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Resumen 

La situación actual debido a la pandemia de COVID-19 está involucrando rápidamente a 

investigadores de todo el mundo que se dedican a promover modelos matemáticos adecuados 

para comprender la propagación de esta enfermedad. Sin embargo, la gran cantidad de datos y 

los diferentes patrones dificultan mantenerse al día con la propagación y el desarrollo de 

COVID-19. El presente trabajo propone un enfoque matemático para explorar la propagación del 

COVID-19 en América Latina. Por su simplicidad, este modelo matemático se puede utilizar 

para estimar, principalmente, la tasa de crecimiento de la infección, el punto de inflexión y el 

número máximo de casos. El enfoque propuesto se basa en la ecuación logística discreta y 

diferencial, así como el modelo exponencial se utilizan para escudriñar el efecto de COVID-19 

al comienzo de la pandemia. Se utilizó un conjunto de datos de un año para diferentes países 

con un intervalo de confianza del 95% y una media móvil de siete días para mejorar la 

resolución de los datos recopilados. Finalmente, este enfoque matemático se puede extender 

para analizar el efecto de COVID-19 y predecir sus consecuencias en otros lugares, lo que permite 

tomar nuevas decisiones frente a la enfermedad de COVID-19. 

Palabras clave: COVID-19, modelo logístico, Sur América, modelo matemático, 

propagación en multi etapas.  
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Abstract 

The current situation due to the COVID-19 pandemic is rapidly involving researchers from 

around the world who are dedicated to promote suitable mathematical models to understand 

the spread of this disease. However, the large amount of data and different patterns make it 

difficult to keep up with the spread and development of COVID-19. The present work proposes 

a mathematical approach to explore the spread of COVID-19 in Latin America. Because of its 

simplicity, this mathematical model can be used to estimate, mainly, the growth infection rate, 

turning point, and maximum number of cases. The proposed approach is based on the discrete 

and differential logistic equation, as well as, the exponential model are used to scrutinize the 

effect of COVID-19 at the beginning of the pandemic. A one-year data set was used for different 

countries with a confidence interval of 95% and a moving-average of seven days to improve the 

collected-data resolution. Finally, this mathematical approach can be extended to analyze the 

effect of COVID-19 and to predict its consequences in other locations, allowing revenue new 

decisions against the COVID-19 disease. 

Keywords: COVID-19, logistic model, South America, mathematical model, multi-stage 

spread 
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Chapter 1 

Introduction 

Through all 2020, the world’s medical situation suffers and emergency due to a novel disease 

called COVID-19. This outbreak, technically denominated Severe Acute Respiratory Syndrome 

Coronavirus 2, is a zoonotic virus similar to SARS-CoV and Middle East Respiratory Syndrome- 

related Coronavirus (MERS-CoV)1. COVID-19 was identified firstly in China, at the end of 

2019. This disease has rapidly spread across China and several nearby regions. Once it was 

difficult to control and isolated, China declared this situation as a public health emergency of 

international concern, and time after, it was recognized as a pandemic on 11 March, 20202. 

There are many theories about the origin of how this virus was transmitted to humans. One 

of them has gained greater prominence throughout the pandemic, whose hypothesis mentions 

that the virus was transmitted to humans through an intermediate host from bats. This spread 

would cause severe respiratory syndrome, thus achieving a strong person-to-person transmission 

through the air and certain objects that the carrier has had contact with3. This hypothesis has 

been studied by a lot of virologists who dealt with the gene sequence of novel coronavirus, after 

comparing coronaviruses in other creatures. Their results revealed and proved that bats and 

minks might be the couple probable hosts that were found to be most similar to those of the new 

coronavirus4. 

Since initial identification, uncountable efforts were realized to attenuate the most possible 

spread. However, despite strict control, it became a global pandemic. This event is a large 

threat and a health challenge and world economies; the disease has spread to over 100 countries 

worldwide and counting. Until the first year of pandemic March, 2021 approx, a total of 192,01M 
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2 1.1. PANDEMIC OUTBREAK IN SOUTH AMERICA 

 

COVID-19 cases have been reported worldwide, with 4.13M deaths, with an overall case fatality 

rate of 2.5 percent5. According to the statistics of WHO, the United States of America (US), 

India, Brazil, the Russian Federation, and France are the top 5 countries with the highest number 

of infections in the world. The degree of infection varies from country to country, and the control 

strategy and degree vary according to national conditions. How the global epidemic will peak or 

diminish is the most concerning problem. Therefore, it is of striking significance to predict the 

pandemic trends of infection worldwide3. 

A large number of Universities around the world have investigated and developed innumerable 

predicting methods for the trend forecasting of COVID-19. The models based on mathematical 

statistics, machine learning, and deep learning have been applied to the prediction of time series 

of epidemic development. The mathematical models are based on studies related to infectious 

disease models and their propagation and real-time artificial intelligence response3. The use of 

these models is to create a simplified depiction of infection spread in a population. Moreover is 

used to understand how an infection might increase in a near future.  These predictions could assist 

us in to making public health plans, developing vaccination programs, treatments, preventions, 

and interventions4. 

 
1.1 Pandemic outbreak in South America 

South America, the fourth largest of the world’s continents is compact and roughly triangular in 

shape, being broad in the north and tapering to a point—Cape Horn, Chile—in the south6. This 

continent lies between the two large oceans, the Pacific and the Atlantic, and as such there is a great  

influence of these oceans on the meteorology of this landmass. SA presents features of tropical, 

subtropical, and extra-tropical weather and climate. An important and distinct geographical 

feature of the continent is the presence of a steep and narrow mountain range extending all the 

way from the northern tip to the southern tip along the west coast called "Cordillera de los 

Andes"7. Another important feature is the tropical Amazon jungle, occupying about 35% of the 

total continental area and 65% of the tropical area7. 

South America has a total area of about 6,878,000 square miles (17,814,000 square km),with 

a population of 653 962 331 people according to World Meter 2020 information. South America 

has around 15 countries in its extension, however, for the realization of the present work, 12 of 
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them have been taken because they are the countries with the most infections they have had within  

the continent, these are Argentina, Brazil, Bolivia, Chile, Colombia, Ecuador, Guyana, Paraguay, 

Peru, Suriname, Uruguay, and Venezuela. The South American region was affected by the 

pandemic a few weeks after Europe, with the first cases of COVID-19 registered in Brazil in late 

February 2020. Since then, it has spread to all countries in the region, with the greater number of 

cases reported in Brazil, Peru and Chile8. As the curve of the coronavirus pandemic moves toward 

its highest peak in South America, there is an unprecedented need for mechanical equipment that 

provides oxygen to those who cannot breathe on their own and for health personnel trained to 

attend to patients arriving at the Intensive Care Units (ICU)9. However, Miguel Lago, director 

of the Instituto de Estudios para Políticas de Salud, IEPS, based in Río de Janeiro mentions that 

SA can be the region with the most number of victims due to Covid-1910. 

Jesús Valverde, president of the Peruvian Society of Intensive Medicine says that for every 

100,000 inhabitants, a country must have 10 ICU beds, or as minimum 6 beds, but several 

countries in the region were always below this number9. A comparative study published in the 

journal Critical Care Clinics in 2006, estimated the number of beds located in intensive care per 

10,000 inhabitants around 2.9 in Argentina, 2.3 in Uruguay, 2.2 in Venezuela, 0.8 in Brazil, 0.3 

for Chile, Colombia and Ecuador and 0.2 for Peru10. However, due to the fragmented nature of 

most healthcare systems in LAC, not all of these beds may be readily available to patients covered 

by public schemes. For example, in Brazil, only 40.6% of the total ICU beds are managed by 

the Sistema Único de Saúde (SUS), the health system financed with public funds. Similarly, in 

Ecuador and Paraguay, 53.2% and 41.4% of ICU beds, respectively, are present in the public 

sector of health systems8. 

Although since 2006 to date the proportion may have risen in some countries ICU beds 

everything indicates that the number will be insufficient against a disease, that according to some 

estimates, could be contagious up to the 80% of the population and send to intensive care between  

2% and 4% of those infected10. 

 
1.2 Mathematical Model 

A model is a representation of a process11. A mathematical model is a description of this process, 

in mathematical language, of an object that exists in a non-mathematical universe12. Mathematical 
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models are used in many fields of human activity, such as Mathematics, Economics, Physics, 

Chemistry, Biology, Psychology, Communication, Demography, Astronomy, Engineering, etc. 

Many practical problems require using mathematical models and sometimes situations are very 

different, but the approach and underlying philosophy are the same13. 

Mathematical models have become a primary tool for learning, science development, predic- 

tion for decision-making and control regarding social and natural phenomena. Good decision 

making will help to obtain good results or in the opposite way it will produce great losses14. 

Usually, a mathematical model takes the form of a set of equations describing a number of vari- 

ables, and we distinguish between continuous and discrete models. Some mathematicians have 

a procedure that they apply when they are building a model which is there is a phenomenon of 

interest that one wants to describe or, more importantly, explain11. 

In general terms, in any mathematical model four phases can be determined in which the 

success or failure of these models is a reflection of the precision with which said mathematical 

model represents the initial object and not the exactitude with which mathematics analyzes the 

model12. 

1. Construction of the model. Transformation of the non-mathematical object into mathe- 

matical language. 

2. Analysis of the model. Study of the mathematical model. 

3. Model calibration. A unique set of model parameters that provide a good description of 

the system behaviour 

4. Interpretation of mathematical analysis. Application of the results of the mathematical 

study to non-mathematical initial object. 

In resume, mathematical modeling is the link between something intangible (mathematics, 

physics, chemistry) and the real world. Is a process, A process, where you ask yourself a 

question, think a bit, and then you redefine the question, phrasing and placing it in precise 

mathematical. Once the question proposed becomes a mathematical question, as a scientific, a 

great field in mathematics opens up for you to carry out research that allows you to find an answer.  

Finally, is necessary that you revert the process, translating the mathematical solution back into 

comprehensible and with sense answer to the original question15. 
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1.3 General Classification of Mathematical Models 

There are at least two different approaches to using models in research, each of which is chosen 

according to what the model is expected to be: deterministic and stochastic13. In a deterministic 

model, the factors involved in the study can be controlled by the process or phenomenon. Therefore 

is possible to predict accurately the results obtained. In a stochastic model, it is not possible to 

control the factors involved in the study of the phenomenon. Consequently it does not produce 

simple unique results. Each of the results possible is generated with a probability function which 

assigns a probability to each of the trays; for example a model to predict the size of a epidemic 

in a population of N individuals. For the case deterministic provides a single value, C, while 

the stochastic model allows the possibility to obtain from zero to N individuals and is awarded 

a certain probability to each of these events. The difference is greater than it seems, since in 

a deterministic mathematical model in the context epidemiological; a single subject causes an 

epidemic generalized, while under a stochastic model there is a possibility that the epidemic will 

die out16. 

It is important to mention that a model is defined by the relationships that it incorporates. 

These relationships are independent of the data to be analyze, since a model can be used to in 

different contexts and to different subjects. For example, in Epidemiology the application of 

mathematical models can be traced to the year 1760 when Daniel Bernoulli published a small 

investigation on the plague epidemic that was then sweeping Europe. In the last century, interest 

in the application of quantitative methods such as computational models to biology increased as 

a consequence of their success in physics and in particular in biophysics and biochemistry17. 

 
1.4 Epidemic Mathematical Models 

Mathematics and mathematical modeling are tools, languages and vanishing points, ways of seeing  

the world, which depend on the theoretical framework and empirical evidence that gives rise to 

them. Mathematics in epidemiology and in general in biological sciences constitute, moreover 

to being a tool, a way of thinking and structure predictions, descriptions, and explanations of 

processes. The language of mathematics allows to clarify and specify mechanisms, functions, and  

causal relationships between its components, which determine the evolution of a phenomenon 
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given17. The mathematical models of epidemiology are not isolated abstract constructions or 

they can be an end in themselves. There is always a theoretical framework of which each model, 

in particular, is justified since the hypotheses with those that are elaborated come from this and 

not from whose imagination builds it17. 

Mathematical epidemiology was raised to a new level by the model of the spread of infectious 

diseases, published by Kermack and McKendrick in 1927 known as the SIR epidemic model18. 

Let S denote the number of individuals who are susceptible to the disease, that is, who are 

not infected at time t, I denotes the number of infected individuals and R denotes the number 

of individuals who have been infected and then removed from the possibility of being infected 

again or of spreading infection19. Moreover, epidemiological models consist of systems of ODEs 

that describe the dynamics in each class. One of the simplest models involves the dynamics of 

susceptible, infectious, and recovered individuals (SIR)18. Within the SIR model, it is observed 

that its infectious behavior dynamics depend on the basic reproduction ratio R0. Which is an 

epidemiological metric used to measure the transmissibility of infectious agents. However, this 

metric is an estimated value based on the early phase of the pandemic when the population has 

zero immunity. In addition, R0 is used to calculate the effective reproductive number R(t), which 

aims to predict the probability of when the pandemic ends. For our case of study the parameter 

used is the growth rate (λ(t)) which is also related to the transmissibility of infections. However, 

the estimation of R0 does not consider the parameters or health policies adopted by each country, 

since λ(t) is estimated from the total cases and R(t) is estimated from the assumption of R0. 

Although simple and powerful, mass action compartmental model SIR, does not capture the 

inherent heterogeneity of the underlying populations. Significant amount of research has been 

conducted to extend the model20. For example, the SEIR model describes the transmission 

dynamics of COVID-19 in China and forecasted the national and global spread of the disease, 

based on reported data from December 31, 2019 to January 28, 202021. In this way, this model 

and others related to the COVID-19 spread can be helpful to do the research and modeling about 

the multi peaks found in South America. 
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1.5 Models 

1.5.1 Exponential Model 

One of the basic principles studied in mathematics is the observation of relationships between 

two connected quantities. A function is this connecting relationship, typically expressed in a 

formula that describes how one element from the domain is related to exactly one element located 

in the range22. The notion that knowledge grows exponentially seems to have first appeared in a 

short story by Sir Arthur Conan Doyle, “The Great Keinplatz Experiment,” which contains the 

statement, “Knowledge begets knowledge as money bears interest”23. According to the physicist 

Bartlett (1976), the mathematics of growth is the mathematics of the exponential function24. 

Exponential growth or decay is a consequence that follows whenever we have a function N which 

changes with time in such a way that the change ∆N in N during a short time interval ∆t is 

proportional to N and to ∆t 24. The equation we get is ∆N  = λN. The time rate of change of 

the quantity is proportional to the quantity. The larger the value of N the faster it changes. The 

constant λ is fractional change (∆N/N) in N per unit time ∆t. Equation 1.1 is a differential 

equation which can be solved in several ways. 

One way is N = N0eλt or in terms of function F(t) = N0eλt which are discussed in calculus 

terms in Appendix. Where N0 is the initial size or case, at time t, e is the Euler’s number and λ, 

the continuous growth rate. The exponential function is not to be confused with the polynomial 

functions, such as x2 . One way to recognize the difference between the two functions is by the 

name of the function. Exponential functions are called so because the variable lies within the 

exponent of the function25. These functions are often recognized by the fact that their rate of 

growth is proportional to their value26. 

 
1.5.2 Logistic Model 

In an epidemic, cumulative incidence initially grows exponentially, but eventually slows and 

approaches a limit. This behavior is qualitatively similar to that of a logistic curve. Thus, a 

logistic model may allow us to use longer sequences of data from the beginning of an epidemic, 

by accounting for the epidemic slowing as it proceeds27. The logistic function finds applications 

in a range of fields, including biology (especially ecology), biomathematics, chemistry, demogra- 
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phy, economics, geoscience, mathematical psychology, probability, sociology, political science, 

linguistics, statistics, and artificial neural networks28. 

The logistic function was invented in the 19th century for the description of the growth of 

populations and the course of autocatalytic chemical reactions29. The Logistic model originated 

from the modeling of population growth in ecology. As an improvement on the Malthus population 

model, in 1838, Pierre Franois Verhulst published the logistic equation3. The way that the logistic 

growth occurs is a little bit easy to explain because is characterized by an increasing curve in the 

beginning period, but in a time the curve starts decreasing, as you get closer to a max. 

 
Discrete logistic function 

In terms of population growth, this fact ranges from exponential growth, which will eventually 

decline due to resource factors or competition. With this in mind, it is suggested that the 

assumption that growth will be equal for the rest of the days should be changed regardless of the 

current population size. That is, the estimated number for the next few days will depend on the 

size of the population but in various forms. 

A generalization of the logistic function or logistic curve is the hyperbolastic function of type 

I, a common S-shaped curve (sigmoid curve) with equation; 

f (t) = N/1 + e−λ(t−t0)
 

where t0 is the valune of the sigmoid’s midpoint, N is the curve’s maximum value and λ is 

the logistic growth rate. 

 
Applications 

In ecology, a typical application of the logistic equation is a common model of population growth,  

where the rate of reproduction is proportional to both the existing population and the amount of 

available resources, all else being equal30. In medicine, a logistic function, or related functions 

(e.g. the Gompertz function) are usually used in a descriptive or phenomenological manner 

because they fit well not only to the early exponential rise, but to the eventual levelling off of 

the pandemic as the population develops a herd immunity31. This is in contrast to actual models 

of pandemics which attempt to formulate a description based on the dynamics of the pandemic 
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(e.g. contact rates, incubation times, social distancing, etc.). Some simple models have been 

developed, however, which yield a logistic solution32 33. 

 
Logistic differential equation 

In fact, another way to take into the logistic equation is in its differential form which depends on 

the number of cases or on time. The use of this ODE allow us explain the irregularities in the 

number of cases per day, and the appearance of several peaks of incidence and their duration, 

which are not predicted by the deterministic or generalized logistic equation. Our goal is not to 

solve the equation, but to investigate the relationship between the number of cases per day and 

the total number of the infected people, which is expressed by the algebraic curve34. 
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1.6 General and Specific Objectives 

1.6.1 General Objective 

• Develop a suitable modeling of the spread of COVID-19 based on the logistic model. 

 
1.6.2 Specific Objectives 

• Propose a simple mathematical approach using the exponential model as well as the discrete 

and differential logistic equations. 

• Study the effect of COVID-19 outbreak in South America 

• Apply the logistic model to analyze the spread of COVID-19 in Ecuador 



 

 

dN(t) 

N(t) 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Methodology 

2.1 Theoretical Approach 

We shall start with the following simple model. Exponential functions can be used to model pop- 

ulation growth, interest rates, radioactive decay, and the amount of medicine in the bloodstream. 

Since our interest is to model the increasing number of infected people during the pandemic, the 

following equation is proposed: 

 

dt 
= λexp N(t) (2.1) 

Exponential growth rate λexp is taked as the positive growth rate of the epidemic (day−1) and 

N(t) represents the total number of infected people which depends on time. Solving step-by-step 

Equation 2.1: 

∫ 
dN(t) 

= 

∫ 

λexp dt (2.2) 

ln N(t) = λexp 

∫ 

dt (2.3) 

N(t) = λexp (t + c) (2.4) 

 
N(t) = eλexp tec (2.5) 

 
11 
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one can finally get 

N(t) = N0 eλexp t (2.6) 
 

 

 

where N0 is the initial number of the infected people and t is the time since the first reported 

cases (day). Equation 2.6 can only be used at the early stage of the pandemic if the number of 

confirmed COVID-19 cases as a function of time is described by a clear exponential equation, 

which is illustrated in Figure 1a. In addition, during this initial period, we don’t observe the 

depletion of possible infection candidates. 
 

Figure 2.1: Illustration cases: a) the total number of cases as a function of time using the 

exponential model, b) the total number of cases as a function of time. The discrete logistic 

equations (red line) are compared to the solution of the ODE logistic model (dashed blue line), 

and c) the daily cases as a function of total cases. Parameters used: Nmax = 100, N0 = 1, 

λlog = 0.2(day − 1), λexp = 0.2(day − 1), t0 = 30 (day). 
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Nmax 

d N(t) 

dt Nmax 

 

In fact, this model can be applied as long as there are no changes in the curve. On the other 

hand, if restrictions are implemented to flatten the curve (such as social distancing, case testing, 

hand washing, and quarantine), the dataset must be fitted using the discrete logistic equation: 

N(t) =
 Nmax 

 

1 + e−λlog (t−t0) 

 
(2.7) 

 

which also allows estimating the maximum number of infected people (Nmax), the logistic growth 

rate (λlog, day−1), and the point of maximum growth (t0). Logistic functions were first studied in 

the context of population growth, as early exponential models failed after a significant amount of 
time had passed. By adding the correcting factor −λlog N(t)2 

in Equation 2.1 and taking λ 
 

 

= λ , 

the resulting equation is: 
Nmax exp log 

dN(t) 
= λlog N(t)

 

1 − 
N(t) 

! 

(2.8) 

Equation 2.8 is the logistic equation written in the form of ODE. N(t) denotes the total number 

of confirmed cases as a function of time, and the respective solution is easily found as follow (For 

extend solution check Appendix A.2): 

 
N(t) = 

N0 Nmax e
λlog t 

Nmax + N0 
.
eλlog  − 1

 
 

 

(2.9) 

Note that Equation 2.7 and Equation 2.9 can be used to estimate the λlog and Nmax parameters 

from the curve of the total case (Figure 2.1b), but the t0 parameter cannot be estimated from 

Equation 2.9. Now, using the difference logistic equation as follow: 

 

dt 
= Ni+1 + Ni = K(t) (2.10) 

where K(t) is the daily reported cases, the following expression is found: 

K(t) = λlog N(t)

 

1 − 
N(t) 

! 

(2.11) 

which shows a simple relation between K(t) (daily cases) and N(t) (total cases) (Figure 2.1c). 

Interestingly enough, Equation 2.11 can also be used to estimate the λlog and Nmax parameters. 

Additionally, the logistic growth rate can be found from Equation 2.11, as follow: 
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Nmax 

 

 

 
λlog = 

K(t) 
 

 

N(t)
 
1 − N(t) 

 
 

 

(2.12) 

in fact, Equation 2.12 can be used to study the growth rate variability as a function of total 

confirmed cases (N(t)) or time (t). To simplify the notation, λexp and λlog have been taken as λ 

through the text, Figures, and Tables. 
 

 
Figure 2.2: Schematic representation of the research methodology 

 
Figure 2.2 shows the research methodology of the present work. In the exponential model, the 

data of the first 30 days were used, where an exponential increase in the number of infected people  

was observed. In the other models, the complete data set was analyzed with a seven-day moving 

average (359 data points). As observed, the exponential model gives access to the exponential 

growth rate at the beginning of the pandemic. On the other hand, the discrete logistic model helps 

correct the error of the exponential model for long periods, also allowing to estimate the logistic 

growth rate, the total number of infected people, and the inflection point of the curve. Most 

importantly, the differential logistic model can give a more complete picture of the COVID-19 
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pandemic because Equations 2.9 and 2.11 can be used to estimate the growth rate coefficient and 

the total number of infected people as a function of time or total cases, respectively. Finally, 

Equation 2.12 allows to study the growth rate coefficient variability, evidencing the random 

phenomenon of data as a consequence of the collecting/reporting data or social behavior. 

 
2.2 Data Collection and Analysis 

One-year data of COVID-19 outbreak in South America, from March 1, 2020, to February 28, 

2021, was taken (and compared) from: 

• Our World in Data: Coronavirus Pandemic (COVID-19) 

(https://ourworldindata.org/coronavirus) 

• Worldometer 

(https://www.worldometers.info/coronavirus) 

• Johns Hopkins Coronavirus Resource Center 

(https://coronavirus.jhu.edu) 

From these sources, we have extracted the following values: 

• Pandemic start cases and days. 

• Accumulated cases in a year (The total number of coronavirus cases). 

• Daily new reported cases in a year. 

Some discrepancies were found between the given data sources, particularly, at the beginning 

of the pandemic. As mentioned, this can be attributed to the lack of qualified laboratories to carry  

out tests and large inexperience in collecting and reporting daily data. This problem is present in 

every country studied in this work. For this reason, the study is carried out using a seven-point 

(7p) moving average, which means that it takes the last 7 days, adds them up, and divides them by 

7. This smooth-out resulting curves cancel out peaks and valleys in data collection. Hence, the 

seven-point moving average list was used in the exponential and logistic models. All parameters 

considered in our models are: 

https://ourworldindata.org/coronavirus
https://www.worldometers.info/coronavirus
https://coronavirus.jhu.edu/
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• The total number of infected people as a function of time 

• The initial number of the infected people t=0 days 

• The maximum number of infected people 

• The point of maximum growth 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Results & Discussion 

 
In this chapter, we develop the proposed models for the modeling of the spread of COVID-19 

and the goal is to explain the main characteristics of each one and what we obtained from them. 

We start with exponential model with a minimum range of values because it is applied at the 

early days (30) of the pandemic. We also explore the values for λ. We compare the graphs 

built from the data and results to find a relationship between the model and the first thirty days 

expectations. Next, in a wide case we analyze the total cumulative cases with the discrete and 

differential logistic model. In the same parameters as growth rate and total estimated cases. 

 
3.1 South America daily and cumulative cases 

South America is currently an epicenter of the COVID-19 pandemic. The impact of the pandemic 

in these countries is quite diverse, having affected mainly countries like Brazil and Peru. The 

spread of COVID-19 in South America is shown in Figure 3.1. 
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Figure 3.1: Cumulative cases map of confirmed COVID-19 cases until Feb 28, 2021. Source: 

COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns 

Hopkins University ( https://github.com/CSSEGISandData/COVID-19). 

 
Reported data are shown in the black color and 7-point moving average data in the red color. 

As mentioned earlier, the 7-point moving average dataset will be used throughout this work to 

avoid the peaks and valleys due to inadequate daily data collection and reporting. Although South 

America had about two months to prepare for the pandemic from the beginning in China, the 

health system and communication channels could not fulfill their purpose against the COVID-19 

disease as observed in Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5 and discussed below. 
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The reported data obtained from our world in data and plotted in Wolfram Mathematics as 

mentioned have a moving average correction of 7 points. The main cases for which this correction 

occurs is first because it seeks to remove the points in which daily cases with values of zero are 

reported and second is for negative values, as is the case of Ecuador and Guyana. The explanation 

for this situation in which the values are negative, is due to the mishandling of the data reported 

by these governments. The moment they reduce a figure in the confirmed cases is to show that 

they incorrectly carried the use of the detection tests, the complication exists at the moment that 

the results have time of delay in the delivery of them, false positives and are sometimes attributed 

as cause of death to people who were given the test but it was too late. 

The figures are explained in such a way that, all those that are on the left side correspond 

to the number of daily cases of infected people, and all those images that are on the right side 

correspond to the number of accumulated cases of infected people. In addition, all the data of the 

Y axis of the figures are about 10000 or 104, to handle numbers that are explained in a better way. 

In the first instance we can analyze the daily cases (figures on the left side), which are based 

on the time in a window of 365 days from their first confirmed case. It can be seen, the data 

reported are characterized by intense peaks in their first days, whatever country do you want to 

analyze. Each country at least consists of two peaks between its first 100-150 days and a second 

after 150-200 days more. Looking at it by date the increases exist once the quarantines ended. 

As soon as WHO declares on 11 March, 2020 its deep concern about the bitter levels of spread, it 

enters into evaluation and evaluates that COVID-19 should be characterized as a pandemic. For 

this reason, all South American countries, enter a total confinement, for around 60 days or more 

(>2 months). Once this restriction ends the general population begins to take fewer precautions 

and the excessive increase occurs. That as we mentioned will be our first peak of infections in 

the figures of daily cases for each country. 

The second peak is explained by the reason that on December 31, 2020, (WHO) declares in a 

press release the validation of a vaccine against COVID-19. Which is allowed worldwide in cases 

of emergence and supply to the general population. This unbinds a series of events in which, the 

misinformation prevail. Believing that such a vaccine "cured" or toward assuming people who 

were vaccinated that they would not have that disease only by the fact of getting vaccinated and 

again begin the careless ones that trigger the second peak or second outbreak in the population. 
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Figure 3.2: a) the number of infected people per day in Argentina, b) the total number of confirmed  

cases reported during 365 days in Argentina, c) the number of infected people per day in Brazil, 

d) the total number of confirmed cases reported during 365 days in Brazil, e) the number of 

infected people per day in Bolivia, f) the total number of confirmed cases reported during 365 

days in Bolivia. Data are represented in black and the 7-point moving average data in red. 
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Figure 3.3: a) the number of infected people per day in Chile, b) the total number of confirmed 

cases reported during 365 days in Chile, c) the number of infected people per day in Colombia, 

d) the total number of confirmed cases reported during 365 days in Colombia, e) the number of 

infected people per day in Ecuador, f) the total number of confirmed cases reported during 365 

days in Ecuador. Data are represented in black and the 7-point moving average data in red. 
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Figure 3.4: a) the number of infected people per day in Guyana, b) the total number of confirmed 

cases reported during 365 days in Guyana, c) the number of infected people per day in Paraguay, 

d) the total number of confirmed cases reported during 365 days in Paraguay, e) the number of 

infected people per day in Peru, f) the total number of confirmed cases reported during 365 days 

in Peru. Data are represented in black and the 7-point moving average data in red. 
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Figure 3.5: a) the number of infected people per day in Suriname, b) the total number of confirmed  

cases reported during 365 days in Suriname, c) the number of infected people per day in Uruguay, 

d) the total number of confirmed cases reported during 365 days in Uruguay, e) the number of 

infected people per day in Venezuela, f) the total number of confirmed cases reported during 365 

days in Venezuela. Data are represented in black and the 7-point moving average data in red. 
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3.2 Exponential Model 

Unable to have an effective solution at a pandemic global level, modeling is an excellent option to  

explore the effect of COVID-19 and predict its consequences. In this context, as a first idea we had 

to predict it with an exponential modeling or exponential growth rate. From this, the cumulative 

data of infected people were adjusted with a 7-point moving average for the exponential model 

to be applied (Equation 2.6). This model is used to describe the early trajectory of this infection. 

This equation proposes to look for an exponential growth rate using the data accumulated from 

the day the first case was presented N0. λ represents the growth rate that describes how quickly the  

infection spreads when restrictions (physical distancing, mask wearing, environmental cleaning, 

home disinfection, isolation, etc.) are not implemented to counter the spread of COVID-19. 

It is important to mention that the exponential model, being a basic type modeling should 

only be adjusted for the first 30 days as shown on the X-axes of the Fig. 3.6 and Fig. 3.7. This 

due to the model stops working beyond this amount, because after these days certain limitations 

could be taken to avoid its rapid contagion, as predicted by the model. 

Once the results of the modeling of each country were obtained, a table of the parameters 

found was made, for a better visualization and analysis of the same, that is Table 3.1. The most 

important point to note in all the cases that the modeling was performed, is corresponding to its 

λ, i.e. its growth rate, this value ranges from 0, 073 − 0, 258 day−1. These high values of λ are 

attributed to the fact that at the beginning of the pandemic the controls and restrictions were poor 

and health policies were not implemented quickly and in time to avoid the rapid spread of the 

infection. Nevertheless, not all the countries follow the same rhythm at the moment of bringing 

the contagions of COVID-19 and of taking these measures. For example, Brazil that because it 

was the first country to report contagions and with the largest population in South America, its 

number of infected was going to grow faster compared to other countries in the continent. 
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Figure 3.6: Exponential model using 30 days with 95% of confidence level. a) Argentina, b) 

Brazil, c) Bolivia, d) Chile, e) Colombia, f) Ecuador. Total cases data as function of time (red 

points) and fitting model with bands (blue lines). 
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Figure 3.7: Exponential model using 30 days with 95% of confidence level. g) Guyana, h) 

Paraguay, i) Peru, j) Suriname, k)Uruguay, l) Venezuela. Total cases data as function of time (red 

points) and fitting model with bands (blue lines) 
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Table 3.1 has three important parameters that need to be analyzed. First, the growth rate 

(λ) obtained through the application of the model with its respective standard error. The second 

parameter is the curve fit (R2), which shows how well the curve obtained from the modeling fits 

to the real data, whether daily or accumulated. According to BBC news, Peru was the second 

most contagious country at the start of the pandemic, but it was one of the first to react with 

strict containment and identification measures for the virus in its population. But part of the 

explanation for this is the high number of tests that were carried out by the Peruvian authorities35. 

But on the contrary, we have the case of Ecuador, which according to the data simulated that in 

a single day the number of infected people doubled, This is because the country obtained the 

results of thousands of COVID-19 tests that were delayed, as reported by the Minister of Health, 

Juan Carlos Zevallos, in a press conference36. 

 

Exponential Model Results 

Country Name Growth rate (λ) Standard 

Error(±λ) 

R2 

Argentina 0.182 0.001 0.984 

Brazil 0.256 0.001 0.984 

Bolivia 0.120 0.001 0.993 

Chile 0.202 0.001 0.994 

Colombia 0.206 0.002 0.939 

Ecuador 0.185 0.001 0.978 

Guyana 0.079 0.001 0.978 

Paraguay 0.118 0.001 0.987 

Peru 0.190 0.001 0.976 

Suriname 0.076 0.003 0.898 

Uruguay 0.093 0.002 0.937 

Venezuela 0.073 0.002 0.952 

Table 3.1: Estimated growth rate parameter (λ) from the exponential model for the different 

countries under study and curve fit (R2) for each one. 
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3.3 Discrete Logistic Model 

In the area of growth dynamics, the use of the discrete logistic model is mentioned continuously. 

The reason why this model is called as discrete model is because an analysis of the growth rate 

is not performed continuously. It means, that el growth rate is counted one by one, for example, 

from the day 1 at 8 a.m. to the day two at 8 a.m. and so on for the following days. In other 

words, this model is called discrete due to instead of taking all possible values over time (8:30 

a.m, 9:00 a.m, and so on) continuously from 0 to 365 days, we are taking it one by one (day 1, 

day 2, day 3 and so on). Unlike the differential logistic model where we clearly are in continuous 

domain. Moreover, this model is a representation of a general population growth function and 

can be closely approximated to birth/death dynamics and processes with similar characteristics37. 

On a practical level, due to complex behaviors in ecology, the equation can be transformed into 

its deterministic or discrete form38. 

In terms of pandemic, the logistic equation has been taken into account because many of 

its parameters can be obtained easily, only using the accumulated data either several months or 

annually. For our case the accumulated data are taken annually and in the same way with a 7-point 

moving average and the discrete equation of the logistic model is applied (Equation 2.7). 

The results of this equation are the estimated value of the total cases accumulated within 

what could be given in the year Nmax. The growth rate λlog for this model will be explained 

later. In addition, the midpoint of the spread t0, that is, on which day the value of Nmax would be 

almost reached. These results are tabulated in Tables 3.6 and 3.3. And the graphs concerning the 

modeling of the logistic equation in the Figures 3.8 and 3.9. 

The discrete logistic model, shows an excellent agreement between the reported data and the 

curve corresponding to the model in all the cases analyzed. This is proven by Table 3.3, in which 

the R2 has an index greater than 0.97, which is more than enough accepted for analysis. To this 

is added the check by the use of the interval of confidence (intermittent blue line), in which are 

some data below or above these. Although in all cases the fitting curve, has a R2 > 0.8, the 

values estimated by this equation for the year are not always correct. In the cases of Argentina, 

Bolivia, Chile, Guyana, Peru and Venezuela, values are underestimated. This means that in the 

year evaluated the actual total cases far exceeded the estimated total cases. About 50% of the 

countries evaluated have values close to those estimated. It is important to mention that this 

model should be used carefully at the time of predicting values for the year and even for dates 
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after the year. 

 

Discrete Logistic Model Results 

Country 

Name 

Total real 

cases 

Estimated 

cases Nmax 

Standard 

error(±Nmax) 

Estimated 

time t0 

Standard 

Error(±t0) 

Argentina 2 118 676 2 099 630 13 210 239.491 0.822 

Brazil 10 390 461 10 891 700 209 280 242.930 3.221 

Bolivia 256 462 244 260 6 800 211.378 5.097 

Chile 803 009 695 250 9 870 175.399 2.615 

Colombia 2 269 582 2 701 910 44 630 266.846 2.440 

Ecuador 286 155 304 050 3 960 230.566 2.433 

Guyana 8 993 8 910 80 244.242 1.169 

Paraguay 168 043 179 680 2 280 274.712 1.586 

Peru 1 349 847 1 176 770 9 270 177.087 1.377 

Suriname 9 022 9 090 210 215.666 3.958 

Uruguay 69 074 77 420 1 040 322.572 0.876 

Venezuela 144 786 130 870 880 198.193 0.992 

Table 3.2: Estimated cases (Nmax) and midpoints (t0) parameters with their standard errors from 

the discrete logistic model for the different countries under study. 

 
It is important to analyze, the midpoints of each country (t0) in Table 3.6 since this value shows 

us the approximate dates and the approximate time in which each country suffered a flattening of 

cases, that is to say it was possible to decrease at some point the spread. Although not all cases 

are similar, for reasons such as population numbers, availability of hospitals and health measures.  

Almost all of South America, has a flattening within 200 days after the start of the pandemic. As 

mentioned this is due to the sanitary measures taken in each country and that in many cases were 

not given immediately, but took approximately 6 to 7 months. 
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Figure 3.8: Discrete logistic model using moving average data with 95% of confidence level. a) 

Argentina, b) Brazil, c) Bolivia, d) Chile, e) Colombia, f) Ecuador. Total cases data as function 

of time (red points) and fitting model with bands (blue lines). 
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Figure 3.9: Discrete logistic model using data moving average with 95% of confidence level. 

a) Guyana, b) Paraguay, c) Peru, d) Suriname, e) Uruguay, f) Venezuela. Total cases data as 

function of time (red points) and fitting model with bands (blue lines). 
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Discrete Logistic Model Results 

Country Name Growth rate (λ) Standard 

Error(±λ) 

R2 

Argentina 0.024 0.000 0.998 

Brazil 0.015 0.000 0.992 

Bolivia 0.015 0.001 0.976 

Chile 0.018 0.001 0.986 

Colombia 0.017 0.000 0.995 

Ecuador 0.014 0.000 0.997 

Guyana 0.023 0.000 0.996 

Paraguay 0.021 0.000 0.997 

Peru 0.020 0.000 0.994 

Suriname 0.017 0.001 0.977 

Uruguay 0.038 0.001 0.997 

Venezuela 0.026 0.001 0.995 

Table 3.3: Estimated growth rate parameter (λ) from the discrete logistic model for the different 

countries under study and curve fit R2 for each one. 
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3.4 Differential Logistic Model 

In a previous section we discussed a model of population growth in which the growth rate 

is proportional to the size of the population (exponential model). In the resulting model the 

population grows rapidly and collapses as soon as possible. This is because to the model is 

unrealistic and imposes environments limitations to population growth. Here it is proposed a 

more accurate model which postulates that the relative growth rate decreases when the total 

number of infected people approaches the carrying capacity Nmax of the environment. The 

corresponding equation is the so called differential logistic equation (Equation 2.11). 

Figure 3.10 and 3.11 show the behavior of the model curve applied to the countries studied. 

In the first instance, we can find a discrepancy in all cases in terms of following the trend of real 

data and fitting curve. What translates as the differential logistic model should be applied with 

extreme caution when estimating values for a long period of time. This is verified with the use 

of Table 3.4, in which the estimated values for the Nmax are present. Although with the use of 

Equation 2.9, it is not evaluated when a flattening in the curve will occur (t0). We can clearly 

distinguish when countries collapse. If we compare Figures 3.10 and 3.11 with the data in Table 

3.2, we can find that in these figures flattening occurs on approximately the same days where 

flattening was predicted. Once we find this phenomenon present in the figures of this model, 

we also visually realize that the estimated values of the total cases accumulated with the use of 

this model is extremely lower. That is, in all cases the estimate is very inefficient and inaccurate. 

Since once the flattening is found, the model assumes that the growth should stop, something that 

did not happen in real life. This flaw can be compared to the values of Equation 2.7. In many 

cases this failure exceeds by almost half of the values found. 

For example for Ecuador Nmax = 203199 (differential logistic model) and Nmax = 304050 

(discrete logistic model), only in this case we realize that it exceeds by at least 100000 cases 

between models. In a more extreme case we have Brazil, being one of the most affected countries 

in South America. The estimated value with the differential logistic model is 6 818 590 and with 

the discrete logistic model amounts to 10 891 700. This as we see is exceeded by a number of 

4 million infected, a number that is really worrying when predicting these values. So we could 

continue to mention for all the cases of South America, in which they have similar behaviors. 
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Figure 3.10: Differential logistic model using moving average data with 95% of confidence 

level. a) Argentina, b)Brazil, c) Bolivia, d) Chile, e) Colombia, f) Ecuador. Total cases data as 

function of time (red points) and fitting model with bands (blue lines) 
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Figure 3.11: Differential logistic model using moving average data with 95% of confidence level. 

a) Guyana, b)Paraguay, c) Peru, d) Suriname, e) Uruguay, f) Venezuela. Total cases data as 

function of time(red points) and fitting model with bands (blue lines). 
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Logistic Model Results 

Country 

Name 

Estimated 

cases Nmax 

Standard 

error(±Nmax) 

Growth rate 

λlog 

Standard 

Error(±log) 

R2 

Argentina 1 707 840 15 988.9 0.057 0.001 0.976 

Brazil 6 818 590 102 619 0.085 0.001 0.933 

Bolivia 167 909 2 174 0.066 0.001 0.951 

Chile 528 845 6 599 0.094 0.001 0.951 

Colombia 1 736 150 26 201.2 0.060 0.001 0.941 

Ecuador 203 199 2 892 0.055 0.001 0.944 

Guyana 7 723.1 0.001 0.034 0.001 0.991 

Paraguay 130 716 1 359 0.043 0.001 0.978 

Peru 9 811 770 10 668.2 0.073 0.001 0.964 

Suriname 6 694.56 82.730 0.050 0.001 0.958 

Uruguay 265 128 28 342.7 0.021 0.001 0.986 

Venezuela 117 764 777.711 0.045 0.001 0.988 

Table 3.4: Estimated cases (Nmax) and growth rates (λ) parameters with their standard errors from 

the differential logistic model for the different countries under study. 

 
However, the important thing that can be highlighted with the use of this model is undoubtedly  

the fact that the approximation of the available data are good enough (R2 > 0.8) for the use of all 

the cases studied in this work. With this in mind, in terms of the growth rate of this model it is 

necessary to mention that there appears a reduction. Analyzing the growth rate of the differential 

logistic model with those of the exponential model, we notice that this parameter has decreased at 

least two or three times less than the found in Equation 2.6. This parameter undergoes a change 

in the range of 1.52 times until 3.18 times less. This tells us that the model used in this section is 

useful when we seek to analyze how COVID-19 spread in South America. 
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3.5 Differential Logistic Model in Function of Daily and Ac- 

cumulated Cases 

Based on the last results we evidence that the discrete logistic model and the differential logistic 

model cannot be used to properly predict the total number of cases when a sigmoidal trend is not 

observed. With this in mind, a more accurate value of the maximum number of infected people 

can be predicted by means of Equation 2.11. This equation shows a simple relationship between 

daily reported cases and total cases but allows calculating the growth rate coefficient and the 

maximum number of cases with current state policies. 

Figures 3.12 and 3.13, show the actual data in red and the estimated data in blue line with 

their respective confidence intervals (blue light). Moreover, the parameters of the estimated cases 

and growth rate are shown in Table 3.5. The important thing in these figures is the fact that it 

shows us a more accurate approximation of when the pandemic state could end. This means that 

you can more accurately predict the dates and likely values that you will reach your maximum 

level of infection in the South American population. 

The figures obtained with the use of the Equation 2.11, with the accumulated total data and 

the daily cases, allow us to better observe an approximation of when the values of the curves 

decrease. In other words, the fitting curve that we achieved shows us on the X axis, the estimated 

number of total cases accumulated. Although in all the countries analyzed the values are different, 

they always have a trend very similar to the actual data. This model predicts the peaks of rise of 

COVID-19 infection in the population. Therefore, it can be used for data analysis both for the year 

and for dates later. The estimated values obtained, for all cases exceed those that have already been 

found in the year, that is, it foresees the cases that could continue to occur during the following 

years. This fact helps us to alert the corresponding authorities to take more rigorous measures 

in order to prevent a third or fourth wave of infections that could be disastrous throughout South 

America. 
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Figure 3.12: Differential logistic model using moving average data with 95% of confidence 

level.Using the relationship between daily reported cases and total cases. a) Argentina, b)Brazil, 

c) Bolivia, d) Chile, e) Colombia, f) Ecuador. Total cases vs Daily cases data as function of time 

(red points) and fitting model with bands (blue lines) 
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Figure 3.13: Differential logistic model using moving average data with 95% of confidence 

level.Using the relationship between daily reported cases and total cases. a) Guyana, b)Paraguay, 

c) Peru, d) Suriname, e) Uruguay, f) Venezuela. Total cases vs Daily cases data as function of 

time(red points) and fitting model with bands (blue lines). 
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Logistic Model Results 

Country 

Name 

Estimated 

cases Nmax 

Standard 

error(±Nmax) 

Growth rate 

λlog 

Standard 

Error(±log) 

R2 

Argentina 2 297 940 28 987 0.020 0.000 0.87 

Brazil 16 308 300 1 158 080 0.011 0.000 0.77 

Bolivia 392 396 42 903 0.009 0.000 0.55 

Chile 1 659 926 297 800 0.006 0.000 0.71 

Colombia 27 947 443 60 094 0.016 0.001 0.84 

Ecuador 402 109 27 617 0.011 0.001 0.70 

Guyana 10 651 386 0.016 0.001 0.71 

Paraguay 246 933 10 082 0.015 0.001 0.87 

Peru 1 583 936 69 622 0.014 0.001 0.71 

Suriname 10 934 663 0.012 0.001 0.50 

Uruguay 104 246 4 625 0.029 0.001 0.87 

Venezuela 151 578 2 495 0.018 0.001 0.80 

Table 3.5: Estimated cases (Nmax) and growth rates (λ) parameters with their standard errors from 

the differential logistic model for the different countries under study based on daily reported cases  

and total cases. 

While the analysis of the growth rate is important in all models, here it is found that it 

decreases in excessive amounts. Comparing the results of the growth rate with the previous 

models, exponential model and discrete logistic model, it decreases by about twenty times and 

five times less, respectively. Additionally, as analyzed, the R2 in this specific case is > 0.7. This 

does not mean that fittings are not inadequate or inefficient, but that greater care must be taken 

when choosing the values that should be taken both for accumulated total values and for the 

values of daily cases, except in cases like Suriname and Bolivia, where R2 < 0.7. However, in 

these cases the estimated values are suitable for the analysis of the same as mentioned above. 
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Percentage Analysis 

Country 

Name 

Total real 

cases 

Estimated cases 

Nmax (Discrete 

Logistic Model) 

Relative 

Error (%) 

Estimated cases 

Nmax (Differential 

Logistic Model) 

Relative 

Error (%) 

Argentina 2 118 676 2 099 630 0.89 1 707 840 19.39 

Brazil 10 390 461 10 891 700 4.82 6 818 590 34.37 

Bolivia 256 462 244 260 4.75 167 909 34.52 

Chile 803 009 695 250 13.41 528 845 34.14 

Colombia 2 269 582 2 701 910 19.04 7 736 150 23.50 

Ecuador 286 155 304 050 6.25 203 199 28.98 

Guyana 8 993 8 910 0.92 7 723 14.12 

Paraguay 168 043 179 680 6.92 130 716 22.21 

Peru 1 349 847 1 176 770 12.82 981 177 27.31 

Suriname 9 022 9 090 0.75 6 695 25.79 

Uruguay 69 074 77 420 12.08 265 128 283.83 

Venezuela 144 786 130 870 9.61 117 764 18.66 

Table 3.6: Estimated cases (Nmax) and midpoints (t0) parameters with their standard errors from 

the discrete logistic model for the different countries under study. 

 
3.6 COVID-19 Outbreak in Ecuador 

For this section we have focused on the specific case of Ecuador. It is the country where we 

recurred and we can analyze it more depth in terms of social, economic and other aspects.  Ecuador 

is a country located to the northwest of South America, bordering Colombia in the north, Peru 

to the south and east, and the Pacific Ocean to the west. Ecuador has 24 provinces, among which 

the main ones are Pichincha and Guayas, With population densities of 333.08 people for km2 

and 275.47 people per km2 respectively and its capital cities Quito with a population of 1399814 

and Guayaquil with a population of 1952029 respectively according to Worldometer. According 

to Brazilian Reports, in Latin America the city with the highest number of reported cases of 

COVID-19 was Guayaquil, thus becoming the epicenter in the continent of this infection39. 
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Guayaquil’s real situation was much more intense than many media outlets showed it. There are 

several images showing sick people dying in the streets of the city and the little action taken by 

the government to stop this situation. 
 

Figure 3.14: Ecuador population density map 

 
The spread of COVID-19 in Ecuador is shown in the Figure 3.15. The data reported are 

shown in black and the data corrected with the 7 point moving average in red. As mentioned at 

the beginning of the research, all this is used to avoid peaks or valleys that cause errors at the 

time of modeling. 



CHAPTER 3. RESULTS & DISCUSSION 43 
 

 

 

 

 
 

Figure 3.15: Ecuador: a) the number of infected people per day, b) the total number of confirmed 

cases reported in a 365-days window, and c) the forward differential method applied to the daily 

reported cases. China: d) the total number of confirmed cases reported on 12/31/2020. Data are 

represented in black and the 7-point average data in red. The inset in Figure 1d shows the fit of 

China data using the discrete logistic model. 

Figure 3.15a shows the daily cases reported as a function of time with a 365-day window. As 

can be seen the reported data are characterized by intense peaks exceeding 1.5 × 103 cases per 

day. On the other hand, within the data we can observe a gap related to days in which there were 

zero reported cases. This can be seen graphically as a deep valley between the days 180 and 190 
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approximately from August 27 to September 7, 2020. As you can see the scattering of the 7-point 

moving average data is remarkable in comparison to the reported data. However, these maintain 

the same trend and can be used for the complete analysis of the models. 

Figure 3.15b shows the total number of cumulative cases reported as a function of time. Here 

there is a small interruption because non new cases were reported on the dates of May 4 to May 

8, 2020 approximately. This is once again corrected by the 7-point moving average we made 

earlier. Figure 3.15d has also been added which shows the same data but in the case of China, 

this to make a comparison between these two countries. In the case of China, an early saturation 

is shown in the first 100 days from the first confirmed case, which contrasts with the case of 

Ecuador where recreation grows exponentially day after day despite having had more than two 

months to prepare against the COVID-19. 

In terms of identification of waves of contagion, Figure 3.15c has been made showing the 

use of the forward differential method applied to the daily case data reported. However, it is 

not possible to observe or differentiate between the first, second or third wave, because the data 

remains in a constant trend of ±1.0 × 103.   This suggests that the population is in constant 

contagion due to the few controls and preventions that exist in the country. 

If we put together the models made previously with respect to Ecuador we can obtain a 

graphical comparison and we can also make a table in which the results of each proposed 

model are better visualized. Figure 3.16 shows the curves of the different models proposed: the 

exponential model (Figure 3.16a), the discrete logistic model (Figure 3.16b), and the solution of 

the differential logistic model (Figure 3.16c). Moreover, the estimated values for the constants 

and for the evaluated parameters are reported in Table 3.8. 

As a first observation in the results table, we analyzed the growth rate coefficient estimated of 

the exponential model (λ = 0.185 day−1), which is about 13.21 times larger than that found by the 

discrete logistic model (λ = 0.014 day−1) and 3.36 times larger than that found by the differential 

logistic model (λ = 0.055 day−1). The best explanation for this high growth rate is due to the 

little or no preventive action at the beginning of the pandemic. 

The BBC shows that Ecuador was in the second position of the countries most affected and 

with the highest number of infected by COVID-19 in all Latin America only after Brazil40. 

Additionally, The New York Times reported on April 23, 2020 that the total death toll was 15 

times more than the government intended to show41. Guayaquil is one of the cities with the 
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Figure 3.16: The total number of cases as a function of time fitted with different models: a) 

exponential model (Equation 2.6), b) discrete logistic equation (Equation 2.7), and c) solved 

ODE logistic equation (Equation 2.9). Data and fit are represented in black and red, respectively. 

Pink lines represent the confidence level (%95) 
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Exponential Model-Equation 2.6 

Parameter Estimated Standard error R2
 

λ 0.185 0.001 0.978 

Discrete logistic Model-Equation 2.7 

λ 0.014 0.000 0.997 

t0 230.566 2.4333  

Nmax 304 050 3 960  

Differential Logistic Model-Equation 2.9 

λ 0.055 0.001 0.944 

Nmax 203 199 2 892  

Table 3.7: Estimated parameters using the different models of the present work. The λ 

represents the estimated (exponential or logistic) growth rate, Nmax is the maximum number of 

infected people, and t0 denotes the midpoint. 

 
highest number of deaths both in hospitals, in their own homes and in more extreme cases in the 

streets of the city. This was due to the fact that only a partial quarantine was implemented as of 

March 17, 2020, when the first suspicion of the first case was already reported as of February 14, 

2020. 

Analyzing Figure 3.16a, we found a clear exponential growth within the first 30 days of the 

pandemic with some points below or above the exponential fit (red line) and their confidence 

intervals (pink lines). In addition, within 30-days window your Nmax =2240 until March 31, 

2020. On the other hand, the discrete logistic model shows an excellent coincidence between 

the reported data and the fitting curve (Figure 3.16b). In terms of comparison between Ecuador 

and China, we can find that its midpoints of both Ecuador (t0 ∼ 230) and China (t0 ∼ 19, Figure 

3 .16d), are extremely different about 12 times greater than that of the Asian country, this tells 

us that the pandemic was managed within the first month. In contrast, we can mention that in 

Ecuador the flattening of the infection curve began on October 12, 2020, that is, more than 7 

months after the pandemic arrived. Another point at which we should emphasize is in Figure 

3.16c that shows us a discrepancy between the reported data and the fitting curve, leaving us 

with the suggestion that modeling should be used by the logistic differential method with extreme 

caution when trying to predict long-term values. Specifically, the total number of infected persons 
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calculated by Equation 2.9 (Nmax = 203199), which has a difference of at least 1000000 total cases 

compared to what was estimated by the discrete logistic model (Equation 2.7) (Nmax = 304050). 

Despite this difference, the values obtained in both models have a parameter of R2 above that it 

is taken as sufficient (> 0.8). This data is confirmed by Table 3.8, in which both models have 

R2 > 0.9, which allows us to suggest that both models fulfill their purpose and fits for the data of 

Ecuador taken during the year. 

To analyze the growth rate coefficient of each model in a qualitative way, it has been proposed 

to represent them in the form of a matrix (Figure 3.17). In this way we can analyze how the growth 

was and in turn how health policies (social distancing, testing, quarantine, treatment of infected 

patients) were applied to reduce it in Ecuador. Figure 3.17 shows that the growth rate coefficient 

suffers a decrease that we have already mentioned also the days where the contacts of infected 

people were given. The analysis of the growth rate coefficient of the exponential model (Figure 

3.17a), the discrete logistic model (Figure 3.17b) and the differential logistic model (Figure 3.17c), 

we realize that they are reduced to around ∼ 92% and ∼ 70% respectively. This fact confirms 

that there was a behavior of the chaotic or random type as a function of time. Once the pandemic 

began, the policies implemented greatly affect the growth rate coefficient since these were taken 

recklessly, without considering all the effects they could have on citizens and their health system. 

To this is added, that the time in which a complete quarantine was implemented throughout the 

country was not enough and the population was released with the only rule of maintaining a social  

distancing. Finally, it is that in that year once the state of emergency and quarantine ended, the 

celebration of several festivals and events that had no controls by the government or the ministry 

of public health was allowed. 
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Figure 3.17: Matrix representation of the growth rate coefficient () from (a) exponential model 

(for simplicity is taken ), (b) discrete logistic equation, and (c) differential logistic model. Black 

markers represent the infected people affected by COVID-19. 

 
It is important to analyze more deeply the total case approximation (Nmax) of each model used. 

As we have seen, the discrete logistic model (Equation 2.7) gives us an Nmax = 304050 and the 

differential logistic model (Equation 2.9) an Nmax = 203199. However, the actual values already 

exceed these approximations on dates of March 17, 2021 with Nmax = 305598 and December 17, 

2020 with Nmax = 204249, respectively. This tells us that the models cannot be used correctly to 

predict a total number of infected cases in Ecuador, because, they do not have sigmoid behavior, 
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as can be seen in Figure 3.15d. Given this case, we have set out to analyze it in a different way 

using Equation 2.11. Although, in the previous section we have analyzed in a general way the 

use of this equation for different countries. Here, we want to emphasize in a comparison with 

the countries that most closely resemble the behavior of their curves.   The selected countries 

are Brazil, Peru and Colombia. We have put the data for these countries in Table 3.7, for better 

visualization at the time of comparison. At the same time we change the way we represent the 

model to differentiate them from the models we already present. With Equation 2.11 we obtained 

parabolic approximation curves (red color) that are in accordance with the data reported for each 

country (R2 > 0.8), having as much as Nmax = 402109 for Ecuador, Nmax = 3.923 × 105 for Brazil, 

Nmax = 1, 583 × 106 for Peru, and Nmax = 2, 794 × 106 for Colombia. 

The estimated Nmax value in Ecuador agrees with the data reported at the end of May 2021 

(Nmax = 426037) (see the following link for the real-time updated map on the Ecuador situation 

of cases of coronavirus: https://www.worldometers.info/coronavirus/country/ecuador/). This 

suggests that the proposed logistic model may be useful and further calibrated if more data from 

daily cases are added. 

Analyzing the parameters obtained for Ecuador, we found that the growth rate estimated (λ = 

0, 011 day−1) is reduced by at least ∼ 94% compared to the exponential model (λ = 0, 185 day−1). 

Moreover, this resonate obtained with Equation 2.11, has a great similarity with that reported by 

the discretionary logistic model (λ = 0, 014 day−1). Curiously, they are also intimately linked to 

those found in the other countries Brazil(λ = 0, 001 day−1), Peru(λ = 0.0013 day−1) and Colombia 

(λ = 0, 016 day−1), confirming to us that they had a similar management by the authorities and 

the population, at the time of fighting against the rapid spread of COVID-19. It is necessary to 

mention that scatter data points are observed with respect to the parabola. Telling us that the 

variability of the growth rate coefficient must be considered in a mandatory way as a function 

of time, mainly due to the fact that there are still new cases reported on a daily basis. We have 

defined the coefficient variability, which can be calculated with the use of Equation 2.12 and 

which can be expressed either as a function of the total cases and also as a function of the time. 

As we have focused on studying the specific case of Ecuador, Figure 3.19 shows us how the 

λ coefficient varies. The information obtained tells us that in the first 10 × 103 confirmed cases, 

there is an extremely high growth rate (0.2 < λ < 0.08). After this, in the 20 × 103 and 30 × 103 

total confirmed cases, this value decreases to almost half (0.05) and to an eighth part ∼ 0.01, 

http://www.worldometers.info/coronavirus/country/ecuador/)
http://www.worldometers.info/coronavirus/country/ecuador/)
http://www.worldometers.info/coronavirus/country/ecuador/)
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Figure 3.18: The daily cases as a function of the total confirmed cases. The black markers show 

the data and the red curve is the regression according to Equation 2.11. Pink lines represent the 

confidence level (95%). For comparison, it is analyzed different countries: a) Ecuador, b) Brazil, 

c) Peru, and d) Colombia. 

 
respectively. Our growth rate, takes its value when the number of total cases confirmed amounts 

from 40 × 103 to 300 × 103, in a range of 0.02 < λ < 0, 005. Interestingly, we can define about 

three important peaks where you can see the increase in cases. Based on Figure 3.19c, the first 

peak is between 80 × 103 - 160 × 103, the second peak between 170 × 103 - 280 × 103, and the third 
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Equation 2.11 
 

Parameter Estimated Standard error R2
 

 

Ecuador 

λ 0.011 0.001 0.902 

Nmax 402 109 2 761  

  Brazil  

λ 

Nmax 

0.011 

3.923x105
 

0.001 

4.290x104
 

0.55 

  Peru  

λ 

Nmax 

0.013 

1.583x106
 

0.001 

6.96x104
 

0.71 

Colombia 

λ 

Nmax 

0.016 

2.794x106
 

0.001 

6.0x104
 

0.84 

Table 3.8: Estimated parameters using the different models of the present work. The λ 

represents the estimated (exponential or logistic) growth rate, Nmax is the maximum number of 

infected people, and t0 denotes the midpoint. 

 

peak from 290 × 103. Hence the fact of relating these peaks, as a multi-stage behavior COVID-19 

outbreak in Ecuador, but not as just simple constant waves of infection. This multi-stage behavior 

is confirmed by data and celebrations that occurred throughout the year. In terms of dates, our 

first peak is in the week of September 28 to October 4, 2020, and the second peak coincidentally 

is from December 7 to 13, 2020, dates where Christmas and New Tear is celebrated. 

Adding, Figure 3.19b, has an importance in analyzing the symmetry of the growth rate coeffi- 

cient distribution. This figure has a slight skewed on its right, confirming that this distribution is 

asymmetrical, where there are points that the growth rates are larger than others. It is important 

to mention that the largest number of growth rates are located below 0.02 day−1. If we focus 

on this section (Figure 3.19d), we can observe an symmetrical behavior. Additionally, make it 

known that most growth rate coefficients are between 0.007 and 0.017 days−1 and the frequency 

with the highest value at 0.001 day−1. 
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Figure 3.19: a), c) The growth rate coefficient as a function of the total confirmed cases computed  

using Equation 2.12 and considering the data in a one-year window for Ecuador. b), d) the 

associated histograms. 

 

 
Figure 3.20: The growth rate coefficient of Equation 2.12 is represented as a surface-color plot 

vs 30-days and 12-months. (a) the growth rate in a one-year window and (b) the growth rate from 

May 1, 2020, to February 28, 2021. 
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Finally, Figure 3.20 displays the growth rate coefficient as a function of time. Mainly, the 

critical months of Ecuador were located in March and April 2020, specifically in the third week, 

where the values of the coefficient are the maximum found (Figure 2.20a). The variability of 

the coefficient in the following months (May 2020 to February 2021) is shown in Figure 2.20b, 

where values are not extremely high as the first months. In fact, this fact is attributed to the care 

and protection that society adopted with the use of face masks, alcohol, disinfectant gel and the 

decision itself to mobilize as little as possible. 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

Conclusions & Outlook 

 
We have presented a simple mathematical approach based on the conventional exponential model,  

the discrete logistic equation, and the differential logistic model to scrutinize the COVID-19 

outbreak in South America. The estimated parameters were the growth rate (λ), the total number 

of cases (Nmax), and the midpoint of the maximum growth (t0). The one year data from the first 

day of reported cases of each country, mostly from February, 2020 to March, 2021. The real data 

was subdue to a 7-point moving average to avoid some problems(zero days reported cases) during  

the modeling. As a first approach, it is demonstrated that the estimated growth rate in every case 

suffers a decrease in the value calculated. Following a rule from highest to lowest value, we can 

say that growth rate calculated by Exponential model > Discrete Logistic Model > Differential 

Logistic Model. Despite the fact that there was a lockdown in each country, affecting not only the 

economic status, the collapse of the healthy systems had to happen, due to the number of infected 

people increases exponentially at the first 30 days. In general way, when we compare Discrete, 

Differential and the Corrected Equations of Logistic Models, the way to estimated the Nmax, not 

always is correct. Although, the models had a highest approximation, in some cases the Nmax 

were reached before the year were complete. However, this problem can be solved by analyzing 

daily cases as a function of total cases. Thus, the predicted numerical value of the total number 

of infected people was found to be in good agreement with the real-time data reported at the end 

of May 2021. A nicely point at the moment to evaluate each model for each country, is the fact 

that the fitting curves, were acceptable (R2 > 0.8). 
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Here, we also emphasize the case of the COVID-19 outbreak in Ecuador. Selecting some 

countries with almost same behavior like Brazil, Peru and Colombia. Additionally, for this specific 

case we analyze the variability of the growth rate coefficient a function of the total cases and time. 

In context, the results evidenced as we mention that the growth rate decreased from =0.185 day−1 

(exponential model) to =0.014 day−1 (discrete model) and =0.056 day−1 (differential model) 

over the months. During the firstly days of pandemic, as in the other countries a lockdown 

happens in Ecuador, guide to reduce the fast spread of the infection. This policy had a “relative” 

positive effect in terms to reduce the growth rate values. We can corroborated this fact by 

analyzing the growth rate variability as function of time. Mainly it is observed that the most 

critical months of the pandemic were March and April 2020. As we conclude before, discrete 

(Nmax ∼ 305k) and differential(Nmax ∼ 204k) estimated total cases, are not allowed to be used 

in a approximation cases, because both can be underestimated. This last simple mathematical 

approach (Variability Growth rate) for the Ecuador case also can be applied in other South 

American countries mentioned here to take immediate action against the COVID-19 disease. 
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Appendix A 

Long Appendix 1 Heading 

 
A.1 Exponential function calculus 

Equation may be written 

 

The solution is of the form 

dt 
= kN (A.1) 

N = N0 abt (A.2) 

where a and b are constants. The time derivate of N is 
 

dN 

dt 

This satisfies Eq.(A.1) provided 

= b (ln a) N0 abt = b (ln a) N (A.3) 

 
k = b ln a (A.4) 

we must choose values to let a = e where 

 
e = lim 

x→∞ 

  
1 + 

 
1 

= 2.718.... (A.5) 
x 

then k = b ln e = b and the solution to Eq.(A.1) is 

 
N = N0 ekt (A.6) 
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∫ ∫ 

..  . = 

λ.N − N(t) 

ln 
N(t) 

λt+C
 

.. . =. 
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A.2 Solution for ODE differential logistic equation 

Rewrite the differential form of the logistic equation (Equation 2.8) 

dN(t) 
= 

λ N(t)(Nmax − N(t)) 
 

(A.7) 
dt Nmax 

Then multiply both sides by dt and divide both sides by N(t)(Nmax − N(t)) 

dN(t) λ 

N(t)(Nmax − N(t)) 
= 

Nmax 
dt (A.8) 

Multiply both sides of the equation by Nmax and integrate: 

  Nmax 
dN(t) = λ dt (A.9) 

N(t)(Nmax − N(t) 

The left-hand side can be integrated using partial fraction decomposition. Then the Equation A.9 

becomes 

∫  
  1   

+
 1 

dN(t) = 

∫ 

λ dt (A.10) 

N(t) (Nmax − N(t) 
 

ln |N(t)| − ln |Nmax − N(t)| = λt + C (A.11) 

ln
 N(t)  

t + C (A.12) 
max 

Now exponentiate both sides of the equation to eliminate the natural logarithm: 

 
e . N (t) . = e (A.13) 

 

max −N 

 
 

  N(t)  
eλteC (A.14) 

Nmax − N(t) 

We define C1 = ec so the equation becomes: 

  N(t) 
= C1eλt (A.15) 

Nmax − N(t) 

To solve this equation for N(t): 



 

 

= . λ 
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N(t) = C1eλt(Nmax − N(t)) 

= C1Nmaxeλt − C1N(t)eλt 

N(t) + C1N(t)eλt = C1Nmaxeλt 

N(t)(1 + C1eλt) = C1Nmaxeλt 

N(t) = 
C1 Nmaxe

λt
 

 

1 + C1eλt 

The last step os to determine the value of C1. Substitute t = 0 and N0 in place of N(t) in 

Equation and solve for C1: 

  N(t) 
= C1e

λt 

Nmax − N(t) 

N0 

Nmax − N0 

C1 = 

= C1e
λ(0) 

N0 

Nmax − N0 

Finally, substitute the expression for C1 into Equation A.15: 
 

C N eλt 
N 

N0 Nmaxe
λt

 
 

N(t) = 
   1    max 

=  max−N0  (A.16) 
1 + C1eλt 1 +     N0 eλt 

Nmax −N0 

Now multiply the numerator and denominator of the right-hand side by (Nmax − N0) and simplify: 

 

N 
N0 Nmaxe

λt
 

 

N(t) = max −N0 

1 + N 

N0
 eλt 

N 
N0 

N 
Nmaxe

λt
 

 

 
 

max −N0 

N − N  

= max − 0 max 0 
1 + N N0 

N 
eλt Nmax − N0 

max − 

= 

0 

N0 Nmaxe
λt

 
 

(A.17) 

(Nmax − N0) + N0eλt 

N(t)  
N0 Nmax e

λlog t 

Nmax + N0 e log − 1 

 

 
(A.18) 

· 
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