
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: SIMULATION OF COLLISION AVOIDANCE
ALGORITHMS IN 2D USING VORONOI DIAGRAMS

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor:

Cuenca Macas Leduin José

Tutor:

Ph.D. Pineda Arias Israel Gustavo

Urcuqúı, enero del 2022

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 20 de enero de 2022
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2022-00003-AD

A los 20 días del mes de enero de 2022, a las 11:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal Calificador,
integrado por los docentes:

Presidente Tribunal de Defensa Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.

Miembro No Tutor Dr. ANTON CASTRO , FRANCESC , Ph.D.

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.

El(la) señor(ita) estudiante CUENCA MACAS, LEDUIN JOSE, con cédula de identidad No. 1105019937, de la ESCUELA DE
CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN, aprobada
por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de videoconferencia, la
sustentación de su trabajo de titulación denominado: Simulation of Collision Avoidance Algorithms in 2D using Voronoi Diagrams ,
previa a la obtención del título de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.

Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la) estudiante.

Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y examinado por
los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de videoconferencia, que integró la
exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas por los miembros del Tribunal, se califica la
sustentación del trabajo de titulación con las siguientes calificaciones:

Tipo Docente Calificación
Miembro Tribunal De Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D. 10,0

Tutor Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D. 10,0

Presidente Tribunal De Defensa Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D. 10,0

Lo que da un promedio de: 10 (Diez punto Cero), sobre 10 (diez), equivalente a: APROBADO

Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

CUENCA MACAS, LEDUIN JOSE
Estudiante

Dr. ARMAS ARCINIEGA, JULIO JOAQUIN , Ph.D.
Presidente Tribunal de Defensa

Dr. PINEDA ARIAS, ISRAEL GUSTAVO , Ph.D.
Tutor

Dr. ANTON CASTRO , FRANCESC , Ph.D.
Miembro No Tutor

Signé électroniquement par
FRANCESC ANTON CASTRO
cn=FRANCESC ANTON CASTRO, c= EC
Date: 2022.01.20 13:37:13 ECT

FRANCESC ANTON
CASTRO

Firmado electrónicamente por:

ISRAEL
GUSTAVO
PINEDA ARIAS

Firmado electrónicamente por:

JULIO JOAQUIN
ARMAS
ARCINIEGA

Firmado electrónicamente por:

LEDUIN JOSE
CUENCA MACAS

Hacienda San José s/n y Proyecto Yachay, Urcuquí | Tlf: +593 6 2 999 500 | info@yachaytech.edu.ec

www.yachaytech.edu.ec

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc

DAYSY
MARGARITA
MEDINA BRITO

Firmado digitalmente
por DAYSY MARGARITA
MEDINA BRITO
Fecha: 2022.01.20
11:53:49 -05'00'

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer Graduation Project

Autoŕıa

Yo, Leduin José Cuenca Macas, con cédula de identidad 1105019937, declaro que las

ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y concep-

tualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas

utilizadas en la investigación, son de absoluta responsabilidad del autor del trabajo de in-

tegración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad de

Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, enero de 2022.

Leduin José Cuenca Macas

CI: 1105019937

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer ii Graduation Project

Autorización de publicación

Yo, Leduin José Cuenca Macas, con cédula de identidad 1105019937, cedo a la Uni-

versidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de publicación

de la presente obra, sin que deba haber un reconocimiento económico por este concepto.

Declaro además que el texto del presente trabajo de titulación no podrá ser cedido a

ninguna empresa editorial para su publicación u otros fines, sin contar previamente con la

autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, enero del 2022.

Leduin José Cuenca Macas

CI: 1105019937

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer iv Graduation Project

Dedicatoria

A la memoria de mi padre.

Para mi madre, hermanas, familia y amigos.

Leduin José Cuenca Macas

v

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer vi Graduation Project

Agradecimiento

Mi agradecimiento a mi tutor Israel Pineda Ph.D. por el apoyo técnico brindado en el

desarrollo de este trabajo. Gracias a Fis. Anthony Ramos, Ing. Fernando Zhapa, Ing.

Oscar Guarnizo por su buena voluntad para ayudarme cuando me encontré atascado en la

implementación del proyecto. Toda mi carrera universitaria no se hubiera completado sin el

apoyo incondicional de mi familia. También, agradezco a los amigos que me acompañaron

a lo largo de la carrera universitaria, cada uno contribuyó de una forma u otra a este logro.

Gracias a mis profesores por ser parte de mi inspiración.

Leduin José Cuenca Macas

vii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer viii Graduation Project

Abstract

This work solves the Collision Avoidance problem in a simulation of a centralized system

of holonomic multi-agents in a two-dimensional space free of static obstacles. For this,

we propose an implementation of three modules in an architecture: Threat Assessment

Strategy (TAS), Path Planning Strategy (PPS), and Path Tracking Strategy (PTS). The

Buffered Voronoi Cells represent the TAS. The PPS modules use two algorithms: the An-

alytical Geometric Algorithm (AGA) and the Receding Horizons Control (RHC) based on

Quadratic Programming (QP) Algorithm. Finally, PTS controls the tracking according

to fixed distance magnitudes in each iteration. The analysis of the results considers the

computational execution time, the number of steps until convergence, and the calculation

of optimal values. Also, these results are compared with the Optimal Reciprocal Collision

Avoidance (ORCA) algorithm. In this way, our proposal successfully addresses and solves

the collision avoidance problem but takes more execution time and number of steps com-

pared with the ORCA algorithm. Besides, the number of steps of AGA is closer to ORCA,

producing promising results with an accuracy of 95%.

Keywords:

Collision Avoidance, Voronoi Diagrams, Convex Optimization, Quadratic Programming,

Path Planning, Simulation.

ix

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer x Graduation Project

Resumen

El presente trabajo resuelve el problema de prevención de colisiones en una simulación de

un sistema centralizado de multiagentes holonómicos en un espacio bidimensional libre de

obstáculos estáticos. Para ello, proponemos una implementación de una arquitectura con

tres módulos para cubrir las siguientes estrategias: Estrategia de Evaluación de Amenazas

(EEA), Estrategia de Planificación de Rutas (EPR) y Estrategia de Seguimiento de Ru-

tas (ESR). Las celdas de Voronoi amortiguadas representan la EEA. Los módulos con la

EPR utilizan dos algoritmos: el Algoritmo Geométrico Anaĺıtico (AGA) y el algoritmo

de Control de Horizontes en Retroceso (CHR) basado en Programación Cuadrática (PC).

Finalmente, la EPR controla el seguimiento según magnitudes de distancia fijas en cada

iteración. El análisis de los resultados considera el tiempo de ejecución computacional,

el número de pasos hasta la convergencia y el cálculo de valores óptimos. Además, estos

resultados se comparan con el algoritmo de Prevención de Colisiones Rećıproco Óptimo

(PCRO). De esta forma, nuestra propuesta aborda y resuelve con éxito el problema de

prevención de colisiones, pero requiere más tiempo de ejecución y número de pasos en

comparación con el algoritmo de PCRO. Además, el número de pasos del AGA está más

cerca del algoritmo de PCRO, produciendo resultados prometedores con una precisión del

95%.

Palabras Clave:

Prevención de Colisiones, Diagramas de Voronoi, Optimización Convexa, Programación

Cuadrática, Planificación de Rutas, Simulación.

xi

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Contents

Dedicatoria v

Agradecimiento vii

Abstract ix

Resumen xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 3

1.3 Objectives . 4

1.3.1 General Objective . 4

1.3.2 Specific Objectives . 4

2 Theoretical Framework 5

2.1 Collision Avoidance . 5

2.1.1 Threat Assessment Strategy . 6

2.1.2 Path Planning Strategy . 7

2.1.3 Path Tracking Strategy . 9

2.2 Voronoi Diagram . 10

2.3 QP-Based RHC Algorithm . 12

xiii

School of Mathematical and Computational Sciences Yachay Tech University

2.3.1 Receding Horizon Control . 13

2.4 Analytical Geometric Algorithm . 15

2.5 Optimal Reciprocal Collision Avoidance Algorithm 15

2.5.1 Reciprocal n-body Collision Avoidance Problem 15

2.5.2 Preliminaries . 16

2.5.3 Optimal Reciprocal Collision Avoidance Definitions 17

2.6 Multi-agent Navigation . 18

2.6.1 Centralized Policies . 19

2.6.2 Decentralized Policies . 20

3 State of the Art 23

3.1 Threat Assessment Strategies . 23

3.1.1 Time-to-Collision . 23

3.1.2 Distance Domain . 24

3.1.3 Multi-Domain . 25

3.1.4 Optimization Methods . 26

3.2 Path Planning Strategies . 27

3.2.1 Optimization-based Approach . 28

3.2.2 Geometrical-based Approach . 29

3.3 Multi-agent Navigation . 30

3.3.1 Centralized Control . 30

3.3.2 Decentralized Control . 30

4 Methodology 33

4.1 Phases of Problem Solving . 33

4.1.1 Description of the Problem . 34

4.1.2 Analysis of the Problem . 34

4.1.3 Algorithm Design . 35

4.1.4 Implementation . 35

4.1.5 Testing . 35

4.2 Model Proposal . 35

4.2.1 Two-Dimensional Environment . 36

Information Technology Engineer xiv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2.2 Heuristics to deal with Deadlock . 37

4.2.3 Simulated Robots . 38

4.2.4 Analytical Geometrical Algorithm 39

4.2.5 QP-based RHC Algorithm . 42

4.2.6 ORCA Algorithm . 45

4.3 Analysis Method . 46

4.4 Experimental Setup . 47

5 Results and Discussion 49

5.1 Construction of Voronoi Diagram . 49

5.1.1 Deadlock . 50

5.2 Evaluation of AGA Parameters . 51

5.2.1 Safety Radius . 51

5.2.2 Deadlock Tolerance . 52

5.2.3 Normal Movement . 53

5.2.4 Movement in Deadlock . 55

5.2.5 Previous Positions . 56

5.3 QP-Based RHC Implementation . 57

5.4 RVO Library Implementation and Performance 58

6 Conclusions 61

6.1 Conclusion . 61

6.2 Recommendations . 62

6.3 Future Work . 63

Bibliography 65

Information Technology Engineer xv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project

List of Tables

4.1 Attributes of the class Robot . 39

4.2 Internal parameters of the QP-based RHC solver 44

4.3 Software used in the implementation of the CA algorithms 48

5.1 Default parameters values to evaluate the AGA performance 51

5.2 Default parameters values to evaluate the QP-based RHC algorithm perfor-

mance . 57

xvii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xviii Graduation Project

List of Figures

2.1 Multi-layer CA architecture consists of several modular strategies. Source:

[1]. 6

2.2 Threat assessment general formulations, where the current trajectory of the

studied vehicle is re-planned once the threshold is violated. Source: [1]. . . 7

2.3 Voronoi tessellation generated from a set of points. 11

2.4 Buffered Voronoi Cells colored with light blue. 11

2.5 Geometrical interpretation for ORCA. Source: [2]. 17

2.6 Centralized view and policy. Source: [3]. 20

2.7 Decentralized view and policy. Source: [3]. 21

4.1 Phases of problem solving . 34

4.2 Dealing with deadlock through right-hand rule heuristic 38

4.3 Dealing with deadlock taking into account distance of previous positions . 38

5.1 Visualisation of AGA execution with the respective BVC generation 50

5.2 Deadlock situation . 51

5.3 Time in seconds, number of steps and effectiveness vs size of the safety radius 52

5.4 Time in seconds, number of steps, effectiveness and the cost vs size of the

deadlock tolerance . 53

5.5 Time in seconds, number of steps, and effectiveness vs movement magnitude 54

5.6 Time in seconds, number of steps, and effectiveness vs magnitude of move-

ment in deadlock . 55

5.7 Time in seconds, number of steps, and effectiveness vs number of previous

positions to break deadlock . 56

xix

School of Mathematical and Computational Sciences Yachay Tech University

5.8 Steps vs number of receding horizons steps 58

5.9 ORCA and AGA performance in time and number of steps vs number of

robots . 59

Information Technology Engineer xx Graduation Project

Chapter 1

Introduction

1.1 Background

Collision Avoidance (CA) is the process of preventing two or more physical objects from

having intersecting boundaries in space-time, taking into account several variables like

time, distance, and the parts of the involved objects. In this way, CA is widely studied due

to its practical applications, mainly in path planning for ships, autonomous robots, aircraft,

and unmanned aerial vehicles, using different mathematical and computational techniques

such as geometric analysis, control modeling with optimization, game theory, dynamical

systems, and artificial intelligence [4]. Therefore, this problem challenges researchers to

simulate the natural ability of complex living beings or processes to avoid physical collisions

and react accurately.

The way to deal with CA is usually subject to its immediate application or its limita-

tions. Therefore, the research addresses the problem of CA based on the human presence

(such as Advanced Driver Assistance Systems) or absence (such as fully Automated Driv-

ing Systems) within the execution of the kinematic process [4]. Also, researchers initially

focus on systematizing the flow of information through an architecture [5, 6]. The modules

of the architecture are mainly Threat Assessment Strategy (TAS) to ensure collision-free

navigation, Path Planning Strategy (PPS) that allows the formulation of the path of mo-

biles avoiding obstacles, and Path Tracking Strategy (PTS) as a controller of route tracking

of a possible re-planned path. TAS calculates the risk of collision in an unwanted event,

providing the appropriate information to avoid a collision. The mobile then re-plans the

1

School of Mathematical and Computational Sciences Yachay Tech University

movement, and the PTS tracks the newly planned route [1, 7].

The construction of the architecture modules depends on several interrelated factors.

Thus, the TAS methods are based on time, space, and the parts of the objects, as mentioned

before. Besides, selecting a reliable PPS method requires considering several aspects, such

as a priori knowledge about the environment, obstacles, and trajectory types. In this way,

the primary PPS approach and methods are based on the configuration of the space, the

introduction of abstract geometric structures in the system, the initial and final positions,

computational resources, kinematic complexity, implementation of physical concepts (such

as attraction and repulsion), optimization, interpolation, and even artificial intelligence.

In the case of the PTS, the methods are based on a similar way of PPS [1].

The management of the information obtained in the movement process is also decisive

for categorizing the system where the CA problem is solved. Thus, we can separate the CA

systems into centralized and decentralized systems. The first category has a controller to

handle all the information. This controller receives the information, processes it according

to the architecture specifications, and finally sends it to the agents in motion. On the other

hand, each agent in decentralized systems has to process the information perceived in the

environment through sensors and communicate individually with the other agents [3].

In the present work, we dealt with CA algorithms for centralized autonomous multi-

agent systems. We use the safe distance-based method as TAS, considering aspects like

online path planning, without obstacles, and free trajectory to apply a combination of

Optimization-based and Geometrical-based Path Planning strategies with breaking-deadlock

heuristics as Path Tracking methods. The project proposal involves using Voronoi Dia-

grams, Analytical Geometrical Algorithm (AGA), and Quadratic Programming (QP) based

Receding Horizons Control (RHC) Algorithm. The generated algorithms only require de-

tecting the relative positions with a centralizing character. Therefore, it is very suitable

for online deployment, as it does not require a concurrent communication network. We

demonstrate the capabilities of our algorithm by comparing it to the Optimal Recipro-

cal Collision Avoidance Algorithm (ORCA) in a benchmark simulation scenario, and we

present the results of over 2160 experimental trials in total.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1.2 Problem statement

An environment represents a physical space that contains tangible objects. In this way, a

dynamic environment is a physical space with elements that change their nature over time

and the space that contains them. Movement is a phenomenon involved in these changes.

Nevertheless, the movement, in turn, is limited by the environment. For example, the

nature of the environment or other static or dynamic objects prevent direct movement

from the starting point to the arrival point of the initially mentioned object. Because

of this, the object has to adjust its movement to reach the point of arrival satisfactorily.

This satisfaction category has to do mainly with minimizing the wear of the object, the

time to reach the end position, and the distance traveled. The distance problem has been

approached as a path planning problem, while the object integrity problem has a place in

CA.

CA is combined with various techniques to achieve a specific goal. One of these tech-

niques is treating the information resulting from relating the moving object with the sur-

rounding environment, including the movement motivation of the other objects, as a dy-

namical system [8, 9]. Also can happen that an environmental motivation subordinates

the particular movement of all objects. In addition, it is essential to consider how hu-

man activity influences the movement of the system. We speak of an automated system

when this influence is minimal in the real-time kinematics of the objects but with a priori

intervention in establishing the objectives and how they are achieved. According to the

development of technology, the presence of these systems becomes more notable, making

their study essential.

In addition to the physical sciences, we can use mathematical-related disciplines, such

as geometry, algebra, and computer technology tools, to solve the CA problem and even

address path planning. So, we can analyze and obtain algorithms and numerical results.

The theorizing of the problem must be complemented with the implementation in practice

since there are variables with a chaotic behavior in reality. Despite this, a theoretical

analysis can become the cornerstone in practical systematization. Computer systems are

especially considering bringing CA to the digital field and thus represent an advantage in

data calculation and analysis. In this way, computer systems can represent an advantage

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

by simplifying and delimiting the complexity of dynamic environments to understand the

phenomena related to their changing nature.

Currently, it is necessary to solve the CA problem in semi-autonomous or autonomous

machines, like ships, aircraft, drones, terrestrial vehicles, or robots, increasingly demand

a higher level of complexity that must be tackled optimally and effectively. In this sense,

CA and problems related to path planning require considerable research to enhance its

performance [10, 11]. Algorithms and their respective implementation are analyzed as

computer programs to achieve sufficient execution time, distance traveled, and wear of

the object [12]. In addition, there is considerable variability in the performance of these

computer programs due to the increasing variety of implementations, either mainly by

programming languages, architectures, CA strategies, embedded systems, or others.

For all these reasons, this project aims to contribute to the computational analysis of the

CA problem for multi-agents in movement in a two-dimensional environment without static

obstacles. The proposal to solve the CA problem is based on geometrical structures such as

the Voronoi diagrams. Furthermore, we implement AGA and an optimizable version based

on QP-RHC to solve the path planning problem. Finally, the results are compared with

one of the most used algorithms for CA in multi-agent movement: the ORCA algorithm.

1.3 Objectives

1.3.1 General Objective

Implement a centralized computational simulation for moving multi-agents to avoid colli-

sions.

1.3.2 Specific Objectives

• Develop a CA simulation using Voronoi Diagram, AGA, and QP-based RHC Algo-

rithm in a two-dimensional space free of static obstacles.

• Compare execution time, number of steps, and traveled distance until convergence

of the proposed method with other methods found in the literature review.

• Analyze visually and dynamically the results in a two-dimensional simulation.

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

This chapter introduces the necessary concepts for understanding the present work. In this

way, it starts approaching CA strategy architectures with all its sub-modules, then explains

the mathematical and geometrical background of the Voronoi Diagram. Finally, it details

the basic Analytical Geometrical Algorithm (AGA), Quadratic Programming (QP) Based

Receding Horizons Control (RHC) Algorithm and Optimal Reciprocal Collision Avoidance

(ORCA) Algorithm.

2.1 Collision Avoidance

CA is the process of preventing two or more physical objects from intersecting in space-

time, taking into account several variables like the time, distances, movement, and the

parts of the involved objects. A successful CA demands a complex system that considers

various factors such as calculation costs, constraints (vehicle dynamics, obstacles, and

environment), and incorporating the most advanced computational and sensing devices.

Architectures classify and order the system requirements and provide control over the

information flow [1].

There are at least two common types of CA Design Control Architecture [5, 6, 13]. First,

the Multi-Layer CA System divides the responsibility of different objectives into layers.

This system is the most used and is also known as the Guidance and Navigation Control

System. The second is the Unified-Design CA System. This system has two combined

blocks for integrated objectives and identical control inputs. From both architectures, it

is apparent that a good CA strategies architecture usually comprises several sub-modules,

5

School of Mathematical and Computational Sciences Yachay Tech University

which include Threat Assessment Strategy (TAS), Path Planning Strategy (PPS), and

Path Tracking Strategy (PTS).

Obstacle
States

Environment
Information

Threat
Assesment

Risk
Assesment

Path
Planning

Path
Prediction

Path
Replaner

Path
Tracking

Low-Level
Control

State
Stimator

State
Constraints

Vehicle
Input Host

Vehicle

Vehicle states obtained by sensors

Figure 2.1: Multi-layer CA architecture consists of several modular strategies. Source: [1].

2.1.1 Threat Assessment Strategy

TAS provides an assessment and subsequent warnings of the potential threat to CA. The

result of the TAS calculation is the key to triggering the subsequent actions of the AC

architecture. In this way, TAS feeds the decision-making strategy on the appropriate

action of the moving object. In addition, TAS takes care of the threshold or tolerance

limits around obstacles or any physical object in the environment. The philosophy behind

TAS is illustrated in Figure 2.2. Once this object is violating certain conditions, the CA

system activates the path planning block to re-plan the current trajectory. The risk can be

measured by any means, including distance, speed, and acceleration of the moving object

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

relative to the elements of the environment [4].

The idea of a safe distance threshold is to have an invisible safe region boundary around

the physical objects, regardless of their dimension. However, the strategy will be less

effective as the dimensions of the obstacles increase. Also, it does not provide sufficient

information to output an optimal re-planned path. Ground surface characteristics, weather

conditions could also be used to determine the breaking distance. The combinations of this

method with other TAS methods ensure a timely CA maneuver activation.

y

x

Before Avoidance
(Original Trajectory)

During Avoidance
(Replanned Trajectory)

After Avoidance
(Original Trajectory)

Vehicle in study Frontal Vehicle Future Vehicle in
study position

Threshold

Above Threshold Below Threshold
Replanning

Above threshold
No Replanning

T
hr

ea
t

M
et

ric
s

Figure 2.2: Threat assessment general formulations, where the current trajectory of the
studied vehicle is re-planned once the threshold is violated. Source: [1].

2.1.2 Path Planning Strategy

The PPS re-plans a collision-free route while the vehicle continues moving once the TAS

identifies the potential collision threat. This new route may be different from the previous

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

route planned by the PPS. In addition, an ideal PPS considers the risk of collisions involved

in changing the current kinematics of the vehicle. First, the strategy guarantees enough

space for the mobile to maneuver without frontal or side collisions. Then it needs to make

sure that there is no potential risk with another obstacle after the maneuver. Finally, the

new trajectory must consider the mechanical limitations and internal implications of the

moving object. Some considerations for selecting a PPS are presented following.

• Offline and online path planning: Offline PPS offers many advantages in specific

scenarios, such as previously known environments. However, these strategies do not

help if the robot navigates in an unfamiliar environment, like in an urban area with

high traffic. Online route planning is preferable in this situation due to its ability

to quickly transmit information about nearby robots using sensors. In this way, the

path calculation time can be shortened [14, 15].

• Environment and obstacles: There are two types of CA environments, which are

differentiated by having dynamic or static obstacles. An a priori path planner allows

the recognition of obstacles. However, for unknown static obstacles, online path

planning acts as PPS algorithms. These situations usually involve avoiding multiple

static obstacles. Things are more complicated when it comes to dynamic obstacles

and even more so in a real-time application because the chance of encountering

dynamic obstacles is relatively higher than static obstacles. Therefore, the online

path planning for dynamic obstacles must be an algorithm with short computational

time and suitable for a routine-tasked robot with static obstacles. In contrast, online

path planning is preferable for robots that work in an unknown environment, where

collision with dynamic obstacles might occur [1].

• Trajectory types: Vehicles and car-like robots move in a non-holonomic way; that

is, they cannot make an abrupt movement due to mechanical constraints. On the

other hand, the mobiles that can move in any direction have holonomic characteris-

tics. Therefore, PPS ensures navigation through these paths according to the nature

of the objects in movement. Furthermore, there are many other types of trajec-

tory creation, for example, navigating through an unfamiliar environment where fast

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

obstacles may appear and in alley environments. Thus, the selection of precise algo-

rithms is directly related to the production by the PPS of a maneuverable re-planned

route [1].

2.1.3 Path Tracking Strategy

PTS algorithms act as a path following controller to ensure the vehicle or mobile robot

successfully avoids collisions. A good PTS timely tracks the reference re-planned path by

producing the required low-level control actions and output suitable interventions. For this

reason, different scenarios demand individual CA actions. Then, we present the following

PTS.

• Geometrical Approach: A geometrical-based path tracking approach utilizes a

look-ahead point and considers predicting future vehicle (x, y) positions [16]. The

future positions of the vehicle rely heavily on its current position. Therefore, the

distance between its current and future position (look-ahead points) is significant for

formulating this approach. Furthermore, the distance is directly proportional to the

risk of lane departure after the CA navigation. Thus, ensuring a small look-ahead

distance allows the vehicle to follow the path smoothly. This decision follows the

dynamic constraints of the vehicle. Besides that, as the geometrical-based approach

relies on the location of the vehicle, its speed and velocity are essential elements.

Since velocity is the rate of distance change over time, an uncontrollable change in

speed produces uncontrolled anticipation of vehicle future positions. Therefore, by

discarding velocity, the vehicle might fail to follow the re-planned path correctly.

Another drawback of the geometrical approach for the path tracking strategy of the

CA system is that it does not ensure an obstacle-free path because it ignores the

formulations of safe distance from the vehicle to the obstacle. However, this can be

prevented by having a TAS in the entire CA architecture.

• Model-based Control Approach: The most well-known method in this approach

is Model Predictive Control (MPC). MPC was initially developed for processes in

chemical engineering because there was a need to control complex Multiple-Input

Multiple-Output systems while respecting the process constraints. However, with

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the recent advent of technology, usage has outreached other fields, including CA. An

MPC-based controller is a reliable control as it utilizes the knowledge of the vehicle

model. Therefore, the vehicle predicts the optimized result (position and speed) at

a given prediction horizon at each sampling time [17].

MPC can control under-actuated or over-actuated systems, beneficial, especially in

CA, where the intervention of the actuator is crucial in path tracking actions. Besides,

the cost function of MPC also includes the system constraints in the optimization

problem. Thus, the cost function with system constraints provides an optimization

objective solved at each sampling period. This process, in return, promises reli-

able control actions for CA and gives MPC an advantage compared to other control

techniques. Furthermore, MPC can prevent sudden movements of the vehicle when

avoiding the collision with MPC.

Another advantage of MPC over other controllers is its intuitive tuning options; this

includes the future prediction of the manipulative input, control horizons, and the

concept of the constraint that can manipulate the weights on the slip angle, steering

angle, and lateral position.

However, for a complex CA situation, the MPC control strategy needs to be im-

proved by utilizing multiple objective functions, reference trajectory, and Nonlinear

Model Predictive Control. Due to better computational devices, more complex MPC

formulations that were infeasible in the past are now possible.

2.2 Voronoi Diagram

The following explanation is based on the work of Zhou et al [18].

Given a set of two or more but a finite number of distinct points in the Euclidean

plane, we associate all the locations in that space with the closest members of the set of

points using the Euclidean distance. The result is a 2d-tessellation into a set of the regions

associated with members of the point set. This tessellation is called Voronoi Diagram

generated by the point set, and the regions constituting the Voronoi diagram are called

Voronoi cells. Figure 2.3 shows this description graphically.

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.3: Voronoi tessellation gener-
ated from a set of points.

Figure 2.4: Buffered Voronoi Cells col-
ored with light blue.

Supposing that we have a set of n points located in the Euclidean plane. The posi-

tions of the n points are labelled by p1, · · · , pN with Cartesian coordinates ((x11, x12), · · ·

, (xn1, xn2)) or location vectors x1, · · · , xn. The n are distinct in the sense that they are not

in the same coordinates, i.e. xi 6= xj for i 6= j, i, j ∈ In = {1, · · · , n}. Let p be an arbitrary

point in the Euclidean plane with coordinates (x1, x2) or a location vector x. Then the

Euclidean distance between p and pi is given by

d(p, pi) = ‖x− xi‖ =
√

(x1 − xi1)2 + (x2 − xi2)2. (2.1)

If pi is the nearest point from p or vice versa, we have the relation:

‖x− xi‖ ≤ ‖x− xj‖ for j 6= i, i, j ∈ In. (2.2)

In this case, p is assigned to pi (see Figure 2.3).

Definition 1 (Voronoi Diagram) Let be P = p1, · · · , pn ⊂ R2 a set of points, where
2 < n <∞ and xi 6= xj for i 6= j; i, j ∈ In. We call the region given by

V (pi) = {x | ‖x− xi‖ ≤ ‖x− xj‖; ∀j 6= i; i, j ∈ In; x ∈ R2} (2.3)

the Voronoi polygon associated with pi, and we call the set given by

V = V (p1), · · · , V (pn) (2.4)

the Voronoi diagram generated by P .

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

We call pi of V (pi) the generator of the ith Voronoi polygon, and the set P = p1, · · · , pn
the generator set of the Voronoi diagram V . For brevity, we may write Vi for V (pi). Also,

we may use V (xi1, xi2) or V (xi) when we want to emphasize the coordinates or location

vector to the generator point pi. In addition, we may use V(P) when we want to explicitly

indicate the generator set P of V . Equivalently, we can write Equation 2.3 as

Vi =
p ∈ R2

∣∣∣∣∣
(
p− pi + pj

2

)ᵀ

(pj − pi) ≤ 0, ∀j 6= i

 , (2.5)

The safety radius is also important to define the Buffered Voronoi Cell (BVC) (see

Figure 2.4):

Definition 2 (Buffered Voronoi Cell) For the set of points in a 2D plane R2 from
Definition 1 and given a safety radius r ∈ R, the Buffered Voronoi Cell (BVC) of the ith
point of this set is defined as

V i =
p ∈ R2

∣∣∣∣∣
(
p− pi + pj

2

)ᵀ

pij + r‖pij‖ ≤ 0,∀j 6= i

 . (2.6)

BVC tries to take into account the physical size of robots. For this, the boundary of its

Voronoi cell needs to compress by a safety radius. Some properties of BVC are described

in the following lemma:

Lemma 1 (Properties of Buffered Voronoi Cell) For a set of n points with safety
radius rs we have:

(i) V i ⊂ Vi,
(ii) ∀p′j ∈ Vj, i 6= j, ‖p′i − p′j‖ ≥ 2rs,
(iii) V i ∩ Vj = ∅,∀i 6= j.

The demonstration is also explained in the work of Zhou et al [18].

2.3 QP-Based RHC Algorithm

The explanation below is based on the work of Mattingley et al [19].

The Quadratic Programming Based Algorithm has its foundations on the Receding

Horizon Control (RHC), also known as Model Predictive Control (MPC), a feedback con-

trol technique that became popular in the 1980s [20, 21]. RHC applications include various

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

practical scenarios, such as industrial and chemical process control, supply chain manage-

ment, stochastic control in economics and finance, revenue management, hybrid vehicles,

automotive and aerospace applications.

With RHC, an optimization problem is solved at each time step to determine a plan

of action over a fixed time horizon. Then, the first input from this plan is applied to the

system. Next time we repeat the planning process, solving a new optimization problem

with the time horizon shifted one step forward. The optimization problem takes into

account estimates of future quantities based on available information at each time step.

The control policy involves feedback since real-time measurements are used to determine

the control input.

2.3.1 Receding Horizon Control

The RHC procedure works as follows. At time t, we consider a time interval extending T

steps into the future. t, t+ 1, · · · , t+ T . We then carry out the following steps:

1. Form a predictive model. Replace all uncertain quantities over the time interval

with their current estimates using information available at time t.

2. Optimize. The RHC optimization problem takes the form

Problem 1 (Receding Horizon Control Problem)

minimize 1
T + 1

t+T∑
τ=t

l̂τ |t (x̂τ , ûτ) (2.7)

subject to:

(i) x̂τ+1 = Âτ |tx̂τ + B̂τ |tûτ + ĉτ |t , τ = t, · · · , t+ T,

(ii) (x̂τ , ûτ) ∈ Ĉτ |t , τ = t, · · · , t+ T,
(iii) x̂t = x̂t|t,

with variables x̂t, · · · , x̂t+T+1 and ût, · · · , ût+T+1. The objective in problem 1 is a

finite-horizon approximation of the infinite-horizon cost function J. In problem 1, we

pretend to minimize the estimated objective over the time interval t, t+ 1, · · · , t+T ,

subject to the estimated dynamics and constraints. The parameters in this RHC

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

optimization problem are the estimates Âτ |t, B̂τ |t, ĉτ |t, Ĉτ |t, l̂τ |t for τ = t, · · · , t+T , and

the current state estimate x̂t|t. The optimal input trajectory of the RHC optimization

problem 1, ût′, · · · , ût+T ′, is a plan of action for the next T steps.

3. Execute. We then choose ut = ut′ to be the RHC input. At the next time step, the

process is repeated, with updated estimates of the current state and future quantities.

We assume that Ĉt and l̂t are convex, which means that the RHC problem 1 is a convex

optimization problem and can be solved using convex optimization tools. Furthermore,

problems with nonconvex objectives and constraints can often be handled using sequential

convex optimization, where a sequence of convex problems is solved to find local solutions

to the nonconvex problem.

For some applications, constraints on the state variables can lead to an infeasible RHC

optimization problem. This problem can occur if an unexpected disturbance affects the

system, in which case there may not exist any control policy that keeps the system within

the constraints. Infeasibility can also occur if the estimated system parameters are inaccu-

rate so that the RHC optimization problem does not reflect the correct system behavior.

There are various ways to deal with infeasibility. One strategy is to apply the planned con-

trol input from the previous time step. Another method is to allow constraint violations

but penalizes them in the objective function. These constraints are referred to as soft con-

straints instead of the original hard constraints, which cannot be violated. Typically, the

softened constraints are constraints on the state variables for which some violation may be

acceptable. For example, input constraints, such as actuator limits and trading budgets,

usually cannot be violated. Various methods exist for deciding which constraints to relax,

based on importance rankings. Although we cannot guarantee that these methods recover

feasibility in future time steps, they allow the controller to compute an acceptable control

input when infeasibilities occur.

The RHC policy is not optimal except in exceptional cases. In RHC, we replace the

infinite horizon average cost J with a finite horizon approximation and uncertain quantities

with their estimates. We do not solve the controller design problem, an infinite-dimensional

nonconvex problem, and is usually intractable. Thus, RHC may not achieve the minimum

possible average cost among policies that respect the constraints. Instead, RHC is a so-

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

phisticated heuristic, as demonstrated in various applications [19].

2.4 Analytical Geometric Algorithm

This algorithm is a simplification of the QP-Based CA Algorithm described in Section 2.3

The QP Receding Horizon Path Planning in Section 2.3 generates a control policy

optimal over the planning horizon at the expense of solving a QP problem online at each

time step. Furthermore, we can solve the QP with an Analytical Geometric Algorithm for

the particular case of no intermediate cost terms, which executes much faster than the QP,

while CA is still guaranteed.

Consider the case where the intermediate state and the control input costs are equal to

zero, and the terminal cost exists. However, all the constraints of the optimization problem

are the same. This simplification can be considered as a one-step greedy strategy that drives

the robot to move to its goal position as soon as possible. With this simplification, the

moving object should direct towards a point in the convex polygon borders closest to its

goal position. This particular geometric case is almost an algorithm for avoiding collisions

as a part of a more extensive swarm guidance algorithm [22].

2.5 Optimal Reciprocal Collision Avoidance Algorithm

The explanation below is based on the article Optimal Reciprocal Collision Avoidance for

Multi-Agent Navigation [2].

2.5.1 Reciprocal n-body Collision Avoidance Problem

The basis of the Optimal Reciprocal Collision Avoidance is the problem of reciprocal n-body

CA consists of avoiding collisions among multiple decision-making entities. This problem

is defined as follows. Let there be a set of n disc-shaped robots sharing an environment.

Each robot A has a current position pA, a current velocity vA, and a radius rA. These

parameters are part of the external state of the robot, i.e., we assume that other robots

can observe them, as we can see in Figure 2.5 (a). Furthermore, each robot has a maximum

speed vmaxA and a preferred velocity vprefA , which is the velocity the robot would assume

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

had no other robots been in its way (for instance, a velocity directed towards the goal of

the robot with a magnitude equal to the preferred speed of the robot). Again, we consider

these parameters part of the internal state of the robot and can not be observed by other

robots.

The task is for each robot A to independently (and new simultaneously) select a new

velocity vnewA for itself such that all robots are guaranteed to be collision-free for at least

a preset amount of time r when they would continue to move at their new velocity. As

a secondary objective, the robots should select their new velocity as close as possible to

their preferred velocity. The robots cannot communicate with each other and can only use

observations of the current position and velocity of the other robot. However, each robot

may assume that the other robots use the same strategy to select a new velocity. Note that

this problem cannot be solved using central coordination, as the robot itself only knows

the preferred velocity of each robot.

2.5.2 Preliminaries

For two robots A and B, the relative velocity ~vB|A (also ~vBA or ~vB rel A) is the velocity of

B in the rest frame of A. In this way, the velocity obstacle V Oτ
A|B for A induced by B

in a time window τ is the set of all relative velocities of A concerning B that results in

collisions between both robots before time τ . It is formally defined as follows. Let D(p, r)

denote an open disc of radius r centered at p:

D(p, r) = {q|‖q − p‖ < r}, (2.8)

then:

V Oτ
A|B = {v|∃t ∈ [0, τ] defined by tv ∈ D(pB − pA, rA + rB)}. (2.9)

The geometric interpretation of velocity obstacles is shown in Fig. 1(b). Note that V Oτ
A|B

and V Oτ
B|A are symmetric in the origin.

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

B

A

0

(a) A configuration of two robots A and B (b) The velocity obstacle

Figure 2.5: Geometrical interpretation for ORCA. Source: [2].

2.5.3 Optimal Reciprocal Collision Avoidance Definitions

The explanation below is based on the article A Novel Collision-Free Navigation Approach

for Multiple Nonholonomic Robots Based on ORCA and Linear MPC [23].

Let voptA and voptB be the optimization velocities of A and B, respectively. Nominally,

the optimization velocities are equal to the current velocities, such that the robots have to

deviate as little as possible from their current trajectories to avoid collisions. Let ∂V Oτ
A|B

the velocity obstacle in the boundary of its respective open disc, and u be the vector from

voptA − v
opt
B to the closest point on the boundary of the velocity obstacle:

u =

 argmin
v∈∂V Oτ

A|B

‖v − (voptA − v
opt
B)‖

− (voptA − v
opt
B), (2.10)

and let n be the outward normal of the boundary of V Oτ
A|B at point (voptA − voptB) − u.

Consequently, u is the smallest change required to the relative velocity of A and B to avert

collision with τ time. The increment 1
2u means that agent A takes half the responsibility

of avoiding potential collision with agent B, while the remaining half is taken by agent B

to share the responsibility of avoiding collisions among the robots in a fair way. Hence,

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the set ORCAτA|B of permitted velocities for A is the half-plane pointing in the direction

n of starting at the point voptA + (1/2)u. More formally:

ORCAτA|B =
v|

v − (voptA + 1
2u
)n ≥ 0

 . (2.11)

This set is illustrated in Figure 2.5 (b). By this definition, the chosen new relative velocities

do not enter V Oτ
A|B, and consequently the velocities of the agent can be smoothed.

Each robot A performs a continuous cycle of sensing and acting with time step δt.

In each iteration, the robot acquires the radius, the current position, and the current

optimization velocity of the other robots. Based on this information, the robot infers the

permitted half-plane of velocities ORCAτA|B for each robot B. Thus, the set of ORCA

velocities for agent A for all robots is the intersection of the half-planes of ORCAτA|B
induced by each other robot B:

ORCAτA = D(0, vmaxA) ∩
⋂
B 6=A

ORCAτA|B. (2.12)

Note that D(0, vmaxA) includes the maximum speed constraint on the robot A.

At last, the new velocity vnewA is selected from ORCAτA, which is the closest to its

preferred velocity vprefA amongst all velocities inside the region of permitted velocities:

vnewA = argmin
v∈ORCAτA

‖v − vprefA ‖. (2.13)

If the ORCA algorithm only uses a simple robot model, then the kinematics are ignored.

Consequently, the robot reaches its new position:

pnewA = pA + vnewA δt (2.14)

2.6 Multi-agent Navigation

Generating plans is a crucial problem in multi-agent collaboration, a highly active field

of research, and numerous approaches have been proposed over time. An important task

is developing decision-theoretic methods to have frameworks to describe, analyze, and

understand planning strategies. We can categorize the systems based on the different

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

views of planning approaches into two classes: centralized and decentralized.

Agent behavior is often viewed in terms of collective intentions and actions. Therefore,

a plan often describes a mapping from the states of the global system to the collective

actions of the agents. This plan specifies the troubleshooting strategy of the agents in a

unified manner. We call this a Centralized Policy (CP) for multiple agents.

In a decentralized system, the agents partially observe the global system state and make

local decisions. Thus, the planned mapping from local knowledge to local actions is called

a Decentralized Policy (DP) for multi-agent. Clearly, in this decentralized view, each agent

needs its own DP, unlike in the centralized view where one CP specifies the joint actions

of the agents [3].

2.6.1 Centralized Policies

In decision-theoretic terms, a multi-agent Markov decision process model can describe the

centralized view of the system. In this way, a standard Markov decision process consists

of a set of global states S, a set of joint actions A (each joint action specifies one action

for each agent), a transition probability matrix Pr(s′|s, a) ,the probability that the system

moves from state s to state s′ after joint action a, and a reward function r(s) that specifies

the global utility received when the system is state s. This framework corresponds to a

computational model where at any stage t, the system is described through its current

global state s, which is made up of the current local states of the agents. The system then

takes a joint action and evolves into one of the possible following global states based on

completing the joint action. In this framework, a CP, a mapping from global states to

joint actions, is precisely a policy for a Markov decision process. Figure 2.6 shows how

problem-solving is carried out under such a policy (in a two-agent system with agents X

and Y). The expected utility of the CP can be calculated using standard policy evaluation

algorithms for Markov decision processes.

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Global state

Joint action:

X’s action
Y’s action

Next global state

Next global state

Next global state

.

.

.

Centralized policy

Figure 2.6: Centralized view and policy. Source: [3].

2.6.2 Decentralized Policies

In the decentralized view, an agent cannot see the local states of other agents and local

actions and has to decide the following local action on its own. Thus, each agent has

a partial view of the global state of the system, and different agents have partial views.

However, of course, this does not necessarily mean that the agents are isolated. Instead,

an essential ability of decentralized cooperative agents is their ability to communicate.

Communication expands an agent’s partial view by exchanging local information not

observed by other agents. So, communication is the action of agents updating each other

with local state information and thus collectively discovering the current global state. In

other words, the agents synchronize themselves so that they all observe the current global

state. Therefore, a DP must deal with communication explicitly, mainly when commu-

nication incurs a cost or when continuous communication is not feasible. The system is

modeled by each agent having an individual state space, its own local action set, and local

state transition probability measure but uses a global reward function to connect the effects

of the actions in the agents. Thus, it is not a standard Markov decision process. However,

the DP under this framework now also explicitly includes communication decisions. Specif-

ically, the DP should define what local action to take based on the current local knowledge

of the agent, but also whether a communication is needed after its local action is com-

pleted. Typically, such decisions are based not only on current local state information but

also on the history of the agent, including past states and past communications.

Figure 2.7 shows the computation model under this decentralized view: at any stage

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

t, each agent first decides what local action to take (per the DP). Then, decides whether

there is a need for communication when the action finishes. Next, the agents enter a sub-

stage where all communications occur (if any). Finally, when the communication sub-stage

finishes, each agent enters the next stage with an updated set of local knowledge (one of

several possible local knowledge sets based on the outcomes of actions in both agents).

X’s local
knowledge

X’s action and
communication

X’s next local
knowledge

X’s next local
knowledge

.

.

.

X’s local policy

.

.

.

X’s next local
knowledge

Y’s next local
knowledge

Y’s next local
knowledge

Y’s next local
knowledge

Y’s local
knowledge

Y’s action and
communication

Y’s local policy

C
om

m
un

ic
at

io
n

Figure 2.7: Decentralized view and policy. Source: [3].

The fundamental difference between CP and DP is how the agents relate to the global

state of the environment. In this way, CP assumes the global state as a starting point,

while the agents in DP do not. As a result, DP must deal with communication decisions

and historical information, making it more complex than CP. However, most multi-agent

systems are distributed in nature, and the agents are generally autonomous, meaning that

each agent is a decision-maker for itself. Therefore, a centralized view simplifies information

management (for example, assuming agents see the big picture instead of the partial view),

imposing some solid assumptions or unique mechanisms to ensure the observability of the

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

state of the global system. On the other hand, if a decentralized vision is adopted, the

objective is to develop agents with partial visions that can carry out actions effectively and

implement cooperative problem-solving strategies.

Of course, this does not mean that centralized policies are invalid. On the contrary,

CP and DP are related. For example, decentralized models have an advantage in their

power to represent reality, but at the same time, they have complex handling of informa-

tion. Generally, solving a standard Markov decision process is of PSPACE complexity, but

solving a decentralized Markov decision process is of NEXP time complexity, a class of

higher complexity. As a result, heuristic approaches and approximation methods for devel-

oping PD are essential. On the other hand, CP is easier to solve, and there are systematic

methods to obtain them. So it is very convenient to find ways to derive DP directly from

CP.

Information Technology Engineer 22 Graduation Project

Chapter 3

State of the Art

The information presented in this chapter was based on the reviews of González et al. [24],

Hamid et al. [1], and Dahl et al. [4].

3.1 Threat Assessment Strategies

Accurate deterministic prediction for moving objects uses model-based state propagation,

perfect measurements, and a complete understanding of the intention of each mobile. In

reality, perfect results of calculations rarely appear, so simplifications in formulating the

problem are necessary. For example, it is reasonable to assume that vehicles continue to

follow the current route for a specific time. Another simplification is to assume that the

measurement data is free of noise. Therefore, using reasonable simplifications, the Threat

Assessment problem can be rephrased using Threat Metrics (TM) based on the unique

future behaviors of different traffic participants. The metrics we use are Time To Collision

(TTC) and Distance-based [1].

3.1.1 Time-to-Collision

A widely used TM is Time-to-Collision (TTC) between two objects. The TTC values are

thresholds that decide whether to enable a warning or automatic intervention [25, 26, 27].

The most used calculation is to divide the distance to the closest object by the relative

speed. Also, Jansson [28] proposed a more general definition of TTC where he uses relative

distance and relative velocity, given a constant relative acceleration. Moreover, Falcone et

al. [29] used Time-to-Lane Crossing (TLC) for lane departure warning systems.

23

School of Mathematical and Computational Sciences Yachay Tech University

Different authors have also proposed several similar metrics. For instance, the Inverse

TTC (ITTC) increases with collision risk [30]. In the work of Kiefer et al., [31] the ITTC

concept derives a forward-collision warning system based on experimental data on maneu-

vers involving last-second braking and steering.

As an alternative to TTC, Noh and Han [32] introduce Inter-Vehicle-Time (IVT), de-

fined as the time of a mobile, given the current mobile’s velocity, to travel the distance

equal to the relative distance obstacle ahead. Thus, a short relative distance and a high

mobile velocity yield a low IVT time. An essential difference between the IVT and TTC

is that IVT is calculated based on the host’s velocity, while TTC is calculated based on

the relative velocity. Hence, as highlighted by Noh and Han, IVT is a good complement

in situations where the TTC metric falls short in identifying the threat. For example,

when two vehicles are traveling at the same velocity but close to each other, TTC attains

large values even though the situation is hazardous. Another relevant TM is the Time-to-

Manoeuvre (TTM) (also referred to as Time-to-X), which is the time waiting to initialize

an automated maneuver to avoid a collision, e.g., Time-to-Brake (TTB), Time-to-Steer

(TTS), and Time-to-Kickdown (TTK).

Moreover, Time-to-React (TTR) defines the last point in time at which an evasive

trajectory still exists. For instance, Sontges et al. [33] have used a set-based approach to

determine TTR. On the other hand, Tamke et al. [34] present another approach where

a modified binary search algorithm computes approximated values for different TTMs to

derive the TTR for multiple object scenarios.

3.1.2 Distance Domain

The disadvantage of TTC, which does not consider the obstacle’s exact dimension risk

in its calculation, is resolved by the safe distance-based TAS. The idea of a safe distance

threshold is to have an invisible safe region boundary around an obstacle, regardless of

its dimension [35, 36, 37]. A commonly used distance-based metric is the Minimal Safe

Distance (MSD), defined as the minimum distance between the host and the obstacle [32].

This metric aims at situations where spatial margins are essential, e.g., when queuing at

a traffic light or in a traffic jam. Ali et al. [36] constrain the distances from each vehicle

edge to the obstacle’s center of gravity to create an imaginary rectangular safe region. It

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

is considered the threshold and must be below a specific value for the CA maneuver to be

activated. However, the drawback of this strategy is evident when avoiding more significant

obstacles. It does not provide sufficient information to output an optimal re-planned path.

Nevertheless, this method, like TTC and other TAS methods, ensures a timely CA

maneuver activation. For example, Brunson et al. [38] described Time Headway (TH), a

combination of time and distance-based TAS measurement. They calculated the range of

two vehicles and divided it by the host vehicle speed. However, as in previous cases, it does

not ensure the best timing for the CA maneuver to be taken [39]. The main disadvantage

of TH is that it oversimplifies the traffic scenario by only considering the vehicles traveling

at the same consistent speed. On the other hand, by uniting the time domain with the

distance, we can obtain the speed multidomain, which is used mainly for multi-agents in

motion. In the following subsection, we discuss it along with other approaches.

3.1.3 Multi-Domain

In complex scenarios, however, a single Threat Metric may not be enough to characterize a

situation thoroughly, and therefore multiple Threat Metrics may be needed. For example,

let a scenario consist of two vehicles traveling next to each other with approximately the

same velocity. With only Time-To-Collision, the threat level is low even if the inter-vehicle

distance decreases to a minimum. Hence, Noh and Han [32] proposed using a combination

of Threat Metrics like Time-To-Collision, Inter-Vehicle-Time, and Minimal Safe Distance

to reflect better the current threat level. As research progresses in this area, implementa-

tions of a more complex CA architecture appear that provide TAS action combined with

Path Planning Strategies [40, 41]. For example, Bauer et al. [40] combined the vehicle

environment information with the trajectory planning strategies to output a safety corridor

for the trajectory re-planning action. In addition, Balachandran et al. [41] provide a com-

bined warning and overriding system that proposes haptic feedback to the driver before

the CA maneuver occurs. Though it has many advantages, the aforementioned unified

method needs precise model information and future prediction of the states.

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

3.1.4 Optimization Methods

Dynamic optimization has become a standard tool for decision-making in many practical

problems and a wide range of areas. For example: providing fuel-efficient cell systems [42],

sustainable energy systems with optimization techniques in power generation [43], or new

mathematical modeling techniques [44]. A popular optimization framework widely used in

the literature is Model Predictive Control (MPC). While optimization-based approaches

may often require high computation power, it is possible in some cases to leverage the

structure of the problem to retrieve an explicit control law, as we present in this work with

the Analytical Geometrical Algorithm. This action can allow off-line pre-computation

of the explicit feedback policies, reducing the online computation in Receding Horizon

Control setup to a function evaluation, therefore avoiding the online solution of complex

optimization programs. This characteristic is of particular interest for safety-critical and

time-critical constrained applications such as automotive threat-assessment algorithms [45]

[46].

The MPC-based methods can assess the threat level for forwarding CA, i.e., another

mobile is ahead [47, 48]. In practice, especially for non-holonomic mobiles, the solution

violates some of the constraints, as relaxing the problem’s hard constraints guarantees

the feasibility of the MPC problem. For example, the lateral acceleration metric combines

with a different metric to cope with more complex situations. Then, the number of violated

constraints is defined, such that an intervention is only triggered if the level of violation of

the constraints or the lateral acceleration exceeds a given threshold. Gray et al. combined

a look-ahead driver and a vehicle model and used an MPC controller to compute the mini-

mum steering action necessary to avoid an obstacle [49]. Such uncertainties are considered

probabilistic constraints to cope with modeling uncertainties on the driver’s behavior. By

computing an upper bound on the uncertainties’ deviation, the constraints on the MPC

problem can be refined according to, which yields a robust control scheme.

Gutjahr and Werling [50] proposed a grid occupancy and optimization-based method

to find the optimal braking point for collision avoidance at low speeds, e.g., parking ap-

plications. Hult et al. [51] leveraged the structure of the problem in order to derive a

hierarchical decomposition of the original optimization problem separating the central co-

Information Technology Engineer 26 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

ordination problem from the local optimal control problems on each vehicle for conflict

resolution at traffic intersections. As a result, the authors claim to reduce demands on

computational capabilities and information exchange significantly. More precisely, assum-

ing that vehicles are following a predefined path through the intersection, the combinatorial

part of the problem (i.e., defining the vehicle crossing order and collision-free time slots

that are feasible under the vehicle dynamics and physical constraints) is separated from the

problem of finding the appropriate control inputs for a given crossing order. Based on this

decomposition, Hult et al. [52] focused later on the properties of the underlying coordina-

tion problem. First, the authors formulated a finite-time optimal control problem. Next,

they proposed a primal decomposition, showing that standard sequential quadratic pro-

gramming efficiently tackles the problem such that most computations can be performed

in a distributed manner by the vehicles. Finally, Zanon et al. [53] tried to tackle some

of the communication aspects of a distributed Sequential Quadratic Programming (SQP)

framework for solving the optimization problem. To reduce the communication time and

burden, the authors proposed an asynchronous algorithm where the sensitivity of the op-

timal control problem is only updated for a subset of all agents at each step and show

how one can decide on this subset of agents to optimize the contraction properties of the

algorithm.

3.2 Path Planning Strategies

Intelligent vehicle development was minimal before the 90’s because of reduced investments

in the field [54]. The Intelligent Transportation Systems (ITS) concept was born from the

evolution of information technology applicable to vehicle automation. Different research

centers worldwide focus on this end (e.g., California PATH, Parma University, among

others), improving intelligent vehicle systems.

Shladover et al. [54] and Behringer and Muller [55] describe the first automated vehi-

cles, dating back to the transition between the ’80s and ’90s. So, Shladover et al. describe

longitudinal control systems (including vehicle the following control, inter-vehicular com-

munications and a comparison between different methods), and lateral control systems

(considering lateral vehicle dynamics and magnetic sensors as path reference with no path

Information Technology Engineer 27 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

planning involved) in order to improve the Advance Highway Systems (AHS). Finally,

Behringer and Muller described the architecture proposed for the VaMoRs-L vehicle in

the PROMETHEUS project, which could perform automated driving, aided by vision and

path generation algorithms.

Following these first implementations, different control architectures appear for auto-

mated driving. Path planning in mobile robotics has been a subject of study for the last

decades. Most of the authors divide the problem into global and local planning [56] [57]

[58]. Many navigation techniques have been taken from mobile robotics and modified to

face the challenges of road networks and driving rules. According to their implementation

in automated driving, these planning techniques belong to any of these four groups: graph

search, sampling, interpolating, and numerical optimization.

3.2.1 Optimization-based Approach

This method group is developed due to observations of the navigation behavior from ani-

mals. The Particle Swarm Optimization (PSO) method is one of the algorithms which fall

under this category [59, 60]. It contains part of the evolutionary computation and relates

to the genetic algorithms. This method creates a collision-free path in configuration space

by connecting surrounding random nodes. In this sense, Saska et al. [61] configure the

robot to use the PSO method combined with Ferguson Splines (one of the Spline-Based

Approaches). Thus, the PSO has the potential to manage minimal local problems. Along

with his team at AutoNOMOS Project, Rotter has applied the swarm behavior concept

for PP of an autonomous vehicle [62]. The implementation includes selecting swarm mem-

bers, velocity matching, path planning based on the trajectories of the swarm members,

data abstraction from each swarm member to generate clustered data, cluster-based path

planning, and finally smoothing the re-planned trajectory with linear regression [62, 63].

This approach is helpful in urban driving, especially in heavy traffic, where each position

of the vehicles in the current moment can be considered a swarm member to generate a

collision-escaping path. This consideration finally creates a collision-free path for each of

the swarm members in the trajectory. One of the drawbacks of the PSO method is that

the data may have become obsolete at a particular time [62]. Consider a situation where

a vehicle is trapped in a traffic jam for a long time. The data may become worn out

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

due to the long waiting time where the surrounding environment of the host vehicle is

different from the frontal swarm members, which might have already escaped the heavy

traffic congestion. Future researchers must consider this before utilizing this approach by

considering an advanced path planning plan.

The following method of this approach is Rapidly-Exploring Random Tree (RRT) [64].

RRT is fast becoming a favorite with researchers since its introduction. Reduces compu-

tational cost by finding the trajectory to prevent collisions without knowing details about

environments and obstacles. The reason is that it is a sampling-based algorithm [65]. How-

ever, RRT is not adequate to solve obstacle avoidance problems because it does not ensure

asymptotic optimality [65, 66]. Gong wrote about the fundamental of RRT [67]. In this

way, RRT depicts the environment of a vehicle as to the configuration space with a tree.

Then, the current vehicle trajectory is re-planned by fulfilling the constraints computed

with several differential equations. These newly re-planned paths allow the vehicle and

robot to avoid obstacles by utilizing the combined information between the environments

and several optimization mechanisms [64].

3.2.2 Geometrical-based Approach

One example of a geometrical algorithm approach is the visibility graph, also known as

road-mapping path planning [68]. It is a method that consists of a graph of various

locations, e.g., a set of positions, obstacles, and targets. The graph contains nodes that

symbolize the robot and obstacle (point) locations, and these nodes are connected where

their connection is called edge. The motivation is to find the shortest path to the goal for

the robot to cross it in case an obstacle appears on the plane. The path can be built by

connecting all the edges present from the start point to the end. The connection is not

made if an obstacle exists between or in the middle of two edges (points). Thus, if the

resulting path exists, it does not collide with any obstacle.

Therefore, theoretically, this is an excellent method for an obstacle avoidance system

[69]. However, the biggest drawback of this algorithm is the routes created by this group

of methods. For example, the visibility graph method is not collision-free as the routes

could still contact the edges of obstacles [70]. This disadvantage is quite similar to the

follow-the-carrot situation [71]. Besides, if this method is implemented for vehicle CA, it

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

is not safe as it does not consider the safe distance from other vehicles.

In this approach, notable examples of algorithms are the three-dimensional geometric

algorithm [72], the probabilistic roadmap [64], Voronoi diagram-based roadmap [73].

3.3 Multi-agent Navigation

One of the critical challenges that a group of mobile agents, such as service robots or video

game characters, face in a shared environment is arriving at their target locations while

avoiding collisions with the obstacles and each other. In general, two approaches to solve

the multi-agent navigation problem can be identified: centralized and decentralized.

3.3.1 Centralized Control

Centralized approaches assume that a central controller possesses all the information about

the agents and the environment and can communicate with the agents. The centralization

of the external information of each agent in motion may be due to individual sensory

limitations and the ease that it would entail to collect information about the movement of

the agents. On the other hand, the centralization of information facilitates optimization

problems, which could also be carried out individually. For example, the controller creates

a joint collision-free plan and then lets the agents execute it.

One of the main advantages of such an approach is solid theoretical guarantees, as

proposed by Jankovic and Santillo [74]. Their work is carried out on the analysis of

Control Barrier Functions, a model-based feedback control method that can be formulated

as a quadratic program (QP) and solved online using real-time capable solvers. However,

at the same time, they used a decentralized variant called Complete Constraint Set to

analyze differences in performance.

3.3.2 Decentralized Control

Collisions are typically avoided reactively when agents have limited communication and

sensory capabilities in decentralized settings, relying on local observations/communica-

tions. Deadlocks are likely to occur in numerous scenarios involving navigation through

tight passages or confined spaces due to the egoistic behavior of the agents, and as a result,

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the latter can not achieve their goals. To this end, Dergachev and Yakovlev [75] apply the

locally confined Multi-Agent Path Finding (MAPF) solvers that coordinate sub-groups of

the agents that appear to be in a deadlock. Furthermore, they present a way to build a

grid-based MAPF instance, typically required by modern MAPF solvers.

Recently, Velagapudi et al. [76] presented a decentralized version of the prioritized

planning technique for teams of mobile robots, which can utilize the distributed computa-

tional resources to reduce the time needed to find a solution. However, since the algorithm

proceeds in globally synchronized rounds, faster-computing robots have to wait at the end

of each round for the longest-computing robot, and thus the distributed computational

power may not be used efficiently.

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 32 Graduation Project

Chapter 4

Methodology

This chapter presents the procedures implemented to reach the objectives, together with

a justification for their use. In that way, this chapter starts with an explanation of the

chronological phases for problem resolution. Then, we present the model proposal, which

includes the construction of the Voronoi Diagram, the implementation of the Analytical Ge-

ometrical Algorithm (AGA), the Quadratic Programming (QP) based Receding Horizons

Control (RHC) Algorithm and the Optimal Reciprocal CA (ORCA) Algorithm. Finally,

we describe the data sets and the methods for analyzing the results.

4.1 Phases of Problem Solving

The Figure 4.1 shows the work-flow which had been taken to perform this project.

33

School of Mathematical and Computational Sciences Yachay Tech University

Work-Flow Definition

Problem Definition

Problem AnalysisProblem Description
Model Proposal

Definition

Software
Specification

Testing
Environment
Configuration

Data Generation Methods

Analysis Methods

Literature Review

State of the Art

Implementation

Codification

Visualization

Algorithm Design

AGA

QP-Based RHC

ORCA

Figure 4.1: Phases of problem solving

4.1.1 Description of the Problem

This phase acts as a basis for the development of the project because it presents the general

and specific objectives, the derived problems, and how to approach them. In this way, we

define CA and its general characteristics. Then we detect limitations in the implemen-

tations, such as the execution time and the number of steps until the system converges.

Subsequently, we define a model proposal to address this problem. To do this, we define

an incremental technique to design and code the geometric structures and algorithms pro-

gressively. This style helped detect errors quickly. Chapters 1 and 4 consolidate the steps

mentioned in this phase.

4.1.2 Analysis of the Problem

This phase consists in approaching the background and fundamental knowledge to under-

stand CA. In this way, we can propose a more consistent simulation model. Chapters 2

and 4 contain the essential information in a systematic and orderly way. In Chapter 1, we

analyze the CA problem, the generation of the Voronoi Diagram, and the CA algorithms.

In this sense, we decided to approach the CA problem using the most common architecture

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

and two of its three sub-modules: Threat Assessment and Path Planning. We decided not

to include Path Thracking due to the nature of the simulation and the absence of physical

elements. In Chapter 2, we describe the state of art in CA. Finally, we decided on the

hardware and software specifications for the simulation.

4.1.3 Algorithm Design

This phase approaches the different alternatives of the model proposal. The algorithms

selected to analyze were the AGA, the QP-based RHC, and the ORCA. The explanation

of these algorithms appears in Chapter 3 and Section 4.2.

4.1.4 Implementation

This phase consists of planning and executing the coding of the proposed model. We de-

cided to use the Python programming language due to its functionality and widespread use

in scientific computing. Therefore, the selected development environment was Anaconda,

a complete and robust platform. On the other hand, Cython is the language in which the

ORCA algorithm is implemented.

4.1.5 Testing

This phase focuses on measuring and analyzing the performance of the proposed model

and the algorithm to be compared. In this way, we test the satisfactory construction of

the Voronoi Diagram. Subsequently, we test the performance of the AGA parameters to

define our final optimal proposal, both in AGA as QP-based RCH algorithm, and compare

it with the ORCA algorithm. To do this, we had to establish how to generate the data

for experimentation. Finally, the evaluation of results considers some techniques to obtain

information about their performance. Details of all these steps appear in Section 4.4.

4.2 Model Proposal

We propose a simulation based on CA algorithms in a two-dimensional multi-robot envi-

ronment. The simulation uses Voronoi Diagram as part of its TAS. Also, the PPS contains

AGA or the QP-based RHC algorithm. Therefore, we take some heuristics as PTS. On

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the other hand, the QP-based RHC algorithm is similar to AGA: both implementations

converge according to the variation of the input parameters, but with the difference that it

has a solver for the QP problem. Furthermore, all the simulation is centralized. Finally, the

comparison of the performance of both implemented algorithms with the ORCA algorithm

allows us to determine the performance of the proposal.

4.2.1 Two-Dimensional Environment

The environment is represented by a two-dimensional Cartesian plane. This environment

has several characteristics, which are listed below:

• Both main axes contain the real set of numbers for the generation of coordinates.

• The position of the robots is any real coordinate along the execution of the imple-

mentations. The established restrictions of movement constrain the positions. In the

same way, the Voronoi vertices belong to real two-dimensional space.

• The initial and final positions of the simulated robots form a circular figure, the

center of which is at the point (0, 0).

• The initial position of the robot with its respective final position is antipodal.

• Let N be the number of robots, the distance d from each initial and final position to

(0,0) is equal to:

d =
(
4×
√
N
)

+ δ, δ ∈
[
− 1

0.4×N , 0
)
.

The formula of the distance is selected to generate configurations similar to the work

of Zhou et al. [18].

• The construction of the Voronoi Diagram follows the mathematical guidelines pre-

sented in Section 2.2.

• There exist an approximation for Voronoi infinity vertices for practical purposes.

The magnitude generated for their respective infinity edges is equal to 20 times the

number of simulated robots, i. e. if there exist five robots, then the magnitude is

equal to 100.

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• There are no static obstacles or passages, just moving robots that can be defined as

reciprocal obstacles.

• The precision of the numeric values depends on the programming language. In this

case, it depends on Python.

4.2.2 Heuristics to deal with Deadlock

Deadlock is an imminent problem in CA. Deadlock happens when some robots block the

paths of each other so that they cannot reach their goal. For those robots whose goal

positions are not inside their own Buffered Voronoi Cells (BVCs), in a deadlock situation,

each robot must be at the closest point to the goal position on its BVC. The closest point

in the BVC of robot i, g∗i , to the goal pi,f , must be either at a vertex, or on an edge such

that a line from pi,f to g∗i is perpendicular to this edge.

No existing algorithm can provably avoid deadlock without central computation to our

best knowledge. Most distributed algorithms attempt to alleviate the problem through

sensible heuristics. Similarly, we propose two heuristic that perform well in practice to

solve deadlock. At the same time, we establish a deadlock threshold value due to the

limited range of numerical data types of programming languages.

• Right-Hand Rule (Or Left-Hand Rule): Each robot always chooses to detour

from its right side when encountering other robots in deadlock situations. Figure 4.2

shows the basics of the heuristic. If the application of this heuristic causes the robot

to leave its BVC, then we prefer not to move the robot in that step. This preference

is made until the movement of other robots can break the deadlock or allow the

movement of the blocked robot.

Information Technology Engineer 37 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

deadlock tolerance

path to follow

traveled path traveled path

(a) A deadlock situation in a vertex (b) Application of right-hand rule heuristic

Figure 4.2: Dealing with deadlock through right-hand rule heuristic

• Previous Positions: Previous positions could ensure a high level of breaking dead-

lock situations, abrupt and zigzag movements. In this case, we analyzed the distance

between previous positions with the closest point in the BVC. Figure 4.3 shows how

dealing with deadlock taking into account three previous positions.

Figure 4.3: Dealing with deadlock taking into account distance of previous positions

4.2.3 Simulated Robots

The simulated robots is instantiated from a Python class with attributes detailed in Table

4.1.

Information Technology Engineer 38 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 4.1: Attributes of the class Robot

Attribute Datatype Details
bvc

List of
coordinates

List containing the BVC vertices
cell List containing the Voronoi cell vertices
closer edge List containing the coordinates of the closer edge
neighbors pos List of robots positions which are next to the agent
path List of previous positions
closer point

Coordinate
Closer point in the BVC borders

pos f Final position
pos i Current position
color Word Color name
deadlock Truth value True if agent is in deadlock situation
inside True if the final position is inside the BVC
dist total Real positive

number
Total distance from initial to final position

dist travel Distance traveled along execution
id Integer number Robot number identification
neighbors id List of id List of robots id which are next to the agent

4.2.4 Analytical Geometrical Algorithm

The algorithm works based on geometrical principles without an advanced optimization

policy. However, this algorithm served as a base for the QP-based RHC algorithm. Fur-

thermore, in this basic version, the algorithm prevents deadlock situations taking into

account the proposed heuristics. The procedure to follow is detailed below:

1. Initialize the environment together with the robots.

2. Generate the Voronoi Diagram structure for the current positions.

3. Next, check the Collision Free Configuration for initial and final positions.

4. Then, generate the BVCs structure for the current positions too.

5. Get the most closer point from each BVC to the respective final point.

6. Check deadlock situation using actual and previous positions. If it exists, then apply

the right-hand rule heuristic to the robots involved.

7. Move the robot to the closest point in its cell.

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The procedure continues until the final position is on the BVC edges or inside the cell.

Then, the robot should move directly to the final position. The explanation of Collision

Free Configuration and generation of the closest point to final in a cell mentioned in the

procedure is below.

• Collision Free Configuration. For the group of N robots with the same safety

radius r, A collision free configuration is one where the distance between positions

of robot pi and robot pj satisfies:

‖pi − pj‖ ≥ 2r,∀i, j ∈ 1, 2, · · · , N, i 6= j. (4.1)

• BVC Closest Point. Let V = (ε, e) represents a convex polygon in R2, where ε is

the set of edges and e is the set of vertices. For any point g ∈ R2, the closest point

g∗ ∈ V to g is either g itself, or on an edge ε∗ of V , or is a vertex e∗ of V .

Algorithm 1 outlines the basic AGA procedure. Algorithm 1 outlines the basic AGA

procedure. The input parameters are the number of robots N , the magnitude of the safety

radius r, the magnitude of movement m in each step, the magnitude of deadlock tolerance δ,

the magnitude of movement ε to break the deadlock situation, and the number of previous

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

positions ω to evaluate if a deadlock situation exists.
Algorithm 1: Analytical Geometric

Data: N , r, m, δ, ε, ω, robots

1 if not Collision Free Config(P,r) or not Collision Free Config(G,r) then

2 Change the initial or final configuration;

3 break;

4 end

5 while not current positions = final positions do

6 vor = Generate Voronoi Diagram(P);

7 bvc = Generate BVC(P, r, vor);

8 for agent in robots list do

9 if not Final position inside BVC(agent, bvc) then

10 closest point = Minimum distance function(agent, bvc);

11 deadlock = Distance(agent, closest point) < δ;

12 cycle = 1;

13 while cycle < ω and not deadlock do

14 if Distance(agent path, closest point) < δ then

15 deadlock = true;

16 closest point = Apply right-hand heuristic(agent, bvc, ε);

17 end

18 Increment cycle in 1;

19 end

20 else

21 closest point = Move to the final position(agent)

22 end

23 P = Move the robot to its closest point(agent, closest point, m);

24 end

25 end

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2.5 QP-based RHC Algorithm

Until now, with the AGA, the robot computes at each step its BVC, plans a path within its

cell using basic geometric definitions, then moves along that path according to a magnitude.

The robot position, BVC, and planned path evolve together throughout the execution of the

algorithm. The next step in our work is implement the QP-based RHC algorithm. Based on

the Subsection 2.3.1 and the work of Zhou et al. [18], we propose the following optimization

model: assume a planning horizon with T steps, and for robot i at each time instance, we

denote the positions of the planned trajectory as pi,1, pi,2 , ... , pi,T ,∀i ∈ {1, 2, ..., N}, where

N is the number of robots moving in the environment. The algorithm requires each robot

to solve a QP problem at each implementation step, e.g., for robot i, the optimal value

pi,T inside its BVC concerning to the its final position is given by solving the following QP

problem:

Problem 2 (Receding Horizon Path Planning)

min
p1,...,pT

Ji =
T−1∑
t=0

((
pi,t − pi,f

)ᵀ
Q
(
pi,t − pi,f

)
+ uᵀi,tRui,t

)
+
(
pi,T − pi,f

)ᵀ
Qf

(
pi,T − pi,f

)
(4.2)

subject to:

(i) pi,t+1 = Api,t +Bui,t, t = 0, · · · , T − 1,
(ii) pi,t ∈ Vi, t = 1, · · · , T − 1,
(iii) pi,0 = pi,
(iv) ‖ui,t,x‖ ≤ ux,max, t = 0, · · · , T − 1,
(v) ‖ui,t,y‖ ≤ uy,max, t = 0, · · · , T − 1.

In Problem 2, the cost function Ji is a summation of intermediate state costs and a

terminal cost. In Equation 4.2, pi,f is the final position, pi,0 to pi,T and ui,0 to ui,T−1 are

the path, and inputs to be planned, respectively. The positive definite or semi-definite

matrices Q,R, and Qf are weight factors to balance among the three costs. The decision

variables for this standard QP problem are pi,1 to pi,T . The constraint (i) ensures that

the path is feasible with the robots dynamics. In the present work, the holonomic robots

do not need to fix the matrix values because they can move in any direction, and their

velocity is the same. The constraint (ii) restrains the planned path to be inside of the

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

corresponding BVC Vi of robot i. This constraint can be written explicitly in the form of

a set of linear inequalities:

pᵀi,tεj ≤ 0, t = 1, · · · , T, j ∈ {1, · · · , N}, j 6= i, (4.3)

where εj is a vector representing an edge of Vi that separates the robot i from the robot

j. Constraint (iii) makes sure the planned positions starts from the current position of the

robot, and, finally, the lower and upper bounds for the input ui,t are written component-

wisely in constraints (iv) and (v).

The procedure is similar to the presented in Section 4.2.4 for AGA but different for

getting the optimal and closer point inside BVC. For this, we use a Python-embedded

modeling language CVXPY to solve the QP problem [77]. It allows expressing a convex

problem naturally that follows the mathematical conventions rather than in the restrictive

standard form required by solvers. The usage of CVXPY is similar to an usual Python

library. Our implementation of the solver is presented in the Appendices and in the GitHub

repository of the present work [78]. Finally, the necessary parameters for the correct

implementation of the solver are detailed below:

• External Parameters. The main input parameters are the instances created from

the robot class detailed in Subsection 4.2.3, the safety radius and the receding horizon

steps T . As the code is implemented, other secondary parameters appear to display

and debug it.

• Internal Parameters. The Table 4.2 shows the required parameters that should

be initialized using CVXPY specifications inside the code of the solver. As we can

see, these parameters are related to the cost function presented in the Equation 4.2

of the Problem 2.

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Table 4.2: Internal parameters of the QP-based RHC solver

Parameter Datatype Details
m Integer number Dimensions
A (2× 2) matrix Defines robots dynamics
B (2×m) matrix
R (m×m) positive semidefinite matrix

Balancing costsQ (2× 2) positive semidefinite matrix
Qf

p (2× T + 1) matrix Planned path
u (m× T) matrix Planned input
umax,x Real non-negative number Lower and upper bound
umax,y

As the procedure, the pseudocode is similar to Algorithm 1. For this reason, the Algorithm

2 contains the most fundamental parts of the pseudocode to solve the QP problem and get

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the closer coordinate in the robot cell to its final position.
Algorithm 2: QP Solver

Data: agent, r, T

Result: pT
1 initialize m, A, B, R, Q, Qf , p, u, umax,x, umax,y;

2 cost = 0;

3 constraints = [];

4 pi = agent initial position;

5 pf = agent final position;

6 Add to constraints(pi,0 = pi);

7 for t in range(T) do

8 Sum to cost ((pt − pf)ᵀQ(pt − pf) + uᵀtRut);

9 Add to constraints(pt+1 = Apt +But);

10 Add to constraints(‖u0,t‖ ≤ umax,x);

11 Add to constraints(‖u1,t‖ ≤ umax,y);

12 for each position of agent neighbors do

13 pj = neighbor position;

14 Add to constraints(pt − pi+pj
2

ᵀ(pj − pi) + (r ∗ ‖pj − pi‖) ≤ 0);

15 end

16 end

17 Sum to cost((pT − pf)ᵀQf (pT − pf));

18 for each position of agent neighbors do

19 pj = neighbor position;

20 Add to constraints(pT − pi+pj
2

ᵀ(pj − pi) + (r ∗ ‖pj − pi‖) ≤ 0);

21 end

22 Solve the CVXPY problem();

4.2.6 ORCA Algorithm

In this work, we use the RVO2 library as the ORCA algorithm implementation [79]. It is an

open-source implementation and has a simple API for third-party applications. In this way,

the user specifies static obstacles, agents, and the preferred velocities of the agents. The

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

simulation is performed step-by-step via a simple call to the library. Thus, the simulation

is fully accessible and manipulable during runtime. The algorithm ensures that each agent

exhibits no oscillatory behaviors.

For our purposes, we use the Cython-based Python bindings of Liu, which can be

found as a GitHub repository [80]. This variant should be installed together with all its

dependencies in an Anaconda environment. Finally, the algorithm is used in Jupyter Lab.

Our implementation of the ORCA algorithm is presented in the GitHub repository of the

present work [78].

4.3 Analysis Method

We defined the ways to study the model proposal in this subsection. A series of experi-

ments evaluate and compare the performance of the model proposed in Section 4.2. These

experiments were designed with specific research intentions:

1. Execution of pseudo-random spatial configurations of the robots positions to check

the consistency in the construction of the Voronoi Diagram.

2. Identification of suitable values for parameters in AGA and QP-Based RHC Algo-

rithm.

3. Comparison of the proposed algorithms and ORCA using the best performing AGA

and QP-Based RHC Algorithm.

We defined a set of measures for testing the algorithms. These measures helped us

understand the algorithm performance in terms of duration and calculation of optimum

values. The performance measures are the following.

• Execution Time (ET) is a measure of execution duration in units of time. It is the

time from starting movement until all robots reach the final positions. This measure

depends on the computer and the programming language. In this way, we used a

timer function of Python from the built-in timer library for getting the initial and

final time. Then, the execution time follows is represented as:

ET = tf − ti. (4.4)

Information Technology Engineer 46 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Thus, ET is the total execution time, tf is the final time, and ti is the initial time.

• Steps Number (ST) is a measure of duration in terms of iterations. It is the

number of iterations until all robots reach the final position. This measure depends

on the algorithm design, mainly of the movement magnitude.

• Effectiveness in distance traveled (ED) measures how close the path traveled is

to the shortest distance, understood as a straight line from the starting point to the

end. This effectiveness is represented as:

ED =
∑N
i=1 ai∑N
i=1 bi

. (4.5)

In this equation, N is the total number of robots, ai represents the shortest distance

for robot i from its started position to the final position, and bi is the total distance

traveled by robot i. This measure is only used for AGA parameters analysis.

• Sum of Cost (SC) represents the sum of the means of all the previous measures

for the selection of the best AGA parameter value. The SC follows the next model:

min
 ETi∑k

j=1 ETj
+ STi∑k

j=1 STj
+ 1− EDi∑k

j=1(1− EDj)

∣∣∣∣∣i ∈ {1, · · · , k}
 , (4.6)

where k represents the number of values that one of the parameters can take.

4.4 Experimental Setup

The experiments were executed in a computer with the following specifications:

• Processor: Intel® Core™ i7-10750H CPU @ 2.60GHz 2.59 GHz

• CPU Cores: 6

• Logical processors: 12

• RAM: 15.5 GB

• System type: 64-bit

Information Technology Engineer 47 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Operating System: Ubuntu 20.04.2

The implementation of our work was carried out in the Anaconda Development Environ-

ment using the software detailed in Table 4.3.

Table 4.3: Software used in the implementation of the CA algorithms

Software Details Version
Python Programming Language 3.6.13
CVXPY Modeling language for convex optimization problems 1.1.15
Cython Programming Language 0.21.1
CMake Cython compiler 3.16.3
RVO2 Library to implement ORCA algorithm 2.0.2
Conda Package, dependency and environment management 4.10.3
Jupyter Lab Web-based interactive development environment 3.1.4
Scipy Mathematical and statistical library 1.5.4
Numpy Library for numbers, strings, records, and objects 1.19.5
Matplotlib Library for visualization 3.3.4
Pandas Library for data analysis 1.1.5
Seaborn Data visualization library based on Matplotlib 0.11.2

Information Technology Engineer 48 Graduation Project

Chapter 5

Results and Discussion

We document our experiments of the model proposed in this chapter. For the analysis of the

model, we follow a progressive study. First, we present the constructed Voronoi Diagrams.

Then we work with the basic version of the Analytical Geometric Algorithm (AGA) to test

previously defined geometric structures, deadlock situations, parameters performance and

have a basis for the next steps. The parameters are the magnitude of the safety radius r,

the magnitude of movement m in each step, the magnitude of deadlock tolerance δ, the

magnitude of movement ε to break the deadlock situation, and the number of previous

positions ω to evaluate if a deadlock situation exists. Later, we worked with the Quadratic

Programming (QP) based Receding Horizons Control (RHC) Algorithm. Finally, we used

both AGA and QP-based RHC Algorithm for comparing with the Optimal Reciprocal

Collision Avoidance (ORCA) Algorithm.

Computational limitations must be taken into account before running the codes on the

machine. For this reason, the hardware is a limitation of the number of simulated robots,

mainly for the QP-based RHC implementation. Furthermore, we describe some results for

each robot configuration first, and then we discuss these results. The codes used in this

work can easily be found as a repository on GitHub [78].

5.1 Construction of Voronoi Diagram

The construction of the Voronoi Diagram was developed successfully in Anaconda Devel-

opment Environment. The Voronoi class of Scipy Spatial data structure was elemental to

generate the attributes related to the coordinates of the Voronoi vertices.

49

School of Mathematical and Computational Sciences Yachay Tech University

The Figure 5.1 shows one of the experiments with all the corresponding geometric

structures. The Voronoi Diagram is drawing with thick gray lines. The dashed gray lines

intersect with each other, are the straight lines from the robots’ current positions to their

goal positions. Also, the executed trajectories, Buffered Voronoi Cell (BVC), and goal

positions have the same color as the robot, and the thick dark lines are the planned paths

from our algorithm for each robot in its cell. We can see in Figure 5.1 (a) an initial

configuration with five robots and a safety radius equal to 0.3. In Figure 5.1 (b), we can

see the robots in the middle of the execution. In Figure 5.1 (c), we can see all robots direct

to their goal position. Finally, Figure 5.1 (d) shows the final state of the system.

(a) Initial configuration (b) Robots at step 34

(c) Robots at step 51 (d) Robots at step 76

Figure 5.1: Visualisation of AGA execution with the respective BVC generation

5.1.1 Deadlock

The blocking situation was addressed satisfactorily in all the experiments. In Figure 5.2

(a), we can see blue, cyan, and magenta robots in deadlock situation. Next, we can see in

Figure 5.2 (b) the next state after dealing with deadlock using right-hand rule heuristic.

Information Technology Engineer 50 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Yellow, blue and magenta robots
in deadlock.

(b) Positions after using
the right-hand rule heuristic.

Figure 5.2: Deadlock situation

5.2 Evaluation of AGA Parameters

The description of the evaluated parameters appears in the opening paragraph of the

current Chapter. The method used to analyze the parameters is in Subsection 4.3. Also,

the default values of each parameter are shown in Table 5.1. Finally, the number of

experiments to evaluate each of the parameter values was equal to 30.

Table 5.1: Default parameters values to evaluate the AGA performance

Parameter N r m δ ε ω
Value 5 0.1 0.1 0.05 0.1 1

5.2.1 Safety Radius

In Figure 5.3 we can see the increase of the average execution time along with the the

safety radius magnitude. However, there are some outliers regardless of the safety radius

value. Also, the number of total system steps increases as the safety radius value increases.

Finally, we prove that obviously the AGA is effective when the safety radius is smaller

because the safety radius prevent the direct movement from initial to final position.

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.3: Time in seconds, number of steps and effectiveness vs size of the safety radius

5.2.2 Deadlock Tolerance

Figure 5.4 shows the results of our experiments. As we can see, the measure of execution

time, number of steps, and sum of costs have similar behavior. In this way, the results of

these measures resemble a parabola whose vertex is at a tolerance of approximately 0.6.

Furthermore, we can realize that effectiveness is inversely proportional to the magnitude

of tolerance. Finally, in the sum of the cost graph, we observe that the optimal value of

the tolerance according to the measurements made is 0.6.

Information Technology Engineer 52 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.4: Time in seconds, number of steps, effectiveness and the cost vs size of the
deadlock tolerance

5.2.3 Normal Movement

The relationship between time, number of steps, and effectiveness with movement magni-

tude is presented in Figure 5.5.

Information Technology Engineer 53 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.5: Time in seconds, number of steps, and effectiveness vs movement magnitude

As we can see, the mean execution time, number of steps and cost decrease along with

the increment of movement value in a logarithmic form. However, the effectiveness of the

algorithm appears to be independent of the magnitude of movement.

Information Technology Engineer 54 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.2.4 Movement in Deadlock

The relationship between time, number of steps, and effectiveness with movement in dead-

lock is presented in Figure 5.6.

Figure 5.6: Time in seconds, number of steps, and effectiveness vs magnitude of movement
in deadlock

As we can see, the mean execution time, number of steps, and cost decrease along with

the increment of deadlock movement value in a logarithmic form. This compartment looks

like the one seen in the normal movement variation, but with the difference that 0.08 is the

most optimal value. Finally, the efficacy of the AGA appears to be less when the movement

in the deadlock is significant. If the value of the movement in the deadlock situation is

Information Technology Engineer 55 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

greater than the normal movement, the code could fail. For this, the analysis stops in the

default movement magnitude in experiments, which is 0.1.

5.2.5 Previous Positions

The relationship between time, number of steps, and effectiveness with previous position

is presented in Figure 5.7.

Figure 5.7: Time in seconds, number of steps, and effectiveness vs number of previous
positions to break deadlock

As we can see, the execution time does not follow a growth or decrease pattern until

the value 5. From the value 5, the average execution time tends to increase as the number

of reviewed positions to establish a neutral situation increases. In the same way, the

average number of steps of the system until convergence begins to stabilize from the value

Information Technology Engineer 56 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5, and then a tiny variation occurs in the value 8 that stabilizes again. Regarding the

effectiveness, it has slight variations as the number of previous positions of the robots

changes. Finally, the cost graph reveals the variation of the number of positions: there is

an irregular pattern up to the value number 6; after this value, there is a trend of cost

growth directly proportional to the execution time.

5.3 QP-Based RHC Implementation

The implementation in Python of the solver is in the repository of the present work [78].

The default values of each parameter are shown in Table 5.2. The number of experiments

to evaluate each of the parameter values was equal to 30.

Table 5.2: Default parameters values to evaluate the QP-based RHC algorithm perfor-
mance

Parameter N r m δ ε ω
Value 5 0.1 0.1 0.05 0.1 1

Figure 5.8 shows the number of steps according to the number of receding horizons

steps.

Information Technology Engineer 57 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.8: Steps vs number of receding horizons steps

The results are similar to Figure 5.7 since there is a growing trend of the execution time

proportional to T and instability in the step patterns and effectiveness up to a particular

value. In the case of steps, the results begin to stabilize from value 6. In the case of

effectiveness, the results tend to be the same from value 5 onwards.

5.4 RVO Library Implementation and Performance

Figure 5.9 shows the results of implementing the ORCA Algorithm compared to the per-

formance of the AGA.

Information Technology Engineer 58 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.9: ORCA and AGA performance in time and number of steps vs number of robots

As we can see, both the time and the number of steps of ORCA are less than AGA for

a range of values from five to fourteen robots. Thus, the differences between ORCA and

AGA are more evident over time. However, for the number of steps, AGA comes close to

ORCA.

Information Technology Engineer 59 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 60 Graduation Project

Chapter 6

Conclusions

6.1 Conclusion

This work presented a CA simulation for multi-agents in movement based on Voronoi

Diagram, AGA, and QP-based RHC algorithm in a two-dimensional space free of static

obstacles. The design and construction process began with the two-dimensional Voronoi

Diagram, tested throughout the work, and showed efficiency in generating the structure

in all the final experiments. Then, based on the generation of the environment and the

geometric structure, the AGA was implemented and converged to the solution. Each of

the algorithm parameters demonstrated the behavior of the algorithm after varying its

input values, which allowed us to understand it and work with optimal values. Following

this, the QP-based RHC algorithm, especially its solver, was implemented using the AGA

and the Voronoi Diagram as the base platform. These two algorithms and the geometric

structure were compared with the ORCA algorithm, allowing us to know how effective our

proposal was concerning one of the most used CA implementations currently. Finally, the

kinematic simulation could be observed through graphics generated from libraries of the

Python language.

The experiments showed that the AGA produces the best performance results on time

and steps to reach the goal position of robots. Conversely, the QP-Based RHC Algorithm

had low performance. By comparing our versions with the ORCA Algorithm, the results

suggested that algorithms have an acceptable accuracy with values above 95%. Neverthe-

less, our proposal presented more variable accuracy results comparing ORCA Algorithm.

61

School of Mathematical and Computational Sciences Yachay Tech University

This loss of accuracy was compensated with the low execution time, with values around

10ms in the first and second routing stages.

On the other hand, we concluded that the QP-Based RHC Algorithm produces softer

paths because of the optimization. Another conclusion was that the maximization or

minimization of parameters has no relationship with the generation of the optimal value

inside each cell. Furthermore, the CA guarantee was proved in practice.

Finally, the qualitative results of the graphic simulation showed the convergence of

our proposal. The robots were able to reach the final position through the generation of

Voronoi Diagrams during the execution of the code.

6.2 Recommendations

In this part, we list some recommendations based on the problems and limitations found

in our proposal.

• In addition to the previous knowledge possessed, we recommend reviewing the tech-

nical support resources when deciding the tools to use, such as documentation, com-

munities, forums, repositories, and usability.

• Be aware of changes between software versions used in this work with the most recent

versions. There may be performance improvements with the new versions, but at the

same time, it is possible that the functionalities used in this work no longer exist or

have substantial changes.

• Consider the type numbers precision of the selected programming language and lim-

itations of libraries concerning the exactitude of the generated values previously.

According to this, difficulties related to the generation of numerical solutions can be

anticipated.

• Establish an incremental style for designing simulation and algorithm implementa-

tions. In this way, it is possible to construct from the most simple structures, find

bugs and limitations, and deal with them as the program becomes complex.

Information Technology Engineer 62 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• In the design stage, we recommend setting a rank of values for each parameter. Then,

we suggest testing their behavior for selecting the parameters with the best results.

Of course, the setting of these values will have to be related to the computational

resources of the machine where the implementation will be executed.

• We recommend applying coding best practices, such as the modularization of the

algorithm. This programming technique will allow reusing parts of the code even in

other CA algorithms and understanding the information flow in a better way. Also,

document it in the code and allow a verbose mode.

• Test heuristics along with proposal implementation to improve algorithm perfor-

mance in solution convergence, especially in deadlock situations. The set of heuristics

can represent a substantial change in the implementation, becoming a new proposal

increasingly within research.

• In the method comparison stage, we recommend using some already implemented

algorithms instead of self-implementations. These could give us a better idea of the

performance of our proposal.

• It is not too much to suggest that both written notes and code implementations

be saved on cloud platforms. For the present work, we use Overleaf and GitHub,

respectively.

6.3 Future Work

In this part, we propose some future research and implementation, which could be consid-

ered in future works.

• High-Performance Computing with more Massive Data Sets. The perfor-

mance values calculated using many robots can predict results on a grand scale.

However, this scalability quality has been partially studied in the present work be-

cause the computational limitations and some variants have shown unfinished results

yet. For this reason, we propose to develop more experiments with more robots to

study the scalability performance of the algorithm. In this way, it would be necessary

Information Technology Engineer 63 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

to continue implementing the algorithm in Python or another programming language

that supports high-performance computers such as C or C++.

• Concurrency of Collision Avoidance Algorithms. The current project proposed

some variants which implement sequential algorithms where the robots perform a

movement one by one. However, it is not necessarily the basic idea of the Collision

Avoidance Algorithms because they can be executed concurrently; therefore, the

algorithm could be concurrent. This concurrency can give us some advantages over

other algorithms in terms of execution time. For this reason, another proposal is

designing some variants of concurrent algorithms that can deal with the collision

avoidance problem.

• Use better Visualization Frameworks. For better observation of the algorithm’s

behavior during its execution, the use of more sophisticated visualization systems is

recommended. These systems should allow the code to run and, from the resulting

data, produce the respective movement in the robot. It is recommended to give

Gazebo a try as it is an open-source platform.

• Extension to 3D Space and Higher-Order Dynamics. The algorithmic and

geometric nature of the project makes it easy to extend it to higher-order space.

Therefore, it is recommended that test simulations be performed with vehicles that

fly and can be suspended in the air.

• Use of others Optimization Solvers. Test the efficiency of running new opti-

mization problem solvers and compare them. For example, one of them is CVXPY

which can be embedded in the code and is written in C so that it could take a faster

execution time.

• Try others Initial and Ending Configurations: In the current project, we use

circular configurations, but this is not a limitation to approach the analysis of the

algorithm. So it is recommended to use other spatial configurations, such as matrix

shapes where the robots have to move between columns and rows.

Information Technology Engineer 64 Graduation Project

Bibliography

[1] U. Hamid, Y. Saito, H. Zamzuri, M. Rahman, and P. Raksincharoensak, “A review

on threat assessment, path planning and path tracking strategies for collision avoid-

ance systems of autonomous vehicles,” International Journal of Vehicle Autonomous

Systems, vol. 14, no. 2, pp. 134–169, 2018.

[2] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Optimal reciprocal collision

avoidance for multi-agent navigation,” in Proc. of the IEEE International Conference

on Robotics and Automation, Anchorage (AK), USA, 2010.

[3] P. Xuan and V. Lesser, “Multi-agent policies: from centralized ones to decentralized

ones,” in Proceedings of the first international joint conference on Autonomous agents

and multiagent systems: part 3, 2002, pp. 1098–1105.

[4] J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson, “Collision avoidance: A

literature review on threat-assessment techniques,” IEEE Transactions on Intelligent

Vehicles, vol. 4, no. 1, pp. 101–113, 2018.

[5] S. Lefevre, A. Carvalho, and F. Borrelli, “A learning-based framework for velocity

control in autonomous driving,” IEEE Transactions on Automation Science and En-

gineering, vol. 13, no. 1, pp. 32–42, 2015.

[6] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control of au-

tonomous ground vehicles with obstacle avoidance on slippery roads,” in Dynamic

systems and control conference, vol. 44175, 2010, pp. 265–272.

[7] A. Simon and J. C. Becker, “Vehicle guidance for an autonomous vehicle,” in Proceed-

ings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation

Systems (Cat. No. 99TH8383). IEEE, 1999, pp. 429–434.

65

School of Mathematical and Computational Sciences Yachay Tech University

[8] L. Perko, Differential Equations and Dynamical Systems, ser. Texts in Applied

Mathematics. Springer New York, 2008. [Online]. Available: https://books.google.

com.ec/books?id=A7fvvz9Puf8C

[9] J. Hale, H. Buttanri, and H. Kocak, Dynamics and Bifurcations, ser. Texts in

Applied Mathematics. Springer New York, 1996. [Online]. Available: https:

//books.google.com.ec/books?id=h2gq4NULS 4C

[10] S. Huang, R. S. H. Teo, and K. K. Tan, “Collision avoidance of multi unmanned aerial

vehicles: A review,” Annual Reviews in Control, vol. 48, pp. 147–164, 2019.

[11] A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, and T. I. Fossen, “Path planning and

collision avoidance for autonomous surface vehicles i: a review,” Journal of Marine

Science and Technology, pp. 1–15, 2021.

[12] D. Agarwal and P. S. Bharti, “A review on comparative analysis of path planning and

collision avoidance algorithms,” International Journal of Mechanical and Mechatronics

Engineering, vol. 12, no. 6, pp. 608–624, 2018.

[13] P. Raksincharoensak, T. Hasegawa, and M. Nagai, “Motion planning and control of

autonomous driving intelligence system based on risk potential optimization frame-

work,” International Journal of Automotive Engineering, vol. 7, no. AVEC14, pp.

53–60, 2016.

[14] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots: A review,”

International journal of physical sciences, vol. 7, no. 9, pp. 1314–1320, 2012.

[15] M. Yao and M. Zhao, “Unmanned aerial vehicle dynamic path planning in an uncertain

environment,” Robotica, vol. 33, no. 3, pp. 611–621, 2015.

[16] M. Zakaria, H. Zamzuri, R. Mamat, and S. Mazlan, “A path tracking algorithm

using future prediction control with spike detection for an autonomous vehicle robot,”

International Journal of Advanced Robotic Systems, vol. 10, no. 8, p. 309, 2013.

Information Technology Engineer 66 Graduation Project

https://books.google.com.ec/books?id=A7fvvz9Puf8C
https://books.google.com.ec/books?id=A7fvvz9Puf8C
https://books.google.com.ec/books?id=h2gq4NULS_4C
https://books.google.com.ec/books?id=h2gq4NULS_4C

School of Mathematical and Computational Sciences Yachay Tech University

[17] F. Yakub and Y. Mori, “Model predictive control for car vehicle dynamics system-

comparative study,” in 2013 IEEE Third International Conference on Information

Science and Technology (ICIST). IEEE, 2013, pp. 172–177.

[18] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line collision avoid-

ance for dynamic vehicles using buffered voronoi cells,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 1047–1054, 2017.

[19] J. Mattingley, Y. Wang, and S. Boyd, “Receding horizon control,” IEEE Control

Systems Magazine, vol. 31, no. 3, pp. 52–65, 2011.

[20] P. Whittle, Optimization over time. John Wiley & Sons, Inc., 1982.

[21] S. Keerthi and E. Gilbert, “Optimal infinite-horizon feedback laws for a general class

of constrained discrete-time systems: Stability and moving-horizon approximations,”

Journal of optimization theory and applications, vol. 57, no. 2, pp. 265–293, 1988.

[22] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Probabilistic swarm guidance

using optimal transport,” in 2014 IEEE Conference on Control Applications (CCA).

IEEE, 2014, pp. 498–505.

[23] R. Mao, H. Gao, and L. Guo, “A novel collision-free navigation approach for multi-

ple nonholonomic robots based on orca and linear mpc,” Mathematical Problems in

Engineering, vol. 2020, 2020.

[24] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning

techniques for automated vehicles,” IEEE Transactions on Intelligent Transportation

Systems, vol. 17, no. 4, pp. 1135–1145, 2015.

[25] A. Van der Horst, “A time-based analysis of road user behaviour in normal and critical

encounters,” Ph.D. dissertation, Technische Universiteit Delft, 1991.

[26] J. Hayward, “Near miss determination through use of a scale of danger,” Pennsylvania

Transportation and Traffic Safety Center, Tech. Rep., 1972.

[27] A. Van der Horst and J. Hogema, “Time-to-collision and collision avoidance systems,”

Verkeersgedrag in Onderzoek, 1994.

Information Technology Engineer 67 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[28] J. Jansson, “Collision avoidance theory: With application to automotive collision

mitigation,” Ph.D. dissertation, Linköping University Electronic Press, 2005.

[29] P. Falcone, M. Ali, and J. Sjoberg, “Predictive threat assessment via reachability

analysis and set invariance theory,” IEEE Transactions on Intelligent Transportation

Systems, vol. 12, no. 4, pp. 1352–1361, 2011.

[30] R. Kiefer, M. Cassar, C. Flannagan, D. LeBlanc, M. Palmer, R. Deering, and M. Shul-

man, “Refining the camp crash alert timing approach by examining last second braking

and lane change maneuvers under various kinematic conditions,” Accident Investiga-

tion Quarterly, no. 39, 2004.

[31] R. Kiefer, D. LeBlanc, and C. Flannagan, “Developing an inverse time-to-collision

crash alert timing approach based on drivers’ last-second braking and steering judg-

ments,” Accident Analysis & Prevention, vol. 37, no. 2, pp. 295–303, 2005.

[32] S. Noh and W.-Y. Han, “Collision avoidance in on-road environment for autonomous

driving,” in 2014 14th International Conference on Control, Automation and Systems

(ICCAS 2014). IEEE, 2014, pp. 884–889.

[33] S. Sontges, M. Koschi, and M. Althoff, “Worst-case analysis of the time-to-react using

reachable sets,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp.

1891–1897.

[34] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality assessment in

driver assistance systems,” in 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE,

2011, pp. 697–702.

[35] E. Sørbø, “Vehicle collision avoidance system,” Master’s thesis, Institutt for teknisk

kybernetikk, 2013.

[36] M. Ali, A. Gray, Y. Gao, J. Hedrick, and F. Borrelli, “Multi-objective collision avoid-

ance,” in Dynamic Systems and Control Conference, vol. 56147. American Society

of Mechanical Engineers, 2013, p. V003T47A004.

Information Technology Engineer 68 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[37] A. Gray, M. Ali, Y. Gao, J. Hedrick, and F. Borrelli, “A unified approach to threat

assessment and control for automotive active safety,” IEEE Transactions on Intelligent

Transportation Systems, vol. 14, no. 3, pp. 1490–1499, 2013.

[38] S. Brunson, E. Kyle, N. Phamdo, and G. Preziotti, “Alert algorithm development

program: Nhtsa rear-end collision alert algorithm,” National Highway Traffic Safety

Administration, Tech. Rep., 2002.

[39] Y. Zhang, E. Antonsson, and K. Grote, “A new threat assessment measure for collision

avoidance systems,” in 2006 IEEE Intelligent Transportation Systems Conference.

IEEE, 2006, pp. 968–975.

[40] E. Bauer, F. Lotz, M. Pfromm, M. Schreier, S. Cieler, A. Eckert, A. Hohm, S. Lüke,

P. Rieth, B. Abendroth, V. Willert, J. Adamy, R. Bruder, U. Konigorski, and H. Win-

ner, “Proreta 3: An integrated approach to collision avoidance and vehicle automa-

tion,” at - Automatisierungstechnik, vol. 60, 12 2012.

[41] A. Balachandran, M. Brown, S. Erlien, and J. Gerdes, “Predictive haptic feedback

for obstacle avoidance based on model predictive control,” IEEE Transactions on

Automation Science and Engineering, vol. 13, no. 1, pp. 26–31, 2015.

[42] M. Secanell, J. Wishart, and P. Dobson, “Computational design and optimization of

fuel cells and fuel cell systems: a review,” Journal of Power Sources, vol. 196, no. 8,

pp. 3690–3704, 2011.

[43] A. Bazmi and G. Zahedi, “Sustainable energy systems: Role of optimization modeling

techniques in power generation and supply—a review,” Renewable and sustainable

energy reviews, vol. 15, no. 8, pp. 3480–3500, 2011.

[44] H. Rahimian and S. Mehrotra, “Distributionally robust optimization: A review,”

arXiv preprint arXiv:1908.05659, 2019.

[45] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control Theory and Design.

Nob Hill Publishing, Madison, WI, 1999.

Information Technology Engineer 69 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[46] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid

systems. Cambridge University Press, 2017.

[47] S. Anderson, S. Peters, T. Pilutti, and K. Iagnemma, “Design and development of an

optimal-control-based framework for trajectory planning, threat assessment, and semi-

autonomous control of passenger vehicles in hazard avoidance scenarios,” in Robotics

Research. Springer, 2011, pp. 39–54.

[48] S. Anderson et al., “A unified framework for trajectory planning, threat assess-

ment, and semi-autonomous control of passenger vehicles,” Ph.D. dissertation, Mas-

sachusetts Institute of Technology, 2009.

[49] A. Gray, Y. Gao, T. Lin, J. Hedrick, and F. Borrelli, “Stochastic predictive control

for semi-autonomous vehicles with an uncertain driver model,” in 16th International

IEEE Conference on Intelligent Transportation Systems (ITSC 2013). IEEE, 2013,

pp. 2329–2334.

[50] B. Gutjahr and M. Werling, “Automatic collision avoidance during parking and ma-

neuvering—an optimal control approach,” in 2014 IEEE Intelligent Vehicles Sympo-

sium Proceedings. IEEE, 2014, pp. 636–641.

[51] R. Hult, G. Campos, P. Falcone, and H. Wymeersch, “An approximate solution to

the optimal coordination problem for autonomous vehicles at intersections,” in 2015

American Control Conference (ACC). IEEE, 2015, pp. 763–768.

[52] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition of the optimal

coordination of vehicles at traffic intersections,” in 2016 IEEE 55th Conference on

Decision and Control (CDC). IEEE, 2016, pp. 2567–2573.

[53] M. Zanon, S. Gros, H. Wymeersch, and P. Falcone, “An asynchronous algorithm for

optimal vehicle coordination at traffic intersections,” IFAC-PapersOnLine, vol. 50,

no. 1, pp. 12 008–12 014, 2017.

[54] S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand, W.-B. Zhang,

D. McMahon, H. Peng, S. Sheikholeslam, and N. McKeown, “Automated vehicle con-

Information Technology Engineer 70 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

trol developments in the path program,” IEEE Transactions on vehicular technology,

vol. 40, no. 1, pp. 114–130, 1991.

[55] R. Behringer and N. Muller, “Autonomous road vehicle guidance from autobahnen to

narrow curves,” IEEE Transactions on Robotics and Automation, vol. 14, no. 5, pp.

810–815, 1998.

[56] V. Kunchev, L. Jain, V. Ivancevic, and A. Finn, “Path planning and obstacle avoidance

for autonomous mobile robots: A review,” in International Conference on Knowledge-

Based and Intelligent Information and Engineering Systems. Springer, 2006, pp.

537–544.

[57] Y.-K. Hwang and N. Ahuja, “Gross motion planning—a survey,” ACM Computing

Surveys (CSUR), vol. 24, no. 3, pp. 219–291, 1992.

[58] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,” Ieee

access, vol. 2, pp. 56–77, 2014.

[59] C. Sammut and G. Webb, Encyclopedia of machine learning. Springer Science &

Business Media, 2011.

[60] M. Gökçe, E. Öner, and G. Işık, “Traffic signal optimization with particle swarm

optimization for signalized roundabouts,” simulation, vol. 91, no. 5, pp. 456–466,

2015.

[61] M. Saska, M. Macas, L. Preucil, and L. Lhotska, “Robot path planning using parti-

cle swarm optimization of ferguson splines,” in 2006 IEEE Conference on Emerging

Technologies and Factory Automation. IEEE, 2006, pp. 833–839.

[62] S. Rotter, “Swarm behaviour for path planning,” Master’s thesis, Freie Universität

Berlin, 2014.

[63] F. Ulbrich, S. S. Rotter, and R. Rojas, “Adapting to the traffic swarm: swarm be-

haviour for autonomous cars,” in Robotic Systems: Concepts, Methodologies, Tools,

and Applications. IGI Global, 2020, pp. 1391–1414.

Information Technology Engineer 71 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[64] S. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,”

Iowa State University, Tech. Rep., 1998.

[65] J. Nasir, F. Islam, and Y. Ayaz, “Adaptive rapidly-exploring-random-tree-star (rrt*)-

smart: algorithm characteristics and behavior analysis in complex environments,”

Asia-Pacific J. of Inf. Tech. and Multimedia, vol. 2, p. 39, 2013.

[66] J.-H. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of time-optimal off-

road vehicle maneuvers using the rrt,” in 2011 50th IEEE Conference on Decision and

Control and European Control Conference. IEEE, 2011, pp. 3276–3282.

[67] D.-W. Gong, J. Zhang, and Y. Zhang, “Multi-objective particle swarm optimization

for robot path planning in environment with danger sources.” J. Comput., vol. 6, no. 8,

pp. 1554–1561, 2011.

[68] A. Atyabi and D. Powers, “Review of classical and heuristic-based navigation and path

planning approaches,” International Journal of Advancements in Computing Technol-

ogy, vol. 5, no. 14, p. 1, 2013.

[69] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile

robots. MIT press, 2011.

[70] A. Rashid, A. Ali, M. Frasca, and L. Fortuna, “Path planning with obstacle avoidance

based on visibility binary tree algorithm,” Robotics and Autonomous Systems, vol. 61,

no. 12, pp. 1440–1449, 2013.

[71] M. Reiter and D. Abel, “Two and a half carrots-a versatile and intuitive optimisation-

based path-following approach for road vehicles,” in 2015 23rd Mediterranean Con-

ference on Control and Automation (MED). IEEE, 2015, pp. 364–370.

[72] C. Carbone, U. Ciniglio, F. Corraro, and S. Luongo, “A novel 3d geometric algo-

rithm for aircraft autonomous collision avoidance,” in Proceedings of the 45th IEEE

Conference on Decision and Control. IEEE, 2006, pp. 1580–1585.

Information Technology Engineer 72 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[73] P. Bhattacharya and M. Gavrilova, “Roadmap-based path planning-using the voronoi

diagram for a clearance-based shortest path,” IEEE Robotics & Automation Magazine,

vol. 15, no. 2, pp. 58–66, 2008.

[74] M. Jankovic and M. Santillo, “Collision avoidance and liveness of multi-agent systems

with cbf-based controllers,” arXiv preprint arXiv:2012.10261, 2020.

[75] S. Dergachev and K. Yakovlev, “Distributed multi-agent navigation based on recipro-

cal collision avoidance and locally confined multi-agent path finding,” arXiv preprint

arXiv:2107.00246, 2021.

[76] P. Velagapudi, K. Sycara, and P. Scerri, “Decentralized prioritized planning in large

multirobot teams,” in 2010 IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE, 2010, pp. 4603–4609.

[77] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for con-

vex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5,

2016.

[78] L. Cuenca, “Collision avoidance algorithms in 2d using voronoi

diagrams,” 2021. [Online]. Available: https://github.com/leduin/

Collision-Avoidance-Algorithms-in-2D-using-Voronoi-Diagrams

[79] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha, “Rvo2 library:

Reciprocal collision avoidance for real-time multi-agent simulation,” 2016. [Online].

Available: http://gamma.cs.unc.edu/RVO2/

[80] L. Liu, “Python bindings for optimal reciprocal collision avoidance,” 2017. [Online].

Available: https://github.com/Taospirit/Python-RVO2

Information Technology Engineer 73 Graduation Project

https://github.com/leduin/Collision-Avoidance-Algorithms-in-2D-using-Voronoi-Diagrams
https://github.com/leduin/Collision-Avoidance-Algorithms-in-2D-using-Voronoi-Diagrams
http://gamma.cs.unc.edu/RVO2/
https://github.com/Taospirit/Python-RVO2

	Dedicatoria
	Agradecimiento
	Abstract
	Resumen
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Collision Avoidance
	Threat Assessment Strategy
	Path Planning Strategy
	Path Tracking Strategy

	Voronoi Diagram
	QP-Based RHC Algorithm
	Receding Horizon Control

	Analytical Geometric Algorithm
	Optimal Reciprocal Collision Avoidance Algorithm
	Reciprocal n-body Collision Avoidance Problem
	Preliminaries
	Optimal Reciprocal Collision Avoidance Definitions

	Multi-agent Navigation
	Centralized Policies
	Decentralized Policies

	State of the Art
	Threat Assessment Strategies
	Time-to-Collision
	Distance Domain
	Multi-Domain
	Optimization Methods

	Path Planning Strategies
	Optimization-based Approach
	Geometrical-based Approach

	Multi-agent Navigation
	Centralized Control
	Decentralized Control

	Methodology
	Phases of Problem Solving
	Description of the Problem
	Analysis of the Problem
	Algorithm Design
	Implementation
	Testing

	Model Proposal
	Two-Dimensional Environment
	Heuristics to deal with Deadlock
	Simulated Robots
	Analytical Geometrical Algorithm
	QP-based RHC Algorithm
	ORCA Algorithm

	Analysis Method
	Experimental Setup

	Results and Discussion
	Construction of Voronoi Diagram
	Deadlock

	Evaluation of AGA Parameters
	Safety Radius
	Deadlock Tolerance
	Normal Movement
	Movement in Deadlock
	Previous Positions

	QP-Based RHC Implementation
	RVO Library Implementation and Performance

	Conclusions
	Conclusion
	Recommendations
	Future Work

	Bibliography

		2022-01-25T12:25:08-0500
	LEDUIN JOSE CUENCA MACAS

		2022-01-25T12:25:57-0500
	LEDUIN JOSE CUENCA MACAS

