

UNIVERSIDAD DE INVESTIGACIÓN DE

TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: TRACKING AND RECOGNITION OF MOVING

HUMAN SILHOUETTES USING REINFORCEMENT

LEARNING

Trabajo de integración curricular presentado como requisito para

la obtención del título de Ingeniera en Tecnologías de la

Información

Autor:

Amanda Ulloa Uprety

Tutor:

PhD. Chang Tortolero Oscar Guillermo

Urcuquí, Diciembre, 2021

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 21 de diciembre de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00040-AD

A los 21 días del mes de diciembre de 2021, a las 14:30 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D.

Miembro No Tutor Dr. LEIVA , HUGO , Ph.D.

Tutor Dr. CHANG TORTOLERO, OSCAR GUILLERMO , Ph.D.

El(la) señor(ita) estudiante ULLOA UPRETY, AMANDA RAQUEL, con cédula de identidad No. 1717628711, de la ESCUELA DE
CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN, aprobada
por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de videoconferencia, la
sustentación de su trabajo de titulación denominado: TRACKING AND RECOGNITION OF MOVING HUMAN SILHOUETTES
USING REINFORCEMENT LEARNING, previa a la obtención del título de INGENIERO/A EN TECNOLOGÍAS DE LA
INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. CHANG TORTOLERO, OSCAR GUILLERMO , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la) estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y examinado por
los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de videoconferencia, que integró la
exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas por los miembros del Tribunal, se califica la
sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Presidente Tribunal De Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D. 9,0

Miembro Tribunal De Defensa Dr. LEIVA , HUGO , Ph.D. 10,0

Tutor Dr. CHANG TORTOLERO, OSCAR GUILLERMO ,
Ph.D.

10,0

Lo que da un promedio de: 9.7 (Nueve punto Siete), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

Certifico que en cumplimiento del Decreto Ejecutivo 1017 de 16 de marzo de 2020, la defensa de trabajo de titulación (o examen de
grado modalidad teórico práctica) se realizó vía virtual, por lo que las firmas de los miembros del Tribunal de Defensa de Grado,
constan en forma digital.

ULLOA UPRETY, AMANDA RAQUEL
Estudiante

Dr. ANTON CASTRO , FRANCESC , Ph.D.
Presidente Tribunal de Defensa

Dr. CHANG TORTOLERO, OSCAR GUILLERMO , Ph.D.
Tutor

FRANCESC
ANTON
CASTRO

Digitally signed by
FRANCESC ANTON CASTRO
Date: 2021.12.23 15:12:40
+01'00'

Firmado electrónicamente por:

AMANDA RAQUEL
ULLOA UPRETY

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Dr. LEIVA , HUGO , Ph.D.
Miembro No Tutor

TORRES MONTALVÁN, TATIANA BEATRIZ
Secretario Ad-hoc

TATIANA
BEATRIZ
TORRES
MONTALVAN

Firmado
digitalmente por
TATIANA BEATRIZ
TORRES
MONTALVAN
Fecha: 2021.12.22
12:41:43 -05'00'

Autoŕıa

Yo, Amanda Ulloa Uprety, con cédula de identidad 171762871-1, declaro que las ideas,
juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y conceptual-
izaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas
utilizadas en la investigación, son de absoluta responsabilidad de el autor del trabajo de
integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad
de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Noviembre del 2021.

Amanda Ulloa Uprety
CI: 171762871-1

Firmado electrónicamente por:

AMANDA RAQUEL
ULLOA UPRETY

Autorización de publicación

Yo, Amanda Ulloa Uprety, con cédula de identidad 171762871-1, cedo a la Universi-
dad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la presente obra,
sin que deba haber un reconocimiento económico por este concepto. Declaro además que
el texto del presente trabajo de titulación no podrá ser cedido a ninguna empresa editorial
para su publicación u otros fines, sin contar previamente con la autorización escrita de la
Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-
bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el
Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, Noviembre del 2021.

Amanda Ulloa Uprety
CI: 171762871-1

Firmado electrónicamente por:

AMANDA RAQUEL
ULLOA UPRETY

Resumen

La detección de humanos en videos en vivo ha sido un campo bastante explorado debido
a su amplia usabilidad en seguridad, automatización de actividades, asistentes de con-
ducción, entre otras. Pero de igual manera es un tema bastante desafiante, ya que las
imágenes siempre vaŕıan en diferentes aspectos como son la iluminación, color, calidad de
imagen, también existe la variedad de poses, colores, tamaños y velocidades de las personas,
esto hace que la detección sea una tarea complicada y que requiera mucho tiempo. Otros
desaf́ıos pueden ser el consumo de recursos informáticos, ya que procesar una gran canti-
dad de información puede saturar el sistema. El procesamiento de imágenes o de un video,
los algoritmos de inteligencia artificial, entrenamientos y otros procesos necesarios para la
correcta detección en la imagen, pueden ser una tarea exigente para nuestra máquina.
En este proyecto de tesis, proponemos un detector de humanos capaz de operar en videos en
vivo utilizando redes neuronales, basadas principalmente en el algoritmo de detección de ob-
jetos YOLO. El sistema propuesto usa redes neuronales convolucionales y optimiza técnicas
innovadoras del algoritmo YOLO para que presente un resultado de reconocimiento hu-
mano bastante preciso pero al mismo tiempo una menor demanda en nuestra computadora,
reduciendo aśı el consumo de recursos, reduciendo tiempo de procesamiento de imágenes
y el tiempo de reconocimiento.

Palabras Clave: Redes neuronales convolucionales, reconocimiento humano
video, detección de objetos, recursos informáticos.

xi

Abstract

The detection of humans in live videos has been a quite explored field due to its wide
usability in security, activities automation, driving assistants, medical helpers etc. At the
same time, it is quite a challenging subject, since images always vary in many aspects
such as lighting, color, quality, poses, overlapping, sizes and speeds of people, and thus,
it makes detection a complicated task and a time and resource consuming process. In
general image processing requires large computer resources and advanced tools in artificial
intelligence and machine learning. This thesis work proposes a human detector that can
operate in live video by using neural networks based mainly on the YOLO object detection
algorithm. The constructed software system uses convolutional neural networks and focuses
on in optimizing some of the YOLO algorithm techniques so that its accuracy in human
recognition is improved while lowering the demand of computer power and reducing the
recognition time.

Keywords: Convolutional Neural Networks, human recognition, video, object
detection, computer resources.

ix

Contents

Dedication v

Acknowledgments vii

Abstract ix

Resumen xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 2

2 Theoretical Framework 3
2.1 Computer Vision . 3

2.1.1 Definition . 3

xiii

2.1.2 Examples and Applications . 4
2.2 Neural Networks . 5

2.2.1 Training a Neural Network . 6
2.2.2 Underfitting and Overfitting . 7
2.2.3 Basic Concepts . 7

2.3 Convolutional Neural Networks . 8
2.3.1 Convolutions . 9
2.3.2 Filter . 9
2.3.3 ReLu Activation Function . 9
2.3.4 Padding . 10
2.3.5 Pooling . 10
2.3.6 Stride . 11
2.3.7 Convolutional Neural Networks for Object detection 11

2.4 YOLO Algorithm . 12
2.4.1 Techniques . 12

2.5 YOLO Architecture . 17
2.6 YOLOv3 Architecture . 18

3 Methodology 19
3.1 Resources . 20

3.1.1 Software . 20
3.1.2 Hardware . 20

3.2 Data Collection . 20
3.3 Defining the architecture . 23

3.3.1 Activation Function . 25
3.3.2 Loss Function . 25
3.3.3 New architecture . 26

3.4 Dataset . 27
3.5 Training and Testing . 29

3.5.1 Hyper-parameters . 29
3.5.2 Metrics . 30

3.6 Working on videos . 31

4 Results and Discussion 35
4.1 Final Results . 35

4.1.1 Videos results . 38

xiv

5 Conclusions and Recommendations 43

Bibliography 45

xv

List of Tables

2.1 Comparison of techniques of each version 13

4.1 Neural Network Test Results. 36
4.2 Videos specifications . 38
4.3 Processed frames per second . 40
4.4 Processed frames per second . 41

xvii

List of Figures

2.1 Biological Neuron . 5
2.2 4-layer NN structure . 6
2.3 ReLu function . 9
2.4 Max and average Pooling . 10
2.5 YOLO detection example . 12
2.6 Bounding Box Prediction . 15
2.7 Predefined Anchor Boxes . 16
2.8 Image Downsamplig an Cell division for YOLOv3 16
2.9 YOLO general Architecture . 17
2.10 YOLOv3 DarkNet . 18

3.1 Examples of the collected images . 21
3.2 Example of image labeling . 21
3.3 Example of image labeling . 22
3.4 Image coordinates . 22
3.5 Graphical representation of coordinates from Figure 3.4 23
3.6 Comparison of CPU usage between YOLOv3 and MvcYOLO 24
3.7 ReLU vs Leaky ReLU . 25
3.8 Architecture of the proposed CNN . 26
3.9 Example of error in recognition . 27
3.10 Example of error solving . 28
3.11 Example of the system working with both classes 28
3.12 Example of error solving . 29
3.13 Examples of frames extracted from a video 32
3.14 Examples of processed frames . 32

4.1 Example of processed images . 37
4.2 Examples of processed images . 37

xix

4.3 Example of processed images . 37
4.4 Average accuracy results . 39
4.5 Time results in 6 second videos . 39
4.6 Time results in 8 second videos . 41

xx

Chapter 1

Introduction

1.1 Background

In the last decade, computer vision has become a wider and important field, with many
more practical applications, supported with new technologies and the increase of people
using digital images. The main objective of computer vision is to extract varied and useful
information from images. [1] Whether in videos or photographs, every day we have contact
with them, and as the relevance of computer vision increases, the need and applications
for detecting objects, animals and people in images also increase. Detecting and tracking
humans in particular has a wide variety of uses, such as in surveillance videos, security,
self-driving cars, people counting, human-robot interaction and immersive interactive en-
tertainment, smart homes, assistance for people that live alone, and searching for people
for military applications. [2]

The wide range of applications and underlying intellectual challenges of the detection
has attracted many researchers.

In security systems, human detection is essential, because its purpose is mainly to
identify and monitor people in places with a high attendance of people, such as shopping
centers, streets, airports and stations. In general, a full body monitoring is required, which
may later be accompanied by pose recognition or facial recognition. In the case of car
automation and driving assistance, the aim is for the car system is to detect, dodge or
warn about the presence of objects or pedestrians. [3]

1

1.2 Problem statement

In the same way that object detection is important, it is challenging, specially referring to
human detection and tracking. This is because there are so many different appearance, col-
ors, sizes and countless poses that a person can be in.[2] Furthermore, people wear different
accessories and clothes, also they could be carrying babies, animals or objects like bags,
suitcases or walking sticks. Another problem is the overlapping of objects and people, it
is challenging for a machine to detect humans when them are close to each other or when
only a portion of they is visible. Another problem is the image quality of the camera and
its speed of image capture. Also, there are external factors that can affect image quality,
such as lighting, weather and noise. All these factors make it difficult to process the data
and therefore the task of detecting humans [4].

An additional problem is the consumption of computer resources, since processing a
large amount of information can demand an excessive use of the memory of our computer.
In object recognition, the use of machine learning and artificial intelligence algorithms for
processing images or videos, is essential. Training them or training a convolutional neural
network is usually quite demanding with the use of the computer’s memory and power. [5]

1.3 Objectives

1.3.1 General Objective

To develop a method based on artificial intelligence that is capable of recognizing human
bodies in live videos and keep track of them using convolutional neural networks.

1.3.2 Specific Objectives

• To design, train and implement a new convolutional neural network for video pro-
cessing based in YOLO algorithm, reducing the demand for computing resources.

• To determine the performance of the proposed algorithm in terms of precision, accu-
racy, training and execution time.

• To implement a system for human bodies recognition and tracking in videos, using
the trained model.

2

Chapter 2

Theoretical Framework

This chapter will present all the concepts necessary to understand the development of
this project. It will cover computer vision fundamentals, general concepts about neural
networks and convolutional neural networks, object detection and the algorithm will be
introduced.

2.1 Computer Vision

2.1.1 Definition

Computer vision is a wide and interdisciplinary field of study that seeks to develop tech-
niques to help computers computers to extract meaningful information from digital images
and videos, and perform tasks on that information. The aim is to imitate the perception
of human sight, or to give the computer the power to see and understand images using
machine learning. Computer vision works in a similar way to human vision, except humans
have an advantage. The human eye has the advantage of the lifetime of the context to
train how to distinguish objects, their distance, size, whether they are moving and if there
is something rare in an image.[6]

Using computer vision, machines can be trained to perform these kind of functions,
but it has to do it using cameras, data, and artificial intelligence rather than retinas, optic
nerves, and a visual cortex. Also, it must process information and pass it to a system
much faster, because a system, for example, trained for the production sector can analyze
thousands of products or processes per minute, noticing imperceptible defects or problems,

3

it can quickly exceed human capabilities.[7]

2.1.2 Examples and Applications

If we classify computer vision in its types and applications, there is a great variety, below
we will present only some examples of uses and applications since they seem relevant to
this research.

Image Classification

It obtains an image and classifies it, precisely, it is able to predict whether the received
image corresponds to a specific class, for example a dog, an apple, etc.

Object detection

It uses the classification of images to identify classes and detect if one or more objects
of the class or classes of interest are found in an image or video, it is able to analyze the
entire image and locate the exact place where the object is.[8] From here you can also track
objects in sequence images or live video.[9]

Security

We all know video surveillance, usually, it consists of cameras that are implemented in
public places such as shopping centers, busy streets, banks, among others. The goal is to
have this information stored and to be able to use it at some point when it is needed. In
general, these sites have a large number of cameras, therefore they have a lot of informa-
tion, videos, and images, which makes it difficult for a person to manually analyze this
information. Therefore, this task is entrusted to machines, computer vision is responsible
for extracting the relevant information from these images using algorithms and artificial
intelligence mechanisms that allow it to process a large amount of information quickly
and accurately. The information of interest can be suspicious events, facial recognition,
detection of specific motions, among others.[10]

Health

Image information is a key element for diagnosis in medicine because it represents 90%
of all medical data. Many health diagnoses are based on image processing, X-rays, MRI,

4

and mammography, just to name a few. And image segmentation proved it worthwhile
analyzing medical scans. For example, Computer Vision algorithms can detect diabetic
retinopathy, the fastest-growing cause of blindness. Computer Vision can process images
of the back of the eye and classify them according to the presence and severity of the
disease.[11]

Self-driving cars

A car that drives itself or has an automatic driving assistant needs to identify people,
traffic signs, other cars, animals, and cyclists quickly, almost instantly, since the event is
happening at the moment [12]. It requires a reliable artificial vision that can plan routes,
make correct movements and avoid collisions and accidents [13]. An object detector suitable
for this task requires precision, speed, and low consumption of resources, remember that
we are talking about a car and not a robust PC.

2.2 Neural Networks

A neural network(NN) or artificial neural network is a computational interconnected set
of simple processing units or nodes whose functionality is based on the mechanism of
biological neurons. The neurons that we all have in our brain are composed of dendrites,
the soma, and the axon. The dendrites are responsible for capturing the nerve impulses
emitted by other neurons. These impulses are processed in the soma and transmitted
through the axon that emits a nerve impulse towards the neighboring neurons [14].

Figure 2.1: Biological Neuron

As mentioned, the functioning of networks is similar to that of the human brain. The
networks receive a series of input values, simulating the ”nerve impulse”, and each of these

5

inputs reaches a node called a neuron. The neurons of the network are grouped in layers:
which are sets of neurons whose inputs come from a previous layer (or from the input data
in the case of the first layer) and whose outputs are the input from a later layer, forming
a net. The value of each neuron is processed inside the cell by a trigger function that
returns a value that is sent as the neuron’s output. The new values are obtained to leave
the neurons and continue their way through the network [14].
This operation can be seen in Figure 2.2, which shows a 4 layers network.

Figure 2.2: 4-layer NN structure

The first layer is known as the input layer since it receives the first data that feeds the
neural network. The output of the last layer is the visible result of the network, which is
why the last layer is known as the output layer. The layers that are between the input
layer and the output layer are known as hidden layers since both the input and output
values are unknown. A neural network is always composed of an input layer, an output
layer (if there is only one layer in the neural network, the input layer matches the output
layer) and can contain several hidden layers or none at all.[15]

2.2.1 Training a Neural Network

For a neural network to work, it needs to be trained. Training consists of adjusting each of
the weights of the inputs of all the neurons that are part of the neural network so that the

6

responses of the output layer adjust as much as possible to the data that we know or that
manages to extract the desired results. For this, what is done is to introduce training data
into the network, depending on the result obtained, the weights of the neurons are modified
according to the error obtained and depending on how much each neuron has contributed to
said result. This method is known as Backpropagation. This method enables the network
to learn, achieving a model capable of obtaining very successful results even with data
different from those used for its training. [16]

2.2.2 Underfitting and Overfitting

Underfitting and overfitting are the two main generalization problems that occur in machine
learning and degrade the performance of the machine learning models.

Overfitting

It occurs when our model tries to cover all the data points or more than the required
data points present in the given dataset. Because of this, the model starts caching noise
and inaccurate values present in the dataset. If we obtain Overfitting, we can solve it by
obtaining a greater number of data, dividing our data in training, adjusting the parameters
of our models, validation, and testing, using simpler models, or lowering the number of
iterations if it is an iterative algorithms [17].

Underfitting

It occurs when our model is not able to learn enough from the training data, it is unable
to identify or obtain correct results due to lack of sufficient training samples or very poor
training, this reduces the accuracy and produces unreliable predictions. To solve or avoid
Underfitting we can use more complex models, adjust the parameters of our models or
increase the iterations in iterative algorithms [17].

2.2.3 Basic Concepts

In this section, some basic concepts necessary to better understand the definition of the
model used in this project will be exposed, as well as terms that will be mentioned later.

7

Activation Function

It is a function that is used to get the output of the node. It is also known as the transfer
function. It is used to determine the output of the neural network as yes or no. Maps the
resulting values between 0 to 1 or -1 to 1. Some of the most used functions are Sigmoid,
tanh, Softmax, ReLU, Leaky ReLU [18].

Learning Algorithm

The main objective of the ANN is to learn to solve problems by itself, this is achieved
using a learning algorithm. There are several types of algorithms, but all have the ob-
jective of adjusting the network parameters in order to mimic the expected behavior and
progressively reduce the error observed during training [19].

Weights

The weights are values that represent the connections between neurons. These weights
represent the nerve impulses transmitted from one neuron to another. These values are
not fixed, with neural network training, the weight values will change. After a network goes
through the learning process, the weighting values represent all the information learned.

Loss Function

The loss function is an important component of the ANN. It is a method of evaluating how
well the algorithm models the data set. [20] If the predictions are not accurate at all, the
loss function will generate a large number. If they are fairly accurate, they will generate
a small number. The loss is used to calculate the gradients and the gradients are used
to update the weights of the neural network. As the algorithm adjusts to try to improve
the model, its loss function will let us know whether or not it is improving. It helps us
understand how the predicted value differs from the actual value. [17, 21]

2.3 Convolutional Neural Networks

A CNN is a type of ANN that uses convolutional layers to mimic the vision of the human
eye to identify different characteristics in the inputs and make it possible to obtain useful
information for the network. This type of network is generally used to recognize visual
patterns such as characters, symbols, figures, and objects from pixel images. [10] For this,

8

CNNs contain several specialized hidden layers that have a hierarchy: this means that
the first layers can detect basic objects such as lines, curves and are specialized until they
reach deeper layers that recognize more specific and complex shapes such as a face. or the
silhouette of an animal or a person. [22]

2.3.1 Convolutions

The convolutions consist on taking groups of neighboring pixels from the input image and
operating mathematically with a small matrix called a kernel. That kernel goes through
all the input neurons, from left to right, from up to down, and generates a new output
matrix, which will ultimately be our new layer of hidden neurons.

2.3.2 Filter

It is a set of kernels, since not only one kernel is applied, but we will have many kernels.
As the kernel moves, we get a filtered ”new image”. The kernel values or weights, as in
traditional neural networks, have an initial value at the beginning of the training and later,
during the process, these weights are updated until they approach the optimal conditions
to make good predictions.

2.3.3 ReLu Activation Function

Rectified linear unit (ReLU), it is the most used activation function for this type of neural
networks, it allows a faster and more efficient training by assigning negative values to zero
and maintaining positive values, it consists of f (z) = max (0, z).[18]

Figure 2.3: ReLu function

9

As you can see, the ReLU is half rectified (from bottom). f(z) is zero when z is less
than zero and f(z) is equal to z when z is above or equal to zero.

2.3.4 Padding

Padding is the number of pixels added to an image when it is being processed, allowing
for more accurate analysis. This padding adds some extra space around the image, which
helps the kernel improve performance. When the image is going through the convolution
process, the kernel scans every pixel and in this process, it scans some pixels several times
(centered pixels) and some pixels a few times (edges).
When filters try to center pixels at the edge, the filter is out of range trying to convolve val-
ues outside of the image. Therefore, border values are ignored or this problem is overcome
by using padding.[23]

2.3.5 Pooling

Pooling is an operation that is performed after each convolution. The goal of these layers
is to reduce the dimension of the data. The pooling layer takes the output of the previous
convolutional layer and applies a filter (following the same process as convolutional filters),
this filter calculates the maximum or the average between the values captured by the filter.
There are two main types of pooling layers: maximum pooling and average pooling.[7]

Figure 2.4: Max and average Pooling

10

2.3.6 Stride

Stride is the amount of pixels a filter moves over the input matrix. For example, if a neural
network’s stride is set to 1, the filter will move one pixel, or unit, at a time.

2.3.7 Convolutional Neural Networks for Object detection

CNNs are generally used in visual applications. Recognizing objects and locating them
in images is one of the challenging problems in computer vision. In recent years, several
models have been developed to solve this problem using CNN, these are known as object
detectors. Below are some recent and common CNN-based models that were designed for
detection and localization.[7]

R-CNN

Object detection consists of two independent tasks which are classification and location.
R-CNN stands for Region-Based Convolutional Neural Network. The key concept is, as the
name implies, the extraction of features by region using deep CNNs and learning indepen-
dent linear classifiers for each object class.[24] A region proposal network takes an image
and provides a set of rectangular object proposals that are later used for detection.[25, 7]

Fast R-CNN

The same author of the R-CNN optimized and solved some of the drawbacks of R-CNN
to build a faster object detection algorithm and named it Fast R-CNN. The approach is
similar to the R-CNN algorithm. But instead of submitting the region’s proposals to CNN,
the input image is sent to CNN to generate a convolutional feature map. From this map,
the region of the proposals is identified and transformed into squares and, using a grouping
layer, they are reshaped to a fixed size so that they can be fed to a fully connected layer.
From the feature vector, a softmax layer is used to predict the class of the proposed region
and also the offset values for the bounding box.[26, 7]

RPN and Faster R-CNN

The Regional Proposal Network simultaneously predicts object bounding boxes and objec-
tivity scores at each position. RPN is a fully convolutional network, end-to-end trained to
produce high-quality region proposals for object detection using Fast R-CNN. Combining

11

RPN with the Fast R-CNN object detector results in a new model called Faster R-CNN.
In particular, in Faster R-CNN, the RPN shares its computation with Fast R-CNN by
sharing the same convolutional layers, allowing joint training. [27, 7]

2.4 YOLO Algorithm

YOLO (You Only Look Once) is an algorithm that uses a convolutional neural network
to detect objects in real-time. YOLO uses techniques that have been developed in recent
years. And it implements most of the current ideas about computer vision like batch
normalization, residual networks, data augmentation, among others, and does a good job
in terms of accuracy.[28] In addition, the system applies a single neural network to the entire
image, which makes the model quite fast. This network divides the image into regions and
predicts multiple bounding boxes and the probability of detection of the training classes
for each bounding box. Finally, it uses a non-maximum suppression method to eliminate
multiple detections of the same object. As a result, the system prints the objects it detected,
their confidence, and the execution time. Figure 2.5 shows an execution of the system on
an input image. [29, 30]

Figure 2.5: YOLO detection example

2.4.1 Techniques

The YOLO algorithm has evolved to a fourth version, but for this project YOLO, YOLOv2
and YOLOv3 were taken into account, those are the first 3 versions, since the latest version
does not have much information or experimental content. The algorithm in general uses

12

quite a few modern techniques of computer vision and CNN, below is a comparison of the
most relevant techniques that each version has, as well as a brief description of each one.
[29, 30, 31]

Techniques YOLO YOLOv2 YOLOv3

Data Augmentation X X X

Non-max suppresion X X X

Bounding Box prediction X X X

Batch Normalization X X

Anchor Boxes X X

Dimension Clusters X X

Location Prediction X X

Scale prediction X

Residual Net X

Table 2.1: Comparison of techniques of each version

Data Augmentation

Data augmentation is an effective technique to obtain more image variability based solely
on the information from the training data we have to avoid overfitting. With this technique,
the available images are duplicated and modified by flipping, zooming, rotating, cropping,
among others; to create more data for the training process. The advantage of this is
that the algorithms do it automatically and manual data editing and augmentation is
avoided.[32, 33]

13

Non-max suppresion

Non-maximum suppression (NMS) is a key post-processing step in many computer vision
applications, primarily in object detection. In this context, it is used to transform a smooth
response map that triggers many imprecise object window hypotheses into, ideally, a single
bounding box for each detected object.[34]

Bounding Box prediction

YOLO uses functions on the whole image to predict each bounding box. It also predicts
all bounding boxes in all classes for an image simultaneously. The YOLO design enables
end-to-end training and speeds in real-time while maintaining high average accuracy. The
system divides the input image into S × S grids. If the center of an object falls on a cell in
the grid, that cell is responsible for detecting that object. Each cell in the grid predicts B
bounding boxes and confidence scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and also how accurate the bounding
box is.[29]
If no object exists in that cell, the confidence scores must be zero. Otherwise, the confidence
score will be equal to the intersection over the union (IoU) between the predicted frame
and the real information. So, confidence is defined by

Pr(Object) ∗ IoU real
predict (2.1)

Each bounding box consists of 5 predictions: x, y, w, h, and confidence. The coordi-
nates (x, y) represent the center of the box relative to the cell boundaries of the grid. The
width and height are predicted relative to the entire image. And finally, the confidence
prediction. Each cell in the grid also predicts C conditional class probabilities, Pr (Classi
— Object). These probabilities are conditioned by the cell in the grid that contains an
object. Only one set of class probabilities per cell is predicted, regardless of the number of
cells B. When testing, the conditional class probabilities and the confidence predictions of
the individual cells are multiplied, [30]

Pr(Classi|Object) ∗ Pr(Object) ∗ IoU real
predict = Pr(Classi) ∗ IoU real

predict (2.2)

which gives class-specific confidence scores for each box and encode both the probability
of that class appearing in the box and if the predicted box fits the object.

14

Figure 2.6: Bounding Box Prediction

Batch Normalization

Batch normalization is a technique to make neural networks faster and more stable by
adding additional layers. The new layer performs the standardization and normalization
operations of the inputs to one layer for each mini-batch. Since batch normalization acts as
a regularizer, it has the effect of stabilizing the learning process and reducing the number
of training epochs required, eliminating model attrition, and controlling overfitting.[35]

Anchor Boxes

The term anchor boxes refers to a predefined collection of boxes with widths and heights
chosen to match the widths and heights of objects in a data set. The proposed anchor boxes
cover the possible combination of object sizes that could be found in a dataset. Naturally,
this should include different ratios and scales present in the data. It is common to select
between 4 and 10 anchor boxes to use as proposals at various locations in the image.[30]

15

Figure 2.7: Predefined Anchor Boxes

Scale Prediction

It refers to the algorithm making predictions of the same image but at different scales.
YOLOv3, for example, works with predictions at 3 different scales, this is achieved by
downsamplings to the input image dimension by 32, 16, and 8. [30] This is done to
detect objects of different sizes. Downsampling dimension by 32 gives us a small image,
which offers a general view in which large objects are highlighted and observed, while
downsampling dimension by 8 gives us a larger and more detailed image, which also contains
more cells. and therefore the network is capable of detecting small objects. In Figure 2.8
we can see the representation of the 3 scales of an image of dimension 416 x 416.

Figure 2.8: Image Downsamplig an Cell division for YOLOv3

16

Residual Network

A residual network (ResNet) is formed by stacking several residual blocks together. A
residual block is a stack of layers configured in such a way that the output of one layer
is taken and added to another layer deeper in the block. The non-linearity is applied
after adding it along with the output of the corresponding layer in the main path. Deep
ResNets are capable of forming an identity function that maps to a previous activation in
the network when the activation of a specific layer tends to zero deeper in the network. This
identity mapping created by these residual blocks is why adding additional layers does not
affect the performance of a residual network. The performance improvement is achieved
whenever the additional layers get meaningful information from the data. Whereas, the
presence of the residual blocks avoids the loss of performance whenever the activations
tend to disappear.[36]

2.5 YOLO Architecture

The network has 24 convolutional layers followed by 2 layers with full connections. 1 x
1 reduction layers are used followed by 3 x 3 convolutional layers. Figure 2.9 shows the
general structure of the first version of the YOLO detector. This model has changed over
time as YOLO introduced the different techniques described above.

Figure 2.9: YOLO general Architecture

17

2.6 YOLOv3 Architecture

The development of this project was based mainly on the techniques and architecture of
YOLOv3. Therefore, the architecture of this model is presented. Later, in section 3, we
will explain the construction and development of the new model.

Figure 2.10: YOLOv3 DarkNet

18

Chapter 3

Methodology

This chapter presents the process followed and all the details that were carried out to
achieve the objectives of this project. Also, this section explains the main structure of the
project.
First, an arduous investigation was carried out on the detection of objects and issues re-
lated to the detection of humans in images. Useful and specialized libraries in the use
and development of convolutional neural networks (CNNs) such as pytorch were studied,
as well as the opencv library, which was the main tool for image processing and video
manipulation.
When researching about CNNs in object detection, the YOLO algorithm was found as
the best option to fulfill the objective of this project, but when trying to implement it,
due to its complexity, the result was a collapsed system, with a slow and erratic computer
functioning, due to high memory requirements and a lot of CPU involvement in performing
certain calculations. Also, the GPU was taken to the limit of its processing capacity.
The YOLO algorithm was studied in-depth and a YOLO-based algorithm was designed
so that fewer calculations were required. In particular, some aspects of image processing
that are not very relevant when detecting objects were considered, especially because the
project aims to the detection of humans only, these calculations and aspects will be de-
scribed in depth later.
Thus, the new architecture for the detection of humans in images was obtained. The al-
gorithm was implemented in parts and from scratch using the python language and the
pytorch library.
The image dataset was prepared for training and testing. After some training, corrections,
and testing, an extension was made to the image database, and a readjustment of parame-

19

ters to correct some errors and improve the functioning of the neural network was obtained.
Finally, for the proposed neural network to work in videos, the videos were processed and
separated into frames using OpenCV.

3.1 Resources

3.1.1 Software

The language used to implement the proposed model is Python, the algorithm was written
from scratch in this language and making use principally of the Pytorch library for the
creation of the CNNs and the OpenCV library for the processing of images and videos.

3.1.2 Hardware

• Processor: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz

• RAM: 8 GB

3.2 Data Collection

For the development of this project, it was necessary to collect a large amount of data
and images. First, the type of images that would be appropriate was identified, which are
images that contain humans, in full, performing different activities and in different poses,
with covered areas, sitting, running, etc. The images needed to be varied and different,
to achieve this, images from 4 different datasets were used: CrowdPose dataset, PETA
dataset, PennFundanPed, and Animal-10 dataset From these datasets, a total of 1000
images were taken and a new dataset was created for training, then 100 images were taken
for testing and validation data.

20

Figure 3.1: Examples of the collected images

All these images were manually processed to obtain the format for working with YOLO
algorithm, which requires a frame that enclose the object of interest, the human silhouette
in this case, and a file that obtains the coordinates of the 4 corners of each box that encloses
the object. If there is more than one object of interest in the image, the coordinates of the
rest of the boxes will also be needed.

Figure 3.2: Example of image labeling

21

Figure 3.3: Example of image labeling

To achieve this, the MakeSense.ai software was used, where the names of the labels of
each category were created, in this case, we had two categories: Human and NoHuman.
A box is drawn containing the object of interest and it is given the corresponding label
(see Figures 3.2 and 3.3). The output of the software is a folder with images and each
image with its respective text file that contains the category number of each object and
the coordinates of the object. For example for Figure 3.3 where we have 2 humans, this
would be its label text file .

Figure 3.4: Image coordinates

Where each line represent one object of interest, and in each line, the first number
represents the class, the second and third numbers are the midpoint in X and Y of the
object respectively, while the fourth and fifth numbers represent the width and height of
the box (See Figure 3.5). Something important to mention is that these sizes and these
coordinates are taken concerning the entire image, the advantage of this is that if the image
is resized, it would continue to maintain the same numbers.

22

Figure 3.5: Graphical representation of coordinates from Figure 3.4

3.3 Defining the architecture

Although YOLO manages to detect objects with greater precision and speed compared to
other algorithms, it needs to be used in a system with a powerful single GPU. There are
computing and converting processes. All of the computing processes are done on the GPU
side and the converting processes are conducted on the CPU side. [37]

The YOLO algorithm outputs at least 3 anchor boxes per cell or detected object, due
to the model performs detection in 3 scales to obtain objects of different sizes[30], it would
imply the implementation of a massive amount of anchor boxes. These were not considered
relevant, since what is sought is that the detection is fast and efficient, the creation of these
anchor boxes takes more time and also demands greater use of CPU resources. Therefore in
the proposed neural network, it was suppressed and simplified, using only simple bounding
boxes.

From the paper ”Concurrent Real-Time Object Detection on Multiple Live Streams Us-
ing Optimization CPU and GPU Resources in YOLOv3”, [37] the conversion of images was
also taken into account, which in the paper is suggested as a step that does not contribute

23

in a relevant way to the detection process. Here is considered the conversion of RGB image
to a different format unique for the operation of the neural network, after the conversion,
the detection is carried out, the bounding boxes are drawn and the image is transformed
back to the RGB format, this step is the one that is suppressed, working and detecting
directly on the image in RGB format. These additional calculations and conversions can
be considered small, but improvements in terms of CPU usage were obtained by removing
them. An evaluation was made on 10 different videos with different qualities to check the
CPU memory usage. [37]

Figure 3.6: Comparison of CPU usage between YOLOv3 and MvcYOLO

The percentage of CPU usage was compared between (See Figure 3.6) YOLOv3 and
MvcYOLO (it is the model proposed in the paper mentioned above) in videos with dif-
ferent qualities. In general, the use of the CPU increases with increasing video quality
since it requires more computational power to handle large frames. The CPU usage on the
MvcYOLO is lower than the general video qualities of YOLOv3.[37]

Another calculation that was suppressed was the concatenation of channels, what this
refers to is that when upsampling the image, it takes a feature map from earlier in the
network and merges it with the upsampled features. In addition to the fact that concate-
nation already requires additional operations, since it is searches in previous parts of the
neural network, it requires constant revision and backtracking, which somehow interrupts
the detection and flow of the neural network. By removing the concatenations, the model
works with information that has been slightly altered by the neural network, but that still
maintains the important information and also allows the process to be linear, without the

24

need to go back to the previous steps in search of information.

The Yolo Original makes 4 predictions on each scale, in this model one prediction is
made on each scale. Additionally, for this specific project only 2 classes were used, which
are ”Human” and ”NoHuman”.

3.3.1 Activation Function

For this model we are gonna use Leaky ReLU activation function that is an attempt to
solve the dying ReLU problem that provokes f(y) equal to zero when y is less than zero.
The leak helps to increase the range of the ReLU function.

Figure 3.7: ReLU vs Leaky ReLU

Using the value of a = 0.01.

3.3.2 Loss Function

As we will not use anchor boxes in the new model, it was decided that the loss function
that will be used will be that of the first version of YOLO which is:

λcoord
∑S2

i=0
∑B

j=0 1obj
ij

[(√
wi −

√
ŵi

)2
+
(√

hi −
√
ĥi

)2
]

+ ∑S2

i=0
∑B

j=0 1obj
ij

(
Ci − Ĉi

)2
+ λnoobj

∑S2

i=0
∑B

j=0 1noobj
ij

(
Ci − Ĉi

)2

25

+ ∑S2

i=0 1obj
i

∑
c∈classes

(
pi(c)− p̂i(c)

)2
(3.1)

where 1obj
i denotes if object appears in cell i and 1obj

ij denotes that the jth bounding
box predictor in cell i is “responsible” for that prediction. x and y are coordinates that
show where is the center of the box in relation to the grid. w and h represent the width
and height, and c is the confidence[29] .

3.3.3 New architecture

Taking into account all the previous points, this is the architecture of the proposed CNN.
It consists of 36 layers. The first convolutional layer receives an input of 416x416 pixels
and 3 channels (RGB). The first 28 are those that make up the modified darknet, which
consists of several convolutional layers, as well as layers of residual blocks. Layers 29, 32
and 35 are also convolutional. In layers 30, 33 and 36 the scale predictions are made, in
each scale the Neural Network detects the objects and defines if them belong to one of the
two classes. In layers 31 and 34, upsampling is performed for 3-scale prediction.

Figure 3.8: Architecture of the proposed CNN

The convolutional block consists of conv2, batch normalization, and Leaky RelU. The
residual block is made up of a padding and a convolutional block. The scale prediction
layers are the output layers. In the upsampling layers the size is doubled.

26

3.4 Dataset

As mentioned before, the dataset consists of 1000 images for training and 100 for testing,
divided into 2 classes ”Human” and ”NoHuman”. This was achieved after having trained
the neural network and having obtained unfavorable results.
The first time the network was trained with a dataset of 800 images and a MAP (mean
average precision) of 74% was obtained to recognize humans, but when tested on images
containing animals, it also detected the animals as humans.

Figure 3.9: Example of error in recognition

For this reason, the ”NoHuman” class was added and images of animals were added,
which were entered in that class.

27

Figure 3.10: Example of error solving

Figure 3.11: Example of the system working with both classes

Afterward, the database was expanded again since the neural network did not recognize
black people, so images with people whose skin color is more varied were added, thus
obtaining the final database that yielded the best results.

28

Figure 3.12: Example of error solving

For the algorithm to obtain the images and the files with their coordinates, .csv doc-
uments were created for both training and testing. The files contain two lists, one with
the names of the image file and the other with the name of its corresponding .txt file that
contains the coordinates.

3.5 Training and Testing

3.5.1 Hyper-parameters

For training, YOLO algorithms base their parameters on a configuration file, depending
on the algorithm version. Since the proposed algorithm is different, some parameters have
been withdrawn and others have been modified. The parameters to be taken into account
for training in this project are:

• Batch Size: Batch Size determines how much data will pass through the network,
or the number of images that will be processed by the network before updating the
weights which is also the number of images per iteration [38].
For this project the batch size is set to 16.

• Epochs: One epoch is to pass the entire training data set through the neural net-
work once. Generally, neural networks need several epochs to achieve good predic-
tions because, in each epoch, the weights are modified to improve the model. This
hyperparameter determines the number of epochs that will be executed to train the
neural network.[38]
For this project, the number of epochs is set to 2000.

29

3.5.2 Metrics

• Intersection over Union (IoU)
IoU is one of the most popular and used metrics in visual tasks such as segmentation,
object detection, object tracking, etc. What it does is to determine how optimal the
prediction of bounding box (BBp) is compared to the real bounding box (BBr)
previously entered, it is calculated using the following formula. [39, 40]

IoU = area(BBp ∩BBr)
area(BBp ∪BBr)

(3.2)

This formula is comparing the area that is intersected by both squares over the area
of the Union. In most cases an IoU of 0.50 is considered good enough to say that an
object has been correctly detected, there is the possibility of obtaining an IoU of 0.9
considered perfect since it is practically impossible to obtain a value of 1.

With this metric we can determine the following categories:

– True Positive (TP): The Object was detected correctly.

– False Positive (FP): The bounding box did not detect the object in the image
correctly and has a very low IoU value.

– False Negative (FN): Failed to predict an object that was there or the object is
detected as a class to which it does not actually belongs to.

• mean Average Precision (mAP)
mAP is a popular metric that measures the precision of object detectors. To under-
stand how it works, is necessary to put other important concepts into context.

– Recall: Measures how well all positives were found.

Recall = TP

TP + FN
(3.3)

– Precision: Measures how accurate the predictions, how many of the predictions
that the model made were actually correct.

Precision = TP

TP + FP
(3.4)

30

The aim of the Average Precision (AP) is to find the area under the precision-recall
curve, and mAP is the average of AP. The mean Average Precision score is calculated
by taking the mAP over all classes and over all IoU thresholds, in this case, it was
decided that the confidence score threshold is 0.5 and for the IoU threshold is also
0.5.
The precision and recall must be obtained for each category, once this is done, the
precision-recall curve can be plotted. The recall is on the x-axis while the precision
is on the y-axis. To plot this curve, we take all detections from a single category
and list them in descending order with respect to the class probability given by the
detector. As the first element has the highest probability, there is a high probability
that it is a TP (this is not always the case, since we must also consider the IoU), so
the precision, in this case, would be 1, while that the recovery would be less since it
is calculated against the number of fundamental truth objects. As we review all the
detections made, accuracy will decrease while recovery will increase. [41]

For training the Neural Network, the 1000 training images are resized to 416 x 416
pixels. The images were then transformed into tensors to be able to work with PyTorch
and were placed in batches of 16. Finally, the training was run for 2000 epochs, to avoid
overfitting since in previous attempts to carry out more iterations, 2500 and 3000 to be
specific, unfavorable values were obtained. During the neural network training, the metric
values were monitored, the IoU value greater than 0.5 and the decrease in the average loss
value were taken into account. The mAP value that was calculated every 500 iterations was
also tracked. When obtaining the best results, the data, the model, and the weights were
saved. The neural network was trained to complete the 2000 iterations in an approximate
time of 15 hours.
To check the performance and accuracy of the neural network, the 100 images of the test
data were used and the predictions were compared with the original labels that had been
previously created. All the image processing from these steps were done using the Pillow
library.

3.6 Working on videos

This section presents how the videos were processed so that the system can be implemented
and the neural network detects humans in live videos, which is the main objective of the
project.

31

First, appropriate material was sought to test the functioning of the neural network,
the data set consists of 5 videos in .mp4 format. These videos are free to download and
were found on the Vimeo website(8). The videos are of people in parks, pedestrians, people
sitting, people running, etc., and have a duration of between 5 and 8 seconds each.
Then, using OpenCV, a function was created to extract the frames from the videos. The
function reads the video, makes sure that the video has not finished yet, and captures the
frame of that moment in .jpg format. It is important to clarify that the number of frames
depends on the quality and duration of the video, in a high-quality video the function
manages to extract up to 23 frames per second. The program that contains the neural
network was modified so that it receives the image corresponding to the extracted frame,
the image is processed and displayed in a window. Immediately enter the next frame, the
previous image is closed and the new image is shown, so on until the video is finished.

Figure 3.13: Examples of frames extracted from a video

Figure 3.14: Examples of processed frames

32

In order to observe the results, the processed images are saved in sequence, then using
the VideoWriter function of OpenCV, the frames are joined and written in a video in .mp4
format.

33

Chapter 4

Results and Discussion

This chapter presents all the experimental, numerical and final results obtained by the
neural network that was proposed and developed. The results of all the images selected
for the training and test dataset will be displayed, as well as the values obtained in the
dataset that contains the videos.
The main objective of this thesis is to propose a neural network that is responsible for
recognizing and tracking humans in videos, however, because the network was trained in
images, it is of the utmost importance for this project to expose the data obtained from
these training. As mentioned above, several pieces of training had to be executed and
the content of the training database was changed, it was expanded, varied images were
added and a second class was also added, as well as modified and experimented with some
numerical parameters. This is to correct errors and improve the detection results of the
neural network. Some previous pieces of training were performed, but we will focus on the
final results of the training and testing that was done after the data was optimized, with
which the best numerical and visual results were obtained.

4.1 Final Results

In the final training 1000 images were processed and 2000 iterations were executed. The
mAP was calculated every 500 iterations:

• 500 iterations = 0.442 or 44.2%

• 1000 iterations = 0.679 or 67.9%

35

• 1500 iterations = 0.8215 or 82.15%

• 2000 iterations = 0.8667 or 86.67%

The average loss is calculated in each iteration, but for simplicity, only the value obtained
in every 500 iterations will be presented in the same way:

• 500 iterations = 2360.07226

• 1000 iterations = 14.2098

• 1500 iterations = 5.447

• 2000 iterations = 1.366

As we can see, the MAP value is reliable, since it is considered a good value from 0.5,
and 0.837 was obtained, which is very close to 1, which represents that the aggregated
data and modifications made to the parameters were correct, also tells us that the neural
network had a practically successful training. We can also observe the reduction of the
average loss value, since it started with a huge value and was drastically reduced in the
first 1000 iterations, from there, the value remained almost constant, but we can observe
that the value decreased significantly, from 2360.07 to 1.366, approaching the 0.

To verify these results, the neural network was tested in 100 new images for the neural
network, and an analysis of the values was made. The following results were obtained:

Number of detections = 234

TP FP FN PRECISION RECALL

198 36 42 0.84 0.82

Table 4.1: Neural Network Test Results.

• average IoU = 0.647

• mAP = 0.7424 or 74.24%

• Accuracy = 0.83

• Execution time = 8.3 sec

36

Figure 4.1: Example of processed images

Figure 4.2: Examples of processed images

Figure 4.3: Example of processed images

37

From the average values that we observe in Table 4.1, the mAP was calculated obtain-
ing a result of 78.24, which is a value greater than 0.5, therefore it is reliable. It should
be mentioned that what is mainly sought in this project is that the images are processed
quickly since it is intended to work with videos. A value of 0.742 is quite accurate consid-
ering also that this test took 8.3 seconds for the neural network to perform, which means
that it processed approximately 12 images per second.

The accuracy shows us the percentage of the objects in the images that were correctly
detected, the neural network was precise with 83% of the labeled objects.

4.1.1 Videos results

As mentioned above, 5 videos were obtained to perform this experimental part. The videos
vary in resolution In fig x we can see the average accuracy values obtained from each video.
As we can see, video1 is the one that had the best results, this is surely due to the fact that
it has a higher resolution to simulate different camera lenses and test results with different
video quality, also they vary in duration from 6 to 8 seconds, as we can see in Table 4.2

Video Format Resolution duration Num. frames frames/sec

1 mp4 1920 x 1080 6 sec 120 ≈ 20

2 mp4 960 x 540 8 sec 134 ≈ 17

3 mp4 960 x 540 6 sec 107 ≈ 16

4 mp4 480 x 270 8 sec 145 ≈ 18

5 mp4 480 x 270 6 sec 93 ≈ 16

Table 4.2: Videos specifications

The neural network was tested in the 5 videos, because we do not have videos with
frames already labeled, the IoU could not be calculated and therefore neither the mAP, so
the processing time of the videos and the accuracy that suggests the neural network were
taken into account for the feasibility analysis, the following results were obtained.

38

Figure 4.4: Average accuracy results

In Figure 4.4 we can see the average accuracy values obtained from each video. As we
can see, video1 is the one that had the best results, reaching a value of 0.92, the next video
that obtained the best results is video 3 with a value of 0.86, finally we have videos 2, 4
and 5 that oscillate between 0.76 and 0.79. We can say that video 1 obtained the best
results due to the high resolution, as we can see, the lowest values were obtained by the
videos with lower resolution.

Figure 4.5: Time results in 6 second videos

Figure 4.5 shows the results of the time in seconds it took the model to process the

39

6-second videos. As we can see, despite the fact that the 3 videos have the same duration,
the processing time of each one varies. Video1 is the one that took the longest processing
time, taking 9.72 seconds, which varies a lot from videos 3 and 5, which took 7.1 and 7.0
seconds each.
Using this information, the number of frames that were processed per second of each video,
presented in Table 4.3, was calculated. For the first video, human detection was performed
at an average of 12 frames per second, in video 3, 15 frames were processed every second and
in the last video 14 frames per second were processed. This is also due to the resolution, as
the video1 has a higher resolution, it also has more information that needs to be analyzed
by the neural network, we can also see that video1 has a higher number of frames, for these
reasons it takes the model more time to perform the detection.

Video Resolution duration Num. frames Processing time Processed frames/sec

1 1920 x 1080 6 sec 120 9.72 sec ≈ 12

3 960 x 540 6 sec 107 7.1 sec ≈ 15

5 480 x 270 6 sec 93 7.003 sec ≈ 14

Table 4.3: Processed frames per second

Moving on to the videos with a duration of 8 seconds, we can see in Figure 4.6 that
the detection time does not vary much from both videos, the video2 took 10 seconds to be
processed while the video4 took 10.2 seconds. As we can see in this case, the video with
lower resolution, video4, took longer to be processed, this is because the video contains
more frames than video2, so each image has less information to proceed, but more of
pictures.

40

Figure 4.6: Time results in 8 second videos

This can also be verified with the information in Table 4.4, since in the same way
as with the 6-second videos, the estimated number of frames processed per second was
calculated, we can see that they only vary by 1.

Video Resolution duration Num. frames Processing time Processed frames/sec

2 960 x 540 8 sec 134 10 sec ≈ 13

4 480 x 270 8 sec 145 10.2 sec ≈ 14

Table 4.4: Processed frames per second

41

Chapter 5

Conclusions and Recommendations

From the research carried out for the development of this thesis, we can conclude that
the detection of objects is a subject that has been widely studied since it has a great va-
riety of uses, and there are always researchers trying to innovate in some way. Speaking
specifically of the detection of humans in videos, there are several applications, mainly in
security matters. The best object detection algorithms, such as YOLO, can achieve their
objective successfully and in a very short time per frame, but they require equipment with
high processing power and memory, as well as a good graphics card.

The YOLO object detection model can be adapted to detect human silhouette, requir-
ing an analysis of the components of the algorithm, a review of the calculations it performs,
and also a reduction of unnecessary or irrelevant processes. In this work, a new dedicated
model of YOLO was created and adapted to specifically detect humans.
It is also important to mention that the training phase is quite experimental at first, the
values of some parameters must be constantly changed and refined, the database modified
and several workouts performed until the best results were obtained.

The proposed human detection model presents successful results since it manages to
detect humans in the videos with good accuracy. The neural network performs better
detection in higher resolution videos, but it takes longer as it has more information to
process, while in low-resolution videos it detects more quickly, but it fails to detect all
humans correctly. Our experience suggests working with videos that have an average res-
olution to obtain positive results in terms of precision and the time in which the detection
is performed.

43

For future work we recommend working with machines that have greater computational
power, also make a more in-depth review of some parameters and processes that were not
studied in this research, to be able to modify and see if precision or speed can be improved.

44

Bibliography

[1] J. Brownlee, “A gentle introduction to computer vision,”
https://machinelearningmastery.com/what-is-computer-vision/, 2019, deep Learning
for Computer Vision.

[2] S. M. E. H. Manoranjan Paul and S. Chakraborty, “Human detection in surveillance
videos and its applications - a review,” EURASIP Journal on Advances in Signal
Processing, 2013.

[3] A. Iqbal, “Obstacle detection and track detection in autonomous cars,” IntechOpen,
2020.

[4] S. Guang, “Human detection, tracking and segmentation in surveillance video,” Uni-
versity of Central Florida STARS, 2014.

[5] M. Mandal, “Introduction to convolutional neural networks (cnn),” in Data Science
Blogathon 7, 2021.

[6] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. Spinger London,
2011.

[7] S. A. A. S. M. B. Khan Salman, Hossein Rahmani, A Guide to Convolutional Neural
Networks for Computer Vision, 15 from series synthesis lectures on computer vision ed.
Morgan Claypool, 2018.

[8] IBM, “What is computer vision,” https://www.ibm.com/topics/computer-vision,
2020, accessed July 2021.

[9] S. Selvi and A. I. Chellam, “Smart video surveillance: Object detection, tracking and
classification,” International Journal of Innovations and Advancement in Computer
Science, vol. 7, 2018.

45

[10] MatLab, “Cnn design and training with matlab,”
https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html,
2019, accessed September 2020.

[11] N. Babich, “What is computer vision how does it work? an introduction,”
https://xd.adobe.com/ideas/principles/emerging-technology/what-is-computer-
vision-how-does-it-work/, 2020, accessed July 2021.

[12] W. J. Z. H. L. JL, T. SM and W. YK, “A review on object detection based on
deep convolutional neural networks for autonomous driving,” in Chinese Control and
Decision Conference, 2019.

[13] P. H. J. B. Wu, F. Iandola and K. Keutzer, “Unified, small, low power fully convolu-
tional neural networks for real-time object detection for autonomous driving,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop,
July 2017.

[14] K. Gurney, An introduction to neural networks, 2nd ed. University College London,
2004, editorial ROUTLEDGE.

[15] A. G. Nwankpa, W. Ijomah and S. Marshall, “Activation functions: Comparison of
trends in practice and research for deep learning,” Cornell University, 2018.

[16] G. B. O. Y. LeCun, L. Bottou and K. R. Muller, Efficient BackProp. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1990, available:https://doi.org/10.1007/3-540-
49430-8 2.

[17] W. Koehrsen, “Aoverfitting vs. underfitting: A complete example,” Towards Data
Science, 2018, accessed July 2021.

[18] S. SHARMA, “Activation functions in neural networks,”
https://towardsdatascience.com/activation-functions-neural-networks-
1cbd9f8d91d6l, 2017, accessed July 2021.

[19] J. M. S. A. M. J. Emilio Soria, Marcelino Martinez, Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques. University
of Valencia, Spain, 2009.

[20] M. Z. Mulla, “Cost, activation, loss function—— neural network—— deep
learning,” https://medium.com/@zeeshanmulla/cost-activation-loss-function-neural-
network-deep-learning-what-are-these-91167825a4de, 2020, accessed apr 2021.

46

[21] P. Christoffersen and K. Jacobs, “The importance of the loss function in option valu-
ation,” Journal of Financial Economics, vol. 72, 2004.

[22] P. S. C. P. B. F. Lorena, G. Robinson and M. Franco, “Automatic microstructural
classification with convolutional neural network,” in Conference on Information Tech-
nologies and Communication of Ecuador. Springer, 2018, p. 170–181.

[23] M. Hashemi, “Enlarging smaller images before inputting into convolutional neural
network: zero-padding vs. interpolation,” Journal of Big Data, vol. 6, 2019.

[24] C. Oinar, “Object detection explained: R-cnn,”
https://towardsdatascience.com/object-detection-explained-r-cnn-a6c813937a76,
2020, accessed Mar 2021.

[25] R. G. S. Ren, K. He and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” IEEE Transactions on Pattern Analysis Machine,
vol. 39, p. 1137–1149, 2017.

[26] R. Gandhi, “R-cnn, fast r-cnn, faster r-cnn, yolo — object detection al-
gorithms,” https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-
detection-algorithms-36d53571365e, 2018, accessed Aug 2021.

[27] R. G. Shaoqing Ren, Kaiming He and J. Sun, “Faster r-cnn: Towards real-timeobject
detection with region proposal networks,” In Advances in Neural Information Pro-
cessing Systems, p. 91–99, 2015.

[28] R. G. J. Redmon, S. Divvala and A. Farhadi, “You only look once: Unified, real-
time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[29] R. G. A. F. Joseph Redmon, Santosh Divvala, “You only look once: Unified, real-time
object detection,” University of Washington, 2016.

[30] A. F. Joseph Redmon, “Yolov3: An incremental improvement,” University of Wash-
ington, 2018.

[31] ——, “Yolo9000: Better, faster, stronger,” University of Washington, 2016.

[32] S. A. A. S. S. Khan, H. Rahmani and M. Bennamoun, “A guide to convolutional neural
networks for computer vision,” in Synthesis Lectures on Computer Vision, vol. 8, 2018,
p. 1–207.

47

[33] J. Wang and L. Perez, “The effectiveness of data augmentation in image classification
using deep learning,” in Convolutional Neural Networks Vis. Recognit, 2017.

[34] M. G. Rasmus Rothe and L. V. Gool, “Non-maximum suppression for object detection
by passing messages between windows,” in Asian Conference on Computer Vision
(ACCV 2014), 2015.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32Nd International Conference
on International Conference on Machine Learning, vol. 37, 2015, p. 448–456.

[36] Z. X. R. S. y. S. J. He, K., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, p.
770–778.

[37] A. H. Y. Samira Karimi Mansoub, Rahem Abri, “Concurrent real-time object de-
tection on multiple live streams usingoptimization cpu and gpu resources in yolov3,”
Hacettepe University, 2019.

[38] J. Brownlee, “What is the difference between a batch and an epoch in a neural net-
work?” Deep Learning; Machine Learning Mastery: Vermont, 2018, australia.

[39] S. Nowozin, “Optimal decisions from probabilistic models: the intersection-over-union
case,” IEEE Xplore, 2014.

[40] X. S. L. J. Zheng Y., Zhang D. and Z. J., “Rotation-robust intersection over union for
3d object detection,” in Computer Vision: 16th European Conference, Glasgow, UK,
2020, p. 467.

[41] S. Yohanandan, “map (mean average precision),”
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-
5956f1bfa9e2.

48

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Computer Vision
	Definition
	Examples and Applications

	Neural Networks
	Training a Neural Network
	Underfitting and Overfitting
	Basic Concepts

	Convolutional Neural Networks
	Convolutions
	Filter
	ReLu Activation Function
	Padding
	Pooling
	Stride
	Convolutional Neural Networks for Object detection

	YOLO Algorithm
	Techniques

	YOLO Architecture
	YOLOv3 Architecture

	Methodology
	Resources
	Software
	Hardware

	Data Collection
	Defining the architecture
	Activation Function
	Loss Function
	New architecture

	Dataset
	Training and Testing
	Hyper-parameters
	Metrics

	Working on videos

	Results and Discussion
	Final Results
	Videos results

	Conclusions and Recommendations
	Bibliography

