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Abstract

Human intuition has driven the evolution of mechanical design to maximize performance
and minimize production costs. In the last decades, computer-aided design approaches
have improved the mechanical design process, introducing innovative methods and new
optimization dimensions. Currently, these approaches allow highly customizable designs
and great weight savings but are typically constrained to small sizes and low resolutions.
The huge computational complexity presented by optimal designing is due to the large
number of variables involved. As a result, designing optimal large structures requires huge
computational resources. Nowadays, the need for efficient mechanisms and therefore effi-
cient energy consumption has been highlighted by the United Nations within the framework
of sustainable development. This has highlighted the development and research of new and
better optimization techniques that allow designing and manufacturing high-performance
components.

PLSM based topology optimization method is based on the mathematical simplification
of a Hamilton-Jacobi partial differential equation (PDE) into a more convenient ordinary
differential equations (ODEs) system. This simplification is reached through parameteriz-
ing the level set function using radial basis functions (RBFs). These functions, popular in
scattered data fitting and function approximation, are incorporated into the conventional
level set methods to represent the surface through implicit modeling. The RBF used in
this work was a multiquadric (MQ) spline due to its smooth feature and performance. The
parameterization using MQ spline allows to define the implicit level set function with a
high level of accuracy and smoothness. Mainly, the parameterization allows transforming
the original time-dependent initial value to an interpolation problem for the initial values of
the generalized expansion coefficients. Additionally, a physically meaningful and efficient
extension velocity method is used to avoid possible problems caused by not implementing
a full reinitialization scheme.

The result of this work is a MATLAB code to perform topology optimization of a
3-dimensional body within the framework of minimization of compliance. In this code,
the supports and loads, as well as the number of elements in which the object is dis-
cretized can be customized. Several numerical examples in three dimensions are presented
to demonstrate the effectiveness of our implementation. Finally, a benchmark is presented
comparing the results obtained by our implementation with the results presented by other
methods as well as other PLSM implementations.

Keywords: Topology, Optimization, Compliance, MATLAB.
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Resumen

La intuición humana ha impulsado la evolución del diseño mecánico para maximizar el
rendimiento y minimizar los costos de producción. En las últimas décadas, los enfoques
de diseño asistido por computadora han mejorado el proceso de diseño mecánico, intro-
duciendo métodos innovadores y nuevas dimensiones de optimización. Actualmente, es-
tos enfoques permiten diseños altamente personalizables y grandes ahorros de peso, pero
generalmente se limitan a tamaños pequeños y resoluciones bajas. La enorme complejidad
computacional que presenta el diseño óptimo se debe a la gran cantidad de variables involu-
cradas. Como resultado, diseñar grandes estructuras óptimas requiere enormes recursos
computacionales. En la actualidad, la necesidad de mecanismos eficientes y, por tanto, de
un consumo energético eficiente ha sido destacada por Naciones Unidas en el marco del
desarrollo sostenible. Esto ha destacado el desarrollo e investigación de nuevas y mejores
técnicas de optimización que permiten diseñar y fabricar componentes de alto rendimiento.

El método de optimización de topoloǵıa basado en PLSM se basa en la simplificación
matemática de una ecuación diferencial parcial (PDE) de Hamilton-Jacobi en un sistema de
ecuaciones diferenciales ordinarias (ODE) más conveniente. Esta simplificación se alcanza
mediante la parametrización de la función de conjunto de niveles utilizando funciones de
base radial (RBF). Estas funciones, populares en el ajuste de datos dispersos y la aproxi-
mación de funciones, se incorporan en los métodos de conjuntos de niveles convencionales
para representar la superficie a través del modelado impĺıcito. El RBF utilizado en este tra-
bajo fue un spline multicuadrico (MQ) debido a su caracteŕıstica y rendimiento suaves. La
parametrización mediante MQ spline permite de fi nir la función de ajuste de nivel impĺıcito
con un alto nivel de precisión y suavidad. Básicamente, la parametrización permite trans-
formar el valor inicial dependiente del tiempo original en un problema de interpolación para
los valores iniciales de los coeficientes de expansión generalizados. Además, se utiliza un
método de velocidad de extensión f́ısicamente significativo y eficiente para evitar posibles
problemas causados por no implementar un esquema de reinicialización completo.

El resultado de este trabajo es un código MATLAB para realizar la optimización
topológica de un cuerpo tridimensional dentro del marco de minimización del cumplim-
iento. En este código se pueden personalizar los soportes y cargas, aśı como la cantidad
de elementos en los que se discretiza el objeto. Se presentan varios ejemplos numéricos en
tres dimensiones para demostrar la efectividad de nuestra implementación. Finalmente, se
presenta un benchmark comparando los resultados obtenidos por nuestra implementación
con los resultados presentados por otros métodos aśı como otras implementaciones PLSM.

Palabras Clave: Topologia, Optimización, Cumplimiento, MATLAB.
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Chapter 1

Introduction

1.1 Background
Structural topology optimization is one of the most important structural optimization
methods because of its ability in achieving greatest saving. Structural topology optimiza-
tion is a mathematical method that optimizes the material layout within a given design
space, for a given set of loads, boundary conditions and constraints with the goal of maxi-
mizing the performance of the system. Topology optimization by distribution of isotropic
material. Material distribution method for finding the optimum layout of linearly elastic
structure. Layout of the structure includes information on the topology, shape and siz-
ing of the structure and the material distribution method allows for addressing all three
problems simultaneously. In a typical sizing problem the goal may be to find the optimal
thickness distribution of a linearly elastic plate or the optimal member areas in a truss
structure. The optimal thickness distribution minimizes a physical quantity such as the
mean compliance, peak stress, deflection. The design variable is the thickness of the plate
and the state variable may be its deflection. The main feature of the sizing problem is
that the domain of the design model and state variables is known a priori and is fixed
throughout the optimization process. On the other hand, in a shape optimization problem
the goal is to find the optimum shape of this domain, that is, the shape problem is defined
on a domain which is now the design variable. Topology optimization of solid structures
involves the determination of features such as the number and location and shape of holes
and the connectivity of the domain [1].

The purpose of topology optimization is to find the optimal layout of a structure within
a specified region. The only known quantities in the problem are the applied loads, the
possible support conditions, the volume of the structure to be constructed and possibly
some additional design restrictions such as the location and size of the prescribed holes or
solid areas.

The topology, shape and size of the structure are not represented by standar parametric
functions but by a set of distributed functions defined on a fixed design domain. These
functions in turn represent a parametrization of the stiffness tensor of the continuum and
it is a suitable choice of this parametrization which led to the proper design formulation
for topology optimization [1].

1
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Topological optimization has been recognized as one of the most important structural
optimizations due to its ability to achieve significant material savings. However, topological
optimization has been identified as one of the most challenging tasks in structural design.
For topology and shape optimization problems, a common approach is using level set
methods. These methods calculate and analyze the movement of an interface in two or
three dimensions. This interface can easily develop sharp corners, split, and merge, allowing
the level set method to have a wide range of applications.

The proposal is to implement a high performance algorithm to solve applications of
3-dimensional topology optimization based on parameterized level set method using ra-
dial basis functions (RBF). In the parameterized level set method, the level set function
is decoupled by a linear combination of a set of radial basis functions and coefficients.
Since the radial basis functions are only related to spatial coordinates, the evolution of
the level set is transformed into an update of the coefficients of expansion of the radial
basis functions. Topology optimization in actual applications requires huge computing and
storage resources. Due this, the research on this topic is limited to small objects with low
resolution and the use of sparse matrices is mandatory.

1.2 Problem Statement
Structural optimization maximizes the performance of mechanical components used in in-
dustries ranging from health to transport. However, due to huge computational resources
required, its applicability is constrained to the design of simple and small structures. Re-
cently, state-of-the-art methods with giga-voxel resolution have provided insights into the
optimal distribution of material within structures in the range of decameters [7].

Aage et al. [7] presented a giga-voxel computational morphogenesis tool that was able to
design the internal structure of a full-scale aeroplane wing. The optimized design reached
unprecedented structural detail ranging from tens of meters to millimetres and reached
a mass reduction of 5 per cent. This mass reduction translates into a reduction in fuel
consumption of up to 200 tons per year per aeroplane [8]. According to the World Bank
[9] the aviation industry had produced 11.65Gt CO2 representing 21.5% of global GHGs
emissions in 2021.

Optimally designed components have a major impact on the performance of the system
of which they are part. Going from a reduced manufacturing cost, weight reduction, and
more efficient use of energy and consequently of the fuel used. This is the case of the means
of maritime, land, and mostly air transport.

The Institute for Energy and Environmental Research has made several updates on its
research on energy savings by light-weighting [10] [11] [8]. In this research, the relationship
between weight and energy consumption of different means of transport is studied. In the
update released in 2016, Helms and Krack [12] raised the impact on energy consumption,
and consequently on combustion and CO2 emissions that would produce a certain reduc-
tion in weight. The authors determined that lifetime CO2 saving potential can be up to 22
tons of CO2 per 100 kg of reduced weight for a given type of vehicle. This demonstrates the
importance of developing high-performance component manufacturing methods to reduce
the environmental impact of the transportation industry on the environment. The manu-
facturing of transportation components has been seen as an emerging response to the SDG

Information Technology Engineer 2 Graduation Project
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agenda. Kaitano and Nhamo [13] presented the approaches considered by companies that
manufacture aircraft in their article Major Global Aircraft Manufacturers and Emerging
Responses to the SDGs Agenda.

One of the current approaches to manufacturing high-performance components is through
topological optimization. This approach allows designing optimal and light structures, with
high mechanical performance. Topological optimization has been recognized as one of the
most important structural optimizations due to its ability to achieve significant material
savings. However, topological optimization has been identified as one of the most challeng-
ing tasks in structural design. For topology and shape optimization problems, a common
approach is using level set methods. These methods calculate and analyze the movement
of an interface in two or three dimensions. This interface can easily develop sharp corners,
split, and merge, allowing the level set method to have a wide range of applications.

In this work an implementation of 3-dimensional parameterized level method for struc-
tural topological optimization is proposed. This method is implemented within the op-
timal topological framework of minimum compliance. Topological optimization based on
the parameterized level set method is being studied extensively due to the feasibility of
manufacturing the optimal designs that this method produces. One of the most widespread
topological optimization methods is the SIMP (Solid Isotropic Material with Penalization)
method due to its ease of implementation and low consumption of computational resources.
However, the optimal designs produced by this method feature zigzag geometries due to
intermediate densities. On the other hand, PLSM-based methods have been coupled to
additive manufacturing processes due to the geometry they generate [14].

1.3 Objectives

1.3.1 General Objective
Implement an algorithm to perform structural topological optimization within the frame-
work of minimizing compliance and with a volume restriction based in the parameterized
level set method to three-dimensional objects.

1.3.2 Specific Objectives
• Implement an efficient algorithm to minimizing the compliance of a body subject to

loads and supports.

• Make loads and supports configurable.

• Display the optimization process in real-time.

• Carry out a comparison between the optimal designs obtained with the proposed
implementation and with the designs obtained through implementations reported in
the literature.

• Develop the algorithm within the framework of vector processing to achieve optimal
performance.
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Chapter 2

Theoretical Framework

2.1 Structural Optimization
Structural optimization includes three optimization features; these are optimization of size,
shape, and topology. In structural optimization problems, state and design variables can be
defined. State variables can represent the complete dynamic state of the object at a given
moment, while design variables can be modified to define an optimal design. This section
follows the organization of Bendsoe and Sigmund [1] in their work Topology Optimization
Theory, Methods, and Applications.

In a size optimization problem, the objective is to find the optimal thickness distribution
of a linearly elastic plate. The optimal thickness distribution minimizes a physical quantity
such as the mean compliance, peak stress, and deflection. The design variable is the
thickness of the plate and the state variable could be its deflection. The main characteristic
of the size optimization problem is that the domain of the design model and the state
variables are known apriori and do not change during the entire optimization process. On
the other hand, in a shape optimization problem, the goal is to find the optimal shape.
The topology optimization of solid structures involves the determination of characteristics
such as the number, location, and shape of holes and the connectivity of the domain.

Structural topology optimization is one of the most important structural optimization
methods due to the efficient use of material that it reaches. Structural optimization is a
mathematical method that optimizes the arrangement of material within a given design
domain and for a set of specific constraints and conditions. These restrictions can be several
loads, boundary conditions, and volume restrictions. The goal of structural topological
optimization is to maximize the structural performance of an object.

The topology, shape, and size of the structure are not represented by a standard para-
metric function but by a set of distributed functions defined in a fixed design domain. These
functions represent a parameterization of the stiffness tensor and it is a feasible choice of
its parameterization, which leads to a suitable formulation for topological optimization.
This work studies the minimization of compliance.

The general framework for optimal shape design is formulated as a material distribution
problem. The configuration is similar to the formulations for size problems for discrete and
continuous structures. The type of problem being considered is from an inherently large-
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scale computational point of view, both in state and in design variables.
Considering a mechanical element as a body occupying the domain Ωmat which is part

of a larger reference domain Ω in R2 or R3. The reference domain is chosen in such a way
that it allows a definition of applied loads and boundary conditions. Referring to reference
domain Ω the optimal design problem can be defined as the problem of finding the optimal
choice of the stiffness tensor Eijkl(x) which is variable over the domain. The problem of
minimum compliance or maximum overall stiffness has the form:

min
uϵU,E

l(u) (2.1a)

subject to aE(u, v) = l(u), for all vϵU, (2.1b)
EϵEa,d, (2.1c)

where the load lineal form l(u) of the stiffness tensor Eijkl(x) with linearized strains εij(u) =
1
2( ∂ui

∂xj
+ ∂uj

∂xi
), is:

l(u) =
∫

Ω
fudΩ +

∫
τT

ds. (2.2)

The bilinear form of energy (i.e. internal virtual work of an elastic body in equilibrium u
and for an arbitrary virtual displacement v) of the stiffness tensor Eijkl(x) takes the form:

a(u, v) =
∫

Ω
Eijkl(x)εij(u)εkl(v)dΩ. (2.3)

In the Equation 2.4a the equilibrium equation can be written in its weak form, the
variational form, with U denoting the space ok kinematically admisible displacements, f
are the forces on the body and t are the border tractions in the part of the traction. Note
that the index E is used to indicate that the bilinear form aE it depends on the design
variables.

In the Ecuation 2.4a, Ead denotes the set of allowable stiffness tensors for the design
problem. In the case of topological design, Ead could, consist of all the stiffness tensors
that achieve the material properties for a given isotropic material in the set Ωmat and zero
properties anywhere else.

When solving problems of the type shown in Equation 2.4a by computational means,
it is common to discretize the problem using finite elements. It is important to note that
there are two fields of interest in 2.4a, these being the displacement u and stiffness E. If
the same finite element mesh is used for both fields and discretized E as constant in each
element, we can write the discrete form of 2.4a as:

min
uϵU,Ee

fT u (2.4a)

subject to K(Ee)u = f, (2.4b)
EϵEa,d, (2.4c)

here u and f are the displacement vectors and loads, respectively. The stiffness matrix K
depends on the element stiffness e Ee. K can be written in the form:

K =
N∑

e=1
Ke(Ee). (2.6)

where Ke is the element stiffness matrix.
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Figure 2.1: a) The generalized shape design problem of finding the optimal material dis-
tribution in a two-dimensional domain. b) Example rectangular design domain and c)
topology optimized solution based on a 3200 element discretization and 50% material vol-
ume. Source: [1]

2.2 Topology Optimization Based on Level Set Method
The family of methods based on the implicit moving interfaces using the level set methods
has been widely studied. The level method first introduced by Osher and Sethian [15] is a
versatile method for tracking the evolution of dynamic interfaces in two or three dimensions.
The level set method has a wide range of applications since the tracked interfaces may break
apart and merge together. A level set-based topology optimization method combined with
the shape derivative is proposed. This family of methods based on the level set has the
attractive feature that it can always provide clear boundary and geometry information
during the optimization process. In topology optimization, the level set function Φ(x),
which is Lipschitz-continuous, represents the surface implicitly. The surface itself is the
zero isosurface xϵRd|Φ(x) = 0 where d can takes the values d = 2, 3. The time evolution
of the surface can be described by the PDEs involving Φ(x). The shape and topology of
the structure are described by a level set function Φ(x) defined as:

Information Technology Engineer 7 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Φ(x) = 0∀x ∈ ∂Ω ∩ D, (2.7a)
Φ(x) < 0 ∀x ∈ Ω \ ∂Ω, (2.7b)
Φ(x) > 0 ∀x ∈ (D \ Ω). (2.7c)

(2.7d)

Where D ⊂ Rd is a fixed design domain in which all admissible designs Ω are included [16].

Figure 2.2: Level set function representation. Source: [2]

The following expression of the normal velocity is used as the advection velocity in the
following Hamilton-Jacobi Equation

Vn = V
(

− ∇Φ
|∇Φ|

)
, (2.8)

∂ϕ

∂t
− Vn |∇ϕ| = 0. (2.9)

Where ∇(ϕ) denotes the spatial gradient of the ϕ function, t is the pseudo time representing
the evolution in time of the level set function, and Vn = Vx,t is the normal velocity used as
advection velocity chosen towards outside.

The conventional level set requires a reinitialization scheme to maintain a signed dis-
tance function by using a PDE-based method as the presented by Peng [17]. The reini-
tialization procedure keeps the norm of the gradient of the level set function constant and
allows a stable evolution.

Another issue of the conventional level set method is the appropriate choice of finite
element methods on a fixed Cartesian grid to solve the Hamilton Jacobi Partial Differential
Equation PDE. A general framework involves an upwind differencing scheme, a reinitial-
ization procedure, and velocity extension.

The time step size must be sufficiently small to satisfy the Courant-Friedrichs-Lewy
(CFL) condition for numerical stability. This condition states that the ratio of the spatial
discretization to the time discretization must be at least as large as the largest velocity
which signals propagate in solutions of the partial differential equation. It indicates that
the largest time step cannot be larger than the ratio of the minimum grid interval to the
magnitude of the velocity. Furthermore, the CFL condition may limit the numerical step
size.
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The conventional level set method lacks the capacity to generate new holes inside the
design domain which makes it difficult to reach the global optimum. Instead, the method
is prone to get stuck in local minimum.

Level Set Method Limitations

In conventional topological optimization based on the level set method, a general analytical
function for Φ(t, x) is not known. So it must be discretized for level set processing, often
through a distance transformation. In a Eulerian approach, a numerous procedure for
solving the partial differential equation of the Hamilton Jacobi type is indispensable. This
procedure requires an appropriate choice of an upwind scheme, extension rates, and reset
algorithms, which could limit the usefulness of the level set method.

Re-initialization prevents the level set function from nucleating holes within the material
regions [18] [19]. Another important limitation lies in the discrete representation. In the
Eulerian approach, the transport Equation 2.9 is solved with a finite difference or finite
elements on a fixed grid or mesh. One of the key steps in the Eulerian approach is to
describe the geometry or topology using the nodal values from Φ(x) and shape functions
to ensure that the space of feasible designs will be smooth enough in shape [15] [20]. In
practice, only low-order approximations as functions of form C0 are used due to polynomial
snaking problem [21] that high-dimensional polynomial interpolation can easily lead to
singular problems and cause very poor derivative estimates. Also, only the implicit function
Φ(x), instead of their partial derivatives they can be guaranteed continuous throughout
the mesh.

A better method is to retain the topological benefits of the implicit representation of a
level set model while avoiding the drawbacks of using its discrete samples on a fixed mesh
or grid. The level set method parameterized Φ(t, x) to include alternative representations
to the implicit representation which provides a free form representation with parameteri-
zation. To this end, the level set method using RBF radial basis functions is developed for
structural topological optimization.

By using the RBF functions and modeling, global smoothness of the implicit function
can be achieved, therefore, the precision and efficiency of the level set method is signifi-
cantly improved. The parameterization of the implicit model converts the Hamilton Jacobi
partial differential equation into a more mathematically convenient system of ordinary dif-
ferential equations ODEs. Additionally, resetting becomes unnecessary, which could allow
nucleation of new holes.

Summarizing, conventional level set method does not present a hole nucleation mech-
anism if the Hamilton-Jacobi equation is solved under strict conditions for numerical sta-
bility [22], [23]. Furthermore, the Hamilton Jacobi equation satisfies a maximum principle
and reinitialization must be applied to ensure the regularity of the level set function thus
preventing the generation of new holes within the design domain [23] , [24].

2.3 Radial Basis Function Implicit Modeling
To model and reconstruct all the allowable design with a single function which is globally
continuous and differentiable, an implicit modeling method based on radial basis functions
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is employed. RBFs are popular for interpolating sparse data to produce edges and smooth
surfaces as the associated system of nonlinear equations is guaranteed to be invertible
under stable conditions at the data point locations [25]. RBF functions have been shown
to be effective when the function to be approximated is multiple variables, or is given only
by a large amount of data. In real-world applications, radial vase function techniques have
become extremely useful, shifting from pattern reconstruction to artificial intelligence [26].
Implicit RBF modeling is used as an effective representation method to reconstruct the
shape and topology of an allowable design.

Radial basis functions are radially symmetric functions centered on particular points,
or nodes, which can be expressed as follows:

φi(x) = φ(∥x − xi∥), xi ∈ D (2.10)
where ∥.∥ denotes the Euclidean norm Rd [27], and xi is the position knot. Only a fixed
function forms φ : R+ → R with φ(0) ≥ 0 is used as basis to form a family of independent
functions. There are a wide class of radial basis functions. The commonly used functions
includes thin plate spline, splines polyharmonic splines, multiquadratic, and compactly
supported. Among the most common, the multiquadratic function has the best perfor-
mance and can be written as:

φi(x) =
√

(x − xi)2 + c2
i (2.11)

where ci is the free from parameter which is commonly assumed constant for all i in most
applications [27]. Figure 2.3 shows the multiquadratic function centered at the original
point with two different free form parameters 1 and 0.0001. It can be noted that a larger
shape parameter leads to a flatter shape which is less sensitive to the difference in radial
distance. It should be noted that φi(x) in equation 8 it is continuously differentiable,
so that the multiquadratic functions are infinitely smooth [28]. The conditional positive
definition of multi-square placement matrices has been proven by Micchelli [29]. The multi
quadratic functions were ranked as the best in interpolations by Franke [30].

Figure 2.3: Multiquadratic spline: (a) c = ci=1; y (b) c = ci = 0.0001. Source: [2]

MQ functions are used to interpolate scalar functions Φ(x) with N knots using N
functions MQ centereds at these knuts. The interpolant resulting from the implicit function
can be written as:

Φ(x) =
N∑

i=1
αiφi(x) + p(x) (2.12)
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where αi is the weight or generalized coefficient of expansion of the radial basis function
positioned at the i th node, p(x) is a polynomial of the first degree to consider the linear
and constant portions of Φ(x) and to ensure the positive definition of the solution [31].
For three-dimensional modeling problems, p(x) can be given by:

p(x) = p0 + p1x + p2(y) + p3z. (2.13)
In which p0, p1,p2 are p3 are the coefficients of the polynomial p(x). Due to the introduction
of this polynomial, to ensure a unique solution, the RBF interpolant of Φ(x) in the Equation
2.12 must be subject to the following orthogonality constraints [28] [25] [31] [32]:

N∑
i=1

αi = 0;
N∑

i=1
αixi = 0;

N∑
i=1

αiyi = 0;
N∑

i=1
αizi = 0. (2.14)

If the values of the interpolation data f1, · · · , fN ∈ R at the location of the knots
x1, · · · , xN ∈ ΩRd are given, the RBF interpolate of Φ(x) in Equation 2.12 can be obtained
by solving the system of N +4 linear equations for N +4 unknown coefficients of expansion:

Φ(xi) = fi, i = 1, · · · , N
N∑

i=1
αi = 0;

N∑
i=1

αixi = 0;
N∑

i=1
αiyi = 0;

N∑
i=1

αizi = 0; (2.15)

That can be written in matrix form:

Hα = f (2.16)

where:

H =
[

A P
PT 0

]
∈ R(N+4)×(N+4), (2.17)

A =


φ1(x1) · · · φN(x1)

... . . . ...
φ1(xN) · · · φN(xN)

 ∈ RN×N , (2.18)

P =


1 x1 y1 z1
... ... ... ...
1 xN yN zN

 ∈ RN×4, (2.19)

α = [α1 · · · αN p0 p1 p2 p3 ]T ∈ RN , (2.20)
and,

f = [f1 · · · fN 0 0 0 0 ]T ∈ RN . (2.21)
Since the collocation matrix H is theoretically invertible [33] [34] [35], the generalized

expansion coefficients α can be given by:

α = H−1f (2.22)
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LU factorization or iterative means can be used to to solve the Equation 2.16 for
relatively simple and small problems. However, these methods could become very compu-
tationally expensive and even impractical [36] when large or three-dimensional problems
are applied. Therefore, rapid evaluation methods, based on the fast multipole method
(FMM), which reduces storage and computational cost should be adopted. After obtain-
ing the generalized coefficients of expansion α, the RBF interpolant resulting from the
function implicit in Equation 2.12 can be compactly rewritten as:

Φ(x) = ϕT (xα), (2.23)
where:

ϕT (x) = [φ1(x) · · · φN(x) 1 x y z]T ∈ R(N+4)×1. (2.24)

2.4 Topology Optimization Based On Parameterized
Level Set Optimization Method

This method consists of transforming the Hamilton Jacobi partial differential equation
into a system of first-order ordinary differential equations ODEs over the entire D do-
main to solve topological optimization problems using the level set method efficiently with
significant mathematical convenience. In topological optimization methods based on the
traditional level set method, the edge of the shape is moved along the offset gradient di-
rection to find an optimal shape and topology, this is equivalent to carrying the implicit
scalar function Φ(x) solving the Hamilton Jacobi-type Equation 2.9 and then the optimal
front propagation is developed by solving the PDE Hamilton Jacobi 2.14. In the topo-
logical optimization method based on a parameterized level set, implicit modeling is used
by means of RBF functions to interpolate Φ(x) with N knots when using N radial-based
multi-quadratic functions centered on these nodes. Because the Hamilton-Jacobi Equation
2.9 is time dependent, it is assumed that space and time are separable and the time depen-
dence of the implicit function Φ α of the RBF interpolate in Equation 2.20. With these
assumptions, the RBF interpolant of the implicit function in Equation 2.23 becomes time
dependent as follows:

Φ = Φ(x, t) = ΦT (x)α(t) (2.25)
And the orthogonality constraints in Equation 2.14 can be rewritten like this:

N∑
i=1

αi(t) = 0;
N∑

i=1
αi(t)xi = 0;

N∑
i=1

αi(t)yi = 0;
N∑

i=1
αi(t)zi = 0; (2.26)

Substituting Equation 2.25 into the Hamilton-Jacobi Equation 2.9 produces:

ΦT dα

dt
+ vn

∣∣∣(∇ϕ)T α
∣∣∣ = 0 (2.27)

where:
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∇ϕ = ∂ϕ

∂x
i + ∂ϕ

∂y
j + ∂ϕ

∂z
k (2.28)

∣∣∣(∇ϕ)T α
∣∣∣ =

[
(∂ϕT

∂x
α)2 + (∂ϕT

∂y
α)2 + (∂ϕT

∂z
α)2

]
(2.29)

In Equation 2.27, the generalized coefficients of expansion are explicitly dependent on
time and all dependence on time is due to them. In the initial time, all time-dependent
variables should be specified over the entire design domain. This initial value problem can
be considered equivalent to an interpolation problem since the coefficients of expansion in
the initial time are found as the solution of an interpolation problem. As a consequence
the original time-dependent problem has been converted into an interpolation problem for
initial values of the generalized coefficients of expansion. α . To evolve in time the initial
values of α, a method of placement is employed. This method describes a Eulerian-type
approach, all the nodes of the fixed mesh are taken as the nodes of the RBF interpolation
for the implicit function Φ(x). As an extension, Equation 2.27 is then applied to each of
the nodes of the RBF interpolation, rather than just to the points in front. Normal speed
vn in Equation 2.27 it is extended to ve

n for all knots in the design domain D. This is
illustrated in Figure 2.4, where each point of the grid is considered as a node of the RBF.

Figure 2.4: An extension velocity field for the parameterized level set method. Source: [2]

By using a method of placing the orthogonality constraints in Equation 2.26, a set of
ODEs can be obtained like this:

H
dα

dt
+ B(α) = 0 (2.30)
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where 

ve
n(x1)

∣∣∣(∇ϕT (x1))α
∣∣∣

...
ve

n(xN)
∣∣∣(∇ϕT (xN))α

∣∣∣
0
0
0
0


∈ R(N+4)×1 (2.31)

It should be noted that Equation 2.30 is a collocation formulation of the lines method,
in which a PDE problem is reduced to a simpler ODE problem by discretization. The
method of lines has solid mathematical foundations and the convergence of the solution
of the ODE problem converted to the solution of the original PDE problem has been
rigorously tested. In Equation 2.31, the space derivative ∇ϕ can be calculated analytically
from Equation 2.24 due to RBF interpolation.

The set of coupled nonlinear ODEs of Equation 2.30 can be solved by many ODE
solvers such as first order forward Euler and the higher order Runge-Kutta. The present
work uses the first order forward Euler method due to the simplicity of the algorithm.
Euler algorithm can provide an approximate solution to Equation 2.30 which is given by:

α(tn+1) = α(tn) − τH−1B(α(tn)) (2.32)
where τ is the step size. It should be noted that the step size must be small enough

to achieve numerical stability due to the Courant-Friedrichs-Lewy condition (CFL) and to
reduce truncation error due to the variation in each step of descent gradient direction and
velocity field in Equation 2.27, in topological optimization methods based on the level set
method. After obtaining an approximate solution to the equation 2.32 at each time step,
the time-dependent shape and topology can be updated using the equation 2.25.

In topology and shape optimization methods based on level set methods, a reset proce-
dure is required to recover the signed distance function behavior of the level set function.
Φ(x) in the vicinity of the front to ensure a good approximation of the normal or curvature
to the front. However, the reset error is prone to accumulate as the number of time steps
increases. Therefore, rebooting should be avoided as much as possible. Resetting produces
a severe problem, which is that new holes cannot be created within a maetial region.

The topology and shape optimization method based on the parameterized level set
method is capable of nucleation of holes and of eliminating the dependency of the final
optimizes solution in the initial design.

Extension Velocity Method

In Eulerian approaches the normal velocity vn(x) the front must be extended and in the
method of lines used in this work the normal speed ve

n(x) has the form shown in Equation
2.31 is the extension speed, which is defined over the entire design domain thus ve

N(x) :
D → R. The choice of the extension speed method is crucial as it has a direct influence on
the overall efficiency of the entire parameterized level set method 48. To ensure accurate
and efficient time advance, the extension speed ve

n(x) it must be defined carefully.
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There are many approaches to building extension speed ve
n(x) . The original level

set method introduced by Osher and Sethian [15] was focused on interface problems with
geometric propagation velocities so that a natural construction of an extension velocity
could be obtained, in which a signed distance function such as a level function due to its
simplicity.

When there is no physically significant alternative, some researchers suggest construct-
ing the extension velocity by extrapolating the velocity of front 70, which will require the
location of the closest point on the grid.

In the method presented in this work, a physically significant extension rate method
is used for topological optimization based on the implicit level set function. According to
equation 5, a natural extension of a normal velocity can be obtained if the stress field is
defined over the entire design domain D by assuming ε(u) = 0, u ∈ (D \ Ω). Since the
tension energy within the design domain and the Lagrange multiplier related to the volume
constraint are included, this rate of extension is physically significant.

However, this extension introduces a discontinuity in velocity near the front because
the stress field on is continuous along the front. To ensure a smooth front process, this
discotinuity must be eliminated. The front itself is smooth and continuously differentiable
due to the implicit RBF 53 modeling, but the magnitude of the normal velocity to the front
might not be continuous or smooth enough due to the finite element modeling involved in
stress analysis. Therefore, the magnitude of the normal velocity along the front must be
smooth to allow stable propagation along the direction of gradient descent. To develop all
these options, the front must be explicitly captured.

In the field of level set methods, it is well known that one of the most notable char-
acteristics of the methods of this family is that the front does not need to be explicitly
constructed and that the entire method can be developed on the underlying mesh. In
order to make use of this feature, all smoothing operations are performed in a narrow band
region, rather than just along the front. A narrow band region around the zero contour
curve is defined as Ξ =

{
x ∈ Rd |

∥∥Φ(x) ≤ δ
∥∥}, where δ is the width of the band. The

speed of extension in the narrow band is still smoothed, thus using a simple linear filter
(radially linear kernel hat) to achieve a good smoothing effect, which can be written as:

v̂e
n(x) = k−1(x)

∑
p∈N(x)

Wc(∥p − x∥)ve
n(x) (2.33)

where:

k(x) =
∑

p∈N(x)
W (∥p − x∥) (2.34)

W (∥p − x∥) = rmin − ∥p − x∥ (2.35)
in which N(x) is the neighborhood of x ∈ Ξ in the filter window and rmin is the size of

the window.
Therefore, the general extension speed is obtained as:

ve
n(x) =


(ε(u))T Cε(u) − l ∀x ∈ Rd |Φ(x) < −δ

v̂e
n(x) ∀x ∈ Ξ
−l ∀x ∈ Rd |Φ(x) > δ

(2.36)
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It can be noted that the extension speed field used to move the level set function is
related to the normal speed suggested by physics throughout the design domain and so the
extension speed conveys information about the physics.

Due to the implicit RBF modeling and linear smoothing effect, the smoothness of the
implicit level set function can be well maintained throughout the time advance without
resetting.
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Chapter 3

State of the Art

Topology optimization based on the traditional level set method was firstly proposed by
Wang et al. in their work A level set method for structural topology optimization in 2003
[37]. Wang et al. described an approach to structural topology optimization that benefits
from the flexible handling of complex topological changes and a concise description of the
boundary shape features of the level set method. This approach describes a structural
optimization procedure as a sequence of motions of the boundaries. The result is a 3D
optimization method capable of handling topological changes and fidelity of boundary
representation.

Wang et al. method [37] presents relevant drawbacks that limit its performance as
the need for a reinitialization procedure and the lack of holes nucleation. Newer methods
based on the Wang et al. approach overcome these drawbacks by implementing different
mathematical tools like parameterization of the level set function as described in the work
of Wang et al. [38]. This approach parameterizes the level set function using radial basis
functions (RBF) and converts a PDE problem into a more mathematically convenient
ODEs problem. This conversion alleviates the need for a complete reinitialization scheme
and also allows holes nucleation. Thus, improving the performance and avoiding getting
stuck in a local minimum.

Since the work of Wang et al. [38], topology optimization based on parameterized level
set method has received significant interest in recent years. There were developed multiple
methods to improve the optimization operation besides integrations with other fields, as
mechanical engineering and machine learning.

3.1 Integration with Deep Learning and Additive Man-
ufacturing

In the framework of topology optimization based on parameterized level set method, there
were proposed deep learning-based parameterized level set methods to achieve topology
optimization [3]. This method incorporates deep neural networks into the level set-based
topology optimization method where the implicit function is described by a deep neural
network. This approach guarantees smoothness and continuity of implicit function. Nowa-
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days, most topology optimization methods find an optimal material layout that can max-
imize or minimize the objective function. Nevertheless, in real-world applications, diverse
and competitive enough solutions can be required to make a choice based on functional
or aesthetic requirements. Wang et al. [39] presented diverse and competitive designs by
implementing a SIMP based-method with graphic diversity constraints. However, for pa-
rameterized level set methods, rare works are found in this field. Deng and To [3] proposed
a DNN-based level set method to effectively generate diverse and competitive designs with
high structural performance. Deng and To [3] describes a parametric level set method for
topology optimization based on Deep Neural Network. Their proposal incorporates a fully
connected deep neural network into the conventional level set method where the Hamilton-
Jacobi partial differential equations PDEs are transformed into a parameterized ordinary
differential equations ODEs. This approach of parameterization follows a similar schema
to the present in this work, a PDE decoupled into a system of ODEs. The implicit function
is updated by updating the network parameters. This method needs a reinitialization to
prevent the implicit function to lose its signed distance function feature near the interface.
The major feature of this method is its ability to generate diverse designs with different
network architectures. This method represents an opportunity for a family of methods
based on machine learning and topology optimization.

Figure 3.1: Diverse and competitive designs generated by DNN-based level set method.
a) Desgined using 8 hidden layers, with a compliance of 181946. b) Desgined using 8 × 8
hidden layers, with a compliance of 176893. c) Desgined using 8×8×8 hidden layers, with
a compliance of 177848. Source: [3]

Topology optimization can be combined with manufacturing techniques to generate
lightweight and high-performance structures that can be hard or even impossible to ob-
tain through conventional methods. Additive manufacturing is an advanced manufac-
turing technique that, integrated with topology optimization, is capable of generating
high-performance and complex structures. Zhu et al. [40] describe use cases of topology
optimization integrated with additive manufacturing (AM) as the development of an an-
tenna bracket for RUAG’s sentinel satellite. This component exceeded maximum rigidity
requirements by more than 30% and weight reduction from 1.6 kg. to 940 g.

It is shown that in the research of topology optimization for additive manufacturing,
the integration of material, structure, process, and performance is important to pursue
high-performance, multi-functional and lightweight production. Deng and To [3] describe

Information Technology Engineer 18 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.2: Antenna bracket for RUAG’s sentinel satellite. Source: [4]

a parametric level set method for topology optimization based on Deep Neural Network.
Their proposal incorporates a fully connected deep neural network into the conventional
level set method where the Hamilton-Jacobi partial differential equations PDEs are trans-
formed into a parameterized ordinary differential equations ODEs. This approach of pa-
rameterization follows a similar schema to the present in this work, a PDE decoupled into
a system of ODEs. The implicit function is updated by updating the network parameters.
This method needs a reinitialization to prevent the implicit function to lose its signed dis-
tance function feature near the interface. The major feature of this method is its ability to
generate diverse designs with different network architectures. This method represents an
opportunity for a family of methods based on machine learning and topology optimization.

In recent years, machine learning has received wide interest in applications to solve
physical problems. The application of machine learning for physical problems is based on
the capability to solve partial differential equations [41], [42], [43],[44]. In these approaches,
physics-informed neural networks are trained to solve physical problems constrained by the
laws of physics. The research of multiple machine learning-based approaches has led to
developing methods to resolve topology optimization problems. Yu et al. [45] proposed
a novel deep learning-based non-iterative method to predict optimal design with given
boundary conditions. Lei et al. [46] proposed a machine learning-based method to per-
form real-time structural topology optimization. neural networks are trained to solve phys-
ical problems constrained by the laws of physics. The development of multiple machine
learning-based approaches has led to research methods to resolve topology optimization
problems. Yu et al. [45] proposed a novel deep learning-based non-iterative method to
predict optimal design with given boundary conditions.

RBFs [33] have received much attention for the solution of structural optimization
problems in the framework of parameterized level set method. The initial implementation
was proposed by Wang and Wang [37], and further explored by Wang et al. [47] for
efficiency and performance. The natural velocity extension in the implementation of RBFs
in the level set method allows hole nucleation without the need for topological derivatives.
Thus, alleviating the dependency on the initial design.
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3.2 Advances in Topology Optimization improvements
Based on the Parameterized Level Set Method

RBFs can be implemented in terms of global, local, and compactly supported domains.
These different implementations have been studied for Siraj-ul-Islam et al. in their use in
structural topology optimization [48]. In this work, it is highlighted the use of local radial
basis functions LRBFs due to geometric and algebraic advantages that it offers.

The first approaches of parameterized level set function were developed using Global Ra-
dial Basis Functions GRBFs. Sarler presented a GRBFs-based Level Set Method (GRBFS-
LSM) for structural topology optimization [49]. This study transformed the original
Hamilton-Jacobi equation into a set of ODEs following the method of lines. The con-
tributions reported in [50], have pinpointed a new field of application for the RBFs (in the
case of global and compactly supported RBFs) in the structural optimization. One of the
main disadvantages of the GRBFs is that the system matrix is notoriously ill-conditioned
due to its strong dependence on the shape parameter value

Compactly supported Radial Basis Functions CS-RBF are strongly dependent on the
appropriate support radius of the function. As a result, CS-RBFs are not suitable for data
points that are further apart from the support radius and also if the data points are far
closer to each other. CS-RBFs have a slow convergence rate and it is difficult to achieve
convergence in large-scale interpolation problems [51]. The coefficient matrix is sparse and
strictly positive definite.

Siraj-ul-Islam et al. in his work The localized radial basis functions for parameterized
level set based structural optimization [5] explored the advantages in terms of convergence,
stability, sensitivity, mesh dependency, and computational efficiency for the use of Locally
Supported Radial Basis Functions LRBFs and its comparison with Globally Supported
Radial Basis Functions GRBFs and Compactly Supported Radial Basis Functions CS-
RBFs. These LRBFs have been applied with the level set method to structural applied
shape and topology optimization for compliant mechanism problems [52].

Siraj-ul-Islam et al. presented an LRBFs based LSM (LRBFs-LSM) for minimum com-
pliance of two-dimensional structural optimization problems. In their approach, the strain
energy density field is obtained by the finite element method (FEM) using the ersatz ma-
terial technique [53]. The geometry is represented with the LRBFs.
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Figure 3.3: Schematic diagram of local support domain with 5 points stencil. Source: [5]

The conventional Hamilton-Jacobi equation is transformed into a system of ODEs. An
approximate re-initialization is used [54, 55] during the evolution process. Due to the local
support domain, the LRBFs-LSM requires less memory storage as compared to the GRBFs-
LSM, which has a full dense matrix representation. In addition, the LRBFs-LSM is an
efficient localized version of the GRBFs-LSM, which avoids breakdown during propagation
and unstable solution [54]. Since the system matrix of the GRBFs-LSM is notoriously ill-
conditioned due to its strong dependence on the shape parameter value, therefore, LRBFs,
which produces a well-conditioned system matrix of the size of the local subdomain, within
the LSM framework. In addition, the numerical tests performed suggest that due to the
one-time inversion of a small collocation matrix, the LRBFs based collocation method is
computationally more efficient. It has been also observed that the final solution obtained
through LRBFs-LSM is comparatively less mesh and shape parameter-dependent, which
is an important aspect of the implementation of LRBFs in the present work.
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Chapter 4

Methodology

4.1 Phases of Problem Solving

4.1.1 Description of the Problem
An algorithm intended to solve an topology optimization problem, has to perform opti-
mization and simulation procedures. The algorithm has to combine one first step of solving
a system of coupled ODEs and a second step of finite elements that evolve over time.

Topological optimization is the process by which an object achieves the best arrange-
ment of its components according to some criteria. In this work, compliance minimization is
studied, which means minimizing the displacements of the material components caused by
external forces. Then the topological optimization following the criterion of minimization
of compliance, configures a body in such a way that the material of which it is composed
is distributed in such a way that surpluses are eliminated that do not contribute to the
rigidity of the body.

There are different approaches to performing this procedure, one of the most popular
being the SIMP approach. For this work, the parameterized level set method was studied.
This method arises as an improvement to the traditional level set method. Which was fea-
tured by Osher [15]. As already explained in Chapter 2 of this work, the level set method
was developed as a method to follow the moving edge of an interface. This method, how-
ever, presented several drawbacks when used for topological optimization. Being, mainly,
the difficulty and the numerical instability that causes to solve a partial differential equa-
tion and the incapacity of nucleation of new holes within the design domain. This can
cause the optimization process to get stuck at a local minimum and an optimal topology is
not achieved. Additionally, the traditional level set method is obliged to employ a reinitial-
ization scheme to maintain the signed distance function characteristic of the phi function,
this introduces more numerical errors and increases the difficulty of implementation of the
method.

The parameterized level set method is capable of generating new holes within the design
domain so it can achieve a global optimum. Additionally, you do not need a complete
reboot scheme. Instead, fuzzy reset schemes are implemented. This method was explained
in greater depth in Chapter 2 of this work.
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The parameterized level set method can be used to optimize the topology of a 3-
dimensional body. To do this, a 4-dimensional isosurface must be defined and the zero iso-
surface of this surface will represent the contour of the 3-dimensional body. Subsequently,
the topology optimization can be divided into two sections. The first being a function
interpolation problem, in which the generalized expansion coefficients 0 are found. These
coefficients are updated with each iteration of the optimization process. In order to update
these coefficients, a finite element formulation must be included in order to simulate the
object. This involves defining element stiffness matrices and other specific characteristics
of the body and material.

Additionally, it is necessary to implement an indexing scheme for nodes, nodes and
elements of the object. Thus, considering the dimensions and edge conditions prescribed
for each case.

4.1.2 Analysis of the Problem
The implementation of a three-dimensional topological optimization algorithm using the
parameterized level set method can be divided into three sections: initialization of the level
set function as a signed distance function, finite element analysis and evolution of the level
set function.

The first section, the initialization of the level set function as a signed distance function,
involves all the operations necessary to generate the generalized expansion coefficients
zero. This procedure requires the definition of the meshes, which must meet the CFL
condition, define the coordinates and diameter of the initial holes in the design domain,
initialize the level set function as a signed distance function, initialize the quadratic basis
function, construct the interpolation matrix of radial basis functions and finally generate
an interpolation of the function, thus obtaining the coefficients alpha zero.

The next section corresponds to finite element analysis. In this section the indexing
schemes for nodes, degrees of freedom and elements are defined. Subsequently, using the
previously generated indexes, the edge conditions are defined, these define the support
points of the body, as well as the loads that it supports. This is defined by characterizing
the degrees of freedom of each node as free or as fixed. Later in this section, properties
of the object to be optimized must be defined. These properties are E0 which represents
represents the density of material in a filled section of the object. Emin, which represents
the density of material in a section corresponding to a hole within the design domain. The
Poisson’s ratio nu which represents the elastic constant of the material. This coefficient
is used to construct the element stiffness matrix KE. Since the material is considered
homogeneous and isotropic, this KE matrix is the same for all the elements that make up
the object. Subsequently, a connectivity matrix of the degrees of freedom must be built,
this matrix is used to generate the x and y coordinates of a sparse matrix of the free degrees
of freedom. Finally, the vectors of external forces and kinetically admissible motions F and
U, respectively, must be constructed.

The last section of the algorithm implementation corresponds to the optimization loop.
In this stage the following parameters are defined: maximum number of iterations allowed,
number of iterations with relaxed volume restriction, the size of the time step, delta, mu
and gamma which are parameters of the Lagrange multiplier. The light iteration begins
by determining the elements of the object that are above the isosurface zero. This allows
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to calculate the volume of the object, which is constrained. The elements with a volume
greater than zero are also needed to be able to calculate the vector sK, this vector together
with the coordinates of the degrees of freedom x and y make up the dispersed matrix
of global stiffness. This matrix is used to update the vector of kinetically admissible
motions U. Subsequently, the fulfillment of each element of the object must be calculated,
and by adding this vector, the global fulfillment of the object can be calculated. This
optimization loop must also implement a convergence criterion. For the present work,
the maximum number of iterations and the volume restriction must be considered. In this
section, we also calculate the lagrange multiplier, which is related to the volume constraint.
This multiplier is calculated differently during the first iterations corresponding to nRelax.
Finally, the evolution of the level set function is carried out. Delta should be considered at
this stage. Check. The deformation energy density of each element must also be mapped
to its respective nodes in order to build the matrix B. This matrix, together with the
interpolation matrix G, are used to update alpha by means of the Euler method to form
first order. By obtaining the new generalized coefficients of expansion, the new function
phi can be calculated.

4.1.3 Algorithm Design
The algorithm was designed following the scheme proposed by Wei [55]. In this proposal,
the mesh, the signed distance function, is initialized first, and the first interpolation is
performed using radial basis functions. Later the optimization loop starts. Within this
loop, the strain energy density is calculated using finite element analysis. Using this result,
the generalized expansion coefficients alpha are updated and finally the function phi is
updated. As the last step, the convergence condition of the optimization loop is verified.
The flowchart of the proposed method is illustrated in Figure 4.1
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Figure 4.1: The flowchart of the proposed method

4.1.4 Implementation
The implementation was done using Matlab, without the use of external software packages
and can be found in https://github.com/eddyerach/top3dPLSM/tree/master. The
function to generate the element stiffness matrix KE was taken from the work of Liu and
Tovar [6].

Algorithm implementation can be divided in five sections, there are: Level set func-
tion initialization, radial basis function initialization, finite element analysis preparation,
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boundary conditions definitions, iteration optimization.
The first section, level set function initialization has to define the initial holes coor-

dinates and size. Position, number, and size of the initial holes have an impact on the
time required to reach the optimum state. In this section there are also defined the grid
according to the prescribed number of elements in x,y, and z dimension respectively, and
the level set functions as a cube.

The second section, is aimed to perform a radial basis function interpolation over the
level set function initialized in the first section. The radial basis function performed here
has to compute the partial derivatives on the X and Y axis and the generalized expansion
coefficients that will be used next to evolve the surface.

The third section, the finite element analysis preparation, has to define material prop-
erties like the Poisson coefficient. One of the most complex aspects of the implementation
is to define an indexing schema for elements, nodes, and degrees of freedom. The approach
used in this work is based on the work of Liu and Tovar [6]. This schema is explained in
the Table 4.1.

Finite Elements Analysis

The body is discretized in a prismatic structure described in Figure 4.2 composed of eight
eight-node cubic elements of the same size. The nodes identified with a numerical ID
are ordered column-wise up-to-bottom, left-to-right, and back-to-front. The position of
each node is defined with respect to the Cartesian coordinate system with origin at the
left-bottom-back corner. The eight nodes N1, · · · , N8 of each element is ordered in coun-
terclockwise direction as shown in Figure 4.3. It is important to note that the local node
number Ni does not follow the same rule as the global node ID system in Figure 4.2 Fol-
lowing the indexing approach and the size of the volume can be identified the global node
coordinates and node IDs of the other seven nodes in the element by the mapping the re-
lationships summarized in Table 4.1. As the problem deals with a three dimensional body,
each node in it has three degrees of freedom (DOF) corresponding to linear displacements
in x, y, and z directions. These degrees of freedom are stored in the nodal displacement
vector U as:

U = [U1x, U1y, U1z, · · · , U8×nz]T , (4.1)
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Figure 4.2: Node IDs global indexing scheme in a prismatic structure. Source: [6]

Figure 4.3: Node IDs local indexing scheme in a prismatic structure. Source: [6].

where n is the number of elements in the structure (nelx × nely × nelz). The
organization of the DOFs in U, and consequently K and F, can be determined following the
relationships described in Table. 4.1.

The node IDs for each element are located in a connectivity matrix edofMat with the
following MATLAB lines:

1 function [cont] = auxiliar (nelx ,nely ,nelz)

2 cont = zeros(nelx*nely*nelz ,8);

3 numElem = 1;

4 for z1 = 0:nelz -1

5 for x1 = 0:nelx -1

6 for y1 = nely -1: -1:0

7 nidz = (nelx +1) *( nely +1);

8 cont(numElem ,4) = (z1*( nelx +1) *( nely +1))+(x1*( nely +1))+(

nely +1-y1);
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9 cont(numElem ,3) = cont(numElem ,4) + (nely +1);

10 cont(numElem ,2) = cont(numElem ,4) + nely;

11 cont(numElem ,1) = cont(numElem ,4) - 1;

12 cont(numElem ,5) = cont(numElem ,1) + nidz;

13 cont(numElem ,7) = cont(numElem ,3) + nidz;

14 cont(numElem ,6) = cont(numElem ,2) + nidz;

15 cont(numElem ,8) = cont(numElem ,4) + nidz;

16 numElem = numElem + 1;

17 end

18 end

19 end

20 end

21 eleNode = auxiliar (nelx ,nely ,nelz);

22 edofMat = kron(eleNode ,[3 ,3 ,3])+ repmat ([-2,-1,0], nelx*nely*nelz ,8);

In the previous listing, nele is the number of elements in the structure, nodegrd con-
tains the node ID of the first grid of nodes in the x − y plane, for z = 0, the column vector
edofVec contains the node IDs of the first node at each element, and the connectivity ma-
trix edofMat of size nele × 24 containing the node IDs for each element. For the volume
in Figure 4.2, nelx = 4, nely = 1, and nelz = 2, which results in

edofMat =



1 2 3 · · · 34 35 36
7 8 9 · · · 40 41 42
13 14 15 · · · 46 47 48
19 20 21 · · · 52 53 54
31 32 33 · · · 64 65 66
37 38 39 · · · 70 71 72
43 44 45 · · · 76 77 78
49 50 51 · · · 82 83 84


(4.2)

The matrix edofMat is used to build the global stiffness matrix K as follows:
67 KE = lk_H8(nu);

68 eleNode = auxiliar (nelx ,nely ,nelz);

69 edofMat = kron(eleNode ,[3 ,3 ,3])+ repmat ([-2,-1,0], nelx*nely*nelz ,8);

70 iK = reshape (kron(edofMat ,ones (24 ,1)) ’ ,24*24* nelx*nely*nelz ,1);

71 jK = reshape (kron(edofMat ,ones (1 ,24)) ’ ,24*24* nelx*nely*nelz ,1);

72 sK = reshape (KE (:) *( Emin+eleVol ’*(E0 -Emin)) ,24*24* nelx*nely*nelz ,1);

73 K = sparse (iK ,jK ,sK); K = (K+K’) /2;

The matrix KE corresponding to the element stiffness matrix is generated from the lkH8
subroutine that was taken from Liu and Tovar [6]. Matrices iK and jK, reshaped as column
vectors, contain the coordinates of 24×24×nele degrees of freedom in the structure. The
matrix sK contains all element stiffness matrices. The building procedure of the matrix K
avoids the use of nested for loops.

The nodal displacement vector U is obtained by solving the linear system formed by
the stiffness matrix K and the vector of nodal forces F.
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106 U(freedofs ,1) = K(freedofs , freedofs )\F(freedofs ,1);

107 eleComp = sum ((U( edofMat )*KE).*U( edofMat ) ,2) .*( Emin+ eleVol *(E0 -Emin));

108 comp(iT) = sum( eleComp );

where the vector freedofs has the indices of the unconstrained DOFs. Subsequently, U is
used to calculate the equivalent Young’s modulus in the element stiffnes matrix. Finally, the
velocities field or so called element strain energy field eleComp and the objective function
value comp are calculated.

For the cantilevered structure in Figure 4.2, the constrained DOF
62 [jf ,kf] = meshgrid (1: nely +1 ,1: nelz +1); % Coordinates *

63 fixednid = (kf -1) *( nely +1) *( nelx +1)+jf; % Node IDs*

64 fixeddofs = [3* fixednid (:); 3* fixednid (:) -1; 3* fixednid (:) -2]; % DOFs*

where jf and kf are the coordinates of the fixed nodes, fixednid are the node IDs that
have displacement constraints, fixeddof are the location of the degrees of freedom that
have displacement constraints also. The free degrees of freedom, are defined as

78 ndof = 3*( nelx +1) *( nely +1) *( nelz +1);%

79 freedofs = setdiff (1: ndof , fixeddofs );%

where ndof is the total number of degrees of freedom. The default configuration constraints
the left face of the structure and assigns a vertical load to the structure’s lower edge as
shown in Figure 4.2. This configuration can be customized in order to produce different
topology optimization scenarios.

4.1.5 Testing
The code is executed in Matlab with the following command:

1 top3dPLSM (nelx , nely , nelz , volfrac )

where nelx, nely, and nelz are the number of elements along x, y, and z directions.
volfrac is the volume fraction constraint. The code is aimed to solve minimum compliance
problems.

The software is highly customizable by the user, by allowing to configure material
properties, number of elements in each direction, supports and loads, and PLSM topology
optimization method parameters. This feature allow to simulate a wide variety of use case
of topology optimization.

The following examples demonstrate the testing of the code to minimum compliance
problems.

Short Cantilevered Beam

The configuration for this testing case are summarized in Tab. 4.2. These configura-
tions establish a solid, elastic and isotropic prismatic structure. The supports and loads
configuration are given by the following lines:
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58 USER - DEFINED LOAD DOFs

59 il = nelx; jl = nely; kl = 0: nelz; %

Coordinates *

60 loadnid = kl*( nelx +1) *( nely +1)+il*( nely +1) +( nely +1-jl); % Node IDs*

61 loaddof = 3* loadnid (:) - 1; % DOFs*

termino fuente

62 % USER - DEFINED SUPPORT FIXED DOFs

63 [jf ,kf] = meshgrid (1: nely +1 ,1: nelz +1); % Coordinates *

64 fixednid = (kf -1) *( nely +1) *( nelx +1)+jf; % Node IDs*

65 fixeddofs = [3* fixednid (:); 3* fixednid (:) -1; 3* fixednid (:) -2]; % DOFs*

where il, jl, and kl are the coordinates of the vertical load that is placed at the right
face lower-edge. This load is applied to the whole edge. loadnid is the vector containing
node ids that are directly affected by the load. loaddof holds the degrees of freedom of
nodes beign directly affected by the load.

jk, and kf hold a mesh of coordinates of the supporting places. For this testing case,
the supporting place is the whole left face of the structure. fixednid are the node ids
for all nodes that belong to the supporting plane. fixeddofs are the degrees of freedom
of the nodes in fixednid. These DOFs determine the kinematically admissible linear
displacement and will remain fixed for all the optimization procedure.

Table 4.2: Experiment 1: Parameters configuration

Parameter Value
nelx 12
nely 8
nelz 12

volfrac 0.3
E0 1

Emin 1e-9
nu 0.3
dt 0.01

delta 10
mu 20
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4.2 Experimental Setup

4.2.1 Hardware

Table 4.3: Hardware Setup

Name Description
CPU AMD Ryzen 7 4800H, 8 Cores 16 Threads. Base Clock 2.9 Ghz

Memory 16 Gb DDR4
GPU Nvidia GTX 1660 Ti Mobile

4.2.2 Software

Table 4.4: Software Setup

Name Description
Operating System Windows 10 Home 64-bits

MATLAB R2019a (9.6.0.1072779) 64-bits
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Chapter 5

Results and Discussion

5.1 Experiments, Results, and Discussion
The obtained results used the popular model “ersatz model” to calculate the strain energy
of elements. The level set function is initially configured as a signed distance function with
further approximated re-initializations. The RBF knots are assumed to be identical to the
FEA nodes for the sake of simplicity. The multiquadric RBF is applied to all the numerical
cases. The Young modulus of material is xGpa and Poisson’s ratio is 0.3. In all cases, the
design domains are discretized as eight-noded cube finite elements. All experiments were
run with the same hardware and software configurations detailed in Section 4.4.

5.1.1 Experiment 1: Short Cantilevered Beam
In this experiment, it is studied the optimization problem of a short cantilever beam under
single load. The design problem of the 3D structure is shown in Figure 4. The entire
design domain is a cuboid solid with a dimension of 12×8×12 units. The left end is fixed
and a vertical unit external force of magnitude 300kN is applied at the right-bottom end.
The objective is to minimize the total strain energy of the structure for a given amount of
material usage (30%). The configuration for this experiment is described in Table 4.2.

The optimization process iterated 160 times until it met the convergence condition as
is shown in Figure 5.1. This condition is met when the volume and compliance do not
exceed a difference threshold in the last 9 iterations. This difference is set to 1e−3 as for
all experiments. The volume was constantly reduced in each iteration, going from the full
volume of a solid cube to an optimized structure with 30% of the initial volume. As the
volume was reduced, the compliance increased at the same rate, going from 300 to 780.
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Figure 5.1: Experiment 1: Compliance and Volume vs Iterations. Object compliance
increases as object volume decreases with each optimization iteration. This is due to the
continuous reduction of the material, which decreases the stiffness of the body.

In the optimization process, the parameterization step involves the generation of gen-
eralized expansion coefficients α; these coefficients have to meet the constraints specified
in the Eq. . The value of these constraints are tracked for each iteration to ensure that the
RBF interpolation has the desired behavior as shown in Figure 5.2. There are 4 constraints
that have to be equal to zero and in the experiments the value of the constraints ranged
around zero. This oscillating behavior can be attributed to numerical errors.
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Figure 5.2: Experiment 1: Orthogonality constraints vs iterations. a, b, c, and d describes
the time evolution of orthogonality constraints for z, x, y, and αi values respectively. These
restrictions are hold since they oscillate around zero which is the expected theoretical value.

The final result of this experiment shows a topologically optimal beam, supported by
two segments at the left faces and holding the load at the full right-lower edge. This result
is similar in appearance to the reported in literature. In Figure 5.3 can be seen the lower
face of the structure, which has an interior hole, and two structural components connecting
the lower support and the load. The side view can be seen in Figure 5.4, where is evident
the optimal design aimed to reduce the compliance.
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Figure 5.3: Experiment 1: Optimal topological design achieved when the convergence
criterion is met.

Top perspective of the optimal design can be viewed in Figure 5.4. From this perspective
can be appreciated the support elements at the left of the Figure, and the load at the lower
right edge of the object. Also, can be appreciated a structure similar to the reported in
literature.

Figure 5.4: Experiment 1: Top view of optimized topological design. The agreement
between the loads and supports and the design achieved is appreciated.
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The three dimensional nature of the problems, generates tubular structures to achieve
the minimum compliance. These features can be seen in Figure 5.5.

Figure 5.5: Experiment 1: Side perspective of the optimized topological design. The
agreement between the loads and supports and the design achieved is appreciated. A
symmetry in the structure of the body can also be evidenced, this due to supports and
loads are defined throughout the length of the z axis.

Information Technology Engineer 39 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

5.1.2 Experiment 2: Cantilevered Beam
In this experiment, it is studied a variation of the Experiment 1: optimization problem of
a cantilever beam under single load. The design problem of the 3D structure is the same
as the first experiment. The entire design domain is a cuboid solid with 60×20×4 units.
The left end is fixed and a vertical unit external force of magnitude 300kN is applied at the
right-bottom end. The objective is to minimize the total strain energy of the structure for
a given amount of material usage (30%). The configuration for this experiment is described
in Table 5.1.

The optimization process iterated 160 times until it met the convergence condition as is
shown in Figure 5.11. The number of iterations needed to met the convergence condition
was equal to the experiment 1. The volume was constantly reduced in each iteration,
going from the full volume of a solid cube to an optimized structure with 30% of the initial
volume. As the volume was reduced, the compliance increased at the same rate, going
from 300 to 780.

Table 5.1: Experiment 2: Parameters configuration

Parameter Value
nelx 60
nely 20
nelz 4

volfrac 0.3
E0 1

Emin 1e-9
nu 0.3
dt 0.01

delta 10
mu 20
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Figure 5.6: Experiment 2: Compliance and Volume vs Iterations. Object compliance
increases as object volume decreases with each optimization iteration. This is due to the
continuous reduction of the material, which decreases the stiffness of the body.

In the optimization process, the parameterization step involves the generation of gen-
eralized expansion coefficients α; these coefficients have to meet the constraints specified
in the Equation . The value of these constraints are tracked for each iteration to ensure
that the RBF interpolation has the desired behavior as shown in Figure 5.12. There are 4
constraints that have to be equal to zero and in the experiments the value of the constraints
ranged around zero. This oscillating behavior can be attributed to numerical errors.
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Figure 5.7: Experiment 2:Orthogonality constraints vs iterations. a, b, c, and d describes
the time evolution of orthogonality constraints for z, x, y, and αi values respectively. These
restrictions are hold since they oscillate around zero which is the expected theoretical value

The final result of this experiment shows a topologically optimal beam, supported by
two segments at the left faces and holding the load at the full right-lower edge. This result
is similar in appearance to the reported in literature. In Figure 5.13 can be seen the lower
face of the structure, which has an interior hole, and two structural components connecting
the lower support and the load. The side view can be seen in Figure 5.9, where is evident
the optimal design aimed to reduce the compliance.

Figure 5.8: Experiment 2: Optimal topological design achieved when the convergence
criterion is met.
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Figure 5.9: Experiment 2: Optimum topology from top perspective

Figure 5.10: Experiment 2: Side perspective of the optimized topological design. The
agreement between the loads and supports and the design achieved is appreciated. A
symmetry in the structure of the body can also be evidenced, this due to supports and
loads are defined throughout the length of the z axis.
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5.1.3 Experiment 3: Short Beam, Single Load In The Middle
In this experiment, it is studied a variation of the past single loaded experiments, opti-
mization problem of cantilever beam under single load in the middle of the right face.
The design problem of the 3D structure is the same as the first experiments. The entire
design domain follows the solid cuboid configuration shown in Table 5.2 with dimension of
24×16×8 units. The left end is fixed and a vertical unit external force of magnitude 300kN
is applied at the right-middle end. The objective is to minimize the total strain energy
of the structure for a given amount of material usage (30%). The optimization process
iterated 160 times until it met the convergence condition as is shown in Figure 5.11. The
number of iterations needed to met the convergence condition was equal to the other single
load experiments. The volume was constantly reduced in each iteration, going from the
full volume of a solid cube to an optimized structure with 30% of the initial volume. As
the volume was reduced, the compliance increased at the same rate, going from 190 to 420

Table 5.2: Experiment 3: Parameters configuration

Parameter Value
nelx 24
nely 16
nelz 8

volfrac 0.3
E0 1

Emin 1e-9
nu 0.3
dt 0.01

delta 10
mu 20
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Figure 5.11: Experiment 3: Compliance and Volume vs Iterations. Object compliance
increases as object volume decreases with each optimization iteration. This is due to the
continuous reduction of the material, which decreases the stiffness of the body.

Figure 5.12: Experiment 3: Orthogonality constraints vs iterations. a, b, c, and d describes
the time evolution of orthogonality constraints for z, x, y, and αi values respectively. These
restrictions are hold since they oscillate around zero which is the expected theoretical value
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Figure 5.13: Experiment 3: Optimal topological design achieved when the convergence
criterion is met.

Figure 5.14: Experiment 3: Top view of optimized topological design. The agreement
between the loads and supports and the design achieved is appreciated.
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Figure 5.15: Experiment 3: Side perspective of the optimized topological design. The
agreement between the loads and supports and the design achieved is appreciated. A
symmetry in the structure of the body can also be evidenced, this due to supports and
loads are defined throughout the length of the z axis.

5.2 Benchmarking
The results obtained were compared with published results from other authors. These
results were obtained through variations of the parameterized level set method or through
the SIMP method, as appropriate.
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5.2.1 GRBFs-based PLSM vs SIMP

(a) (b)

(c)

Figure 5.16: Final design comparison. (a) Initial design for both methods. (b) Final Design
for SIMP. (c) Final design for GRBF-PLSM
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(a) (b)

(c)

Figure 5.17: Final design comparison. (a) Initial design for both methods. (b) Final Design
for SIMP. (c) Final design for GRBF-PLSM
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Chapter 6

Conclusions

6.1 Conclusion
Actors involved in industrial development have always sought to minimize the costs of their
activities to maintain their competitiveness in the market. In this way, the manufacturing
and operating processes have been continuously improved along with the technological
developments over time. In recent decades, the development of computer-aided design
software allowed the application of more complex methods of topological optimization
to the mechanical design process. Today, there is extensive research and development
in structural topological optimization due to the optimal use of material and energy it
allows. This optimal use has been highlighted by the United Nations as part of sustainable
development.

Topology optimization based on level set methods has become an attractive design tool
for obtaining lighter and more efficient structures. This work studied the parameterized
level set method for topology optimization for a three-dimensional problem. This method
is based on the mathematical simplification of the Hamilton-Jacobi PDE into a more
convenient ODEs system. The simplification is performed by parameterizing the level set
function by using radial basis functions. Firstly, the boundary of the structure is implicitly
represented as the zero level set of a higher-dimensional level set function, and the implicit
surface is parameterized through the interpolation of a given set of radial basis functions.
In this way, the original Hamilton-Jacobi partial differential equation is transformed into
a system of algebraic equations. This review analyzed topology optimization for solid
isotropic objects within the framework of compliance minimization. The parameterization
approach presented used the GRBF MQ spline due to its performance to approximate
functions and smoothness. Along with the review, top3dPLSM was implemented following
the method PLSM for topology optimization as an efficient 255 lines MATLAB code.

The features and functionalities of the implemented code satisfy the objectives of this
work. top3dPLSM uses dedicated MATLAB capabilities for vectorized computation, sparse
data processing, and solving systems of equations. As a result, top3dPLSM features a high
level of efficiency that enables it to handle reasonably large size and resolution problems.

This code can minimize the compliance of a three-dimensional body subject to cus-
tomizable boundary conditions. The minimization of the compliance was the first specific

51



School of Mathematical and Computational Sciences Yachay Tech University

objective of our work.
The code includes a plotting routine at each step of the optimization loop. This routine

plots the evolution of the surface during the optimization process as well as the value of
compliance and the volume of the body. Therefore, the fourth specific objective is met.

top3dPLSM can solve problems with different size configurations, material properties,
and boundary conditions. This feature allowed us to replicate previously studied problems
presented in literature. In this way, it was possible to compare the results obtained by the
code presented in this work and the solutions generated by the implementations presented
in other works. Thus, the developed code met the last specific objective.

top3dPLSM is an efficient code, developed to solve three-dimensional topological opti-
mization problems within the framework of compliance minimization and with a volume
constraint. It can handle problems with different configurations and provide a live plotting
of state variables and optimization process. Therefore, the general objective established
for the present work was met.

6.2 Future Work
Structural topology optimization can have a positive impact in almost all industries due to
its capabilities to generate high-performance and lightweight structures. United Nations
and the Institute for Energy and Environmental Research studied the impact of lightweight-
ing the structures of means of transport. Reducing vehicles weight has the potential to
avoid almost 700 million tonnes of carbon dioxide emissions per year from the transport
sector. Thus, a natural next step of this research will be studying use cases of topology
optimization aimed to reduce the weight of vehicles and their components.

The designing of high-performance structures is being complemented with the integra-
tion with additive manufacturing. However, not all optimal designs can be manufactured
using additive manufacturing. The optimal design has to be smooth and continuous for its
manufacture to be feasible. There are reported methods for topology optimization-based
PLSM that consider extrusion constraints aimed to generate 3D pri ntable optimal designs.
As future work, we could conduct research aimed to enhance the present implementation
to be able to generate additive manufacturing feasible design.

The code presented in this work is capable of performing topological optimization to
a 3D elastic isotropic solid body using the parameterized level set method. Globally sup-
ported multi-quadratic RBFs were used.

The state of the art of topological optimization based on the parameterized level set
method describes approaches that use locally supported RBFs that consume less memory
and present a well-conditioned interpolation matrix. It would be interesting to explore this
idea as a follow-up work modifying the code to use LRBF.

Additionally, the code uses only CPU and is implicitly parallelized by MATLAB. How-
ever, to scale the magnitude of the problems that can be addressed, a code capable of
using CPU and GPU processing must be implemented. Thus, we propose to migrate the
code to C++ and make use of the PETSc which is the acronym of Portable, Extensible
Toolkit for Scientific Computation [56] [57] [58]. PETSC is a suite of tools and data types
for scalable parallel solutions of partial differential equations. This suite supports MPI and
CUDA. This suite was used by Aage et al. for the implementation of a tool for giga-voxel
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computational morphogenesis for structural design.

6.3 Recommendations
The development of the code presented in this work is the result of the implementation of
the method proposed by Wang and Wang in their work Radial basis functions and level
set method for structural topology optimization [32]. In this work, the mathematical bases
of the method for a 3-dimensional problem are described. However, details regarding its
implementation are not mentioned, for this purpose, the work of Liu and Tovar [50] and
Wei [55] was used as a reference. In these works, the implementation in MATLAB of
the SIMP method for topological optimization for a three-dimensional problem and the
implementation of the parameterized level set method for topological optimization for a
two-dimensional problem are presented, respectively. The work carried out was, for the
most part, to extend the two-dimensional solution presented by Wei, to an implementation
capable of solving three-dimensional problems.

In the process of extending Wei’s solution [55] to three dimensions, various problems
arose, which were resolved through the implementation and validation of different solutions
reported as successful in the literature. This was the case of the implementation of the lk H8
subroutine for the generation of the element stiffness matrix for finite element analysis. This
subroutine was presented in the work of Liu and Tovar [50].

The following recommendations are highlighted for the implementation of a solution
based on the one presented in this work or for its replication.

• The implementation of a topological optimization algorithm based on the parameter-
ized level set method involves the development and coupling of various components,
such as the section that performs topological optimization itself and the section that
develops the finite element analysis. For this, it is generally recommended and for
each stage of the implementation, to exploit the vectorized computation features that
MATLAB offers to simplify the implementation. Additionally, due to the high com-
putational cost inherent to the problem, the use of dedicated tools and functions for
vectorized computation allows achieving reasonable computational times depending
on the size of the problem. This, in turn, allows you to experiment with objects of
larger sizes or with a higher level of detail.

• It is recommended to use algebraic operations between signed distance functions,
to generate the initial design of the body to be optimized. This allows for quick
deployment and easy debugging. Additionally, it allows generating different initial
design configurations without the need to make major changes to the code.

• Take advantage of the built-in functions that MATLAB provides for the development
of vectorized algorithms. This is mainly useful when generating the initial layout. At
this stage, the repmat, and kron functions are especially useful. As well as bsxfun,
which allows mapping functions to vectors.

• A simple design to generate and that has been useful for the work presented is to
initialize a parallelepiped with zero values and later replace the values of an inter-
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nal inscribed parallelepiped of three units less in each dimension with an ascending
number pattern in each direction. corresponding to the x, y, z axes.

• It is recommended to use the shape parameter cRBF = 1e-5 for all the radial basis
functions used. This value has been used successfully in different related implemen-
tations.

• It is recommended to use the MATLAB linear systems solver operator to solve the
equation: 2.22. This is because it is numerically possible that the matrix involved
is badly conditioned, that is, almost singular. MATLAB will detect this and use an
iterative method to solve this system of linear equations.

• It is recommended to implement a function that generates the loads and supports
defined by the user. This is because the implementation of these components can
be abstracted, thus reducing the complexity of the configuration of the loads and
supports mentioned.

• In the implementation of finite element analysis, it is recommended to use the same
material properties of this study. These parameters have been widely used in various
studies, thus allowing a consistent comparison of results as well as allowing expected
behavior.

• For a simple implementation and easy to compare with other jobs, it is recommended
to use the lk H8 subroutine. This function was proposed by Liu and Tovar [6] and is
in charge of generating the element stiffness matrix KE. This function receives as its
only parameter the coefficient nu and is used for all the elements that make up the
object.

• Due to the large number of elements contained in the matrices involved in the equi-
librium equation, it is recommended to use sparse matrices to store these values. The
use of dedicated structures for storing sparse matrices is especially relevant due to
the enormous amount of data, most of which is 0.

• When defining the parameters involved in the optimization loop, it is recommended
to define a maximum number of iterations large enough to allow the convergence of
the solution and for it to meet the stop condition. Likewise, the time step size must
be small enough to maintain numerical stability and be consistent with the CFL
condition.

• It is recommended to generate a visualization of the orthogonality conditions of the
interpolation of the radial basis function to verify compliance with these conditions.

• It is recommended to configure the stop condition as a combination of volume con-
vergence and compliance achieved. That is, if the object has a compliance variation
less than 1e-3 in the last 9 iterations and the volume constraint has already been
met, the optimization iteration will stop.

• It is recommended to implement the fuzzy reset scheme. This increases numerical
stability and allows for earlier convergence.
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• Finally, it is recommended to implement post-processing to the result obtained from
the main routine. This is since being a level set method, only the level set zero can
be displayed, therefore, only the values equal to zero, or failing that, intermediate
values between a positive and negative number, would be represented as part of the
final object.
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[12] H. Helms and J. Kräck, “Energy savings by light-weighting - 2016 update,” December
2016.

57

https://books.google.com.ec/books?id=NGmtmMhVe2sC
https://doi.org/10.1007/s00158-018-1904-8
https://www.eos.info/en/3d-printing-examples-applications/all-3d-printing-applications/ruag-aerospace-3d-printed-satellite-components
https://www.eos.info/en/3d-printing-examples-applications/all-3d-printing-applications/ruag-aerospace-3d-printed-satellite-components
https://doi.org/10.1007/s00158-014-1107-x
https://doi.org/10.1038/nature23911


School of Mathematical and Computational Sciences Yachay Tech University

[13] K. Dube and G. Nhamo, Major Global Aircraft Manufacturers and Emerging
Responses to the SDGs Agenda. Cham: Springer International Publishing, 2020, pp.
99–113. [Online]. Available: https://doi.org/10.1007/978-3-030-33216-7 7

[14] H. Li, P. Li, L. Gao, L. Zhang, and T. Wu, “A level set method for topological shape
optimization of 3d structures with extrusion constraints,” Computer Methods in
Applied Mechanics and Engineering, vol. 283, pp. 615–635, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045782514003764

[15] S. Osher and R. Fedkiw, The Level Set Methods and Dynamic Implicit Surfaces.
Springer, New York, NY, 05 2004, vol. 57.

[16] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations,” Journal of Computational
Physics, vol. 79, no. 1, pp. 12–49, 1988. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0021999188900022

[17] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A pde-based fast
local level set method,” Journal of Computational Physics, vol. 155, no. 2, pp.
410–438, 1999. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0021999199963453

[18] J. Sethian, “Level set methods and fast marching methods,” Cambridge Monographs
on Applied and Computational Mathematics, vol. 37, 1999.

[19] M. Burger, B. Hackl, and W. Ring, “Incorporating topological derivatives into level
set methods,” Journal of Computational Physics, vol. 194, pp. 344–362, 07 2004.

[20] N. H. Kim and Y. Chang, “Eulerian shape design sensitivity analysis and optimization
with a fixed grid,” Computer Methods in Applied Mechanics and Engineering, vol.
194, no. 30, pp. 3291–3314, 2005, structural and Design Optimization. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0045782505000484

[21] E. Kansa, “Multiquadrics—a scattered data approximation scheme with applications
to computational fluid-dynamics—i surface approximations and partial derivative
estimates,” Computers Mathematics with Applications, vol. 19, no. 8, pp. 127–
145, 1990. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
089812219090270T

[22] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science.
Cambridge university press, 1999, vol. 3.

[23] M. Burger, B. Hackl, and W. Ring, “Incorporating topological derivatives
into level set methods,” Journal of Computational Physics, vol. 194, no. 1, pp.
344–362, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0021999103004868

Information Technology Engineer 58 Graduation Project

https://doi.org/10.1007/978-3-030-33216-7_7
https://www.sciencedirect.com/science/article/pii/S0045782514003764
https://www.sciencedirect.com/science/article/pii/0021999188900022
https://www.sciencedirect.com/science/article/pii/0021999188900022
https://www.sciencedirect.com/science/article/pii/S0021999199963453
https://www.sciencedirect.com/science/article/pii/S0021999199963453
https://www.sciencedirect.com/science/article/pii/S0045782505000484
https://www.sciencedirect.com/science/article/pii/089812219090270T
https://www.sciencedirect.com/science/article/pii/089812219090270T
https://www.sciencedirect.com/science/article/pii/S0021999103004868
https://www.sciencedirect.com/science/article/pii/S0021999103004868


School of Mathematical and Computational Sciences Yachay Tech University

[24] G. Allaire, F. de gournay, F. Jouve, and A.-M. Toader, “Structural optimization using
topological and shape sensitivity via a level set method,” Control and Cybernetics,
vol. 34, 01 2005.

[25] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and representation of 3d
objects with radial basis functions,” in Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’01. New York,
NY, USA: Association for Computing Machinery, 2001, p. 67–76. [Online]. Available:
https://doi.org/10.1145/383259.383266

[26] Q. J. L. . O. S. Cecil, T., “Numerical methods for high dimensional hamilton-jacobi
equations using radial basis functions,” Journal of Computational Physics, pp.
327–347, 2004. [Online]. Available: https://escholarship.org/uc/item/16311645

[27] A. Cheng, M. Golberg, E. Kansa, and G. Zammito, “Exponential convergence and h-c
multiquadric collocation method for partial differential equations,” Numerical Methods
for Partial Differential Equations, vol. 19, pp. 571 – 594, 09 2003.

[28] E. Kansa, H. Power, G. Fasshauer, and L. Ling, “A volumetric integral
radial basis function method for time-dependent partial differential equations.
i. formulation,” Engineering Analysis with Boundary Elements, vol. 28, no. 10,
pp. 1191–1206, 2004, mesh Reduction Technique Part II. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095579970400013X

[29] C. A. Micchelli, “Interpolation of scattered data: Distance matrices and conditionally
positive definite functions, volume = 19, journal = Constructive Approximation, doi
= 10.1007/BF01893414,” pp. 571 – 594, 12 1986.

[30] R. Franke, “Scattered data interpolation: Tests of some method,” Mathematics
of Computation, vol. 38, no. 157, pp. 181–200, 1982. [Online]. Available:
http://www.jstor.org/stable/2007474

[31] B. Morse, T. Yoo, P. Rheingans, D. Chen, and K. Subramanian, “Interpolating implicit
surfaces from scattered surface data using compactly supported radial basis functions,”
in Proceedings International Conference on Shape Modeling and Applications, 2001,
pp. 89–98.

[32] S. Wang and M. Y. Wang, “Radial basis functions and level set method
for structural topology optimization,” International Journal for Numerical Methods
in Engineering, vol. 65, no. 12, pp. 2060–2090, 2006. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1536

[33] M. D. Buhmann, Radial Basis Functions: Theory and Implementations, ser. Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge Uni-
versity Press, 2003.

[34] E. Kansa, H. Power, G. Fasshauer, and L. Ling, “A volumetric integral radial basis
function method for time-dependent partial differential equations. i. formulation,”
Engineering Analysis With Boundary Elements, vol. 28, pp. 1191–1206, 2004.

Information Technology Engineer 59 Graduation Project

https://doi.org/10.1145/383259.383266
https://escholarship.org/uc/item/16311645
https://www.sciencedirect.com/science/article/pii/S095579970400013X
http://www.jstor.org/stable/2007474
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1536


School of Mathematical and Computational Sciences Yachay Tech University

[35] D. F. Richards, M. O. Bloomfield, S. Sen, and T. S. Cale, “Extension
velocities for level set based surface profile evolution,” Journal of Vacuum Science
& Technology A, vol. 19, no. 4, pp. 1630–1635, 2001. [Online]. Available:
https://doi.org/10.1116/1.1380230

[36] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and representation of
3d objects with radial basis functions,” p. 67–76, 2001. [Online]. Available:
https://doi.org/10.1145/383259.383266

[37] M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology
optimization,” Computer Methods in Applied Mechanics and Engineering, vol. 192,
no. 1, pp. 227–246, 2003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0045782502005595

[38] S. Wang and M. Y. Wang, “Radial basis functions and level set method
for structural topology optimization,” International Journal for Numerical Methods
in Engineering, vol. 65, no. 12, pp. 2060–2090, 2006. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1536

[39] B. Wang, Y. Zhou, Y. Zhou, S. Xu, and B. Niu, “Diverse competitive design
for topology optimization,” Structural and Multidisciplinary Optimization, vol. 57,
no. 2, pp. 891–902, Feb 2018. [Online]. Available: https://doi.org/10.1007/
s00158-017-1762-9

[40] J. ZHU, H. ZHOU, C. WANG, L. ZHOU, S. YUAN, and W. ZHANG, “A
review of topology optimization for additive manufacturing: Status and challenges,”
Chinese Journal of Aeronautics, vol. 34, no. 1, pp. 91–110, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1000936120304520

[41] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics, vol. 378, pp.
686–707, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0021999118307125

[42] R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner, “Discovering physical
concepts with neural networks,” Physical Review Letters, vol. 124, no. 1, Jan 2020.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.124.010508

[43] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid
mechanics,” Annual Review of Fluid Mechanics, vol. 52, no. 1, pp. 477–508, 2020.
[Online]. Available: https://doi.org/10.1146/annurev-fluid-010719-060214

[44] M. Raissi, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis, “Deep learning of
vortex-induced vibrations,” Journal of Fluid Mechanics, vol. 861, p. 119–137, Dec
2018. [Online]. Available: http://dx.doi.org/10.1017/jfm.2018.872

Information Technology Engineer 60 Graduation Project

https://doi.org/10.1116/1.1380230
https://doi.org/10.1145/383259.383266
https://www.sciencedirect.com/science/article/pii/S0045782502005595
https://www.sciencedirect.com/science/article/pii/S0045782502005595
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1536
https://doi.org/10.1007/s00158-017-1762-9
https://doi.org/10.1007/s00158-017-1762-9
https://www.sciencedirect.com/science/article/pii/S1000936120304520
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1017/jfm.2018.872


School of Mathematical and Computational Sciences Yachay Tech University

[45] Y. Yu, T. Hur, J. Jung, and I. G. Jang, “Deep learning for determining a near-
optimal topological design without any iteration,” Structural and Multidisciplinary
Optimization, vol. 59, no. 3, pp. 787–799, Mar 2019. [Online]. Available:
https://doi.org/10.1007/s00158-018-2101-5

[46] X. Lei, C. Liu, Z. Du, W. Zhang, and X. Guo, “Machine Learning-Driven Real-Time
Topology Optimization Under Moving Morphable Component-Based Framework,”
Journal of Applied Mechanics, vol. 86, no. 1, 10 2018, 011004. [Online]. Available:
https://doi.org/10.1115/1.4041319

[47] S. Wang, K. Lim, B. Khoo, and M. Wang, “An extended level set method for shape
and topology optimization,” Journal of Computational Physics, vol. 221, no. 1, pp.
395–421, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0021999106002968

[48] S. ul Islam and I. Ahmad, “A comparative analysis of local meshless formulation for
multi-asset option models,” Engineering Analysis with Boundary Elements, vol. 65,
pp. 159–176, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0955799716000175
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