image sequence is exhausted and
the same is performed for each video. In addition, it also has a graphical layout where each
detected vehicle is surrounded by a bounding box and the speed value is presented right
above it, if available. This layout is available so that an operator can ensure the proper
functioning of the system qualitatively. Figure 5.4 depict a sample of images taken while
running the proposed methodology on video 11.

5.3 System Run for IoU Tracker Implementation
Separate tests were conducted to analyze the behavior when the tracker implements In-
tersection over Union (IoU) or euclidean distance to associate tracks. Figures 5.5 and 5.6
depict the histograms of all speeds recorded when vehicles crossed each virtual line per
video. All speed values registered throughout the whole region of interest were captured
as well for all tracks. Figures 5.7 and 5.8 contain all the distributions of speed record-
ings per video. Note that for each vehicle track, a speed value is retrieved every half a
second, or equivalently, every 25 frames. In addition, the tracking algorithm’s ability to
maintain stable tracks is inspected through histograms for each video, on figures 5.9 and
5.10. Specifically, the distributions show the frequency of track lengths for each unique
object designated by the tracker, and each sample within a track represents a recorded
object location. Each location is stored within each track at the time of speed estimation,
i.e every timestamp, half a second apart.

On the other hand, measures for analysis of individual objects are also included where
each vehicle speed history was recorded independently. However due to the large number
of object ids, a set of ten timeseries of the longest tracks were plotted for each video in
figures 5.11, 5.12, and 5.13. Those timeseries correspond to the speed recorded on each
timestamp. Furthermore, boxplots were computed for the same vehicles to include more
statistical insights like outliers, quartiles, mean and media to assess congruence in the

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

Figure 5.4: Sample of frames while runing the methodology.

measures. Such boxplots are depicted in figures 5.14 and 5.15.
Finally, three tables were created, to summarize the extensive set of metrics gathered

across all videos. Table 5.1 contains mean, median, and standard deviation statistics
for the number of samples in each track, Table 5.2 shows also mean, median, and STD
for all the speed values recorded and includes the percentage of speed measures that go
beyond 70 km/h and 100 km/h. Lastly, Table 5.3 describes the three basic statistics for
all measurements captured on the virtual lines.

5.4 System Run for Euclidean Tracker Implementa-
tion

The same procedure of extracting metrics for analysis in Intersection over Union tracker
was performed in this version, the euclidean distance based tracker. Figures 5.16 and 5.17
show the distribution of speeds recorded when cars were crossing the virtual lines. Figures
5.18 and 5.19 depict the distributions of all speed samples taken across the whole region
of interest, i.e the street. For the distributions on the number of samples of vehicle tracks,
histograms were computed and presented in figures 5.22 and 5.23. Also, the analysis of
vehicles corresponding to the ten longest tracks was computed. Figures 5.24, 5.25, and 5.26
show the timeseries of speed against time for such vehicles and figures 5.20, 5.21 present
the boxplots of those same vehicle speed measures to gain additional insights by visualizing
median, quartiles, and outliers. Moreover, statistics on the number of samples within the

Information Technology Engineer 50 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

vehicle tracks, speed on RoI and speed on virtual line are presented in tables 5.4, 5.5, and
5.6, respectively. These tables also have the same structure as the IoU tables.

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7 (f) Video 9

Figure 5.5: Histogram of registered speed values using IoU tracker, on virtual lines for
videos 1, 2, 5, 6, 7, and 9.

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.6: Histogram of registered speed values using IoU tracker, on virtual lines for
videos 11, 12, 13, and 14.

Information Technology Engineer 52 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7 (f) Video 9

Figure 5.7: Speed distribution for videos 1, 2, 5, 6, 7, and 9 using IoU tracker.

Information Technology Engineer 53 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.8: Speed distribution for videos 11, 12, 13, and 14 using IoU tracker.

Information Technology Engineer 54 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7 (f) Video 9

Figure 5.9: Histogram of samples per track using IoU tracker for videos 1, 2, 5, 6, 7, and
9.

Information Technology Engineer 55 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.10: Histogram of samples per track using IoU tracker for videos 11, 12, 13, and
14.

Information Technology Engineer 56 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

Figure 5.11: IoU tracker speed time series for the 10 longest tracks on videos 1, 2, 5, 6.

Information Technology Engineer 57 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 7 (b) Video 9

(c) Video 11 (d) Video 12

Figure 5.12: IoU tracker speed time series for the 10 longest tracks on videos 7, 9, 11, 12.

Information Technology Engineer 58 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 13 (b) Video 14

Figure 5.13: IoU tracker speed time series for the 10 longest tracks on videos 13, and 14.

Table 5.1: Statistics computed over vehicles tracks using IoU tracker.

Registered
Vehicles

Mean Sam-
ples per Ve-
hicle

Median of Sam-
ples per Vehicle

Standard Devia-
tion Samples per
Vehicle

365 2.873 1.0 5.758
1264 1.810 0.0 11.177
750 7.930 1.0 44.870
716 3.413 1.0 11.431
1190 2.193 1.0 4.347
1483 5.786 1.0 21.700
1795 2.682 1.0 7.327
2501 2.424 1.0 6.222
1599 3.232 1.0 16.175
747 8.661 1.0 21.143

Information Technology Engineer 59 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7 (f) Video 9

Figure 5.14: Boxplots of speed for the 10 longest tracks using IoU tracker on videos 1, 2,
5, 6, 7, and 9.

Information Technology Engineer 60 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.15: Boxplots of speed for the 10 longest tracks using IoU tracker on videos 11,
12, 13, and 14.

Information Technology Engineer 61 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 5.2: Speed statistics for all videos using IoU tracker.

Speed
Samples

Mean
Speed
(Km/h)

Median
Speed
(Km/h)

Speed
STD
(Km/h)

Percentage of
Speed Samples
> 70 km/h

Percentage of
Speed Samples
> 100 km/h

1049 17.324 13.083 15.590 0.0 0.0
2289 8.385 4.075 9.877 0.0 0.0
5948 16.963 5.067 19.647 0.003 0.000
2444 292.231 71.859 1413.047 0.510 0.375
2610 42.997 49.040 28.072 0.185 0.004
8581 9.140 1.861 13.191 0.0 0.0
4814 35.179 37.634 21.845 0.035 0.0
6063 39.180 45.761 22.991 0.052 0.0
5168 16.445 8.383 17.0 0.0 0.0
6470 10.204 5.168 11.261 0.0 0.0

Table 5.3: Speed statistics for all videos crossing the virtual lines using IoU tracker.

Speed Samples Mean Speed (Km/h) Median Speed (Km/h) Speed STD (Km/h)
46 37.384 38.911 8.797
259 14.641 15.837 6.348
302 36.366 38.218 12.339
3373 8.902 1.267 24.083
206 58.964 57.168 14.148
1897 11.680 4.254 13.628
689 38.776 41.385 19.835
1210 36.773 43.346 23.282
580 34.495 34.954 12.083
338 9.585 5.899 9.304

Information Technology Engineer 62 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) video 7 (f) Video 9

Figure 5.16: Histogram of registered speed values on virtual lines using euclidean tracker
for videos 1, 2, 5, 6, 7, and 9.

Information Technology Engineer 63 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.17: Histogram of registered speed values on virtual lines using euclidean tracker
for videos 11, 12, 13, and 14.

Information Technology Engineer 64 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7 (f) Video 9

Figure 5.18: Speed distribution for videos 1, 2, 5, 6, 7, and 9 using euclidean tracker.

Information Technology Engineer 65 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.19: Speed distribution for videos 11, 12, 13, and 14 using euclidean tracker.

Information Technology Engineer 66 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7 (f) Video 9

Figure 5.20: Boxplots of speed for the 10 longest tracks using euclidean tracker on videos
1, 2, 5, 6, 7, and 9.

Information Technology Engineer 67 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 11 (b) Video 12

(c) Video 13 (d) Video 14

Figure 5.21: Boxplots of speed for the 10 longest tracks using euclidean tracker on videos
11, 12, 13, and 14.

Information Technology Engineer 68 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

(e) Video 7

Figure 5.22: Histogram of samples per track using euclidean tracker for videos 1, 2, 5, 6,
7, and 9.

Information Technology Engineer 69 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 9 (b) Video 11

(c) Video 12 (d) Video 13

(e) Video 14

Figure 5.23: Histogram of samples per track using euclidean tracker for videos 11, 12, 13,
and 14

Information Technology Engineer 70 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 1 (b) Video 2

(c) Video 5 (d) Video 6

Figure 5.24: Euclidean tracker speed time series for the 10 longest tracks on videos 1, 2,
5, 6.
Information Technology Engineer 71 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 7 (b) Video 9

(c) Video 11 (d) Video 12

Figure 5.25: Euclidean tracker speed time series for the 10 longest tracks on videos 7, 9,
11, 12.
Information Technology Engineer 72 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 13 (b) Video 14

Figure 5.26: Euclidean tracker speed time series for the 10 longest tracks on videos 13 and,
14.

Table 5.4: Statistics computed over vehicles tracks using euclidean tracker.

Registered
Vehicles

Mean Sam-
ples per Ve-
hicle

Median of Sam-
ples per Vehicle

standard devia-
tion samples per
vehicle

221 1.846 0.0 4.492
671 2.350 0.0 6.205
614 7.327 1.0 40.721
512 4.980 0.0 18.320
702 2.175 0.0 7.163
905 6.819 0.0 34.355
969 4.413 0.0 18.151
1169 4.654 0.0 23.266
952 4.499 0.0 22.183
516 9.940 1.0 30.615

Information Technology Engineer 73 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 5.5: Speed statistics for all videos using euclidean tracker.

Speed
Samples

Mean
Speed
(Km/h)

Median
Speed
(Km/h)

Speed
STD
(Km/h)

Percentage of
Speed Samples
> 70 km/h

Percentage of
Speed Samples
> 100 km/h

408 68.788 36.373 98.829 0.289 0.199
1577 46.994 35.231 43.022 0.197 0.101
4499 50.814 29.481 92.479 0.174 0.117
2550 1406.907 113.450 15741.233 0.607 0.534
1527 155.061 88.454 190.172 0.630 0.446
6171 49.774 18.701 90.911 0.199 0.139
4276 122.166 68.935 171.347 0.492 0.333
5441 106.585 78.694 114.118 0.582 0.352
4283 71.058 40.801 107.023 0.286 0.189
5129 27.123 14.912 49.448 0.075 0.050

Table 5.6: Speed statistics for all videos crossing the virtual lines using euclidean tracker.

Speed Samples Mean Speed (Km/h) Median Speed (Km/h) Speed STD (Km/h)
51 72.303 44.641 72.944
380 33.858 27.882 23.019
304 76.718 46.699 76.344
3400 84.563 1.368 2019.397
248 100.463 78.603 68.332
1946 33.059 15.571 47.390
719 91.475 70.067 109.862
1351 91.876 74.883 81.323
607 69.810 51.377 57.189
349 18.060 10.443 32.400

Information Technology Engineer 74 Graduation Project

Chapter 6

Discussion

This chapter describes in detail the results obtained using the proposed workflow that
was explained in the previous chapter. Specifically, the main cornerstones of analysis are
the homography estimation for camera calibration, YOLOv4 detection model, and both
Intersection over Union (IoU) and euclidean tracking implementations.

6.1 Camera Calibration
It can be seen from Figure 5.1 that all evaluated homography estimation methods present
no noticeable differences in error. Moreover, videos 1, 2, 5, and 7 have projection errors
of approximately 10 pixels using 7 to 8 points correspondences from longitude-latitude to
image coordinates. On the other hand, videos 9, 11, 12, 13, and 14 have negligible error
values, meaning that estimated image points almost perfectly match the actual chosen co-
ordinates. These videos used only 4 points correspondences for the homography estimation
taken from the 4 vertices of the region of interest. However, the video with index 6 had
a considerably higher error magnitude, meaning that point correspondences carried more
noise and the estimations diverged from the ground truth, affecting the speed estimation
capabilities of the system in that particular instance. Observing Figure 5.2, which depicts
virtual representations of the street in video 7, for each type of calibration, it can be seen
that the proposed method produced a representation that has a direction more in-line with
the street than the other methods. The other calibrations have a slight tilt to the left.

In terms of distance errors, Figure 5.3 present similar error patterns as in the projection
error plot. Video 6 has the highest error and videos 9, 11, 12, 13, 14 have negligible error
magnitudes. It can also be seen that in videos 1 and 2, the proposed method obtained
slightly less error magnitudes than both RANSAC and baseline, while in videos 5 and 6
the errors observed were higher. Meanwhile, RANSAC and baseline had no difference in
performance whatsoever. Furthermore, all errors in this plot are in the order of centimeters,
but it should not ultimately determine the quality of the homography matrix, since distance
errors were extracted from a handful of selected points and not from a sufficient number
of samples taken at random from the region of interest. The reason for this is that ground
truth distances were only available from manually selected points in the calibration.

75

School of Mathematical and Computational Sciences Yachay Tech University

6.2 YOLOv4 Qualitative Analysis
The detection model YOLOv4 mostly detected all vehicle instances on every video, taken
into consideration that all videos were taken in unconstrained environment conditions and
image quality correspond to public traffic surveillance cameras, not high-quality hardware.
However, when obstacles are present in the image and overlap vehicles, the model easily
misses those detections. This limits the performance of the tracking algorithm as it depends
on object detections frame by frame to update the tracks. Some instances of the observed
obstacles can be seen in figures 4.6 and 4.7. For instance, it can be seen that traffic
lights, cables, and even vehicles can occlude other vehicles. It is worth noting that only a
qualitative analysis on the detector could be carried out, as no ground truth detections are
available for the videos to compute performance metrics and doing so would represent a
large amount of time and effort, leaving the opportunity for future work on this component.

6.3 Speed Estimation Using IoU Tracker
The distribution of speed values when cars crossed the virtual lines are mostly condensed
within normal driving ranges, according to figures 5.5 and 5.6, of speeds up to 90 km/h.
This is not the case for video 6, which has frequent speed measurements in the range of 0
to 50 km/h, but presents outliers that go beyond 100 km/h. It should be noticed that this
video in particular presented the highest projection error on the calibration phase.

On videos 6, 9, 11, 12, and 14 it is observed that speeds of almost 0 km/h are high in
frequency. This is due to the fact that the cameras are placed next to traffic lights that
turn red on certain time-frames in those videos. Hence, vehicles reduce their speed and
eventually stop.

Similarly, for the distribution of speeds in figures 5.7 and 5.8 taken from the whole
street area, the value ranges are mostly expected on urban streets, which by convention
is 70 km/h. However, some videos have densities with inliers that go up to 80 km/h with
anomalies that go beyond that magnitude, mainly in videos 5, 7, and 11. In addition,
video 6 had major problems in this distribution as well, with values ranging up to 3× 104

km/h. Moreover, Table 5.2 shows that only videos 6 and 7 had a considerable percentage
of speed samples that are over 70 km/h, with 51% and 18.5% respectively, and only video
6 had a noticeable proportion of speeds over 100 km/h, being 37.5% of the whole set of
measurements. The rest of videos have negligible or null percentages in speeds beyond 70
km/h.

With a closer inspection to the statistics of each video, also in Table 5.2, it can be seen
that the system has registered mean and median values less than 20 km/h for videos 1, 2, 5,
9, 13, and 14. This does not indicate that the system is not performing properly, but rather
that the overall statistics are heavily influenced by speed measurements when cars are at
full stop temporary or parked on the scene since all cameras were placed on intersections,
next to traffic lights. Thus, the previous distributions of speeds give a broader picture
when evaluating the behavior of the proposed method.

When looking at the location tracks for each vehicles on figures 5.9, 5.10 and Table
5.1, it is clear that the tracking algorithm present major problems in this area. With
a mean number of samples captured per track ranging from 1.846 to 9.94, and different

Information Technology Engineer 76 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

vehicle IDs ranging from 221 to 1169, it may be that the tracks are being fragmented
due to misdetections or by lack of robustness in the method. It should be noted that
this tracker finishes a track belonging to a particular vehicle, once it is not detected on
a frame. Moreover, the standard deviations indicate that there is also high dispersion in
the distribution with ranges from 4, up to 40 samples, each sample taken at half a second.
Ideally, as the scenes show only straight streets, the tracks should have similar lengths for
all vehicles.

On the other hand, from individual vehicle measurements, figures 5.11, 5.12, and 5.13
show that the tracker is able to record speed changes. For instance when the vehicles are
reducing their speed to make a full stop, or when they begin to accelerate. This pattern
can be seen clearly on vehicles in videos 5, 6, 11, 12, 13, and 14 that expose soft, downward
curves of velocities, then stagnates near 0 and then go up. However, this does not hold for
vehicles that present timeseries with upper bounds of speed less than 5 km/h, describing
only noise. For instance, most vehicles on videos 2 and 9 show noisy signals. Moreover, the
boxplots on figures 5.14 and 5.15 complement the aforementioned timeseries. They show,
on videos 5, 6, 9, 12, and 14, that these particular vehicles spent most of their tracking
lifecycle on stop, and higher measurements presented as outliers for their very short moving
duration. This can be advantageous because vehicle instances can be tracked regardless of
their speed, but vehicles that are not of interest and are at full stop on the entire recording
will be tracked as well, even if they are not of interest.

6.4 Speed Estimation Using Euclidean Tracker
For the tracking and speed estimation using euclidean distance to assign detections to
tracks, every single video presents values that are not expected from urban drivers. Both
from the distribution of speeds taken from the whole region of interest, observed in figures
5.18, 5.19, and from distributions of speed recorded in the virtual lines, depicted in figures
5.16, 5.17. For instance, video 6 has outlier values on the virtual lines of up to 60000 km/h.
Such high values appear because this implementation has shown to have frequent problems
of track identity stealing between instances that do not belong to the same vehicle and
that are distant, resulting in incorrect speed measurement, even when the homography
projection error is minimal.

Moreover, from Table 5.5, and taking into account the aforementioned distributions,
it is clear that a high proportion of samples correspond to speeds greater than 100 km/h,
with ranges from 5% for video 14, up to 53.4% for video 6. When comparing the two
tracking implementations, it is easy to see that the IoU method is much more robust for
speed estimation since it can easily implement thresholds that minimize the chances of
assigning tracks to incorrect vehicle detections.

Going further, the euclidean tracker presents the same problem, as the IoU implemen-
tation, in terms of not being able to capture complete vehicle tracks and fragmenting to
different instances when the object detector fails to locate the vehicles when they are still
on the scene. Specifically, Table 5.4 shows that the average location samples on each track
for every video ranges from 1.846 to 9.94, but Figures 5.22 and 5.23 show that there is
wide variability in the length of the tracks. The tracks should have similar lengths, across
vehicle instances, and should not be close to 0 samples within each track.

Information Technology Engineer 77 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Looking at individual speed values on figures 5.24, 5.25, and 5.26 of the euclidean
tracker, it can be seen various spikes in speed, unlike the IoU tracker which produce softer
speed timeseries as seen in figures 5.11, 5.12, and 5.13 that only present noise in very low
ranges. Furthermore these spikes from the euclidean version are in speed ranges that are
unreal for urban traffic scenes. Finally, the boxplots of the same objects, visualized in
Figures 5.20 and 5.21, evidence the problems of this implementation for speed estimation.

Information Technology Engineer 78 Graduation Project

Chapter 7

Conclusions

7.1 Performance of the Method
First, for the homography estimation, all three robust methods have proven to be effective,
with relatively low projection errors, and no noticeable difference in performance. More-
over, this component of the workflow requires human operation and could be replaced by
an automatic deep learning based solution in the future.

Then, the object detection model has shown to be reliable on all videos, but still
missed some detections when occlusions are present. The current tracking algorithms
implemented in this work are very sensitive to those misdetections, fragmenting vehicle
tracks and lowering overall workflow performance.

Furthermore, the speed estimation on the euclidean tracker was very unreliable. It
recorded frequent spikes in speed for individual vehicles with speed ranges that are unlikely
to happen in urban streets and even impossible for some of the samples captured. On the
other hand, the IoU implementation recorded distributions in speed that are well expected
on urban areas, near traffic lights. It was also able to successfully track speed changes
when vehicles are reducing their speed, at full stop, and when accelerating.

7.2 Evaluation of the Objectives
The workflow indeed only uses a single camera and points from the scene as the only
sources of input, without the need for radars or lidars to measure speed. In addition, the
video feeds recorded were from live public cameras, so there was no control over setup in
this sense, achieving the general objective.

As for specifics, two trackers were implemented and also successfully extended to be
able to calculate vehicle speeds. The IoU version managed to produce speed estimations
with ranges that are expected on city streets as results show.

Finally, in these speed estimations, homography matrices were also a fundamental
part. All three methodologies were tested and have shown to be reliable in practice for
transforming image points into world coordinates.

79

School of Mathematical and Computational Sciences Yachay Tech University

7.3 Challenges
The realization of this work came with many obstacles to overcome. Such a complex
system requires adequate hardware, careful software design and implementation, time, and
data to evaluate the performance. The resources available were not suited for optimal
development, but it was still possible for development as a proof of concept. Some of the
challenges faced are described in the following subsection.

7.3.1 Hardware
For a modern object detector, based on deep learning, to perform in near real-time for
image sequences, a mid to high end Graphics Processing Unit (GPU) is needed. Otherwise,
memory constraints will not allow the model to be loaded, or inference would take long
periods of time. Since all the implementation and testing was carried out on a laptop with
a low tier GPU, the graphics memory that needed to be allocated for YOLOv4 exceeded
its capacity. Thus, some workarounds had to be made.

For instance, the model had to be loaded on conventional RAM instead of the graphics
card memory and executed using CPU. This means that massive parallelization provided
by CUDA was out of reach, causing a major bottleneck in testing time with processing
speeds in less than 1 frame-per-second. Therefore, all detections had to be pre-computed
for every video, serialized, and stored on pickle files. Those files would be loaded on every
test and detections would be extracted frame by frame and fed to the object tracker. Using
this approach, computing all detections took approximately 120 hours, but made all tests
much faster.

7.3.2 Software
This project, with the homography estimation, detection, and tracking components, needed
a large codebase. Approximately 6261 lines of codes were written. As such, careful review
and testing had to be performed on every single component to make sure all behavior
worked as expected. In addition, software was also driven by hardware constraints, with
initial versions of all components being adapted to the available resources. For instance, all
the workflow included object detection at testing time. However, this approach would be
proven unfeasible due to low-tier graphics memory and had to be replaced by pre-computed
detections. Also, multiple versions of the tracking algorithm were implemented before the
final proposed workflow. Initially, all object distances in each frame would be computed
on a single matrix and then the tracks would be assigned based on the matrix’s indices.
Surprisingly, this approach would lead to unexpected behavior for the IoU tracker and had
to be replaced by distance comparisons between detections inside loops as the work of [8]
proposed.

7.3.3 Data
Although homography estimation, object detection, and object tracking are extensively
studied research areas, vehicle speed estimation, using computer vision only, seems not to
be a widely studied field, with most publications being clustered within competitions like

Information Technology Engineer 80 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Nvidia AI City Challenge [64]. As such, at the time of writing this work, no open access
datasets with videos and speed annotations for vehicles were found. Hence, a dataset had
to be completely built from scratch to implement and test all the workflow. Specifically,
all videos were recorded from live camera feeds available to the public, image and world
points were manually annotated, and location metadata for each video were retrieved for
camera calibration. As a downside, no speed ground truth was available to assess accuracy,
and the performance had to be tested by means of exploratory analysis.

7.4 Lessons Learned
The realization of this work came along with considerable personal knowledge gains. For
instance, in the deep learning field with very deep architectures and novel mechanisms to
improve the ability of the network to capture patterns and learn feature representations.
In addition, object tracking was a completely new field to learn, since detections cannot be
associated across frames by the object detectors. However, the most important experience
gains came from the engineering aspects of assessing the feasibility of any project given
limited resources and modify the workflow configuration when available computing power is
less than required. In addition, better planning for future, more efficient implementations
in terms of resources, code reuse, and available literature can now be made, now that
the initial iteration is complete and project management errors, as well as good practices
employed were identified.

7.5 Future Work
There are multiple areas of improvement in this project before it could be implemented in
real-world environments. In fact, every single component that the workflow exposes can
be improved to achieve better results. Some of these areas are explained in the following
subsections.

7.5.1 Data
For future advancement of this work, collaboration with public entities in charge of local
security or public surveillance is needed to produce a dataset of videos with speed anno-
tations, and complete object tracks. This would provide the means to assess performance
objectively with accuracy metrics, instead of exploratory analysis.

7.5.2 Object Tracking
The next step towards a more robust tracking algorithm is the inclusion of visual features
along with the already implemented IoU metric. This would minimize errors derived from
wrongly assigning ids to vehicles. In addition, a mechanism to reduce incomplete tracks
should be implemented when the object detector fails to find the object. For instance, a
method to estimate object position and use it in the event of misdetection on a short span

Information Technology Engineer 81 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

of frames. Kalman Filters provide a means for that purpose. However, prior information
for state transitions should be provided to the model for proper initialization.

7.5.3 Object Detection
Object detection is continuously pushing the state of the art with better neural architec-
tures and training methods. The next implementation for the detector should be robust
to low light conditions and occlusions, which would help the tracker minimize performance
losses due to missing detections. In addition, the model should be efficient and fast enough
to run in real-time with modest hardware specifications. YOLO is said to be able to per-
form in real-time [6] given a mid-tier graphics card. However, in the tests carried out in
this work, minor occlusion problems were enough to hurt its performance.

7.5.4 Homography Estimation
A deep learning based method for homography matrix estimation should replace the current
version used in this work to minimize errors derived from human interaction, as it needs
manually extracted point correspondences between image and longitude-latitude plane. For
instance, the work of [13] used an unsupervised neural network for such purpose, achieving
good results.

Information Technology Engineer 82 Graduation Project

Bibliography

[1] W. Boulila, M. Driss, M. Al-Sarem, F. Saeed, and M. Krichen, “Weight initialization
techniques for deep learning algorithms in remote sensing: Recent trends and future
perspectives,” arXiv preprint arXiv:2102.07004, 2021.

[2] Z. Soleimanitaleb, M. A. Keyvanrad, and A. Jafari, “Object tracking methods: A re-
view,” in 2019 9th International Conference on Computer and Knowledge Engineering
(ICCKE). IEEE, 2019, pp. 282–288.

[3] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International Conference on Machine Learning. PMLR, 2019, pp.
6105–6114.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accu-
rate object detection and semantic segmentation,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2014, pp. 580–587.

[5] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

[7] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” arXiv preprint
arXiv:2103.14030, 2021.

[8] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-by-detection
without using image information,” in International Workshop on Traffic and Street
Surveillance for Safety and Security at IEEE AVSS 2017, Lecce, Italy, Aug. 2017.
[Online]. Available: http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf

[9] E. Bochinski, T. Senst, and T. Sikora, “Extending iou based multi-object tracking
by visual information,” in IEEE International Conference on Advanced Video and
Signals-based Surveillance, Auckland, New Zealand, Nov. 2018, pp. 441–446. [Online].
Available: http://elvera.nue.tu-berlin.de/files/1547Bochinski2018.pdf

[10] P. Chu and H. Ling, “Famnet: Joint learning of feature, affinity and multi-dimensional
assignment for online multiple object tracking,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 6172–6181.

83

http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf
http://elvera.nue.tu-berlin.de/files/1547Bochinski2018.pdf

School of Mathematical and Computational Sciences Yachay Tech University

[11] S. Sun, N. Akhtar, H. Song, A. Mian, and M. Shah, “Deep affinity network for multiple
object tracking,” IEEE transactions on pattern analysis and machine intelligence,
vol. 43, no. 1, pp. 104–119, 2019.

[12] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Deep image homography estimation,”
2016.

[13] T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, and V. Kumar, “Unsupervised
deep homography: A fast and robust homography estimation model,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 2346–2353, 2018.

[14] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[16] “Speed and road crashes,” 2018.

[17] J. C. Falcocchio and H. S. Levinson, The Costs and Other Consequences of Traffic
Congestion. Cham: Springer International Publishing, 2015, pp. 159–182. [Online].
Available: https://doi.org/10.1007/978-3-319-15165-6 13

[18] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C. Chen,
and S. Iyengar, “A survey on deep learning: Algorithms, techniques, and applications,”
ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–36, 2018.

[19] R. Farber, CUDA application design and development. Elsevier, 2011.

[20] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-performance large-scale image
recognition without normalization,” arXiv preprint arXiv:2102.06171, 2021.

[21] X. Zhou, V. Koltun, and P. Krähenbühl, “Probabilistic two-stage detection,” arXiv
preprint arXiv:2103.07461, 2021.

[22] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-yolov4: Scaling cross stage
partial network,” arXiv preprint arXiv:2011.08036, 2020.

[23] H. Pham, Z. Dai, Q. Xie, M.-T. Luong, and Q. V. Le, “Meta pseudo labels,” arXiv
preprint arXiv:2003.10580, 2020.

[24] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution
discrepancy: Fixefficientnet,” arXiv preprint arXiv:2003.08237, 2020.

[25] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep speech 2: End-to-end
speech recognition in english and mandarin,” in International conference on machine
learning. PMLR, 2016, pp. 173–182.

[26] W. Han, Z. Zhang, Y. Zhang, J. Yu, C.-C. Chiu, J. Qin, A. Gulati, R. Pang, and
Y. Wu, “Contextnet: Improving convolutional neural networks for automatic speech
recognition with global context,” arXiv preprint arXiv:2005.03191, 2020.

Information Technology Engineer 84 Graduation Project

https://doi.org/10.1007/978-3-319-15165-6_13

School of Mathematical and Computational Sciences Yachay Tech University

[27] T. Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac, M. Fun-
towicz, J. Davison, S. Shleifer et al., “Transformers: State-of-the-art natural language
processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020, pp. 38–45.

[28] S. Sharma and S. Sharma, “Activation functions in neural networks,” Towards Data
Science, vol. 6, no. 12, pp. 310–316, 2017.

[29] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,” oct
2017. [Online]. Available: http://arxiv.org/abs/1710.05941

[30] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp. 315–323.

[31] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A com-
prehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp.
43–76, 2020.

[32] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[33] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), vol. 1, 2005, pp. 886–893 vol. 1.

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision and
pattern recognition. Ieee, 2009, pp. 248–255.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning.
PMLR, 2015, pp. 448–456.

[39] H. S. M. Coxeter, Projective geometry. Springer Science & Business Media, 2003.

[40] R. V. Petrescu, “Presents some aspects and applications of projective geometry,”
Available at SSRN 3445158, 2019.

Information Technology Engineer 85 Graduation Project

http://arxiv.org/abs/1710.05941

School of Mathematical and Computational Sciences Yachay Tech University

[41] G. F. Page, “Multiple view geometry in computer vision, by richard hartley and an-
drew zisserman, cup, cambridge, uk, 2003, vi 560 pp., isbn 0-521-54051-8. (paperback
£44.95),” Robotica, vol. 23, no. 2, p. 7–7, 2005.

[42] E. Dubrofsky, “Homography estimation,” 2009.

[43] P. Viola, M. Jones et al., “Robust real-time object detection,” International journal
of computer vision, vol. 4, no. 34-47, p. 4, 2001.

[44] P. Piccinini, A. Prati, and R. Cucchiara, “Real-time object detection and localization
with sift-based clustering,” Image and Vision Computing, vol. 30, no. 8, pp. 573–587,
2012.

[45] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” arXiv preprint arXiv:1506.01497, 2015.

[46] R. Padilla, S. L. Netto, and E. A. da Silva, “A survey on performance metrics for
object-detection algorithms,” in 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP). IEEE, 2020, pp. 237–242.

[47] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation,” arXiv preprint arXiv:2010.16061, 2020.

[48] M. Z. Islam, M. S. Islam, and M. S. Rana, “Problem analysis of multiple object
tracking system: A critical review,” IJARCCE, vol. 4, no. 11, pp. 374–377, 2015.

[49] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance:
the clear mot metrics,” EURASIP Journal on Image and Video Processing, vol. 2008,
pp. 1–10, 2008.

[50] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim, M.-H. Yang, and S. Lyu,
“Ua-detrac: A new benchmark and protocol for multi-object detection and tracking,”
Computer Vision and Image Understanding, vol. 193, p. 102907, 2020.

[51] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1492–1500.

[52] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International journal of computer vision,
vol. 88, no. 2, pp. 303–338, 2010.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[54] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[55] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accu-
racy of object detection,” 2020.

Information Technology Engineer 86 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[56] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh,
“Cspnet: A new backbone that can enhance learning capability of cnn,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition workshops,
2020, pp. 390–391.

[57] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[58] A. Agarwal, C. Jawahar, and P. Narayanan, “A survey of planar homography es-
timation techniques,” Centre for Visual Information Technology, Tech. Rep. II-
IT/TR/2005/12, 2005.

[59] N. Mahamkali and V. Ayyasamy, “Opencv for computer vision applications,” 03 2015.

[60] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Communica-
tions of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[61] D. D. Morrison, “Optimization by least squares,” SIAM Journal on Numerical Anal-
ysis, vol. 5, no. 1, pp. 83–88, 1968.

[62] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” 2017.

[63] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8759–8768.

[64] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang, X. Yang, Y. Yao,
L. Zheng, P. Chakraborty, C. E. Lopez, A. Sharma, Q. Feng, V. Ablavsky, and
S. Sclaroff, “The 5th ai city challenge,” in The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) Workshops, June 2021.

Information Technology Engineer 87 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 88 Graduation Project

Appendices

89

School of Mathematical and Computational Sciences Yachay Tech University

.1 Appendix 1.

(a) Video 6. (b) Video 7.

(c) Video 9. (d) Video 14.

Figure 1: Base calibrations for the most representative videos. Blue circumferences indicate
ground truth, while red circumferences indicate image point estimations. The grid is a
virtual model of the street.

Information Technology Engineer 91 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 6. (b) Video 7.

(c) Video 9. (d) Video 14.

Figure 2: RANSAC calibrations for the most representative videos. Blue circumferences
indicate ground truth, while red circumferences indicate image point estimations. The grid
is a virtual model of the street.

Information Technology Engineer 92 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Video 6. (b) Video 7.

(c) Video 9. (d) Video 14.

Figure 3: Proposed method calibrations for the most representative videos. Blue circum-
ferences indicate ground truth, while red circumferences indicate image point estimations.
The grid is a virtual model of the street.

Information Technology Engineer 93 Graduation Project

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Deep Learning
	Deep Learning Overview
	Artificial Neural Networks Forward Pass
	Activation Functions
	Weights Initialization of Neural Networks
	Artificial Neural Networks Back-Propagation
	Loss Functions
	Deep Convolutional Neural Networks
	Residual Neural Networks
	Batch Normalization

	Projective Geometry
	Homography Transformation

	Object Detection
	Object Detection Techniques
	Object Detection Challenges
	Object Detection Performance Metrics

	Object Tracking
	Tracking Techniques
	Tracking Challenges
	Tracking Results Evaluation

	State of the Art
	Deep Convolutional Neural Networks
	Object Detection
	Object Tracking
	Homography Matrix Computation

	Methodology
	Overview of the Proposed Solution
	Algorithm Design
	Homography Estimation for Camera Calibration
	Object Detection with YOLOv4
	Object Tracking Implementations

	Implementation
	Experimental Setup

	Results
	Calibration Errors
	Graphical Layout of the Method
	System Run for IoU Tracker Implementation
	System Run for Euclidean Tracker Implementation

	Discussion
	Camera Calibration
	YOLOv4 Qualitative Analysis
	Speed Estimation Using IoU Tracker
	Speed Estimation Using Euclidean Tracker

	Conclusions
	Performance of the Method
	Evaluation of the Objectives
	Challenges
	Hardware
	Software
	Data

	Lessons Learned
	Future Work
	Data
	Object Tracking
	Object Detection
	Homography Estimation

	Bibliography
	Appendices
	Appendix 1.

		2022-01-05T22:30:52-0500
	HECTOR ANDRES MEJIA VALLEJO

		2022-01-05T22:32:23-0500
	HECTOR ANDRES MEJIA VALLEJO

