

UNIVERSIDAD DE INVESTIGACIÓN DE

TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

An evolutionary algorithm with simulated annealing-based

mutation for automated timetabling problem

Trabajo de integración curricular presentado como requisito para

la obtención del título de

Ingeniero en Tecnologías de la Información

Autor:

Jonathan David Freire Valencia

Tutor:

Ph.D. Cuenca Lucero Fredy Enrique

Urcuquí, Enero del 2022

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 23 de diciembre de 2021
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2021-00042-AD

A los 23 días del mes de diciembre de 2021, a las 13:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal
Calificador, integrado por los docentes:

Presidente Tribunal de Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.

Miembro No Tutor Mgs. COLMENARES PACHECO, GUSTAVO ADOLFO

Tutor Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

El(la) señor(ita) estudiante FREIRE VALENCIA, JONATHAN DAVID, con cédula de identidad No. 1805102074, de la ESCUELA
DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN,
aprobada por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de
videoconferencia, la sustentación de su trabajo de titulación denominado: AN EVOLUTIONARY ALGORITHM WITH
SIMULATED ANNEALING-BASED MUTATION FOR AUTOMATED TIMETABLING PROBLEM , previa a la obtención del
título de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la) estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y examinado por
los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de videoconferencia, que integró la
exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas por los miembros del Tribunal, se califica la
sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Presidente Tribunal De Defensa Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D. 10,0

Miembro Tribunal De Defensa Mgs. COLMENARES PACHECO, GUSTAVO ADOLFO 10,0

Tutor Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D. 9,5

Lo que da un promedio de: 9.8 (Nueve punto Ocho), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

FREIRE VALENCIA, JONATHAN DAVID
Estudiante

Dr. IZA PAREDES, CRISTHIAN RENE , Ph.D.
Presidente Tribunal de Defensa

Dr. CUENCA LUCERO, FREDY ENRIQUE , Ph.D.
Tutor

Mgs. COLMENARES PACHECO, GUSTAVO ADOLFO
Miembro No Tutor

Digitally signed by GUSTAVO ADOLFO COLMENARES PACHECO
DN: C=EC, O=BANCO CENTRAL DEL ECUADOR, OU=ENTIDAD DE CERTIFICACION DE
INFORMACION-ECIBCE, L=QUITO, SERIALNUMBER=0000316503 + CN=GUSTAVO ADOLFO
COLMENARES PACHECO
Reason: I am the author of this document
Location: your signing location here
Date: 2021.12.23 15:58:31-05'00'
Foxit PDF Editor Version: 11.1.0

GUSTAVO ADOLFO
COLMENARES PACHECO

FREDY ENRIQUE
CUENCA
LUCERO

Firmado digitalmente por
FREDY ENRIQUE CUENCA
LUCERO
Fecha: 2021.12.23 21:40:59
-05'00'

Firmado electrónicamente por:

CRISTHIAN
RENE IZA
PAREDES

Firmado electrónicamente por:

JONATHAN DAVID
FREIRE VALENCIA

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc

DAYSY
MARGARITA
MEDINA BRITO

Firmado digitalmente por
DAYSY MARGARITA
MEDINA BRITO
Fecha: 2021.12.23 14:44:57
-05'00'

Autoŕıa

Yo, Jonathan David Freire Valencia, con cédula de identidad 1805102074, declaro
que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y
conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y her-
ramientas utilizadas en la investigación, son de absoluta responsabilidad de el autor del
trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de la
Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Enero del 2022.

Jonathan David Freire Valencia
CI: 1805102074

Jonathan David Freire Valencia

IT Engineering ii Dissertation project

Autorización de publicación

Yo, Jonathan David Freire Valencia, con cédula de identidad 1805102074, cedo a la
Universidad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la presente
obra, sin que deba haber un reconocimiento económico por este concepto. Declaro además
que el texto del presente trabajo de titulación no podrá ser cedido a ninguna empresa edi-
torial para su publicación u otros fines, sin contar previamente con la autorización escrita
de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-
bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el
Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, Enero del 2022.

Jonathan David Freire Valencia
CI: 1805102074

Jonathan David Freire Valencia

IT Engineering iv Dissertation project

Dedication

“To my family, whom I love deeply. To the Yachay Tech community, with whom I have
learned so much and now have eternal gratitude and appreciation. ”

v

Jonathan David Freire Valencia

IT Engineering vi Dissertation project

Acknowledgments

I would like to thank my parents, to whom I owe everything, for their effort and support
to allow me to study up to this point. To my brothers for being part of my life. To the
rest of my family, who have always supported me to get ahead in one way or another.

My thanks also to those who were part of my life at Yachay Tech University. To my
professors, not only for their teaching but for constantly motivating us to improve. To my
advisor Fredy Cuenca for all the knowledge he has given me throughout my career and
for permanently resolving and being attentive to my concerns about this research. To the
great friends that I made at the University, especially Joha, Daya, Cami, Jenny, Jordan,
and Gabo, for always give me their support and from whom I learned a lot.

vii

Jonathan David Freire Valencia

IT Engineering viii Dissertation project

Abstract

Nowadays, solving the University course timetabling problem has become necessary to im-
prove efficiency when assigning schedules and handle large amounts of data about students,
teachers, classrooms, etc. We present a method to solve this problem by using an evolution-
ary algorithm with simulated annealing-based mutation. The problem consists of assigning
students and events (classes or laboratories) in a schedule with timeslots and classrooms,
subject to hard and soft constraints. The algorithm developed in this work consists of two
phases. In the first phase, we will assign the most significant number of events that meet
the hard constraints using different heuristics. Later, in the second phase, the evolutionary
algorithm with simulated annealing-based mutation was implemented. The purpose is to
try to meet the hard constraints that could not be fulfilled in the previous phase and to
fulfill the most significant number of non-mandatory conditions. In the end, it is expected
to have a schedule with all events assigned, fulfilling all the hard constraints and as many
soft constraints as possible.

Keywords: Evolutionary algorithm, heuristic, university course timetabling
problem, hard constraints, soft constraints.

ix

Jonathan David Freire Valencia

IT Engineering x Dissertation project

Resumen

En la actualidad el poder resolver el problema de asignación de cursos en una Universi-
dad se ha vuelto muy necesario para mejorar la eficiencia a la hora de asignar horarios
y manejar grandes cantidades de datos sobre estudiantes, maestros, aulas, etc. En este
trabajo se presentar un método para resolver este problema mediante el uso de un al-
goritmo evolutivo con una mutación basada en el algoritmo de recocido simulado. El
problema consiste en asignar un conjunto de estudiantes y eventos (clases o laboratorios)
en un horario tomando en cuenta las aulas disponibles, sujeto a restricciones obligatorias
y restricciones no-obligatorias. El algoritmo desarrollado en este trabajo consta de dos
fases. En la primera fase se intenta asignar la mayor cantidad de eventos que cumplan
con las restricciones obligatorias mediante el uso de distintas heuŕısticas. Posteriormente
en la segunda fase se implementó el algoritmo evolutivo con una mutación basada en el
algoritmo de recocido simulado, cuya finalidad es intentar cumplir las restricciones obliga-
torias que no se hayan podido cumplir en la fase anterior y cumplir la mayor cantidad de
restricciones no-obligatorias. Al final se espera tener un horario con todos los eventos asig-
nados cumpliendo todas las restricciones obligatorias y la mayor cantidad de restricciones
no-obligatorias posibles.

Palabras Clave: Algoritmo evolutivo, recocido simulado, heuŕısticas, prob-
lema de asignación de cursos de universidad, restricciones obligatorias, restric-
ciones no-obligatorias.

xi

Jonathan David Freire Valencia

IT Engineering xii Dissertation project

Contents

Dedication v

Acknowledgments vii

Abstract ix

Resumen xi

Contents xiii

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Background . 1
1.2 Contribution . 2

2 Theoretical Framework 5
2.1 Mathematical models . 5
2.2 Heuristic approaches . 6

2.2.1 Simulated Annealing . 6
2.2.2 Genetic Algorithm . 6
2.2.3 Ant Colony . 9
2.2.4 Tabu Search . 10

2.3 Intelligent and agent-base approaches . 11

3 State of the Art 13

xiii

Jonathan David Freire Valencia

3.1 Comparison with other works . 13
3.1.1 Competition results . 13

3.2 Latest research on UCTTP . 15

4 Methodology 17
4.1 Problem description . 17
4.2 Dataset Description . 18
4.3 Solution description . 19

4.3.1 Step 1: Obtaining an initial timetable 19
4.3.2 Step 2: Optimizing the initial timetable by Evolutionary algorithm

with simulated annealing-based mutation 21

5 Results and Discussion 25
5.1 Experimental Setup . 25

5.1.1 Equipment Description . 25
5.1.2 Experiments . 25
5.1.3 Parameters . 26

5.2 Experimental observations . 27
5.2.1 Testing with different Initial Temperatures 27
5.2.2 Testing with different Fitness functions 27
5.2.3 Testing the use and not use of crossover 29

6 Conclusions and Future Work 33
6.1 Conclusions . 33
6.2 Future Work . 34

Bibliography 35

IT Engineering xiv Dissertation project

List of Tables

3.1 Comparison of soft constraints violations from the competition (A1, A2,
A3), the algorithm provided by [1], and the results of the current research. 14

4.1 Description of the 20 datasets. 24

5.1 Soft constraints violations in each experiment. 28

xv

Jonathan David Freire Valencia

IT Engineering xvi Dissertation project

List of Figures

1.1 Scheduling problems. 3

3.1 Clustering method to find a neighbor timetable described in [2]. 16

4.1 Crossover example to obtain a new individual. 23

5.1 Unfeasible datasets obtained with different initial temperatures. (a) T0 =
100, (b) T0 = 50, (c) T0 = 10, (d) T0 = 3. 29

5.2 Fitness value when using different T0. (a) T0 = 100, (b) T0 = 50, (c) T0 = 10,
(d) T0 = 3. 30

5.3 Unfeasible datasets. (a) using a minimization function, (b) using a maxi-
mization function. 31

5.4 Fitness value when using different fitness function. (a) using a minimization
function, (b) using a maximization function. 31

5.5 Unfeasible datasets. (a) using crossover, (b) not using crossover. 32
5.6 Fitness value when using and not using crossover. (a) using crossover, (b)

not using crossover. 32

xvii

Jonathan David Freire Valencia

IT Engineering xviii Dissertation project

Chapter 1

Introduction

1.1 Background

In a world where planning is part of a person’s daily life and vital for the correct manage-
ment of companies and institutions, it is impossible not to come across with some activity
during the day in which timetabling is not involved. Airline, metro, train, and ferry compa-
nies, to name just a few examples, offer precise timetables to their customers so that they
can plan their trips and buy their tickets at their convenience. Although it goes unnoticed
by people, the scheduling of most timetables is a laborious process to the point that it is
unthinkable that today many of these schedules can be developed in a short time without
the use of a computer.

Universities are no exception in the need of scheduling. As shown in Figure 1.1, there
are mainly two university-related timetabling problems for which various solutions have
been postulated over the years. The first problem is the university examination timetabling
problem (UETTP), which, as its name suggests, consists of creating a weekly schedule for
programming a set of midterm/final exams. This work focuses on the second type of
problem, which is called the university course timetabling (UCTTP), which consists of
allocating a set of events such as lectures, students, teachers, and features in predefined
timeslots and rooms, where a set of constraints must be satisfied [3]. Two or three times
a year, universities must publish semester or summer study timetables. It is necessary
to place students and teachers in their respective lectures, respecting restrictions such as
guaranteeing classrooms’ availability and avoiding the clash of schedules for both students
and professors.

Creating a university timetable can be solved manually by trial and error in the case
of small universities. Nevertheless, this process could take weeks to be completed. On the
other side, trying to solve the problem manually is unthinkable in most universities that
can host thousands of students in a single academic term. When using a computer, it is
necessary to have an algorithm capable of creating a timetable in the shortest possible
amount of time, which meets all the university’s restrictions. The implementation and
evaluation of such an algorithm are the core of this thesis.

1

Jonathan David Freire Valencia

To create an efficient university timetable, the algorithm must fulfill two types of con-
straints. Hard constraints must be satisfied in their entirety, e.g., “A student cannot attend
two or more lectures simultaneously.” On the other hand, there are soft constraints that do
not necessarily have to be met entirely; however, it is desirable to fulfill them as much as
possible [4], e.g., “Avoiding students having to attend three or more meetings in successive
timeslots.”

There are several techniques for the resolution of UCTTP. The algorithms used to
solve this problem can be divided into mathematical models, heuristic algorithms, and
multi-criteria techniques. Mathematical models search for a (sub)optimal timetable em-
ploying a deterministic search. Some examples of these models include Graph Coloring
Algorithms, Integer or Linear Programming methods, and Constraint Satisfaction Pro-
gramming; On the other hand, heuristic algorithms follow simple rules based on common
sense. Unlike the mathematical models, heuristics are used to involve a certain degree
of randomization. Some examples of heuristic algorithms include Simulated Annealing,
Genetic Algorithms, Ant Colony Optimization, Memetic Algorithms, Harmonic Search Al-
gorithm, Partial Swarm Optimization, Artificial Bee Colony Optimization, Tabu Search
Algorithm, Variable Neighborhood Search, Randomized Iterative Improvement with Com-
posite Neighboring algorithm, and Great Deluge Algorithm. There are also multi-criteria
and multi-objective techniques, which can be an application of various algorithms of the
two techniques presented above to obtain better results [3].

This work aims to propose and implement an algorithm that will try to solve the
UCTTP. The algorithm consists of two main phases. In the first phase, different heuristics
will be used to find a feasible schedule, that is, to meet all the hard constraints. In the
second phase, we use an evolutionary algorithm with a simulated annealing-based mutation
to comply with the most significant amount of soft constraints and hard constraints if
necessary. Once implemented, different algorithm parameters such as temperature, fitness
function, and crossover will be tuned to determine the optimal values that allow a better
solution to be reached.

The rest of this document is organized as follows: Chapter 2, Theoretical Frame-
work, shows a revision of chronological techniques used to solve the University Course
Timetabling Problem (UCTTP) and various types of scheduling problems. Chapter 3, the
Methodology, describes the procedure performed to achieve the desired results. In Chap-
ter 5, Results and Discussion, the results obtained will be shown and contrasted with the
results of other works to evaluate the algorithm’s performance. Additionally, we will study
the impact of the parameters on the quality of the resulting timetable. Finally, Chapter 6
will show the conclusions and recommendations that can be deduced from the research.

1.2 Contribution

The contribution of this work lies in the second phase of the proposed strategy, the opti-
mization phase. We attempt to optimize timetables by using a Genetic Algorithm whose
mutations are based on a well-known heuristic, Simulated Annealing. To the best of our
knowledge, a similar integration of heuristics has already been applied to problems such

IT Engineering 2 Dissertation project

Jonathan David Freire Valencia

as robotic task point ordering and combinatorial optimization problems, but never to the
Course Timetabling Problem.

Figure 1.1: Scheduling problems.

IT Engineering 3 Dissertation project

Jonathan David Freire Valencia

IT Engineering 4 Dissertation project

Chapter 2

Theoretical Framework

The variety of techniques that have been used for tackling the UCTTP can be classified
into three main groups: Mathematical models, Heuristic approaches, and Intelligent and
agent-based approaches.

It is common for many researchers and practitioners to search for a feasible timetable
(i.e. a timetable that meets all hard constraints) by using deterministic, mathematical
models, as is the case in [5, 6]. Once such a feasible timetable is obtained, an optimization
phase is used to improve the quality of the initial timetable through a set of successive
permutations. Such optimization used to be implemented with heuristic algorithms.

In the beginning, this problem was defined as a graph problem G =< C, T, R̂ > where
the nodes are classes C and teachers T linked by R̂ parallel edges, and the objective was
to color the nodes in such a way that no two adjacent edges have the same color [7]. After
that, several definitions have been proposed to describe the problem. This chapter presents
a description of different algorithms to solve this problem in different categories according
to its classification showed in [3].

2.1 Mathematical models

This category includes theory-based technique, Integer/Linear programming method, and
constraint satisfaction programming [8]. One of the first techniques applied to solve
Timetabling problems was graph coloring. In the studied papers, this problem is pro-
posed as a set of events (nodes) connected through edges (rooms), and the main objective
is that the resulting graph has the least possible chromatic number, that is, to occupy the
least amount of time slots [8]. This method was used to describe conditions that are both
necessary and sufficient for a solution to more general class teacher timetable problems [9].
Subsequently, There is also an approach to real problems on timetabling through graphs,
specifically on the class teacher model (i.e., a problem where the only variables that are
taken into account are lectures and teachers) and course scheduling [8]. Later on, some
techniques used to color them are shown to obtain a feasible timetable; It should be noted
that the distinction between feasible and optimal solutions is raised. Since then, there

5

Jonathan David Freire Valencia

have been several works using this approach, and over the years, new technologies have
been developed in order to improve results, such as algorithms based on RFID technology,
which allows to identify and transmit the information of an object through radio frequency
waves [10, 11]. Subsequently, in several works, this technique has been used to obtain a
feasible result and later apply optimization algorithms to try to improve this solution [12].

2.2 Heuristic approaches

Heuristic approaches can be defined as simple procedures, often based on common sense,
that are supposed to offer a good solution (although not necessarily the optimal one) to
complex problems in an easy and fast way [13]. A few of these algorithms will be shown
below, and some crucial works on each approach.

2.2.1 Simulated Annealing

The Simulated Annealing Algorithm simulates the physical process of heating a material
and then slowly lowering the Temperature to decrease defects, thus minimizing the system
energy [9]. The main objective of this algorithm is that given an initial Temperature, which
in this case is a variable, try to find a way for the solution variable to approach an optimal
value in such a way that the decrease in Temperature is adequate, so that allows to achieve
a global optimum value [14]. The pseudocode of this algorithm is described in Algorithm
1.

In the case of UCTTP, we are trying to minimize the value of the objective function
that represents a decrease in the violation of constraints. There have been several works
in which this has been investigated. For example, in [1] good results were obtained using
this method together with an adequate statement of the problem. On the other hand,
at the 2003 ITC, Kostuch showed on [12] that it is possible to get excellent results as he
reached first place. The key was assigning weights in the objective function and modifying
according to a correlation of the temperature decrease with variables that change while
the algorithm runs. On the other hand, [15] showed that with the same 2003 dataset, it is
possible to obtain even better results using an imperialist competitive algorithm.

2.2.2 Genetic Algorithm

A genetic algorithm is an evolutionary algorithm and therefore is considered a heuristic.
A genetic algorithm is based on the Darwinian principle of organisms trying to survive
their predators by adapting to their environment. The members who best adjust to the
environment will have the best chances of survival, which implies that their children can
inherit the characteristics that allow adaptation, thus ensuring this species’ survival. The
genetic mutations that allow adaptation occur randomly in members of species, so there
will be cases in which the inherited genes will be better and they may not. Each individual
generated by the Genetic algorithm is called a chromosome and is a possible solution to

IT Engineering 6 Dissertation project

Jonathan David Freire Valencia

the optimization problem. Each chromosome is made up of genes that represent decision
variables. The fitness values of individuals determine their ability to survive. Each gen-
eration contains a mixture of a parent population, which contains surviving individuals
(chromosomes) from the previous generation and their children. Children, which represent
new solutions, are generated by genetic operators that include crossing and mutation. The
higher the fitness value, the greater the chance of survival and reproduction [14].

Algorithm 1: Simulated Annealing Pseudocode
1 Begin
2 Input paramaters and initial data
3 Generate initial solutions X and evaluate its fitness function
4 Let β = number of new solutions to reach termal equilibrium
5 while termination criteria are not satisfied do
6 for j = 1 to β do
7 Generate a new solution Xnew and evaluate its fitness value
8 if the new solution Xnew is better than the old one X then
9 Put X = Xnew

10 else
11 Evaluate P (X, Xnew)
12 Generate Rand from the range [0, 1] randomly
13 if P (X, Xnew) > Rand then
14 Put X = Xnew

15 Decrease the temperature
16 Report the solution X
17 End

The pseudocode of this algorithm is represented in Algorithm 2. First, we initialize
the parameters and provide a set of initial individuals. Next, we initialize the main loop,
where each iteration will be a new generation of solutions. In general, the acceptance
criterion is determined by fulfilling a fixed number of generations. The fitness value of
each individual is evaluated, and the parents are determined through a selection method.
Subsequently, a crossover phase is carried out. A couple of parents are chosen, and a
new solution is generated, inheriting characteristics and is expected to be better than the
previous generation. Then, in the mutation phase, some individuals are modified randomly
to have a varied population. In the end, we will have a new population made up of parent
and child solutions that will be the starting point for a new generation.

In finding a solution for university course timetabling, there have also been a great
variety of papers relating different approaches. In the case of [12], for example, the perfor-
mance of the algorithm is analyzed by comparing the effects of various fitness functions and
the effects of a stochastic local search. It shows that adequate handling of these metrics
can lead to excellent results. Another investigation is shown in [16] where the idea is to
make distributed model exchange an island’s local best individual with another island. As
a result, this model can run faster and decrease the violations of the restrictions allowing
it to reach a more quickly optimal value.

IT Engineering 7 Dissertation project

Jonathan David Freire Valencia

Algorithm 2: Genetic Algorithm Pseudocode
1 Begin
2 Input paramaters and initial data
3 Generate initial solutions X and evaluate its fitness function
4 Let R and M be the number of parents and the size of the population
5 Generate M initial possible solutions
6 while termination criteria are not satisfied do
7 Evaluate fitness value of all solutions
8 Select the parent population with a selection method
9 for j = 1 to R do

10 Generate Rand from the range [0, 1] randomly
11 if Rand < PC then
12 Parent j is known as an effective solution
13 else
14 Parent j is known as an ineffective solution

15 for j = 1 to (M − R)/2 do
16 Select two solutions randomly with the uniform distribution from effective

parents of the parent population
17 Generate two new solutions with the crossover operator
18 Put newly generated solutions into the children population
19 for j = 1 to M − R do
20 for i = 1 to N do
21 Generate Rand from the range [0, 1] randomly
22 if Rand < PH then
23 Replace the decision variable i from solution j Xj,i using the

mutation operator

24 Set population = parent population + children population
25 Report the population
26 End

Another exciting research is the use of memetic algorithms. This algorithm is defined
as a subject in computer science that considers complex structures such as the combination
of simple agents and memes, whose evolutionary interactions lead to intelligent complexes
capable of problem-solving [17]. In this type of algorithm, what is sought is that the local
search together with the population algorithm works cooperatively to achieve a better
search process. In the Qaurooni [18] approach, this algorithm was used to try to solve the
UCTTP. As a result, it can be seen that with the approach applied in this algorithm, it is
possible to obtain good results for the use of small and medium instances.

IT Engineering 8 Dissertation project

Jonathan David Freire Valencia

2.2.3 Ant Colony

Ant Colony is a technique based on ants’ behavior when looking for a path between the
colony and a food source. The ant colony optimization algorithm consists of agents called
artificial ants searching for reasonable solutions to a given optimization problem. The
problem consists basically in finding the best path on a weighted graph. Ants incrementally
build solutions by moving on the graph. The solution construction process is stochastic
and biased by a pheromone model, a set of parameters associated with graph components
related to nodes or links whose values are modified at runtime by the ants [19].

The pseudocode of this algorithm is described in Algorithm 3. As can be seen, we have
to initialize the parameters and provide an initial solution. For each iteration, we first
evaluate the fitness function of the paths found by each ant. Later we calculate the value
of the number of pheromones for each path. This value is the one that tells us the best
path to take into account. Subsequently, we select one of the values of each decision and
construct a solution, which is going to be the order in which the edges of the graph should
be followed. At the end of the loop, we select the ant with the best solution.

Using this technique for solving UCTTP, it is possible to obtain better results than
other algorithms, and above all, these algorithms can handle problems with multiple het-
erogeneous [20].

Algorithm 3: Ant colony Pseudocode
1 Begin
2 Input paramaters and initial data
3 Let M be the population size and N the number of decision variables
4 Let DI be the number of possible values for decision variable i
5 Generate M initial possible solutions randomly
6 while termination criteria are not satisfied do
7 Evaluate fitness value of all solutions
8 for i = 1 to N do
9 for d = 1 to Di do

10 Update pheromone concentration of possible value d for decision
variable i

11 Evaluate probability of possible value d to be selected

12 for j = 1 to M do
13 for i = 1 to N do
14 Randomly select a value for decision variable i among possible values

based on their probabilities

15 Report the ants or solutions
16 End

IT Engineering 9 Dissertation project

Jonathan David Freire Valencia

2.2.4 Tabu Search

Tabu search is a local search heuristic that relies on specialized memory structures to
avoid entrapment in local minima and achieve an effective balance of intensification and
diversification.

Formally, Tabu Search is an improvement of the local search methods. The basic
concept of local search is that the move is always from a worse solution to a better one.
The optimum achieved with the local search is primarily a local optimum rather than a
global optimum since the algorithm always moves towards an improved neighbor solution
close to the current one. Tabu search solved convergence to local optima experienced
by allowing movements to no improving solutions when there is no better solution near
the current solution. Also, it takes advantage of the principles of artificial intelligence by
making search movements based on memory structures that prevent repetitive movements
and help to explore the decision space of the optimization problem more thoroughly [14].

Algorithm 4: Tabu Search Pseudocode
1 Begin
2 Input paramaters and initial data
3 Let X ′ be the best point and X the current search point
4 Generate a search point X randomly and evaluate its fitness function
5 Set X ′ = X
6 while termination criteria are not satisfied do
7 Generate neighbor points around the searching point and evaluate their fitness

values
8 if all neighbor points are tabus and cannot satisfy the aspiration criteria then
9 Stop algorithm and report the best point X ′

10 Select the best neighbor point which is not tabu or satisfies the aspiration
criteria

11 Put X − the selected point
12 if X is better than X ′ then
13 Set X ′ = X

14 Update the tabu list
15 Report the best point
16 End

The pseudocode of this algorithm is described in Algorithm 4. We first initialize the
corresponding parameters and provide an initial and optimal solution, which will be the
same at the beginning. We enter a loop where: First, we generate neighbors around my
solution and evaluate its fitness function. The algorithm is stopped if all the neighbors are
tabus, or worse solutions, and do not meet the aspiration criterion. Now select the best
neighbor and make it the current solution. If that solution is better than my best solution,
I make it my best solution. Later I update my tabu list and repeat the same process until
reaching a completion criterion. Finally, I report the best solution found.

As a result of comparing this algorithm with other heuristic approaches, it can be seen
that Tabu Search obtains excellent results and similar to those of Genetics algorithms for

IT Engineering 10 Dissertation project

Jonathan David Freire Valencia

medium instances. In contrast, for large instances, feasible solutions are obtained, but not
optimal solutions [21].

2.3 Intelligent and agent-base approaches

The use of hybrid approaches, especially in a single or multi-agent with artificial intelli-
gence, is relatively new and has shown excellent results. A system with agents in which
one or more agents can solve the problems must be correctly implemented. It is necessary
to carry out tests to determine the number of agents necessary to solve the problem. In the
case of timetabling problems, there are publications where several tests have been carried
out, obtaining generally good results for the various problems raised in terms of speed
[22, 23]. However, it is also possible to solve an agent-based system using reinforcement
learning techniques [24].

IT Engineering 11 Dissertation project

Jonathan David Freire Valencia

IT Engineering 12 Dissertation project

Chapter 3

State of the Art

3.1 Comparison with other works

In the case of [25], they tried to solve the problem with these datasets using Group-Based
Operators, paying particular attention to the resolution of hard constraints. In this case,
the author divided the datasets into low, medium, and high difficulty. Although it does
not show the specific result of each dataset, it does mention that the number of unassigned
events is between 20% and 40%, which is relatively high in comparison with the results
of this investigation where the unassigned events reach only 2% in a few datasets, thus
showing that in this case, it is better to use the evolutionary algorithm with simulated
annealing-based mutation.

In [1], the authors used Simulated Annealing to solve the optimization phase. Before
starting this phase, this algorithm already has a feasible solution for all the datasets ob-
tained by a similar method to the “Step 1” used in this investigation. Their schedule also
has the last five timeslots of each day free, which is one of the problem’s soft constraints,
resulting in a much better schedule (better fitness value) than the one presented here before
starting the optimization phase. The results can be seen in Table 3.1 and show a much
better solution than that shown in this investigation. However, it is important to take into
account the number of iterations used to solve this problem, which in the case of [1] was
1.14 × 108 while in this research was 500.

3.1.1 Competition results

As mentioned above, this dataset was used for a competition, so the results are available
on the official site [26]. Unfortunately, only the results of the best solutions are exposed,
so a fair comparison cannot be made with the various algorithms used in the competition.
As in [1], in all cases, the solution is given in 2 phases, always obtaining a feasible schedule
and not assigning events in the last five timeslots to reduce the number of soft constraint
violations. As a result, as shown in Table 3.1, it can be seen that the violations of the soft
constraints are lower than those of this investigation.

13

Jonathan David Freire Valencia

Soft constraints violations Comparison
Dataset A1 A2 A3 SA Our proposal

COMP01 45 85 63 16 385
COMPO2 25 42 46 2 373
COMPO3 65 84 96 17 430
COMPO4 115 119 166 34 736
COMPOS 102 177 203 42 702
COMPO6 13 6 92 0 672
COMPO7 44 12 118 2 613
COMPO8 29 32 66 0 629
COMPO9 17 184 51 1 405
COMP10 61 90 81 21 378
COMP11 44 73 65 5 432
COMP12 107 79 119 55 515
C0MP13 78 91 160 31 557
C0MP14 52 36 197 11 732
COMP15 24 27 114 2 652
COMP16 22 300 38 0 502
C0MP17 86 79 212 37 717
C0MP18 31 39 40 4 422
C0MP19 44 86 185 7 760
C0MP20 7 0 17 0 519

Table 3.1: Comparison of soft constraints violations from the competition (A1, A2, A3),
the algorithm provided by [1], and the results of the current research.

IT Engineering 14 Dissertation project

Jonathan David Freire Valencia

3.2 Latest research on UCTTP

Since 1963, several investigations have been carried out in the field of UCTTP. As shown
in the previous section, the problem of scheduling has been solved mainly through the
use of hybrid metaheuristic algorithms since they solve this problem in a more optimal
way. In recent years a few researchers have tried to solve specific problems that exist in
general when carrying out the optimization phase. Below we explain a few advances in the
algorithms used in recent years to solve specific problems when solving UCTTP.

One of the main problems of UCTTP is the search for a neighbor timetable in the opti-
mization phase. In other words, find a timetable that meets at least the hard constraints.
In recent years, several solutions to this problem have been proposed, and one of the most
recent is described in [27]. According to this research, in general, there is no way to ex-
plore the entire domain of possible solutions because there are a large number of solutions,
and many of them cannot be used unless the hard constraints are met. This solution also
proposes to solve the problem of finding a neighbor timetable as a combinatorial problem,
that is, to move an event to a random position. In this way, a new neighbor can be found
in a more reasonable time.

In [28], an algorithm was implemented to solve a Paechter dataset from 2007 [29]. They
used a hybrid algorithm, a mix of Hill Climbing, Great Deluge and Simulated Annealing.
Although no information was shown on obtaining a feasible schedule, several analyses were
carried out on the parameters involved and how to optimize them to obtain better results.
Something remarkable about this research is the development of a variable called “Neutral-
ity”, which determined the degree of randomness of some metaheuristic algorithms. For
example, it was determined that the Neutrality of the Simulated Annealing algorithm is
50%, which means that for every bad solution generated, a good one is generated.

The algorithm shown in [30] was also used to solve the Paechter datasets of 2007.
This algorithm also developed some techniques to solve the problem of finding neighboring
times. In this case, the metaheuristic algorithm MAX-MIN Ant System was used, where
the evaluation was modified in such a way that schedules that cannot achieve a good score
in the iteration are quickly abandoned. In this case, feasible solutions were generated for
all cases. In the optimization part, they obtained an efficient algorithm between time and
quality of the schedule, while without using the intelligent evaluation function developed
in this work, it is possible to reach a global minimum at the cost of a long execution time.

In [2] a novelty technique is applied to solve the UCTTP. Although it uses a genetic al-
gorithm for the optimization phase, this work presents an exciting way to solve the problem
of finding a neighboring time. Here they propose using a clustering algorithm that identi-
fies the candidate schedules for reasonable solutions and generates many possible solutions
around them as sown in Figure 3.1. This is an entirely new idea that could solve this
problem in the future since it is one of the most sensitive parts of the process. Although
this algorithm was tested on only one dataset, preliminary results show that execution time
can significantly improve, which converts it into a fantastic alternative for future works.

IT Engineering 15 Dissertation project

Jonathan David Freire Valencia

Figure 3.1: Clustering method to find a neighbor timetable described in [2].

IT Engineering 16 Dissertation project

Chapter 4

Methodology

4.1 Problem description

The University Course Timetabling Problem (UCTTP) consists of allocating objects (teach-
ers, students, courses) in predefined timeslots and rooms fulfilling hard and soft constraints.
The objects to allocate are not always the same and depend on the specific case of each
dataset. In our case, the objects to take into account are students, events, and features
described as follows:

• A student: Person authorized to take one or more courses at the university.

• Event: An event is a course or lab that a student may attend.

• Feature: A feature is a characteristic of a classroom, e.g. a projector

The objects mentioned above must be allocated into a set of timeslots and rooms. The
problem consists of 45 timeslots corresponding to 5 days of 9 hours. The number of rooms,
as well as the number of students, events, and features, changes in each dataset. In this
case, 20 datasets will be evaluated.

When constructing a timetable, the proposed algorithm must meet the following con-
straints.

Hard constraints:

• No student attends more than one event at the same time.

• The room is big enough for all the attending students and satisfies all the features
required by the event.

• Only one event is in each room at any timeslot.

Soft constraints

17

Jonathan David Freire Valencia

• A student must not have classes in the last slot of the day.

• A student must not have more than two classes consecutively.

• A student must not have a single class on a day.

4.2 Dataset Description

The increasing interest of various universities to solve the UCTTP problem has led to
several datasets available for use. A significant advance in the automatic creation of
UCTTP datasets is the software developed by Ben Paechter, which has been used for
various competitions related to this topic [26]. One of these competitions is the “Interna-
tional Timetabling Competition” celebrated for the first time in 2002 by the Practice and
Theory of Automated Timetabling organization (PATAT).

The competition provided 20 datasets, also called “instances” [26]. Each of the instances
contains the necessary information to solve the problem. The data of each of these 20
datasets are described in Table 4.1 and specifies the following information:

• The number of events, numEvents, that need to be scheduled, the number of rooms
available, numRooms, the number of features to be considered, numFeatures, the
number of students already registered, numStudents . Besides, it is known that
there are 45 timeslots available in which events should be assigned.

• An array called RoomCapacity of size numRooms where each element ai represents
the maximum capacity of i room.

RoomCapacity =
[
a0 a1 · · · aR−1

]
• A boolean matrix StudentEvent of size numStudents × numEvents, where each

element ai,j can be 1 if student i attends to event j, or 0 otherwise.

StudentEvent =

a0,0 a0,1 · · · a0,E−1
a1,0 a1,1 · · · a1,E−1

...
aS−1,0 a1,1 · · · aS−1,E−1

• A boolean matrix RoomFeature of size numRooms × numFeatures, where each
element ai,j can be 1 if room i include the feature j, or 0 otherwise.

RoomFeature =

a0,0 a0,1 · · · a0,F −1
a1,0 a1,1 · · · a1,F −1

...
aR−1,0 a1,1 · · · aR−1,F −1

IT Engineering 18 Dissertation project

Jonathan David Freire Valencia

• A boolean matrix EventFeature of size numEvents × numFeatures, where each
element ai,j can be 1 if event i requieres the feature j, or 0 otherwise.

EventFeature =

a0,0 a0,1 · · · a0,F −1
a1,0 a1,1 · · · a1,F −1

...
aE−1,0 a1,1 · · · aE−1,F −1

All datasets can be downloaded from the official website of “The First International
Timetabling Competition” http://sferics.idsia.ch/Files/ttcomp2002/IC_Problem/
node3.html in a compressed file with a .zip extension. Each dataset is a plain text file
containing the information, so it is first necessary to preprocess it according to the same
website’s instructions to obtain the arrays and matrices mentioned above.

4.3 Solution description

The ultimate goal of this research is to obtain a schedule represented as the TimeslotRoom
matrix where the rows represent the timeslots and the columns represent the rooms. Each
place in the schedule, i.e., cell in the matrix, can contain an event or contain a -1, which
means no event.

TimeslotRoom =

a0,0 a0,1 · · · a0,R−1
a1,0 a1,1 · · · a1,R−1

...
aT −1,0 a1,1 · · · aT −1,R−1

In order to obtain the schedule, we propose an evolutionary algorithm with simulated
annealing-based mutation, which will be in charge of minimizing the number of violations
of soft constraints and, much more importantly, hard constraints. In order to apply this
algorithm, it is essential to have a previous solution with the most significant number
of events already assigned in the schedule. That is why a series of heuristics has previ-
ously been applied to assign the most significant number of events before using our main
algorithm.

4.3.1 Step 1: Obtaining an initial timetable

Before creating a schedule, two matrices were created that will help eliminate the hard
constraints. The first is the EventEvent boolean matrix, where its rows and columns are

IT Engineering 19 Dissertation project

http://sferics.idsia.ch/Files/ttcomp2002/IC_Problem/node3.html
http://sferics.idsia.ch/Files/ttcomp2002/IC_Problem/node3.html

Jonathan David Freire Valencia

events and each element ai,j represent if the couple of events can be assigned in the same
timeslot or not. In this way, we fulfill the first hard constraint of the problem “No student
attends more than one event at the same time.”

EventEvent =

a0,0 a0,1 · · · a0,E−1
a1,0 a1,1 · · · a1,E−1

...
aE−1,0 a1,1 · · · aE−1,E−1

The EventRoom boolean matrix where its rows are events and its columns are rooms
is another important matrix to fulfill hard constraints. The ai,j element of the matrix
represents if the i− th event is compatible with the j − th room. In this way, the remaining
two hard constraints will be fulfilled, “the room is big enough for all the attending students
and satisfies all the features required by the event” and “only one event is in each room at
any timeslot.”

EventRoom =

a0,0 a0,1 · · · a0,R−1
a1,0 a1,1 · · · a1,R−1

...
aE−1,0 a1,1 · · · aE−1,R−1

To generate an initial schedule, start with a blank schedule and a list with the unas-
signed events. The objective now is to fill this schedule with these events fulfilling the
hard constraints, that is, consulting the EventEvent and EventRoom arrays to determine
whether or not an event can be assigned to a place on the schedule. To make the assign-
ment, the four heuristics that were also used in [12] and described below were used. If an
event could not be assigned to any available space, it becomes part of a list of unassigned
events.

• H1. Choose a place in the time slots with the fewest events assigned.

• H2. Pick a random place.

• H3. For each unassigned event, delete the events of a random timeslot and then
assign the remaining events.

• H4. Apply H3 repeatedly.

The heuristics shown below were applied in the same order in which they are listed.
After carrying out this process, it is expected to have a schedule where all its events stay
assigned and fulfill all the hard constraints.

IT Engineering 20 Dissertation project

Jonathan David Freire Valencia

4.3.2 Step 2: Optimizing the initial timetable by Evolutionary
algorithm with simulated annealing-based mutation

The Evolutionary algorithm with simulated annealing-based mutation algorithm is the
one that has been proposed to carry out the optimization phase of this problem; the main
objective will be to fulfill as many soft constraints as possible and, if possible, assign the
unassigned events to the schedule.

To carry out this algorithm, the four mechanisms on which a traditional evolutionary
algorithm is based were taken as support: evaluation, mutation, crossover, and selection.
The algorithm has been implemented as shown in the Algorithm 5. The implementation
of each of these mechanisms to resolve UCTTP is described below.

Algorithm 5: Evolutionary Algorithm with Simulated Annealing Base mutation
1 setInitialpopulation

2 set Temperature, numIndividuals, numGenerations

3 for i = 0 to numGenerations do
4 applyParallelSA(population)
5 applySelection(population, childPercentage)
6 applyCrossover(population)

Initial population, setInitialpopulation

As a result of the previous phase, i.e. Step 1, an initial schedule was obtained where all
events are probably assigned. Now it is necessary to create an initial population which
means a new set of schedules. Heuristic 4 shown above was applied to the initial schedule
to obtain all the individuals. This process was repeated multiple times in order to obtain
an initial population of timetables while ensuring genetic diversity.

Parallel Simulated Annealing, , applyParallelSA

This process aims to simulate the mutation and evaluation of traditional Genetic Algo-
rithms. This function receives a timetable and returns a better timetable, i.e. with less
soft constraints violated.

The SA algorithm consists in that for each iteration, some neighbors of the current
state s are evaluated, and probabilistically, it is decided between making a transition to
a new state s′ or staying in-state s. The way these elements are calculated is described
below:

• Temperature (T): The temperature decreases geometrically as Ti+1 = β × Ti until
it reaches a final temperature. Each new value of T represents a new iteration of

IT Engineering 21 Dissertation project

Jonathan David Freire Valencia

the Algorithm. The initial and final temperature change in each generation of the
Evolutionary Algorithm.

• Acceptance probability: The acceptance probability is calculated as p = e−∆F/T

where ∆F is calculated as |s − s′|.

• Neighbors: Each neighbor is a new schedule based on the current state to which a
swap events process was made.

• Swap events: Process where the schedule of my current state is taken, then 2 of its
events are chosen, and their positions are exchanged as long as the feasibility of the
schedule is not compromised. The result is a new schedule.

• evaluation: Each new schedule is evaluated employing a fitness function, which is
calculated as F = WH × UE + WS × ∑

SCV , where WH is the weight for the hard
constraints, WS is the weight for soft constraints, UE is the number of unassigned
events, and SCV is the number of violations to soft constraints.

This algorithm runs in parallel, which means that each process of apply SA to an indi-
vidual is handled as a different thread at the processor level, which results in a significant
improvement in time compared to doing it sequentially.

Selection, applySelection

Selection is an essential step in an evolutionary algorithm because it allows each generation
to be better than the previous one. We select a specific percentage of the best individuals
of the population based on its fitness value. Then we delete the remaining individuals that
will be replaced in the next step.

Crossover, applyCrossover

Crossover is an important phase that allows the creation of new individuals. The process
consists of taking two random individuals of the population who will act as parents. Sub-
sequently, an identical copy of parent one is made, and events from parent two are added
to that copy in the same positions as parent 2. As a result, as shown in Figure 4.1, there
is a new schedule that can be better than its parents.

From this process, it should be noted that two problems arise in the child schedule.
First, we need to handle the event already assigned by parent one before adding the event
from parent two. The second problem is that there will be duplicates between the events
of parent one and events of parent two. The solution for both problems is to add the
duplicated event and the already assigned event to the list of unassigned events so that at
the end, a reconstruction process is applied where they are assigned, fulfilling feasibility,
or keeping as unassigned events.

IT Engineering 22 Dissertation project

Jonathan David Freire Valencia

Figure 4.1: Crossover example to obtain a new individual.

IT Engineering 23 Dissertation project

Jonathan David Freire Valencia

Data description
Dataset Number Number Number Number Average Average

ID of of of of classroom events
events rooms features students capacity per student

COMP01 400 10 10 200 10.40 17.76
COMP02 400 10 10 200 10.40 17.23
COMP03 400 10 10 200 10.80 17.71
COMP04 400 10 5 300 15.30 17.43
COMP05 350 10 10 300 17.30 17.77
COMP06 350 10 5 300 17.90 17.77
COMP07 350 10 5 350 20.60 17.48
COMP08 400 10 5 250 12.80 17.58
COMP09 440 11 6 220 10.36 17.35
COMP10 400 10 5 200 10.70 17.78
COMP11 400 10 6 220 11.40 17.41
COMP12 400 10 5 200 10.30 17.58
COMP13 400 10 6 250 12.60 17.69
COMP14 350 10 5 350 20.30 17.42
COMP15 350 10 10 300 17.40 17.58
COMP16 440 11 6 220 10.72 17.75
COMP17 350 10 10 300 17.20 17.67
COMP18 400 10 10 200 10.50 17.56
COMP19 400 10 5 300 15.30 17.71
COMP20 350 10 5 300 17.50 17.49

Table 4.1: Description of the 20 datasets.

IT Engineering 24 Dissertation project

Chapter 5

Results and Discussion

5.1 Experimental Setup

5.1.1 Equipment Description

The algorithm designed to solve this problem was developed in Python 3.6.9, and the
libraries used include concurrent.futures, which was used for the parallelization of the
Simulated Annealing step, numpy for the handling of lists, matrices, and the generation
of random numbers. itertools to perform permutations, very useful in the preprocessing
phase; networkx for fast handling of the maximum matching algorithm. Regarding the
equipment used to test the algorithm, a virtual instance was used with a processor Intel®
Xeon(R) CPU @ 2.30GHz × 16, 62.8GiB of RAM, a Graphic card llvmpipe (LLVM 10.0.0,
256 bits), and as Operative System uses Ubuntu 18.04.5 LTS.

5.1.2 Experiments

In order to test the algorithm’s performance, several experiments have been created that
will allow us to analyze better the behavior of the different parameters and important
elements of the algorithm and know how to modify them to obtain the best results.

In general the hyperparameters used in each experiment are described below al least
that it change according to the experiment:

• Initial Temperature (T0): 3

• Final Temperature (Tf): 0.005

• Number of generations: 500

• Population Size: 12 individuals

• Temperature decrease: Ti+1 = Ti × 0.99counter

25

Jonathan David Freire Valencia

• Percentage of new children in the population: 20%

• Crossover changes: 5 events

Changes in Temperature

Temperature is a significant parameter of Simulated Annealing since it allows modifying
the state of an individual even if it was worse than the previous one. Theoretically, it is
known that the higher the temperature, initially the individual will have more negative
changes, which causes more diversity in the long term. 4 experiments will be carried out
where the initial Temperature T0 will be 100, 50, 10 and 3.

Crossover

Crossover is a process in which two individuals mix to create a new one. This process has
already been described previously. The objective is to determine if it causes a significant
difference in results. Then the algorithm will be executed with crossover and without
crossover.

Fitness Function

The fitness function is another significant parameter since it is the one that measures how
good the algorithm is and directly affects the acceptance probability in the Simulated
Annealing algorithm and the selection in the Evolutionary Algorithm. According to [25],
in Simulated Annealing, it is better to use a fitness function of maximization to one of
minimization. Then two formulas will be used to prove that. F1 adds the number of
Violations of hard and soft constraints, so the objective is to minimize it, and F2 is a
function of the form 1/x, so the objective is to maximize it.

F1 = WH ∗ UE + WS ∗
∑

SCV

F2 = 1
WH ∗ UE + WS ∗ ∑

SCV

5.1.3 Parameters

In order to measure the quality of results in all the experiments, these parameters will be
taken into account:

• Unassigned events: Represents the number of unassigned events in a schedule.

• Soft Constraints Violations: Shows the total of soft constraints violated

IT Engineering 26 Dissertation project

Jonathan David Freire Valencia

5.2 Experimental observations

Once the experiments were carried out, important conclusions could be reached about the
operation of the algorithm. In the first place, in most cases, it is possible to obtain a
feasible schedule. That is, all the hard constraints were met without leaving out any event.
On the other hand, in those datasets where feasibility was not achieved, the number of
unassigned events is very low compared to the number of total events. In fact, in the
worst case, the amount of unassigned events is less than 2% of the total. Fulfilling of soft
constraints, on the other hand, showed very similar behavior in all experiments. It can also
be seen that as the generations advance, it is much more difficult to decrease the number
of soft constraint violations.

5.2.1 Testing with different Initial Temperatures

In the first set of experiments, we evaluated the consequences of having different initial
temperatures. For the twenty datasets, four initial temperatures (T0) were used: T0 = 100,
T0 = 50, T0 = 10, T0 = 3. Figure 5.1 shows the datasets where it was not possible to
obtain a feasible timetable. As can be seen, there are between 2 and 4 unassigned events
for each experiment where feasible solutions could not be found, which represent a minimal
number compared to the total number of events. The worst-case happen with a T0 = 10
with up to 1.43% of unassigned events. The datasets where a feasible schedule could not
be found are COMP07, COMP12, COMP14, COMP19, and they all have in common a
very low value of features (e.g. projector in a room) compared to the other datasets, so it
can be said that a low number of features generates a more difficult problem to solve.

Table 5.1 shows the number of soft constraints violated by each dataset in each experi-
ment. On average, the lowest number of violations (i.e. the best timetable ever found) was
achieved with a T0 = 3, while the highest number of violations was reached with a T0 = 50.
It shows that with a low initial temperature, better results can be achieved. In connection
with the above, there are not too many negative changes when starting the algorithm with
a high temperature, as shown in Figure 5.2. The case of COMP06 at To=100 is an excep-
tion. This antecedent shows that mixing an evolutionary algorithm with parallel simulated
annealing tends to generate good solutions without the temperature being relevant as it
would happen if only Simulated Annealing were used.

5.2.2 Testing with different Fitness functions

Two experiments were carried out regarding the variation of the fitness function, using
a minimization function F1 and a maximization function F2, both described previously.
About the fulfilling of hard constraints, it can be seen that it is much better to use max-
imization than minimization, since as seen in Figure 5.3, in the case of maximization, it
only failed in 1 of 20 datasets to find a feasible solution, being the best result of all the
experiments carried out.

Regarding the violation of soft constraints, it can be observed in Table 5.1 that it is

IT Engineering 27 Dissertation project

Jonathan David Freire Valencia

Soft constraints violations in each experiment
Dataset T0 = 3 T0 = 10 T0 = 50 T0 = 100 Min FF Max FF NoRec Rec

COMP01 385 410 387 426 385 428 385 414
COMP02 373 417 431 390 373 447 373 406
COMP03 430 510 525 465 430 506 430 506
COMP04 736 920 842 891 736 738 736 830
COMP05 702 851 750 746 702 669 702 775
COMP06 672 605 666 611 672 650 672 719
COMP07 613 718 719 615 613 712 613 802
COMP08 629 527 529 545 629 538 629 539
COMP09 405 451 479 417 405 477 405 494
COMP10 378 410 481 429 378 437 378 446
COMP11 432 514 473 510 432 488 432 493
COMP12 515 479 533 547 515 510 515 507
COMP13 557 661 621 665 557 605 557 652
COMP14 732 653 702 671 732 740 732 741
COMP15 652 606 718 603 652 679 652 706
COMP16 502 461 480 439 502 509 502 444
COMP17 717 740 852 723 717 746 717 770
COMP18 422 407 441 434 422 398 422 424
COMP19 760 655 696 687 760 716 760 811
COMP20 519 555 479 484 519 614 519 544

Table 5.1: Soft constraints violations in each experiment.

IT Engineering 28 Dissertation project

Jonathan David Freire Valencia

Figure 5.1: Unfeasible datasets obtained with different initial temperatures. (a) T0 = 100,
(b) T0 = 50, (c) T0 = 10, (d) T0 = 3.

better to use minimization in most cases, although it can also be noted that there are
not many differences. Something interesting is what is shown in Figure 5.4 where the
convergence of the fitness maximization function does not seem to arrive at an asymptote
as if it is the case of the fitness function of minimization, which raises the suspicion that
with the increase of generations, better results can probably be achieved. It can also be
seen that the use of the fitness maximization function produces a more significant change,
both negative and positive, in the number of soft constraints violated throughout the
Generations, which is possibly due to more significant changes in acceptance probability
of the parallel simulated annealing algorithm.

5.2.3 Testing the use and not use of crossover

The objective of this experiment is to determine the impact of crossover in the final solution.
Two experiments were carried out where crossover is used in one while not in the other.
Regarding the hard constraints, no difference was found between the two experiments

IT Engineering 29 Dissertation project

Jonathan David Freire Valencia

Figure 5.2: Fitness value when using different T0. (a) T0 = 100, (b) T0 = 50, (c) T0 = 10,
(d) T0 = 3.

because in both cases, the amount of non-feasible datasets was 3, as shown in Figure 5.5,
representing 15% of the total datasets. Also, in both cases, the number of unassigned
events was less than 1% for these not feasible schedules.

The violations to the soft constraints described in Table 5.1 show a notable improvement
in the use of crossover compared to not using it. In the case of convergence, as shown in
Figure 5.6, it is possible to observe that there is a tendency to generate better results in
both cases, and there are almost no negative results, which shows that this mechanism
tends to generate only better solutions.

IT Engineering 30 Dissertation project

Jonathan David Freire Valencia

Figure 5.3: Unfeasible datasets. (a) using a minimization function, (b) using a maximiza-
tion function.

Figure 5.4: Fitness value when using different fitness function. (a) using a minimization
function, (b) using a maximization function.

IT Engineering 31 Dissertation project

Jonathan David Freire Valencia

Figure 5.5: Unfeasible datasets. (a) using crossover, (b) not using crossover.

Figure 5.6: Fitness value when using and not using crossover. (a) using crossover, (b) not
using crossover.

IT Engineering 32 Dissertation project

Chapter 6

Conclusions and Future Work

6.1 Conclusions

1. In the present work, an evolutionary algorithm with a simulated annealing-based
mutation was implemented. The quality of the resulting schedules was evaluated by
measuring the number of assigned events and the violations of the soft constraints
in the resulting schedule. In order to evaluate the efficiency of this algorithm, dif-
ferent experiments were carried out testing the most critical parameters, such as
Temperature, fitness function, and recombination phase.

2. In the experiments where the Temperature was varied, it was possible to observe
that a low temperature is necessary to achieve better results solving hard and soft
constraints. Mixing an evolutionary algorithm with parallel simulated annealing
generates reasonable solutions without the Temperature being relevant as it would
happen if only Simulated Annealing were used.

3. The experiments where the fitness function was changed showed that this parameter
considerably modifies the final results since the results vary depending on whether a
maximization or minimization function is used. Although we obtained better results
when using a minimization function, the curve’s tendency suggests that a maximiza-
tion function might eventually lead to better results if the number of iterations is
significantly increased.

4. As to the use of crossover, the experiments showed that it has a positive impact on
the resulting schedules. Specifically, it was detected that in 17 of the 20 datasets, it
was better to use crossover and also that the convergence towards a new solution is
slower when crossover is not used.

5. Once the algorithm presented in this work is compared with other similar algorithms,
we concluded that more changes are needed to reach solutions such as those obtained
by [1]. Although good results have not yet been obtained, it was possible to fulfill
the majority of the hard constraints of the schedules with shows that this algorithm
can be an option to be considered.

33

Jonathan David Freire Valencia

6.2 Future Work

1. Although the algorithm can generate a feasible schedule, the optimization phase still
needs to be improved. According to the results, the optimization phase can converge
towards better results, but it tends to stop at local minimums so that the best
possible schedule cannot be obtained. It is necessary to improve the implementation
of this algorithm through techniques that improve the convergence of the algorithm.
For example, the search for ”neighboring schedules” in the mutation phase is done
randomly, but it would be better to look for a deterministic way that eliminates
repeated schedules. This and many other improvements could expand the search
domain of schedules, thus allowing a faster and better optimization.

2. In general, the entire algorithm used to solve the University course timetabling uses
dozens of parameters that have not been taken into account individually. In the
future, it is expected to be able to carry out a more exhaustive evaluation with each
of these parameters to determine their interference in the algorithm’s performance
and be able to adjust them most appropriately.

3. For this work, we used the Ben Paetcher dataset [26], which provides data that
allowed testing the algorithm. However, it is necessary to be able to apply this
algorithm in real cases. This problem has many variants [31], mainly because the
course timetabling process varies between countries and institutions. Hence, it is
challenging to generate an implementation that solves this problem for all cases.
Therefore, it is necessary to carry out future research on the variations of course-
timetabling in different Universities and refactor the current implementation so that
it is not difficult to add or remove new variables for other datasets.

IT Engineering 34 Dissertation project

Bibliography

[1] S. Ceschia, L. Di Gaspero, and A. Schaerf, “Design, engineering, and experimental
analysis of a simulated annealing approach to the post-enrolment course timetabling
problem,” Computers and Operations Research, vol. 39, 04 2011.

[2] S. P. Erdeniz and A. Felfernig, “Ocsh: Optimized cluster specific heuristics
for the university course timetabling problem,” ser. ICIST ’18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3200842.3200858

[3] A. Hadidi, “A survey of approaches for university course timetabling problem,” Com-
puters and Industrial Engineering, 07 2015.

[4] R. Lewis and B. Paechter, “An empirical analysis of the grouping genetic algorithm:
the timetabling case,” vol. 3, 10 2005, pp. 2856 – 2863 Vol. 3.

[5] A. Dandashi and M. Al-Mouhamed, “Graph coloring for class scheduling,” ACS/IEEE
International Conference on Computer Systems and Applications - AICCSA 2010, pp.
1–4, 2010.

[6] H. A razak, Z. Ibrahim, and N. Mohd Hussin, “Bipartite graph edge coloring approach
to course timetabling,” 03 2010.

[7] C. Gotlib, “The construction of class-teacher timetables. proceedings of ifip,” Con-
gressh, vol. 62, p. 73–77, 1963.

[8] D. de Werra, “An introduction to timetabling,” European Journal of Operational
Research, vol. 19, no. 2, pp. 151–162, 1985. [Online]. Available: https:
//EconPapers.repec.org/RePEc:eee:ejores:v:19:y:1985:i:2:p:151-162

[9] M. Solgi, O. Bozorg-Haddad, and H. Loaiciga, Meta-heuristic and Evolutionary Algo-
rithms for Engineering Optimization, 11 2017.

[10] V. Nandhini, “A study on course timetable scheduling and exam timetable scheduling
using graph coloring approach,” International Journal for Research in Applied Science
and Engineering Technology, vol. 7, pp. 1999–2006, 03 2019.

[11] S. Abdullah, E. Burke, and B. Mccollum, Using a Randomised Iterative Improve-
ment Algorithm with Composite Neighbourhood Structures for the University Course
Timetabling Problem, 01 2007, vol. 39, pp. 153–169.

35

https://doi.org/10.1145/3200842.3200858
https://EconPapers.repec.org/RePEc:eee:ejores:v:19:y:1985:i:2:p:151-162
https://EconPapers.repec.org/RePEc:eee:ejores:v:19:y:1985:i:2:p:151-162

Jonathan David Freire Valencia

[12] P. Kostuch, “Timetabling competition - sa-based heuristic,” 2003.

[13] S. H. Zanakis and J. R. Evans, “Heuristic “optimization”: Why, when, and
how to use it,” Interfaces, vol. 11, no. 5, pp. 84–91, 1981. [Online]. Available:
https://EconPapers.repec.org/RePEc:inm:orinte:v:11:y:1981:i:5:p:84-91

[14] O. Bozorg-Haddad, H. A. Loaiciga, and M. Solgi, Meta-heuristic and evolutionary
algorithms for engineering optimization, ser. Wiley series in operations research
and management science. John Wiley & Sons, 2017. [Online]. Available:
http://gen.lib.rus.ec/book/index.php?md5=be63b50c9e43b8840f375c5cb5eb2b74

[15] K. Murray, T. Müller, and H. Rudová, “Modeling and solution of a complex university
course timetabling problem,” 01 2016, pp. 189–209.

[16] A. A. Gozali, “Asynchronous island model genetic algorithm for university course
timetabling,” 2014.

[17] F. Neri and C. Cotta, “Memetic algorithms and memetic computing optimization: A
literature review,” Swarm and Evolutionary Computation, vol. 2, pp. 1–14, 02 2012.

[18] D. Qaurooni, “A memetic algorithm for course timetabling,” 01 2011, pp. 435–442.

[19] “Scholarpedia ant colony optimization,” http://www.scholarpedia.org/article/Ant
colony optimization, accessed: 2020-11-12.

[20] K. Socha, J. Knowles, and M. Sampels, “A max-min ant system for the university
course timetabling problem,” vol. 1-13, 10 2002.

[21] O. Rossi-doria, M. Sampels, M. Birattari, M. Chiar, M. Dorigo, L. M. Gambardella,
J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle, “A
comparison of the performance of different metaheuristics on the timetabling prob-
lem,” 03 2003.

[22] H. Asmuni, “Fuzzy methodologies for automated university timetabling solution con-
struction and evaluation,” 01 2008.

[23] R. Lewis, B. Paechter, and O. Rossi-Doria, Metaheuristics for University Course
Timetabling, 01 1970, vol. 49, pp. 237–272.

[24] A. Mondal, “A survey of reinforcement learning techniques: Strategies, recent devel-
opment, and future directions,” 01 2020.

[25] R. Lewis and B. Paechter, “Finding feasible timetables using group-based operators,”
Evolutionary Computation, IEEE Transactions on, vol. 11, pp. 397 – 413, 07 2007.

[26] “PATAT international timetabling competition,” http://www.scholarpedia.org/
article/Ant colony optimization, accessed: 2020-11-12.

[27] H. Alghamdi, T. Alsubait, H. Alhakami, and A. Baz, “A review of optimization algo-
rithms for university timetable scheduling,” Engineering, Technology Applied Science
Research, vol. 10, pp. 6410–6417, 12 2020.

IT Engineering 36 Dissertation project

https://EconPapers.repec.org/RePEc:inm:orinte:v:11:y:1981:i:5:p:84-91
http://gen.lib.rus.ec/book/index.php?md5=be63b50c9e43b8840f375c5cb5eb2b74
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization

Jonathan David Freire Valencia

[28] T. Feutrier, M.-E. Kessaci, and N. Veerapen, “Investigating the landscape of a hybrid
local search approach for a timetabling problem,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1665–1673. [Online].
Available: https://doi.org/10.1145/3449726.3463175

[29] “PATAT international timetabling competition 2007,” http://www.cs.qub.ac.uk/
itc2007/, accessed: 2021-11-21.

[30] J. Sakal, J. E. Fieldsend, and E. Keedwell, “Learning assignment order in an ant
colony optimiser for the university course timetabling problem,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, ser. GECCO ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p. 77–78. [Online].
Available: https://doi.org/10.1145/3449726.3459534

[31] A. Rezaeipanah, Z. Abshirini, and M. Zade, “Solving university course timetabling
problem using parallel genetic algorithm,” Journal of Scientific Research and Devel-
opment, vol. 7, pp. 5–13, 10 2019.

IT Engineering 37 Dissertation project

https://doi.org/10.1145/3449726.3463175
http://www.cs.qub.ac.uk/itc2007/
http://www.cs.qub.ac.uk/itc2007/
https://doi.org/10.1145/3449726.3459534

	Dedication
	Acknowledgments
	Abstract
	Resumen
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Contribution

	Theoretical Framework
	Mathematical models
	Heuristic approaches
	Simulated Annealing
	Genetic Algorithm
	Ant Colony
	Tabu Search

	Intelligent and agent-base approaches

	State of the Art
	Comparison with other works
	Competition results

	Latest research on UCTTP

	Methodology
	Problem description
	Dataset Description
	 Solution description
	Step 1: Obtaining an initial timetable
	 Step 2: Optimizing the initial timetable by Evolutionary algorithm with simulated annealing-based mutation

	Results and Discussion
	 Experimental Setup
	Equipment Description
	 Experiments
	 Parameters

	Experimental observations
	Testing with different Initial Temperatures
	Testing with different Fitness functions
	Testing the use and not use of crossover

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

		2022-01-06T21:48:18-0500
	JONATHAN DAVID FREIRE VALENCIA

		2022-01-06T21:48:44-0500
	JONATHAN DAVID FREIRE VALENCIA

