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Yo, Helen Naomi Cedeño Manrique, con cédula de identidad 1316368495, declaro que

las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y con-
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son muchas las personas a las que me gustaŕıa dar las gracias por haberme ayudado, cada

una a su manera, a llegar al momento en el que escribo esto.

En primer lugar, quisera expresar mi gratitud infinita hacia las personas más importantes en

mi vida: mi familia. A mis padres, Jorge y Helen, por todo el amor, dedicación y paciencia.
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Abstract

Probabilistic approaches based in derivative modeling are wide-used techniques in the es-

timation of solutions of systems of differential equations whose numerical solution has an

intractable computational complexity or in which the presence of error or infinitesimal per-

turbations could result in divergences. The quantification of the uncertainty that is produced

when estimating the solution in a finite temporal mesh is an open problem and has been

addressed from various probabilistic approaches. In this work, uncertainty estimation of

solutions of ordinary differential equations by means of a Gaussian process in a space of

Lipschitz functions is addressed by implementing an algorithm that allows estimating the

solution states x(t) and their derivatives in a sequential way. Besides, the addition of poly-

nomial chaos expansions (PCE) using the resulting distributions of the algorithm is proposed

to improve its prediction accuracy. To illustrate the methodology, algorithms were tested on

three known systems of ordinary differential equations and their effectiveness was quantified

by three performance measures, resulting in an overall improvement in prediction by adding

the polynomial chaos expansion.

Keywords: Functional estimation, Uncertainty quantification, Gaussian process,

Polynomial chaos expansion.
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Resumen

Las aproximaciones probabiĺısticas basadas en el modelado de derivadas son técnicas amplia-

mente utilizadas para la estimación de soluciones de sistemas de ecuaciones diferenciales cuya

solución numérica tiene una complejidad computacional intratable o en la que la presencia

de errores o perturbaciones infinitesimales puede provocar divergencias. La cuantificación de

la incertidumbre que se produce al estimar la solución en una malla temporal finita es un

problema abierto y ha sido abordado desde diversos enfoques. En este trabajo se aborda la

estimación de la incertidumbre de las soluciones de modelos ecuaciones diferenciales ordinar-

ias mediante procesos Gaussianos en espacios de funciones Lipschitzianas, implementando un

algoritmo que permite estimar los estados de la solución x(t) y sus derivadas de forma se-

cuencial. Además, se propone la adición de expansiones de caos polinomial (PCE) utilizando

las distribuciones resultantes del algoritmo para mejorar la precisión de su predicción. Para

ilustrar la metodoloǵıa, se probaron los algoritmos en tres sistemas de ecuaciones diferen-

ciales ordinarias conocidos y se cuantificó su eficacia a través de tres medidas de rendimiento,

obteniendo como resultado una mejora global de la precisión al añadir la expansión de caos

polinomial.

Palabras Clave: Estimación funcional, Cuantificación de incertidumbre, Proce-

sos Gaussianos, Expansión de caos polinomial.

vii



Contents

Dedicatoria iii

Agradecimientos iv

Abstract vi

Resumen vii

Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Testing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Lorenz Attractor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Kermack-McKendrick SIR Model . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 FitzHugh–Nagumo Model . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical Framework 11

2.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Space-State Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

viii



School of Mathematical and Computational Sciences Yachay Tech University

2.1.2 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Classification of Stochastic Processes . . . . . . . . . . . . . . . . . . . 18

2.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Covariance Functions and Kernels . . . . . . . . . . . . . . . . . . . . . 22

2.5 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 The Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Polynomial Chaos Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.1 Basis and Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 State of the Art 30

4 Methodology 32

4.1 Gaussian Process Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Derivative Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Probabilistic Solver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Polynomial Chaos Expansion (PCE) and Gaussian Processes (GP) . . . . . . . 44

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Computational Requirements . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Results and Discussion 56

5.1 Lorenz Attractor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Kermack-McKendrick SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 FitzHugh–Nagumo Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions 62

Bibliography 64

A Appendices 72

Graduation Project ix



School of Mathematical and Computational Sciences Yachay Tech University

A.1 UQDES Algorithm Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 Polynomial Chaos Expansion Addition Code . . . . . . . . . . . . . . . . . . . 75

Graduation Project x



List of Tables

2.1 Classical orthogonal polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Gauss quadrature rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Performance Measures for Lorenz model . . . . . . . . . . . . . . . . . . . . . 58

5.2 Execution Time for Lorenz model. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Performance Measures for SIR model. . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Execution Time for SIR model. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Performance Measures for FitzHugh-Nagumo model. . . . . . . . . . . . . . . 61

5.6 Execution Time for FitzHugh-Nagumo model. . . . . . . . . . . . . . . . . . . 61

xi



List of Figures

5.1 3D reconstructed solutions for the Lorenz model. . . . . . . . . . . . . . . . . 57

5.2 Individual solutions for Lorenz model. . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 3D reconstructed solutions for SIR model. . . . . . . . . . . . . . . . . . . . . 58

5.4 Individual solutions for SIR model. . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 3D reconstructed solutions for FitzHugh–Nagumo model. . . . . . . . . . . . . 60

5.6 Individual solutions for FitzHugh–Nagumo model. . . . . . . . . . . . . . . . . 61

xii



Chapter 1

Introduction

Continuous dynamical systems model several phenomena in applied fields of science such as

physics, climatology, finance, biology, chemistry, engineering, and medicine. Modeling their

dynamic nature can become a highly complex task due to the possible presence of chaos

components, and is usually characterized through systems of ordinary differential equations.

These models involve a function of given observations with their respective derivatives, de-

scribing the probabilistic dependence between each of the partially observed states and their

rates of change within a spatio-temporal domain [1].

The solutions of the systems of equations represent the transition of each of the states within a

time interval, and while some can be obtained by analytical methods, this is not always possi-

ble. Furthermore, many of the ordinary differential equation models exhibit highly structured

but clearly unpredictable behavior [2]. To estimate the response of each system, numerical

methods are the most commonly used set of techniques. However, the numerical discretiza-

tion process involves the introduction of perturbations, which, although small, can lead to an

exponential divergence of the solution [3] and could represent an intractable computational

cost. This error, known as uncertainty, is generally not estimated so its quantification has

become the object of study of other types of modeling.

In this work, we study and combine two probabilistic estimation methods of uncertainty quan-

tification in the discretization of solutions by using algorithms based on Gaussian processes,

whose effectiveness will be demonstrated through their application in nonlinear dynamical

1
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systems widely known in experimental fields, which will be explained in more detail on sub-

sequent sections.

1.1 Problem Statement

Consider a continuous-time dynamical system relating the d derivatives ẋ(t) ∈ Rd, with

respect to space-time varying variables (x, t) in the domain D ⊂ Rd, through state functions

x(t) ∈ Rd in a vector field of smoothed continuous functions differentiable for x and indexed

by unknown parameters θ in the parameter set Θ ⊂ Rp, denoted as:

f =
(
f(x1), . . . , f(xd)

)
, f : D ×Θ→ Rd (1.1)

such that these satisfy the Lipschitz condition [4].

Definition 1.1.1. (Lipschitz Condition) A function f ∈ D ⊂ Rd is said to be Lipschitzian
in D if there exists a constant K such that

|f(x)− f(y)| < K|x− y|

for all x, y ∈ D.

If one considers an initial value problem; that is, an ordinary differential equation (ODE) that

satisfies:

dx

dt
≡ ẋ(t) = f

(
x(t), θ

)
, t ∈ [0, T ] (1.2)

x(t0) = x0 ∈ Rd

The solution states of the system are x(t) ≡
(
x1(t), . . . , xd(t)

)
, and evolve according to the

model described in (1.2). These solutions are generally not available analytically. Systems

involving derivatives of x of order n > 1 can be reduced to the expression given in (1.2), by

using the following changes of variable:

x1 = x,

x2 = ẋ1,

...

xn = ẋn−1

Graduation Project 2
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Definition 1.1.1 guarantees the existence and uniqueness of the solutions of (1.2) given an

initial value x0, for the neighborhood (0, x0). However, most systems does not have defined

solutions, which implies a significant increase in the computational cost of the data fitting

methodology [4]. Conventionally, the exact solution is replaced by an approximate solution

x̂(t) obtained using some numerical technique on a partition of a grid on the domain D, and

the inference and prediction processes are based on this approximated solution.

Consider an ordinary differential equation of the type:

dx

dt
= f

(
x(t)

)
, x(0) = x0 (1.3)

where x is a continuous function that takes values from Rd, φt denotes the flow map of the

ordinary differential equation given in (1.3), and xt = φt
(
x(0)

)
is the solution of the equation.

The classical deterministic numerical methods used to find a solution of the equation (1.3) in

the time interval [0, T ] allow to obtain an approximation of the solution on a temporal mesh

{tk = kh}Kk=1, where Kh = T .

In this system, xk = x(tk) is the solution on the mesh based on the evaluation of f and possibly

on its higher order derivatives in a set of finite points that are generated by some numerical

integration technique. This methodology generates a discrete solution {xt}Tt=1 which is unique

but could have a high estimation error rate. This is because although the numerical error

analysis provides local and global error bounds within the discretized mesh [5] that allow

approximating the asymptotic behavior of the model, the verification error in its inference

is still an open problem [6]. This prevents quantifying the uncertainty over the rest of the

solution trajectory, causing it to be ignored in practice.

Let Xa,b be the Banach space C
(
[a, b];Rd

)
, the solution of the equation (1.3) over an interval

[0, T ] can be interpreted as a Dirac measure δx over the space X0,T , where each element x is

a solution of the ordinary differential equation. Then, a probability measure µh on the space

X0,T can be defined, from which random samples can be generated inside and outside the

discretized mesh. In this way, the size of each step in the discretization can be quantified, and

through the sampling distribution the uncertainty of the remaining solution of the differential

equation can be quantified [7].

Graduation Project 3
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From a probabilistic point of view, the integral form of the equation (1.3) is given by:

x(t) = x0 +
∫ t

0
f
(
x(s)

)
ds (1.4)

Discretizing (1.4) into a finite set of steps, the solutions in the mesh satisfy:

xk+1 = xk +
∫ t

tk

f
(
x(s)

)
ds, t ∈ [tk, tk+1] (1.5)

The equation (1.5) can be rewritten as follows:

xk+1 = xk +
∫ t

tk

g (s) ds, t ∈ [tk, tk+1] (1.6)

where g (t) = f
(
x(t)

)
is an unknown function that evolves over a time point t. The function

g (t) can be approximated by some numerical method so that it is represented as:

gh(s) = d

dτ

[
ψτ (Xk)

]
τ=s−tk , s ∈ [tk, tk+1] (1.7)

Xk+1 = ψk (Xk)

where ψ : Rd → Rd denotes a deterministic classical numerical integrator of a time step h, a

class that includes all methods of numerical integration of ordinary differential equations.

To approximate the function g in stochastic form, equation (1.7) can be modified as follows:

gh(s) = d

dτ

[
ψτ (Xk)

]
τ=s−tk + ωk (τ) , s ∈ [tk, tk+1] (1.8)

ωk ∼ N
(
0, Kh(s, t)

)
where {ωk} is a sequence of functions of Gaussian random variables defined on the interval

[0, h]. On the other hand, the covariance Kh(s, t) is chosen such that it approaches zero at

a set rate of speed h, in order to be able to ensure that ω ∈ X0,T . Then, the functions {ωk}

represent the uncertainty about g.

In models that characterize real-world behaviors, the solution states of the system are un-

known and only partially observed, with a certain error εt that does not allow to obtain the

exact measurement of xt. Considering a lattice of discrete points 0 < t0 < t1 < . . . < tn in

which measurements y1, y2, . . . , yn are obtained from observations x0, x1, . . . , xn, with xi ≡ xti

y yi ≡ yti , the values of yi can be taken from a probability model of the form:

yi = h (xi, εi) , i ∈ {1, . . . , n} (1.9)
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where h(·) is a known vector function of real variable, εi are independent and identically

distributed variables drawn from some probability distribution, and {yi}ni=1 are conditionally

independent given {xi}ni=1. For the k−th observed state, the n observations are obtained

through the following statistical model:

y(t) = h
(
x(t)

)
+ ε(t) (1.10)

ε(t) ∼ N
(
0, σ2

ε

)
This model is made up of a vector of latent states X ≡

(
x(t1), x(t2), . . . , x(tn)

)T where

the k−th state is given by xk =
(
xk(t1), xk(t2), . . . , xk(tn)

)T , and by an observation vec-

tor Y ≡
(
y(t1), . . . , y(tn)

)T where the k−th observation is yk =
(
yk(t), . . . , yk(t)

)T , for k ∈

{1, 2, . . . , K}. Based on the above, the nonlinear state-space model in compact form would

be represented as:

ẋ(t) = dx

dt
= f

(
x(t)

)
, x(t0) = x0, t ∈ [0, T ]

y(t) = h
(
x(t)

)
+ ε(t) (1.11)

ε(t) ∼ N
(
0, σ2

ε

)
The problem (1.11) can be formulated in terms of a discrete-time stochastic dynamical system

by the following state-space model:

xk = f (xk−1) + νk−1, (system state)

νk−1 ∼ N (0, Q)

yk = h (xk) + εk−1, (system measurement) (1.12)

εk ∼ N (0, R)

x0 ∼ N
(
mx

0 , k
x
0 (s0, t0)

)
where xk ∈ Rdx , νk−1 ∈ Rdy , yk ∈ Rdy , εk ∈ Rdy , f : Rdx → Rdx , and h : Rdx → Rdy .

The Bayesian solution of the filtering problem can be obtained in terms of prediction and

updating. Thus, the filtered distribution of the posterior state is given by:

p
(
xk|y1:k

)
= p

(
yk|xk

)
p
(
xk|y1:k−1

)
p
(
yk|y1k−1

) (1.13)
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where the likelihood p
(
yk|xk

)
is obtained from the observation equation of (1.12) and y1:k =

(y1, . . . , yk). On the other hand, the predictive density is obtained by the Chapman-Kolmogorov

equation:

p
(
xk|y1:k−1

)
=
∫
p
(
xk|xk−1

)
p
(
xk|y1:k−1

)
dxk−1 (1.14)

where the transition density p
(
xk|xk−1

)
is obtained from the state equation of (1.12). This

allows to obtain a model of the observations given by:

L
(
Y |X, σ2

)
=

K0∏
k=1

n∏
i=1

p
(
yk(ti)|xk(ti), σ2

k

)
(1.15)

1.2 Testing Models

The above mentioned issue will be addressed by testing the methods on three differential

equation models widely known in different areas of science, such as mathematics, physics,

medicine and biology.

1.2.1 Lorenz Attractor Model

The classical Lorenz attractor model, proposed by Eduard Lorenz in 1963, simulates the fluid

motion induced by the temperature difference between lower and upper surfaces. Mathemat-

ically, it can be described as a coupled system of nonlinear differential equations expressed

as:

˙x(t) = dx

dt
= σ(y(t)− x(t))

˙y(t) = dy

dt
= ρx(t)− y(t)− x(t)z(t) (1.16)

˙z(t) = dz

dt
= −βz(t) + x(t)y(t)

where σ, ρ, β ∈ R+ are parameters known as the Prandtl coefficient, Rayleigh coefficient and

radius aspect ratio, respectively. The state vector (x(t), y(t), z(t))T represents the position

of the particles in phase space, and usually points are chosen at which the attractor exhibits

chaotic behavior [8].
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In (1.16), the states x(t), y(t) y z(t) are proportional, respectively, to the intensity of the con-

vective motion of the fluids, the temperature difference between the updrafts and downdrafts,

and the deviation of the vertical temperature profile from linearity.

1.2.2 Kermack-McKendrick SIR Model

The SIR compartmental epidemiological model, proposed by William Kermack and Anderson

McKendrick in 1927, aims at predicting the evolution of infectious diseases transmitted from

person to person. Under the assumption of suppression of life dynamics, i.e. that the sam-

ple population remains constant, this deterministic system of nonlinear ordinary differential

equations is specified as follows:

˙S(t) = dS

dt
= −βS(t)I(t) (1.17)

˙I(t) = dI

dt
= βS(t)I(t)− γI(t)

˙R(t) = dR

dt
= γI(t)

N(t) = S(t) + I(t) +R(t)

where a population of N(t) ∈ R+ individuals are classified according to various disjoint

statuses by disease pairs at a point in time t. Within the population, S(t) represents the set

of individuals susceptible to a given disease, while I(t) represents the infectious population,

and R(t) the inhabitants who are considered recovered by developing immunity to the disease

[9]. Also, β, γ ∈ R+ are fixed parameters, which represent the infection rate and the recovery

rate.

1.2.3 FitzHugh–Nagumo Model

FitzHugh-Nagumo equations, initially proposed by Richard FitzHugh in 1961 and supple-

mented by Jin-Ichi Nagumo in 1962, are a particularization of the Hodgkin-Huxley generation

models of the action potential in the axon of the giant squid [10] and describe the excitation

and propagation properties of neurons in the face of electrochemical reactions. These are
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characterized as a system of two coupled nonlinear differential equations, given by:

v̇(t) = dv

dt
= v(t)− v3(t)

3 − w(t) + I (1.18)

ẇ(t) = dw

dt
= φ(v(t) + a− bw(t))

where v(t) describes the evolution of the voltage at the neuronal membrane, which is usually

fast; while w(t) simulates the recuperative action between the sodium channel deactivation

and potassium channel deactivation currents [10]. In (1.18), a, b, φ ∈ R+ are constant param-

eters, and I ∈ R+ represents the external current applied.

1.3 Thesis Structure

This work is divided into six chapters, which are distributed as follows: Introduction, Theo-

retical Framework, State of the Art, Methodology, Results, and Conclusions.

Chapter 1 introduces dynamic systems, which are the means of study and testing of the

methods to be used. In addition, the problem of uncertainty quantification and the necessary

conditions for its solution are determined, as well as the contributions made to the area of

functional data analysis through the improvement of existing algorithms. Finally, the general

and specific objectives that were met during the writing of this work are determined.

In Chapter 2, the main concepts of this work are detailed, making a formal review about

Bayesian inference, functional data analysis, the forward problem, and stochastic processes.

Within the latter, special emphasis will be placed on Gaussian processes, whose fundamentals

will be discussed, as well as the properties of the mean, kernels and covariance functions. In

addition, fundamental concepts related to Polynomial Chaos Expansions, such as orthogonal

and orthonormal polynomials and basis, will be introduced.

Chapter 3 presents the historical background of the development of the theory of functional

estimation and uncertainty quantification, starting with the evolution of probability theory

towards Bayesian statistics, the characterization of systems of ODEs as inference problems

and the use of Gaussian processes (GP), moving on to the rise of Bayesian Data Analysis, the

extension of probabilistic estimation methods in ODE models to higher dimensionalities and
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the problem of computational complexity, and concluding with the use of the aforementioned

techniques within artificial neural networks.

In Chapter 4, the methodology is formulated, which include the calculation of the Gaussian

process prior distributions, the characterization of the derivatives of the observations vec-

tor, the formulation of the Uncertainty Quantification for Differential Equations (UQDES)

algorithm, which will be detailed for each iteration, and how the GP-based approaches work

together with PCE to compute new distributions for the mean vector and the covariance

matrix. Then, the computational requirements of this project, the particularities of the time

complexity and performance measures will be defined.

Chapter 5 shows the results obtained from the execution of the UQDES algorithm, as well as

those derived from the addition of PCE; defining first the time interval, the vectors of initial

conditions, the values of the hyperparameters of each of the systems used. Then, a graphical

comparison between the solutions obtained by the differential equations system solver of the

scipy library with 2000 realizations of each one of the techniques is presented, both in the

three-dimensional model and in each one of the solution functions separately; followed by the

error rates reported by each one of the performance measures.

Finally, in Chapter 6 the conclusions obtained from the analysis and discussion of the results

are presented. Likewise, future work that could be carried out in the area of probabilistic

modeling of solutions, including more advanced applications in emerging areas of computer

science such as artificial intelligence, is proposed.

1.4 Objectives

1.4.1 General Objective

Implement the UQDES algorithm and consider the addition of Polynomial Chaos Expansions

(PCE) to perform functional estimation and uncertainty quantification of solution states in

systems of ordinary differential equations.
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1.4.2 Specific Objectives

The general objective described above leads to the implementation of the specific objectives

detailed below:

• Discretize three systems of ordinary differential equations with known initial conditions

and parameters to obtain point solutions of their states.

• Discuss the computational time complexity of UQDES and PCE algorithms.

• Quantify the accuracy of each algorithm through goodness-of-fit measures and compare

the efficiency of these methods.

1.5 Contributions

This thesis consists of an extension of the theoretical background of the following publication:

Cedeño, N. & Infante, S. (2021) Estimation of Ordinary Differential Equations So-

lutions with Gaussian Processes and Polynomial Chaos Expansion. In: Rodriguez

G., Fonseca C., Salgado J., Pérez-Gosende P., Orellana M. (eds) Information and

Communication Technologies. TICEC 2021. Communications in Computer and

Information Science. Springer, Cham.

This research project performs a review of mathematical methods of functional estimation

based on Bayesian methods and Gaussian processes, contributing to the study of the theory

behind uncertainty quantification, derivative inference and the prediction of probabilistic

solutions, which for practical reasons is not usually detailed in the studies that address their

applications. Regarding the experimental part, this work adapts the UQDES algorithm [2] to

the use of multidimensional arrays in Python, aiming to improve the execution times presented

in the literature. In addition, the addition of the PCE technique to the results obtained is

considered, which had not been considered in previous research papers, in order to verify if

there are improvements in the prediction rate, which will be quantified by three goodness-of-fit

measures that compare the accuracy of the UQDES algorithm with the UQDES+PCE.
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Chapter 2

Theoretical Framework

2.1 Bayesian Inference

Bayesian inference is a method of statistical analysis that uses prior knowledge, in the form

of probabilistic distributions, about a random phenomenon to infer the probability of a hy-

pothesis being fulfilled by dynamic sequence analysis. This reasoning is entirely based on the

assumptions of probability calculus, and in particular of Bayes’ theorem.

Theorem 2.1.1. (Bayes Theorem) Let {A1, . . . , Ak} a set of events that form a partition of
the sample space Ω and B an event with p(B) ≥ 0, we have that:

p(Ai|B) = p(B|Ai)p(Ai)
p(B) (2.1)

If we consider X = (x1, . . . , xn) as a data vector and Θ = (θ1, . . . , θp) as a set of unknown

parameters, we can define F as the respective density functions of X indexed by θ, so that:

F = {p(x | θ); x ∈ X, θ ∈ Θ} (2.2)

Under the assumption that all variables in X are independent and identically distributed over

θ, the model (2.2) can be rewritten in terms of the marginal densities of each element of X:

F =
p (x1, . . . , xn | θ

)
=

n∏
i=1

fi
(
xi | θ

)
; x ∈ X, θ ∈ Θ

 (2.3)
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In Bayesian inference, F is considered as part of the model, i.e., that p(xi|θ) will have a

subjective interpretation. Applying Theorem 2.1.1 and assuming that the parameters are

continuous, it follows that:

p(θ|X) = p(X|θ)p(θ)∫
θ p(X|θ)p(θ)dθ

(2.4)

where p(θ) is known as a prior distribution, which will be updated by observing the data from

p(θ|X), the standardized posterior distribution.

By omitting p(X) since it does not depend on θ, and fixing the values of y, we can define the

non-normalized posterior density as:

p(θ|X) ∝ p(θ)p(X|θ) (2.5)

To make predictive inferences on unknown but observable data, it is necessary to consider the

marginal distribution of X = x, also known as the predictive prior, which is given by:

p(x) =
∫
p(x, θ)dθ

=
∫
p(θ)p(x|θ)dθ (2.6)

Once x is observed, we can perform the inference process. Let X̃ = x̃ be a set of new data,

p(x̃|x) it is defined as the posterior predictive conditional distribution on x:

p(x̃|x) =
∫
p(x̃, θ|x)dθ

=
∫
p(x̃|θ, x)p(θ|x)dθ (2.7)

=
∫
p(x̃|θ)p(θ|x)dθ

According to (2.7), this distribution can be interpreted as the average of the conditional

predictions made over the posterior distribution of θ [11].

2.1.1 Space-State Models

State-space models are a class of probabilistic models that provide a framework for the analysis

of deterministic and non-deterministic systems observed by stochastic processes [12].
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Definition 2.1.2. (Space-State Model) Let xt ∈ Rm be a set of unobserved variables, yt ∈ Rm

a set of observed variables, both evaluated at point in time t ∈ {1, . . . , T}, and m representing
the number of states, a state space model is defined as:

x1 ∼ p(x1)

xt|xt−1 ∼ p(xt|xt−1) (2.8)

yt|xt ∼ p(yt|xt)

where p(x1) is known as the initial distribution, p(xt|xt−1) is the transition distribution and
p(yt|xt) is the observation distribution.

The (2.8) model assumes conditional independence between observations and aims to compute

an optimal estimate of the unobserved states given the observed data by recursively applying

Bayes’ theorem [13], resulting in filtering distributions.

There are several cases derived from the general state-space model, and this project will

focus particularly on the linear Gaussian state-space model. This model, also known as linear

Gaussian dynamical system, is known to result in closed-form filtering and smoothing formulas

known as Kalman filter and Kalman smoother [14]. It is described as:

x1 ∼ N (µ1,Q1)

xt = Axt−1 + εt

yt = Bxt +wt (2.9)

εt ∼ N (0,Rt)

wt ∼ N (0,St)

where A y B are dimensionally compatible matrices, and Q1, Rt and St are covariance

matrices.

2.1.2 Bayesian Filtering

Bayesian filtering, or Bayesian recursive estimation, is a statistical inversion method that

seeks to estimate the true value of the solution states of a system from its observations by

performing a Bayesian analysis of probability density functions.
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Let {x0,x1,x2, . . . ,xn} a vector of unknown values observed by {y1,y2, . . . ,yn}, a set of

noisy measurements. Consider xt = (xt, ẋt)> as a two-dimensional vector composed of each

observation xt and its derivative ẋt. We can formulate a discretized system given by:

xt = ft (xt−1,νt−1) (2.10)

yt = gt (xt,ηk)

where νt ∈ Rn is a randomly given noise vector, and ηt ∈ Rm is the noise vector of the

observations. Then, we can define ft and gt as the process and observation functions. If we

consider that these are invariant with respect to time, then ft = f and gt = g [15].

Bayesian filtering models can be performed recursively when the evolution of observations is

time-dependent. This method is known as Bayesian Sequential Filtering, and seeks, through

the prediction and update steps, to compute the smoothing, filtering and prediction distribu-

tions [16, 17] to subsequently estimate p (xt,y1:t).

Definition 2.1.3. (Smoothing) Let t < T , the smoothing distribution is obtained through
the marginal distributions of xt given y1:T = {y1, . . . ,yt}, such that:

p
(
xt|y1:T

)
, t ∈ {1, . . . , T} (2.11)

It is the a posteriori estimation, where the data observed after the time index of interest is
used.

Definition 2.1.4. (Filtering) The filtering distribution is calculated using the marginal dis-
tributions of state xt given the observations y1:t = {y1, . . . ,yt}. Thus, it follows that:

p
(
xt|y1:t

)
, t ∈ {1, . . . , T} (2.12)

It is the operation that quantifies the information about a value of interest at a given time t
using all the observed data in the interval [0, t].

Definition 2.1.5. (Prediction) Let τ > 0 and n ∈ Z+ the number of steps, the prediction
distribution is estimated through the marginal distributions of a future state xt+n after n
steps. Then:

p
(
xt+n | y1:t

)
, t ∈ {1, . . . , T} (2.13)

It is the prior estimation of the process, which involves information of the value of interest
after a time t+ τ using the observed data over the interval [0, t].
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Given t ∈ {1, . . . , T}, any inference made about x0:t will be based on the calculation of the

posterior distribution P
(
dx0:t|y1:t

)
[18]. To make a Bayesian sequential estimate on t, it must

follow the recursive steps of prediction and update. These are given, respectively, by:

p
(
ẋ0:t|y1:t−1

)
= p

(
ẋ0:t−1|y1:t−1

)
p
(
ẋt|x0:t−1, y1:t−1

)
(2.14)

p
(
ẋ0:t|y1:t

)
= g

(
yt|x0:t, y1:t−1

)
p
(
ẋ0:t|y1:t−1

)∫
X(t+1) gt

(
yt|x0:t, y1:t−1

)
p
(
dx0:t|y1:t−1

) (2.15)

From (2.14) and (2.15), it follows that:

p
(
ẋ0:t|y1:t

)
∝ µ (ẋ0)

t∏
i=1

gi
(
yi|x0:i, y1:i−1

)
pi
(
ẋ∗|x0:i−1, y1:i−1

)
(2.16)

where µ (ẋ0) is the probability distribution of ẋ0. This recursion may appear to be easy to

compute, however p
(
ẋ0:t | y1:t

)
, p

(
ẋt|y1:t

)
are generally not in closed form, except for cases

such as linear Gaussian state-space models and finite state-space Markov chains [18].

2.2 Functional Data Analysis

Functional data analysis (FDA) is one of the statistical approaches that deals with the analysis

and modeling of data in the form of functions, as well as the conversion of more general data

structures to a functional form. In this way, we express intermittently observed data at

discrete time points and smooth them so that their resulting function measure represents an

observation [19, 20]. More formally, we will represent data points as a function xi(t) where

the i-th observation takes real values when evaluated over a time interval t ∈ [0, T ].

FDA seeks to extract as much information as possible from the properties of the functional

structures in order to then apply concepts of multivariate statistical analysis in infinite-

dimensional domains. Thus, by applying multivariate techniques, it is possible to recognize

patterns of similarity or clustering in the data, represent high-dimensional data graphically

[21], compute statistics such as the mean and variance of functions described as time series

based on observable variables, and identify properties of functions, such as continuity and

differentiability.

Ramsay and Dalzell [22], explain in further detail the practical reasons for considering func-

tional data over traditional data:
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• With the advancement of automation in data collection, functional observations are

presented increasingly in applied studies, making them more accessible to researchers.

• There are several contexts in which reasoning in functional terms is more suitable than

considering them as finite sets of observations.

• The analysis of functional data can be extended to other estimations, such as derivatives

and functional operators.

• Properties of functions, such as continuity, can be significant in their further analysis.

Hence, the schematization of data as functional structures makes it possible to characterize

systems by means of smooth dynamics [20], taking advantage of the information that can be

obtained implicitly in functions and that is not accessible using traditional methods. One of

the main uses of the aforementioned strengths is in the processing of noisy data. Considering

that data obtained from real-world problems often include a noise component, which can vary

from observation to observation, FDA approaches allow for effective noise reduction through

smoothing curves, where the noise can be accommodated by repeating measurements of each

observation [19] at non-regular sampling times, i.e. ti+1 − ti 6= tj+1 − tj for some values of i

and j. When data are handled as continuously observed functions, it can be assumed that

there are no variable error rates, which makes them easier to analyze in methodologies such

as stochastic processes [19] and also makes them subject to the application of the theorems

for continuous functions.

2.3 Stochastic Processes

A stochastic process, also known as a random process, is one whose outputs are determined

by randomness [23]. More formally:

Definition 2.3.1. (Stochastic Process) A stochastic process {X(t), t ∈ T} is a collection of
random variables X(t) in which it is satisfied that:

1. Xt(ω) ∈ S, where S ⊂ R, known as space state.
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2. Xt is indexed by a set of temporal parameters t ∈ T , T ⊂ R+, known as parameter
space.

These models allow us to explain the structure and predict the future evolution of observed

variables over time. Under the assumption that these processes are continuous, the parameter

space will be based on a finite interval T = [0, t] or T = [0,∞).

Then, we can characterize each random variable as Xt a mapping from the sample space Ω

to values belonging to R. Taking into account all possible finite dimensional distributions,

we can generalize this concept to all the time values t ∈ T , such that the stochastic process

X(w) can be represented as:

X : Ω→ RT

ω → Xt(ω)

where a mapping is performed from Ω toward a set of real-valued functions indexed by the

values of T . In this way, each sample ω ∈ Ω will be associated with a function X(ω) ∈ R.

X(ω) will be known as a realization or trajectory of the stochastic process.

The process X(t) = {Xt : t ∈ T} evaluated at a time t has an average:

mX(t) = E[X(t)] (2.17)

In addition, the autocovariance function at two points (t1, t2) ∈ T 2 ir written as:

CX (t1, t2) = E
(
X (t1)X (t2)

)
−mX (t1)mX (t2) (2.18)

Supposing that t1 = t2 = t, the equation (2.18) is called the variance of the stochastic process

and is expressed by:

Var(X(t)) = CX(t, t) (2.19)

On the other hand, we can determine an autocorrelation function by using (2.17) and (2.18),

such that:

RX (t1, t2) = E
(
X (t1)X (t2)

)
(2.20)

Replacing (2.20) in (2.18), it follows that:

CX (t1, t2) = RX (t1, t2)−mX (t1)mX (t2) (2.21)
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If a finite time set {0 ≤ t1 < t2 . . . < tk} is established and the random variable X is evaluated

at each element of it, we will have a random vector of the form X =
(
x (t1) , x (t2) , . . . , x (tk)

)
,

to which we can assign a distribution function as well as a mass probability function.

Definition 2.3.2. (Stochastic Process Distribution and Mass Functions) Let {X(t); t ∈ T} a
stochastic process of order k. The joint distribution function of X is given by:

F (x1, . . . , xk; t1, . . . , tk) = p
({
X (t1) ≤ x1, . . . , X (tk) ≤ xk

})
(2.22)

On the other hand, the mass probability function of X is:

p (x1, . . . , xk;n1, . . . , nk) = p
{(
xn1 = x1, . . . , xnk

= xk
)}

(2.23)

Under the assumption that F (x1, . . . , xk; t1, . . . , tk) ∈ C1(R), we have that:

f (x1, . . . , xk; t1, . . . , tk) = ∂k

∂x1, . . . , ∂xk
F (x1, . . . , xk; t1, . . . , tk) (2.24)

2.3.1 Classification of Stochastic Processes

There are several classes of stochastic processes, defined by the behavior of their states and

by the discrete or continuous nature of each one. In this work, we will focus on the following:

Markovian Process

The transition between states can be viewed as a process in which the evolution of the

future state depends on a known present state and in turn is independent of the past. This

characterization is known as a Markov chain.

Definition 2.3.3. (Markov Chain) Let S a discrete set with i, j ∈ S, a Markov chain is said
to be a sequence of X0, . . . , Xn of n random variables that satisfies:

P
(
Xn+1 = j|X0 = x0, . . . , Xn−1 = xn−1, Xn = i

)
= P

(
Xn+1 = j | Xn = i

)
(2.25)

According to the previous concept, we can also describe Markovian processes.
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Definition 2.3.4. (Markovian Processes) These are the processes that meet Markov’s prop-
erty, i.e.:

P
(
Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn

)
= P

(
Xn+1 = xn+1 | Xn = xn

)
(2.26)

When (2.25) depends only on the indexes i and j, Markov chains satisfy the homogeneity

property. Thus, the probability described in Theorem 2.3.3 can be rewritten as:

P
(
Xn+1 = j|Xn = i

)
= P

(
X1 = j|X0 = i

)
(2.27)

Assuming homogeneity in a Markov process, we can represent the probabilities of a step-

wise transition from one state to another by means of a matrix of the form P = (Pij) =

P
(
X1 = j | X0 = i

)
. This matrix is known as the transition matrix, and it must have the

characteristics of a stochastic matrix [23].

Definition 2.3.5. (Stochastic Matrix) A stochastic matrix is any square matrix P , with
Pij ≥ 0 for all i, j, which satisfies the condition:∑

j

Pij = 1 (2.28)

Gaussian Processes

Gaussian processes are one of the most widely reported stochastic processes in the literature

due to their particular importance in the modeling of nonlinear systems with experimental

data [24]. This process is based on multivariate normal distribution functions.

Definition 2.3.6. (Multivariate Normal Distribution) Let X = (X1, . . . , Xn) a random vector
of dimension n. It follows a multivariate normal distribution, denoted as N (µ,Σ), if for some
a = (a1, . . . , an) ∈ Rn every linear combination Y = a1X1 + . . . + akXk is distributed as a
univariate normal.

The joint density of a multivariate normal distribution is given by:

f (x1, . . . , xk) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

√
(2π)k|Σ|

(2.29)

where µ and Σ are the mean vector and the covariance matrix associated with X, respectively.

In Gaussian processes, the above concepts are extended to high-dimensional spaces [23], and

even to non-finite dimensions.
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Definition 2.3.7. (Gaussian Processes) Let X(t) be a stochastic process. It is defined as a
Gaussian process if for t1, . . . , tk, all dimensional distributions

(
Xt1 , . . . , Xtk

)
are finite and

normally distributed, i.e., they are governed by the probability distribution:

pX (X1, . . . , Xk, t1, . . . , tk) = 1
(2π)n

2

1
|Kk|−

1
2
e−

1
2 (X−µk)TK−1

k
(X−µk) (2.30)

where µk =
(
mX (t1) , . . . ,mX (tk)

)T and Kk has the characteristics of a covariance matrix.

The methodology presented in this work will be based on the use of Gaussian processes, so

this topic will be discussed in more detail in the next section.

Gaussian-Markovian Processes

Under certain conditions, Gaussian processes can mix with Markov processes, giving rise to

Gaussian Markovian processes.

Definition 2.3.8. (Gaussian-Markovian Processes) Let {x̃t, t ≥ 0} a real-valued Gaussian
process, y s, t ≥ 0. For every s and t, {x̃t} is a Gaussian-Markovian process if it also satisfies
the Markov property, so that: (

x̃t+s | x̃u
)
∼
(
x̃t+s | x̃t

)
(2.31)

Fixing values for the mean µ̃t and for the covariance function K̃s,t, values can be generated for

(x1, . . . , xn) = (x̃t1 , . . . , x̃tn) justified by the properties of the conditional distributions of the

multivariate normal distribution [23]. For i ∈ {1, . . . , n}, and given µi y Ki,i as the expected

value and the variance of {xt, t ≥ 0} respectively, it follows that:
 xi

xi+1

 ∼ N


 µi

µi+1

 ,
 Ki,i K(i, i+ 1)

Ki,i+1 K(i+ 1, i+ 1)


 (2.32)

Applying the properties of conditional distributions, it follows that:

(
xi+1 | xi = x

)
∼ N

µi+1 + Ki+1,i

Ki,i

(x− µi) ;Ki+1,i+1 −
K2
i+1,i

Ki,i

 (2.33)
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2.4 Gaussian Processes

Bayesian predictive models have the particularity that the target values are closely related to

the scalar product of the data vectors [25]. Within these, Gaussian processes use this rela-

tionship to constitute a learning and prediction method that does not specifically correspond

to any parametric scheme, allowing in particular the combination between functions and their

derivatives [24] in a direct and understandable way.

More precisely, a Gaussian process is seen as the generalization of infinite normally distributed

variables, where this set of variables is considered random by definition [26]. Considering the

existence of noise conditions, it is possible to use these variables to compute conditional

normal distributions that estimate the points where the value of the functions to be modeled

is uncertain. In this way, the marginalization of all non-observable points in any of the

dimensions turns the infinite-dimensional Gaussian processes into a finite set of multivariate

normal distributions [27].

Let d be the cardinality of the dimension, µ a vector of means and Σ a covariance matrix of

a normal distribution, a Gaussian process can be expressed as the probability of a random

function in a d-dimensional space:

p(f(x)) = GP
(
µ(x), k

(
x,x′

))
(2.34)

where the mean µ(x) and covariance k (x,x′) parameters are also real functions.

Using this definition, we can directly write f(x) as a random variable of the form:

f(x) ∼ GP
(
µ(x), k

(
x,x′

))
(2.35)

The above distribution can be represented in a set of indices i ∈ {1, 2, . . . , n} by components

as
(
f (x1)1 f (x2)1 . . . , f (xn)

)
∼ N(µ,K), where µi = µ (xi) and Ki,j = k

(
xi,xj

)
. Due to the

fact that the distributions are dimensionally finite, the behavior of f(x) can be described only

in terms of the mean and covariance functions [14], since these represent the dependence be-

tween each of the evaluations of the observations. Once these have been determined, Gaussian

process can be used to sample values from the prior and conditional posterior distributions

based on past observations [28].
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The notation given in (2.34) is known as kernel formalism; however, there are other approaches

from which GPs can be conceptualized. While Gaussian processes are classically taken as a

probability functional distribution describing data points, Solin [29] states that they can be

viewed as signal processing, as well as random fields when dealing with dimensions higher than

two. Thus, multivariate normal distributions deal with a fixed number of elements in their

input vector, while a Gaussian process handles a data structure that may whose cardinality

may progressively tend to infinity. In particular, this object is in a Hilbert space of infinite

dimension J
(
Ed
)

[27], and goes from being indexed by a finite set to become a variable of

continuous values, which keeps the notation x.

The advantage of this transformation is that despite the fact that the probabilistic model

considers an input of continuous values, the processing, inference and learning of the data can

be performed with the same constraints of a numerable set of inputs [27] without requiring a

number of dimensions to be fixed. For this reason, Gaussian processes are generally regarded

in the literature as nonparametric.

2.4.1 Covariance Functions and Kernels

As noticed in the previous section, covariance functions are a fundamental part of the infer-

ence process of a Gaussian process. In the context of this work, we will use the definition and

describe the required properties of multi-output covariance functions, since in the computa-

tional setup we deal with multidimensional arrays.

Definition 2.4.1. (Multi-output Covariance Function) Let k (x,x′) : Rnx×nx → RD×D be a
multidimensional function. It is called a multi-output covariance function when each (d, d′)
entry of the output matrix meets the characteristics of a scalar covariance function with inputs
(x, d) and (x′, d′).

Starting at this point, we will assume that in the context of functional estimation, the defini-

tion 2.4.1 shares the same mathematical properties as that of kernel, so we can interpret them

as a measure of similarity between inputs [30]. Due to the high dependence of the kernels on

the inputs and the hyperparameters of the model, it is required to impose certain restrictions

and properties in accordance with the regression problem addressed in this work.
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Gibbs [31], determines two main properties of covariance functions:

• The correlation between two data points that are neighbors in the input space must be

greater than that of two distant points.

• The possibility of data being perturbed by noise must be considered, so noise must be

included in the covariance function.

Before detailing the theoretical basis of the square exponential covariance, which is the kernel

used in this research work, it is necessary to define one of its main properties, the stationarity.

Definition 2.4.2. (Stationary Covariance Functions) A kernel k (x, x′) is said to be
stationary if it depends only on the radial distance of the input data, i.e.:

k
(
x,x′

)
= k

(
x− x′

)
(2.36)

We also define (2.36) as translation invariant.

When a covariance function is stationary and depends on a distance function described by

a suitable norm ‖.‖, we extend the above-mentioned definition to stationary isotropic or

rotation-invariant kernel.

Squared Exponential Covariance Function

The Squared Exponential (SE) covariance function is one of the most widely used and well-

known stationary kernels.

Definition 2.4.3. (Squared Exponential Covariance Function) Let x,x′ ∈ RD. Then, the
squared exponential function is defined by:

k
(
x,x′

)
= α2 exp

(
−1

2
(
x− x′

)>
Λ−1

(
x− x′

))
(2.37)

where α2 is the variance coefficient and Λ = diag
(
λ2

1, . . . , λ
2
D

)
is the length scale matrix and

controls the width.

Looking at (2.37) carefully, we can find that it is similar to the normal distribution formula,

thus it is also referred as Gaussian kernel [27]. In fact, it is possible to rewrite (2.37) by
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considering the following class of functions:

f(x) =
∑
u∈U

wu exp
(
−(x− u)2

)
=
∑
u∈U

wuφu(x) (2.38)

which is the class of sums of basis functions φu(x) with finite number of centres u ∈ U ⊂ R

and is scaled by weights distributed with a Gaussian prior w ∼ N
(
0, α2

)
[26]. The covariance

of this class is defined by:

k
(
x, x′

)
= E

[
f(x)f

(
x′
)]

= α2 ∑
u∈U

φu(x)φu
(
x′
)

(2.39)

By approximating a number tending to infinity of bases in R, the sum of the basis functions

can be expressed as an integral of the form:

α2
∫ ∞
−∞

φu(x)φu
(
x′
)

du ∝ α2 exp
(
−1

2
(
x− x′

)2
)

(2.40)

Since this particular covariance is defined as a stationary function, we can claim that it is

equivalent to a regression based on an infinite numerable set of Gaussian basis functions [30].

2.5 Stochastic Differential Equations

Ordinary differential equations are a useful tool in the modeling of diverse systems. However,

they do not consider the random components that could be present in the variables. To

characterize this behavior, ODEs are modified by adding stochasticity terms in order to

obtain solutions that also present stochastic characteristics.

Before conceptualizing stochastic differential equations, it is necessary to define the integral

and Ito’s lemma, which are fundamental in the calculation of derivatives of a stochastic process

[32] and, consequently, in the resolution of SDEs.

Definition 2.5.1. (Ito’s Integral) Let Xt be a diffusion process, and ft be a stochastic process
adapted to a filtration F. Then, the Ito integral is defined as:

Yt =
∫ t

0
fsdXs (2.41)
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Theorem 2.5.2. (Ito’s Lemma) Let W (t) be a Brownian motion, and X(t) be an Ito process,
and f ∈ C2. Then, for t ≥ 0:

df(Xt) =
(
µt
∂f

∂x
(Xt) + 1

2σ
2
t

∂2f

∂x2 (Xt)
)
dt+ σt

∂f

∂x
(Xt)dWt (2.42)

Finally, using the above definition and theorem, we can state the concept of SDE in a formal

way.

Definition 2.5.3. (Stochastic Differential Equation) Let Xt be a continuous stochastic pro-
cess and Wt be a Brownian motion. If linear combinations of small perturbations in Wt and
in t can compose small changes in Xt, we can define a stochastic differential equation by:

dXt = a(t,Wt, Xt) + b(t,Wt, Xt)dWt (2.43)

which can be rewritten as:

Xt =
∫ t

0
a(s,Ws, Xs)ds+

∫ t

0
b(s,Ws, Xs)dWs +X0 (2.44)

2.6 The Forward Problem

The propagation of uncertainty within a probabilistic model is known as the forward problem,

and its proper implementation is critical for increasing the accuracy of the solutions that

reconstruct the inverse problem. In order to achieve this, it is necessary to perform the

calibration of the problem, which consists of quantifying the magnitude and structure of the

sampling error rates [2] generated when estimating new inputs from the observable states.

2.6.1 Uncertainty

Uncertainty quantification involves the analysis and choice of mathematical models that rep-

resent the uncertainty of an unspecified variable [33], depending on the type and amount of

information available on the quantity of interest. It may be implicit within the model, or

come from external sources such as prior knowledge of experts, or experimental data from

similar studies; and must be incorporated using appropriate statistical methods.

The study of the influence of errors within data structures is of special interest in the area

of complex systems, and particularly in those that despite showing quantitative relationships
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between inputs and predictions, present a high variability behavior when modifying the pa-

rameters that control the equations [34]. In these systems, uncertainty is usually categorized

as a random variable, so estimation methods are found in a wide spectrum ranging from prob-

ability theory to scientific computing. According to Elishakoff [35], uncertainty quantification

is approached mainly from three approaches: probabilistic, possibilistic and anti-optimization,

and is usually implemented prior to the simulations and not as an ulterior argument.

2.7 Polynomial Chaos Preliminaries

Polynomial Chaos approaches were introduced as an alternative to modeling techniques of

stochastic process with normally distributed variables, and is considered as a subset of the

class of polynomial approximations [34]. This set of techniques consists of projecting the

model outcomes as a basis of orthonormal polynomials of the observation data [36], which

allows estimating the variability of the results and their dependence on the entries.

Let Y be a probabilistic model, and Ŷ its polynomial expansion, we want to find:

Y ≈ Ŷ (x, t,Q)

=
Np−1∑
n=0

cn(x, t)φn(Q) (2.45)

where cn are the coefficients of the expansion, φn the polynomials and Np the cardinality of

the expansion at order p.

To formulate a polynomial expansion it is necessary to determine the polynomials φn(Q),

which must be orthogonal with respect to a probability density [34]; and then calculate the

coefficients cn by intrusive or non-intrusive methods.

2.7.1 Basis and Polynomials

As the entire methodology is carried out in a Hilbert space H, we will assume that the bases

used in the polynomial expansions will be Hilbert bases, also known as orthonormal basis.

Definition 2.7.1. (Orthonormal Basis) Let V be a inner product space with an associated
inner product 〈·, ·〉, and (e1, . . . , en) ∈ V a list of non-zero vectors. For all i, j ∈ {, . . . , n},
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(e1, . . . , en) is said to be orthonormal if: 〈
ei, ej

〉
= δij (2.46)

where δij is the Kronecker delta function.

Based on the fact that an orthonormal basis of finite dimension is also orthogonal, and that

orthonormal bases must be formed by a list of orthonormal vectors, the family of polynomials

that we aim to study is orthogonal.

Definition 2.7.2. (Orthogonal Polynomials) Let
{
pn(x)

}∞
n=0 be a sequence of polynomials

of order n, and w(x) a continuous positive weight function. It is said to be orthogonal with
respect to w(x) on (a, b) if: ∫ b

a
w(x)pm(x)pn(x)dx = hnδmn (2.47)

where δmn is the Kronecker delta function.

Using the above definition, an inner product between two orthogonal polynomials f and g

can be defined, which is given as:

〈f, g〉 :=
∫ b

a
w(x)f(x)g(x)dx (2.48)

According to Andrews [37], the most frequently used orthogonal polynomials are known as

classical polynomials, and are described in the following table:

Polynomial pn(x) w(x) (a, b)
Hermite Hn(x) e−x

2 (−∞,∞)
Jacobi P (α,β)

n (x) (1− x)α(1 + x)β (−1, 1)
Laguerre L(α)

n (x) e−xxα (0,∞)
Legendre Pn(x) 1 (−1, 1)

Table 2.1: Classical orthogonal polynomials.

The representation of stochastic processes constituted as non-finite linear combinations of

orthogonal polynomials, and their parallelism with the Fourier series representations over

bounded intervals is established by the Karhunen-Loève theorem.
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Theorem 2.7.3. (Karhunen–Loève) Let Xt ∈ (Ω, F,P) be a zero-mean square-integrable
stochastic process indexed over [a, b], and KX(s, t) be its covariance function. Then Xt has a
L2 convergent representation:

Xi =
∞∑
k=1

Zkek(t) (2.49)

where:
Zk =

∫ b

a
Xtek(t)dt (2.50)

is a random variables Zk with zero-mean, and that is uncorrelated point-wise.

2.7.2 Numerical Integration

Numerical integration is one of the most frequently used numerical methods in stochastic com-

putations, since many systems do not have closed expressions of its solutions. For polynomial

estimation, the technique employed is Gaussian quadrature, which integrates polynomials of

up to degree 2n−1 [38] into symmetric intervals using the evaluations of a function at a given

number of interior points and a weights function.

Let f(x) be some well-behaved function, and w(x) be a weight function. Then, the integral

I is represented in terms of a weighted sum by:

I =
∫ 1

−1
f(x)dx

=
n−1∑
i=0

wif(xi) (2.51)

The Gauss Legendre quadrature is considered as the standard case, but there exist other

types of quadratures on orthogonal polynomials that are subject to restrictions particular to

each of these. Following the notation above, we can generalize (2.51) as:

I =
∫ 1

−1
f(x)dx

=
∫ 1

−1
w(x)g(x)dx (2.52)

where f(x) results from the convolution of w(x) and g(x). Then, under the conditions of each

polynomial, we can approximate (2.52) by:

I =
∫ 1

−1
W (x)g(x)dx

≈
n−1∑
i=0

wig(xi) (2.53)
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In the table below, Venkateshan [38] summarizes the Gaussian quadrature rules for each of

the classical orthogonal polynomials:

Quadrature Integral
Gauss-Hermite

∫∞
−∞ e−x2

g(x)dx
Gauss-Jacobi

∫ 1
−1 f(x)(1− x)α(1 + x)βdx

Gauss-Laguerre
∫∞

0 e−xg(x)dx
Gauss-Legendre

∫ 1
−1 g(x)dx

Table 2.2: Gauss quadrature rules.
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Chapter 3

State of the Art

Arising from the need to understand and ensure accuracy in problem solving, the mathemat-

ical development of the theory surrounding uncertainty and its quantification dates back to

the late nineteenth century, addressing the theory of probabilities to replace unknown values

in statistical mechanics [39]. Since 1960, works such as those of Dempster [40] and Feller [41]

show Bayesian inference as a new approach to uncertainty assessment, inferring through prior

knowledge the difference between measurable and desired data. Authors such as O’Hagan [42]

and Neal [43] suggested materializing the Bayesian formalism through Gaussian processes [44].

On the other hand, Skilling [45], Glimm [46] and Eriksson [47] introduced Bayesian methods

as a tool for the reconstruction of numerical solutions of systems of ordinary differential equa-

tions with boundary conditions by setting them as an inference problem, while Herzog [48]

deepened into the influence of the correlation between parameters in second-order models.

Around the early 2000s, the rapid advancement of scientific computing led to the combination

of estimation with Gaussian processes and Bayesian characterization of differential equations,

giving rise to Bayesian Data Analysis, where system responses were analyzed and evaluated

by means of computational simulations [49]. In the Bayesian computation area, Vanhatalo

[50] implemented the algorithms of several techniques such as Monte Carlo Markov Chains

(MCMC) methods, covariance kernel approximation and model assessment tools for Gaussian

processes [11]. On the other hand, Vyshemirsky and Girolami [51] did one of the first works in

Bayesian estimation for ODE systems by assigning a prior distribution θ to generate samples

of a posterior and thus approximate its solutions, while Adams [52] approached the problem
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from Gaussian processes, conditioning the domain and using the rejection sampling method

to avoid intractability by approximating the likelihood normalization term, and easing the

solvability of the system [11]. Solin and Sarkka [53] followed along this path by transform-

ing GP regression into finite-dimensional state-space models and improve Bayesian filtering

inference, while Sternberg [14] extended their work to high-dimensional inputs through adap-

tive covariance functions. However, large-scale studies were still limited in numerous cases

due to the expensive computational cost of performing multiple runs to evaluate complex

systems. In 2013, Chkrebtii [2] proposed an algorithm of reduced computational complexity

using derivative inference on a discretized temporal mesh, which was subsequently rewritten

by [5] in a tensor-adaptive version. In addition, authors such as Dutta [49], Rendardy [54] and

Oparaji [55] studied an alternative to Chkrebtii’s work using surrogate models, such as the

Radial Basis Function, Support Vector Regression (SVR), and Polynomial Chaos Expansion

(PCE); with lower computational cost. Modeling with PCE gained popularity as it was recog-

nized as one of the most efficient in complex systems, both in its intrusive and non-intrusive

approaches [49]. This claim was supported by the studies of Sepahvand [33], who made a

general exploration of the quantification of uncertainty with this method and its convergence

criteria for parameter estimation; and subsequently of Sudret [56], who studied in more depth

its application in stochastic analysis.

As could be seen from the evolution of the previously mentioned studies, functional estimation

and uncertainty quantification techniques have evolved drastically over the last few decades.

With the advancement in data processing, a denser sampling of observations can be performed

on different continuous measures such as time and space, as shown by Ullah [20]. These

improvements have led to the using of these methods into the artificial intelligence framework,

where Li [57] and Khosravi [58] use it to estimate confidence levels in the prediction intervals

of neural networks for forecasting tasks. These studies were complemented by Yao [59], who

implemented it in Bayesian neural networks. In addition, functional estimation based on

GP regression have been studied, as proposed by Lee, as well as Matthews [60] and Huang

[61] studied the equivalence between GPs and single-layer deep learning neural networks for

prediction tasks by using covariance functions as kernels. Also, Kabir [62, 63] developed an

artificial neural network for uncertainty quantification, while Tripathy [64] complemented this

work to higher dimensionalities by implementing a surrogate model based on deep learning.
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Chapter 4

Methodology

4.1 Gaussian Process Priors

Gaussian processes define a distribution over f functions that map some space of X entries

to R, that is, f : X → R. Formally, for some finite set of elements taken from X , f is a GP

defined by:

f(x) ∼ GP
(
m(x), k

(
x, x′

))
The admissible functions for ·(·) and k(·, ·) satisfy the condition that their marginals are

distributed as Gaussian, where m(·) is a parametric function and k(·, ·) is a function that

admits a positive semi-definite matrix when evaluated at the points x ∈ X . The mean and

covariance functions map the set of indices to the real numbers, so that m : X → R and

k(·, ·) : X × X → R.

Let xnew be a matrix where each row forms a finite sequence of new input points xnewi for

i ∈ {1, . . . , n}. Then, the covariance matrix can be estimated as:

k (xnew, xnew) =



k (xnew1 , xnew1 ) . . . k (xnew1 , xnewn )

k (xnew2 , xnew1 ) . . . k (xnew2 , xnewn )
... ... ...

k (xnewn , xnew1 ) . . . k (xnewn , xnewn )


The function k (x, x′) models the dependence between the functional values at different input

points x and x′. An usual way to choose k (x, x′) is to consider a radial basis function, defined
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by:

k
(
x, x′

)
= σ2

f exp
(
−‖x− x

′‖
2λ2

)
(4.1)

where (4.1) provides a transition kernel that serves to model smooth and stationary functions,

λ is a scaling parameter, and σ2
f is the variance of the signal. Given m(x) = 0, it is possible

to sample values of f for xnew using a Gaussian process:

fnew(xnew) ∼ N
(
0, K (xnew, xnew)

)
Defining fnew, it follows that:

fnew = fnew(xnew)

=
(
f (xnew1 ) , . . . , f (xnewn )

)T (4.2)

Consider a set of observations Dt = {xt, yt} to make predictions using new data xnew, we take

fnew(xnew) from the posterior distribution p
(
fnew(xnew)|Dt

)
. The observations yt = f(xt) and

the function fnew(xnew) follow a multivariate joint normal distribution:
 f

fnew

 ∼ N


 m (x)

m(xnew)

 ;

 K (x, x) K (x, xnew)

K (xnew, x) K (xnew, xnew)


 (4.3)

with K (x, x) as the kernel evaluated in x. The marginal distribution fnew|f, x, y is still

Gaussian, so:

fnew|f, x, y ∼ N
(
m (xnew, )post , Kpost (f(xnew), f(xnew)

))
where:

mpost (xnew) = m (xnew) +K (xnew, x)K−1 (x, x)
[
f −m (x)

]
(4.4)

Kpost (f(xnew), f(xnew)
)

= K (xnew, xnew)−K (xnew, x)K−1 (x, x)K (x, xnew) (4.5)

Making a generalization, by observing the real values of f with additive noise we obtain the

following model:

yi = f(xi) + εi

εi ∼ N
(
0, σ2

ε

)
(4.6)

y|f ∼ N
(
f(xi), σ2

ε I
)
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where I represents the identity matrix. Noise can be included in the covariance function by

rewriting it as follows:

k
(
f(xi), f(xj)

)
= k

(
xi, xj

)
+ δijσ

2
ε (4.7)

where δij is the Kronecker delta function. Uncertainty is now present in the observations,

so the joint distribution over the unknown data and the known data is augmented in the

covariance equation by the following expression: f

fnew

 ∼ N


 m (x)

m(xnew)

 ;

 K (x, x) + σ2
ε I K (x, xnew)

K (xnew, x) K (xnew, xnew) + σ2
ε I




Thus, we can rewrite the expression for fnew given above as a conditional:

fnew|f, x, y ∼ N
(
m (xnew, )post , Kpost (f(xnew), f(xnew)

))
where:

mpost (xnew) = m (xnew) +K (xnew, x)
(
K (x, x) + σ2

ε I
)−1 [

f −m (x)
]

(4.8)

Kpost (f(xnew), f(xnew)
)

= K (xnew, xnew)−K (xnew, x)
(
K (x, x) + σ2

ε I
)−1

K (x, xnew)+σ2
ε I (4.9)

4.1.1 Derivative Gaussian process

The flexibility of Gaussian processes allows modeling derivatives of functional data [24], being

of major importance in engineering applications, in dynamical systems, and in modeling the

solutions of systems of differential equations.

Differentiation is a linear operator, so the derivative of a GP is still a GP [30]. Therefore, a

Gaussian process can be used to predict about derivatives, and also use derivative observations

to make predictions. The mean of the derivative is equal to the derivative of the mean of the

latent process, which means that:

E
[
∂f(x)
∂xd

]
= ∂ E f(x)

∂xd
(4.10)

The derivatives of the function covariance involve cross-covariance functions between deriva-

tives. For indices i ∈ {1, 2, . . . , K} and j ∈ {1, 2, . . . , d}, each of the covariance matrices is
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expressed as:

Cov
[
f(xi),

∂f(xj)
∂xj,d

]
=
∂k
(
xi, xj

)
∂xj,d

(4.11)

Cov
[
∂f(xj)
∂xj,d

, f(xi)
]

=
∂k
(
xj, xi

)
∂xi,d

(4.12)

Cov
[
∂f(xi)
∂xi,k

,
∂f(xj)
∂xj,d

]
=
∂2k

(
xi, xj

)
∂xj,k∂xj,d

(4.13)

where xi,k denotes the k-th element of xi. This result allow us to define a prior distribution

over the derivative GP in terms of the GP prior, i.e.:

f ∼ GP
(
m(.), k(f,f)(., .)

)
∇f ∼ GP

(
m′(.), k′(., .)

)
The joint distribution of the GP with the addition of uncertainty and its derived process is

given by:
 f

∇f

 ∼ GP


 m(.)

m′(.)

 ,
 k

(
xi, xj

) ∂k(xi,xj)
∂xj,d

∂k(xj ,xi)
∂xi,d

∂2k(xi,xj)
∂xi,k∂xj,d




To predict new observed values y∗ = f∗(x∗) + ε, ε ∼ N
(
0, σ2

ε

)
, the mean of the derivative of

the function f∗(x∗) =
(
f∗(x∗,1), . . . , f∗(x∗,d)

)T
with respect to dimension d is:

E
[
∂f∗
∂x∗,d

]
= ∂ E (f∗)

∂x∗,d

= ∂m′ (x∗)
∂x∗,d

= ∂k (x∗, x)
∂x∗,d

×
[
k (x, x) + σ2

ε I
]−1

y (4.14)

The calculation of the variance is part of the work of Riihimä and Vehtari [65], and is given

as follows:

Var
[
∂f∗
∂x∗,d

]
= ∂2k (x∗, x∗)

∂x∗,d∂x∗,d
− ∂k (x∗, x)

∂x∗,d
×
[
k (x, x) + σ2

ε I
]−1
× ∂k (x, x∗)

∂x∗,d
(4.15)

where:

x = (x1, . . . , xd)T (4.16)

x∗ =
(
x∗,1, . . . , x∗,d

)T
(4.17)
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k (x∗, x) =
(
k
(
x∗,d, x1

)
, . . . , k

(
x∗,d, xd

)T)
(4.18)

The posterior distribution of the derivative process of the observations can be written as:

∂f∗
∂x∗,d

∼ GP

E
[
∂f∗
∂x∗,d

]
,Var

[
∂f∗
∂x∗,d

]
Considering the particular case in which the covariance is of exponential form, we have that:

Cov
(
f(xi), f(xj)

)
= k

(
xi, xj

)
= σ2

f exp
−1

2
‖x(i) − x(j)‖2

λ2


= σ2

f exp
−1

2

D∑
d=1

1
λ2
d

(
x

(i)
d − x

(j)
d

)2
 (4.19)

where σ2
f and λ = (λ1, . . . , λd) are the hyperparameters of the model. The derivatives of the

observations are:

∂

∂x
(i)
d

k
(
xi, xj

)
= σ2

f ×
(
− 1
λ2
d

(
x

(i)
d − x

(j)
d

))
exp

−1
2

D∑
d=1

1
λ2
d

(
x

(i)
d − x

(j)
d

)2
 (4.20)

∂2

∂x
(i)
g ∂x

(j)
h

k
(
xi, xj

)
= σ2

f ×
1
λ2
g

×
(
δgh −

1
λ2
h

(
x

(i)
h − x

(j)
h

) (
x(i)
g − x(j)

g

))

× exp
−1

2

D∑
d=1

1
λ2
d

(
x

(i)
d − x

(j)
d

)2
 (4.21)

where δgh = 1 if g = h, and δgh = 0 if g 6= h [65].

4.2 Probabilistic Solver Model

We want to introduce a probabilistic model that allows to characterize the error of the solution

of an initial-valued ODE, where the solution states are not explicitly defined and are not

available in closed form. To do so, we replace the exact solution x(t) with a finite dimensional

representation xn(t, θ), so that:

ẋ(t) = f
(
x(t), t

)
(4.22)

x(t0) = x0
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and:

y(t) = h
(
xn(t, θ)

)
+ ε(t) (4.23)

ε(t) ∼ N
(
0, σ2

ε

)
Equation (4.22) represents an unobserved theoretical model, while (4.23) represents an ob-

servational model. We formulate the approximation of (4.22) at discrete points {ti}ni=1 as a

Bayesian inference problem, where it is required to know a prior probability measure and a

likelihood function. From this information, a posterior probability measure is defined using

Bayes’ Theorem.

Let y1:t := (y1, y2 . . . , yn) be the observed data, x1:t := (x1, x2 . . . , xn) the unknown states,

p
(
y1:t|x1:t

)
the likelihood, and py (θ) the prior distribution over the solution space. Then, the

posterior distribution is obtained by:

p
(
y1:t|x1:t

)
=

p
(
y1:t|x1:tpy (θ)

)
∫
p
(
y1:t|x1:tpy (θ)

)
dθ

(4.24)

Following the theory developed in the works of Skilling [45] and Chkrebttii et al. [2], it is

proposed to model the uncertainty of the solution of an ODE by means of a Gaussian process

in a space of smoothed functions characterized on time interval [0, T ], by implementing an

efficient algorithm that allows estimating the solution states x(t) and the derivative of the

solution sequentially under the conditions established in the model defined in (1.2).

In this method, the existence of the solutions is well grounded [66], the initial condition

x(0) = x0 represents the exact solution at the boundary conditions and the vector field

f
(
x(t), t, θ

)
provides an approximation to the derivative ḟ(x) in a domain [0, T ].

For an index i ∈ {1, 2, . . . , n}, let (xi, yi) be the observations where xi is the input variable,

yi = f(xi) + εi is the response variable, with εi ∼ N
(
0, σ2

ε

)
. It is of interest to estimate ḟ(x)

without making any prior assumptions. First, let:

f(x) ∼ GP
(
m(.), k (., .)

)
Yaglom [67] proved that if k (., .) is twice differentiable at the origin, f(x) is differentiable in

root mean square. Then:

ḟ(x) ∼ GP

(
0, dk (x, x′)

dxdx′

)
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Given the parametric form of k (., .), the data given in (xi, yi) is useful to estimate the pa-

rameters of k (., .), and then use:

k′′(., .) = dk (x, x′)
dxdx′

(4.25)

to make inferences about ḟ(x).

An alternative method is to assume that the derivative process ẏ = ḟ(x) is a GP. Then, the

process with noisy observations is:

f(x) =
∫ x

0
f(s)ds (4.26)

The covariance function of f(x) can be obtained using a double integration over the covariance

of ḟ(x). We assume that:

ẏ = ḟ(x) ∼ GP
(

0, k
(
x, x′

))
(4.27)

Then, equation (4.27) implies that:

y = f(x) ∼ GP

(
0,
∫ x

0

∫ x′

0
k
(
s, s′

)
dsds′

)
(4.28)

In this paper, we consider an approximation of the solutions of the ODE at n points {t1, t2, . . . , tn},

denoted by:

x̂(t) =
(
x̂(t1), x̂(t2), . . . , x̂(tn)

)T (4.29)

We evaluate the vector field y = f
(
x̂(t)

)
, so that:

f(x) =
(
f
(
x̂(t1)

)
, f
(
x̂(t2)

)
. . . , f

(
x̂(tn)

))T
(4.30)

The likelihood of the model depends on (4.28), which implies that for each pair of locations(
x(ti), x(tj)

)
a double integral calculation is required. When n is sufficiently large, this implies

a high computational cost. An alternative to this operation, is to consider a set of time points

{τ1, τ2, . . . , τn}, thus obtaining:

x̂∗(t) =
(
x̂∗(τ1), x̂∗(τ2), . . . , x̂∗(τn)

)T (4.31)

Evaluating (4.31) over the vector field ẏ = ḟ
(
x̂∗(t)

)
, it follows that:

ḟ(x) =
(
ḟ
(
x̂(τ1)

)
, ḟ
(
x̂(τ2)

)
. . . , ḟ

(
x̂(τn)

))T
(4.32)
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Therefore, by conditioning the joint distribution (y, ẏ)T over ẏ the computational complexity

is simplified [2]. To make inference, the parameters θ of the continuous model are set, as well

as the hyperparameters Σ =
(
σ2
f , λ, σ

2
ε , x0

)
that are associated with the estimation errors.

Finally, the model likelihood, which represents the probabilistic solution of the system, is

written as:

p
(
x (t, θ) , y, ẏ, θ,Σ

)
∝ p

(
x (t, θ) |y, ẏ, θ,Σ

)
p
(
y|ẏ, θ,Σ

)
p
(
ẏ|Σ

)
(4.33)

The posterior distribution of the model is estimated by:

p
(
x (t, θ) , θ,Σ|y(t), ẏ(t)

)
∝ p

(
x (t, θ) |y, ẏ, θ,Σ

)
p
(
y|ẏ, θ,Σ

)
p
(
ẏ|Σ

)
p (θ,Σ) (4.34)

To determine the solution of an ODE as a statistical inference problem defined in the structure

of the state-space models (4.22) and (4.23), we consider a prior distribution that models it

using a Gaussian process and its d− 1 derivatives:
(
x(t), ẋ(t), x(2)(t), . . . , x(q−1)(t)

)
: [0, T ]→ Rd (4.35)

where x =
(
x

(1)
t , . . . , x

(d)
t

)T
for t ∈ [0, T ] is a d-times integrated Wiener process. Here, the

dynamics of xt represents the solutions of the differential equation.

We consider prior distributions given by the Gaussian process:

x(t) ∼ GP
(
m(·), k(t, t′)

)
where m(.) is the mean function and k(t, t′) is the covariance function. We can represent x(t)

by components:

x(t) =
[
x(1)(t), x(2)(t), . . . , x(q−1)(t)

]T
(4.36)

where x(1)(t) and x(2)(t) model x(t) and ẋ(t), respectively. The remaining q− 1 subvectors in

u(t) can be used to model the higher order derivatives in x(t) [68, 69].

The introduction of prior measurements through a Gaussian random vector field reflects

uncertainty about the model approximations, includes information about the quantities of

interest, and allows the implementation of computationally efficient algorithms. Chkrebtii

et al. [2] and, more recently, Tronarp et al. [70] proposed a joint initial prior distribution

of the uncertainty based on the solution and its derivative, with mean vectors ṁ0 and m0,

covariance matrices k̇0(t, t′) and k0(t, t′), and cross-covariance matrices k̃0(t, t′) and k̃0(t′, t).

Graduation Project 39



School of Mathematical and Computational Sciences Yachay Tech University

In order to satisfy the condition x(0) = x0, the following restrictions are imposed:

m0(t) =
∫ t

0
ṁ0(z)dz + x0 (4.37)

k̇0(0, 0) = 0 (4.38)

The initial joint prior distribution and its derivative are evaluated at time point vectors ti
and tj, which may be different. These are defined as:

(
ẋ(ti), x(tj)

)T
|f0 ∼ GP


 ṁ0(ti)

m0
(
tj
)
 ;

 k̇0(t
i
, ti) k̃0

(
ti, tj

)
k̃0
(
tj, ti

)
k0
(
tj, tj

)

 (4.39)

The matrix k̇0
(
ti, tj

)
has entries given by:

k̇0
(
ti, tj

)
=
∫ ti

0

∫ tj

0
k̇0(z, w)dzdw (4.40)

On the other hand, the entries of the cross-covariance matrices are given by:

k̃0
(
ti, tj

)
=
∫ tj

0
k̇0 (ti, z) dz (4.41)

k̃0
(
tj, ti

)
=
∫ tj

0
k̇0 (z, ti) dz (4.42)

The solution x(t) and its derivative ẋ(t) at (4.39) can be updated by conditioning the model

information over the partition τ = (τ1, . . . , τn). Evaluating the model in:

fn = f
(
τn, x(τn), θ

)
= ẋ(τn) (4.43)

the marginal posterior predictive distribution x (τn) |ẋ(τn−1) is obtained. Since the marginal

distributions follow the distribution of a GP [2, 5, 24], the solution vector is distributed as:

x(tj)|ẋ(ti) ∼ GP
(
ṁ0, k̇(., .))

)
Analogously, the marginal distribution of the derivative is obtained:

ẋ(ti)|x(tj) ∼ GP
(
m0, k0(., .)

)
The updating of (4.39) is performed sequentially, so that the derivative of the exact solution

at the initial condition ẋ∗0 (τ1) in τ1 = 0 is obtained by evaluating the function:

f1 = f
(
τ1, x

∗
0(τ1), θ

)
= ẋ∗ (τ1) (4.44)
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In accordance with the aforementioned, the next iteration will be given by:

(
ẋ(ti), x(tj)

)T
|f1 ∼ N


 ṁ1(ti)

m1
(
tj
)
 ;

 k̇1(ti, ti) k̃1
(
ti, tj

)
k̃1
(
tj, ti

)
k1
(
tj, tj

)

 (4.45)

Means and covariances are updated in the time vectors ti and tj, so that:

ṁ1(ti) = ṁ0(ti) + k̇0 (ti, τ1) k̇0 (τ1, τ1)−1 [f1 − ṁ0(τ1)
]

(4.46)

m1(tj) = m0(tj) + k̇0 (τ1, τ1)−1 k̃0(tj, τ1)
[
f1 − ṁ0(τ1)

]
(4.47)

k̇1(ti, ti) = k̇0(ti, ti)− k̇0 (ti, τ1) k̇0 (τ1, τ1)−1 k̇0 (τ1, ti) (4.48)

k̇1(tj, tj) = k̇0(tj, tj)− k̃0
(
tj, τ1

)
k̇0 (τ1, τ1)−1

(
k̃0
(
tj, τ1

))T
(4.49)

Following a similar process, the second realization f2 is obtained by simulating x(τ2) at time

τ2 of the posterior predictive distribution:

x (τ2) |f1 ∼ GP
(
m1 (τ2) , k̇1(τ1, τ2)

)
Then, f2 evaluates to:

f2 = f
(
τ2, x1(τ2), θ

)
= ẋ(τ2) (4.50)

The simulated value x (τ2) |f1 does not guarantee that f2 is equal to its derivative over τ2.

This implies the existence of an error ε2τ2 =
(
f2 − ẋ(τ2)

)2. In general, the total error can be

quantified as follows:
d∑
i

ε2τi
=

d∑
i

(
ẋ(τi)− f

(
τi, x(τi), θ

))2
(4.51)

A logical way to obtain new data is to simulate it from a Gaussian process of the form:

f2|f1 ∼ GP
(
ṁ (τ2) ,Λ1(τ2)

)
where the mean is ṁ (τ2) = ẋ (τ2), and the covariance is Λ1(τ2) = k̇1(τ2, τ2).

The iterative process continues, and in the next step (4.45) is updated. Thus:

(
ẋ(t), x(t)

)T |f2, f1 ∼ N


 ṁ2(ti)

m2
(
tj
)
 ;

 k̇2(ti, ti) k̃2
(
ti, tj

)
k̃2
(
tj, ti

)
k2
(
tj, tj

)

 (4.52)

The marginal means and covariances evaluated on the time vectors ti and tj are updated as:

ṁ2(ti) = ṁ1(ti) + k̇1 (ti, τ2)
(
k̇1 (τ2, τ2) + Λ1(τ2)

)−1 [
f2 − ṁ1(τ2)

]
(4.53)
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m2
(
tj
)

= m1(tj) + k̃1
(
tj, τ2

) (
k̇1 (τ2, τ2) + Λ1(τ2)

)−1 [
f2 − ṁ1(τ2)

]
(4.54)

k̇2(ti, ti) = k̇1(ti, ti)− k̇1 (ti, τ2)
(
k̇1 (τ2, τ2) + Λ1(τ2)

)−1
k̇1 (τ2, ti) (4.55)

k̇2(tj, tj) = k̇1(tj, tj)− k̃1
(
tj, τ2

) (
k̇1 (τ2, τ2) + Λ1(τ2)

)−1
(
k̃1
(
tj, τ2

))T
(4.56)

After n steps, x(τn) is generated at τn from the predicted marginal posterior distribution:

x (τn) |fn−1, . . . , f1 ∼ GP
(
ṁ (τn) , Λn−1 (τn)

)
where Λn−1(τn) = k̇n−1(τn, τn).

The n-th update of (4.45) is carried out by evaluating ti and tj as follows:

(
ẋ(t), x(t)

)T |fn, . . . , f1 ∼ N


 ṁn(ti)

mn

(
tj
)
 ;

 k̇n(ti, ti) k̃n
(
ti, tj

)
k̃n
(
tj, ti

)
kn
(
tj, tj

)



Finally, the marginal means and covariances evaluated at ti and tj are updated by:

ṁn(ti) = ṁn−1(ti) + k̇n−1 (ti, τn)
(
k̇n−1 (τn, τn) + Λn−1(τn)

)−1 [
fn − ṁn−1(τn)

]
(4.57)

mn

(
tj
)

= mn−1(tj) +
(
k̇n−1 (τn, τn) + Λn−1(τn)

)−1
k̃n
(
tj, ti

) [
fn − ṁn−1(τn)

]
(4.58)

k̇n(ti, tj) = k̇n−1(ti, tj)− k̇n−1 (ti, τn)
(
k̇n−1 (τn, τn) + Λn−1(τn)

)−1
(
k̃n−1

(
τn, tj

))T
(4.59)

k̇n(ti, tj) = k̇n−1(ti, tj)−
(
k̇n−1 (τn, τn) + Λn−1(τn)

)−1
k̃n−1 (ti, τn)

(
k̃n−1

(
tj, τn

))T
(4.60)

Chkrebtii et al. [2] and Overstall et al. [5] sum all the steps above in a sequential algorithm for

updating and sampling, at the times t = (t1, . . . , tn)T , a bivariate Gaussian process between

x(t) =
(
x(t1), . . . , x(tn)

)T and its derivative ẋ(t) = f
(
t, x(t), θ

)T , also using and a time grid

τ = (τ1, . . . , τn)T to evaluate ẋ(t) =
(
ẋ(τ1), . . . , ẋ(τn)

)T .

Algorithm 01: Sequential sampling and updating of GP-based solutions of a ODE system.

1. Let x(0) = x0, τ1 = t0, Λ1 = 0, y f1 = f (x0, t0, θ)

2. For r = 1, . . . , n− 1

(a) Let τ r = (τ1, . . . , τr)T , tr = (t1, . . . , tr)T
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(b) Compute

Br =
(
k̇0 (τ r, τ r) + Λr

)−1

ar = Br × k̃0 (τ r, τr+1)

kr = k0 (τr, τr)− k̃0 (τr+1, τ r)×Br × k̃0 (τ r, τr+1)

k̇r+1 = k̇0 (τr+1, τr+1)− k̇0 (τr+1, τ r)×Br × k̇0 (τ r, τr+1)

Λr+1 = diag
(
Λr, k̇r+1

)
(c) Compute

mr = x0 + FT
r × ar

where Fr ∈ Mrs composed by elements of f , with the i-th row given by fi for

i = 1, . . . , n− 1

(d) Sample

x (τr+1) ∼ GP (mr, krIS)

(e) Evaluate

fτ+1 = f
(
x(τr+1), τr+1, θ

)
3. Compute:

Bn =
(
k̇0 (τ n, τ n) + Λn

)−1

An(t) = Bn × k̃0 (τ , t)

Mn(t) = 1m × xT0 + An(t)× Fn

where 1m is a m-vector with all entries equaling to 1, Fn ∈Mns with k-th row given by

fk for k = 1, . . . , n, and

kn (t, t) = k0(t)− k̃0 (t, τ ) BN k̃0 (τ , t)

4. For l = 1, . . . , s

xl(t1), . . . , xl(tn)|ẋl(τ1), . . . , ẋl(τn) ∼ N
(
MN(t)× el, kn (t, t)

)
where el is the l-th unitary vector
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Given an initial solution x0 and parameters θ, the prior GP can update the solutions using the

derivative evaluations over the grid of points τ = (τ1, . . . , τn)T by implementing Algorithm 1,

sequentially conditioning on f (x, τr+1; θ) and calculating the solution state xl from sampling

the posterior distribution over xr. The marginal GP distribution for xl(t) is given by:

mnl(t) = m0l + k̃0 (t, τ )×Bn × Fn × el (4.61)

kn
(
t, t′

)
= k0

(
t, t′

)
− k̃0(t, τ )×Bn × k̃0(τ , t) (4.62)

for l ∈ {1, . . . , s}. In (4.61) and (4.62), Fn is the matrix of the evaluations of the derivatives

and Bn is the covariance matrix of the updated derivatives.

4.3 Polynomial Chaos Expansion (PCE) and Gaussian
Processes (GP)

Consider a dynamic system whose behavior is represented by the following mathematical

model:

Y = f(X), X ∈ DX ⊂ RM (4.63)

where X = (X1, . . . , XM)T represents the input parameters of the system, while Y is the

quantity of interest.

Once f has been chosen, the sources of uncertainty must be quantified. The available infor-

mation is processed to build the probabilistic model that fits the input data, represented by

a random vector X and characterized by a probability density fX(·). If data are assumed

to be independent, the joint distribution can be defined by the following set of marginal

distributions:

fX (x1, . . . , xM) =
M∏
i=1

fXi
(xi) (4.64)

Consequently, Y = f(X) becomes a random variable whose properties are implicitly defined

by the propagation of uncertainty and which is described by the joint probability distribution

fX(.).
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Let Y be a second order stochastic process. If Y has finite variance, then it belongs to a

Hilbert space and can be represented by:

fPCE(X) =
∞∑
i=0

βiZi (4.65)

where Y is an infinite series, {Zi}∞i=0 denotes a numerable set of random variables which forms

a Hilbert space basis, and {βi} are the coefficients of the series.

Hilbert spaces guarantee the existence of such bases and their representation, however, there

are many ways to represent them. In the case of polynomial chaos expansions, the terms of

bases {Zi}∞i=0 are multivariate orthonormal polynomials with an input vector X, i.e, Zi =

Ψi(X). The approximation (4.65) can be rewritten by truncating the series into M terms:

fPCE(X) =
M∑
i=0

βiΨi(X) (4.66)

For the construction of the basis, we assume the existence of a random vector of independent

components denoted by {Xi, i = 1, . . . , n}, and of two arbitrary functions φ1, φ2 : x ∈

Dxi
→ R. A functional inner product is defined as:

〈φ1, φ2〉i =
∫
Dxi

φ1(x)φ2(x)fXi
(x)dx

= EfXi
(x)
(
φ1(x)φ2(x)

)
(4.67)

Functions of this type are said to be orthogonal with respect to the probability measure

P(dx) = fXi
(x)dx, if:

E
(
φ1(x)φ2(x)

)
= 0 (4.68)

Using the previous notation and classical algebra operations, we can construct a family of

orthogonal polynomials
{
π

(i)
k , k ∈ N

}
that satisfies:

〈π(i)
j , π

(i)
k 〉 = E

{
π

(i)
j (xi)π(i)

k (xi)
}

=
∫
Dxi

π
(i)
j (xi)π(i)

k (xi)fXi
(x)dx

= aijδik (4.69)

where the subscript k denotes the degree of the polynomial π(i)
k , δik is the Kronecker delta

function, and aij = 〈π(i)
j , π

(i)
j 〉i.
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The family of polynomials can be obtained by applying Gram-Schmidt orthogonalization to

the canonical form of monomials
{

1, x, x2, . . .
}

. For standard distributions as the associated

family of orthogonal polynomials is known, being Legendre, Hermite, Laguerre or Jacobi

polynomials. However, the family obtained is usually not orthonormal, so the following

normalization technique is applied:

Ψ(i)
j =

π
(i)
j√
aij

(4.70)

for the indexes i ∈ {1, . . . ,M} and j = {1, . . . ,N}.

To extend the computation of bases as seen in (4.65) to the case of multivariate polynomials,

tensor products of orthonormal univariate polynomials are constructed by defining tuples or

multiple indices α ∈ NM , which represent ordered lists of natural numbers of the form:

α = (α1, . . . , αM)T (4.71)

A multivariate polynomial Ψα can be associated by any multiple index α by means of:

Ψα(x) =
M∏
i=1

Ψ(i)
αi

(xi) (4.72)

where the polynomials
{

Ψ(i)
k : k ∈ N

}
are defined according to the i-th marginal distribution

given in (4.69) and (4.70). Moreover, multivariate polynomials with input vector X are also

orthonormal. Consequently, for all α, θ ∈ NM we have that:

E
{
Ψα(X)Ψθ(X)

}
=
∫

Ψα(X)Ψθ(X)fX(x)dx

= δαθ (4.73)

where δαθ is the Kronecker delta function.

Given the above, it can be proved that the set of all multivariate polynomials with an input

random vector X forms a basis in Hilbert spaces, in which Y = f(X) is represented as:

f̂PCE(X) =
∑
θ∈NM

βθΨθ(X) (4.74)

By the orthogonal property of the polynomial chaos basis (4.73), each expansion coefficient
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can be computed as follows:

E
{
f(X)Ψα(X)

}
= E

βθ ∑
θ∈NM

Ψα(X)Ψθ(X)


= E
 ∑
θ∈NM

βθδαθ


= βα (4.75)

where α = θ. Equivalently:

βl = E
{
f(X)Ψl(X)

}
=
∫
f(X)Ψl(X)fX(x)dx

≈
N∑
i=1

ξifXi
(xi)Ψl(Xi) (4.76)

for l ∈ {0, . . . ,M}. En (4.76), the second equation is obtained by numerical integration

techniques, such as the Gaussian quadrature rule; where {Xi} in i ∈ {1, . . . , N} and {ξi}

in i ∈ {1, . . . , N} represent the nodes and weights, respectively. This equation can also be

obtained using a Monte Carlo type algorithm, such as importance sampling:

βl = E
{
f(X)Ψl(X)

}
=
∫
f(X)Ψl(X)fX(x)dx

≈ 1
n

N∑
i=1

Ψl(xi)
fXi

(xi)
qXi

(xi)

= 1
n

N∑
i=1

ξiΨl(xi) (4.77)

with ξi = fXi
(xi)

qXi
(xi)

and l ∈ {0, . . . ,M}. Here, qX (x) is known as an importance function,

which is generally easy to sample and has a support containing fX(x).

The series (4.74) is infinite, and in order to work with it it must be truncated to M terms, so

that:

f̂PCE(X) =
M∑
i=0


N∑
i=1

ξif(Xi)Ψi(Xi)
Ψi(x)

=
M∑
i=0

βiΨi(x) (4.78)
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In practice, experimental data include an error rate that is mathematically represented as a

random variable εi ∼ N
(
0, σ2

)
. Then, for each component i ∈ {1, . . . , N}, the response is

written as:

Yi = f̂PCE (Xi) + εi (4.79)

with f̂PCE (Xi) as a function that remains unknown.

Now, we can connect the polynomial chaos expansion technique to Gaussian processes. Con-

sider an input X = {Xi, i = 1, . . . , N} and an output response Y = {Yi, i = 1, . . . , N},

where:

Y = f(X) + ε

ε ∼ N
(
0, σ2

ε I
)

(4.80)

f(X) ∼ GP
(
mprior(X), kprior(X,X)

)
Using Bayes’ Theorem, new data with its related error can be predicted using the posterior

distribution:

f(x)|Y,X, x, θ ∼ N
(
mpost(x), kpost(x, x)

)
where:

mpost(x) = KT
x

(
K + σ2

ε I
)−1

Y (4.81)

kpost(x, x) = Kxx −KT
x

(
K + σ2

ε I
)−1

Kx (4.82)

where the covariance matrices are denoted as K = k (X,X) ∈ RN×N , Kij = k
(
Xi, Xj

)
,

Kx = k (X, x) ∈ RN×1 and Kxx = k(x, x) ∈ R.

On the other hand, the equation (4.81) can be represented as a combination of N kernels of

functions:

mpost(x) = f̂GP (x)

=
N∑
i=1

βik (Xi, x) (4.83)

with β =
(
K + σ2

ε I
)−1

Y .

Polynomial chaos expansions and Gaussian processes can be studied under the same struc-

ture and combined to improve estimation by linking through the reproduction of kernels of
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covariance functions in Hilbert spaces. Other approximation methods have been developed in

recent literature using the structure of reduced rank models combined with Gaussian processes

[53, 71]. It consists mainly in defining the isotropic covariance function k (x, x′) = k
(
‖r‖

)
,

where r = x− x′ is a distance measurement under the Euclidean norm ‖.‖.

If k (r) is continuous and positive definite, it is defined as:

k
(
x, x′

)
= 1

(2π)d
∫

exp
(
iωT r

)
µ (dω) (4.84)

where µ is a positive measure. When the measure µ(dω) = S(ω)dω has a spectral density,

S(ω), associated with the covariance k(r). The definition allows establishing a Fourier duality

between the covariance and the spectral density, formalized as the Wiener-Khinchin theorem.

The application of this theorem results in the following identities:

k (r) = 1
(2π)d

∫
S(ω) exp

(
iωT r

)
dω (4.85)

S (ω) =
∫
k (r) exp

(
−iωT r

)
dω (4.86)

In (4.84) and (4.85), k (r) is the inverse Fourier transform and S (ω) represents the Fourier

transform.

Solin and Särkkä [53] define a covariance operator K as a pseudo differential operator associ-

ating to each covariance function k (x, x′), which satisfies:

Kφ =
∫
k
(
·, x′

)
φ
(
x′
)
dx′ (4.87)

The definition given in (4.87) allows the covariance to be approximated in similarly to the

methods used to approximate differential and pseudo differential operators of partial differ-

ential equations in Hilbert spaces.

When covariance is isotropic, the Fourier representation is a transfer function with spectral

density S(ω) following a Gaussian distribution, with an associated covariance operator:

S(ω) 4= S
(
‖ω‖

)
(4.88)

If a polynomial expansion is applied to the density, we have that:

S
(
‖ω‖

)
= a0 + a1‖ω‖2 + a2

(
‖ω‖2

)2
+ a3

(
‖ω‖2

)3
+ a4

(
‖ω‖2

)4
+ . . . (4.89)
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Since the transfer function corresponds to Laplace’s operator ∇2 = −‖ω‖2, for a regular f

function it is satisfied that:

F [∇2f ](ω) = −‖ω‖2F [f ](ω) (4.90)

where F [.] denotes the Fourier transform of its argument.

Taking the inverse of the Fourier transform, it gives the covariance operator K:

K = a0 + a1
(
−∇2

)
+ a2

(
−∇2

)2
+ a3

(
−∇2

)3
+ a4

(
‖ − ∇2

)4
+ . . . (4.91)

Now, let us define the pseudo-differential operator as a series of differential operators that

approaches the Laplacian operator through Hilbert’s method. In order to carry out the

approximation of the covariance operator in Hilbert space, we consider a covariance function

k (x, x′) and the inner product:

〈f(x), g(x)〉 =
∫

Ω
f(x)g(x)ω(x)dx (4.92)

where Ω ⊂ Rd is a compact set. The inner product induces a Hilbert space of random

functions.

If a basis
{
φj(x)

}
is fixed, a Gaussian process f(x) =

(
f(x1), . . . , f(xn)

)T , can be expanded

in terms of an infinite series:

f(x) =
∞∑
j=1

ζjφj(x) (4.93)

where each of the ζj components is iid in a multivariate Gaussian distribution, while φj(x) is

obtained from the eigenfunctions of k (x, x′) with respect to the inner product given in (4.92).

Then, (4.93) becomes into a Karhunen-Loéve series.

To carry out the approximation of the Laplacian operator in a Hilbert space, the eigenvalue

problem for Laplacian operators is considered:

−∇2φj(x) = λjφj(x), x ∈ Ω (4.94)

φj(x) = 0, x ∈ ∂Ω (4.95)

Since the negative version of the Laplacian operator is positive definite, the set of eigenfunc-

tions φj(.) are orthonormal with respect to (4.92), that is:∫
Ω
φi(x)φj(x)dx = δij (4.96)
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where δij is the Kronecker delta function, and all the eigenvalues λj are positive real numbers.

Then, the negative Laplacian operator can be expressed in terms of an expected value:

−∇2f(x) =
∫
l
(
x, x′

)
f
(
x′
)
dx′ (4.97)

where l (x, x′) is a kernel of the form:

l
(
x, x′

)
=
∞∑
j=1

λjφ (x)φ
(
x′
)

(4.98)

For n ∈ {1, 2, . . .}, the development in powers of the operator defined in (4.98) is given by:

ln
(
x, x′

)
=
∞∑
j=1

λnj φ (x)φ
(
x′
)

(4.99)

where the negative Laplacian operator is:

(
−∇2

)n
f(x) =

∫
ln
(
x, x′

)
f
(
x′
)
dx′ (4.100)

Then, working (4.100) on both sides, we have that:

Kf(x) =
[
a0 + a1

(
−∇2

)
+ a2

(
−∇2

)2
+ a3

(
−∇2

)3
+ . . .

]
f(x)

=
∫ [

a0 + a1l
1
(
x, x′

)
+ a2l

2
(
x, x′

)
+ a3l

3
(
x, x′

)
+ . . .

]
f
(
x′
)
dx′ (4.101)

Comparing (4.101) with (4.87), and using the formula given in (4.99), we approximate the

covariance function as:

k
(
x, x′

)
≈ a0 + a1l

1
(
x, x′

)
+ a2l

2
(
x, x′

)
+ a3l

3
(
x, x′

)
+ . . .

=
∞∑
j=1

[
a0 + a1λ

1
j + a2λ

2
j + a3λ

3
j + . . .

]
φj (x)φj

(
x′
)

(4.102)

Evaluating the spectral density series at ‖ω‖2 = λj, it follows that:

S
(√

λj

)
= a0 + a1λ

1
j + a2λ

2
j + a3λ

3
j + . . . (4.103)

Substituting (4.103) into (4.102), an approximation of the form follows:

k
(
x, x′

)
≈
∞∑
j=1

S
(√

λj

)
φj (x)φj

(
x′
)

(4.104)

where S(.) is the spectral density of the covariance function, λj is the j-th eigenvalue, and

φj(.) is the eigenvalue function of the Laplace operator.
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Once the covariance approximation is calculated, it can be combined with Gaussian processes

to make predictions. Recall that Gaussian processes can be formulated as a prediction of an

unknown output f (Xnew) associated with the entry of a new known fact Xnew ∈ Rn, given a

set of training data D =
{
(Xi, Yi) , i = 1, . . . , n

}
.

Evaluating f (Xnew) =
(
f
(
x(1)
new

)
. . . , f

(
x(n)
new

))T
on a vector of new data Xnew is considered

as a realization of a GP, such that f(xnew) ∼ GP
(
0, k (x, x′)

)
. If an error rate εi ∼ N

(
0, σ2

ε

)
is added to the process, we have that:

Yi = f(Xi) + εi (4.105)

Rasmussen and Williams [30] showed that the posterior distribution of the new data is:

f (Xnew) |D ∼ N
(
E
(
f(Xnew)

)
,Var

(
f(Xnew)

))
where:

E
(
f(Xnew)

)
= kTnew

(
K + σ2

ε I
)−1

Y (4.106)

Var
(
f(Xnew)

)
= k (xnew, xnew)− kTnew

(
K + σ2

ε I
)−1

knew (4.107)

with Kij = k
(
xi, xj

)
, knew is an n-dimensional vector with the j-th entry of k

(
xnew, xj

)
.

To avoid the computation of inverse matrices in (4.106) and (4.107), we use the approximation

obtained in (4.104) by performing a projection of the GP onto a truncated set of m basis

functions such that:

f(x) =
m∑
j=1

ζjφj(x) (4.108)

where ζj ∼ N

(
0, S

(√
λj

))
.

From the above, it is concluded that it is possible to find an approximate decomposition of

the covariance matrix K ≈ ΦΛΦ, with Λjj = S
(√

λj

)
as a diagonal matrix of the eigenvalues

for j ∈ {1, . . . ,m}.

Using the matrix inversion equations given in (4.106) and (4.107), we obtain:

E
(
f(xnew)

)
≈ φnew

(
ΦTΦ + σ2

εΛ−1
)−1

ΦTy (4.109)

Var
(
f(xnew)

)
≈ σ2

εφ
T
new

(
ΦTφ+ σ2

εΛ−1
)−1

φnew (4.110)

where φnew(Xnew) =
(
φ1(x(1)

new), . . . , φm(x(n)
new)

)T
is an m-dimensional vector with the j-th

entry given by φj (xnew) [53].
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4.4 Experimental Setup

4.4.1 Computational Requirements

This research project is performed using the following hardware and software resources:

• Hardware: Computer with Intel® Core™ i5-7200U processor at 2.50GHz and 8 GB

RAM, running under Windows 10 64-bit operating system.

• Software: Jupyter Notebooks 6.4.0 with Python 3 kernel, using the libraries numpy

[72] and scipy [73] for the UQDES algorithm, chaospy [74] for the PCE addition, and

time and tensorflow [75] for the metrics computation.

4.4.2 Computational Complexity

To analytically calculate the efficiency of the UQDES and PCE algorithms, a computational

complexity study was carried out in [2] and [74] in order to analyze the amount of compu-

tational resources required to execute them. This was be interpreted through the statistical

measure Big-O notation, through which the relationship between the size of the input and

the steps that are executed in the algorithms will be estimated by means of mathematical

notation that describes the behavior of the functions when the limit of the arguments tends

to infinity.

In Algorithm 1, a Markovian assumption was used for make the modelling very fast-changing

dynamics more flexible, reducing the computational cost compared to deterministic numerical

methods. Also, considering the using of isotropic covariance structures, it requires O(n)

operations for the mean and covariance updates [2] by the truncation of weight matrices.

On the other hand, the polynomial chaos implementation offered by chaospy replaces the

generation of multivariate pseudo-random realizations for the probability distribution used

in most uncertainty quantification algorithms by a series of univariate realizations based on

the assumption of stochastic independence of the dimensions [74], which considerably reduces

the computational complexity of the algorithm in both pseudo-spectral projection and point
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collocation methods, especially in high-dimensional cases.

In this work, the execution time will be used as the measure that will give a idea about the

performance and, consequently, the efficiency of the algorithms.

4.4.3 Performance Measures

To evaluate the goodness of fit of the different algorithms, performance measures that allow

us to make quantitative comparisons about the prediction rate of the applied techniques

will be used. Literature shows a large number of metrics that are based on the difference

between true and predicted values to measure the accuracy of a model. In this work, the

metrics considered are closely related to the loss functions of L1 and L2 in the sense that

the loss of L1 minimizes the error, which is defined as the sum of all the absolute differences

between true and predicted values, while the loss of L2 minimizes the squared value of these

differences. Measures based on squared differences place more emphasis on outliers: because

of quadrature, predictions that are far from the true values are penalized more strongly than

closer predictions.

Given a probabilistic model and a set of latent states, we denote ŷt as a data estimate for a

time point t, and yet as the true data. Then, we define the following performance measures:

1. Root mean square error (RMSE):

RMSE =

√√√√ 1
T

T∑
t=1

(ŷt − y∗t)2 (4.111)

2. Standardized mean squared error (SMSE):

SMSE =
n∗∑
t=1

(y∗t − µ∗t)2

Var (y) (4.112)

where:

µ∗t = E
(
f(x∗t)

)
(4.113)

σ2
∗t = Var

(
f(x∗t)

)
+ σ2

ε (4.114)

are the predictive mean and variance for test sample t = 1, 2, . . . , n∗, and y∗t is the

actual test value. The real data variance is denoted by Var(y).
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3. Mean standardized log loss (MSLL):

MSLL = 1
n∗

n∗∑
t=1

(y∗t − µ∗t)2

σ2
∗t

+ ln 2πσ2
∗t (4.115)

whose definition follows the notation given in (4.113) and (4.114).
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Chapter 5

Results and Discussion

To exemplify the methodology proposed above, three coupled differential equation models

which are widely used in physics, epidemiology and biology have been proposed. In these

systems, uncertainty is evaluated by comparing the estimated solutions with the numerical

solution provided by the Python dependency scipy.integrate, and the effectiveness of the

proposed solvers is quantified by performance measures such as root mean squared error

(RMSE), standardized mean squared error (SMSE) and mean standardized log loss (MSLL).

5.1 Lorenz Attractor Model

In this work we will use (σ, β, ρ) = (10, 8/3, 28) since at these points the attractor exhibits

chaotic behavior [8]. A vector of initial conditions (x0, y0, z0) = (−12, 15, 38) in an interval

of T = [0, 20] was considered. After running 2000 realizations of the UQDES algorithm, the

three-dimensional model was constructed.

Here, the blue trajectory represents the numerical solution and the light blue spectrum are

the model realizations with uncertainty, noting that the perturbed trajectories represent a

modification of the attractor orientation but do not change radically its overall behavior.

On the other hand, a generalized polynomial chaos sampling was performed, with Legendre

polynomials of order 4 that generated 50 basis functions fitted by Gaussian quadrature. Due

to the geometry of the attractor, approximate it by this method can be complicated in initial
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Figure 5.1: 3D reconstructed solutions for the Lorenz model.
Left, GP-Based vs. Numerical solutions. Right, GP+PCE vs. Numerical solutions.

conditions in which the dynamics of the attractor results in chaos. In fact, note that the

calculated realizations become spare and depart from the expected trajectory as time goes

by, presenting an increase in the standard deviation and therefore in the variance of the

realizations.

Figure 5.2: Individual solutions for Lorenz model.
Left, GP-Based vs. Numerical solutions. Right, GP+PCE vs. Numerical solutions.

Comparing the numerical solution with the sampling of the solutions with the GP-based

method and with addition of the polynomial chaos expansion, we observe that the polynomial

chaos simulation has a rather more unstable behavior with a clear variability in the functions

x(t) and y(t), which is noticeable from the beginning of the time interval.

Taking the mean of the realizations to compute the performance measures, we can observe

that a considerably higher error rate is present in the functions x(t) and y(t), according with

what was observed in the plot of the trajectories. In general, polynomial chaos expansions

did not help to estimate the model adequately, perhaps due to its complex structure [76].
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Function Technique RMSE SMSE MSLL

x(t)
GP-Based 11.7409 5566.6898 8.5237
GP+PCE 10.0168 9242.2935 9.5369

y(t)
GP-Based 13.1429 5578.0299 8.7529
GP+PCE 11.2242 9166.5040 9.7348

z(t)
GP-Based 11.3804 5566.4833 8.4612
GP+PCE 6.9450 2570.9264 6.7482

Table 5.1: Performance Measures for Lorenz model

After running each of the programs 10 times, we obtained an average of the execution time,

where we can notice a considerable difference between the two programs. This may be due

to the high sensitivity of the PCE-based methods to the chaotic dynamics of the attractor.

Technique Execution Time (s)
GP-Based 3.6883
GP+PCE 13.2190

Table 5.2: Execution Time for Lorenz model.

5.2 Kermack-McKendrick SIR Model

For this coupled model, we will use the set of parameters (β, γ) = (0.22, 0.1) and initial

conditions (S(0), I(0), R(0)) = (1, 0, 0) in an interval T = [0, 200].

Figure 5.3: 3D reconstructed solutions for SIR model.
Left, GP-Based vs. Numerical solutions. Right, GP+PCE vs. Numerical solutions.
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A wide range of disturbances can be observed in the estimation of the GP technique, with un-

stable and periodic trajectories, which are concentrated at the beginning of the time interval.

On the other hand, the trajectories returned by adding the polynomial chaos fit are smoother

and have a mean closer to the numerical estimated paths of the solution. The method was

applied with Legendre polynomials of order 3 resulting in 50 basis functions. The effect of the

variability of the trajectories has a better understanding in the three-dimensional projection

of the model.

Figure 5.4: Individual solutions for SIR model.
Left, GP-Based vs. Numerical solutions. Right, GP+PCE vs. Numerical solutions.

On the other hand, the mean squared error rates do not differ considerably between methods,

but the standardized error shows a lower error in the method based on GPs. This may occur

because the mean of the realizations is closer to the original solution; however, the high

variability of data must be considered. Although as the polynomial chaos increases the error

is higher, the sampled functions are smoother which allows a more adequate prediction of the

function at all its points.

Function Technique RMSE SMSE MSLL

S(t)
GP-Based 0.0325 8.1571 0.1750
GP+PCE 0.1480 193.7416 0.1471

I(t)
GP-Based 0.0355 420.2386 1.7746
GP+PCE 0.0403 736.1283 0.2806

R(t)
GP-Based 0.0337 8.8735 0.1035
GP+PCE 0.1404 176.2106 0.1750

Table 5.3: Performance Measures for SIR model.

Finally, after ten runs, the average run time increases slightly with the addition of polynomial

Graduation Project 59



School of Mathematical and Computational Sciences Yachay Tech University

chaos, which does not imply an unusual result given the distribution domain, the type of

polynomial and the quadrature used.

Technique Execution Time (s)
GP-Based 02.9691
GP+PCE 03.2970

Table 5.4: Execution Time for SIR model.

5.3 FitzHugh–Nagumo Model

For the simulations, the values of the parameters used in [77] will be used, which are (a, b, τ) =

(0.5, 0.7, 0.8) and a current amount I = 12.5. In this study, we have considered the initial

conditions (v(0), w(0) = (0, 0) to run simulations in a interval time T = [0, 200]. For the

implementation of polynomial chaos, 56 basis functions were generated from Legendre poly-

nomials of degree 3, using the Gaussian quadrature rule.

Figure 5.5: 3D reconstructed solutions for FitzHugh–Nagumo model.
Left, GP-Based vs. Numerical solutions. Right, GP+PCE vs. Numerical solutions.

A good overall estimation can be observed using the GP-based algorithm, where the dis-

tance between the simulated trajectories and the numerical solution is small. Moreover, the

simulations follow very closely the shape of the numerical trajectory so we can affirm that

its variability is low. On the other hand, the addition of the chaos component considerably

improves the prediction, resulting in trajectories that overlap the numerical solution.
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Figure 5.6: Individual solutions for FitzHugh–Nagumo model.
Left, GP-Based vs. Numerical solutions. Right, GP+PCE vs. Numerical solutions.

The above-mentioned observations are confirmed by the performance measures, which show

a much lower error than in the rest of the models. Both methods yielded very small error

rates, indicating that in this model there is no substantial modification of the solutions when

simulations are generated.

Function Technique RMSE SMSE MSLL

v(t)
GP-Based 3.5874e−17 1.4399e−30 2.4187
GP+PCE 0.1153 1.4772 2.4335

w(t)
GP-Based 1.0268e−17 6.3392e−31 0.7372
GP+PCE 0.0310 0.5823 0.7359

Table 5.5: Performance Measures for FitzHugh-Nagumo model.

In a similar way to the SIR model, by calculating the mean of the execution time after ten

runs of each algorithm for FitzHugh-Nagumo model, an increase in run time is found when

implementing the polynomial chaos expansion addition.

Technique Execution Time (s)
GP-Based 03.0034
GP+PCE 03.4850

Table 5.6: Execution Time for FitzHugh-Nagumo model.
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Chapter 6

Conclusions

In real life, uncertainty is present in almost all systems modeling physical, biological, chemical

and even social and economic behaviors. For this reason, quantifying its effect within the esti-

mation of the solutions of these models helps experts to predict divergences that could occur

in the presence of perturbations. This can cause undesired effects, but due to the computa-

tional complexity that it usually has, it is ignored. In this work, this problem is addressed by

using a GP-based algorithm and its combination with recently studied components, such as

polynomial chaos expansions.

To check the outcome of both techniques, they were tested on models which can be challenging

case studies due to their dynamics. The algorithm proposed by Chkrebtii showed a mean

relatively close to the numerical solution in all the cases, but the randomness of the samplings

resulted in the existence of several sparse trajectories. This shows that the uncertainty rate

in the estimation of the solutions is significant, especially in the SIR model where constant

perturbations are shown.

On the other hand, the polynomial chaos addition yielded good results in terms of similarity

to the mean of the GP-based simulations, as it was expected, and approached toward the

numerical solutions. However, simulated trajectories of the Lorenz model depart from the

solutions as time progressed, which may suggest that this technique is sensitive to the chaotic

structure of the model. Finally, a comparison between the two approaches versus the numer-

ical solution given by Python shows a better estimation when polynomial chaos is added in
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two systems. As a consequence, the error rate is lower, specially in the FitzHugh-Nagumo

model.

However, the tests on these models do not represent a decisive opinion about the contrast of

both methods in terms of performance, so future studies on other systems of chaotic behavior

are suggested that may provide a better approach to the interpretation of the results of

the techniques. On the other hand, it is recommended to make modifications in the basis

functions of the polynomial chaos, such as changing the type of polynomial, their order or

their quadrature fitting, in order to have a broaden perspective of the results obtained.
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Appendices

A.1 UQDES Algorithm Code

# 1 . L i b r a r i e s

import numpy as np
import pandas as pd
import t en so r f l ow as t f
import matp lo t l i b . pyplot as p l t
import math
import random
import time

from s c ipy . i n t e g r a t e import ode int
from numpy . matl ib import repmat
from s c ipy import s p e c i a l
from s k l e a rn . met r i c s import r 2 s c o r e

# 2 . P r o b a b i l i s t i c So lve r
# 2 . 1 . Convolution Kerne ls

def QQ1d se ( u1 , v1 , w, a , b ) : # QQ Squared Exponent ia l
u1 = u1 . reshape ( len ( u1 ) ,1 )
v1 = v1 . reshape ( len ( v1 ) ,1 )

u = repmat ( u1 , 1 , len ( v1 ) )
v = repmat (np . t ranspose ( v1 ) , len ( u1 ) ,1 )

qqt = (np . p i ∗w∗w∗(u−a ) ∗ s p e c i a l . e r f ( ( u−a ) /(2∗w) ) ) \
+(2∗np . sq r t (np . p i ) ∗w∗w∗w∗np . exp ( −((u−a ) ∗(u−a ) ) /(4∗w∗w) ) ) \
−(np . p i ∗w∗w∗(v−u) ∗ s p e c i a l . e r f ( ( v−u) /(2∗w) ) ) \
−(2∗np . sq r t (np . p i ) ∗w∗w∗w∗np . exp ( −((v−u) ∗(v−u) ) /(4∗w∗w) ) ) \
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+(np . p i ∗w∗w∗(v−a ) ∗ s p e c i a l . e r f ( ( v−a ) /(2∗w) ) ) \
+(2∗np . sq r t (np . p i ) ∗w∗w∗w∗np . exp ( −((v−a ) ∗(v−a ) ) ) /(4∗w∗w) ) \
−(2∗np . sq r t (np . p i ) ∗w∗w∗w)

return qqt

def RR1d se ( u1 , v1 , w, a , b ) : # RR Squared Exponent ia l
u1 = u1 . reshape ( len ( u1 ) ,1 )
v1 = v1 . reshape ( len ( v1 ) ,1 )

u = repmat ( u1 , 1 , len ( v1 ) )
v = repmat (np . t ranspose ( v1 ) , len ( u1 ) ,1 )

r r t = np . exp ( −((u−v ) ∗(u−v ) ) /(4∗w∗w) ) ∗np . sq r t (np . p i ) ∗w

return r r t

def RQ1d se ( u1 , v1 , w, a , b) : # QR Squared Exponent ia l
u1 = u1 . reshape ( len ( u1 ) ,1 )
v1 = v1 . reshape ( len ( v1 ) ,1 )

u = repmat ( u1 , 1 , len ( v1 ) )
v = repmat (np . t ranspose ( v1 ) , len ( u1 ) ,1 )

rqt = (np . p i ∗w∗w∗ s p e c i a l . e r f ( ( v−u) /(2∗w) ) )+(np . p i ∗w∗w∗ s p e c i a l . e r f ( ( u−a )
/(2∗w) ) )

return rqt

def QR1d se ( u1 , v1 , w, a , b) :
qr t = np . t ranspose ( RQ1d se ( v1 , u1 ,w, a , b ) )

return qrt

# 2 . 2 . UQDES Algorithm

def uqdes ( sspan , nso lves , N, kerne l , alpha , u0 , theta ) :
t i c = time . time ( ) #i n i t i a l execut ion time

M = np . s i z e ( u0 )
B = nso l v e s
s = np . l i n s p a c e ( sspan [ 0 ] , sspan [ 1 ] , N)
t = s
ds = s [1] − s [ 0 ]
lmbd = 0.5∗ ds

Graduation Project 73



School of Mathematical and Computational Sciences Yachay Tech University

u0 = np . t ranspose ( u0 )

i f ke rne l == ’sqexp’ :
tr im = N

else :
print ( ’Unknown kernel -- try again’ )

uensemble = np . t i l e ( u0 , ( B,N, 1 ) )

f = np . t i l e ( u0 , [ B, 1 , 1 ] )
f [ 0 ] = l o r e n t z ( uensemble [ 0 , 0 ] , s [ 0 ] , theta )

m der iv svec = np . t i l e (np . z e r o s ( len ( u0 ) ) , [B,N, 1 ] )
m sta t e svec = uensemble + np . mult ip ly ( m der iv svec , np . t i l e ( s . reshape (N

, 1 ) , [B, 1 , len ( u0 ) ] ) )

C der iv ssmat = RR1d se ( s , s , lmbd , sspan [ 0 ] , sspan [ 1 ] ) / alpha
C state s smat = QQ1d se ( s , s , lmbd , sspan [ 0 ] , sspan [ 1 ] ) / alpha
C cross1 ssmat = QR1d se ( s , s , lmbd , sspan [ 0 ] , sspan [ 1 ] ) / alpha

kinv = 1/( C der iv ssmat [ 0 , 0 ] )
f d i f f = kinv ∗( f [ : , 0 , : ] − m der iv svec [ : , 0 , : ] )
randnNums = np . random . rand (B,N,M)
counter = 0

for n in np . arange (N) :
i f n > 0 :

ind = np . arange (N)
endind = np . arange (N)

m sta t e svec [ : , endind , : ] = m sta te svec [ : , endind , : ] + ( repmat (np . array (
C cross1 ssmat [ endind , 0 ] ) . reshape (N, 1 ) , 1 , 3 ) ∗repmat ( f d i f f
[ : , : ] , 4 0 0 , 1 ) ) m der iv svec [ : , ind , : ] = m der iv svec [ : , ind , : ] + ( repmat
(np . array ( C der iv ssmat [ ind , 0 ] ) . reshape (N, 1 ) , 1 , 3 ) ∗repmat ( f d i f f
[ : , : ] , 4 0 0 , 1 ) )

C state s smat [ endind , endind ] = C state s smat [ endind , endind ]−kinv ∗
C cross1 ssmat [ endind , n ] ∗ np . t ranspose ( C cross1 ssmat [ endind , n ] )

C cross1 ssmat [ endind , ind ] = C cross1 ssmat [ endind , ind ]−kinv ∗
C cross1 ssmat [ endind , ind ] ∗ C der iv ssmat [ n , ind ]

C der iv ssmat [ ind , ind ] = C der iv ssmat [ ind , ind ]−kinv ∗ C der iv ssmat [ ind
, n ] ∗ C der iv ssmat [ n , ind ]

uensemble [ : , n , : ] = m sta te svec [ : , n , : ] +
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randnNums [ : , n −1 , : ] ∗ np . s q r t ( C state s smat [ n ] [ n ] ) ;
kinv = 1/( C der iv ssmat [ n ] [ n]+ C der iv ssmat [ n −1] [n−1])
f d i f f = kinv ∗( l o r e n t z ( uensemble [ 0 , 0 ] , s [ n ] , theta )−m der iv svec [ : , n , : ] )

toc = time . time ( ) #f i n a l execut ion time
log fn t ime= toc−t i c
print ( ’This algorithm took’ , l og fnt ime , ’sec to run completely.’ )
return uensemble , t

A.2 Polynomial Chaos Expansion Addition Code

# L i b r a r i e s

import chaospy
import time

# Polynomial Expansions

po lynomia l o rder = 3
polynomia l expans ion = chaospy . gene ra te expans ion ( po lynomia l order ,

d i s t r i b u t i o n )
po lynomia l expans ion [ : 5 ] . round (5 )

# Quadrature , Eva luat ions and Weights

quadrature order = 8
ab s c i s s a s , weights = chaospy . generate quadrature ( quadrature order ,

d i s t r i b u t i o n , r u l e="gaussian" ) #d i s t r i b u t i o n i s g iven by the j o i n t
d i s t r i b u t i o n o f the model constant parameters

eva lua t i on s = [ mode l so lve r ( a b s c i s s a ) for a b s c i s s a in a b s c i s s a s .T] #
mode l so lve r i s g iven by uensemble , an output o f A. 1

# Model F i t t i n g

def f i t t i n g ( polynomial expans ion , a b s c i s s a s , weights , e va lua t i on s ) :
t i c = time . time ( ) #i n i t i a l execut ion time

model approx = chaospy . f i t q u a d r a t u r e ( polynomial expans ion , a b s c i s s a s ,
weights , e va lua t i on s )
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expected = chaospy .E( model approx , d i s t r i b u t i o n )
std = chaospy . Std ( model approx , d i s t r i b u t i o n )

toc = time . time ( ) #f i n a l execut ion time
log fn t ime= toc−t i c
print ( ’This algorithm took’ , l og fnt ime , ’sec to run completely.’ )
return expected , std
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