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RESUMEN

La diabetes es una enfermedad crónica que se produce cuando el cuerpo no produce
suficiente insulina o no puede utilizar la insulina efizcamente. La Diabetes mel-
litus tipo 1 (DMT1) se considera una enfermedad autoinmune que ocurre cuando
las células beta pancreáticas se destruyen y no se produce suficiente insulina para
mantener la homeostasis glucémica, por lo que, el paciente vive con la necesidad de
reemplazo de insulina de por vida.

Las terapias disponibles para pacientes de DMT1 se pueden dividir en terapias de
lazo abierto y de lazo cerrado. En una terapia de lazo abierto, los pacientes deben
autoadministrarse insulina exógena según las mediciones de la concentración de
glucosa en sangre y la estimación del contenido de carbohidratos en sus comidas.
Las terapias de control de lazo cerrado o páncreas artificial (PA) comprenden una
bomba de infusión de insulina subcutánea continua y un sensor de monitorización
continua de glucosa con un algoritmo que ajusta automáticamente la infusión de
insulina en tiempo real, funcionando como un páncreas sano con poca o ninguna
intervención del usuario. Los algoritmos ampliamente utilizados para el desarrollo
de PA son el Control Predictivo por Modelo (MPC por sus siglas en inglés) y el
control proporcional-integral-derivado (PID por sus siglas en inglés) que se han
modificado para ayudar a los pacientes con DMT1 a regular sus niveles de glucosa
en sangre.

El desarrollo de PA debe considerar otros parámetros como la ingesta de alimentos y
la actividad física. Estos parámetros son alteraciones que pueden ocurrir sin previo
aviso, lo que puede reducir los niveles de glucosa en sangre y causar hipoglucemia.
Por lo tanto, en este trabajo se comparan dos algoritmos de control (MPC y PID) in-
gresando parámetros como la glucosa, insulina, ingesta y ejercicio para comprender
principalmente como se puede compensar los efectos del ejercicio y la comida para
evitar la hipoglucemia. Además, se realiza una aplicación móvil con el propósito de
integrar este análisis y ayudar a llevar un mejor control de los pacientes con DMT1.

Palabras claves: Páncreas Artificial, Diabetes Mellitus Tipo 1, Ejercicio, Algorit-
mos de control.
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ABSTRACT

Diabetes is a chronic disease that occurs when the pancreas does not produce enough
insulin or when the body cannot use insulin effectively. Type 1 Diabetes Mellitus
(T1DM) is considered a chronic autoimmune disease that occurs when pancreatic
beta cells are destroyed and the body does not produce enough insulin to maintain
glycemic homeostasis, so the person lives with the need for insulin replacement for
life.

The therapies available for T1DM patients can be divided into open loop and closed
loop therapies. In an open-loop therapy, patients need to self-administer exogenous
insulin based on blood glucose concentration measurements and estimation of the
carbohydrate content in their meals. Closed-loop control (CLC) therapies or Arti-
ficial Pancreas (AP) comprise a continuous subcutaneous insulin infusion pump, a
continuous glucose monitor (CGM) sensor and a CLC algorithm that automatically
adjusts insulin infusion in real time, functioning as a healthy pancreas would regulate
glucose levels through the administration of hormones with little or no user input.
The CLC algorithms widely used for AP development are Model Predictive Control
(MPC) and Proportional-Integral-Derivative (PID) control have been modified in
order to help TD1M patients to regulate their blood glucose levels (BGLs).

The development of APs has to consider disturbances such as meal intake and
physical activity. These disturbances can be unannounced which can bring blood
glucose levels down and cause hypoglycemia. Therefore, in this work, two control
algorithms are compared facing meal intake and exercise in order to compensate
the effects of exercise and food and avoid hypoglycemia. In addition, a mobile
application is developed with the purpose of integrating this analysis and help Type
1 Diabetes Mellitus patients carry a better control of blood glucose levels.

Keywords: Artificial Pancreas, Type 1 Diabetes Mellitus, Exercise, Control algo-
rithms.
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C h a p t e r 1

INTRODUCTION

Diabetes Mellitus (DM) is a complex metabolic disorder associated with an in-
creased risk of micro-vascular and macro-vascular disease (Zaccardi et al., 2016)
that happens because of pancreas cannot produce enough insulin or when the organ-
ism cannot utilize the insulin in an effective way. Insulin is a hormone that regulates
and distributes the glucose within the body’s tissues.

According to statistics from National Institute of Statistics and Censuses (INEC by
its acronym in Spanish), in 2019, DM was the second cause of death in Ecuador,
with a total of 4,890 deaths per year (Dirección de Estadísticas Sociodemográficas,
2019). This disease is behind ischemic heart diseases, which are the main cause
of death for Ecuadorians (Núñez-González, Delgado-Ron, and Simancas-Racines,
2020).

The treatment for this illness consist in the subcutaneous or intravenous injection of
insulin based on calculations taking into account previous or actual blood glucose
levels (F. Doyle, Jovanovič, and Seborg, 2007). Nevertheless, this practice can carry
mistakes and result in very low or very high levels of blood glucose in the patients
which end up causing dizziness or serious organ damage.

The major changes in blood glucose levels are determined by the patient’s meal
intake and physical activity, also called disturbances. Both of these disturbances are
studied in this work as well as its effects on the glucose levels.

Technological breakthroughs have enable the continuous measurement of subcu-
taneous glucose concentration with CGM, and the subcutaneous insulin delivery
with insulin pumps. Furthermore, the use of these breakthroughs and a controller
algorithm closed a loop between the CGM, the insulin pump and the user to allow
an automatic regulation of the glucose profile (Kovács et al., 2013).

To test and design an appropriate closed loop insulin delivery, an adequate model
representing the glucose and insulin dynamics is necessary. The Bergman min-
imal model (Richard N Bergman, Finegood, and Ader, 1985) proved to be the
simplest mathematical model followed by the higher complexity of the Hovorka
model (Hovorka, Shojaee-Moradie, et al., 2002) and the Sorensen model (Sorensen,
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1985). These models aim to quantify the glucose and insulin levels as a function
of carbohydrates intake, external and internal insulin dynamics, basal glucose and
insulin level, and other parameters. These models allow a better understanding of
an automated insulin delivery system as it models the responses of a virtual patients
to different scenarios.

An example of scenario is exercise. Exercise and physical activity have been strongly
recommended by the American Diabetes Association because regular physical ac-
tivity in people with diabetes is associated with increased cardiorespiratory fitness
which leads to an improved blood lipid profile, the reduction in long-term cardio-
vascular disease risk (Reddy et al., 2019), improved psychological well-being, and
possible benefits in bone health (Garcia-Tirado et al., 2019). On the other hand,
physical activity is also associated with an imbalance between hepatic glucose pro-
duction and glucose disposal into muscle, where glucose levels can fall rapidly.

1.1 Problem Statement
Type 1 Diabetes Mellitus patients have a great risk for both hypoglycemia and
hyperglycemia. Closed-loop insulin delivery are challenged by exercise and meals.
Since glucose levels can change rapidly because of exercise or meals.

1.2 Objectives
1.2.1 General

• Study and compare control strategies that could compensate the effect of
exercise and meals on glucose level, preventing a hypo- or hyperglycemic
event.

1.2.2 Specific

• Implement a mathematical model of the effects of exercise and meals on blood
glucose levels of a Type 1 Diabetes Mellitus patient.

• Review of studies around exercise effects and closed-loop insulin delivery
systems that aim to compensate the exercise effects.

• Compare the Model Predictive Control and Proportional-Integer-Derivative
controller compensation of the effects of exercise and meal disturbances on
blood glucose levels.



3

• Use the output blood glucose modelled to develop a companion Web Appli-
cation using a K-nearest neighbor predictor of insulin bolus after meal intake
and physical activity.

1.3 Hypothesis
Prolonged exercise causes serious problems to the patient’s safety when it is not
regulated. A control strategy could impede glucose level changes caused by exercise.
Controlling glucose levels caused by different perturbations can help improving
people’s quality of life.

1.4 Structure
Chapter 1 describes the problem statement, hypothesis and objectives of the thesis
project. Chapter 2 explains Type 1 Diabetes Mellitus per se to set the framework
and context of this thesis. It lists the disease-related complications and challenges
in current treatment modalities and their limitations. The second part of this chapter
reviews the concept of closed-loop insulin delivery, clinical evaluations in various
settings.

Chapter 3 explains the "state of the art" of the study of exercise effects in blood
glucose levels in patients with type 1 diabetes mellitus. Also, it describes the trials
done with closed-loop therapies and exercise.

Chapters 4 describes the experimental implementation of models of closed-loop
insulin delivery systems with a controller of type PID and MPC. It includes aerobic
exercise and meal disturbances, using the extended Bergman Minimal Model on
Matlab-Simulink. In addition, it proposes a prediction model using K-nearest
neighbor to predict insulin dosage using data obtained from simulations.

Chapter 5 shows the results of the simulations made and the different closed-loop
systems responses, and the predictions of insulin bolus made using the data obtained
from simulations. Then, chapter 6 discusses the results obtained and compares them
to other investigations. Finally, chapter 7 shows concluding remarks and futurework.
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C h a p t e r 2

BACKGROUND

This chapter describes the pathophysiology of diabetes (section 2.1). Then, it
describes complications in the different disease stages, in section 2.2. There are
laboratory tests used to diagnose the onset of diabetes and progression, these are
describe in section 2.3. The different treatments available for patients are explained
in section 2.4. The impacts of physical activity in diabetic patients are described
in section 2.5. Furthermore, another approach for the control of T1DM is the use
self-monitoring of blood glucose levels applications (apps) described in section 2.6.
Finally, a summary of the chapter is provided at the end (section 2.7).

2.1 Diabetes Mellitus Type I
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that destroys
beta cells from pancreatic islets, and the body does not produce sufficient insulin
to maintain glycemic homeostasis. And the patient lives with a life-long need
for insulin replacement. Although it may occur at any age, T1DM most typically
presents in adolescence with a peak onset around puberty (Saberzadeh-Ardestani
et al., 2018).

As well as the majority of autoimmune disorders, the primary cause of T1DM is still
unknown. As stated before, T1DM characterizes by selective, specific involvement
of β-cells and there are no apparent pathological alterations of the other Langerhans
cells, like α- (secreting glucagon), γ- (somatostatin), and PP- (pancreatic polypep-
tide) cells (Zaccardi et al., 2016).

However, there is one hypothesis that states that the CD8+ Cytotoxic T lymphocytes,
recognizing β cell-specific peptides presented by HLA class I molecules, have a
crucial role in selective β cell death (Skowera et al., 2008; Liblau et al., 2002;
Velthuis et al., 2010).

Therefore, the HLA locus links to TD1M, and it proposes that the polymorphism in
HLA class I genes contributes to the later stages of β-cell destruction. The findings
that proves that anHLAclass I risk variant can bind to T1DMautoantigens, including
proinsulin epitopes, support that statement (Saberzadeh-Ardestani et al., 2018).

T1DM pathology is characterized as
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• Immune System is elicited against β-cells antigens and the proinflammatory
responses start

• Antigen presenting cells (APCs) present β-cell antigens

• Chronic immunological responses start due to inefficient regulation of this
responses.

• Destruction of β-cells

This β-cell induces the release of antigens and initiation of immune responses
against other β-cells. Generally, dendritic cells present the antigens to T cells. If
the autoreactive T cells escape thymic-negative selection, an autoimmune response
could stimulate autoreactive cytotoxic T and B cells. Finally, the effector mechanism
of β-cell destruction requires the cooperation of dendritic cells, macrophages, T,
B, and natural killer cells (Saberzadeh-Ardestani et al., 2018; Wållberg and Cooke,
2013). Nevertheless, the complete identification of the immunological mechanisms
causing the β-cell destruction is not available, because of many cell subsets that
may participate in the pathogenesis of the disease (Wållberg and Cooke, 2013).

Furthermore, after the destruction and loss of pancreatic β-cell function, the disease
progress into a presymptomatic stage. Then, it is possible to identify the presence
of autoantibodies like GAD65, and the glucose intolerance starts or dysglycemia.
Finally, the clinical symptoms and diabetes signs show (symptomatic stage) such as
hyperglycemia, polyuria, weight loss, among others (Insel et al., 2015).

Studies showed that the patients younger than five years of age develop the first
autoantibody between 6 and 24 months of age (Ilonen et al., 2013; Krischer et al.,
2015). The progression from one to more autoantibodies occurs most commonly
within 2-4 years of the first autoantibody detection.

For T1DM patients is important to maintain blood glucose levels in the normo-
glycemic range (70 - 110 mg/dl). However, this becomes hard at different times of
the day because of traditional activities such as eating or moderate physical exercise
such as running. Table 2.1 shows the BGLs of different kinds of patients at three
times of day (American Diabetes Association, 2021).
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Table 2.1: Blood sugar levels reference in fasting and after eating (American Dia-
betes Association, 2021).

Blood Sugar (mg/dl) Normal Pre diabetes or Impaired Glucose Diabetic
Fasting 80-100 101-230 ě120
After eating 170-200 190-230 230-300
2-3h after eating 120-140 140-160 ě 200

The lowBGLs (less than 60mg/dl) oftenmay induce an acutemedical condition such
as consciousness’ loss or even a comma. On the other hand, high BGLs associate
with long-term effects such as diabetic nephropathy, neuropathy, and retinopathy
(Lunze et al., 2013).

2.2 Complications
Katsarou et al.,(2017) divide the progression of the disease into three stages. It
depends on the appearance of the β-cell autoantibodies, the loss of β-cells, and the
dysglycaemia (Tuomilehto and Rydén, 2018):

• The first stage is where the β-cell autoimmunity starts (auto-antibodies are
present), there is loss of β-cells and no dysglycemia nor symptoms.

• Stage 2, there are signs of hyperglycemia (polyuria, thirst, hunger, weight
loss) but no more symptoms.

• The symptomatic stage or stage three presents clinical symptoms, and the
long-term complications start.

The complications divide into microvascular and macrovascular (Katsarou et al.,
2017). The microvascular complications imply nephropathy, neuropathy, and
retinopathy (Garcia-Tirado et al., 2019; Hajizadeh et al., 2019a; Hackney and Con-
stantini, 2013). Macrovascular complications manifest predominantly as coronary
heart disease, cerebrovascular disease, and peripheral artery disease. These condi-
tions are not specific to diabetes but are risks for T1DM patients (Papatheodorou
et al., 2018). Figure 2.1 shows more complications according to Saberzadeh-
Ardestaniet al., (Saberzadeh-Ardestani et al., 2018).
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Figure 2.1: Chronic complications of type 1 diabetes mellitus (T1DM). Own elab-
oration from Saberzadeh-Ardestani et al.(2018).

2.3 Laboratory tests
Type 1 Diabetes Mellitus is very common in children younger than 15 years of age
(Katsarou et al., 2017). Therefore, adults are often misdiagnosed with Diabetes
Mellitus Type 2 because the presence of the β-cell-targeting autoantibodies is not
detected. In consequence, the classification of diagnosis in DM in adults remains a
challenge (Katsarou et al., 2017). In 2021, the ADA’s diagnostic criteria for DM is
based on signs of abnormal glucose metabolism (American Diabetes Association,
2021). As for T1DM, the recommendation for its screening is the presence of
Glutamic acid decarboxylase (GAD) autoantibody.

Diabetes autoantibodies: This test distinguishes between type 1 and type 2 diabetes
when the diagnostic is unclear. Since the islet cell autoantibodies strongly associate
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with the development of type 1 diabetes. The appearance of autoantibodies (GAD65,
IA-2, or insulin) indicates autoimmune pathogenesis of β-cell killing and suggests
T1DM (Pihoker et al., 2005; Katsarou et al., 2017). The appearance of GAD65 or
IA-2 is associated with age and genetic differences (Ilonen et al., 2013; Krischer
et al., 2015).

Insulin: Tomonitor insulin production, urine and/or blood ketone testsmonitor peo-
ple present at the emergency room with symptoms suggesting acute hyperglycemia.
It also monitors those who have ketoacidosis. A build-up of ketones occurs when-
ever there is a decrease in the amount or effectiveness of insulin in the body (Bektas
et al., 2004).

2.4 Treatment
Patients need to maintain strict metabolic control to prevent the complications of this
disease. This control is a big problem for patients and their families since the risk
of low blood glucose levels is high. Nowadays, insulin-dependent diabetic patients
manually control their blood glucose levels (Lunze et al., 2013). Nevertheless,
the breakthroughs in the treatment of T1DM include the devices for blood glucose
monitoring and HbA1c at home. Analogs of insulin and CGM sensors help delay
or prevent hypoglycemic or hypoglycemic events (Atkinson and Eisenbarth, 2001).

The insulin treatment aims to mimic the physiological insulin secretion to optimize
glycaemic control and prevent complications (Robinson et al., 2003). There are
two types of insulin administered subcutaneously: soluble human insulin or regular
and rapid-acting insulin analog. While the regular insulin is slowly absorbed, the
rapid-acting insulin (Humalogue and Aspart insulin) was modified to be absorbed
more quickly (Atkinson and Eisenbarth, 2001; Robinson et al., 2003; Mortensen
et al., 2000; Garg et al., 1999). The rapid-acting insulin allows injections even
after a meal but before a meal is better (Atkinson and Eisenbarth, 2001). After the
measurement of the BGLs e.g. with a test strip, the patient determines the size of the
insulin bolus and injects it subcutaneously with an insulin pump or with an insulin
pen (Lunze et al., 2013).

The insulin pumps could be expensive but allow users to program multiple basal
rates of administration and bolus administration with a meal intake (Atkinson and
Eisenbarth, 2001).

However, external disturbances such as stress, illnesses, or infections have to be
taken into account since these can alter the insulin bolus size needed. Nevertheless,
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for a patient is difficult to take all effects into the calculation and might face a hyper-
or hypoglycemic event.

Therapies available divide into two categories, open-loop, and closed-loop therapies.
AnOpen-loopControl (OLC) therapy has a systemwhere peoplewith T1DMneed to
self-administer exogenous insulin based on measurements of their BG concentration
and an estimation of carbohydrate (CHO) content in their meals (Reddy et al., 2019).

2.4.1 Open Loop Insulin Delivery
Current OLC therapies can be divided into two approaches: multiple daily injections
of insulin or insulin pump therapy. Multiple daily injections start by measuring BG
levels using a glucose meter and administer the insulin dose subcutaneously. The
insulin pump therapy uses an insulin basal profile programmed into the pump to
continuously administer insulin subcutaneously 24/7with bolus doses to compensate
meals (Beneyto et al., 2018).

In addition, a sensor-augmented insulin pump (SAP) therapy combines the tech-
nology of an insulin pump with a CGM sensor that transmits glucose readings to
the person wearing the device. Unlike a closed-loop insulin delivery system, the
device still requires some manual adjustment and input from the wearer (Del Favero,
Toffanin, et al., 2019).

To avoid the likelihood of a hyper- or hypoglycemic event to happen because of
human errors in determining the insulin dose manually, and limit the dramatic
variation in BGLs, closed-loop insulin delivery systems are developed (Lunze et al.,
2013).

2.4.2 Closed Loop Insulin Delivery
CLC consist on a controlling algorithm, various level of signal verification, fault
detection, safety checks, hardware components that are reliable, and an interface
that allow the user to monitor the system performance and respond to alarm.

In this case, CLC systems, or AP, have hardware components such as subcutaneous
insulin infusion pump and a continuous glucose monitor, the CLC algorithm that
automatically adjusts insulin infusion in real time, such as Model Predictive Control
or Proportional- Integer-Derivative Control. This control system can work as a
healthy pancreas in the regulation of glucose levels via hormone delivery with few
input from the user (Beneyto et al., 2018; M. D. Breton et al., 2014).

One of the most popular CLC algorithm is the Model Predictive Control. The



10

MPC is not a single algorithm but a strategy that consist on modeling a process to
predict future behaviours of the process. This strategy can be optimized by adding
constraints on inputs,states and outputs in order to satisfy an objective (Agachi et al.,
2016; Bequette, 2013). Furthermore, this approach is able to compute the sequence
of control actions that is predicted to be the most effective, at each control step,
according to a predetermined cost function. This system adds a compensation for
delays by means of feed-forward action and constraint handling (Huyett et al., 2015;
Del Favero, Toffanin, et al., 2019; Magni et al., 2007).

In addition, a PID algorithm can also be designed, tuned and implemented in
different ways (Bequette, 2013). However, the most common representation of the
PID algorithm is:
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`

t
˘
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0
e
`

t
˘

dt`D
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And the tuning parameter are given by:

P “ kc, I “
kc

τI
, D “ kcτD,

The PID controller is a control loop mechanism that calculates an error value eptq,
or the difference between the desired set-point and a measured process variable.
Then, it applies a correction based on proportional, integral, and derivative terms
(Araki, 2009).

Common AP technology can be classified in two categories: fully closed-loop
systems, where the subject is not a part of the control and hybrid systems, where
it allows the subject to perform feed-forward actions to compensate for known
disturbances(Beneyto et al., 2018).

2.5 Exercise and T1DM
ADA strongly recommends exercise and physical activity. Regular physical activity
in people with T1DM is associated with increased CRF leading to improved blood
lipid profiles and reduction in long-term cardiovascular disease risk (Reddy et al.,
2019), improved psychological well-being, and possible benefits in bone health
(Garcia-Tirado et al., 2019). Nevertheless, physical activity in T1DMcauses glucose
levels to fall rapidly, because of an imbalance between hepatic glucose production
and glucose disposal into muscle.

Aerobic exercise is a type of exercise that produces an increased rate of glucose
disposal in the bloodstream caused by increased glucose uptake in muscles. The



11

rapid uptake of glucose in muscles attributable to insulin-independent translocation
of GLUT4 and increased muscle blood flow during exercise (Reddy et al., 2019;
Beneyto et al., 2018; M. D. Breton et al., 2014; Huyett et al., 2015; Jacobs et al.,
2016; Hobbs et al., 2019).

The onset of exercise produces a redistribution of the bloodflowper organ (Hernández-
Ordoñez and Campos-Delgado, 2008): an increment in the blood flow of heart/lungs
and peripheral tissue, a decrease in the flow of kidneys and splanchnic organs. Since
the involved tissue requires more energy to meet the required load, the peripheral
glucose and insulin uptake rates rise (Hernández-Ordoñez and Campos-Delgado,
2008).

Blood glucose concentrations fall unless the patient ingests carbohydrates. Insulin
concentrations do not decrease rapidly enough at the onset of the activity and rise
in the systemic circulation (Quirós et al., 2018; Riddell et al., 2017; Mallad et al.,
2015; Reddy et al., 2019; Hobbs et al., 2019). The recommendations for patients
with T1DM for physical activity include:

• To decrease basal insulin or reducing insulin delivery 90 minutes before the
start of exercise to attenuate hypoglycemia

• To ingest carbohydrates before and during exercise to avoid hypoglycemia
(Reddy et al., 2019; Beneyto et al., 2018; Ramkissoon et al., 2019).

The lasting effect of increased insulin sensitivity also increases the risk of post-
exercise hypoglycemia for at least 12h (Beneyto et al., 2018). Also, there is a risk
of hypoglycemia after 45 minutes of aerobic exercise (Riddell et al., 2017).

Exercise also increases heart rate and oxygen consumption. Oxygen consumption is
necessary because of the metabolic breakdown of the energy sources in the muscle
and work associated with exercise. This workload can express as PV Omax

2 , and
it allows to monitor than altered glucose uptake of muscles (Lenart and Robert
S Parker, 2002). The oxygen consumption during exercise at a constant workload
increases at the start of exercise, it reaches the point at which oxygen supply matches
oxygen demand, and then it plateaus(Glynn and Fiddler, 2009). Now, the maximal
oxygen uptake (V Omax

2 ) is the maximum that the body can uptake and use and is the
gold standard measure of exercise capacity measured in ml{kg{min. The V Omax

2
depends on the patients’ weight, age, gender, height, lung function, and fitness level,
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the activity it is performing. It is exercise-specific, and it increases for activities
involving large muscle groups (Glynn and Fiddler, 2009).

Furthermore, PV Omax
2 average for a person in the basal state is 8% (Roy and Robert

S. Parker, 2007). This percentage increases rapidly at the onset of exercise, then
reaches the ultimate value within 5-6 min, and reaches a plateau (Ahlborg, Felig,
et al., 1982). It reaches this threshold, and the anaerobic metabolism supplements
the aerobic system because of the energy demand that exceeds the aerobic system’s
capacity (Rai and Sen, 2016).

As the physical activity starts, the glycogen of muscle is broken down to produce
glucose, then goes under glycolysis producing pyruvate and reacts with oxygen
to produce CO2, water, and energy. As for exercise duration increases, the rate
of hepatic glycogenolysis diminishes because of the limited supply of liver glyco-
gen stores (Ahlborg, Felig, et al., 1982). The rate of glucose produced via liver
gluconeogenesis does not compensate for the decrease in glucose release by liver
glycogenolysis, thereby resulting in a net decrease in hepatic glucose release during
prolonged exercise (Horton and Terjung, 1988). Hence, the plasma glucose con-
centration declines and hypoglycemia occurs (Ahlborg, Felig, et al., 1982; Ahlborg,
Wahren, Felig, et al., 1986). Also, liver glycogen content declines more rapidly with
increasing exercise intensity (Ahlborg, Wahren, Felig, et al., 1986). As the intensity
increases, the rate with which the cardiovascular system can no longer supply the
muscle with oxygen and results in the accumulation of lactate and makes impossible
the continuity of the exercise (Rai and Sen, 2016).

During the recovery period, the substantial depletion of liver glycogen stores during
prolonged exercise, suppresses the rate of glycogenolysis significantly, leading to a
net decrease in the hepatic glucose release rate (Roy and Robert S. Parker, 2007;
Horton and Terjung, 1988). However, the already suppressed net hepatic glucose
release rate is elevated significantly as a consequence of an increase in hepatic
gluconeogenesis (Horton and Terjung, 1988).

The PV Omax
2 is an indicator of cardiovascular fitness. Cardiorespiratory fitness

(CRF) is a direct measure of V Omax
2 during progressive increasing of exercise

intensity, and it value expresses relative to body weight (mL/kg/min). A good CRF
in patients with T1DM relates to better overall glucose control and a reduction
of serum lipids (Faulkner, 2010). A diminished CRF links to the presence of
cardiovascular autonomic neuropathy in long-term diabetes (Röhling et al., 2017).
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Current guidelines suggest that people with T1D should perform at least 150minutes
of moderate-intensity or 90 minutes of vigorous-intensity physical activity (see
Table 2.2) per week with no more than two consecutive sedentary days (Hackney
and Constantini, 2013). Therefore, it is essential to describe the effects of exercise
quantitatively by adding them to glucose-insulin models to have realistic simulations
(Hernández-Ordoñez and Campos-Delgado, 2008).

Table 2.2: Exercise Intensities according to PV Omax
2 (Rai and Sen, 2016)

Exercise Intensity PV Omax
2 Note

Basal Level 8% No exercise
Prolonged moderate
level aerobic exercise

65% the heart rate of 150
bpm for a 30-year-old
patient

Vigorous exercise >75% 160 bpm

2.6 Summary
T1DM is a chronic autoimmune disease that starts with the progressive loss and de-
struction of beta cells (Saberzadeh-Ardestani et al., 2018). Then the dysglycaemia
unfolds long-term macrovascular and microvascular complications (Tuomilehto and
Rydén, 2018). Diagnosis of diabetes consists of the detection of autoantibodies such
as GAD65 or IA-2 and insulin production monitoring (Ilonen et al., 2013). Fur-
thermore, T1DM is treated conventionally by the administration of insulin through
pens or insulin pumps (Lunze et al., 2013). The insulin delivery is calculated based
on carbohydrate intake, physical activity, and blood glucose concentration, known
as open-loop therapy (Reddy et al., 2019). Miscalculations of insulin bolus could
cause hyperglycaemic and hypoglycaemic events (Lunze et al., 2013). Closed-loop
insulin delivery therapy is in development and could potentially avoid adverse events
by automatically adjusting the insulin bolus based on blood glucose concentration
from a CGM, an insulin pump, and a control algorithm (M. D. Breton et al., 2014).

This closed-loop insulin delivery or Artificial Pancreas has to deal with meals and
intense physical activity. It has to respond effectively to these disturbances. The
use of control algorithms such as MPC, PID, or fuzzy logic-based has improved the
responsiveness of fully automated APs (Claudio Cobelli, Renard, and Kovatchev,
2011). APs tests have simulations using mathematical models that mimic the
glucose-insulin dynamic of a T1DM patient. The mathematical models use the
pathophysiological knowledge of the disease and complement the simulations of the
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artificial pancreas robustness tests (Claudio Cobelli, Federspil, et al., 1982). These
principles are part of the next chapter as it describes the development of better
controller algorithms. It also describes physiological models used for closed-loop
controls strategies assessment against disturbances such as exercise and meals.
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C h a p t e r 3

STATE OF THE ART

Mathematical models take into account the hormone that regulates the blood glucose
levels, insulin (Richard N Bergman, Finegood, and Ader, 1985; Hovorka, Canonico,
et al., 2004) and others also take into account the glucagon (Sorensen, 1985), a
hormone that stimulates the breakdown of glycogen into glucose. The models can
group by their complexity. Models like the Bergman "Minimal" model (Richard
N Bergman, Finegood, and Ader, 1985) are less complex than Hovorka’s model
(Hovorka, Canonico, et al., 2004) and the Sorensen’s model (Sorensen, 1985).
These are part of simulations, automatic control, and test for new therapies for
diabetes (Lema-Perez, Aguirre-Zapata, and Garcia-Tirado, 2015). These models
mimic the response of the BGLs of a T1DM patient. Therefore, these models
integrate into simulations of the components of Artificial Pancreas such as the CGM
sensor, insulin pump, and the controller algorithms to test different configurations
of these systems to improve patients’ life (see Figure 3.1) (Claudio Cobelli, Renard,
and Kovatchev, 2011).

Figure 3.1: Graphical representation of physiological models or glucose-
insulin/glucagon systems integrated with Artificial pancreas system. Own elab-
oration from Cobelli et al.(2011).

The general Artificial Pancreas design considers devices that T1DM patients com-
monly use to control their BG levels, CGM sensors, and insulin pumps. Control
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algorithms use their data to deliver correct amounts of insulin, glucagon, or both to
regulate BG levels.In other words, a closed-loop system requires an actuator or the
insulin pump, a continuous glucose monitor (CGM) sensor, and control validation.
This control validation (controller) is to obtain a low tolerance for mistakes. It needs
sensor validation, a robustness test under uncertainty, and a glucose-insulin dynamic
model, for insulin-only therapy (see Figure 3.2).

Figure 3.2: General Hardware design of a Closed Loop Artificial Pancreas. Own
elaboration from Cobelli et al.,(2011).

First, there is a layered structure of the AP control algorithm (Del Favero, Toffanin,
et al., 2019), which separates functionalities among modules, which allows inde-
pendent development and solving integration hurdles. It describes from the bottom
the physical layer (hardware), physical layer interface (software for hardware man-
agement), safety layer (software module), control layer (software computing, topic
of this section), and at the top, the adaptation layer (adjusting standard therapy
parameters). In advance, the types of control layer commonly used in AP are MPC,
PID, and fuzzy logic (FLC).

3.1 Systems of glucose-insulin dynamics
This section shows the model known as the Minimal Model, then the Hovorka
model, and the complex Sorensen Model. These mathematical models explain
glucose-insulin dynamics and are the most cited in the literature (Panunzi et al.,
2020). These models can be used with other models to improve human activities
simulation such as eating and exercising. Therefore, the extension of these models
is also detailed.



17

3.1.1 Bergman Minimal Model
The Minimal Model designed by Bergman et al. 1989 aimed at describing the
pancreatic responsiveness and insulin sensitivity of a T1DM patient (González,
Voos, and Darouach, 2015) in Figure 3.3. This model bases upon the physiology
knowledge available at the time (Richard N Bergman, 2021; Pacini, Finegood, and
Richard N Bergman, 1982; Richard N Bergman, Finegood, and Ader, 1985) and
analysis of a frequently sampled intravenous glucose tolerance test (IVGTT). This
Minimal Model is considered a method to analyzes the plasma glucose and insulin
dynamics during an IVGTT (R. N. Bergman, Phillips, and C. Cobelli, 1981).

The model consists of two-linear differential equations, or two compartments, for
insulin kinetics in plasma and the effects of insulin and glucose itself on glucose
restoration after perturbation by intravenous injection (Richard N Bergman, 1989;
Richard N Bergman, 2021).

Figure 3.3: Schematic flow diagram for glucose kinetics of BergmanMinimalModel
(Richard N Bergman, 2021).

First-order equation 3.1 assumes that the insulin secreted enters the interstitial
fluid (ISF) compartment, represented by "X" . Then, ISF insulin exits remote
compartment by the first-order process dG

dt in equation 3.2.

(3.1)
dX
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The rate of return of glucose to basal after injection in equation 3.2 includes an
insulin-dependent component, X(t). Glucose dynamics (Eq. 3.2) includes the term
SG for glucose effectiveness. Glucose effectiveness (Richard N Bergman, 2021) is
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the ability of glucose to normalize its concentration on its own.

(3.2)
dGptq

dt
“ ´

`

p1 `X
`

t
˘˘

G
`

t
˘

` p1Gb

After injection, the ability to normalize glucose on its own depends on insulin action
(SI) and glucose effectiveness (SG). Bergman (2021) represent mathematically SG

as the partial derivative of glucose disappearance on glucose and insulin and results
in the ratio of two parameters of the minimal model: p3

p2
. Following IV glucose

infusion, the time courses of plasma glucose G(t) and insulin I(t) were determined
experimentally. The parameters of this model are determined through experimental
studies of intravenous glucose tolerance test (in table 3.1).

Table 3.1: Description of parameters of Bergman Minimal Model (Welch et al.,
1990; Richard N Bergman, 2021).

Parameter Description Unit
Gptq Serum glucose concentration mg{dL
Xptq Concentration of insulin in a com-

partment remote from plasma
1{min

Iptq Plasma insulin concentration mU{L
Gb Baseline glucose concentration mg{dL
Ib Baseline insulin concentration mU{L
p1 The fractional ability of glucose to

lower its concentration in plasma in-
dependent of increased insulin

unitless

p2 Fractional transport coefficient of
insulin out the remote compartment

unitless

p3 Fractional transport coefficient of
insulin in the remote compartment

unitless

3.1.2 Hovorka et al. Model
The "Hovorka model" has compartment-base divided in three subsystems. Consists
of a glucose subsystem, insulin subsystem and an insulin action subsystem, shown
in figure 3.4.
The glucose subsystem has two compartments, described by:
(3.3)
dQ1ptq

dt
“ ´p

F01
VGGptq

`X1ptqqQ1ptq`k12Q2ptq´FR`UGptq`EGPop1´X3ptqq

(3.4)
dQ2ptq

dt
“ X1ptqQ1ptq ´ pk12 `X2ptqqQ2ptqyptqGptq “

Q1ptq

VG



19

The insulin subsystem has two compartments, S1 and S2, representing absorption
of insulin administered subcutaneously and the plasma insulin concentration. The
insulin action subsystem has three compartments described by:

(3.5)
dX1
dt

“ ´ka1X1
`

t
˘

` kb1I
`

t
˘

(3.6)
dX2
dt

“ ´ka2X2ptq ` kb2Iptq

(3.7)
dX3
dt

“ ´ka3X3ptq ` kb3Iptq.

Figure 3.4: Schematic flow diagram for glucose and insulin subsystems of Hovorka
et al. (2002).

Each parameter used in the differential equations is described in table 3.2. These
parameters were obtained from labeled IVGTT data (Hovorka, Shojaee-Moradie,
et al., 2002).
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Table 3.2: Description of parameters ofHovorkamodel (Hovorka, Shojaee-Moradie,
et al., 2002; Hovorka, Canonico, et al., 2004).

Parameter Description Unit
Q1ptq Mass of glucose in accessible com-

partment
mmolL´1

Q2ptq Mass of glucose in non-accessible
compartment

mmolL´1

k12 Transfer rate from Q1 to Q2 min´1

ka1, ka2, ka3 Deactivation rate constants min´1

kb1, kb2, kb3 Activation rate constants min´2 per mU/L
Iptq Plasma insulin mU{L
Ib Basal plasma insulin mU{L
EGPo Endogenous glucose production mmol{min
F01 Total non-insulin-dependent glu-

cose flux
mmol{min

Gptq Total glucose concentration mmol{L
Uptq Bolus dose of administered glucose mmol{min
X1ptq Remote effect of insulin on glucose

transport/distribution
min´1

X2ptq Remote effect of insulin on glucose
disposal

min´1

X3ptq Remote effect of insulin on EGP min´1

ke Insulin elimination from plasma min´1

VI Insulin distribution volume Lkg´1

VG Glucose distribution volume Lkg´1

FR Renal glucose clearance mmolL´1

It considers that the regulation of glucose is represented by plasma glucose dynam-
ics represented by the masses of glucose in all compartments and insulin action
dynamics represented by the effect of insulin on glucose transport, disposal and
endogenous glucose production (EGP) (Nath et al., 2018).

Nowadays, it serves to implement nonlinear MPC in clinical trials of closed-loop
insulin therapy. It lies between simplicity of the Bergman Minimal Model and
the complexity of a more physiologically based models such as that of Sorensen
(Sorensen, 1985).

3.1.3 Sorensen’s Physiological Model
In 1985, John T. Sorensen published a model with nineteen nonlinear differential
equations to model the glucose-insulin dynamics (Sorensen, 1985). His model is
based on differential concentration balances in the brain, heart, lungs, liver, kidney
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and periphery organs involved in the glucose and insulin interactions, shown in
figure 3.5.

Figure 3.5: Schematic flow diagram for compartments of Sorensen (1985). Own
elaboration from Sorensen (1985)

This model also incorporates glucagon, which is another regulatory hormone, and
its effects. Furthermore, this model’s equations is divided into three subsystems
(glucose, insulin and glucagon). The subsystems of insulin and glucose are mod-
eled for the brain, heart and lungs, liver, gut, kidney and periphery compartments
(muscles and adipose systems) (see Figure 3.5). While the glucagon is modeled as a
single compartment with one single nonlinear differential equation. Its parameters
are obtained on the basis of literature research, 135 parameters including the initial
conditions of the state variables (Panunzi et al., 2020).

In addition, the derived mass balance equations considered serve to estimate the rate
of exchange for any given substance (insulin or glucagon), with metabolic sinks and
metabolic sources according to the physiological response of the body.

This system’s output is the arterial glucose allowing accurate glucose levels and
considers inputs like intravenous insulin infusion and a glucose input through a
meal.

Some of the limitations that this model has is that it does not have the ability to
simulate the influence of amino acids (during meal intake), epinephrine effects on
glucagon and insulin ratio and the effects of exercise (Al-Hashmi, 2007). However,
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this model has been revised and extended with effects of exercise by Lenart and
Robert S. Parker (2002).

Furthermore, it also was extended with the meal model by the gastric emptying done
by Lehmann and Deutsch (1992), introduced by Parker et al. (2000).

3.1.4 Comparison of Bergman, Hovorka and Sorensen physiological model
Regarding to the level of detail, the models can be minimal (coarse) or maximal
(fine-grain) (Lema-Perez, Aguirre-Zapata, and Garcia-Tirado, 2015). Differences
in the number of differential equations primarily reflect the degree of body compart-
mentalization employed (Table 3.3). Therefore, the more ODEs, the more complex
the model is.

Table 3.3: Comparison of mathematical complexities of physiologic models of
glucose metabolism

Models Mathematical Complexity
Differential Equations Parameters Nonlinear Functions

Minimal Model 3 8 2
Hovorka Model 9 17 -
Sorensen Model 22 135 19

In addition, the Bergman nor the Hovorka model captures the changes in glucose-
insulin dynamics due to exercise (Roy andRobert S. Parker, 2007). Many researchers
use these models for the development of control algorithms, but because of its
complexity the Sorensen model only few authors use it (Panunzi et al., 2020).

These models have been extended to take into account other disturbances like meal
intake and exercise. With the extension of meal models and exercise models, the
disturbance testing of AP is possible, and discussed in the next section.

Furthermore, this glucose-insulin models serve as the foundation for the metabolic
simulators. For instance, the University of Virginia (UVa)/Padova metabolic sim-
ulator, an accepted by the U.S. Food and Drug Administration simulator, with a
large cohort of subjects with inter-subject variability allows extensive and robust
studies. In addition, subcutaneous glucose sensors and insulin infusion pumps are
also involved in the simulation (Rashid et al., 2019).

3.2 Meal Intake models
The performance of the controller depends on the meal model used and also on the
model of the diabetic patient (Dua, F. J. Doyle, and Pistikopoulos, 2006).
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3.2.1 Dalla et al. Model
It is a pharmaco-kinetic model that aims to describe the physiological events that
follow meal administration for non-diabetic and diabetic patients. The dynamics
of the model can be divided into a glucose subsystem, insulin subsystem, liver,
gastrointestinal tract, muscle and adipose tissues and β-cells (Nath et al., 2018).
Described mathematically a model of the gastric system (Dalla Man, Camilleri, and
Claudio Cobelli, 2006).

(3.8)
dq1
dt
“ u´ kempq1

(3.9)
dq2
dt
“ kemppq1 ´ q2q

(3.10)
dGgut

dt
“ kempq2 ´ kabsGgut

where q1 is the mass of carbohydrate in the stomach compartment, u is the meal
input, kemp is the rate constant for gastric emptying, q2 is the mass of carbohydrate
in stomach of the compartment two, kabs is the rate constant absorption from the
gut, and Ggut is the mass of carbohydrates in the gut.

3.2.2 Fisher Model
Fisher (1991) extends the Bergmann Model with the rate of intestinal absorption
following a meal as an exogenous glucose input. It also depends on the amount of
carbohydrate disturbance (Fisher, 1991).

Dptq “

$

&

%

βepapt´ttimeqq, if t ě tmeal

0, ift ď tmeal

where, tmeal represents the time at which the meal begins digestion. The parameter
a represents the absorption rate of the meal, while β represents the size of the meal.

3.2.3 Lehmann and Deutsch Meal Model
Their model aims to simulate the transitory phases after an insulin regimen or diet
that lead to a steady-state glycaemic profile of an insulin-treated diabetic patients
(Lehmann and Deutsch, 1992).

They assume a patient lacking of endogenous insulin secretion. Contains a single
compartment representing extracellular glucose and blood glucose with inputs of
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intestinal absorption and hepatic glucose production. Then, the glucose is first
removed by the utilization of red blood cells and the central nervous systems then
by liver and periphery such as muscles and adipose tissue.

According to Lehmann and Deutsch 1992, the rate of the absorption of glucose
through the gut wall RGabs, (mg/min) is given by:

(3.11) RGabs “ KgabsGgut,

where Ggut is the amount, in mg, of glucose in the gut after the ingestion of meal.
Defined as:

dGgut

dt
“ RGempt ´KabsGgut.

TheRGempt is the rate of gastric emptying which bases on a trapezoidal form where
the rate rises and saturates to a maximum value (V´max) and then fall to zero where
rise and fall are ramp function (Lehmann and Deutsch, 1992). Kabs is the constant
rate for glucose absorption given by 1h´1.

It has much slower initial dynamics and smaller glucose excursions. When there is
a postprandial period, the liver uptakes 25% of the absorbed glucose from the gut
after a meal, until the glycogen reservoir is filled or until the postprandial period is
ended (Hernández-Ordoñez and Campos-Delgado, 2008).

3.3 Exercise Models
As explained before, exercise induces metabolic changes in the body, such as the
drop in plasma insulin concentration form its basal level, increase of hepatic glucose
release, elevated hepatic glycogenolysis (Roy and Robert S. Parker, 2007).

For the quantification of exercise indices, the percentage of the maximum oxygen
consumption rate (PV Omax

2 ) which is the proposed by (Lenart and Robert S Parker,
2002). The V Omax

2 the mL of oxygen consumed per minute per kg of bodymass
and it is defined by Ficks equation:

V Omax
2 “ QpCaO2 ´ CvO2q

where Q is the cardiac output of the heart, CaO2 is the arterial oxygen content and
CvO2 is the venous oxygen content. The second term is then the difference in oxygen
content between arterial and venous blood (Rai and Sen, 2016; Bowen, Benson, and
Rossiter, 2019). In basal state, this difference is around 4mL Oxygen per 100 mL
of blood, and at maximal exercise intensity it gets closer to 16 mL (Lavie et al.,
2016). Furthermore, the cardiac output can be calculated by multiplying the stroke
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volume (amount of blood pumped from the left ventricle in a beat) and the heart rate
(beats per minute) (Malek and Coburn, 2008). This value can be calculated in sport
laboratories in a controlled environment with cardiopulmonary exercise cycling or
treadmill tests and these test can more reliable (Mann, Lamberts, and Lambert,
2013). However, nowadays there are other methods such as fitness watches and
online calculators (Eades et al., 2021; Firstbeat Technologies Ltd., 2014).

The traditional approach has been to prescribe exercise intensity as PV Omax
2 or

maximum heart rate (HRmax) and these methods remain common in the literature.

3.3.1 Roy and Parker Model
Roy and Robert S. Parker (2007) extended the Bergman minimal Model with the
exercise effect as follows:

(3.12)
dI

dt
“ ´nIptq ` p4u1ptq ´ Ieptq;

(3.13)
dX

dt
“ ´p2Xptq ` p3pIptq ´ Ibq;

dG

dt
“ p1pGptq ´Gbq ´XptqGptq `

W

V olG
pGprodptq

´Gglyptqq ´
W

V olG
Gupptq `

u2ptq

V olG
;

(3.14)

(3.15)
dGprod

dt
“ a1PV O

max
2 ptq ´ a2Gprodptq;

(3.16)
dGup

dt
“ a3PV O

max
2 ptq ´ a4Gupptq;

(3.17)
dIe

dt
“ a5PV O

max
2 ptq ´ a6Ieptq;

where Ie is the rate of insulin removal due to exercise, Gup and Gprod represent
the rate of glucose uptake and hepatic glucose production. W is the weight of the
patients. Ggly is the decline of glycogenolysis rate during prolonged exercise due
to depletion of liver glycogen stores (Roy and Robert S. Parker, 2007). The latter
decrease when the energy expenditure threshold (Ath) is exceeded. Ath is a function
of exercise intensity and duration, represented by a linear equation:
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(3.18) Ath “ ´1.1521pu3ptqq
2
` 87.47u3ptq

Therefore, the glycogenolysis during exercise is mathematically represented as:

dGgly

dt
“

$

’

’

’

&

’

’

’

%

0, Aptq ă Ath

k, Aptq ě Ath

´
Ggly

T1
, u3ptq “ 0

Where Aptq is u3ptq (exercise intensity) integrated, which is calculated by the
following equations:

dA

dt
“

$

&

%

u3ptq, u3ptq ą 0

´
Aptq
0.001 , u3ptq “ 0

Hence, once A(t) reaches Ath, the rate of change of glycogenolysis rate starts to
decline at a rate given by k because of the depletion of available liver glycogen
stores. They take into account the increased glucose uptake by the working tissues
and the hepatic glucose release that increases with the work intensity (Wahren et al.,
1971). As well as the glycogenolysis rate during exercise.

3.4 Control Algorithms
By control algorithm, it means the algorithms used to control coordinate, and
optimize a process, in this case insulin delivery. It analyzes the error between a
process variable and a setpoint (Shen and S. Chen, 2012). The error, is applied
as feedback to generate a control response to bring the controlled process variable
closer to the setpoint. This feedback control is applied in AP, which takes the
measurements from the CGM sensor and makes calculated adjustments to keep the
blood glucose levels within a set range by means of a "final control element", such
as an insulin pump (Hajizadeh et al., 2019a).

3.4.1 Model Predictive Control Algorithm
Model Predictive Control algorithm computes, at each control step, the sequence of
control actions that is predicted to be the most effective, i.e. optimal according to a
predefined cost function (Del Favero, Toffanin, et al., 2019). It is the most suitable
for the design control systems with delays and constraints (Huyett et al., 2015).
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MPC adds naturally in the design process a compensation for delays by means of
feed-forward action, same as constraint handling (Magni et al., 2007).

The MPC is a basic strategy that is able to involve many different types of models
and objective functions (Bequette, 2012). For instance, this controller has been
enhanced to an Adaptive MPC with a Run-to-Run approach (R2R) (Toffanin et al.,
2017) and test in silico with the University of Virginia and Padova (UVa/Padova)
simulator’s 100 virtual subjects in a realistic month scenario. The basal insulin
delivery, carbohydrate-to-insulin ratio (CR), a Correction Factor, and bodyweight
(BW) were used for control tuning and individualization. As a result, there was
a reduction of overshoots detected after the meal approach and a reduced BG
variability after months of using the R2R. Its performance indices improved day-by-
day showing a good monotone trend. This study demonstrated that an adaptive AP
might be the key for outpatient studies because this strategy showed a great potential
to capture intra- and inter-day glucose variability.

Del Favero et al.(2019) proposes a modular controller composed of a Safety Super-
vision Module (SSM) and the MPC, called the Modular Model Predictive control
(mMPC). The Modular architecture of the AP is in Fig. 3.6. This modification in
clinical trials with inpatient and outpatient settings is showing promising outcomes.
Their AP with an mMPC performed well in maintaining BG in target, and patients
spent no time in hypoglycemia overnight and after diner (M. Breton et al., 2012).
Later, they compared mMPC to an adaptive mMPC (A-mMPC) in real-life testing.
The A-mMPC consists of SSM, MPC, and the run-to-run (R2R) algorithm (a strat-
egy devoted to daily updates). A-mMPC showed good performance, but it was not
statistically significantly different to mMPC (Del Favero, Toffanin, et al., 2019).
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Figure 3.6: Modular architecture for Del Favero et al. (2019) Artificial Pancreas
study. Taken from S. D. Patek et al., 2012 (2012).

The mMPC controller compared with the MPC-R2R strategy mentioned before, as
an early-stage prototype with 18 TD1M patients in free-living conditions (Messori
et al., 2017) faced normal daily activities, including exercise, during onemonth. The
R2R-AP significantly improved the glucose control performance during the night.
Although, this study did not specify whether the patients did or not exercise because
of very limited interaction with patients due to telemedicine reports. Nevertheless,
the results showed no time-in-hypoglycemia for both controllers demonstrating that
this is a promising step for exercise response control in patients with T1DM and AP
development.

Recently, another research team (Song et al., 2020) tested a learning type MPC
algorithm (L-MPC) in a clinical trial that lasted eight days, combining two days of
Open Loop therapy and six days of Closed Loop therapy. The L-MPC combines
the MPC algorithm with an iterative learning control (ILC). ILC learns from an
individual’s lifestyle on a day-to-day basis for better daily glycemic control. The
set-point or glucose target for the MPC control algorithm will be updated using ILC.
They added exercise or alcohol to test the robustness. Each participant was part
of 20 minutes of moderate-intensity physical activity, riding a stationary bicycle.
On a different day, each participant drank 50 ml of beer with an alcohol content of
4%. This system showed a good performance and robustness in glycemic control
during exercise and alcohol consumption and did not cause frequent or severe
hypoglycemia.
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The metrics of comparisons between each study reviewed in this section are in table
3.4. This table summarizes the strategy used by each research team and its overall
outcomes. The overall outcomes are measured in the percentage that the patient
had a hypoglycemic event and the time that it spent on the target range, normally
between 70 mg/dl and 180 mg/dl. Using the MPC strategy without exercise, the
time in target range is higher than with exercise (Toffanin et al., 2017). The free
living conditions of a patient consider small walks, unannounced meals or snacks,
with mMPC and R2R the patient has more time in the target range (Messori et al.,
2017; Del Favero, Boscari, et al., 2016).

Table 3.4: AP with MPC and exercise studies reviewed.
Authors Modification Exercise consid-

eration
Overall Outcomes

Del Favero,
Toffanin, et al.,
2019

MPC + SSM =
MMPC

Free Living Con-
ditions

time in target (70-180
mg/dl) : 74% ˘ 13% ;
time in hypo (below 70
mg/dl): r0%, 3.1%s

Del Favero,
Boscari, et al.,
2016

MMPC vs
SAP

Intense physical
activity for 90-
120 minutes

time in target (70-180
mg/dl): 56% ˘ 13.5%;
time in hypo (below 70
mg/dl):2%p1.2´ 4.5q

Toffanin et al.,
2017

MPC + R2R No Exercise time in target
(70-180mg/dl):
84.34% ˘ 30.76%;
time in hypo(below 70
mg/dl): 0%

Messori et al.,
2017

mMPC vs
R2R-MPC

Free Living Con-
ditions

time in target
(70-180mg/dl):
61.82% ˘ 11.12%
vs. 66.90% ˘ 13.34%;
time in hypo(below 70
mg/dl): 2.01%˘ 1.69%
vs. 2.12%˘ 1.33%

Song et al.,
2020

ILC + MPC =
LMPC

Alcohol and
Moderate physi-
cal activity

time in target
(70-180mg/dl):
64.0% ˘ 23.6% and
62.0% ˘ 23.3; time in
hypo(below 70 mg/dl):
0%˘ 0% and 0%˘ 0%
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3.4.2 Proportional-Integer-Derivative Control Algorithm
It can automatically apply accurate and responsive correction to a control function,
which makes it very suitable for glycemic control. Therefore, this algorithm can
restore the glucose level, for instance, to the desired one with minimal delay and
overshoot by increasing or not the output. However, the PID algorithm varies in
design, tuning, and implementation in different ways (Bequette, 2013).

Sometimes only the proportional-derivative (PD) term is used as a controller. For
instance, Beneyto et. al. (2018) proposed a novel hybrid AP with an automatic
insulin infusion algorithm. This AP based the insulin-only controller on the PD and
carbohydrates (CHO) suggestions done by the negative feedback controller with a
predictive PD. The integral term discarded of the CHO loop minimizes the risk of
hypoglycemia. This approach tested in silico adults used an exercise/disturbance
model that increases the glucose uptake during and after an exercise session char-
acterizing the aerobic exercise. Concluding that, this closed-loop CHO control
strategy can prevent the majority of BG decreases. However, it still depends on
the patient’s response to the alarms. Table 3.5 describes more studies with PID
algorithms facing exercise.

Furthermore, Ramprasad et al.(2004) design a robust PID based on Sorensen’s and
Parker’s models where both single and multiple meals are considered.

Similarly, Ramkissoon et al. (2019) used a PD controller with sliding mode refer-
ence conditioning (SMRC) and insulin feedback (IFB) to develop and test in silico
an exercise-induced hypoglycemia reduction algorithm (EHRA). They tested the
EHRAwith unannounced and the controller-only with announced and unannounced
exercises using the UVa/Padova simulator extended with an exercise model. EHRA
successfully triggered disturbance rejection exercise-induced hypoglycemia mitiga-
tion actions when it detected aerobic exercise. With announced exercise, the system
gives a dose of carbohydrates to the patient but, it remains the same regardless of
exercise intensity. However, the algorithm depended on accurate CGM readings.
In addition, due to parameters not modeled, such as insulin formulations and their
respective delay and the likelihood of inaccurate CGM readings happening in real
life, some conclusions of the effectiveness of their approach are inconclusive.

On the other hand, Huyett et al. (2015) did a model-based tuning to adjust the
different insulin sensitivities of the patients and a third-order discrete-time model
structure that adequately captured the behavior of insulin action on the blood glucose
concentration (see Figure 3.7). The personalized factor added to the model gain,
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an Internal model control (IMC), is a tuning method that allows PID parameters
to be calculated directly from the process model. Researchers added to the PID
controller an anti-reset windup protection (AWP) (adjusts the integration based on
the situation) strategy and an IFB (imitates the physiology of the human body).
This system tested in silico tunned the PID controller for a robust stability and
performance analysis. Their study showed that the intraperitoneal implanted AP
system’s faster insulin transport and action, along with more rapid glucose sensing,
allows the PID controller to maintain excellent glycemic control. Although the
system did not include exercise models, the modifications allow the system better
control both large but temporary disturbances and small but persistent disturbances.
So, this approach might function right with exercise models.

Figure 3.7: Block diagram representation of the simulation done by Huyett et al.
(2015). Taken from Huyett et al. (2015).

Table 3.5 summarizes the studies reviewed in this section. The different PID
strategies used has improved the time in target range of the patient. The studies
reviewed have used different exercise models to test a PD strategy (Beneyto et al.,
2018; Ramkissoon et al., 2019) with a promising time in target range. Quirós et
al. (2018) has used an PID strategy with patients performing anaerobic and aerobic
exercise for different amount of time, and have presented very good results with few
hypoglycemic events.
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Table 3.5: PID AP and exercise studies reviewed.
Authors Modification Exercise con-

sideration
Overall Outcomes

Huyett et al.,
2015

PID +
IMC+anti-reset
windup+IFB

No time in target (80-
140mg/dl): 78.0% ˘

6%; time in hypo(below
70 mg/dl): 0%˘ 0%

Beneyto et al.,
2018

PD + SAFE + IFB
+ CHO

Exercise
Model

time in target
(70-180mg/dl):
92.4%p90.1 ´ 97.0q
daytime and
98.9%p98.1 ´ 99.2q
nightime ; time in
hypo (below 70 mg/dl):
0.9%p0.2´2.2q daytime
and 0.9%p0.3 ´ 1.2q
nighttime

Quirós et al.,
2018

PID + SMRC Aerobic and
Anaerobic
Exercise

time in target
(70-180mg/dl):
89.8% ˘ 18.6%
and 75.9% ˘ 27.6% ;
time in hypo (below 70
mg/dl): 2.5% ˘ 6.3%
and 1%˘ 3.6%

Ramkissoon et
al., 2019

PD + SMRC
+IFB

Exercise
Model

time in target (70-
180mg/dl) [median
(25th%, 75th%)]:
93.6%p90.8, 93.9q;
time in hypo(below 70
mg/dl): 0.1p0.0, 0.1q

3.5 Applications for self-monitoring of blood glucose levels
Mobile phone apps for health self-management can communicate with different
types of sensors. In addition, they are able to transfer data securely to relatives
and health care personnel and summarize different factors. These can encourage
patients to self-manage for longer periods, enabling them to achieve healthy outcome
(Årsand et al., 2015).

The mobile smartphone technology offers innovative strategies that could improve
the self-management of patients with chronic diseases and especially diabetes
(Doupis et al., 2020). In 2011, the World Health Organization (WHO) defined
mobile health (mHealth), a component of eHealth, as the “medical and public health
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practice supported by mobile devices” (WHO, 2011). The use of mHealth technol-
ogy increases access to health-related information for both patients and healthcare
providers and also facilitating remote patient monitoring (Klonoff, 2013).

A mHealth application for T1DM patients could eliminate complicated calcula-
tions, handwritten logbooks and long-lasting search for evaluation of the nutritional
content of foods. Furthermore, a personalized treatment approach could improve
patient’s quality of life and glycemic control (Chatzakis et al., 2019).

Prediction Models of blood glucose would allow to generate alerts is hypoglycemia
or hyperglycemia is about to occur. If the prediction of BGL is accurate enough,
it would prevent complications and would improve the quality of life of patients.
On the other hand, another approach to help T1DM is through insulin calculators,
there are few applications that provide this service (Doupis et al., 2020). Although
many applications designed to achieve these goals have reached the market because
of their efficacy and safety (Doupis et al., 2020; Chatzakis et al., 2019).

For instance, the Intelligent DiabetesManagement (IDM) application links to a web-
site, records glucose levels, proposed carbohydrate intakes, and planned activities,
and suggests the appropriate insulin doses. It possesses an insulin dose calculator
with the option of varying the insulin for small or large meals, together with an
insulin grid system to adjust for differing glucose levels at that time or by those
using any combination of these methods (Ryan et al., 2017).

Furthermore, Doupis et al. (2020) reviews apps that have been tested with diabetic
patients in different settings and have shown promising results. The results include
improvement of the median HbA1c levels and the prevention of hypoglycemic
effects.

The described applications include the GoCARB mobile application (Rhyner et al.,
2016) that helps patients calculate the amount of carbohydrates about to consume.
This application could facilitate the calculation of insulin needed since it is hardest
to do (Chatzakis et al., 2019; Rhyner et al., 2016). This application has been tested
in a multicenter setting. However, there were no significant change over time in
relation to self-efficacy, self-care activities, and quality of life (Doupis et al., 2020).

3.6 Summary
This chapter reviews the state of the art of some of the components of an AP’s first
in silico trial like the patient model, the control strategy to correctly deliver the
insulin dose. Finally, it describes another approach to help patients to deliver the
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right amount of insulin, with mobile applications that patients use to calculate the
insulin delivery according to the patient diabetic data.

Table 3.6: Summary of revision of the state of the art

Revision of the state of the art
Physiological Mathematical Models
that explain glucose-insulin dynamics
and most cited in the literature.

Bergman Mini-
mal Model

Section 3.1

Hovorka Model Section 3.1
Sorensen Model Section 3.1

Meal Models to simulate
the response of TD1M
patients to exogenous
glucose infusion and
carbohydrates.

Dalla et al. Model Section 3.2
Fisher et al.
Model

Section 3.2

Lehmann and
Deutsch Model

Section 3.2

Exercise Model to simulate
the response of T1DM patients
to aerobic exercise.

Roy and Parker
Model

Section 3.3

Control Algorithms to close
the loop between patient and
insulin delivery.

Model Predictive
Control (MPC)

Section 3.4

Proportional-
Integer-
Derivative (PID)
Control

Section 3.4

Diabetes Diary Applications for
patients to monitor and control
their BGLs at home.

Applications for
Self-Monitoring
of BGLs

Section 3. 5
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C h a p t e r 4

MATERIALS AND METHODS

This chapter describes the development of closed-loop insulin delivery systems using
mathematical models such as the Bergman Minimal Model (Richard N Bergman,
Finegood, and Ader, 1985). The Bergman Minimal Model is used because of
its simplicity and flexibility with disturbances such as meals and exercise. For
meals disturbances testing (section 4.2), an extended version of the Minimal Model
proposed by (Palma, 2013) is used. Then, this model is joined with PID (section
4.3) and MPC (section 4.4) closed-loop strategy for insulin delivery. For physical
activity and meal disturbances (section 4.5), the Roy and Robert S. (2007) described
in chapter 3 is used. Then this model is implemented with a PID closed-loop insulin
delivery strategy (section 4.6). Finally, the data collected from the simulations and
testing of closed-loop strategies are used to develop a personalized app (section 4.7)
for a virtual patient, simulated in section 4.5, this app stores the patient’s entries in
a database and also suggest an insulin amount according to the patient’s meals or
physical activity.

4.1 Pancreas Artificial simulation components
The artificial pancreas consists of mainly three components: insulin pump, contin-
uous glucose monitor sensor, and controller algorithm to mimic the sugar control
with little human interference. In addition, the current technology of CGMs allows
to send the measurements to mobiles and this data can be analyzed by medical care
and the patient for a better control (Kesavadev et al., 2020). It functions in a closed
loop as follows (see figure 4.1):

1. The CGM sensor measures blood glucose levels and sends the measurements
to a controller algorithm,

2. the algorithm analyzes the data and computes the required insulin dose or
glucagon dose.

3. the insulin pump delivers the insulin instructed by the algorithm
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Figure 4.1: Representation of the components of a closed-loop or Artificial Pancreas
therapy. Own elaboration from Cobelli et al.(2011).

The artificial pancreas is revolutionizing the treatment of Type 1 Diabetes Mellitus.
However, it is important to perform clinical tests before commercial closed-loop
systems are available and widespread. This tests start by in silico intervariability
and robustness tests (Wilinska and Hovorka, 2008). These in silico tests include
the simulation of one or many T1DM patients with different characteristics. These
virtual patients are taken from the mathematical models such as the minimal model
to more complex models as the Sorensen. For variability, various parameters are
changed in each subject simulated, facilitated by metabolic simulators such as the
one developed by the UVa/Padova. For robustness, many disturbances can be added,
such as exercise or meals (Huyett et al., 2015).

Furthermore, control algorithms need to be tested for a reliable adaptation to a
particular patient and be safe to operate with a minimal risk of low and high glucose
levels (Kesavadev et al., 2020).

4.2 Extension of the Bergman Minimal Model
Bergman et al. (1985) developed the “minimal model” to analyze the plasma
glucose and insulin dynamics during an IVGTT. Modifications have been made to
the original Bergman model to incorporate various physiological effects on glucose
and insulin (Roy and Robert S Parker, 2006).
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4.2.1 Extended Bergman Minimal Model with Meal Disturbance
The model is taken from Palma R. (2013). The model is simulated with Simulink
Tools and a Matlab S-Function. It is an extended version of the Bergman minimal
Model. It uses the equations of the minimal model, such as 3.1 and 3.2, in chapter 3.
In addition, a term form mass of carbohydrates in the gut to model the meal effects
on BGLs. Therefore, the extended model main formulas are:

(4.1) 9G “ ´p1pG´Gbq ´ SiXG`
fkabs

VG
Ggut

(4.2) 9X “ ´p2pX ´ I ´ Ibq

(4.3) 9I “ ´u´ keI

Equation 4.1 models the glucose dynamics with the effects of meal, where:

• p1 is the glucose effectiveness,

• Gb is the basal or steady state of plasma glucose,

• Si is the insulin effectiveness,

• f is the carbohydrates fraction available for absorption,

• Kabs is the carbohydrates absorption rate into the bloodstream from the gut.

• VG is the volume of the plasma glucose distribution.

Equation 4.2 models the insulin dynamics, where p2 is the remote insulin clearance
fractional rate and Ib is the basal plasma insulin concentration. In addition, equation
4.3 models the subcutaneously injected rapid-acting insulin u as an impulse function
and ke is the insulin clearance rate from the plasma.

In addition, this model uses the Dalla Man et al. (2006) mathematical model of the
gastrointestinal tract, these equations are Equation 3.8, 3.9 and 4.4. The meals are
modeled as impulse responses for the Equation 4.4. For a meal that contains a mass
of carbohydrates of D.

(4.4) Ggut “ Dpβe´kabst ´ pβ ` γtqe´kempt
q.
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The steady-states were obtained from Hedengren et al. (2014). This are calculated
in the absence of meal and setting the left side of equations 4.1 and 4.2 to zero in
order to obtain G and X. Then, for the appearance of rapid-acting insulin as a step
increase in the plasma insulin.

For the insulin infusion rate of 2 micro-U/min, the steady state vector is:

x0 “
”

112.4400 22.2230 22.2220 11.1110 11.1110 166.6700
ı1

.

And for an insulin infusion rate of 3 micro-U/min:

x0 “
”

76.2159 33.3333 33.3333 16.6667 16.6667 250.0000
ı1

.

Figure 4.2 shows the schematic of the Simulinkmodelling of the extendedBergmanm
Model with meal disturbances, and an open-loop therapy with exogenous insulin
input. Where the exogenous insulin in a constant input, the meal disturbance is an
impulse response with a lag, and snacks are added as a sinuous disturbance to the
model.

Figure 4.2: Schematic flow diagram for extended Bergmann Model with meal
disturbance and Snacks (Hedengren et al., 2014).

The diabetic block contains the physiologicalmodel coded in aMatlab S-function. In
return, this blocks gives the blood glucose levels taking into account the disturbance
added and its effects. Then it is saved in m-file called data.mat. The complete code
of the diabetic patient can be found at Annex A.
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4.2.2 Extended BergmanMinimal Model with effects of Exercise disturbance
The model of Roy and Robert S. Parker (2007) is used for this simulation where the
initial state vector is:

x0 “
”

80 0 0 0 0 0 0 0 0
ı1

This model assumes that the average blood glucose level of the patient is 80 mg/dl
(first term of the initial state vector), no insulin is remotely injected initially, and
there is no insulin production by the patient. The exercise intensity is at 0, glucose
production and uptake rate is also 0. Exercise intensity and energy expenditure is 0.
Finally, it also assumes that there is no glycogenolysis occurring initially.

This simulation has three inputs, the exogenous insulin, the exogenous glucose
as impulse response and the exercise intensity as impulse response as well. The
differential equations are the ones described in the chapter 3: Equations 3.12-3.17.
And the rate of glycogenolysis is also added as well as the integrated exercise
intensity in the Matlab S- Function.

Figure 4.3: Schematic of Simulink of the Extended Physiological Bergmann Model
with exercise and meals. Own elaboration from Hedengren et al. (2014)

The parameters of the model of Roy and Parker (2007) described in section 3.3 were
used for this simulation, and are described in table 4.1.

The parameters for the exercise model used were estimated using nonlinear least
squares (Roy and Robert S. Parker, 2007) for equations 3.15-3.17 and the equation
for the rate of glycogenolysis. As for the equations from the Bergman Minimal



40

Table 4.1: Parameters used to model exercise and meal ingestion in a diabetic type
1 patient from Roy and Robert S. Parker (2007).

Parameter Value Unit
p1 0.035 min´1

p2 0.05 min´1

p3 0.000028 ml{µUmin2

p4 0.098 ml´1

n 0.142 min´1

V olG 117.0 dl
Gb 80.0 mg{dl
a1 0.00158 mg{kgmin2

a2 0.056 min´1

a3 0.00195 mg{kgmin2

a4 0.0485 min´1

a5 0.00125 µU{mlmin
a6 0.075 min´1

k 0.0108 mg{kgmin2

T1 6.0 min

Model (equations 3.12-3.14), the parameters were already defined in (Richard N
Bergman, Finegood, and Ader, 1985). The complete code of the diabetic patient
with meals and exercise can be found at Annex B.

4.3 Closed Loop Insulin Delivery with MPC controller
This sections explains the use of Simulink and Matlab for the modelling of the
components of a closed-loop insulin delivery system. These components are the
controller algorithm (MPC in this case), the insulin dosage delivered to the patient,
and the continuous measurement of blood glucose levels (see Figure 4.4). It is
important to remark that there is no modelling of the delays of insulin pump and
the CGM. Therefore, the system relies in accurate measurement of BGLs (for the
feedback action) and rapid insulin pump action.
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Figure 4.4: Schematic representation of the extended Bergmann Model with meal
disturbances. Own elaboration from Cobelli et al. (2011)

In addition, a meal model is added to the Minimal Model to test the response of
BGLs and MPC controller to meals and snacks. The meal and snacks are counted
as mass of carbohydrates explained in section 4.2.1. The code in APMonitor coding
language can be found at Annex C.

4.3.1 Closed Loop Insulin Delivery withMPC controller against meal distur-
bance

The extended Bergmann Model with meal disturbance is used for the simulation
and test of a closed-loop insulin therapy. This therapy will deliver the necessary
amount of insulin so the patient does not experience and hyper- or hypoglycemic
event. The therapy is an Artificial Pancreas that closes the loop of patient and insulin
delivery system. To deliver the right of insulin a MPC controller algorithm is used
program with the APmonitor server (Artificial pancreas simulation study 2014).
Advanced process monitor (APMonitor) is a modeling language for differential
algebraic (DAE) equations (Hedengren et al., 2014). It is a free web-service or local
server for solving representations of physical systems in the form of implicit DAE
models. It can be used for nonlinear model predictive control (Ramlal, Allsford, and
Hedengren, 2007). In this section, it is used to solve the model predictive control
algorithm using the parameter and conditions in Table 4.2.
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Table 4.2: MPC controller Modeling with APmonitor

MPC controller Modeling

Model Parameters
tau 1.5
Kp -20
Kd 0.05

Initial Conditions
u0 3
x0 80
d0 1000

Linear First order equation for MPC
taudx

dt “ ´
`

x´ x0
˘

+Kp

`

u´ u0
˘

+Kd

`

d´ d0
˘

(4.5)

The model equation 4.2 adjusts the insulin delivery. Where tau is time of response
of the controller to the inputs (1.5). Kp is the gain that is necessary so the insulin to
regulates the blood glucose near the set-point which is 80 mg{dl. Kp is then set to
-20. Kd is the process gain for the disturbance, the meal model.

Figure 4.5: Schematic flow diagram for AP with meal disturbance and Snacks.
From Hedengren et al. (2014).

The exogenous insulin input (u0) is constantly 3 mU/min, as if the patient is on
continuous subcutaneous insulin infusion. Then, it is added as a block in Simulink
with the physiological model as shows Figure 4.5.

4.4 Closed Loop Insulin Delivery with PID controller
This sections explains the use of Simulink and Matlab for the modelling of the
components of a closed-loop insulin delivery system. These components are the



43

controller algorithm (PID in this case), the insulin dosage delivered to the patient, and
the continuous measurement of blood glucose levels. As stated in the last section,
there is no modelling of the delays of insulin pump and the CGM. Therefore, the
system relies in accurate measurement of BGLs and rapid insulin pump action.

Figure 4.6: Schematic representation of closed-loop insulin delivery with PID
controller with meal disturbance and Snacks. Own elaboration from Rhee et al.
(2017).

In section 4.3.1, the closed-loop insulin delivery is tested with meal disturbances
such as snacks and three meals using the Dalla Man et al.(2006) model (see Figure
4.6). In addition, it is possible to use the Extended Bergman Minimal Model with
exercise by Roy and Robert S. Parker (2007) to test the controller with disturbances
such as physical activity (see Figure 4.7), in section 4.3.2.

Figure 4.7: Schematic flow diagram for AP with meal disturbance and Exercise.
Own elaboration from Rhee et al.,(2017).

4.4.1 Closed Loop Insulin Delivery with PID controller against meal distur-
bance

The extended Bergman model with meal disturbance is used for the simulation and
test of a closed-loop insulin therapy. This therapy will deliver the necessary amount



44

of insulin so the patient does not experience and hyper- or hypoglycemic event. The
therapy is an Artificial Pancreas that closes the loop of patient and insulin delivery
system. To deliver the right of insulin a PID controller tool of Simulink is used.
The PID form is parallel so the controller output is the sum of the proportional,
integral, and derivative actions, weighted independently by P, I, and D, respectively
(The MathWorks, 2021). Therefore, it is implemented as Equation 4.6.

(4.6) Cparpsq “ P ` I
1
s
`D

N

1`N 1
s

The proportional (P) controller parameter is set to -0.05, the integral (I) is set to
-0.1, the derivative (D) is set to zero, and the filter coefficient (N) is set to 100.
The Integrator initial condition is 2 (considering that the exogenous insulin input is
still constantly 2 mU/min) because the minimal model that all the necessary insulin
is infused exogenously. The filter initial condition is 0. The output is limit to 10
mU/min of insulin delivery.

A back-calculation anti-windup method unwinds the integrator when the block
output saturates by feeding back to the integrator the difference between the saturated
and unsaturated control signal. The Kb parameter specifies the gain of the anti-
windup feedback circuit (The MathWorks, 2021). And it has a back-calculation
anti-windup method with a coefficient (Kb) of 1.
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Figure 4.8: Schematic flow diagram for AP with meal disturbance and Snacks
(Hedengren et al., 2014).

Figure 4.8 shows the schematic of the physiological model explained in the section
before integrated with PI-controller artificial pancreas. Where the Insulin delivery
is controlled by the PI algorithm. This model is taken from the documentation of
APMonitor (Hedengren et al., 2014).

4.4.2 PIDControlled Insulin therapywith extended BergmanMinimalModel
with effects of Exercise disturbance and meals

Insulin-only controllers have shown poor performance, mainly due to the lack of
a control action that counteracts the metabolic effect of exercise, such as higher
glucose uptake by muscles. In particular, the initial decrease in glucose levels
usually observed after the start of aerobic exercise is a challenge for insulin-only
AP systems, because the only possible action is to arrest insulin infusion which is
probably completely ineffective (Quirós et al., 2018).

Here, the PI controller designed is similar to the one used formeals. The proportional
(P) controller parameter is set to -1, which this action is independent of the integral
and derivative actions. The integral (I) is set to -0.01, the derivative (D) is set to
zero, and the filter coefficient (N) is set to 100. The integrator initial condition
is 3 mU/min because the minimal model that all the necessary insulin is infused
exogenously, as the patient is using continuous subcutaneous insulin infusion. The
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filter initial condition is 0. The output is limit to 10 mU/min of insulin delivery.

And it has a back-calculation anti-windup method with a coefficient (Kb) of 1.
This method unwinds the integrator when the block output saturates by feeding
back to the integrator the difference between the saturated and unsaturated control
signal. The Kb parameter specifies the gain of the anti-windup feedback circuit
(The MathWorks, 2021). In addition, it counts with internal model control which
allows the PID parameters to be calculated directly from the process model. This
PID controller is tested with exercise and three meals with Simulink (see Figure
4.9).

Figure 4.9: Schematic of Closed Loop Insulin Therapy PID Controlled and the
Extended Physiological Bergman Model with exercise and meals during 24 hours

In addition, the same PID controller it simulated with snacks as well, the same
sinusoidal disturbance as described in section 4.3 and 4.2. Snacks of 10 grs of
carbohydrates are added (see Figure 4.10).
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Figure 4.10: Schematic of Closed Loop Insulin Therapy PID Controlled and the
Extended Physiological Bergman Model with exercise, meals and unannounced
snacks during 24 hours

4.5 Mobile Application for Self-Monitoring of BGL
The application (app) had two phases: data gathering and the design of the app. The
data used for personalizing the app is from the simulations of a virtual patient of 70
kg with T1DM under a PID controller in section 4.5. The design of the application
used the Django platform, a high-level Python web framework.

The application can serve as a diary for a T1DMpatient tomonitor its BloodGlucose
Levels. It serves for patients that use use carbohydrate counting or insulin sensitivity
correction systems and patients that use fixed doses of insulin for mealtimes. It will
store in database, the blood glucose level set point or target, the measured blood
glucose, the carbohydrates in meals ingested, and it can register the physical activity
as well. In addition, it will suggest an insulin dose depending the amount of
carbohydrates or physical activity. It also contains advises to maintain a healthy life
style.

A feature of the application is that it uses a k-nearest neighbor (KNN) model for
regression was used to predict insulin bolus necessary to get to a desired BGL set-
point. KNN is a classification method based on the k-closest training examples in
the feature space. It is known to be strong when large datasets and low dimensions
are used (Kramer, 2013). KNN is a basic type of instance-based learning and
assumes that all instances are points in n-dimensional space (Saxena, Khan, and
Singh, 2014). It compares feature vectors of different points in a space region and
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classifies them. Furthermore, KNN regression is a similar method where the set of
data is very large in comparison to classification.

This method has been used successfully classifying diabetic patients (Karegowda,
Jayaram, and Manjunath, 2012) and diabetes related data (Jaafar and Ali, 2005;
Christobel and Sivaprakasam, 2013).

For this purpose, theDiabetes DiaryApplication uses the glucose set-point, the latest
blood glucose measured, the amount of carbohydrates in the meal about to ingest
or the PV Omax

2 of the exercise intensity about the perform. Using python libraries
such as pandas and numpy. The data obtained from the simulations described in
previous section. The data is obtained from the virtual patient of 70 kg under a PID
controlled insulin delivery.

Next, the data is split into training (80%) and testing data (20%). For this the
library from scikit-learn and its function train_test_split is used to create the test
data (X_train and X_test) and the target data (Y_train and Y_test) which is the
glucose prediction. This data is picked randomly. In total, the data used for training
comprises 3848 elements. And the test data has 962 elements.

The KNN regressor function is from the library sklearn.neighbors. Then, a KNN
model is created and trained with the selected training data and target values. The
code for the training and testing can be found in Annex D.

Then, as an effort to integrate this glucose predictor into the application. This
application would be a personalized app for a patient of 70 kg. Therefore, it would
work as a diary for a better diabetes monitoring (See Figure 4.11) that would save
the entries in a database.
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Figure 4.11: Web Application Diary Entries with Django python framework
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C h a p t e r 5

RESULTS

The results of the simulations set up in the last chapter are described in this chapter.
The results of simulation are plotted to visualize the insulin and glucose dynamics
in the virtual patient of 70 Kg. In addition, the different disturbances described in
the last chapter are included in the plot as the appear throughout the simulated day.
Furthermore, the plots showed allow to see the response of the described therapies
against said disturbances. Finally, numerical outcomes are detailed to assess the
performance of the therapy and to compare them. The section 5.1 describes the
results of the simulation of the Minimal Model extended with meal disturbance.
Then, the performances and plots of the PID and MPC based insulin therapies are
described in section 5.2 and 5.3, respectively. The results pf extended minimal
model with meals and exercise are in section 5.4, followed by the PID therapy used
to respond to exercise in section 5.5. A comparison between the described therapies
is in section 5.6. Finally, the results of the personalized app for the virtual patient is
in section 5.6.

5.1 Extension of the Bergman Minimal Model
5.1.1 Extended Bergman Minimal Model with Meal Disturbance
The simulation of this model shows that an uncontrolled Type 1 diabetes might
cause elevated blood sugar levels and a prolonged state of hyperglycemia after
meals (ą 140mg{dL). Since, this model assumes that the only source of insulin is
exogenously, a 3 micro-U/min is administered constantly. However, it is not enough
to prevent the rise of BGLs during meals.

The time that the glucose absorption after every meal last is about an hour. The
amount of carbohydrates is of 50 g of carbohydrates for breakfast, lunch and dinner.
The meals are deliver six hours apart as an impulse response (see Figure 5.1). And
the BGLs rise after very meal to dangerous hyperglycemic levels.
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Figure 5.1: Simulation of Extended Physiological Bergmann Model with meals and
snacks during 24 hours

5.1.2 Extended BergmanMinimal Model with effects of Exercise disturbance
A Light physical activity of 40% PV Omax

2 of intensity is simulated using the
extended Bergman model. And as Figure 5.2 shows the blood glucose levels drop
as the intensity rises.

Figure 5.2: Simulation of exercise during 1 hour

The physical activity was simulated during an hour, in which it reaches the highest
intensity and drops blood glucose levels. However, as the exercise intensity rises the
glucose levels drop lower. Then, the exogenous glucose input is frommeal ingestion
of 50 grams of carbohydrates for breakfast, lunch and dinner (see Figure 5.3).
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Figure 5.3: Simulation of exercise during 1 hour and three meals

5.2 Closed Loop Insulin Delivery with MPC controller against meal distur-
bance

In this scenario theMPC controller shows better performance than the PID controller
in the number hypo- or hyperglycemic events during the 24 hours (see Figure 5.4).
The amount of carbohydrates is of 50 g of carbohydrates for breakfast, lunch and
dinner.

Figure 5.4: MPC therapy performance with meal disturbance and Snacks during 24
hours (Hedengren et al., 2014).
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Table 5.1: Overall outcomes of MPC Control Strategy

Number of Events Blood Glucose Level (mg/dl) Event
189 >70 Target Range
290 >80 Around Setpoint
3 <70 Hypoglycemic
0 >100 High Blood Sugar Level
0 >110 Hyperglycemic

Total = 481 80.80 Average Blood Glucose Level

The MPC strategy showed more time in range (around 90% of the day), and 3 events
of hypoglycemia (see table 5.1).

5.3 Closed Loop Insulin Delivery with PID controller
5.3.1 Closed Loop Insulin Delivery with PID controller against meal distur-

bance
The closed loop insulin therapy is able to maintain the BGLs close to the set-point
(80 mg/dl) by adjusting the insulin doses during meals and after meals. The amount
of carbohydrates is of 50 g of carbohydrates for breakfast, lunch and dinner, the
same way explained in section 2.1.

However, during this simulation the controller caused three hypoglycemic events
(BGLs lower than 70 mg/dl) of around 1 hour each after every meal and during
the snack. The snack disturbance is simulated as a sinusoidal function to test the
controller with unannounced disturbances such a snacks (see Figure 5.5).
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Figure 5.5: AP performance with meal disturbance and Snacks during 24 hours
(Hedengren et al., 2014).

In a day of Closed-loop PID control insulin delivery therapy, 16% of the events of
the day were hypoglycemic, and 9% were hyperglycemic (see Table 5.2).

Table 5.2: Overall outcomes of PID Control Strategy

Number of Events Blood Glucose Level (mg/dl) Event
169 >70 Target Range
198 >80 Around Setpoint
79 <70 Hypoglycemic
31 >100 High Blood Sugar Level
15 >110 Hyperglycemic

Total= 481 80.6308482 Average Blood Glucose Level

5.3.2 Closed Loop Insulin Delivery with PID controller against meals and
Exercise disturbance

The therapy is applied to a day in which the patients does exercise of 40% PV Omax
2

intensity at the beginning of the day, then eats three times a day of 50 grams of
carbohydrates. The meals are identified by the peaks in glucose digestion, and the
exercise is identified by the plot of exercise intensity in Figure 5.6.
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Figure 5.6: Closed Loop Insulin Therapy for exercise during 1 hour and meals

The PID controller is able to respond in time during meals to prevent dysglycemia
and prevents the drop in the BGLs during exercise. This simulation does not include
snacks. It is able to maintain the BGLs of the patients under the set-point during
38.66% of the day and above the set-point during 61.74% of the day (see Table 5.3).

Table 5.3: Overall outcomes of PID Control Strategy against meals and exercise

Number of Events Blood Glucose Level (mg/dl) Event
186 >70 Target Range
297 >80 Around Setpoint
0 <70 Hypoglycemic
0 >100 High Blood Sugar Level
0 >110 Hyperglycemic

Total = 481 80.83 Average Blood Glucose Level

Next, this PID strategy showed a good performance against 10 gr of snacks during
the day (see Figure 5.7). It presented no hypoglycemic or hyperglycemic events
during the simulation day. It stayed under the set-point (80 mg/dl) during 27.6% of
the day, and above the set-point during 72.55% of the day (see table 5.4).
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Figure 5.7: Closed Loop Insulin Therapy for exercise during 1 hour, meals and 10gr
of snacks

Table 5.4: Overall outcomes of PID Control Strategy against meals, exercise and
snacks
Number of Events Blood Glucose Level (mg/dl) Event

133 >70 Target Range
349 >80 Around Setpoint
0 <70 Hypoglycemic
0 >100 High Blood Sugar Level
0 >110 Hyperglycemic

Total = 481 80.98 Average Blood Glucose Level

5.4 Diabetes Diary Web Application
For the Diabetes Diary-Calculator (DDC) Application, the user makes its entries, it
will predict the insulin bolus needed (see Figure 5.8) and then save the entries into
the database (see Figure 5.9).



57

Figure 5.8: Prediction result after user entries

Figure 5.9: Web Application Database of Entries with Django python framework

For the model evaluation the mean squared error (MSE) and mean absolute error
(MAE) are used. The error of the training data is:

• MSE = 0.06119348262778453

• MAE = 0.08958584189189192

• RMSE = 0.24737316472848167
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This mean that according to the MAE, the prediction is approximately 0.06 away
from the true prediction. Mean squared error, and consequently root mean squared
error (RMSE) mean that the mean error of the model is 0.24.

Furthermore, with the test data, the model is evaluated on how it would work in a
real scenario:

• MSE = 0.11092742887507659

• MAE = 0.13958012806652803

• RMSE = 0.333057696015385

This results shows that the model is 0.06 way from the true prediction and has a
lower mean error.
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C h a p t e r 6

DISCUSSION

Two strategies, taken from Hedengren et al. (2014), were tested with meals and
snacks using the same virtual patient. Between these two, the MPC strategy proved
to be the most economical in terms of use of insulin but it is slow to react to the
disturbance. The PID therapy has a better time of response but expensive in use of
insulin. Furthermore, there were not hyperglycemic events using the MPC therapy,
but the PID therapy could not prevent 79 events of hypoglycemia after the snack
(see Table 6.1).

In addition, the proposed PID therapy, used to face 40% of exercise intensity, meals
and snacks, is the most expensive in terms of insulin. However, it has a fast time of
response and prevents hypoglycemic and hyperglycemic events (see Table 6.1).

Furthermore, a performance and cost analysis is performed, showing that the MPC
approach against meals is the most cost effective but takes more time to react
than the PID therapy. The metrics considered to compare the control algorithms
implemented in this thesis project show that the PID controller that faces meals and
exercise could perform better in a real setting than the other controllers. The PID
controller has a good time of response, and can withstand exercise without putting
the patient at risk of hypoglycemia or hyperglycemia.

It is important to remark that the PID selected as the best performer against dis-
turbances did not use the same physiological model as the others. However, other
authors have compared the PID controller with others using the same physiological
model and have also shown good results.

For instance, a similar comparison is made in a study (Tang and Y. Wang, 2017)
to develop an economic bihormonal (insulin and glucagon) AP System based on
Switching Control strategies. Tang and Y. Wang, (2017) proposed a switching
Dynamic R-parameter Economic Model Predictive Control (R-EMPC) to reduce
costs of insulin, improve control performance and reduce error. They used the meal
model and glucose model from Hovorka et al. (2004) and other models for insulin
and glucagon. As a result, they proved that the R-EMPC decreases the costs of
insulin and glucagon. However, the measurement of insulin used in a day is in
different unit to the one obtain in this thesis project. Furthermore, it also proves
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that the MPC controller can significantly prevent hypoglycemic and hyperglycemic
events when meals are programmed.

Hajizadeh et al. (2019) proposed an adaptiveMPCalgorithm to improve the response
to meal and physical activity of Artificial Pancreas. This controller is tested using
a multivariable simulator based on the Hovorka model. The aerobic exercise is
estimated using metabolic equivalent (MET) values. The test is carried out during 3
simulation days and showed very good results (see Table 6.1). Although, they do not
specify the amount of insulin used in a day, they state that the algorithm optimizes
the insulin dosage. Furthermore, they proved that an adaptive MPC controller could
potentially face an active lifestyle of a T1DM patient.

Romanski et al. (2019) used the Sorensen Model with extensions made by Lenart
et al. (2002) and Hernández-Ordoñez et al. (2008) to test a PID controller with
a feedforward compensator (FFC). These extensions of the Sorensen model for
physical activity measure it using MET values. They used a similar proportional
gain of -0.5 for a set-point of 100 mg/dl. They tested the PID-FFC controller
with different %PVO intensities. The PID-FFC controller showed improvements
in time in hypoglycemia. With 60 %PVO, showed no hypoglycemia events. And
as the intensity increased to 70%, the virtual patient experienced 21 minutes in
hypoglycemia. Hypoglycemia increased in time to 87 minutes with 80% PVO. The
simulation is done during 300 minutes not a day. Furthermore, it proves that a PID
controller can respond very well to high-intensity exercise too.

Patek et al. (2007) used the Dalla Man et al. (2006) to compare a linear quadratic
Gaussian-based control to the PID control. They compared the control strategies
using 100 in silico subjects. As a result, they have favorable performances, showing
equal average BGmaximum, and significantly lower risks for hypoglycemia. Insulin
doses were comparable in both methods, hinting at limitations of purely reactive
control algorithms. This study proves that PID could be usedwith other meal models
and show favorable results.

Interestingly, using a similar approach to the Huyett et al. (2015) explained in
section 3.4.2 , with an Internal model control (IMC), an anti-reset windup (adjusts
the integration based on the situation) strategy and an IFB (imitates the physiology
of the human body). This PID control strategy prevented hyperglycemic events
during exercise and meal intake.

Furthermore, Rodriguez-Herrero et al. (2010) used the Lehmann and Deutsch
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(1992) glucose dynamic mode along with other models to complete the glucose-
insulin dynamic to compare a inversor controller and a PID controller. They use
noise to mimic the delays and inaccuracies from CGMs. However, the controller
apply insulin in different ways. The inversor controller administer higher insulin
rates after the meal, while PID administer more insulin before and during the meal
intake. This shows that PID controller behavior is linear and limits the prevention
of hyperglycemic events after the meal, because of the delays by subcutaneous
measurement and subcutaneous insulin absorption. The overall results are in table
6.1.
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Table 6.1: Performance Comparisons.
* Same Physiological Model used

Therapy Insulin
Amount
per day

Time of
reaction
(min)

Hypoglycemic
Events

Hyperglycemic
Events

PID against meals
and snacks* (Pro-
posed)

1503.2883mU 3 16.42% 3.11%

MPC against
meals and
snacks*(Proposed)

1443.2939mU 12 0.62% 0

PID against
meals, exer-
cise and snacks
(Proposed)

1959.1333mU 3 0 0

Switching R-
EMPC against
meals (Tang and
Y. Wang, 2017)

43.38 U - 0 0

Adaptive MPC
against unan-
nounced meals
and exercise
(Hajizadeh et al.,
2019a)

- - 0 11.07%

PID-FFC against
%PVO 70 (Ro-
manski et al.,
2019)

7%

PID against meals
(Stephen D. Patek
et al., 2007)

8.73% 14.2%

PID against meals
(Rodrıguez-
Herrero et al.,
2010)

36.1 IU 2.5% 69

The MPC and PID controller algorithms were simulated with meal intake and
showed good performance in maintaining the blood glucose around a target range.
However, these simulations did not consider the delay and misreading (noise) that
the continuous glucose monitor could have while measuring blood sugar levels and
send them to the device. Besides, the closed loop of insulin delivery is achieved
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thanks to the continuous glucose monitoring (CGM) sensor (Saiti et al., 2020).
Therefore, both therapies PID rely in the accuracy and rapid response of the CGM
for the insulin pump deliver the right amount of insulin.

When noise is not considered, the results may be inconclusive. For instance,
Ramkissoon et al. 2019 used a PD controller with sliding mode reference condi-
tioning (SMRC) and insulin feedback (IFB) to develop and test in silico an exercise-
induced hypoglycemia reduction algorithm (EHRA). However, as in this case, the
algorithm depended on accurate CGM readings, due to parameters not modeled,
such as insulin formulations and their respective delay and the likelihood of inaccu-
rate CGM readings happening in real life, some conclusions of the effectiveness of
their approach are inconclusive.

In addition, this PID therapy used for exercise is applied to an application which
is meant to be a diary for T1DM patients. It would be personalized for a 70 kg
patient since the PV Omax

2 and is that of a patient of 70 kg. However, there are other
mobile application for the continuous monitoring of BGLs such as MySugr (Payne,
2015), which monitors the user’s glucose, meals, physical activity and medications,
estimates the glycated hemoglobin and helps the patient calculate their insulin bolus.
The proposed application counts with an algorithm of machine learning such as K-
nearest neighbor regressor to help said patient to calculate the right amount of
insulin.

Furthermore, the DDC web application is compared to the commercially available
mobile apps in table 6.2. Diabeo is an application promoted byVoluntis and provides
a bolus calculator validated by an algorithm for insulin dosage adjustments based
on premeal BG, carbohydrate intake, and anticipated physical activity. It can also
adjust insulin/carbohydrate ratio and basal insulin doses or insulin pump infusion
rates based on postprandial or fasting glucose levels with an algorithm (see table
6.2). It enables the patient to upload data to a Web site for a teleconsultation with a
professional. It was initially reported for use by patients with T1DM, but can also be
used for T2DM. It is currently available only in Europe (Charpentier et al., 2011).

The application called Diabetes Diary is for patients with T1DM. Developed by the
Norwegian Centre for Integrated Care and Telemedicine. Its functions are in table
6.2 and allows wireless transfer of BG values to the mobile phone from BG meter
via Bluetooth. It identifies the events by the amount of carbohydrate ingested, time
of day, physical activity, which aids decisions regarding food and medicine. It is
available in Europe only (Drincic et al., 2016).
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The Diabetes Interactive Diary is an application promoted by Meteda. It serves as a
diary for BG, insulin administrations, physical activity, and notes. The health care
professionals have to set the CR, correction factor, and target BG level. This would
be very similar to the application proposed in thesis project. This app obtained a
CE mark in Europe and is available through the Apple App store in Italy only (Rossi
et al., 2010).

Finally, Glooko application also serves as transmission device for BGmeters, CGMs,
and insulin pumps that work with an HIPAA-compliant server, and shares data with
the patient’s care team. Glooko function are in table 6.2. Patients can use it to
enter carbohydrate intake, insulin doses, and exercise. The app contains a nutrition
database to help the carbohydrate counting. Glooko is an FDA-cleared app, but no
outcome studies have been published (Drincic et al., 2016).
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Table 6.2: Commercially available mobile medical apps for T1DM management

Application Authors Stage Function

Diabetes
Diary Calcu-
lator (DDC)
(Proposed)

Early Devel-
opment

-Insulin Dose calculator
-Database of insulin doses,
BGLs, exercise and meals
-Advices

Diabeo Voluntis Developed in
France. CE
marked in EU

-Bolus Calculator
-Adjustment for exercise
-Basal bolus pattern recognition
-Real-time feedback

Diabetes Di-
ary

Norwegian
Centre for
Integrated
Care and
Telemedicine

Developed in
Norway. CE
marked in EU

-Bolus Calculator
-Tracking of BGLs, insulin,
food and activity
-Database to facilitate decision
making

Diabetes In-
teractive Di-
ary

Meteda Developed in
Italy. CE
marked in EU

-Book for blood sugar,
insulin dosing, and events
-Nutritional database for
counting carbohydrates
-Food exchange data
-Insulin dose calculator
-Physical activity diary
-Annual screening reminder
-SMS to diabetes provider.

Glooko iOS and An-
droid

FDAcleared in
United States

-Integrates health and
fitness apps
-Nutrition database for
CHO counting
-Data sharing with providers
-Analytics data on clinic
population for providers
-Hypoglycemia
prediction algorithms
-Reminders
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C h a p t e r 7

CONCLUSIONS

This chapter gives the final conclusions that can be inferred from this thesis work
and the challenges for future investigations in order to improve what has been obtain.
In addition, it shows the scientific disclosure form this work.

7.1 Conclusions
This thesis project proved that prolonged exercise causes problems to the patient’s
safety when it is not regulated, in chapter 5. The study of physiological systems
is a hard issue due to their nonlinear behavior which makes it harder to regulate.
Advanced control strategies must be applied and sometimes, there is no technology
to accomplish it.

Nonetheless, in this thesis project, potential outcomes have been obtained, from a
modification of the minimal model, and applying control theory, the development
of a PID controller that has the ability of impeding the glucose system to become
unstable. This PID controller can compensate the effects of exercise andmeal intake.
Answering the hypothesis set in chapter 1.

This thesis project describes, in chapter 3, the mathematical models, exercise effects,
and closed-loop insulin delivery systems used to compensate for the exercise and
meal effects. Chapter five describes the implementation of the extended versions
of the Bergman Minimal Model. From the implementation of the mathematical
model of exercise, it is concluded that because of the simplicity and flexibility of the
minimal model, the effects are visible and controllable. However, as the complexity
of the model increases, the control strategies have to be more elaborate such as the
one implemented by Romanski et al. (2019).

It also compares MPC and PID control strategies compensation of the effects of the
meals on blood glucose level simulated and prevent a hypo-hyper glycemic event
in chapter 4. The comparison from MPC and PID control strategies can conclude
that the PID controller developed can optimize the insulin usage and compensate
the exercise effects. PID control strategies have also been tested with different
physiological models and shown good results facing announced and unannounced
disturbances.
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Furthermore, in order to improve a T1DM patient’s life, a personalized self-
monitoring mobile application is developed in order to help calculate the adequate
amount of insulin dose and keep record of the blood glucose levels, physical activity
and carbohydrate intake. In comparison to already market-available app, it could
help patients blood glucose levels control and help doctors make better decisions
based on the patient’s profiles saved on the app.

7.2 Future Works
For future works, the proposed PID therapy could be test with more in silico patients
with different weights, glucose set-points and insulin demands. In order to make
the PID controller more robust, the intervariability of in silico patients is needed
(Claudio Cobelli, Renard, and Kovatchev, 2011). This could make the mobile
application available for more diverse patients. Furthermore, the app could connect
the care team of the patient to deliver alerts to them and help the patient change
treatment when it is needed.

7.3 Scientific disclosure
Presented Manuscript in: IEEE International Conference on Machine Learning
and Applied Network Technologies (ICMLANT 2021). With the work entitle:
"Implementation of MPC and PID Control Algorithms to the Artificial Pancreas for
Diabetes Mellitus Type 1: Diabetes diary calculator (DDC) web application."

Submitted Manuscript in: IEEE Xplore. With the work entitle: "Implementation of
MPC and PID Control Algorithms to the Artificial Pancreas for Diabetes Mellitus
Type 1: Diabetes diary calculator (DDC) web application."

Submitted Manuscript in: Journal of Medical Engineering & Technology. With the
work entitle: "Artificial Pancreas and Exercise: current developments in controllers
and trials"
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A p p e n d i x A

S-FUNCTION FOR DIABETIC PATIENT WITH MEAL INTAKE

function [sys,x0,str,ts,simStateCompliance] = diabetic(t,y,u,
flag)

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,
[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes();

%%%%%%%%%%%%%%%

% Derivatives %

%%%%%%%%%%%%%%%

case 1,
sys=mdlDerivatives(t,y,u);

%%%%%%%%%%

% Update %

%%%%%%%%%%

case 2,
sys=mdlUpdate(t,y,u);

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,
sys=mdlOutputs(t,y,u);

%%%%%%%%%%%%%%%%%%%%%%%

% GetTimeOfNextVarHit %
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%%%%%%%%%%%%%%%%%%%%%%%

case 4,
sys=mdlGetTimeOfNextVarHit(t,y,u);

%%%%%%%%%%%%%

% Terminate %

%%%%%%%%%%%%%

case 9,
sys=mdlTerminate(t,y,u);

%%%%%%%%%%%%%%%%%%%%

% Unexpected flags %

%%%%%%%%%%%%%%%%%%%%

otherwise
DAStudio.error(’Simulink:blocks:unhandledFlag’, num2str(

flag));

end

% end sfuntmpl

%

%===================================

% mdlInitializeSizes

% Return the sizes, initial conditions, and sample times for

the S-function.

%===================================

%

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes()

%

% call simsizes for a sizes structure, fill it in and convert

it to a

% sizes array.

%
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% Note that in this example, the values are hard coded. This is

not a

% recommended practice as the characteristics of the block are

typically

% defined by the S-function parameters.

%

sizes = simsizes;

sizes.NumContStates = 6;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);
%

% initialize the initial conditions

% SS for insulin injection of 2.0.

%x0 = [112.4400 22.2230 22.2220 11.1110 11.1110 166.6700]’;

% SS for insulin injection of 3.0.

x0 = [ 76.2159 33.3333 33.3333 16.6667 16.6667 250.0000]’;

%

% str is always an empty matrix

%

str = [];

%

% initialize the array of sample times

%

ts = [0 0];

% Specify the block simStateCompliance. The allowed values are:

% ’UnknownSimState’, < The default setting; warn and assume

DefaultSimState
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% ’DefaultSimState’, < Same sim state as a built-in block

% ’HasNoSimState’, < No sim state

% ’DisallowSimState’ < Error out when saving or restoring the

model sim state

simStateCompliance = ’UnknownSimState’;

% end mdlInitializeSizes

%===================================

% mdlDerivatives

% Return the derivatives for the continuous states.

%===================================

%

function sys=mdlDerivatives(t,y,u)
%

% Model source:

% R. Palma and T.F. Edgar, Toward Patient Specific Insulin

Therapy: A Novel

% Insulin Bolus Calculator. In Proceedings Texas Wisconsin

California Control

% Consortium, Austin, TX, Feb. 7-8, 2011.

%

% Expanded Bergman Minimal model to include meals and insulin

% Parameters for an insulin dependent type-I diabetic

% Inputs (2):

% Insulin infusion rate

ui = u(1); % micro-U/min

% meal disturbance

d = u(2);

% States (6):

% In non-diabetic patients, the body maintains the blood

glucose level at a
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% range between about 3.6 and 5.8 mmol/L (64.8 and 104.4 mg/dL)

.

g = y(1,1); % blood glucose (mg/dl)

x = y(2,1); % remote insulin (micro-u/ml)

i = y(3,1); % insulin (micro-u/ml)

q1 = y(4,1);
q2 = y(5,1);
g_gut = y(6,1); % gut blood glucose (mg/dl)

% Parameters:

gb = 291; % Basal Blood Glucose (mg/dL)

p1 = 3.17e-2; % 1/min

p2 = 1.23e-2; % 1/min

si = 2.9e-2; % 1/min * (mL/micro-U)

ke = 9.0e-2; % 1/min

kabs = 1.2e-2; % 1/min

kemp = 1.8e-1; % 1/min

f = 8.00e-1; % L

vi = 12.0; % L

vg = 12.0; % L

% Compute ydot:

sys(1,1) = -p1*(g-gb) - si*x*g + ...
f*kabs/vg * g_gut + f/vg * d; % glucose dynamics

sys(2,1) = p2*(i-x); % remote insulin compartment dynamics

sys(3,1) = -ke*i + ui; % insulin dynamics

sys(4,1) = ui - kemp * q1;
sys(5,1) = -kemp*(q2-q1);
sys(6,1) = kemp*q2 - kabs*g_gut;

% convert from minutes to hours

sys = sys*60;
% end mdlDerivatives

%

%===================================
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% mdlUpdate

% Handle discrete state updates, sample time hits, and major

time step

% requirements.

%===================================

%

function sys=mdlUpdate(t,y,u)

sys = [];

% end mdlUpdate

%

%===================================

% mdlOutputs

% Return the block outputs.

%===================================

%

function sys=mdlOutputs(t,y,u)

y1 = y(1);

sys = [y1];

% end mdlOutputs

%

%===================================

% mdlGetTimeOfNextVarHit

% Return the time of the next hit for this block. Note that the

result is

% absolute time. Note that this function is only used when you

specify a

% variable discrete-time sample time [-2 0] in the sample time

array in

% mdlInitializeSizes.
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%===================================

%

function sys=mdlGetTimeOfNextVarHit(t,y,u)

sampleTime = 1; % Example, set the next hit to be one second

later.

sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

%

%===================================

% mdlTerminate

% Perform any end of simulation tasks.

%===================================

%

function sys=mdlTerminate(t,y,u)

sys = [];

% end mdlTerminate
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A p p e n d i x B

S-FUNCTION FOR DIABETIC PATIENT WITH MEAL INTAKE
AND EXERCISE

function [sys,x0,str,ts,simStateCompliance] = diabetic(t,y,u,
flag)

switch flag

%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,

[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes();

%%%%%%%%%%%%%%%
% Derivatives %
%%%%%%%%%%%%%%%

case 1,
sys=mdlDerivatives(t,y,u);

%%%%%%%%%%
% Update %
%%%%%%%%%%

case 2,
sys=mdlUpdate(t,y,u);

%%%%%%%%%%%
% Outputs %
%%%%%%%%%%%

case 3,
sys=mdlOutputs(t,y,u);

%%%%%%%%%%%%%%%%%%%%%%%
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% GetTimeOfNextVarHit %
%%%%%%%%%%%%%%%%%%%%%%%

case 4,
sys=mdlGetTimeOfNextVarHit(t,y,u);

%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%

case 9,
sys=mdlTerminate(t,y,u);

%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%

otherwise
DAStudio.error(’Simulink:blocks:unhandledFlag’, num2str(

flag));

end

% end sfuntmpl

%
%===================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the

S-function.
%===================================
%
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes()

sizes = simsizes;

sizes.NumContStates = 9;
sizes.NumDiscStates = 0;
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sizes.NumOutputs = 1;
sizes.NumInputs = 3;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);
%
% initialize the initial conditions
x0 = [80 0 0 0 0 0 0 0 0]’;

% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts = [0 0];

% Specify the block simStateCompliance. The allowed values are:
% ’UnknownSimState’, < The default setting; warn and assume

DefaultSimState
% ’DefaultSimState’, < Same sim state as a built-in block
% ’HasNoSimState’, < No sim state
% ’DisallowSimState’ < Error out when saving or restoring the

model sim state
simStateCompliance = ’UnknownSimState’;

% end mdlInitializeSizes

%======================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%======================================
%
function sys=mdlDerivatives(t,y,u)



88

% Inputs (2):
% Insulin infusion rate
ui = u(1); % micro-U/min

% meals
d = u(2);

%u3*pvo
ex = u(3);

% States (6):
g = y(1,1); % blood glucose (mg/dl)
x = y(2,1); % remote insulin (micro-u/ml)
i = y(3,1); % insulin (micro-u/ml)
PVO = y(4,1);
gprod = y(5,1);
gup = y(6,1);
ie = y(7,1);
at = y(8,1);
ggly = y(9,1);

% Parameters:
gb = 80; % Basal Blood Glucose (mg/dL)
vg = 117.0; % dL
n = 0.142;
p4 = 0.098;
p2 = 0.05;
p3 = 0.000028;
p1 = 0.035;
a1 = 0.00158;
a2 = 0.055;
si = 2.9e-2;
a3 = 0.00195;
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a4 = 0.0485;
a5 = 0.00125;
a6 = 0.075;
f = 8.00e-1;
k =0.0108;
T1 = 6;
W = 70; %Kg
ib = (p4/n)*ui ;
Ath = -1.1521*(ex^2) + 87.471*ex;

% Compute ydot:
sys(1,1) = -p1*(g-gb) -x*g + (W/vg)*(gprod - ggly) - ...

W/vg * gup + d/vg ;

sys(2,1) = - p2*x + p3*(i-ib);

sys(3,1) = -n*i + p4*ui - ie;

sys(4,1) = -0.8*PVO + 0.8*ex;

sys(5,1) = a1*PVO - a2*gprod;

sys(6,1) = a3*PVO - a4*gup;

sys(7,1) = a5*PVO - a6*ie;

sys(8,1) = ex - at/0.001;

if at > Ath
sys(9,1) = 0;

elseif at > Ath
sys(9,1) = k;

else
sys(9,1)= -ggly/T1 >0;

end
% convert from minutes to hours
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sys = sys*60;
% end mdlDerivatives

%
%=========================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major

time step
% requirements.
%=========================================
%
function sys=mdlUpdate(t,y,u)

sys = [];

% end mdlUpdate

%
%=========================================
% mdlOutputs
% Return the block outputs.
%=========================================
%
function sys=mdlOutputs(t,y,u)

y1 = y(1);

sys = [y1];

% end mdlOutputs

%
%=========================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block. Note that the

result is
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% absolute time. Note that this function is only used when you
specify a

% variable discrete-time sample time [-2 0] in the sample time
array in

% mdlInitializeSizes.
%=========================================
%
function sys=mdlGetTimeOfNextVarHit(t,y,u)

sampleTime = 1; % Example, set the next hit to be one second
later.

sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

%
%=========================================
% mdlTerminate
% Perform any end of simulation tasks.
%=========================================
%
function sys=mdlTerminate(t,y,u)

sys = [];

% end mdlTerminate
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A p p e n d i x C

APMONITOR MODEL OF A MPC CONTROLLER FOR BLOOD
GLUCOSE LEVELS WITH MEAL INTAKE AS A

DISTURBANCE

Constants
! model parameters from step test
tau = 1.5
Kp = -20
Kd = 0.05

! initial conditions
u0 = 3
x0 = 80
d0 = 1000

Parameters
u = u0 ! insulin injection rate
d = d0 ! disturbance (meal)

Variables
x = x0 ! blood glucose level

Equations
! linear, first order equation
tau * $x = -(x-x0) + Kp * (u-u0) + Kd * (d-d0)
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A p p e n d i x D

CODE FOR THE INSULIN PREDICTION OF THE DDC
APPLICATION

from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
df = pd.read_csv(r"f:\Tesis\database1a.csv")

X=df.drop(["time","insulin"],axis=1)
y=df["insulin"]
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=123)

X_train.shape
(3848, 4)

X_test.shape
(962, 4)

from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor()

model.fit(train_scaled, y_train)

KNeighborsRegressor()

from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
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mse = mean_squared_error(y_train, model.predict(train_scaled))
mae = mean_absolute_error(y_train, model.predict(train_scaled))
from math import sqrt

print("mse␣=␣",mse,"␣&␣mae␣=␣",mae,"␣&␣rmse␣=␣", sqrt(mse))
mse = 0.06119348262778453 & mae = 0.08958584189189192 & rmse =

0.24737316472848167

test_mse = mean_squared_error(y_test, model.predict(test_scaled)
)

test_mae = mean_absolute_error(y_test, model.predict(test_scaled
))

print("mse␣=␣",test_mse,"␣&␣mae␣=␣",test_mae,"␣&␣rmse␣=␣", sqrt(
test_mse))

mse = 0.11092742887507659 & mae = 0.13958012806652803 & rmse =
0.333057696015385

pd.to_pickle(model,r"f:\Tesis\knearestneighbor3.pickle")
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