
 

 

UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA 

EXPERIMENTAL YACHAY 

 

Escuela de Matemáticas y Ciencias Computacionales 

 

 

TÍTULO:  Path Planning Based on Fast Marching Method 

 

Trabajo de integración curricular presentado como requisito para 

la obtención del título de Ingeniero en Tecnologías de la 

Información 

 

Autor: 

Jhonatan David Saguay Saguay 

Tutor: 

Israel Pineda, PhD. 

 

 

Urcuquí, Enero 2022 



Hacienda San José s/n y Proyecto Yachay, Urcuquí  |  Tlf: +593 6 2 999 500  |  info@yachaytech.edu.ec

www.yachaytech.edu.ec

Urcuquí, 19 de enero de 2022
SECRETARÍA GENERAL

(Vicerrectorado Académico/Cancillería)
ESCUELA DE CIENCIAS MATEMÁTICAS Y COMPUTACIONALES

CARRERA DE TECNOLOGÍAS DE LA INFORMACIÓN
ACTA DE DEFENSA No. UITEY-ITE-2022-00001-AD

 
A los 19 días del mes de enero de 2022, a las 11:00 horas, de manera virtual mediante videoconferencia, y ante el Tribunal Calificador,
integrado por los docentes:

 
Presidente Tribunal de Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D.

Miembro No Tutor Dr. MANZANILLA MORILLO, RAUL  , Ph.D.

Tutor Dr. PINEDA  ARIAS, ISRAEL GUSTAVO , Ph.D.

 
El(la) señor(ita) estudiante SAGUAY SAGUAY, JHONATAN DAVID, con cédula de identidad No. 0604998047, de la ESCUELA DE
CIENCIAS MATEMÁTICAS Y COMPUTACIONALES, de la Carrera de TECNOLOGÍAS DE LA INFORMACIÓN, aprobada
por el Consejo de Educación Superior (CES), mediante Resolución RPC-SO-43-No.496-2014, realiza a través de videoconferencia, la
sustentación de su trabajo de titulación denominado: Path Planning based on Fast Marching Method , previa a la obtención del título
de INGENIERO/A EN TECNOLOGÍAS DE LA INFORMACIÓN.

 
El citado trabajo de titulación, fue debidamente aprobado por el(los) docente(s):

 
Tutor Dr. PINEDA  ARIAS, ISRAEL GUSTAVO , Ph.D.

 
Y recibió las observaciones de los otros miembros del Tribunal Calificador, las mismas que han sido incorporadas por el(la) estudiante.

 
Previamente cumplidos los requisitos legales y reglamentarios, el trabajo de titulación fue sustentado por el(la) estudiante y examinado por
los miembros del Tribunal Calificador. Escuchada la sustentación del trabajo de titulación a través de videoconferencia, que integró la
exposición de el(la) estudiante sobre el contenido de la misma y las preguntas formuladas por los miembros del Tribunal, se califica la
sustentación del trabajo de titulación con las siguientes calificaciones:

 
Tipo Docente Calificación
Miembro Tribunal De Defensa Dr. MANZANILLA MORILLO, RAUL  , Ph.D. 10,0

Presidente Tribunal De Defensa Dr. ANTON CASTRO , FRANCESC , Ph.D. 9,0

Tutor Dr. PINEDA  ARIAS, ISRAEL GUSTAVO , Ph.D. 10,0

 
Lo que da un promedio de: 9.7 (Nueve punto Siete), sobre 10 (diez), equivalente a: APROBADO

 
Para constancia de lo actuado, firman los miembros del Tribunal Calificador, el/la estudiante y el/la secretario ad-hoc.

 
 

SAGUAY SAGUAY, JHONATAN DAVID
Estudiante

 
 

Dr. ANTON CASTRO , FRANCESC , Ph.D.
Presidente Tribunal de Defensa

 
 

Dr. PINEDA  ARIAS, ISRAEL GUSTAVO , Ph.D.
Tutor

 
 

Dr. MANZANILLA MORILLO, RAUL  , Ph.D.
Miembro No Tutor

Signé électroniquement par
FRANCESC ANTON CASTRO
cn=FRANCESC ANTON CASTRO, c= EC
Date: 2022.01.20 11:56:59 ECT

FRANCESC ANTON 
CASTRO

Firmado electrónicamente por:

ISRAEL
GUSTAVO
PINEDA ARIAS

Firmado electrónicamente por:

RAUL
MANZANILLA

JHONATAN 
DAVID SAGUAY 
SAGUAY

Firmado digitalmente por 
JHONATAN DAVID 
SAGUAY SAGUAY 
Fecha: 2022.01.26 
16:16:45 -05'00'



Hacienda San José s/n y Proyecto Yachay, Urcuquí  |  Tlf: +593 6 2 999 500  |  info@yachaytech.edu.ec

www.yachaytech.edu.ec

 
 

MEDINA BRITO, DAYSY MARGARITA
Secretario Ad-hoc

DAYSY 
MARGARITA 
MEDINA BRITO

Firmado digitalmente por 
DAYSY MARGARITA 
MEDINA BRITO 
Fecha: 2022.01.20 11:52:57 
-05'00'



Autoŕıa
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Abstract

Path Planning has become a very active research area due to the advancement of informa-
tion technology. Path Planning is very important in different areas; for example, tumor
modeling, robotic navigation, seismological analysis, image processing, video games, etc.
The use of these search techniques has shown that there are optimization and efficiency
problems, both in their implementation and in their design. This is why many solutions
and modifications of algorithms have been developed that have tried to solve these prob-
lems based on different types of storage, these alternatives have been proposed with two
main objectives: to reduce its computational time and to improve its accuracy. Although
several algorithms solve the route planning problem, the Fast Marching method has not
been the most popular. FMM is a very popular algorithm to compute times-of-arrival
maps. FMM is a special case of level set methods, it is able to provide a smooth path from
one point to another. The Fast Marching method has been modified in different ways,
both in its way of storing data and in its workflow to solve problems of computational
complexity. Therefore, the first step is to describe all these alternatives that this method
presents within a common framework and to compare the different methods, based on
previously defined metrics to answer the research question: How to achieve optimal FMM
performance applied to route planning? In the present work, we carry out an algorithm
based on the FMM focused on Path Planning, and we reduce the execution time of the
FMM algorithm.

The present work consists of six chapters. Chapter 2 presents the literature review
of research related to Path Planning and the Fast Marching method. Here, the main
concepts of the Eikonal equation in the road panorama and the main components of the
Fast Marching method algorithm are covered. The next chapter explains the modification
of the Fast Marching method and the use of a stack for the implementation of the algorithm.
Chapter 4 presents the statement of the problem and the methodology of this research.
Also, we explain in detail our proposal to modify the Fast Marching method in this chapter.
In the last chapters, we present the results of this project, the simulation scenarios, and
how the algorithms were evaluated.

The results of this research work were gratifying. For each evaluated scenario, the
FMM modification presented in this work obtained the shortest execution time. Our FMM
modification had an improvement of about 35% in the execution time compared with the
classic FMM.

Keywords: Fast Marching Method, FMM, FMM modifications, OFM, Path
Planning, Path Planing based on FMM.
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Resumen

Con el avance de la tecnoloǵıa de la información, la planificación de rutas se ha convertido en
un área de investigación muy activa. La planificación de rutas es muy importante en difer-
entes áreas; por ejemplo, modelado de tumores, navegación robótica, análisis sismológico,
procesamiento de imágenes, videojuegos, etc. El uso de estas técnicas de búsqueda ha de-
mostrado que existen problemas de optimización y eficiencia, tanto en su implementación
como en su diseño. Es por esto que actualmente se han desarrollado muchas soluciones
y modificaciones de algoritmos que han intentado solucionar estos problemas en base a
diferentes tipos de almacenamiento, estas alternativas se han propuesto con dos objetivos
principales: reducir su tiempo computacional y mejorar su precisión. Aunque varios algo-
ritmos resuelven el problema de planificación de rutas, el método Fast Marching no ha sido
el más popular entre ellos. FMM es un algoritmo utilizado principalmente para calcular
mapas de tiempos de llegada. FMM es un caso especial de métodos de ajuste de nivel, éste
es capaz de proporcionar un camino suave de un punto a otro. El método Fast Marching
se ha modificado de diferentes formas, tanto en su forma de almacenar datos como en su
flujo de trabajo para resolver sus problemas de complejidad computacional. Por tanto,
el primer paso es describir todas estas alternativas que presenta este método dentro de
un marco común y comparar los diferentes métodos, con base en métricas previamente
definidas para dar respuesta a la pregunta de investigación: ¿Cómo lograr un desempeño
óptimo de FMM aplicado a la planificación de rutas ?. En el presente trabajo realizamos
un algoritmo basado en el FMM enfocado en planificación de rutas, y reducimos el tiempo
de ejecución del algoritmo FMM.

El presente trabajo consta de seis caṕıtulos. El Caṕıtulo 2 presenta la revisión de la
literatura de la investigación relacionada con la planificación de rutas y el método Fast
Marching. Aqúı se cubren los conceptos principales de la ecuación de Eikonal en la plan-
ificación de rutas y los componentes principales del método Fast Marching. El siguiente
caṕıtulo presenta información relacionada con la modificación del método Fast Marching y
el uso de pilas en la implementación del algoritmo. El Caṕıtulo 4 presenta el planteamiento
del problema y la metodoloǵıa utilizada en este proyecto de investigación. Además, nuestra
propuesta para modificar el método Fast Marching se explica en detalle en este caṕıtulo.
En los últimos caṕıtulos, presentamos los resultados de este proyecto, los escenarios de
simulación y cómo se evaluaron todos algoritmos.

Los resultados de este trabajo de investigación fueron muy gratificantes. En todos los
escenarios evaluados la modificación de FMM presentada en este trabajo obtuvo el menor
tiempo de ejecución. Nuestra modificación de FMM tuvo una mejora en el tiempo de
ejecución de alrededor del 35% con relación al FMM clásico.

Palabras Clave: Fast Marching Method, FMM, Modificaciones de FMM,
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Chapter 1

Introduction

1.1 Motivation
Wave propagation algorithms are discussed in this research. This subject area is useful
in many areas, such as mechanical fluid problems [2, 3] tumor modeling [4, 5], navigation
robotics [6], seismic analysis [7], video games or image processing [8]. Different algorithms
to find the solution to the path planning problem have been devised to have faster and
more efficient results. This has sparkled a wide variety of applications in different areas.

To carry out this project, a modification of the Fast Marching Method algorithm [9]
has been implemented and four other existing ones have been used. The process consisted
of experimenting with different configurations with each of the five algorithms and then
obtaining, analyzing and comparing the results with each one of them.

The objective of this work is to implement and compare these algorithms in different
circumstances. In this way, knowing which of them achieves a correct result and in the
shortest time, thereby determining which is better in different situations.

The main motivation for carrying out this work is to implement an algorithm whose
effectiveness and optimization is superior to the other algorithms or modifications imple-
mented later. Consequently, this works presents a new tool for finding routes for this
increasingly growing field of research.

1.2 General Objective
Propose an FMM optimization that achieves safe routes and reduces the computational
time it takes for FMM to run.

1.3 Specific Objectives
• Evaluate several FMM variants with respect to how their computational time varies

in the face of variables such as image size, wavefront origin, number of obstacles, and
padding.

1
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• Design a new variant of FMM that improves the performance of classic FMM.

• Compare our new variant against other variants of FMM, regarding its execution
time.

1.4 Organization of the Work
• Chapter 2 presents the literature review of research related to Path Planning and the

Fast Marching Method. Here is covered the main concepts of the Eikonal Equation in
path panning, and the principal components of the Fast Marching Method algorithm.

• Chapter 3 explains the modification of the Fast Marching Method and the using of
stacks for the implementation of the algorithm.

• Chapter 4 explains the methodology of this research project. Here is explained in
detail our propose of Fast Marching Method modification, and its main concepts.

• Chapter 5 presents the results of this project, the simulation scenarios, and how the
algorithms were evaluated.

• Chapter 6 expose the conclusions obtained in this work.

Information Technology Engineer 2 Graduation Project



Chapter 2

Theoretical Framework

2.1 Path Planning
With the advancement in information technology, path planning has become a very active
area of research. However, at present, there is still no algorithm capable of satisfying
all the needs that this approach requires: reliability, completeness, low computational
complexity, etc. [10, 9] The algorithms that have proven to be fast and with smooth
solutions work correctly in two or three dimensions, but they give problems of complexity
as the dimensionality increases. [11] Furthermore, fast algorithms for all dimensions provide
paths that need a smoothing step later.

2.1.1 Definition
Mathematics is a solid base for what is known today in the specific subject of path planning.
Today, many solutions have been defined that converge to optimal and efficient theories
that have been applied in different areas. These areas that have been benefited by the
path planning algorithms are, for example, mobile robots, vehicles, video games, etc [12].

The focus of path planning has changed since the first approach was offered. The
original goal was to create an algorithm that could reliably and completely find the path
from the first point to the last point (i.e. the algorithm would find the path, if any).
This goal is largely solved (i.e. Dijkstra’s algorithm) and the computational power grows
exponentially, so the goal is to find the shortest or faster path while still maintain security
constraints. The new method should also provide a smooth and secure path [13].

Path planning is a purely geometric matter, since it is defined as the generation of
geometric lines without reference to specific laws, but it is important to analyze the topo-
logical basis for the environment to be explored in each study case. [14]. That is, a short
path is found by taking a fixed starting point to a goal target point. For example, if a
point-to-point trajectory is considered (that is, only the start and final positions are de-
termined), then two problems can be solved at the same time. The first problem is finding
the shortest path and the second is optimizing any path previously passed.

3
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The definition of a path planning problem is simple. “Find collision-free motion between
the initial (start) and final (destination) configurations in a particular environment.” [9]
The simplest situation is when you need to plan a route in a static and known environment.
However, in general, trajectory planning problems can be built against any dynamically
constrained robotic system in a dynamic and unknown environment.

2.1.2 Classification of the Path Planning algorithms
There are many and varied path planning algorithms. However, all these algorithms can
be classified as follows:

Geometric Methods

The environment is described as a set of polygons, and their properties calculate the path as
a set of geometric primitives such as lines, arcs, and circles. The most common approach in
this class is based on the visibility graph. [15, 16]. A visibility graph of a set of inseparable
polygonal obstacles in a plane is an undirected graph in which the vertices are the vertices
of the obstacles and the edges are pairs of vertices. For example, an open line segment
between two vertices does not cut an obstacle. This approach is intuitive and provides an
optimal 2D path (in terms of path length), but scaling to multiple dimensions is not easy
and loses optimality; furthermore, becoming a complex and serious IT problem.

Graph- and tree-based Methods

This is the most sought-after class in recent years. In this case, the environment is modeled
by the state of the robot associated with the environment. A graph is created in which each
node is the state of the robot (the states are attitude, speed, acceleration, etc). Transitions
between states are modeled as costs and the selected path is the path that minimizes the
total cost to reach the destination state from the current state.

There are several subclasses of the chart search method, depending on how the chart
is generated and how costs are allocated. One of the possible classifications is:

• Grid-based Methods: It features customization of the grid space. The most com-
mon grid representation is with rectangular or triangular cells. This arbitrariness can
lead to reduced accuracy, but this problem can be resolved by choosing the right cell
size. Each cell in space is a node of the graph, connected to adjacent cells (or 8 cells
connected in 2D, depending on the algorithm), and the cost of switching from one
node to another can vary. It can be defined in the following way. If the cost is fixed,
you can apply a graph search algorithm to select the allowed path to the destination
at the lowest possible cost.
Within this group, the typical graph search algorithms can be found, such as Dijkstra
[17] or A* [10]. Modifications of these have been already proposed, such as D*
[18], which efficiently reuses information from previous steps to avoid redundant
computations in dynamically changing scenarios or D*-lite [19] which simplifies D*.
Finally, wave front propagation methods, such as Fast Marching Method (FMM) [20]
It is also part of this group, which is the subject of this treaty. In this case, the cost

Information Technology Engineer 4 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

per node is related to the time it takes for the wave to propagate and reach that
node. Its formula ensures convergence towards the optimal path of the transit time
when the mesh is refined. If the wave speed is constant, the path is also optimal in
length.

• Sampling-based Methods: This type of algorithms incrementally searches in the
space for a solution using a collision detection algorithm [21]. The most extended
algorithms of this group are those based on rapidly exploring random trees (RRTs)
[22]. The branches of these trees are randomly created from the initial point of
the trajectory. Another common approach is the Probabilistic Road Maps (PRM)
[23]. PRM creates a road map (set of connections) among a set of points randomly
sampled. The main problem of sampling-based algorithms is their stochasticity. Most
of the times the computed paths are far from the optimal one, are neither safe nor
smooth. However, since RRT* and PRM* were proposed [24], this problem has
vanished and thus this family of algorithms is the most widely used in practical
applications. Finding faster approaches is a very active field nowadays, and many
more asymptotically-optimal algorithms have been proposed, for instance BIT*[25]
and RRT# [26].

Artificial Potential Field

Although these algorithms are based on grid representation, they are conceptually dif-
ferent from other grid-based methods. Artificial potential fields can be included in this
group. Conceptually, the robot is represented as a point-like charge and the destination is
represented as the opposite charge. [27]. Therefore, the robot is attracted to the target.
Obstacles are simulated with the same markings as the robot, so obstacles are pushed back
and collisions are avoided. Conceptually, they are simple and easy to implement, but the
main drawback is that they suffer from a minimally fluctuating local path.
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Figure 2.1: Classification of the current path planning approaches

Figure 2.1 summarizes this classification. It is important to remark that this classi-
fication might be considered not unique, as other criteria could be chosen: stochasticity,
optimality, etc. For example, artificial potential methods are usually implemented using a
grid discretization. A* models the environment as a grid as well, but it is a graph search
algorithm. In the same way, RRT and FMM could be in the same group considering that
both work on a continuous space representation. However, this classification was chosen
as it is the most common and the easiest to understand.

2.2 Fast Marching Method

2.2.1 Definition
The Fast Marching Method, FMM, is an algorithm developed by Osher and Sethian [9],
which models the movement of a wave. It is a special case of the “Level Set Method”, a
technique that is used to delineate interfaces and forms.

FMM is similar to the “Dijkstra Algorithm” which is based on the fact that the wave
only travels out of the point where the wave started. The generated wave has the ability
to be the shortest path, temporarily speaking, from where it started to the destination.

To easily understand FMM, [28] it is enough to imagine the effect of throwing a stone
on a water surface at rest. When the stone is in contact with the surface of the water at a
point, a circular waveform begins to expand outward from that point.

FMM calculates how long it takes for the generated wave to arrive from the initial point
to any point in space, the initial point or points being those associated with a zero time
[29].
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The speed of propagation in the medium of movement of the wave does not have to be
always the same, which means that the shortest path does not necessarily have to be the
fastest.

2.2.2 Eikonal Equation in Path Planning
Using the Eikonal equation, it is possible to determine the movement of the wave in space,
and the algorithm is used to advance the front of the generated wave [30].

1
F (x) = |▽T (x)|. (2.1)

In the equation 2.1, x is the position of a point, F (x) the speed at which a wave can
travel at that point, and T (x) is the time it takes for the wave to reach that position.
To solve the equation, Osher and Sethian [9] propose the use of a grating to discretize the
space where the wave propagates. After the discretization and subsequent simplification
of the gradient ▽T , according to Sethian, the rows and columns being named as i and j of
the grid respectively, leads to:

max

(
Tij − min(Ti−1,j, Ti+1,j)

△ x
, 0
)2

+ max

(
Tij − min(Ti,j−1, Ti,j+1)

△ y
, 0
)2

= 1
Fij

2 .

Let be △x and △y the measure of the grating in direction x and y, assuming positive wave
velocity F > 0, then Tij it is always greater than min(Ti−1,j, Ti+1,j) and min(Ti,j−1, Ti,j+1).
So it can finally be solved for two dimensions:

max

(
Tij − min(Ti−1,j, Ti+1,j)

△ x

)2

+ max

(
Tij − min(Ti,j−1, Ti,j+1)

△ y

)2

= 1
Fij

2 .

Square grids have been established for the implementation of the algorithms:

△ x =△ y

To simplify:

T1 = min(Ti−1,j, Ti+1,j),
T2 = min(Ti,j−1, Ti,j+1).
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So:

(T − T1)2 − (T − T2)2 = 1,

T 2 − 2TT1 + T1
2 + T 2 − 2TT2 + T2

2 = 1,

2T 2 − 2T (T1 + T2) + T1
2 + T2

2 − 1 = 0.

Solving, we can find the value of T , which is the value of the wave’s travel time to reach
that cell.

T = −b +
√

b2 − 4ac

2a
,

being:

a = 2 (number of dimensions),
b = −2(T1 + T2),

c = T1
2 + T2

2 − 1
Fij

2 .

Figures 2.2 and 2.3 show an example of what values T1 and T2 should take, for the
resolution of the arrival time of the wave for two dimensions.

Figure 2.2: T1 is the minimum between adjacent cells on the X axis
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Figure 2.3: T2 is the minimum between adjacent cells on the Y axis

There is a possibility that the square root, when the time is found, will come out neg-
ative. In that case the Eikonal equation cannot be solved. To find the value of time, it is
calculated by:

F (x) = e

T (x) .

Since, for implementations, square cells with unit size are considered:

T (x) = 1
F (x) .

That is, the time of the cell to be calculated is the time of a contiguous cell (T0), plus the
time it takes to get from the first cell to the second, it is show in Figure 2.4

Figure 2.4: Time of arrival (TT) calculation when the value of the Eikonal equation cannot
be calculated

Finally, the travel time is calculated as:

T (x) = 1
F (x) + T0.

2.2.3 Phases of the Algorithm
As described above, the space where the wave propagates has been divided into a grid.
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For the implementation of the algorithm, each cell of the grid has to be labeled accord-
ing to the state it is in. The possible different states in which a cell can be found can be
three [18]:

• Frozen: When the wave has already passed through that cell at a time of arrival
(TT). Its value is final, so it cannot be changed.

• Open: Cells without an assigned TT, since the wave has not yet arrived and has
not been calculated yet.

• Narrow: Candidate cells to be the wavefront in the next iteration of the algorithm.
They have a TT assigned, but it is not definitive, it can change in the following
iterations.

Figures 2.5 and 2.6 show how the algorithm works. The black, gray, and white points
correspond to the Frozen, Narrow, and Open states, respectively.
In turn, the algorithm also consists of three different phases:

1. Initialization: The algorithm starts by setting a TT of T = 0 in all cells that are
starting points, in addition to labeling them as Frozen,the algorithm starts by setting
a TT of T = 0 in all cells that are starting points, in addition to labeling them as
Frozen, you can see it in Figure 2.5 a).
Then all the cells, other than Frozen, that are in the von Neumann neighborhood,
are labeled as narrow band and their TT is calculated. This is showed in Figure 2.5
b).

Figure 2.5: Initialization stage of the FMM algorithm

2. Iteration: In each repetition of this part of the algorithm, the Eikonal equation is
solved for the von Neumann neighbors of the cell with the lowest TT of the narrow
band. Once calculated, the neighbors are added to the narrow band, and the cell
with la lowest TT is labeled as Frozen. Only neighbors which have an Open state
are added to the narrow band.
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Finding the cell with the lowest value TT is possible since a list of cells is kept,
ordered by their TT, always knowing which is the one with the lowest value for the
next iteration. It is showed in Figure 2.6.
This phase continues as long as the narrow band has any stored cells.

3. Finalization: This phase of the algorithm is reached when there are no cells left in
the narrow band, so the algorithm has reached its end and no further iterations will
be carried out. All cells have already been labeled as frozen and also have their TT
calculated.

Figure 2.6: Iterative process of the FMM algorithm
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2.2.4 Pseudocode
Algorithm 1: Initialization

input : G = grid size mxn
gs = cells where the wave originates
NB = narrow band
V = cells velocity
g = cell
gn = von Neumann neighbor
T = travels time
E = cell label: Open | Narrow | Frozen

1 for each gs in G do
2 gs.T = 0
3 gs.E = Frozen
4 for each gn in gs do
5 if gn.E != Frozen | Occupied cell | gn.V = 0 then
6 p = Resolve Eikonal
7 if gn.E = Narrow then
8 if p < gn.T then
9 gn.T = p

10 if gn.E = Open then
11 gn.E = Narrow
12 gn.T = p
13 add gn to NB
14 end
15 end

Algorithm 2: Iterations
1 while NB > 0 do
2 g = cell with lower TT in NB
3 g.E = Frozen
4 for each gn in g do
5 if gn.E != Frozen | Occupied cell | gn.V = 0 then
6 p = Resolve Eikonal
7 if gn.E = Narrow then
8 if p < gn.T then
9 gn.T = p

10 if gn.E = Open then
11 gn.E = Narrow
12 gn.T = p
13 add gn to NB
14 end
15 end
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2.2.5 Computational Complexity
When making comparisons of different algorithms, it is necessary to emphasize computa-
tional complexity (O), since this is independent of the processing power where the algorithm
is executed.

The O notation is used to express the growth orders of the algorithms in the worst
case. That is, what is the performance of an algorithm, in the worst case, as the size of
the data to operate increases [31].

Knowing the order of complexity that the algorithm has, it is possible to predict its
behavior. The orders of complexity are:

• O(1) - constant order: It does not have a growth curve, its performance is independent
of the amount of data it handles.

• O(n) - linear order: The performance of the algorithm is proportional to the growth
of the data to be used.

• O(log n) and O(n log n) - logarithmic order: This type of complexity order usually
means that the algorithm works with data that has been divided repeatedly.
The term log n is usually log 2 n (although not always), meaning the number of times
a set can be divided into two parts without resulting in empty subsets.

• O(n2) - quadratic order: The algorithm has a performance proportional to the square
of the data entered. These algorithms usually exist when, having a series of data, it
is necessary to work with each of the data twice.

• O(na) - polynomial order (a > 2): This type of algorithms with internal loops that
make you have to use each data repeatedly.

• O(an) - exponential order (a > 2): This type of algorithm, in the case of a = 2,
doubles the time used in the calculation for each new element that is added. They
are not very useful in practice, since with little data a great computational power is
necessary.

• O(n!) - factorial order: They are algorithms with little scalability that make them
are intractable.

Assuming that you have a problem of size “n”, each algorithm of each computational
complexity solves the problem in a certain time [32]. When the problem is twice the size,
now being “2n”, you would expect them to take twice as long to resolve the problem, but
they do not. For example, algorithms of logarithmic order take a little longer to solve the
problem twice as long and exponential order take several times longer than twice, with
respect to the problem “n”.

Keep in mind that scalability does not mean efficiency. Thus, a less scalable complexity
algorithm can yield better results than one with better scalability and worse efficiency.
Ultimately, the volume of data would outweigh efficiency, but it is important to know that
better scalability does not mean better calculation times, especially with little data volume.

In the case of this work, the problem size “n” is given by the number of cells in the grid
that make up the map.
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Fast Marching Method is a method that has a complexity O(n log n), the log n factor
being introduced by the administration of the priority queue, having to obtain the cell with
the lowest TT of the narrow band in each iteration.
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Chapter 3

State of the Art

3.1 Fast Marching Method Modifications
In this work, the Fast Marching Method algorithm uses different priority queues. Each
of these priority queues has O(log n) computational complexity. Modifications to this
algorithm have the same operation as FMM, but changing the priority queue that controls
the narrow band, for another that each modification introduces.

The priority queues that have been used: a binary stack and a fibonacci stack.
The basic operations of priority queues are:

• Get minimum: The smallest data item is extracted from the saved data item. It is
a simple operation since the priority queue orders the entered data by value.

• Delete minimum: The smallest data is deleted.

• Insert: Add a new data to the priority queue.

• Increase / decrease key: Increase or decrease the value of the data in the priority
queue.

• Join: Two priority queues are joined.

3.1.1 Fibonacci Stack
It is a data structure, similar to the binary stack. Its main characteristic is the amortiza-
tion of processes, that is, it makes fast operations take a little longer, but in return slow
operations are accelerated [33].

As stated in the previous chapter, the complexity of using this stack, to obtain the
smallest TT value of the narrow band, is O(log n).

The Fibonacci stack [34, 1] is based on the use of several trees made up of nodes. These
trees have the property that a child of a node always has the same or greater value than
the parent. Due to this property, the root is always the node with the lowest value.

Process amortization is measured by the potential of the pile:

Potential = t + 2m,
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where t is the number of trees and m is the number of marked nodes. To consider a node
as marked, one of its children must have been removed and, in turn, be children of any
other node. Therefore, root nodes cannot be marked.

For quick deletion and concatenation, the roots of all the trees are a double linked list.
A graphical representation of the Fibonacci stack can be seen in Figure 3.1.

Figure 3.1: Graphical representation of the trees that form the Fibonacci stack [1]

The basic operations of a Fibonacci stack [1] are:

1. Obtain minimum: It is a very simple operation, since the minimum value corre-
sponds to the data located at the root.

2. Join: Two Fibonacci stacks can be joined. To do this, the stack with the highest
value is added to the root, as a child of the other stack.

3. Insert: To add new data, it is only necessary to perform the “join” operation with
a new Fibonacci stack. This new stack only contains the new data to add.

4. Remove minimum: The minimum value is removed. For it:

• The node with the lowest key (the root) is deleted.
• Union of the children of the deleted node.
• As long as there are two roots with the same degree, the “join” operation is

performed. The degree of a node is equivalent to its distance from the root.
Thus, the child of the root node, has degree one.
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5. Decrease key: The value of a data in the Fibonacci stack is decreased. It is done
as follows:

• Separate the node to be decremented from the tree to which it is connected.
• Reduce the value of the node.
• Add the decremented node to the tree.

3.1.2 Binary Stack
Like the Fibonacci stack, the binary stack [35] is a data structure that is based on trees
and nodes of complexity O(log n).

It has the characteristic that each node has a value higher than that of its children
(binary stack of maximums), or vice versa, smaller than that of its children (binary stack
of minimums). Obviously, the version that interests the algorithms is the minimum version.
An example of a binary maximum stack can be seen in Figure 3.2.

In order to use an array as a binary stack, as in Figure 3.2, it is necessary to take into
account the positions of the root and where its children are. The root node always goes in
position 0, and the position of the two children of each node can be calculated in a simple
way, as:

Position K, child 1 = 2K + 1.

Position K, child 2 = 2K + 2.

The algorithm, used in the comparisons, has a modification of the binary stack called the
d-ary stack [36].

This modification has the ability to make the priority decrements operations faster at
the cost of slowing down the minimum clear operation.

This allows to obtain better times in the algorithms in which decreasing priority is used
more times. These operations are more common in algorithms like Dijkstra’s or, as is the
case, FMM.

The structure consists of an array of n elements that has the same properties as the
binary stack.

The basic operations of a binary stack [35] are:

• Insert element: it is done by adding an element in the position that respects the
condition of the semi-complete tree, that is, that the insertions are made from left
to right in order.
Once placed in their position, it must be fulfilled that the children are older. There-
fore, positions are exchanged from children to parents, while the child is a minor,
until reaching the root if necessary. The process can be seen graphically in Figure
3.3.

• Extract minimum: the element that is in the root is extracted, since it is the data
with the lowest value. Then it is checked which of its children has a lower value and
it becomes the new root, if it is the case, they are exchanged with the children as
long as the root is greater. The process can be seen in Figure 3.4.
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Figure 3.2: Binary tree representation and the equivalent array

3.1.3 Simplified Fast Marching Method
This modification of FMM avoids that the cells of the priority queue are not recalculated.
If any cells are recalculated, they need to be moved into the priority queue, thus requiring
drivers to handle the queue.

To avoid the use of these drivers, it is proposed to use the SFMM (Simplified Fast
Marching Method) algorithm, which is obtained from the following changes [11]:

• If a value has been recalculated for a cell, it is accepted that it has two different
values. When you need to know the value of the cell, the smallest value is the one
you look at first and the cell goes into the Frozen state. If a second value appears,
it is discarded. If this mechanism was not used, errors would appear due to the
recalculation of cells.

• The errors also appear if the cells that are not Frozen are used for the calculation of
the new values of the cells in the priority queue. So, it is not necessary to assign a
value to the cells before they are labeled as Frozen.

These simplifications mean that a standard priority queue can be used. In the case of the
experiments, the priority queue of the Boost library has been used.
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Figure 3.3: Process of inserting data (X = 3), in a binary stack

Figure 3.4: Root extraction process in a binary stack

3.2 Modifications of O(n) in Fast Marching Method
Algorithm

The order of complexity of the algorithms is very important for them to be efficient.Due
to the fact that in the FMM algorithm its modifications are not of the optimal order of
complexity, other variations have been developed that do comply. Three of these algorithms
that have been implemented are explained below. Each of them has a computational
complexity O(n).

3.2.1 The Group Marching Method
Group Marching Method [37], hereinafter GMM. It is a modification of FMM developed by
Seongjai Kim and Daniel Folie, of complexity O(n) by avoiding using a complex priority
queue to control the narrow band. Thus, GMM is able to improve the efficiency of FMM
while maintaining the same precision.

This algorithm is based on the narrow band technique, as seen in Figure 3.5, in which
the points within it form the advancing front of the generated wave. Unlike in FMM,
the algorithm do not select the cell of the narrow band with the lowest value. In return,
it advances multiple cells at the same time. This advance occurs by means of a double
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iteration in each cell, although it does not double the time of arrival (TT) calculation, but
the time used is slightly greater than a single iteration.

Figure 3.5: Wave expansion in GMM, white, black and gray points correspond to the
states: Open, Frozen and Narrow respectively

To solve the arrival times, the algorithm uses the Eikonal equation. In addition to the
Open, Narrow and Frozen label system, which allows you to know the state of each cell in
the grid.

As mentioned, GMM avoids using a priority queue, but instead has to maintain a list
of cells. From that list of cells called Gamma Γ, several of them are able to advance as if
they were the cell with the lowest TT of the narrow band in FMM.

The authors have created a method to decide which cells are the ones that can advance
the wavefront. Given two close cells of the narrow band, if the difference between their
arrival times are less than:

Difference TT ≤ 1√
D

× h × s,

where D is the number of dimensions, h is the length of the cell in that dimension and s is
the slowness, that is, the inverse of the expansion speed of the wave

(
1
F

)
. If this condition

is met, it means that the line that joins the two cells and the direction towards which the
narrow band expands is greater than 45 degrees, as can be seen in Figure 3.6.

Information Technology Engineer 20 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.6: Angle between the direction of expansion of the wave (blue arrow) and the line
that joins two cells (red line)

If the two cells are not together, the time of arrival (TT) update procedure, solved by
the Eikonal equation, does not affect each other. In case of being adjacent, the TT of one
affects the other in case the direction of expansion of the wave and the line that joins both
cells, is less than 45 degrees. In conclusion, two cells do not affect each other and can be
expanded at the same time in the same iteration, if:

G = {x ∈ Γ : T (x) ≤ TΓ,min + 1√
DFΓ,min

},

G being the set of cells that will be advanced at one time in the iteration. However, to
solve the equation it is necessary to have a knowledge of the minimum arrival time, TΓ,min,
of all Gamma cells and of the speed FΓ,min in each subsequent iteration. To find these
values, an O(n) algorithm is necessary. Therefore, the authors suggest using a global limit,
and increasing it as the wave spreads.

This value is called TM, and it is found at the beginning of the algorithm only once.
The value of TM corresponds to the value of the minimum TT of the initial narrow band,
and is increased in each iteration by:

delTAU = 1
Fglobal,max

.

This simplification results in a worsening of the efficiency when the contrasts in the expan-
sion speed of the wave are large. The low efficiency is due to the fact that if delTAU has
a low value, in each iteration few cells are able to expand. Therefore, the algorithm needs
more iterations to complete all cells, taking longer than with a higher value delTAU .

A double update of the Gamma cells that expand in that iteration is performed to
avoid inconsistencies when two wavefronts collide, due to the common cell neighborhood
can be affected by both fronts. This algorithm is known as UFMM. It is an extension of
Dijkstra’s algorithm and is based on finding the cell with the shortest arrival time of the
narrow band in each iteration, just like FMM.
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As seen in FMM, to find this cell it was necessary to use a priority queue of order O(log n).
To avoid the use of priority queue, the authors propose to use a strategy of “fast sweeping
algorithms” methods. This type of structure has been named as “Untidy Priority Queue”,
which changes the complexity of the priority queue from O(log n) to O(1).

3.2.2 Fast Iterative Method
Fast Iterative Method, FIM is an algorithm developed by Won-Ki Jeong and Ross Whitaker
[38]. Its main idea is to avoid the use of a complex priority queue while maintaining the
narrow band system. In this way, the algorithm goes from having computational complexity
O(log n) to O(n).

To store the cells of the narrow band, FIM creates what the authors call the active
list, equivalent to the narrow band in the previous methods. At each iteration, the cell list
expands to update the arrival time (TT) values. A cell is only removed from the active
list, once its solution is reached. Eikonal equation is used to find the TT of the cells as the
narrow band is expanded.

The goals of the algorithm include good performance, cache consistency, and scalability
for multiple processors.

To exceed these objectives, the requirements to be met [38] are:

• The algorithm should not enforce a particular narrow band update order.
This requirement is necessary to maintain cache consistency, for example, the FMM
algorithm requires random memory access that prevents good cache consistency.

• You should not use a complicated data structure to sort the narrow band. This
criterion is necessary for SIMD (Single Instruction, Multiple Data) [39], a method
to improve efficiency in applications that use the same operation on several data
simultaneously.
FMM maintains a priority queue with a list of cells, relatively small compared to the
total number of cells. This circumstance cannot be efficiently implemented in SIMD,
because it is more efficient to process a lot of data in a common operation.

• In each iteration, several points must be updated, and not just the one with the
lowest value, as in FMM.
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Chapter 4

Methodology

In this chapter, we show an extensive analysis of the problems found in the FMM algorithm,
and which was the methodology used to solve these problems. This chapter consists of four
sections, Section 2 and Section 3 describe the changes made in the FMM algorithm, and
also how these affect its performance. In Section 4, we explain how the FMM algorithm
was implemented, showing the most important developed functions.

4.1 Phases of Problem Solving
• The first step is to implement the FMM algorithm, in addition to defining the input

parameters required for the correct operation of the Path Planning such as map,
starting point, arrival point, and padding.

• The second step is to optimize the algorithm of the FMM, trying to reduce its com-
putational complexity.

• The next step is to graph the results obtained based on the initial matrix, the size
of the matrix, number of obstacles in the matrix, and the initial points.

• The final step is to compare the results with respect to previously implemented Fast
Marching method variants.

4.1.1 Description of the Problem
There is a wide range of algorithms that solve the Path Planning problem, however one of
the biggest challenges is solving the problem of computational complexity that these algo-
rithms require. Fast Marching Method is a complete method that can be easily replicated
in 3D environments, however one of its major disadvantages is the computational cost it
requires.

In the present work, a new variant of the Fast Marching Method is proposed that aims
to optimize its execution time without altering its performance, which means getting a
route in less time. The edges or obstacles within the map must also be considered, to get
as fast as a safe route.
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4.1.2 Analysis of the Problem
After several experiments and research, it was possible to get to the major root of the
problem that FMM has. The major problem lies in the management of the narrow band.
This is a list from which all the possible new wavefronts are kept. This list must also be
constantly updated with each iteration of a new wavefront.

To be clear about the problem, we must understand how FMM works, specifically how
to choose a new wavefront. Once an iteration of a wavefront is finished, the algorithm for
verifying whether the narrow band contains any value. If true, it chooses the minimum
value stored on that list. To get the minimum value, the entire list must be accessed and
iterated, which entails a high computational time since the list is disordered.

This problem has been addressed frequently by creating new variants that seek to solve
it by changing the narrow band for a stack. However, these methods have not had the
expected success, since when increasing the size of the initial matrix they become slow.
For this reason, in the present work, we approach the problem simply, ordering the list
each time the narrow band is updated.

Initially, various conventional sorting methods were experimented with, such as merge
[40], bucket [40], and insertion sort [40]. However, the first two methods had the worst
execution times because in this case, the update of the narrow band is constant. Merge
and bucket sorting methods take a long time to order a single element in the list compared
with insert sort. The insertion sort method had the shortest execution time, however, with
extensive lists, the algorithm took a much longer execution time than expected.

This led to the creation of a sorting method that does not take computationally long
to sort a previously ordered list. The method focuses on finding the correct position where
the last value will be inserted into the list, and thus we do not have to iterate through the
entire list in the best case. This proposed algorithm is explained in the next subsection.

4.2 Proposed Algorithms
In the present work, we present a new ordering method called SEF, which is a simple to
implement, efficient, and fast method. SEF sort has been applied to the FMM algorithm,
getting a new variant that we called OFM. OFM comes from the initials Ordered Fast
Marching, since OFM uses SEF sort to order the narrow band in each new iteration. In
this section, we explain in more detail what it is and how a SEF sort performs.

4.2.1 Simple, Efficient, and Fast Sorting Method (SEF)
The ordering method implemented SEF is based on the binary search method[41], which
comprises repeatedly dividing a set or list in half, until the probable locations are reduced
to just one. SEF sort, on the other hand, does not reduce a list to a single location
in all cases. For this reason, SEF avoid to waste unnecessary computational time and
unnecessary recursion. One of the most outstanding characteristics of SEF sort is the
reduction of the list size in each new iteration.

SEF sort comprises four key steps that make it efficient. In addition, it should be noted
that the input of this method must be an ordered set or list, and the new value that we
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want to enter the set or list.
• If the value is less than or equal to the beginning of the set, the initial position is

returned and this value is saved in that position. To better understand it, we can
see it in Figure 4.3.

• If the value is greater than or equal to the end of the set, the final position is returned
and the value is saved in that position. To better understand it, we can see it in
Figure 4.3.

• If the value does not meet the previous two, this divides the set or list into two smaller
subsets, and one of the keys that has been used in this division was to eliminate the
beginning and the end of the set. This practice obtained a better result, since for
the worst case when the value was close to the beginning or the end, the algorithm
required to make multiple divisions until reaching the corresponding position. To
better understand it, we can see it in Figure 4.1.

• Once the set is divided, each subset is evaluated, we find the subset to which the
value to be saved belongs and we repeat step 1. To better understand it, we can see
it in Figure 4.2.

Figure 4.1: Case 1, SEF sort method

Figure 4.2: Case 2, SEF sort method
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Figure 4.3: Case 3, SEF sort method

4.2.2 Ordered Fast Marching Method (OFM)
OFM is a new variant of FMM, which uses the SEF sort method to update the narrow
band at each iteration. Narrow band is a list that FMM uses to store all possible new
wavefronts. That is, narrow band stores all the cells that have already been visited, but
do not yet have a constant time value. The biggest problem that we observe in the narrow
band is that each time it grows, it becomes difficult to find and eliminate the minimum
values.

Therefore, OFM sorts the narrow band each time a value in the list is inserted or
updated, making finding or removing minimum values easy. In addition, thanks to the
optimal performance that has been achieved with the SEF sort method, we have made the
sort time of the narrow band quite small.

In other variants, such as Binary and Fibonacci, have replaced the narrow band with a
stack to optimize the operations in the narrow band. However, these variants of FMM are
complex to replicate, since each stack requires implementing a series of functions for their
correct operation.

4.2.3 Computational Complexity of OFM
The computational complexity is necessary to explain the order of growth that the algo-
rithm has. As OFM is in charge of handling the narrow band, it is necessary to explain
the computational complexity for each operation that can be performed on this list. The
operations are:

• Find minimum: For this operation, the algorithm has an O(1), since the narrow band
always stays in order.

• Extract minimum: In the same way, as in the previous operation, the algorithm has
an O(1) for this operation.

• Insert value: For this operation, the algorithm has an O(1) in the best of case. In
the worst case, it has an O(log n), since the list is divided into smaller subsets until
finding the correct position. However, as explained in the algorithm description,
this problem has been tackled efficiency by deleting the extremes of the list at each
iteration.

• Delete value: This operation has an O(1) since the narrow band is an object list.
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4.2.4 SEF Sort Pseudocode
Algorithm 3: Sort method proposed based on Binary search

input : A set of ordered values numberlist, number is a numeric value that
would be inserted inside the set, and initialposition is a integer value
which stores the current position of the set.

output: Return a position of numberlist where we have to insert the number
1 Function Sortmethod(numberlist, number,initialposition):
2 n=length of numberlist;
3 if n > 0 then
4 if number ≤ numberlist[0] then
5 return initialposition;
6 else if number ≥ numberlist[n-1] then
7 initialposition+=n;
8 return initialposition;
9 else

10 if n>3 then
11 left=numberlist[1:n//2];
12 right=numberlist[n//2:n-1];
13 initialposition+=1;
14 else
15 left=numberlist[:n//2];
16 right=numberlist[n//2:];
17 initialposition=initialposition;
18 end
19 if ( len(left) > 0 ) then
20 indexleft=initialposition;
21 inicio=left[0];
22 fin=left[len(left)-1];
23 if number > inicio and number ≤ fin then
24 return ( Sortmethod(numberlist,number, indexleft));
25 else if number<=inicio then
26 return (indexleft);
27 if ( len(right) > 0 ) then
28 indexright=initialposition+len(left);
29 inicio=right[0];
30 fin=right[len(right)-1];
31 if number > inicio and number ≤ fin then
32 return ( Sortmethod(numberlist,number, indexright));
33 else if number ≤ inicio then
34 return (indexright);
35 else if number ≤ fin then
36 return (initialposition+n);
37 end
38 return initialposition;
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As we can be seen in the Algorithm 3 in the first two conditions, the algorithm asks
if the value is less than the beginning of the list, or greater than the end of the list. If none
of the conditions are met, the list is divided into two sub-lists.

Before dividing the list, we need to eliminate the extremes of the list. Thus, if the list
is greater than three, we delete the extremes and divide the list. Finally, we get a sub-list
without the beginning and another without the end of the list. On the other hand, the
extremes are not deleted, and the list is simply divided.

Then we are going to verify in which of the two sub-lists the new value should be
inserted. Once we recognize the sub list, we call the function again, passing the sub list as
the input list. These steps are repeated until we return to a position.

Furthermore, the returned position belongs to the initial list passed, to ensure that the
initialposition variable updates its value in each iteration.

4.3 Padding Metric
The construction of a path planning algorithm is usually a hard challenge, due to all the
aspects that this problem covers, such as obtaining safe and optimal routes. With FMM,
getting optimal routes is covered excellently. However, safe routes have not been taken
into consideration, that is, routes that can be circulated without generating an accident
with vehicles.

For this, in the present work, the FMM algorithm has been changed by adding a metric
called padding, this metric is essential to achieve safe routes. The following graphic Figure
4.4 shows the construction of a route with and without padding. By adding padding metric,
we get the object that passes through the route away from obstacles. In addition, as we
can see in the contour graphs (see Figure 4.5), it is differentiated that when applying a
padding to the matrix, the range of available cells is reduced, which leads to the execution
of the algorithm also being reduced. After several experiments, we can conclude that this
parameter helps both in the execution time, and in obtaining a safe route.
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Figure 4.4: Route with and without padding metric

Figure 4.5: Contour graphs for routes with and without padding metric

4.4 Implementation of FMM
This algorithm was developed entirely in python, with the help of various libraries such as
numpy, math, time, cv2, and matplotlib.

For the implementation of the Fast Marching Method (FMM), it was necessary to assign
value attributes to each cell of the matrix. The inputs required to executed the algorithm
are a binary image (black and white), initial points, target point, padding, and anchor.
For this implementation we use the following functions:

• Conversion Image: This function reads a file in any image format and converts it
to a matrix.
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• Construct Inicial: In this function, we modify the matrix obtained in the conversion
image function, which we add the initial points.

• Construct Matrix: Once we have the image matrix with its initial points, then we
build an object matrix. Any cell in this matrix has the following attributes: time,
speed, coordinates, type, and tail. Furthermore, in this function, it is defined that
the initial points have a time equal to zero and the type equal to frozen. For the
other cells, the type is narrow and the time is infinite.

– Time: It saves the arrival time from the wavefront cell to that cell.
– Speed: Speed at which the wave is propagated within that cell.
– Type: State of the cell. This state tells us if the cell can be traversed or not.

The states that we can find are: narrow, frozen, or open.
– Coordinates: Position it occupies within the matrix.
– Tail: It saves the information of the cell from where the wave originated up to

that cell.

• Main FMM: This is the most important function, here we determine what the new
wavefront is. In the case that the narrow band is empty, the wavefronts are the initial
points. This function ends when all cells have a frozen type assigned, which means
that they have already been visited and have an assigned time value.

• Find Neighbors: In this function, we find all the neighbors for each cell which is a
wavefront. For each neighbor found, its travel time is calculated, its type is assigned
to Narrow, and the narrow band is updated. At the end of this function, we return
to the Main FMM function.

• SEF Sort: This function is used to sort the narrow band when a value is entered or
updated.

• Eikonal Equation: In this function, we calculate the arrival time from one point
to another. In this case, it is used to calculate the arrival time from the cell that is
generating the wave to one of its neighbors.

• Route Construction: This function is used to build the optimal route based on
the time matrix obtained in the execution of FMM. In this case, we start from the
target point and evaluate the value of its eight closest cells. The cell with the lowest
value is chosen and the process is repeated until we reach the inicial point.

We can find the code on my personal GitHub. The following link is the direct access to
the repository in which it is hosted: https://github.com/JhonSaguay/OFM-Ordered-Fast-
Marching-Method-
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Chapter 5

Results and Discussion

This chapter shows the results obtained after several experiments and also makes a com-
plete analysis of the new FMM variant called OFM compared to existing FMM variants.
The FMM variants chosen for this comparison were FMM, Binary, and Fibonacci FMM.
These methods were chosen because they use the narrow band to carry out the control of
the new wavefronts.

The experiments were carried out in five scenarios. The image on which we worked in
the first three scenarios was an image with no obstacles. The biggest challenge in these
scenarios was increasing the size of the image. The last two experiments were carried out
on images with obstacles where the padding metric was also evaluated. In addition, each
image had a different amount of obstacles. We explain each scenario with most detail in
the first section.

5.1 Performance Evaluation
In this section, we explain how the behavior of the algorithms was evaluated and which were
the parameters that were evaluated. We also detail all the scenarios that performed the
simulations. We also describe the characteristics of the computer used for the simulations,
as well as the software used to develop the algorithms.

5.1.1 Simulation Setup
A simulation of FMM requires defining several initial parameters, which are: initial image,
and starting point. So, in order to evaluate the behavior of the FMM and its variants,
different scenarios have been created by changing the initial parameters described above.
Furthermore, to guarantee the reliability of the results, 10 repetitions have been executed
for each case. Due to the route obtained is always the same for each case, the parameter
to be evaluated is the execution time of the algorithm.
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5.1.2 Experimental Environment
The experiment was carried out on a personal laptop. This computer is equipped with
16GB of RAM, a processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz-1.99 GHz, a
NVIDIA GeForce 1050 graphics card, and the Windows 10 Pro operating system.

5.1.3 Software Environment
The complete algorithm was fully developed in Python 3.6. Python [42] is a general-
purpose language, it is prepared to carry out any type of program. It is an interpreted
language; it is unnecessary to compile the source code to execute it. In addition, it is
a multi-paradigm programming language, which supports functional programming, im-
perative programming, and object-oriented programming. It is characterized by being a
simple, versatile programming language and also fast development. The libraries used were
NumPy, Math, Matplotlib, and OpenCV.

NumPy

Numpy [43] is a Python library that provides the creation of large multidimensional vectors
and matrices, and a variety of routines for quick operations on matrices.

Math

Math [44] is a Python library that provides us access to some common math functions
and constants, which we can use throughout our code for more complex mathematical
computations.

Matplotlib

Matplotlib [45] is a comprehensive library for creating static, animated, and interactive
visualizations in Python.

OpenCV

OpenCV [46] is an open source library that has a wide range of algorithms for computer
vision. This library allows us to read images and transform them into matrices.

5.1.4 Scenarios Description
Five scenarios have been created, which are divided as follows. For the first three scenarios,
we chose an image with a white background and changed its size from 200x200 pixels to
2000x2000 pixels. Also, the starting point was changed for each scenario. The starting
point is a very important parameter of FMM, since the size of the narrow band depends
on it. For the last simulation scenarios, it has been showed how the padding metric affects
the execution time of the FMM. For this, in scenarios 4 and 5, two images of labyrinths
have been chosen as the input parameter. In each scenario, we use a maze image with a
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different number of obstacles. The maze images were chosen, as these are very similar to
a map of an urban area. In the last scenario, we show a simulation carried out on a real
map, simulating a practical example of path planning using FMM. This scenario is used
solely for the demonstration purpose of the application of FMM in path planning.

In addition, in each scenario, we show how the expansion of the wave would be within
the initial image for each initial point.

Scenario 1

For this scenario, we decided that the starting point is x = 0 and y = 0. The possible
wavefronts (cells available to propagate the wave) in the first iteration are two because the
starting point is in a corner of the matrix. For this reason, the narrow band grows slowly,
which implies that the execution time of the algorithms changes. Figures 5.1 and 5.2 show
how the wave expands from the initial point to the last point of the matrix.

Figure 5.1: 2D Contour graph of the wave expansion for Scenario 1
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Figure 5.2: 3D Surface of the wave expansion for Scenario 1

Scenario 2

In this scenario, we increased the difficulty by changing the starting point by x = n
2 and

y = 0, where n × m is the size of the matrix. For this reason, the starting point had three
possible wavefronts (cells available to propagate the wave) in the first iteration, which
implies a faster growth of the narrow band compared to Scenario 1. Figures 5.3 and 5.4
show how the wave expands from the starting point to the last point of the matrix.

Figure 5.3: 2D Contour graph of the wave expansion for Scenario 2

Information Technology Engineer 34 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.4: 3D Surface of the wave expansion for Scenario 2

Scenario 3

The starting point for this scenario was the center point of the matrix, since the center
point had four neighbors available to propagate the wave. So this caused that the narrow
band to grow faster than in the previous scenarios, causing computational complexity to
increase. Figures 5.5 and 5.6, we show how the wave expands from the starting point to
the last point of the matrix.

Figure 5.5: 2D Contour graph of the wave expansion for Scenario 3
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Figure 5.6: 3D Surface of the wave expansion for Scenario 3

Scenario 4

In this scenario, a maze was used as the input image, which can be seen in Figure 5.7.
For each simulation, the padding metric was changed, which allows the cells that prop-

agate the wave are away from the obstacles. Figures 5.8 and 5.9 show the contour plots
when we change the padding metric. These figures show that, when the padding metric
increased, the cells to build the optimal path are reduced. Therefore, this also influenced
the execution time of the algorithm.

Figure 5.7: Maze image used for Scenario 4
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Figure 5.8: 2D Contour graph of the wave expansion with respect to padding metric

Figure 5.9: 3D Surface of the wave expansion with respect to padding metric
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Scenario 5

In the same way, as in the previous scenario, the image of a labyrinth was used, which
we can see in Figure 5.10. Furthermore, it can be seen that the labyrinth used in this
scenario has many more obstacles than the image in the previous scenario. This change
increased the difficulty when finding the optimal route from point A to point B, since we
have many more possible routes. In Figure 5.11, two contour graphs are shown where it
can be clearly observed that the domain of cells available to propagate the wave decreases.
Figure 5.12 shows the construction of an optimal route from point A to point B using the
FMM algorithm.

Figure 5.10: Maze image used for Scenario 5
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Figure 5.11: 2D Contour graph of the wave expansion with respect to padding metric

Figure 5.12: Optimal route obtained in Scenario 5

Real Simulation

This last simulation was carried out in order to show the operation of FMM applied to
Path Planning. For this, a map of the City of San Francisco, two reference points, and
padding were used as initial parameters of the algorithm. The input parameters were: a
starting point (215,14), arrival point (660,600), and padding (5).
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Figure 5.13: Real simulation on the San Francisco map

5.2 Evaluation Metrics
The evaluation of OFM (Ordered Fast Marching Method) was carried out through several
scenarios, where we change the size of the image, initial point, and the number of obstacles
for observing the behavior of OFM and how its execution time varies.

5.3 Simulation Results
For a better analysis of the results obtained in the simulations, we have segmented the
scenarios into two groups, grouping them by the parameters evaluated in these. The
first group covers the first three scenarios and we call it “Image size and initial point”.
The second group covers scenarios four and five, we call this group “Image obstacles and
padding”. In each group, we analyze the results of all scenarios, as well as a general analysis
of the entire group.

5.3.1 Image Size and Initial Point
As we can see in Figure 5.14, the results obtained show that for small images, all the
algorithms have a similar growth, and the execution time difference for all algorithms is
minimal. However, when we increase the size of the image, the algorithms grow too fast
compared to OFM, which obtained the shortest execution time. This uncontrolled growth
is because as the size of the image increases, the number of items that are saved in the
narrow band also increases. Thus, the algorithms have to interact with more data in the
narrow band.

In the same way, for the following scenarios, the results are like those of the previous
scenario, as we show in figures 5.15 and 5.16. According to the results obtained in the three
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scenarios, we see that by changing the point of origin of the wave; the algorithms increase
their execution time. This happens because each initial point has a different number of
neighbors. When we increase the number of neighbors, the growth of the narrow band
also alters. That is, the narrow band grow much faster when we have a greater number of
neighbors.

We can conclude that, by increasing the image size and the initial point, the execution
time increases rapidly for the FMM, Fibonacci, and Binary FMM algorithms.

The behavior of the algorithms is related to how operations are performed in the narrow
band. Remember that for the OFM, the operation that takes the most time is the insertion
of a new value. However, in most cases for these scenarios, the execution time of this
operation is constant, since the new value to be entered is almost always greater than or
equal to the end of the list. On the other hand, the Binary and Fibonacci algorithms
depend on the size of the narrow band in different operations, such as eliminating the
minimum value and updating the narrow band.

Therefore, the OFM has the shortest execution time when increasing the image size.

Figure 5.14: Execution time vs. Image size for Scenario 1
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Figure 5.15: Execution time vs. Image size for Scenario 2
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Figure 5.16: Execution time vs. Image size for Scenario 3
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5.3.2 Image Obstacles and Padding
In this group, we evaluate the execution time regarding the padding metric and the com-
plexity level of the image. The results obtained show that the Fibonacci and Binary
algorithms are not efficient when we have images with obstacles. The Fibonacci method
had the worst performance, followed by the Binary method.

Figures 5.17 and 5.18 reveal that the level of complexity of the image is not a parameter
that varies the execution time of the compared algorithms.

On the other hand, for the two scenarios analyzed in this group, the padding metric
influenced the performance of the algorithms, reducing the execution time when we increase
this metric. This phenomenon of change happens since by increasing the padding metric,
we have reduced the domain of cells to visit. This means that cells that are not far enough
from the edges are not visited. In other words, the wave has to go through fewer cells in
the input matrix or image.

In conclusion, the padding metric helps both to achieve safe routes and to improve the
performance of the algorithms.

Figure 5.17: Execution time vs. Padding for Scenario 4
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Figure 5.18: Execution time vs. Padding for Scenario 5
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Chapter 6

Conclusions

6.1 Conclusions
Through this work we can conclude the following:

• We have reviewed and implemented three FMM algorithms that were developed based
on narrow band handling. The selected algorithms were Binary FMM, Fibonacci
FMM, and FMM. All these algorithms are based on the propagation of waves and
were evaluated based on the execution time before various changes, such as the size
of the image, initial points, obstacles, and padding.

• We have proposed an algorithm based on wave propagation called OFM. OFM is
an FMM-based wave propagation method that takes an image, initial point, target
point, and padding to avoid collisions with obstacles as input.

• Our proposed OFM method had the shortest run time in all experiments performed.
OFM did not show a speed up growth when increasing the size of the images, and
also when increasing the padding metric, its execution time decreased. OFM turned
out to be optimal since, unlike the compared algorithms, it shows a constant growth
with the increase in the size of image.

• In this research, we studied the use of FMM in path planning. Also, we exam-
ined many variants of FMM and designed a new variant to improve performance in
different scenarios.

In addition, in the experiments carried out in Chapter 4, a series of conclusions have been
obtained when interpreting the results. These conclusions are detailed below:

• The complexity of the image (i.e., the number of obstacles) did not affect the execu-
tion time for the compared algorithms, was not a metric that affects the execution
time.

• The padding metric presented in this work shows good efficiency in all the algorithms
used. The padding metric also showed good results, since, besides obtaining optimal
and safe routes, this metric also helped to reduce execution time.
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• The Fibonacci and Binary FMM turned out to be very good when faced with a
small amount of data. However, as the image size increases, these algorithms become
obsolete and become very similar to FMM. In addition, in these cases, a large narrow
band causes them to lose efficiency quickly. We could also see that with the presence
of obstacles, these algorithms did not have the best performance, this is because of
the constant change that occurs in the narrow band. However, by increasing the
padding metric, these algorithms improved their execution time, having a minimal
difference with OFM and FMM.

6.2 Future Works
In this work, OFM is compared with wavefront algorithms based on narrow band handling.
However, in future work, it would be necessary to compare OFM with other variants of
FMM, which gives us another point of view about our algorithm. This would provide us
with new perspectives on the same problem.

It will also be necessary for future works to do a deep analysis of the padding metric
presented in this work, which will show how to influence it on FMM algorithm. It is
necessary to analyze FMM and its variants with other planning algorithms, comparing
them with metrics, such as execution time, short routes, and safe routes. A complete
OFM implementation for 3D scenarios is also proposed for future work, since FMM, the
OFM base algorithm, has a good efficiency in this type of scenario, being one of the best
algorithms for this.

We also propose to work with objects such as vehicles, and with maps of large cities
that have a speed or cost matrix. For working with objects, the FMM algorithm must
be changed, since in that case, an object will have a width and a length, and also the
entire object must be taken as our starting point. For the other, we should recreate black
and white maps that enable us to have a general perspective of how the wave expands.
However, later it will be necessary to add a velocity matrix to the map, which allows
us to simulate real environments with greater precision. For this, it will be necessary to
implement a function that transforms a color image into a speed matrix.

Parallel programming has opened new doors and gives us new tools to work with
algorithms. Therefore, for future work, it is proposed to change FMM to work it in parallel
programming and adapt it to our model for this type of programming.

6.3 Limitations
The limitations that were had when carrying out this work are:

• Little information about the application of the FMM in path planning.

• Advanced math concepts that delayed the implementation of FMM.

• Few good quality images of cities.

• One of the major limitations was the simulations, since it was very difficult to get
black and white images of real maps.
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