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Experimental Yachay.
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Abstract

Chiral induced spin selectivity (CISS) effect refers to the preferential transmission

(or transfer) of electrons with one spin orientation over the other (spin-filtering) through

molecular structures having chiral symmetry. CISS effect has been considered a reachable

promise for using organic materials to manipulate electron spins, and to design improved

spintronic devices and new quantum materials. Furthermore, CISS effect has been found

as a central mechanism behind a number of important biological phenomena. Although

an extensive number of experimental arrays have been used to examine CISS, there is

not a general agreement about a theoretical description that allows the effect to be fully

understood and controlled.

In order to understand the CISS effect different theoretical approaches have been

developed. In this work, an analytical tight-binding (TB) model and first-principles the-

oretical description were developed for helicene molecule, which incorporates the kinetic

energy contribution and the effect of the Stark, spin-orbit (SOC) intrinsic and Zeeman

interactions. We use a lowest order perturbation theory along with a matrix decimation

procedure to derive the SOC, Rashba and Zeeman hamiltonian terms. According to the

helicene model, the main contribution to the CISS effect comes from the Rashba cou-

pling while the terms of the Zeeman effect are negligible small for small values of Earth’s

magnetic field.

Keywords: helicene, spin selectivity, tight-bindig model, intrinsic spin-orbit, Stark

effect, Rashba interaction, Zeeman effect.
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Resumen

El efecto de selectividad de espín inducida por quiralidad (CISS por sus siglas en

inglés) se refiere a la transmisión preferencial (o transporte) de electrones con una ori-

entación de espín sobre la otra (filtrado de espín) a través de estructuras moleculares que

tienen simetría quiral. El efecto CISS se ha considerado una promesa factible para el uso

de materiales orgánicos para manipular los espines de electrones, para diseñar disposi-

tivos espintrónicos mejorados y nuevos materiales cuánticos. Además, el efecto CISS se

ha encontrado como un mecanismo central detrás de una serie de fenómenos biológicos

importantes. Aunque se ha implementado un gran número de metodologías experimen-

tales para examinar CISS, no existe un acuerdo general sobre una descripción teórica que

permita comprender y controlar completamente el efecto. Para comprender el efecto CISS

se han desarrollado diferentes enfoques teóricos. En este trabajo, se desarrolló un modelo

analítico de tight-binding junto con una descripción teórica de primeros principios para la

molécula heliceno. El modelo incorpora la contribución cinética y el efecto de las inter-

acciones Stark, spin-órbita intrínseca y Zeeman. Se usó teoría de perturbación de primer

orden junto con un procedimiento de decimación matricial, con el cual se derivó los tér-

minos correspondientes a spin-órbita, Rashba y Zeeman. Según el modelo del heliceno, la

principal contribución al efecto CISS proviene del acoplamiento Rashba, mientras que los

términos del efecto Zeeman son insignificantes para valores pequeños del campo magnético

de la Tierra.

Palabras clave: heliceno, selectividad de spin, modelo de enlace fuerte, interacciones

spin-orbita, efecto Stark, interacciones Rashba, efecto Zeeman.
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INTRODUCTION

Spintronics is a multidisciplinary field which studies the properties of the electron

spin and manipulation of spin degrees of freedom in solid-state systems [1, 2]. Spin is

described as intrinsic angular momentum of a particle and it is distinguished from the

angular momentum due to the motion of the particle in space, called the orbital angular

momentum. For particles having spin, the description of the state by means of the wave

function must determine the probability of their different positions in space and possible

orientations of the spin.

Some of the phenomena related to spin are spin transport in electronic materials, as

well as of spin dynamics, spin relaxation [1], spin-dependent transfer processes, spin Hall

effect and many others. These phenomena will likely have important technological impact

in the near future, even though, as it is suggested by [3], developments in the area of

spintronics are still greatly dependent on the exploration and discovery of novel material

and the possibility to describe these systems.

Advances in spintronics and its applications in industry include:

(a) Read Heads, a component of hard disk drives which flies on the surface of the disk

and converts the magnetic field into electric signal and it works for sensing dense
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magnetic storage media [4]. These components are highly used today in laptop

computers and entertainment systems [5].

(b) Magnetic random access memory (MRAM), which are a type of non-volatile and

stand-alone memories with very high endurance and scalability [6].

(c) Programmable spintronic logic devices based on magnetic tunnel junction elements,

which have advantages in being nonvolatile, rapid, have unlimited reconfigurable

variations, and low-power consumption [7].

(d) Perimeter defense systems, magnetometers, and high current monitoring devices for

power systems [5], etc.

On the other hand, spintronic devices and prototypes take advantage for being po-

tentially faster and less power consuming equipment, since the relevant energy scale for

spin dynamics is relatively small [5]. Additionally, spintronics makes use of organic mate-

rials to mediate or control spin polarized signals [8], also having the convenience of being

cheap, have low-weight, be mechanically flexible, chemically interactive, and bottom-up

fabricated electronics [8].

One of the most important developments in spintronics, which was aimed by the

investigation of how spin-polarized electric currents can be injected into magnetic layers,

led in 1988 to the discovery of the phenomenon of giant magnetoresistance (GMR) [9, 10].

This effect occur when a magnetic field reorients the magnetization in different regions of

a material composed by alternating ferromagnetic/nonmagnetic layers, causing a change

of the electrical resistance [4]. The ferromagnetic layer has an uneven distribution of

electrons that have opposite spin directions (up and down) at equilibrium and therefore

leads to a net magnetic moment which will determine the electric current in a GMR device

[6]. One of the most important impacts of this effect lies on the spin valves field and their

use in magnetic hard disk drives, which led researchers Albert Fert and Peter Grünberg

to be awarded in 2007 with the Nobel Prize in Physics [11].

An important research field in spintronics research is the chiral induced spin selec-
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tivity (CISS) effect. CISS was first reported in 1999 by Naaman and coworkers who were

developing electron transmission experiments [12]. By measuring the transmission of pho-

toelectrons through thin organized films of organic chiral molecules, it was found that the

scattering probability of polarized electrons depends on the electron spin [12]. Specifically,

researchers observed an enhanced scattering of one electron spin polarization relative to

the other by a chiral layer of organic lysinein, which was later related to the intrinsic struc-

ture of monolayer films. Moreover, the authors determined that the principal contribution

to the asymmetry in the electron scattering cross sections was due to the spin-orbit inter-

action. In that sense, the combination of different perturbation of the spin orbitals and

the spatial wavefunctions asymmetry produce chiral electron scattering and a net helicity

[12].

In this respect, the term chirality is referred to a molecule's or material's lack of

parity symmetry; that is, it has no inversion symmetry, and a mirror symmetry operation

transforms one enantiomer into the other [13]. This definition encloses helical structures

such as helicenes and DNA. Because many biomolecules are chiral and many biochemical

reactions involve chiral molecules, much attention has been deposited on understanding

the inherent properties of chiral molecules, as well as the influence of chiral symmetry on

other properties such as the electric and magnetic response of molecules [13]. It was not

until 2011 that the definitive observation of CISS was reported by Göhler and collabo-

rators. They observed exceptionally high spin polarization (exceeding 60%) of electrons

transmitted through double-stranded DNA (dsDNA) molecules adsorbed on gold surface

[14]. The most striking finding of this experiment was that molecular assemblies of chiral

molecules can act as efficient spin filters for photoelectrons [14]. Therefore, the CISS effect

may be defined as the transmission of electron with one preferential spin orientation over

the other through the chiral axis of a molecule [15]. Hitherto, this effect has been largely

demonstrated in several experimental designs [15, 16] and for a broad variety of molecular

systems [17, 18, 19], and new experimental evidence involving this effect continue to be

reported. Additionally, due to the CISS effect allows the creation of spin-polarized elec-

3
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trons without the use of magnets, new prospects for spintronics is opened up [20]. By this

reason, this phenomenon has motivated the development of different theoretical models

to understand CISS in molecular structures. For instance, CISS effect have been estab-

lished in local probe measurements such as scanning tunneling (STM) and atomic force

microscopy (AFM) [21]; in molecular junctions; in electron photoemission through chiral

monolayers; spin polarization effects on chemical reactions [15]; and in enantioselective

response to magnetic polarization [22]. This effect has been observed in DNA [17, 23],

proteins, oligopeptides [18], and helicenes [19].

In contrast to experimental developments, theoretical attempts have also been pre-

sented to rationalize this unexpected phenomenon. The main discrepancy between the

calculations and the experimental results lies in the magnitude of the spin polarization P ,

which may be defined as:

P = Iα − Iβ
Iα + Iβ

(1.1)

for which Iα and Iβ are the experimental measurables (e.g., current, rate constant, etc.)

for spin pointing parallel or antiparallel to the electron's velocity [24] (see Fig. 1.1). While

spin polarization exceeding 80% is obtained experimentally, most models and calculations

produce polarizations of only a few percent [24], and as a result they underestimate the

magnitude of the CISS effect by several orders of magnitude. For this reason, it has been

suggested and it is broadly accepted that CISS is related to a combination of enhanced

intrinsic SOC due to a breaking of spatial inversion symmetry by spin processes [22].

Even though, a consistent theory is not yet constructed. Recent evidence suggests the

possible importance of spin selectivity in the biochemistry and biology areas, which are

even extended to play a role on bird and fish navigation by the Earth’s magnetic field [25].

For instance, it has been undoubtedly documented the presence of a magnetic compass

system in birds [26, 27]. Nevertheless, the mechanisms that allow migratory birds to orient

in the geomagnetic field have long time remained inexplicable [26, 27, 28]. In that sense, a

few proposals have been suggested, being one the radical pair mechanism which includes

spin-chemical processes [28, 29]. However, spin selective filtering by chiral molecules may

4
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also contribute to this phenomenon [25]. Thus, it would be significant to test the influence

of the geomagnetic field on a chiral molecule and hence to determine possible spin filtering

processes.

Figure 1.1: A scheme describing the monolayer of DNA as spin filter. Unpolarized electrons

are ejected from the gold substrate and most of the polarized electrons are transmitted

through the DNA with spin aligned antiparallel to their velocity. Retrived from Naaman

and Waldeck [13].

In that sense, an important case of study are helicenes, which are pure carbon based

system with chiral properties due their helicity and have been shown to display a CISS

effect [19]. Helicenes present two properties that may make them good candidates for

CISS: (i) chirality of the helix (either left- or right-handed) and (ii) potentially moderate

or even strong SOC [30]. Therefore, the helicene structure can display spin selectivity

which arise from its helical symmetry and subsequent intrinsic SOC [19]. Moreover, this

phenomenon may be enhanced by electric or magnetic fields which can change the spin

polarization and create other type of electronic couplings.

Thus, it would be desirable to model a simple system yet containing the essential

5
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physics necessary for the description of helicenes structures under electrical and magnetic

effects. In many cases, density functional theory (DFT) is used to analyze electronic

structures having low computational cost and high accuracy [31], yet it cannot isolate the

contribution of each atomic interaction effect. A powerful method for this purpose is the

analytical tight-binding (TB) models incorporating first-principles theoretical description.

This method allows the possibility to analyse the results in terms of various parameters

inherent of the system, such as SOC, Rashba and Zeeman strengths, spin polarization,

various symmetries etc. Additionally, the tight-binding model is a semiclassical method

which enables the incorporation of material-specific parameters which provide an easy way

to tune and simplify the physical description while reproducing the real behaviour of the

system. Moreover, this method allows to perform a lot of comparatively fast calculations in

combination with freedom to vary the many interactions the system can involve. Finally,

the detailed tight-binding analysis can yield the connection between molecule's chirality

and the various interaction effects such as the intrinsic SOC and electric/magnetic fields.

For this work purpose, analytical tight-binding (TB) models and first-principles the-

oretical description incorporating both kinetic and intrinsic SOC contributions as well as

Rashba-type interactions, have been developed for helix systems [17, 19].

1.1 Problem Statement

The main problem is that there is no a consistent description of the CISS effect, which

opens discussion about the fundamental mechanism and the magnitude of physical param-

eters which can be included to describe CISS. Even though most of the proposed models

so far agree in that a part of the CISS effect is due to the presence of a intrinsic spin-orbit

coupling along molecular helical structures, a full theory in not yet constructed. Along

with the CISS effect, there is an interest to determine the mechanism by which some birds

orientate in the geomagnetic field, and if it is caused by spin selectivity of chiral molecules

present in the animal organism. These two problems can be enclosed by the unknown

6
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magnitude of CISS and the unknown effect of the geomagnetic field on biological systems,

and if these two are correlated.

The precise topic that this research will address is to understand the effect of an

external magnetic field over chiral molecules, namely helicenes. Additionally, the combi-

nation of other magnetic and electric effects as well as different electronic couplings will

be analyzed.

The novelty of this work relies in the methodology used to solve the problem of the

chiral helicene molecule: a matrix decimation which includes the effect of SOC, Stark and

weak external magnetic fields.

1.2 General and Specific Objectives

The general objective of this work is to develop a three-dimensional analytic tight bind-

ing model of helicenes capable to identify and rationalize the possible effect of internal

and external interactions, namely intrinsic spin-orbit coupling, Stark electric effect, and

Zeeman magnetic effect. The specific objectives are:

1. Perform a geometrical description and relate physical parameters to the helicene

structure.

2. Describe the interaction effects of helicenes and their physical behavior in electric

and magnetic fields.

3. Derive Slater-Koster elements that connect first nearest neighbors and relate them

to structural parameters of helicenes.

4. Analyze spin processes through effective Feynman paths.

7
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5. Derive the effective Hamiltonian of the helicenes which incorporates spin-orbit,

Rashba and magnetic couplings using the matrix decimation approach of band fold-

ing.

6. Find analytical expressions for the energy corrections corresponding to the spin-orbit,

Rashba and magnetic contributions.

8



CHAPTER 2

THEORETICAL FRAME

In this chapter is explained the theoretical background used in this work to obtain

the subsequent results.

2.1 Tight-binding model

The tight-binding hamiltonian describes the electronic structure in terms of localized elec-

trons orbitals which interact only with nearest neighbours atoms and are modestly per-

turbed from their isolated atomic form [32]. Moreover, depending on the solid and if the

orbitals are well localized (as long as electrons interact strongly with the atoms), it is pos-

sible to neglect the atomic orbital overlaps and potentials between atoms more than one or

two lattice spacings apart. Of course, the fundamental interactions are kept to first neigh-

bors. This strategy is based on the linear combination of atomic orbitals (LCAO) method

developed by Bloch [33], which describes the orbitals using an appropriate atomic-orbital

like basis set. In general, the tight-binding method works by writing the eigenstates of the

hamiltonian in an atomic-like basis set, {φrα} where r is denoted by the position index of

the atomic site and α = |l,m〉 denotes the type of orbital (both the orbital l and magnetic

9



2.2. Slater-Koster parameters and overlaps Chapter 2: Theoretical Frame

quantum numbers of the atomic state), e.g., 2s, 2px, 2py [32, 34, 35]. In this formulation,

the representation of solids and molecules eigenstates, or indeed any states, becomes:

ψn(r) =
∑

α,l

aαl φαl(r). (2.1)

where aαl are expansion coefficients.

The tight-binding model can include all kind of interactions that determine the way

electrons couple throughout a molecule to produce its properties [36]. As a consequence,

the method allows to formulate analytical expressions for the perturbations included in

a system such as the intrinsic spin-orbit (SO) coupling, Stark, and Zeeman effects. In

that sense, these quantities can be obtained from a matrix decimation procedure of band

folding that connects nearest neighbor sites. Additionally, the tight binding model enable

the incorporation of material-specific parameters which provide an easy way to tune and

simplify the physical description to reproduce the real behaviour of the system. Hence,

effectiveness of this method is due to its ability to deal with systems of low symmetry,

lacking periodicity, or having complex unit cells [32], being particularly useful for the study

of large unit cell systems such as the case of helicenes.

2.2 Slater-Koster parameters and overlaps

The Slater-Koster overlap terms represent the extent at which orbital wavefunctions over-

lap in a given geometrical configuration. In this work, it is only considered two-center

atomic interactions with atomic orbitals of the form Yl,ml
= |l,ml〉 with Y the spher-

ical harmonics functions, l representing the angular momentum quantum number (e.g.

l = s, p, d orbitals) and ml the magnetic quantum number (e.g. ml = σ, π, δ bonds). Then

the overlap integral between two orbitals located at the positions Ri and Rj is:

Eij
µν = 〈l,m,Ri|H|l′,m′,Rj〉 =

∫
d3rµ

l,m
(r−Ri)Hν

l′,m′ (r−Rj), (2.2)

where Ĥ is the hamiltonian for the bond energy and Eij
µν is the Slater-Koster overlap

energy, which is evaluated with respect the interatomic distance Rj − Ri, that is, the

10



2.3. Hamiltonian terms Chapter 2: Theoretical Frame

vector that connects the two atoms in the positions Ri and Rj. Due to the selection rules,

the magnetic quantum numbers ml and m′l of the atomic orbitals must be the same [37].

Moreover, if µ = ν the Slater-Koster overlap will represent the contribution to the on-site

energies due to existence of other atoms, while if µ 6= ν then the overlap represent the

hopping-element on-site from ν → µ due to existence of other atoms [37].

2.3 Hamiltonian terms

For a system, the hamiltonian can be written in the general form by:

H = HK + HS + HSO + HZ , (2.3)

where HK is the kinetic energy contribution, HS the Stark interaction, and HSO and HZ

are the spin-orbit intrinsic and Zeeman interactions, respectively.

2.3.1 Kinetic energy

In general, the hamiltonian describes the dynamics of a particular system among the

orbitals of the model [36]. Equation (2.4) shows the lowest-order kinetic term, which

involves only wavefunction overlaps between pz orbitals, and are expressed by the coupling

term t. Hence, all other type of overlaps and atom interactions are taken as perturbations

to this energy. That is, the presence of other atoms sites produce a shifting or splitting

of the energies associated to this site [38]. Moreover, the kinetic overlaps depend on the

step angle between carbon atoms in the helicene and the pitch of the helix, having both σ

and π bonding contributions. In in second quantization formulation, the kinetic term can

be represented as:

HK =
∑

k

tk
∑

(i,j)
a†iaj, (2.4)

where a†i creates an electron in the atom site i while aj annihilates an electron on the atom

site j. In this case, the second-quantized notation is used only for algebraic convenience

11



2.3. Hamiltonian terms Chapter 2: Theoretical Frame

and in fact, the second quantized hamiltonian is the same as the molecular N-electron

hamiltonian [37].

2.3.2 Stark effect: external electric fields

The Stark effect explains the change in the energy levels of an atom caused by a uniform

external electric field. Thus, the term associated with it, called Stark term, represents the

extra energy of the nucleus and electron in the external field. For an electric field in the

z direction, the hamiltonian corresponding to the Stark term is:

HS = −eEz ẑ = −eEzr cos(θ), (2.5)

where e is the charge of the electron, Ez is the strength of and external electric field E

along the z direction, and ẑ is the unit vector. It is assumed that the electric field does

not depend on the position, it to say, it is constant in all space. In spherical coordinates, θ

represents the angle between E and z, with r the radial coordinate. The Stark perturbation

is odd with respect parity inversion [39], thus, the only non-vanishing matrix elements are

those for opposite parity states. In specific, the only non-zero element is:

HS = 3ea0Ez ≡ ξsp, (2.6)

where a0 is the Bohr radius, e is the electron elementary charge and ξsp is the magnitude

of the electric interaction between p and s orbitals. Then, the Stark matrix elements can

be summarized in Table 2.1 as:

Table 2.1: Stark matrix elements between s and p orbitals.

|s〉 |px〉 |py〉 |pz〉

〈s| 0 0 0 ξsp

〈px| 0 0 0 0

〈py| 0 0 0 0

〈pz| ξsp 0 0 0

12
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For example, considering an electric field of Ez = 25 V/nm, the electric magnitude is

ξsp = 10.5 eV.

2.3.3 Spin-orbit coupling interation

The atomic spin-orbit coupling (SOC) arises from the interaction between the coulombic

potential of a nucleus and the electron intrinsic magnetic moment orbiting that nucleus

[40]. Thus, the spin-orbit term corresponds to the magnetic interaction that couples the

spin magnetic momentum with the orbital angular momentum, but only for the optically

active electrons [41]. Another way to understand this term is by the interaction of the

spin magnetic moment with the magnetic field which is “felt” by the electron due to its

motion around the nucleus [42].

Then, considering that the electron is moving at a velocity v in the electrostatic field

E created by the proton, a magnetic field B appears in the electron frame, which is given

by [42]:

B = −
( v
c2

)
× E, (2.7)

where v = p/me, being p the momentum of the electron with effective mass me. Addi-

tionally, each electron possesses an intrinsic magnetic moment µS which can interact with

the field B. In specific, the magnetic moment generated by the electron is: [43]:

µS = e

me

S, (2.8)

where e and S are the charge and spin of the electron, respectively. Then, the correspond-

ing SOC interaction energy is expected to be:

HSOC = −µS ·B. (2.9)

Next, consider a central potential energy V (r) = φ(r) [40], which includes the contri-

butions of both the electrically charged nucleus and the negatively charged electron cloud
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in the inner shells [43]. Hence, the electrostatic energy associated to this potential is [40]:

E = −∇φ = −r
r

∂V

∂r
, (2.10)

which is obtained by expressing the gradient in spherical coordinates. Here, r is the vector

position at which the field points out and r is the magnitude of such vector. By replacing

Eqs. (2.7) and (2.8) in (2.9), the SOC hamiltonian becomes:

HSOC =
(
e

me

S
)( v

c2 × E
)

= −
(
e

me

S
) [ p

mec2 ×
r
r

dV
dr

]

= e

m2
ec

2
1
r

∂V

∂r
L · S

, (2.11)

where the fact that L = −p× r was used. However, a relativistic correction arises due to

the Thomas precession [40], which corrects the energy by a factor of 1/2:

HSOC = e

2m2
ec

2
1
r

∂V

∂r
L · S. (2.12)

Hence, the SOC term can be expressed in the following ways:

HSOC = e

2m2
ec

2
1
r

∂V

∂r
L · S

= − e}
4m2

ec
2 S · (p×∇V )

= λL · S.

(2.13)

where λ is a known function of the position r.

2.3.3.1 Spin-Orbit Overlaps

The SOC term contributes in the spin-orbit SO interaction that connects two different

sites in a molecular structure. To compute the SOC contribution, it is required both a

“good” basis selection and a corresponding orbital representation. On the other hand,
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when the λ position dependence is taken into account, L and S no longer commute with

the total hamiltonian [42]. This result in the following relations:

[Lz,HSOC] = λ[Lz, LxSx + LySy + LzSz] = λ[i}LySx − i}LxSy]

[Sz,HSOC] = λ[Sz, LxSx + LySy + LzSz] = λ[i}LxSy − i}LySx].
(2.14)

Thus, it is necessary to find a constant of motion which commute with the hamilto-

nian. For this purpose, it is defined J = L + S as the total angular momentum, which

satisfies the commutation relation [42]:

[Jz,HSOC] = [Lz + Sz,HSOC] = 0. (2.15)

Considering only the unperturbed hamiltonian or bare Eij
µν elements, it is possible to

work with any of the following complete set of commuting observables (CSCO) [43]:

Set 1: {L2, S2, Lz, Sz},

Set 2: {L2, S2, J2, Jz}.
(2.16)

Thus, a state can be determined by specifying the quantum numbers, j, l, s, mj,

ml, and ms, which are connected with the eigenvalues of angular momentum operators

through [39]:
J2 = j(j + 1)~2

L2 = l(l + 1)~2

S2 = s(s+ 1)~2

and

Jz = mj~

Lz = ml~

Sz = ms~.

(2.17)

Once the CSCO is chosen, in this case Set 1, it is important to select the adequate

ket vectors which represent both the s and p orbitals. The bare p orbitals expressed in

the ket form |l,ml〉, are [17]:

|px〉 = − 1√
2

(|1, 1〉 − |1,−1〉)

|py〉 = − i√
2

(|1, 1〉+ |1,−1〉)

|pz〉 = |1, 0〉 .

(2.18)
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Then, expanding the ket |l,ml〉 in the spin space so that |l,ml; s,ms〉 expresses the

spin dependence of the original ket, it is obtained:

|px ↑〉 = − 1√
2

(∣∣∣∣1, 1; 1
2 ,

1
2

〉
−
∣∣∣∣1,−1; 1

2 ,
1
2

〉)

|px ↓〉 = − 1√
2

(∣∣∣∣1, 1; 1
2 ,−

1
2

〉
−
∣∣∣∣1,−1; 1

2 ,−
1
2

〉)

|py ↑〉 = − 1√
2

(∣∣∣∣1, 1; 1
2 ,

1
2

〉
+
∣∣∣∣1,−1; 1

2 ,
1
2

〉)

|py ↓〉 = − 1√
2

(∣∣∣∣1, 1; 1
2 ,−

1
2

〉
+
∣∣∣∣1,−1; 1

2 ,−
1
2

〉)

|pz ↑〉 =
∣∣∣∣1, 0; 1

2 ,
1
2

〉

|pz ↓〉 =
∣∣∣∣1, 0;−1

2 ,−
1
2

〉
.

(2.19)

The kets presented in 2.19 can be expressed in a couple basis via a Clebsch-Gordan

transformation. For this, it is necessary to refer to the right Clebsch-Gordan transforma-

tion matrix: because all p orbitals posses l = 1 and electron spin posses s = 1/2, the

required matrix have (l, s) = (1, 1/2), see Eq. (2.20).

3
2

3
2

1
2

3
2

1
2

3
2

3
2

1
2

1
2 −1

2 −1
2 −3

2





1 1
2 1

1 −1
2

√
1
3

√
2
3

0 1
2

√
2
3 −

√
1
3

0 −1
2

√
2
3

√
1
3

−1 1
2

√
1
3 −

√
2
3

−1 −1
2 1 .

(2.20)

In specific, a Clebsch-Gordan transformation matrix is composed of rows having

(ml,ms) uncoupled coefficients and columns composed of
(
j
mj

)
coupled coefficients. Then,
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it is possible to transform from either coupled or uncoupled base to the other. In this

case, starting from the p orbital uncoupled ket |l,ml; s,ms〉, it can be obtained the cor-

responding coupled ket in the form |j,mj〉. After performing the correct transformation,

the p orbitals become:

|px ↑〉 = − 1√
2



∣∣∣∣
3
2 ,

3
2

〉
−
√

1
3

∣∣∣∣
3
2 ,

1
2

〉
+
√

2
3

∣∣∣∣
1
2 ,−

1
2

〉


|px ↓〉 = − 1√
2



√

1
3

∣∣∣∣
3
2 ,

1
2

〉
+
√

2
3

∣∣∣∣
1
2 ,

1
2

〉
−
∣∣∣∣
3
2 ,−

3
2

〉


|py ↑〉 = i√
2



∣∣∣∣
3
2 ,

3
2

〉
+
√

1
3

∣∣∣∣
3
2 ,

1
2

〉
−
√

2
3

∣∣∣∣
1
2 ,−

1
2

〉


|py ↓〉 = i√
2



√

1
3

∣∣∣∣
3
2 ,

1
2

〉
+
√

2
3

∣∣∣∣
1
2 ,

1
2

〉
+
∣∣∣∣
3
2 ,−

3
2

〉


|pz ↑〉 =
√

2
3

∣∣∣∣
3
2 ,

1
2

〉
−
√

1
3

∣∣∣∣
1
2 ,

1
2

〉

|pz ↓〉 =
√

2
3

∣∣∣∣
3
2 ,−

1
2

〉
+
√

1
3

∣∣∣∣
1
2 ,−

1
2

〉

(2.21)

Finally, the different SOC matrix elements involving p orbitals given in Eq. (2.21)

are summarized in Table 2.2.

Table 2.2: SOC matrix elements between p orbitals.

|px〉 |py〉 |pz〉

〈px| 0 −iszξp isyξp
〈py| iszξp 0 −isxξp
〈pz| −isyξp isxξp 0

where ξp = λ~/2 is the magnitude of the SOC interaction for p orbitals (ξp ∼ 6 meV

for carbon atoms [19, 23]), and sz represent the Pauli matrices in a rotating coordinate
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system, and in this case, for the helicene. Explicitly, they are represented by:

sx = σX cos(φi) + σY sin(φi)

sy = −σX cos(φi) + σY sin(φi)

sz = σZ

(2.22)

with XY Z being the global coordinate system presented in Fig. 2.1.

Figure 2.1: Structure of the helicene model in the XY and XZ plane, showing the orien-

tation of px (blue colored), py (red) and pz orbitals (green).

2.3.4 Magnetic Zeeman Effect

The Zeeman effect explains the splitting of energy levels of an atom due to the potential

energy created by the atom magnetic dipole orientation in an applied external magnetic

field [41]. This field interacts with the various magnetic moments present in the atom

namely the electron orbital µL and spin magnetic moments µs, and also the magnetic

moment of the nucleus µI [42]. Explicitly, these terms are:

µL = e

2me

L ; µS = e

me

S ; µI = − qgp
2Mp

I. (2.23)

where gp, q, and Mp are the Landé g-factor, charge and mass of the proton, respectively.

It is important to note that these magnetic moments only appear for optically active

electrons. Here, optical electrons are referred to the electrons which determine the total

angular momentum of an atom by means of L-S or J-J coupling [41]. Other electrons in a
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completely filled subshell do not present net magnetic dipole moments and hence can be

neglected [41].

As the Zeeman hamiltonian describes the interaction energy of the atom with the

magnetic field B, it can be written as the sum [42]:

HZ = −(µL + µS + µI) ·B

= e

2me

(L + 2S) + qgp
2Mp

I.
(2.24)

According to the Born–Oppenheimer approximation [42], the nucleus has a much

larger mass compared to the electron (Mp >> me), and thus the last term in Eq. (2.24)

can be neglected. Moreover, if B is set in the z direction (B = Bẑ), then:

HZ = e

2me

(Lz + 2Sz). (2.25)

In this work, it is considered external magnetic fields of the magnitude of the Earth,

so this field is not strong enough to disturb the coupling J = L + S. In other words, the

Zeeman effect is small compared to the SOC effect and hence in the weak-field limit, the

ket base of SOC effect can be used, see Eq. (2.10). This is because the external magnetic

field “is weak compared to the internal atomic magnetic fields that couple S and L to form

J and only causes a relatively slow precession of S about the direction of B” [41]. For this

case, the only non vanishing term is:

HZ = −3
2µBBzi ≡ µp, (2.26)

where µB is the Bohr magneton and µp is defined as the magnitude of the external magnetic

interaction for p orbitals. Finally, the only non-vanishing terms for the Zeeman effect can

be represented in matrix form as shown in Table 2.3.

Considering that the borh magneton values is µB = 5.788× 10−5 eV/T and that the

Earth's magnetic field varies from 25 to 60 µT [44], then the magnetic term results in

µp = 3.47×10−9 eV at the maximum value of Bz, but also it is possible to include another

contribution for the magnetic field, in form of an external one.
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Table 2.3: Zeeman matrix elements between p orbitals.

|px〉 |py〉 |pz〉

〈px| 0 iµp 0

〈py| iµp 0 0

〈pz| 0 0 0

2.4 Decimation Procedure

The decimation method is based on the renormalization group techniques of statistical me-

chanics [45], which has been proven to be very powerful in providing concise and compact

descriptions of the collective behavior of many-body systems [46]. The decimation proce-

dure allows reducing a general N×N hamiltonian into a 2×2 effective hamiltonian which

catch the essential physical behavior of the studied system. This effective hamiltonian

exhibits modified as well as new couplings due to a priori exact elimination of degrees of

freedom [46]. Also, these couplings indicates how the presence of other sites has the effect

of shifting or splitting the energies of a particular site [38]. To illustrate this, consider the

following hamiltonian:

H =




ε1 t r

t ε2 s

r s ε3



, (2.27)

where εi represent the in site energy at position i and t with s represent the different

couplings between the sites. In this case, all the entries are real values. The corresponded

eigenvalue problem εΨ(u1, u2, u3) = HΨ(u1, u2, u3) can be expressed with the set of linear

equations:
εu1 = ε1u1 + tu2 + ru3

εu2 = ε2u2 + tu1 + su3

εu3 = ε3u3 + ru1 + su2

(2.28)
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To reduce the hamiltonian dimension, one start by choosing a square submatrix Hχ con-

taining the unperturbed energies. The selection of this submatrix depends on physical

considerations: for instance for electronic transport, only the free electrons in the system

will contribute the most. In graphene-like structures, these electrons are found in the out-

of-plane orbitals, which are commonly denoted as the pz orbitals. Hence, the submatrix

Hχ shall contain the aforementioned pz orbital overlaps to represent correctly the electron

transport. The other coupled matrices are redefined as [23]:

H =



Hγ T

T † Hχ


 (2.29)

where the new matrices having the new couplings correspond to:

Hγ =



ε1 t

t ε1


 ; Hχ = ε3 ; T =



t

r


 ; T =

(
t r

)
. (2.30)

It is important to notice that the decimation works perfectly for complex-valued

matrices as long as the matrix hermiticity is satisfied. For real valued and symmetric

matrices, this is clearly the case. To continue the decimation process, the minor Hχ is

inverted. Finally, a decimated hamiltonian can be obtained by carrying the following

product of matrices:

Heff = S−1/2
[
Hγ − TH−1

χ T †
]
S−1/2, (2.31)

where S = 1 − TH−1
χ T † is an orthogonal projector on the system's state space. In this

approximation, S ∼ 1 [23, 47], so the decimated hamiltonian becomes:

H ≈ Hγ − TH−1
χ T †. (2.32)

and for the given example, equation 2.32 allows to obtain the effective hamiltonian:

Heff(ε) =



ε1 + r2

ε−ε3
t+ rs

ε−ε3

t+ rs
ε−ε3

ε2 + s2

ε−ε3


 . (2.33)

The effective hamiltonian obtained satisfies the equation det(ε1−Heff(ε)) = 0. It

can be noticed that in general, the decimation reduces the hamiltonian dimension at the
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expense of generating non-linear renormalized coefficients, namely the inverse dependence

on the energy variable ε [38]. However, the effective hamiltonian can be further linearized

in a region of interest by keeping the higher order terms according to the Feynmann-type

paths.

2.5 Feynmann-type paths

In 1948, Feynman published different approach to quantum mechanics which still gave the

same results from Schrödinger equation [48]. The main essence in this formulation is to

assign a probability amplitude to each possible trajectories that connect two space-time

points [49]. In this sense, each possible trajectory has the same probability weight [49],

but since each path has a different action, they contribute with a different phase [43].

Then, the contributions from all possible trajectories are sum up to obtain the transition

amplitude between the two space-time points [49]. This also can be seen as a “perturbation

series”, since each path may has different kind of interactions which “perturbs” the free

propagation of the particle [50].

The Feynman formulation do not require a detailed description of the behavior of

each particle in the system, but rather just the average behavior of one or two physical

particles [50], such as the electron. This formulation can be used to give a physical

interpretation of the ways or paths that connect two sites in a molecular structure. These

paths may be evaluated approximately by selecting the most important terms in it. This

is because the probability of a electron going from piz to pjz by means of merely kinetic

energy (electronic hopping matrix elements) is larger compared to the probabilities which

includes various perturbation interactions. In other words, the kinetic Slater-Koster terms

are larger compared to the Stark, spin-orbit, Rashba and Zeeman terms. Then, higher

order terms will give successively smaller contributions, and thus the solution can be

approximated by summing the series up to the first- or second-order terms [50]. It is
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important to note that in this context, the order of the term is referred to the total

number of interactions that appear in a certain path [50].

In the next section, it will be shown the effective paths that an electron can take

in going from one atomic orbital to another. Correspondingly, these paths are derived

between the effective couplings of pz orbitals, which are the same orbitals in which the

decimation procedure was carried out.
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CHAPTER 3

RESULTS AND DISCUSSION

In this section are derived the Slater-Koster overlaps for the helicene structure and it

is verified the hermiticity and angular momentum conservation of these terms. Next, the

total hamiltonian is constructed from the Slater-Koster overlaps and the orbital interaction

arising from the Stark, intrinsic SOC, Rashba coupling and Zeeman effects. Then, the total

hamiltonian is decimated using a matricial approach. Finally the magnitude for each type

of interaction is obtained.

3.1 Helicene model

Helicenes are non-planar polycyclic aromatic molecules composed by orthofused benzene

or other aromatic rings [51]. The terminal rings repel each other and produce steric

hindrance which cause helicenes to fold along the helical axis. Additionally, helicenes have

a C2-symmetric axis perpendicular to the helical axis (see Fig. 3.1) which makes them

chiral despite not having asymmetrical carbons nor chiral centers [51].

In this work, the helicene structure is taken to be a right-handed circular helix. For

our purposes, the helicenes will be considered as consisting of only carbon atoms so any
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Figure 3.1: Atomistic structure of 6-Helicene with right handed helicity.

hydrogen contribution is neglected. In fact, the polarization of the hydrogen bond may

result in strong internal electric fields (different from the ones produced by atomic cores)

which in turn can produce a considerable Stark coupling [47]. Also, it has been speculated

that hydrogen bonding may be responsible for the largest spin activity observed in biologi-

cal chiral molecules [47]. Therefore, the hygrogen bonds may not be completely negligible.

However, instead of considering the possible polarization of the hydrogen bonds, only a

Stark coupling in the z-direction is considered.

Another approximation is to neglect the resonance of the aromatic double bonds in

the helicene, so all distances between carbon atoms are equidistant. As a matter of fact,

the tight-binding theory make use of localized basis functions [37] and thus it cannot

account directly for the electron delocalisation that results from the aromatic resonance.

However, the strength of the σ and π bonding can be adjusted using the values of the

Slater-Koster parameters V π
pp which are inherent to each atom-type [17, 23]. Despite the

helicene is a finite structure, it is better to work with an infinite helix so that the molecule

will be composed of only 4 inequivalent atoms as is shown in Fig. 3.2. Thus, these 4

inequivalent atoms constitute the unit cell of the helicene, and they will be the only atoms

needed to model the whole system. It should be noted that even though the outer atoms

seems to be equivalent, the handedness of the helix provokes these atoms to be mirror

images of each other.
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Figure 3.2: Top view of right handed helicene divided into three concentric helices (I,M,

and A). Inequivalent atom sites are marked with blue circles. Wavy red curve indicates

that no bonding in plane is formed.

In addition, helicenes are formed by three concentric helices: an inner helix, denoted as

I, with radius r0 = a0 ∼ 1.4 Å; a middle helixM with r1 = 2a0; and an outer helix A with

r2 = a1 =
√

7a0. The angle between two neighboring sites on the inner helix is φ0 = π/3

while the angle for nearest neighbors on the outer helix is φ2 = 2 arcsin
(
1/(2
√

7)
)
≈ 21.8◦

as seen in Fig. 3.2. The last angle is defined between nearest neighbour atoms in the

middle and outer helices and its value is φ1 = 1
2(π3 − φ2) ≈ 19.1◦. Finally, the pitch of the

helicene which is the height of a complete helix turn is 3.6 Å and it will be denoted by b.

On the other hand, the orientation of the orbitals presented in this work is based on

the previous description of the helicene structure made by Geyer et. al [19]. Based on

this reference, each atom site has its own right-handed local coordinate system. Also, the

local z-axis is taken to be parallel to the global Z-axis while the local x-axis is normal to

the cylinder surface as shown in Fig. 3.3. Thus, these orbitals form a local system at each

site, and they may vary from different atoms.
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Figure 3.3: Global reference system (X,Y) and the orientation of px orbitals in the helicene

in the local system (x,y). For a convenient visualization, only a single in-plane p orbital

is drawn on each carbon site.

Furthermore, to characterize each atom in the solid state system, two vectors are

required which correspond to the position of the atoms in the molecule (atom position

vector) and the direction of a set of orbitals at that site (orbital direction vector). In

this regard, the position of the atom is the distance to a specified origin while the orbital

direction can be parametrized with respect to that origin. In particular, it is convenient to

represent the vector position of a helicene carbon atom on site i in cylindrical coordinates

as:

Ri =
(
Ri cos(Φi), Ri sin(Φi),

b

2πΦi

)
, (3.1)

where Ri is one of the three radii defined in 3.2 and Φi is a sum of multiples of φ0, φ1

and φ2 (see Fig. 3.3 for reference). In this case, the helicene pitch is represented by b.
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Explicitly, the radial and angular dependencies are:

Ri =





r0 for i ∈ N

r1 for i ∈M

r2 for i ∈ A

and Φi =





(1− i)φ0 for i ∈ N

(1− i)φ1 for i ∈M∪A

(1− i)φ2 for i ∈ A

(3.2)

Based on previous tight-binding models [17, 19, 23, 52], for two carbon atoms at sites

i and j, the Slater-Koster overlaps are given by the expression:

H ij
µν =

〈
n(µij)‖,n(νji)‖

〉
V σ
µν +

〈
n(µij)⊥,n(νji)⊥

〉
V π
µν , (3.3)

where n(µi) is a unit vector in the direction of the orbital µi and ‖ denotes a projection

of n(µi) onto the interatomic distance Rji = Rj −Ri, while ⊥ denotes a projection onto

a plane perpendicular to Rji. In any case, these formulas contemplate only mathematical

notions such as the inner product and thus they are not constructed to be Hermitian nor

converse angular momentum. However, the system can be further constrained to satisfy

both these conditions (see discussion in Sec. 2.3.1).

Besides, n(µij)‖ and n(νji)⊥ allow to adjust the Slater-Koster parameters to the ge-

ometry of a given molecule and in this case, helicenes. Redefining the unitary vectors

with their vector projection on the helicene interatomic distance, and considering that

an orbital in an arbitrary direction can be decomposed into a parallel and perpendicular

component such that n(µi) = n(µij)‖ + n(µij)⊥, the orbital vectors become:

n(µij)‖ =





〈Rji,n(µi)〉
‖Rji‖2 Rji, for µ ∈ (x, y, z)

Rji

‖Rji‖ , for µ = s

(3.4)

and

n(µij)⊥ =





n(µi)− 〈Rji,n(µi)〉
‖Rji‖2 Rji, for µ ∈ (x, y, z)

0, for µ = s.

(3.5)
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Replacing the projections given in Eqs. (3.4) and (3.5) into (3.3), it can be obtained a

general prescription to compute orbital overlaps (see Appendix A). For overlaps involving

only p orbitals, the matrix elements are:

H ij
µν = 〈n(µi),n(νj)〉V σ

µν + 〈Rji,n(νj)〉 〈Rji,n(νj)〉
‖Rji‖2 (V σ

µν − V π
µν), (3.6)

and for overlaps involving s and p orbitals, the matrix elements are:

H ij
µν = 〈Rij,n(νj)〉

‖Rij‖
V σ
µν . (3.7)

Finally, to compute the Slater-Koster overlaps it is required an appropriate orbital parametriza-

tion. In this matter, local system of each p orbital will be also treated in cylindrical

coordinates:
n(xi) = (cos(Φi), sin(Φi), 0) ,

n(yi) = (− sin(Φi), cos(Φi), 0) ,

n(zi) = (0, 0, 1) ,

(3.8)

where Φi is the same angle defined in the carbon position vector. That is, both the atom

position and the orbital direction vectors are parametrized with the same angles to further

simplify calculations. In that sense, Eq. (3.3) can be used to compute the different atom

overlaps in helicenes, which in turn will depend on geometric parameters given by Eq.

(3.2).

3.2 Feynman paths that connect pz orbitals

The different paths give a “map” to keep track of all the sequences of interaction that

the electron can have in going from one site to another [50]. In this case, these type of

interactions are given by: a purely kinetic term associated with the Slater-Koster elements

contribution (H ij
µν), an electric term (ξsp) due to the Stark effect contribution, an intrinsic

magnetic term (ξp) due to the spin-orbit coupling, a Rashba contribution (proportional

to ξpξsp) due to the orbital coupling by the SOC and Stark interactions, and finally, an

external magnetic term (µp) due to the Zeeman effect contribution.

29



3.2. Feynman paths that connect pz orbitals Chapter 3: Results and Discussion

The effective electron pathways connecting an initial pz orbital to another pz orbital

are summarized in Table 3.1. These paths include different combination of the aforemen-

tioned kinetic, electric and magnetic interactions. Some of these paths produce a spin-flip

and will be named as spin active processes.

Table 3.1: First order possible paths that connects piz to pjz
piz

Eij
zz←→ pjz

piz
ξsp←→ si

Eij
sz←→ pjz

piz
ξp←→ pix

Eij
xz←→ pjz

piz
ξp←→ piy

Eij
yz←→ pjz

piz
ξp←→ si

Eij
sx←→ pjx

ξsp←→ pjz

piz
ξp←→ si

Eij
sy←→ pjy

ξsp←→ pjz

piz
Eij

zs←→ sj
ξsp←→ pjx

ξp←→ pjz

piz
Eij

zs←→ sj
ξsp←→ pjy

ξp←→ pjz

piz
ξp←→ pix

µp←→ piy
Eij

yz←→ pjz

piz
ξp←→ piy

µp←→ pix
Eij

xz←→ pjz

piz
ξp←→ pix

µp←→ piy
Eij

ys←→ sj
ξsp←→ pjz

piz
ξp←→ pix

µp←→ piy
ξsp←→ si

Eij
sz←→ pjz

piz
ξp←→ piy

µp←→ pix
Eij

xs←→ sj
ξsp←→ pjz

The lowest order paths that effectively connect two pz orbitals are:

(1) The kinetic term:

piz
Eij

zz←→ pjz (3.9)

which connects pz orbitals at different sites by means of the kinetic Eij
zz element and it is

shown in Fig. 3.4.

(2) The first-order Stark coupling:

piz
ξsp←→ si

Eij
sz←→ pjz (3.10)
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Figure 3.4: Kinetic path due to pz-pz overlaps between nearest neighbors. The process is

not spin active (spin states are indicated at the end of blue arrows).

which combines the Stark coupling between a s and a pz orbital in the same site and the

nearest neighbour overlap by the Eij
sz element and the process is depicted in Fig. 3.5.

Figure 3.5: The external electric field along the z axis couples pz and s orbitals on the

same site. Then the overlap Esz enables nearest neighbor hopping to another pz orbital.

The process is not spin active.

(3) The first-order intrinsic SO:

piz
ξp←→ pix

Eij
xz←→ pjz

piz
ξp←→ piy

Eij
yz←→ pjz

(3.11)

which includes the in-site SOC coupling of different p orbitals and the overlaps of the form

Epp at different sites. Notice that the SOC coupling is referred to the coupling between p

orbitals (see Table 2.2), while the intrinsic SO refers to the interaction which includes the

SOC term. Also, note that ξp is the magnitude of the SOC interaction and is the same

for any p orbital coupling. The lowest-order SO path is shown in Fig.3.6.
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Figure 3.6: SO path couples in-site pz orbitals and produces a spin flip transfer. The

matrix element Exz allows the hoping between nearest s and p orbitals. This process is

spin active.

(4) The first-order Rashba coupling:

piz
ξp←→ si

Eij
sx←→ pjx

ξsp←→ pjz

piz
ξp←→ si

Eij
sy←→ pjy

ξsp←→ pjz

piz
Eij

zs←→ sj
ξsp←→ pjx

ξp←→ pjz

piz
Eij

zs←→ sj
ξsp←→ pjy

ξp←→ pjz

(3.12)

which includes a combination of the electric Stark effect, the SOC interactions, and the

kinetic overlap involving Esp type-elements. The lowest-order Rashba path is shown in

Fig. 3.7.

Figure 3.7: Lowest-order Rashba coupling which involves a combination of Stark and SOC

interactions and s− px,y overlaps. The process is spin active.
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(5) The first-order Zeeman coupling:

piz
ξp←→ pix

µp←→ piy
Eij

yz←→ pjz

piz
ξp←→ piy

µp←→ pix
Eij

xz←→ pjz

piz
ξp←→ pix

µp←→ piy
Eij

ys←→ sj
ξsp←→ pjz

piz
ξp←→ pix

µp←→ piy
ξsp←→ si

Eij
sz←→ pjz

piz
ξp←→ piy

µp←→ pix
Eij

xs←→ sj
ξsp←→ pjz

(3.13)

which combines the Stark, SOC, magnetic (internal and external effects) and kinetic terms.

The lowest-order Zeeman path is shown in Fig. 3.8.

Figure 3.8: Lowest-order Zeeman coupling as a combination of Stark, SOC and magnetic

Zeeman interactions, including s− px,y kinetic hoppings. The process is spin active.

As seen from Figs. 3.4 to 3.8, only the paths that include the SOC term, that is ξp,

are spin active. On the other hand, the kinetic and the Stark terms conserve the electron

spin, and thus they do not flip the spin.

3.3 Slater-Koster overlaps for helicenes

Considering the general prescription to calculate different overlaps according to Eq. (3.2)

and the geometry of helicenes given in Eq. (3.3), it can be obtained the expressions of all

possible overlaps between the orbitals s, px, py and pz. In particular, the Slater-Koster

scheme produces any combination of two arbitrary rotating orbitals to transform into
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an orbital in the direction of the interatomic distance. Even though the orientation of

one selected atom may be arbitrary, it is not trivial the relative orientation of the other

orbitals (nearest neighbors) with respect to the selected one. That is, choosing a reference

system is not trivial. In this case, the orbital reference system is parametrized following

the prescription given by Geyer et. al [19]. Additionally, Slater Koster overlaps depend on

the wavefunction overlaps relative to a geometrical arrangement, and in this case, helical

structure of Helicenes. For sake of simplicity, we limited our analysis by only considering

overlaps between σ and π type bonds. Thus, Eij
µν will only depend on linear combinations

of V σ
ss, V σ

sp, V σ
pp and V π

pp.

It is convenient to divide all possible overlaps in two groups which correspond to the

σ− and π−structure. First, the matrix elements which involve only σ bonds are:

Eij
sx = (Rj −Ri cos(Φj − Φi))

‖Rji‖
V σ
sx = Eji

xs, (3.14)

Eij
xs = (Rj cos(Φj − Φi)−Ri)

‖Rji‖
V σ
xs = Eji

sx, (3.15)

Eij
sy = Ri sin(Φj − Φi)

‖Rji‖
V σ
sy = Eji

ys, (3.16)

Eij
ys = Rj sin(Φj − Φi)

‖Rji‖
V σ
sy = Eji

sy = Eij
sy, (3.17)

Eij
sz = b(Φj − Φi)

2π‖Rji‖
V σ
sz = Eji

zs, (3.18)

Eij
zs = b(Φj − Φi)

2π‖Rji‖
V σ
zs = Eji

sz. (3.19)

where Ri and Φi are defined as 3.2 and 3.3, respectively. Also, b stands for the helicene

pitch.

Next, the π−structure involve both σ and π bonds. Thus, the atoms overlaps are a

linear combination of V σ
pp and V π

pp.

Eij
xx = cos(Φj − Φi)V π

xx + (Rj cos(Φj − Φi)−Ri) (Rj −Ri cos(Φj − Φi))
‖Rji‖2 (V σ

xx − V π
xx)

= Eji
xx, (3.20)
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Eij
yy = cos(Φj − Φi)V π

yy + RjRi sin2(Φj − Φi)
‖Rji‖2 (V σ

yy − V π
yy) = Eji

yy, (3.21)

Eij
zz = V π

zz + b2(Φj − Φi)2

4π2‖Rji‖2 (V σ
zz − V π

zz) = Eji
zz, (3.22)

Eij
xy = − sin(Φj − Φi)V π

xy + (Rj cos(Φj − Φi)−Ri) (Ri sin(Φj − Φi))
‖Rji‖2 (V σ

xy − V π
xy)

= Eji
yx, (3.23)

Eij
yx = sin(Φj − Φi)V π

yx + (Rj sin(Φj − Φi)) (Rj −Ri cos(Φj − Φi))
‖Rji‖2 (V σ

yx − V π
yx)

= Eji
xy, (3.24)

Eij
xz = b (Rj cos(Φj − Φi)−Ri) (Φj − Φi)

2π‖Rji‖2 (V σ
xz − V π

xz) = Eji
zx, (3.25)

Eij
zx = b(Φj − Φi) (Rj −Ri cos(Φj − Φi))

2π‖Rji‖2 (V σ
zx − V π

zx) = Eji
xz, (3.26)

Eij
yz = bRj sin(Φj − Φi)(Φj − Φi)

2π‖Rji‖2 (V σ
yz − V π

yz) = Eji
zy, (3.27)

Eij
yz = b(Φj − Φi)Ri sin(Φj − Φi)

2π‖Rji‖2 (V σ
yz − V π

yz) = Eji
zy. (3.28)

A further simplification occur when Ri = Rj, it is to say, when i, j ∈ I or i, j ∈ A for

nearest neighbours. Thus, new equalities arise and the overlap matrix elements become:

Eij
sx = a (1− cos(Φj − Φi))

‖Rji‖
V σ
sx = Eij

xs = Eji
xs, (3.29)

Eij
sy = a sin(Φj − Φi)

‖Rji‖
V σ
sy = −Eij

ys = Eji
ys, (3.30)

Eij
sz = b(Φj − Φi)

2π‖Rji‖
V σ
sz = −Eij

sz = Eji
zs, (3.31)

Eij
xx = cos(Φj − Φi)V π

xx −
4a2 sin4

( (Φj−Φi)
2

)

‖Rji‖2 (V σ
xx − V π

xx) = Eji
xx, (3.32)

Eij
yy = cos(Φj − Φi)V π

yy + a2 sin2(Φj − Φi)
‖Rji‖2 (V σ

yy − V π
yy) = Eji

yy, (3.33)

Eij
zz = V π

zz + b2(Φj − Φi)2

4π2‖Rji‖2 (V σ
zz − V π

zz) = Eji
zz, (3.34)
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Eij
xy = − sin(Φj − Φi)V π

xy −
2a sin2

( (Φj−Φi)
2

)
sin(Φj − Φi)

‖Rji‖2 (V σ
xy − V π

xy)

= −Eij
yx = Eji

yx, (3.35)

Eij
xz = −

2ab sin2
( (Φj−Φi)

2

)
(Φj − Φi)

2π‖Rji‖2 (V σ
xz − V π

xz) = −Eij
xz = Eji

zx, (3.36)

Eij
yz = ab sin(Φj − Φi)(Φj − Φi)

2π‖Rji‖2 (V σ
yz − V π

yz) = Eij
zy = Eji

zy. (3.37)

It should be noted that Eqs. (3.29) to (3.37) have the same form as the ones derived

for DNA [17, 23] and oligopeptides [18]. This is because these structures have a similar

atomic/base distribution compared to the helicenes couplings in either the inner helix I
and outer I helix.

On the other hand, when Φi = Φj, that is, when i, j ∈ I ∪M, the only non-vanishing

matrix elements are:

Eij
sx = V σ

sx = Eij
xs = Eji

xs, (3.38)

Eij
xx = V π

xx = Eji
xx, (3.39)

Eij
yy = V π

yy = Eji
yy, (3.40)

Eij
zz = V π

zz = Eji
zz. (3.41)

It should be pointed that all these matrix elements obey the rule Vl,l′ = (−1)l+l′Vl′,l
where l = 1 for p orbitals and l = 0 for s orbitals.

Up to here, it is clear that the helicene helical geometry, curvature and torsion effects

will affect the magnitude of the different electronic couplings. This is because the matrix

elements Eij
µν depend on geometrical parameters such as the step angle between different

sites in the helices and the pitch that separates them. Now, it is written explicitly the

magnitude of the interatomic distance, or equivalently ‖Rji‖2, for different helices and

couplings. In general, it can be shown that:

‖Rji‖2 = R2
j + R2

i − 2RjRi cos(Φj − Φi) + b2

4π (Φ2
j − Φ2

i ) (3.42)
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Therefore, the magnitude of the interatomic distance for different helices and cou-

plings become:

‖Rji‖2 =





2a2
0(1− cos(Φj − Φi)) + b2

4π (Φ2
j − Φ2

i ) for i, j ∈ I

2a2
1(1− cos(Φj − Φi)) + b2

4π (Φ2
j − Φ2

i ) for i, j ∈ A

Φj − Φi for i, j ∈ I ∪M

4a2
0 + a2

1 − 4a0a1 cos(Φj − Φi) + b2

4π (Φ2
j − Φ2

i ) for i ∈M∪A

(3.43)

which can be rewritten using the angular dependence for nearest neighbours in each helix

as follows:

‖Rji‖2 =





2a2
0(1− cos(φ0)) + b2

4π2φ
2
0 for i, j ∈ I

2a2
1(1− cos(φ2)) + b2

4π2φ
2
2 for i, j ∈ A

0 for i, j ∈ I ∪M

4a2
0 + a2

1 − 4a0a1 cos(φ1) + b2

4π2φ
2
1 for i, j ∈M∪A

(3.44)

3.3.1 Hermiticity and conservation of angular momentum

Any operator that represents a physically measurable quantity has real eigenvalues, as they

are the only possible results of precise measurement of that quantity [39]. The hamiltonian

represents the physical observable of the energy, and thus it is an hermitian operator.

The hermitian adjoint of a matrix Ĥ, denoted as Ĥ†, is the matrix obtained by

interchanging rows and columns and taking the complex conjugate of each element [39].

This condition is summarized in that Ĥ = Ĥ† [53] where † indicates the complex or

hermitian adjoint. Therefore, the matrix elements satisfy the condition Hkl = H∗lk [53]

where ∗ indicates the complex conjugate. As a consequence, any term that appears in the

hamiltonian must be hermitian, a condition that the Slater-Koster elements indeed satisfy.

This hermiticity condition is reflected by interchanging both the site and position labels

at the same time (e.g. Eij
sx = Eji

xs). In that sense, the hermiticity guarantees electron time
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reversal, that is, the electron returns from the same place where it came from with the

same probability. This traduces to that every state has a corresponded time-reversed state

and the operator that transforms between these states preserves all probabilities values,

thus leaving invariant the total value of any inner product between states [40]. Moreover,

the time reversal implies that the initial and final states of a system are interchanged when

the time development is reversed with all physical processes running backwards [40].

However, invariance under time reversal does not lead to any conservation law [40],

and thus the hamiltonian hermiticity is not a sufficient but a necessary condition. Addi-

tionally, the matrix elements of the hamiltonian must conserve the total angular momen-

tum. This condition appears between matrix elements which involves the same combi-

nation of position and orbital labels (e.g. Eij
sx, Eij

xs, Eji
sx and Eji

xs). These elements must

conserve the amplitude because their difference only relies on how the electron sees the ro-

tating orbitals (clockwise or anti-clockwise). Additionally, the overlaps involves the same

orbitals only changing their relative positions.

This lead to two interpretations. The first interpretation, called Interpretation 1, is

that Eqs. (3.14) to (3.28) apply with no further correction. To clarify this interpretation,

consider all possible overlaps between s and p orbitals:

Eij′
µν = 〈Rji,n(νj)〉

‖Rji‖
V σ
µν = Eji′

νµ, (3.45)

Eij′
νµ = −〈Rji,n(νi)〉

‖Rji‖
V σ
µν = Eji′

µν . (3.46)

This case is illustrated in Fig. 3.9 considering s-px overlaps.

Figure 3.9: Interpretation 1 of atomic orbital orientation with no corrections.
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The drawback with Interpretation 1 is due to the change in magnitude between atoms

in (M,A) when either the position label or the orbital label are interchanged once (e.g.

Eij
µν 6= Eij

νµ and Eij
µν 6= Eji

µν). The problem arises because Eqs. (3.45)- to (3.46) generate a

change in angle when one of the labels of the matrix elements is changed. This angle is

introduced by the parametrization n(νi,j) of the p orbital, which indicates that a change

in the orbital orientation produces a change in the magnitude of the interaction between

atomic orbitals. However, this observation cannot be true as the orbital overlaps must be

independent of the reference system and thus cannot depend on the observer. Also, this

interpretation break up inversion symmetry for overlaps with atoms in (M,A) and thus

violates time reversal. It must be emphasized that this complication only arises for atoms

in (M,A), while the other overlaps conserve the magnitude of Slater-Koster overlaps due

to: (1) distance conservation, that is Ri = Rj for atoms in either I or A (see Eqs. 3.29 to

3.37) and; (2) angle conservation, specifically Φi = Φj which occur for atoms in (I,M)

(see Eqs. 3.38 to 3.41).

As a consequence, another interpretation must be used in order to conserve the afore-

mentioned symmetries. In that sense, Interpretation 2 consider the same parametrization

given in Eqs. (3.45) to (3.46) but the matrix elements that appear in the hamiltonian do

not rotate with respect to a interchange in label. That is, all the overlaps involving the

same orbitals in the same atoms depend only in one angle given by n(νj). Then, the cor-

rection to the matrix overlaps is done by conserving the same angle of the parametrization

as:

Eij
µν = 〈Rji,n(νj)〉

‖Rji‖
V σ
µν = Eji

νµ, (3.47)

Eij
νµ = −Eij

µν = Eji
µν . (3.48)

Again, this another case is illustrated in Fig. 3.10 considering s-px overlaps.

Therefore, Eqs. (3.47) to (3.48) implies the same symmetries found in Eqs. (3.29) to

(3.37) and thus this prescription can be extended to be applicable for atoms in (M,A)

(in addition to atoms in I and A).
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Figure 3.10: Interpretation 2 of atomic orbital orientation with corrections.

Finally, it is important to note that Interpretation 1 and 2 describe the same rotating

system. The only problem that arose was with respect the conservation of angular mo-

mentum. The problem reduced to specify correctly the terms Eij
µν , Eij

νµ, Eij
µν and Eji

µν so

they conserve the angular momentum. In fact, this step only checks that the symmetries

in the system are conserved, and as it will be seen, only one kinetic term (e.g Eij
µν) is

required to describe the helicene system.

3.4 Effective hamiltonian

The total hamiltonian of the helicene including perturbation effects can be written in the

form given by Eq. (2.3). In this case, the helicene hamiltonian can be grouped following

Eq. (2.29) and the procedure described in the Methodology section 1.4:

H =



Hσ T

T † Hπ


 , (3.49)

where Hσ and Hπ are the structural hamiltonians (containing the σ- and π- bonding) and

the T matrices includes the connection between Hσ and Hπ spaces.

In general, the hamiltonian can be expanded in the basis of atomic orbitals, contem-

plating all the orbital interactions at nearest neighbours as:
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|pz〉i |pz〉j |s〉i |px〉i |py〉i |s〉j |px〉j |pj〉j





|pz〉i
Hπ T

|pz〉j
|s〉i

T † Hσ

|px〉i
|py〉i
|s〉j
|px〉j
|pj〉j

(3.50)

In this case, the subspace Hπ contains the unperturbed pz orbitals having in its

diagonal the terms επp which are the bare energy of the pz orbitals; and in the off-diagonal

the overlap Eij
zz.

Hπ =



επp Eij

zz

Eij
zz επp


 (3.51)

On the other hand, the Hσ submatrix contains the following energies in its diagonal:

επp which define the site energy for the px and py bonded orbitals; εσp the site energy of the

pz orbital, and εs the energy of the s orbital. Meanwhile, the off-diagonal terms contain

the coupling between these orbitals.

Hσ =




εs 0 0 Eij
ss Eij

sx Eij
sy

0 εσp −i(szξp + µp) Eij
xs Eij

xx Eij
xy

0 i(szξp + µp) εσp Eij
ys Eij

yx Eij
yy

Eij
ss Eij

xs Eij
ys εσp 0 0

Eij
sx Eij

xx Eij
sx 0 εσp −i(szξp + µp)

Eij
sy Eij

xy Eij
yy 0 i(szξp + µp) εσp




(3.52)

As it can be noticed, the SOC and Zeeman interactions couple the π electrons to the

on-site px and py orbitals.
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Finally, the T subspace contains the intrinsic SOC, the Stark couplings, and the

overlaps between the orbitals pz with the s, px, py and pz orbitals.

T =



ξsp −isyξp isxξp Eij

zs Eij
zx Eij

zy

Eij
sz Eij

xz Eij
yz ξsp −isyξp isxξp


 (3.53)

The problem of computing TH−1
σ T † relies in its computational cost and the many

number of variables to process in reducing the original 8 × 8 site and orbital space into

just a 2 × 2 decimated space. However, this problem can be overcome by eliminating

variables which in principle do not participate in the electronic transport such as those

appearing in the σ-bonding and also variables which do not appear at first order with

respect the Feynmann paths. Then, under this premise, the matrix elements that can be

neglected are:

Eij
xx, E

ij
yy, E

ij
xy, E

ij
yx = 0 (3.54)

In fact, these terms contribute to the electronic transport but they appear at higher

orders in the Feynman path. Even if the paths that include the terms in Eq. (3.54) are

possible, they are unlikely to occur, and so they can be neglected. Additionally, it can be

used the symmetry relations for nearest neighbours in I, A, and (M,A):

Eij
sx = Eij

xs = Eji
xs (3.55)

Eij
sy = −Eij

ys = Eji
ys (3.56)

Eij
sz = −Eij

sz = Eji
zs (3.57)

Eij
xy = −Eij

yx = Eji
yx (3.58)

Eij
xz = −Eij

xz = Eji
zx (3.59)

Eij
yz = Eij

zy = Eji
zy, (3.60)

and the symmetry relations for nearest neighbours in (I,M) presented in Eqs. (3.38) to

(3.41).
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3.5 Magnitude of the interactions

In this section, the magnitude of the kinetic, spin-orbit, Rashba and Zeeman interac-

tions are computed using the expressions obtained from the matrix decimation. All these

calculations were preformed using the computer algebra software Mathematica.

3.5.1 Kinetic energy hamiltonian

The kinetic hamiltonian arises only due to the Slater-Koster overlaps between pz orbitals.

It is important to note that no further correction to the kinetic energy from the decimation

procedure is considered. Thus, the kinetic hamiltonian can be written as:

HK =
∑

k

tk
∑

(i,j)
a†iaj =

∑

k

∑

(i,j)
Eij
zza
†
iaj, (3.61)

where tk indicates the hoppings between nearest-neighbor sites in α = I, A, (I,M) and

(M,A). Namely, these couplings arise between: two atoms in the inner helix or in I; two
atoms in the outer helix or in A; one atom in the inner helix and one atom in the middle

helix, or atoms in (I,M) and; one atom in the middle helix and one atom in the outer

helix, or atoms in (I,M) (refer to Fig. 3.2). Thus, there are four kinetic coupling terms

(e.g tI , tA, tI,M, tM,A) which correspond to the four inequivalent atoms in helicene. It

should be noted that the interaction terms between sites on the same helix are I and A
while (I,M) and (M,A) denote couplings between sites on different helices.

Then, all the kinetic couplings can be evaluate explicitly as:

tI = b2φ0(V σ
zz − V π

zz)
8π2a2

0[1− cos(φ0)] + b2φ2
0

= −1.806 eV (3.62)

tA = b2φ2(V σ
zz − V π

zz)
8π2a2

1[1− cos(φ2)] + b2φ2
2

= −3.191 eV (3.63)

tI,M = V π
zz = −3.440 eV (3.64)

tM,A = b2φ1(V σ
zz − V π

zz)
4π2[4a2

0 + a2
1 − 4a0a1 cos(φ1)] + b2φ2

1
= −3.247 eV (3.65)
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The values obtained for the kinetic terms have the same magnitude as the ones re-

ported by Geyer et. al [19], which corroborates that the prescription used for Slater-Koster

elements is correct. Additionally, these terms are two magnitude order higher than sim-

ilar models obtained from DNA (e.g. Eij(DNA)
zz ∼ −10 meV) [17]. This is because the

Slater-Koster elements Eij
zz are inversely proportional to the atom distance square ‖Rji‖2.

The square of the atomic distance for the helicene is ‖RH
ji‖2 = 1.4 Å while for DNA is

‖RDNA
ji ‖2 = 23.7 Å [17]. As higher the atomic separation is, the lower the magnitude

Slater-Koster overlap will be. Thus, the kinetic term for the helicene will be higher than

the term of the DNA (b-type) bases. Despite the fact that the same equations reported

for DNA [17] were derived for helicenes, the extent as the atomic orbitals overlaps will be

determined by geometrical factors.

3.5.2 Spin-orbit hamiltonian

The intrinsic SOC in carbon atoms allows spin flip processes between in-site p orbitals

and its contribution between sites i and j is given by:

Hij
SO = i

∑

k

αky
∑

(i,j)
a†iηijsyaj, (3.66)

where ηij = sgn(j − i) and α is the intrinsic SO vector whose magnitude is computed as:

αy = − 2iξpEij
xz(επp − εσs )

(Eij
sx)2 + (Eij

sy)2 + (επp − εσp)(επp − εσs )
. (3.67)

Considering the structural characteristics of the helicene, the estimated values for

the SOC magnitudes in the y coordinate are αIy = 1.83 meV, α(M,A)
y = 1.70 meV and

αAy = −0.25 meV while the terms in the z direction are negligible as they appear at third

order. The highest value of αy is achieved for atomic overlaps in the inner helix I, which
again corroborates the claim that the spin processes are given primarily through the inner

helix.
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In contrast to the kinetic terms, the perturbation effects appear in combination with

the site energy terms (e.g. επp , εσp and εs). Geyer et al. considered degenerate energies for

σ bonds, that is εσp = εs. However, this is not necessarily true and it can be demonstrated

in perturbation theory εs = −17.52 eV and επp = −8.97 eV, while from Hückel theory

επp − εs ≈ 2.5 eV [47]. The SOC values from Geyer et. al may also contain artifacts (due to

the perturvative method used) which overestimate the real ones. Additionally, Geyer et al.

did not show any hermiticity check in the expression in their approach, and as mentioned

in this work, this may led to violations of physical laws. Regardless of this facts, our works

shows similar values for the SOC magnitude as it can be seen from Table 3.2.

Table 3.2: Obtained SOC couplings and literature referential values.

SOC terms (meV)

This Work Geyer et. al

αIy 1.83 3.05

α(M,A)
y 1.70 3.13

αAy 0.25 0.48

αIx -0.0076 -3.63

α(M,A)
x -0.0024 -0.00072

αAx -0.0031 4.56

It can be observed that the values obtained for αy in both researches are in the order

of meV, having the same order than that of the intrinsic SOC of carbon. This implies a

connection between chirality and the intrinsic SOC, as the value of the latter indicates

that the chirality must be nonzero [17]. Because the αy contribution to the overall SOC

is directly proportional to the helical pitch (given by Eij
zx), this term would be absent in

planar geometries such as graphene. On the contrary, the same term will present in helical

structures such as DNA [17], carbon nanotubes [52], and of course helicenes. Thus, the
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helical structure is crucial to produce non-zero SOC couplings.

3.5.3 Rashba hamiltonian

The Rashba coupling describes the splitting of energy levels as a result of SOC in the

presence of an external field [54], which cause the mixing of α and π bands. The Rashba

term arises naturally from the decimation procedure, and its contribution between sites i

and j is given by

Hij
SOC = i

∑

k

λky
∑

(i,j)
a†iηijsyaj, (3.68)

where λy is the magnitude of the Rashba coupling and it is computed as:

λy =
2iξpξspEij

sy

(Eij
sx)2 + (Eij

sy)2 + (επp − εσp)(επp − εσs )
. (3.69)

The estimated values for the Rashba contribution, corresponding to an electric mag-

nitude ξsp = 10.5 eV, are λIy = −20.08 meV, λ(M,A)
y = −15.18 meV and λAy = −22.74 meV.

It can be observed that λy is one order higher compared to the merely SOC σy mag-

nitude. Despite the fact that the energy contribution of the SOC interaction is rather

small compared to the Rashba coupling, the SOC effect importance is due to its property

of symmetry breaking in the system. In that sense, the intrinsic SOC alone is too weak

to account for the CISS effect, but in combination with an electric field applied along the

molecule, it can induce a significant spin-dependent transmission [25]. If the electric field

used here is considered to be intrinsic to the structure, for instance, as dipoles associ-

ated with the helicene (considering hydrogen bonding), then the Rashba term is perhaps

the most important contribution to the electron spin interaction, and therefore the main

contribution to the CISS effect.

46



3.5. Magnitude of the interactions Chapter 3: Results and Discussion

3.5.4 Zeeman hamiltonian

The Zeeman contribution between sites i and j in the z direction is given by

Hij
Z =

∑

k

µkz
∑

(i,j)
a†isyaj, (3.70)

where µz is the magnitude of the Zeeman coupling aligned with Bz and it is defined as:

µz =− 2ξpµpEij
yz(επp − εσs )sy

(επp − εσp)
(
(Eij

sx)2 + (Eij
sy)2 + (επp − εσp)(επp − εσs )

)

+ 2ξpξspµpEij
sxsx

(επp − εσp)
(
(Eij

sx)2 + (Eij
sy)2 + (επp − εσp)(επp − εσs )

)
(3.71)

Then, the values for the Zeeman contribution in the z direction, considering an exter-

nal magnetic field of Bz = 40 µT, are µIz = 1.92 × 10−8 meV, µ(M,A)
z = 3.97 × 10−8 meV

and µAz = 1.86× 10−8 meV.

In the presence of an external magnetic field aligned in the z direction, it is obtained

real components of the magnetic term proportional to sy and sx which causes the otherwise

degenerate spin-up and spin-down states of an isolated electron to split apart. This is in

agreement with the Zeeman effect in an atom where the energy levels of the atom are split

into several components in the presence of an external magnetic field [41]. Additionally,

it can be observed that µz only appears when is coupled with the already weak SOC term

ξp. Because µz is a combination of the geomagnetic field in z direction Bz and the SOC

term ξp, its magnitude becomes extremely low so its effects are negligible.

The Zeeman effect can also be computed along the transverse directions. That is,

setting the magnetic field along the x and y directions. Similarly to the Bz field which

causes orthogonal orbitals (e.g. px with py) to couple in plane (see Appendix D.), a Bx

and By field will cause the orbital couple pz-py and pz-px, respectively. Then, decimating

and obtaining the Zeeman hamiltonian for a magnetic field along the x direction, it is

obtained:

Hij
Z = i

∑

k

µkx
∑

(i,j)
a†iηijaj (3.72)
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where µx is the magnitude of the Zeeman coupling aligned with Bx and is defined as:

µx = − 2iξspµpEij
sy

(Eij
sx)2 + (Eij

sy)2 + (επp − εσp)(επp − εσs )
(3.73)

The values for the Zeeman contribution in the x direction are µIx = 1.34× 10−5 meV,

µ(M,A)
x = 1.01× 10−5 meV and µAx = −2.08× 10−9 meV.

Meanwhile, the Zeeman hamiltonian for a magnetic field along the y direction is:

Hij
Z = i

∑

k

µky
∑

(i,j)
a†iηijaj (3.74)

where µy is the magnitude of the Zeeman coupling aligned with By and is defined as:

µy =
2iµpEij

xz(επp − εσs )
(Eij

sx)2 + (Eij
sy)2 + (επp − εσp)(επp − εσs )

(3.75)

The values for the Zeeman contribution in the y direction are µIy = 2.76× 10−6 meV,

µ(M,A)
y = 1.06× 10−7 meV and µAy = 1.56× 10−7 meV.

In this case, the magnitude of the magnetic fields in the x and y directions are set equal

to the z field, that is Bx = By = Bz. In contrast to the Zeeman effect in the z direction,

the fields in the x and y directions produce only imaginary component terms. In overall,

the orientation of the helicene with respect to the external field is crucial for the magnitude

and size of the Zeeman terms. Even using the same magitude for the external field, the

Zeeman couplings are far different in the x, y and z directions. Moreover, the magnitude

of the Zeeman couplings ranges from ×10−5 meV to ×10−9 meV for different direction of

the external magnetic field and also for different helix couplings (e.g. I, (M,A) and A).
Up to date, there is no other known effect that may increase significantly the magnitude

of the Zeeman couplings nor if there is any mechanism in which the relative difference of

the Zeeman couplings (which is up to four orders of magnitude) becomes important, that

is, a mechanism susceptible to these changes have not yet been described.
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Thus, the limitation of this model relies in that the weak external magnetic field

considered in this work do not produce any symmetry-breaking and thus it has an inap-

preciable contribution. Further works may require the implementation of other sources of

magnetic fields such as induced magnetic dipoles related to the exchange interaction or

electron–electron dipolar interaction. Even if these effects by themselves are weak, they

can couple together to yield significant electron pathways, as is in the case of the Rashba

coupling. Analyze these effects become fundamental to elucidate the prime interactions

that lead to the CISS effect. A more complete approach may also require the use of a

more complete base, such as the inclusion of d orbitals, which may lead to additional first

order corrections.
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CONCLUSIONS

In this work, spin interactions of helicenes were studied including the effects of electric

fields, intrinsic SOC and external magnetic field. A minimal analytic tight-binding model

was constructed to then describe the mobile electrons of the helical structure using the

Slater-Koster Tight-Binding approach. A matrix decimation strategy from perturbative

band folding was used to derive an effective Hamiltonian including the contribution of: (1)

Kinetic energy, (2) Stark electric coupling, (3) intrinsic SOC, (4) Rashba-type coupling

and (5) Zeeman external magnetic field coupling. It was obtained explicit analytical

expressions in terms of geometric parameters as well as atomic orbital overlaps between

nearest neighbor sites along each helix of the Helicenes.

The interaction effects cause that certain paths to be favored, which in turn produce

that the p orbitals to be no longer degenerate. The favored paths can be used to approx-

imate the effective interactions in the system which maintain the physics of the model

while reduce unimportant variables. The decimation procedure takes advantage of this by

neglecting Slater-Koster overlaps that do not contribute in the favored paths. Addition-

ally, the Slater-Koster overlaps depend on the geometric parameters of a molecule, which

give insights on the physical processes occurring in the system.
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Conclusions

On the other hand, it was obtained analytical expression for the interaction effects,

namely spin-orbit, Stark and Zeeman terms. It was found that the greatest SOC contri-

bution comes from the term αy and varies from 0.2 to 1.8 meV depending of the orbital

couplings between helices in the system. In addition, the Rashba term yields a major con-

tribution and its magnitude varies from 15 to 20 eV. On the contrary, the external magnetic

field yield the lowest energy contributions with orders from 0.01 to 10 µeV depending on

both the direction of the external field and the helix coupling.

The lack of SOC between atoms in (I,M) implies that spin-flip processes only occur

along either the inner I and outer A helices. Moreover, the magnitude of σy derived from

SOC is also great in I than other helix couplings in helicene, which corroborates that

spin processes have a preferential transmission through the helicene inner helix. This is

also a reason why the Slater-Koster overlaps have the same form as the one derived from

DNA [17, 23] systems having a similar helix atom/base distribution, as their electronic

distribution is similar.
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APPENDIX A

DERIVATION OF GENERAL OVERLAP EXPRESSION

First, it is important to define the inner (scalar) product. The inner product on the

vector space V is a function V × V → R which associates each pair (x,y) of vectors in V

with a real number 〈x,y〉 and satisfies the following conditions [55]:

〈x,x〉 > 0 if x 6= 0

〈x,y〉 = 〈y,x〉

〈ax + by, z〉 = a 〈x, z〉+ b 〈y, z〉

(A.1)

where a and b are real numbers. It is important to note that the commonly used

inner product in Rn is denoted by x · y and expressed as [55]:

x · y = x1y1 + ...+ xnyn (A.2)

where x and y are vectors with n components. Also, this definition satisfies the inner

product conditions.

Then, we start from equation 3.2 and replace the projections 3.3 and 3.4. Based

on these equations, there are two possible combination which are between p-p and s-p

orbital overlaps. First, it is derived a general prescription to calculate s − p overlaps
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and then it is followed to obtain the p-p overlaps. As only geometrical considerations

are taken into account to obtain the Slater-Koster overlaps, an s-p is equivalent to a p-s

overlap as long as this terms are real numbers. Without loss of generalization, it is taken

n(µi) = n(µi)‖ = Rij/‖Rij‖ so then:

H ij
µν =

〈
n(µi)‖,n(νj)‖

〉
V σ
µν +

〈
n(µi)⊥,n(νj)⊥

〉
V π
µν =

〈
Rji

‖Rji‖
,
〈Rij,n(νj)〉
‖Rij‖2 Rij

〉
V σ
µν

(A.3)

By taking out the real numbers from the inner product, and redefining 〈Rji,Rji〉 =

‖Rji‖2 it is obtained a general formula to compute s− p overlaps:

H ij
µν = 〈Rij,n(νj)〉

‖Rij‖3 〈Rji,Rij〉V σ
µν = 〈Rij,n(νj)〉

‖Rij‖
V σ
µν (A.4)

Next, for p-p overlaps, the replacement of the projections 3.3 and 3.4 led to the inner

products:

H ij
µν =

〈
〈Rji,n(µi)〉
‖Rji‖2 Rji,

〈Rij,n(νj)〉
‖Rij‖2 Rij

〉
V σ
µν

+
〈

n(µi)−
〈Rji,n(µi)〉
‖Rji‖2 Rji,n(νj)−

〈Rij,n(νj)〉
‖Rij‖2 Rij

〉
V π
µν

(A.5)

Considering that Rji = −Rij and ‖Rji‖2 = ‖Rij‖2, all interatomic distances can be

written in terms of one parameter so that:

H ij
µν =

〈
〈Rji,n(µi)〉
‖Rji‖2 Rji,

〈Rji,n(νj)〉
‖Rji‖2 Rji

〉
V σ
µν

+
〈

n(µi)−
〈Rji,n(µi)〉
‖Rji‖2 Rji,n(νj)−

〈Rji,n(νj)〉
‖Rji‖2 Rji

〉
V π
µν

(A.6)

Using the distributive property of the inner product and noticing that real values can

be taken out from the inner product

H ij
µν =

[
〈Rji,n(µi)〉
‖Rji‖2 · 〈Rji,n(νj)〉

‖Rji‖2 〈Rji,Rji〉
]
V σ
µν +

[
〈n(µi),n(νj)〉

− 〈Rji,n(νj)〉
‖Rji‖2 〈n(µi),Rji〉 −

〈Rji,n(µi)〉
‖Rji‖2 〈n(νj),Rji〉

+ 〈Rji,n(νj)〉
‖Rji‖2 · 〈Rji,n(µi)〉

‖Rji‖2 〈Rji,Rji〉
]
V π
µν

(A.7)
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This expression can be further simplified by noticing that 〈Rji,Rji〉 = ‖Rji‖2 and by

symmetry the terms 〈n(µi),Rji〉 = 〈Rji,n(µi)〉 and 〈n(νj),Rji〉 = 〈Rji,n(νj)〉 are equal.

Hence, it is obtained:

H ij
µν = 〈Rji,n(µi)〉

‖Rji‖2 〈Rji,n(νj)〉V σ
µν +

[
〈n(µi),n(νj)〉−

〈Rji,n(νj)〉
‖Rji‖2 〈Rji,n(µi)〉

− 〈Rji,n(µi)〉
‖Rji‖2 〈Rji,n(νj)〉+ 〈Rji,n(νj)〉

‖Rji‖2 〈Rji,n(µi)〉
]
V π
µν

(A.8)

Finally, the last equation can be simplified and rearranged to yield the known result

for p-p overlaps:

H ij
µν = 〈Rji,n(µi)〉

‖Rji‖2 〈Rji,n(νj)〉V σ
µν+

[
〈n(µi),n(νj)〉 −

〈Rji,n(µi)〉
‖Rji‖2 〈Rji,n(νj)〉

]
V π
µν (A.9)

The results for the s− p and p-p overlaps can be sumarized in the equations:

H ij
µν = 〈n(µi),n(νj)〉V π

µν + 〈Rji,n(µi)〉
‖Rji‖2 〈Rji,n(νj)〉 (V σ

µν − V π
µν) (A.10)

which applies for µ, ν ∈ (x, y, z) and

H ij
µν = 〈Rij,n(νj)〉

‖Rij‖
V σ
µν (A.11)

which works for µ and ν ∈ (x, y, z). These equations are the same present in Eq. (3.6).
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APPENDIX B

DERIVATION OF THE SPIN-ORBIT TERMS

The SOC Hamiltonian is defined as:

HSOC = λL · S (B.1)

By noticing that J2 = (L + S)2 = (L2 + S2 + 2LS), the SOC Hamiltonian can be

rewritten as:

HSOC = λ

2 (L2 + S2 + 2LS) (B.2)

Then, the SOC matrix elements can be computed using the couple basis given in Eq.

(2.21) as follows:

ESOC = λ

2 〈J,mj|L2 + S2 + 2LS|J,mj〉 (B.3)

For instance, to calculate the couplings between px and py orbitals trough SOC. The

non-vanishing overlaps are given by orbitals having the same spin, and written combination

of coupled states |J,mj〉, they are:

〈px ↑| =
〈3

2 ,
3
2

∣∣∣∣−
√

1
3

〈3
2 ,

1
2

∣∣∣∣+
√

2
3

〈1
2 ,−

1
2

∣∣∣∣

|py ↑〉 =
〈3

2 ,
3
2

∣∣∣∣+
√

1
3

〈3
2 ,

1
2

∣∣∣∣−
√

2
3

〈1
2 ,−

1
2

∣∣∣∣

(B.4)
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It is important to note that the p orbitals written in the form |J,mj〉 have implicit the

quantum states |l,ml〉 and |s,ms〉. To apply any of the operators of the CSCO given in

Eq. (2.16), one have to take into account that the system is modelled by mobile electrons

(spin 1/2 system) constrained to s and p orbitals. That is, s = 1/2 and l = 1 for p orbitals,

which applies for every state in the Helicene. Using the eigenvalues given in Eq. (2.17), it

is easy to find that:
S2
∣∣∣∣
1
2 ,ms

〉
= 3

4~
2
∣∣∣∣
1
2 ,ms

〉

L2 |1,ml〉 = ~2 |1,ms〉
(B.5)

where ms = 1/2,−1/2 while ml = −1, 0, 1. Lastly, consider that the only eigenvalue

possible for the total angular momentum are:

J2
∣∣∣∣
3
2 ,mj

〉
= 15

4 ~2
∣∣∣∣
3
2 ,mj

〉

J2
∣∣∣∣
3
2 ,mj

〉
= 15

4 ~2
∣∣∣∣
3
2 ,mj

〉 (B.6)

Applying the prescription given in Eq.B.3 and considering the eigenvalues from Eqs.

B.5 and B.6, it can be obtained:

ESOC = 〈px ↑|L2 + S2 + 2LS|py ↑〉

= −λ2



〈3

2 ,
3
2

∣∣∣∣−
√

1
3

〈3
2 ,

1
2

∣∣∣∣+
√

2
3

〈1
2 ,−

1
2

∣∣∣∣



(1

2(J2 − L2 − S2)
)

i



〈3

2 ,
3
2

∣∣∣∣+
√

1
3

〈3
2 ,

1
2

∣∣∣∣−
√

2
3

〈1
2 ,−

1
2

∣∣∣∣




=− λ

4~
2
[15

4 − 2− 3
4 −

1
3

(15
4 − 2− 3

4

)
− 2

3

(3
4 − 2− 3

4

)]
= −iλ2~

2

(B.7)
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APPENDIX C

DERIVATION OF THE STARK TERM

The Stark Hamiltonian in the z direction can be written in spherical coordinates in

the rotating basis as:

HS = −eEz ẑ = −eEzr cos(θ) (C.1)

In this case, due to s orbital spherical symmetry, is convenient to treat the overlaps

with the spherical harmonics functions instead of the so far used bra-ket formulation.

Then, the atomic orbitals in spherical coordinates are described by the hydrogenic wave-

functions [47]:

ψs = (r) = 〈r|s〉 = 1√
32πa3

0

e−r/2a0

(
2− r

a0

)

ψx = (r) = 〈r|px〉 = 1√
64πa3

0

e−r/2a0
r

a0
sin(θ) cos(φ)

ψy = (r) = 〈r|py〉 = − 1√
64πa3

0

e−r/2a0
r

a0
sin(θ) cos(φ)

ψz = (r) = 〈r|pz〉 = 1√
32πa3

0

e−r/2a0
r

a0
cos(θ)

(C.2)

where a0 is the Bohr radius and the wavefunctions ψs and ψx,y,z are referred to the

atomic orbitals 2s and 2px,y,z respectively. Additionally, the hydrogenic wavefunction
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Appendix C: Derivation of the Stark term

can be separated into a radial Rn(r) and angular Ylm(θ, φ) part, with Ylm the spherical

harmonic function. Moreover, the spherical harmonics can be regarded as a unitary trans-

formation from the angular momentum to the angular component representation [39] as

follows Ylm(θ, φ) = 〈θφ|lm〉.

ξsp = 〈ψs|HS|ψz〉 = −eEz 〈ψs|r cos(θ)|ψz〉 (C.3)

Then, by replacing the hydrogenic wavefunctions it is obtained:

ξsp = − eEz
32πa3

0

∫

Ω
e−r/a0

r2

a0

(
2− r

a0

)
cos(θ)dV (C.4)

where Ω is the region delimited by r ∈ [0,∞), θ ∈ [0, π], and φ ∈ [0, 2π) while the

differential volume element in spherical coordinates is dV = r2 sin(θ)drdθdφ Therefore,

the angular and radial components can be solved independently over the space integration

region. By rearranging some terms, it is obtained:

ξsp = −eEz32π

∫ 2π

0

∫ π ∫ ∞

0
e−r/a0

r4

a4
0

(
2− r

a0

)
cos2(θ) sin(θ)dφdθdr (C.5)

Working out the angular part it is obtained:
∫ 2π

0
dφ
∫ π

0
cos2(θ) sin(θ)dθ = −2π cos3(θ)

3

∣∣∣∣∣

π

0
= 4π

3 (C.6)

While for the radial part, it is made the change of variable t = r/a0 so that dt = dr/a0
∫ ∞

0
e−r/a0

r4

a4
0

(
2− r

a0

)
dr = a0

∫ ∞

0
e−t(2t4 − t5)dt (C.7)

The improper integral can be evaluated using the Gamma function property:

Γ(z + 1) =
∫ ∞

0
tze−tdt = z! (C.8)

Thus, the radial integral becomes

a0

∫ ∞

0
e−t(2t4 − t5)dt = a0(2 · 4!− 5!) = −72a0 (C.9)

By joining all the results, the Stark term can be written in the form:

ξsp = 3ea0Ez (C.10)
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APPENDIX D

DERIVATION OF THE ZEEMAN TERMS

The Zeeman Hamiltonian is given by:

HZ = e

2m (L + 2S) ·B = e

2m (J + S) ·B (D.1)

where we used the fact that Ĵ = L̂+ Ŝ. Because we are considering only a magnetic

field in the z direction so that B = Bz êz, the only terms remaining are the ones in the z

direction:

HZ = eBz

2m (Jz + Sz) (D.2)

To emulate the magnetic field of the Earth, the analysis of the external magnetic

effects is restricted to the weak-field limit. Then, it can be used the SOC coupled basis

to represent the p orbitals in the form |j,mj〉 as given in Eq. (2.10). Then, the matrix

elements can be computed using the operator:

HZ = eBz

2m 〈j,mj|Jz + Sz|j,mj〉 (D.3)

Using the projection lemma, Sz can be expressed in terms of Ĵz, L̂z and Ŝz.

Sz = (Sz · Jz)Jz
J2
z

(D.4)
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Appendix D: Derivation of the Zeeman terms

By noticing that 2Sz · Jz = J2
z − L2

z + S2
z and using the Ŝz projection, the magnetic

contribution to the total Hamiltonian can be computed as follows.

EZ = eBz

2mc

〈
J,mj

∣∣∣∣∣Ĵz + 1
2

(J2
z − L2

z + S2
z ) Jz

J2
z

∣∣∣∣∣J,mj

〉

= eBz

2mc

[
〈J,mj|Jz|J,mj〉

(
1 +

〈
J,mj

∣∣∣∣∣
J2
z − L2

z + S2
z

Ĵ2
z

∣∣∣∣∣J,mj

〉)] (D.5)

Then, the p orbitals can be expressed as a linear combination of coupled states. For

instance, consider the external magnetic coupling 〈px|HZ|py〉. The non-vanishing terms

occur when both orbitals have the same spin whose magnitude, according to Eq. (B.4).

Then, applying the Zeeman operator and summing algebraically, it is obtained

EZ = −eBz

4m


2~


1 + 1

2

[
5
2 − 5

6 + 1
3

]

2




 = −3

4
eBz~
mc

i = −3
2µBBzi ≡ −µpi (D.6)

Which finally yield the result:

EZ = −µpi (D.7)
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APPENDIX E

MODEL PARAMETERS AND ESTIMATED OVERLAPS

The geometric parameters used to model the helicene are given in Table E.1.

Table E.1: Helicene geometric parameters

Distances (Å) Radii (Å) Angles (rad)

a0 = 1.4 r0 = a0 = 1.4 φ0 = π
3

b = 3.6 r1 = 2a0 = 2.8 φ1 = 191π
1800

r2 =
√

7a0 = 3.7 φ2 = 109π
900

On the other hand, based on Geyer et al. [19], the values of Slater-Koster parameters

are summarized in Table E.2. The Slater-Koster parameters Vpp and Vsp can be replaced

for specific combinations of s and p orbitals with the correct bonding-type (e.g V π
pp =

V π
xy = V π

zz) as long as they satisfy the rule Vl,l′ = (−1)l+l′Vl′,l.

Table E.2: Slater-Koster parameters for helicenes

Vss = −7.92 eV V σ
pp = 7.09 eV

V σ
sp = 8.08 eV V π

pp = 3.44 eV
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Appendix E: Model Parameters and Estimated Overlaps

Still on the subject, the self-energies of the p and s orbitals, as well as the magnitude

of the electric and magnetic interactions are given in Table E.3.

Table E.3: Atomic site self energy and magnitude of interaction effects.

Self Energy (eV) Interaction Magnitude (eV)

εs = −17.52 ξp = 0.006

εσp = −11.47 ξsp = 10.5

επp = −8.97 µp = 4× 10−9

Based on the values reported in Tables E.1-E.3, the Slater-Koster overlaps can be

computed for the different couplings between helices in helicene. For convenience, these

values are divided in three groups. First, overlaps between atomic orbitals in I helix are

presented in Table E.4.

Table E.4: Slater-Koster overlaps in I helix

Eij
sx = 4.04 eV Eij

xy = 1.40 eV

Eij
sy = 7.00 eV Eij

xz = −0.78 eV

Eij
sz = 3.46 eV Eij

yz = 1.35 eV

Second, overlaps between atomic orbitals in (M,A) helices are shown in Table E.5.

Table E.5: Slater-Koster overlaps (M,A)

Eij
sx = 6.11 eV Eij

xy = 2.32 eV

Eij
sy = 5.29 eV Eij

xz = 0.25 eV

Eij
sz = 1.10 eV Eij

yz = 0.43 eV
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Appendix E: Model Parameters and Estimated Overlaps

And third, overlaps between atomic orbitals in (A) helix can be seen in Table E.6

Table E.6: Slater-Koster overlaps A

Eij
sx = 1.53 eV Eij

xy = 0.60 eV

Eij
sy = 7.94 eV Eij

xz = −0.11 eV

Eij
sz = 1.26 eV Eij

yz = 0.56 eV
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