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Resumen 

 

 

El modelado matemático adecuado del comportamiento de los tejidos blandos es el mayor 

desafío para obtener simulaciones más realistas de procedimientos quirúrgicos, entre otras 

aplicaciones. Durante muchos años, los modelos lineales elásticos se han utilizado para realizar 

este tipo de simulaciones debido a sus rápidos resultados. Sin embargo, estos modelos no 

reflejan el comportamiento real de los tejidos blandos cuando se éstos son sometidos a 

diferentes cargas. Actualmente, los modelos que mejor reproducen este comportamiento son 

los modelos hiperelásticos, y hay muchos de estos modelos propuestos en la literatura. Este 

trabajo tiene como objetivo realizar un estudio explicativo de modelos matemáticos adecuados 

para simulaciones realistas de tejidos blandos mediante el análisis de sus parámetros y 

características principales. Después de una descripción de un total de 34 modelos matemáticos, 

se analizaron los aspectos más importantes acerca de ellos y se presentaron clasificaciones 

según el rango de deformación, la complejidad y la aplicación. Además, se presentó una tabla 

que resume las características más importantes de los modelos matemáticos. 
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modelos hiperelásticos, estudio explicativo, rango de deformación, complejidad, aplicación. 

 

 



 

 

 

 

 

 

 

 

 

 

Abstract 

 

 

Adequate mathematical modeling of soft tissues behavior is the biggest challenge to obtain 

more realistic simulations of surgical procedures, among other applications. For many years, 

linear elastic models have been used to perform this kind of simulations because of their fast 

results. However, these models do not reflect the real behavior of soft tissues when they are 

undergoing to different loads. Currently, the models that better reproduce this behavior are the 

hyperelastic models, and there are many of these models proposed in the literature. This work 

aims to perform an explanatory study of mathematical models suitable for realistic soft tissue 

simulations by analyzing their parameters and main characteristics. After a description of a 

total of 34 mathematical models, the most important aspects about them were analyzed and 

classifications according to deformation range, complexity and application were presented. In 

addition, a table, that summarizes the most important characteristics of the mathematical 

models, was presented.  
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Mathematical modeling, soft tissues, realistic simulations, linear elastic models, hyperelastic 

models, explanatory study, deformation range, complexity, application. 
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1 Introduction

1.1 Motivation

Adequate mathematical modeling of soft tissue behavior is the biggest challenge to obtain more realistic simu-

lations of surgeries. For many years, linear models have been used to perform this kind of simulations because

of their fast results. However, they do not reflect the real behavior of soft tissues when they are undergoing to

loads. Currently, the models that better reproduce this behavior, in contrast with linear models, are the hyper-

elastic models. These models are based on different approaches such as observation, physics or biology; and

have different results depending on the conditions of the simulation being performed. The hyperelastic models

described in this work consider soft tissues as homogenous, isotropic, and incompressible. Several researchers

have based their studies on the similarities between soft biological tissues and rubber materials, so, the pre-

diction of soft tissue behavior can be performed using the mathematical models used to determinate rubber

behavior. Considering those mathematical models that work on rubber work on soft tissues too, there is a huge

amount of models that can be used to simulate the behavior of these materials. These mathematical models can

be used for specific applications such as preoperatory plans, real-time simulations of surgical procedures, anal-

ysis of injury mechanisms in vehicle accidents, airplane ejections, blast-related events, developing and testing

surgical implants. So, given the great number of possibilities for mathematical models that can be used for soft

tissue simulations and the different applications where they can be used, programmers, engineers, biomedical,

etc. do not know which model to choose for their specific needs.

1.2 Scope

This project aims to provide a point-of-view to choose between mathematical models for simulations of soft

tissue deformations considering their material constants, range of deformation, and accuracy for their com-

putation and representation. The existent mathematical models that can be used for these purposes will be

categorized by deformation range, complexity, and application. These classifications will be performed in such

a way that allows people in need of mathematical models for soft tissue simulations to choose the most ade-

quate model for their particular application. An extensive literature review must be done to achieve such a goal.

The literature review is necessary to understand the theory behind the different mathematical models and their

results in simulations.
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1.3 Dissertation Overview

This work presents an explanatory study of mathematical models that are suitable for realistic soft tissue sim-

ulations. In order to achieve such a task, chapter 2 presents the theoretical framework of the project where the

most important concepts, used during the work, are described. Then, some similarities, shared between soft tis-

sues and rubber materials, are addressed. After that, reviews, about continuum mechanics and micromechanics,

are performed. In addition, the simplification of formulas, for incompressible materials, is shown; followed by

an explanation of the stress-strain curve for materials. Finally, the mathematical models, found in the literature,

are explained. In chapter 3, the methodology of the work is presented together with the selection of the mod-

els to be analyzed and classified, the parameter chosen to evaluate the models, and the type of classifications

to be performed. Chapter 4 presents the results and discussion and finally, chapter 5 presents the principal

conclusions obtained in this work.

2 Theoretical Framework

In the last years, many experiments introduced in the literature have demonstrated that soft tissues correspond

highly to nonlinear viscoelastic materials. The difficulties present in the laboratory tests to find the material

constants that define a non-linear viscoelastic model have placed the hyperelastic models among the most used

to describe the behavior of soft tissues, these hyperelastic models are similar to rubber in properties. In this

sense, several approaches to model soft tissue mechanical behavior have been adopted looking for a realistic

simulation with a trade-off between deformation range and accuracy. The hyperelastic models are mostly based

on continuum mechanics and micromechanics.

In this chapter, essential concepts, used in this work, are presented, then the mathematical models found in

literature are described, and a classification of several models is presented taking into account the taxonomy

proposed in [1], mainly based on the approach that the authors have followed to develop the structure of the

models.

2.1 Concepts

For a better comprehension of the different terminology, used in this work, a set of important concepts and its

definitions are presented, before starting the description of it.

• Anysotropic Material

It is a material that has properties that change with the direction.

4
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• Coaxial

Having the same axis as another body.

• Compression Force

Application of power, pressure, or exertion against an object which causes it to become squeezed,

squashed, or compacted.

• Constitutive Modeling

Mathematical description of the response of materials to different loads.

• Continuum Mechanics

Branch of mechanics dealing with the mechanical behavior of materials which are modeled as a contin-

uous mass instead of discrete particles.

• Coordinate

Each of a group of numbers used to indicate the position of a point, line, or plane.

• Creep Effect

The tendency of a solid material to move slowly or deform permanently under the influence of persistent

mechanical stresses.

• Deformation

Changing in shape or distorting, especially through the application of pressure.

• Eigenvector

A non-zero vector that changes by only a scalar factor when a linear transformation is applied to it.

• Eigenvalue

Characteristic root associated with an eigenvector.

• Elasticity

The ability of a material to resist distortion and return to its original state without any alteration. In

real-world materials that exhibit perfect elastic behavior do not exist, making this concept of elasticity

the characteristic of an ideal material only.

• Elastomer

A natural or synthetic polymer which has elastic properties. Example: rubber.

5



School of Mathematical and Computational Sciences YACHAY TECH

• Engineering Strain

The response of a system to an applied load. When a material is subjected to a load, it produces stress

in the material, which then results in deformation. The amount of deformation divided by the original

length of the material gives as result the engineering strain.

• Engineering Stress

The force or load applied to a cross-sectional area of the material before any deformation has occurred.

In other words, engineering stress is the internal distribution within the material as a reaction to a load

being applied.

• Experimental Data

Information obtained by measurement, test method, experimental design or quasi-experimental design.

This data can be qualitative or quantitative.

• Heterogeneity

Quality of being diversified in character or content.

• Homogeneous Material

Material of uniform composition throughout that cannot be mechanically separated into different mate-

rials.

• Hook’s Law

Law of physics that states that the force needed to extend or compress a spring by some distance scales

linearly with respect to that distance.

• Hyperelasticity

A term used on materials that exhibit highly nonlinear elastic stress-strain behavior such as rubber. These

materials can remain elastic up to large strain values (often 100 % and more).

• Hysteresis

A phenomenon in which the value of a physical property lags behind changes in the effect causing it.

• Incompressible Material

Material that changes its volume in an inappreciable way when it is subjected to pressure.

• Isotropic Material

Material that has identical values for a property in all directions.

6
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• Linearity

Property of a mathematical relationship or function meaning that it can be graphically represented as a

straight line.

• Macromolecule

Molecule That contains a very large number of atoms, such as a protein, nucleic acid, or synthetic poly-

mer.

• Material Parameters

Unique constants for each material that must be determined through laboratory tests.

• Mathematical Model

The description of a phenomenon using math concepts. It can be used to represent, analyze and make

predictions about such phenomena in real life.

• Mechanical Behavior

The response of a material to a stimulus, which is described by its mechanical properties.

• Mechanical Property

Part of the specifications of a material, which are obtained using laboratory tests. Some examples of

mechanical properties of materials are elasticity module, yield, ultimate tensile strength, ductility, stress-

strain relationship, etc.

• Micromechanics

Branch of mechanics dealing with the analysis of composite or heterogeneous materials on the level of

the individual constituents that constitute these materials.

• Monomer

A molecule that can be bonded to other identical molecules in order to form a polymer.

• Nonlinearity

Property of a mathematical relationship or function of not being able to be represented as a straight line.

• Plasticity

Property describing an irreversible change of shape that a material suffers after applying certain forces or

loads.

7
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• Polymer Chains

Group of substances with a molecular structure consisting mainly or entirely of a large number of similar

units bonded together.

• Reference System

A system that uses coordinates to establish a position.

• Rubber Material

Material that presents characteristics, which are similar to rubber’s characteristics, especially the exhi-

bition of very large strains, with strongly non-linear stress-strain relation. These materials consist of

chain-like macromolecules that are more or less closely connected to each other via entanglements or

cross-links.

• Soft Tissue

The substance making up the organs, which connects, supports or surrounds other structures and organs

of the body. This term refers to tendons, ligaments, fascia, skin, fibrous tissues, fat, synovial membranes,

muscles, nerves, and blood vessels.

• Soft Tissues Simulation

Reproduction of the behavior of soft tissues when subjected to different loads and stretches, usually

performed through mathematical models.

• Spectral Decomposition Theorem

Result about when a linear operator or matrix can be diagonalized, i.e. represented as a diagonal matrix

on some basis. This theorem also provides an eigenvalue decomposition of the underlying vector space

on which the operator acts.

• Strain Hardening Phenomenon

Incident observed as a strengthening of material during large strain deformation, which is caused by large

scale orientation of chain molecules and lamellar crystals.

• Stress-Strain Diagram

A graphic that shows the relationship between the stress that suffers an object and the strain that the

object has been subjected to. It is unique for each material and helps to determine the properties of such

material. This diagram is usually determined by laboratory tests by recording the amount of deformation

at distinct intervals of tensile or compressive loading (stress), and in the case of a simulation, it must be

obtained through a mathematical model.

8
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• Stretch Ratios

Deformation suffered by a determined material in a specific direction, which is computed as the final

length over the initial length of the material in a direction.

• Tension Force

A force which is transmitted through a rope, string or wire when pulled by forces acting from opposite

sides.

• Tensor

A geometric object that maps in a multi-linear manner geometric vectors, scalars, and other tensors to a

resulting tensor.

• True Strain

Deformation obtained with the instantaneous length instead of the original length that is used in the case

of engineering strain.

• True Stress

The measurement obtained with the instantaneous area instead of the non-deformed area that is used in

the case of engineering stress.

• Viscoelasticity

Property of a substance of exhibiting both elastic and viscous behavior.

• Viscosity

The ability of a material to resist flow, where the flow is the gradual deformation by shear or tensile stress.

2.2 Similarities Between Soft Tissues and Rubber Materials

The focus of this work is to perform an explanatory study of the mathematical models suitable for realistic

soft tissue simulations, although little research has been done regarding the application of mathematical models

for such purpose. However, there is plenty of research about mathematical models to simulate the mechanical

behavior of rubber, which is due to the high demand for this material in the industry. According to Holzapfel

[2], soft tissues and rubber materials have similarities in structure, mechanical characteristics, and constitutive

modeling. The findings of this work are described next.

9
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2.2.1 Mechanical Characteristics

The mechanical characteristics that soft tissues and rubber materials share are nonlinearity, anisotropy, hetero-

geneity, inelasticity, pre-conditioning, thermoelasticity, age dependency, among others.

Both soft tissues and rubber materials can be characterized as highly nonlinear materials that are subjected

to finite strains. Such characteristics can be appreciated in Figure 1 which shows pressure/stretch plots about

experimental data of arterial and rubber tubes during inflation and various axial loads.

(a) Inflation tests performed with a human iliac artery in its

non-active state of smooth muscle cells

(b) Inflation tests performed with a Latex tube

Figure 1: Response of soft tissues and rubber to inflation tests [2]

Regarding anisotropy, it is caused by the stiffening effect on soft tissues. Such an effect is based on the

recruitment of the embedded wavy collagen fibers. Biopolymers are oriented along the loading direction for

some tissues, which is similar for rubber materials at high stretches when the polymer chains align along

the loading direction. Soft tissues and rubber materials also respond in a homogeneous way to macroscopic

problems, and heterogeneity is not taken into account except for specific cases.

Soft tissues and rubber materials usually exhibit viscoelasticity, which is identified through hysteresis,

relaxation and creep effects. This behavior reveals inelasticity on behalf of both materials. Regarding pre-

conditioning, the biological material is referred as pre-conditioned when the number of load cycles until the

material exhibits a nearly repeatable cyclic behavior is diminished due to the pronounced stress softening dis-

played by the cyclic loading and unloading. The same term is not applicable for rubber materials, for which the

name of this behavior is the Mullins effect.

Thermoelastic properties of soft-tissues and rubber materials are similar too. A piece of vulcanized rubber

subjected to a weight generates a slight cooling effect in the very low strain range and changes to a heating

effect when increasing the weight, while rubber will contract its length under tension when its temperature
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is raised. Finally, the mechanical properties of these two materials also depend on age. Physical-mechanical

properties of rubber compounds are influenced by the effect of thermal aging; and regarding soft tissues, tests

on aortic strips have proved that the distensibility of the human aorta decreases as a function of age.

2.2.2 Composition

Both soft tissues and rubber materials are composite structures that present nonlinear properties derived from

specific distributions of their internal constituents. Soft tissues are formed by structural proteins and cells,

besides having elastin and collagen as determinants of their nonlinear mechanical properties (studies have been

done in arterial walls). Natural rubber, on the other hand, is formed by 95% of cis 1,4-polyisoprene, 2.5%

of protein and 2.5% of lipids, phenols, sugars, and fatty acids. Then, vulcanized rubber is obtained after

the vulcanization of natural rubber with sulfur. In addition, several rubber materials are obtained by reaction

chemistry, which means chemical cross-linking of the molecules either by sulfur or other chemical substances.

2.2.3 Constitutive Models

The composition and mechanical characteristics of materials are determinant in the design of constitutive mod-

els on the basis of comprehensive experimental data. So, as soft tissues and rubber materials share many of

these characteristics, the models designed for one type of these materials will be also applicable to the other

type. Therefore, the prediction of soft tissue behavior can be obtained from a precise prediction of rubber

behavior.

2.3 Continuum Mechanics Foundation

Given that many mathematical models that will be covered in this work have their basis on continuum me-

chanics, especially in stretch ratios and invariants, a brief review of this topic is needed in order to state some

important definitions and formulations that will be used later when the models are presented. The explanation

of continuum mechanics reviewed in this subsection is based on [3, 4, 5].

Let us start by the deformation gradient F, which is defined as the change of a material from an initial

configuration to a deformed configuration. Figure 2 shows the process of material deformation and Figure 3

shows the form of F for a stretching. So, assuming that at its initial configuration, a material occupies a region

R0, and that a point P0 inside that region has position vector X; as well as in the deformed configuration, the

material occupies a region R, and a point P inside that region has position vector x. Then, F can be expressed
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as:

Fij =
∂xi
∂Xj

or F =
∂x
∂X

(1)

R0

R

·P0

·P

F

O

X x

Figure 2: Change of a material from a initial configuration to a deformed configuration

Initial Stretching

F =


λ 0 0

0 λ 0

0 0 λ



F

Figure 3: Form of deformation gradient for the stretching of a material

So, F is a mixture of rotation and pure stretch. In order to define P, either X or x coordinates can be

used, and the same case happens with any other quantity associated with P. Using X coordinates is known as

material or Lagrangian point of view, whereas using the x coordinates takes the name of spacial or Eulerian

point of view. In the Lagrangian approach, each particle is identified by the coordinates of the point it occupies

12
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initially (also called material coordinates) that are taken as independent variables. In the second approach,

called Eulerian, the attention is focused on a fixed point in space with some coordinates (also called spatial

coordinates) that can be occupied by different particles at different times. In this case, the coordinates also play

the role of independent variables. Both approaches are equivalent because, since the functions that define the

transformation are invertible, given the initial coordinates of a particle it is possible to determine its position at

any time and given the position of a particle at a given instant it is possible to determine its initial position.

Using the spectral decomposition theorem, the matrix F can be decomposed into two forms: the first is a

rotation R followed by left stretch V, and the second is a right stretch U followed by a rotation R. The matrix

R is orthogonal, i.e. RT = R−1, and the matrices V and U are symmetric with positive eigenvalues. Then, F

can be decomposed as:

F = VR = RU (2)

Isolating V and U respectivelly:

V = RURT (3)

U = RTVR (4)

The equation 4 can be interpreted by considering that the components of V expressed in a coordinate system

whose axes are rotated by R relative to the reference system are identical to those of U. Then, taking the La-

grangian principal directions L (eigenvectors of U) as the reference system, and the Eulerian principal directions

E (the eigenvectors of V) as the new system, the result will be:

[V]E = [U]L =


λ1 0 0

0 λ2 0

0 0 λ3

 (5)

where λ1, λ3, λ3 are the principal stretch ratios (ratios of extended to initial length of line segments in the

principal directions). Equation 5 shows that even though matrices V and U are different, their expressions as

matrices of components are the same when different but appropriate coordinates are chosen. In addition, if pure

strain occurs, i.e. there is no rotation, equation 2 can be simplified as F = V = U.

Regarding strains, strain tensors are usually defined to be coaxial to either V or U and to have principal

values reducing to e = λ−1 at small strains. Two forms would meet such requirement: (λn−1)/n with n 6= 0

and log(λ). Then, one possible family of strain tensors is (Vn − I)/n and choosing n = 2 for convenience
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because V2 can be expressed in terms of F, we have:

U2 = FTF, and (6)

V2 = FFT (7)

The left Cauchy Green deformation tensor is defined as B = V2 = FFT , and the right Cauchy Green de-

formation tensor as C = U2 = FTF. The matrix E = (FTF − I)/2 is known as the Green Lagrange strain

tensor. The described family of strain tensors will be the only one covered in this review, because it leads to the

formulations and concepts needed for the mathematical models to be analyzed later.

For various purposes, three principal stretches would be enough to describe the deformation of a material.

So, given a deformation F, the tensors U and V can be found in some steps:

1. Find the eigenvectors of C by solving the characteristic equation:

det(C− λ2I) = 0 (8)

⇒ λ6 − I1(C)λ4 + I2(C)λ2 − I3(C) = 0 (9)

Where:

I1(C) = tr(C) = λ2
1 + λ2

2 + λ2
3 (10)

I2(C) =
1

2
(tr(C))2 − tr(C2) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 (11)

I3(C) =
1

6
(tr(C))3 − 3tr(C)tr(C2) + 2tr(C3) = λ2

1λ
2
2λ

2
3 (12)

In this formulations, det(·) is the determinant, and I1, I2, and I3 are the principal invariants of C (the

ones to be used to build the hyperelastic models later). The rest of the invariants can be obtained from

these three principals. An important remark is that the principal invariants are not unique in this feature

because the eigenvalues λ2
1, λ2

2 and λ2
3 form another set of three independent variables.

2. After solving the equation 9 for λ2
1, λ2

2 and λ2
3, we can substitute these eigenvalues in:

Cu = λ2u (13)

And solve for each case the three simultaneous equations in order to give the three components of the

corresponding eigenvectors u1, u2, and u3. Given a symmetric tensor, the eigenvectors are orthogonal,

i.e. uTi uj = δij (unit length eigenvectors), or can be chosen to be so if the eigenvalues are equal.

Therefore, the matrix C is expressed as follows:

C = λ2
1u1uT1 + λ2

2u2uT2 + λ2
3u3uT3 (14)
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3. Following that U is coaxial with U2, and C = U2, we have:

U = λ2
1u1uT1 + λ2

2u2uT2 + λ2
3u3uT3 (15)

In that way ui form the Lagrangian triad.

4. U−1 can be built from U as follows:

U−1 =
1

λ1
u1uT1 +

1

λ2
u2uT2 +

1

λ3
u3uT3 (16)

5. Once U−1 has been determined, R can be obtained as:

R = FU−1 (17)

6. Finally, V can be obtained as:

V = FRT (18)

From now on, the only pure strain will be considered because it is the common deformation applied in labora-

tory tests from where the mathematical models are derived. Models that are built using continuum mechanics

theory can take into account either the principal stretch ratios or the principal invariants of the right Cauchy

Green deformation tensor. Wherever the case is, it is necessary to define a strain energy function (SEF) for the

model in question. Such SEF is denoted W = W (C) and can be divided into volumetric (shape-preserving)

and isochoric (volume preserving but shape changing) parts because rubber materials commonly present a

decoupled response to volumetric and deviatoric deformations. So, the SEF for models based on continuum

mechanics is expressed as:

W (C) = Wvol(J) +Wiso(C̄) (19)

where J = det(F) and C̄ = J−
2
3C. As this work focuses on soft tissues, which are incompressible materials

like rubber; the previous equations can be simplified. So, in case of incompressible materials det(F) = 1, and

therefore, J = 1 and C̄ = C. An explanation about rubber being an incompressible material and the deduction

of det(F) = 1 will be given in Section 2.5.3 on this work.

Models that are built considering the principal stretch ratios have the following general form of strain energy

function:

W =

N∑
n=1

µn
αn

[λ̄1
αn + λ̄2

αn + λ̄3
αn − 3] (20)
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where µn is the shear modulus, αn is a dimensionless exponent and λ̄i are the modified principal stretches

(λ̄i = J−
1
3λi); µn and αn must satisfy that µnαn > 0. For incompressible materials λ̄i = λi.

On the other hand, models that are designed using the principal invariants of the right Cauchy Green defor-

mation tensor usually have the following general form:

W = W (I1, I2, I3) =

∞∑
i,j,k=0

Cijk(I1 − 3)i(I2 − 3)j(I3 − 3)k (21)

where Cijk are material parameters. For incompressible materials, equation 21 can be simplified as follows:

W = Wiso(I1(C), I2(C)) = Wiso(Ī1(C̄), Ī2(C̄))
∞∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j (22)

Such simplification is done because I3 = 1 in case of incompressible materials, so equation 21 is reduced to

the isochoric strain energy function where the invariants of C̄ coincide with the invariants of C.

2.4 Micromechanics Foundation

Even though most of the mathematical models able to reproduce the mechanical behavior of soft tissues found in

the literature are based on continuum mechanics, there are some models that have their basis on micromechan-

ics. So, a brief review of this topic is provided in order to specify some important concepts and formulations

that will be used when the methods based on this theory are presented. The explanation of micromechanics

reviewed in this subsection is based on the analysis of [5] and all deductions will be done assuming incom-

pressibility.

The micromechanical approaches for rubber elasticity commonly start by the definition of the deformation

behavior of a single polymer chain, which is constituted by a macromolecule built from monomers. Such

structure is modeled as a chain of N rigid beams of length l. which can be oriented with respect to each other.

The maximum distance between two chain ends, denoted rmax is equal to its contour length, i.e. rmax = Nl;

and the end-to-end distance of a stress-free undeformed chain is obtained as r0 =
√
Nl. So, a chain stretch is

introduced based on such considerations, as follows:

Λ =
r

r0
=

r√
Nl
∈ [0,

√
N ] (23)

The elastic behavior of a single chain is described using a free energy function W = W (Λ). Gauss and

Langevin chains are the most used, and have the following energy functions:

WGauss(Λ) =
3

2
kBΘΛ2 +W0 (24)

WLangevin(Λ) = kBΘN

 Λ√
N
L−1(Λ

√
N−1) + ln

 L−1(Λ
√
N−1)

sinh
(
L−1(Λ

√
N−1)

)

+W0 (25)
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where kB is the Boltzmann’s constant, Θ is absolute temperature and L−1 is the inverse of Langevin function

obtained as L(·) = coth(·)− (·)−1. It is important to mention that the Gaussian chain is valid only for stretches

from low to moderate, i.e. Λ <<
√
N , because the corresponding chain force denoted as:

fGauss(Λ) =
∂WGauss

∂Λ
= 3kBΘΛ (26)

is a linear function, and therefore, it does not reflect finite chain extensibility in an adequate way. In addition, the

inverse of Langevin function is commonly substituted by the Padé approximation for numerical applications:

L−1(Λ
√
N−1) ≈ Λ

√
N−1

3N − Λ2

N − Λ2
(27)

Taking as reference the previous description of a chain, models based on this theory are derived by averaging the

energies of a certain ensemble of chains. This number of chains is chosen such that they reflect the mechanical

behavior of the true polymer network in a realistic way. So, the general form of defining a model based on

micromechanics theory is:

W = W (C) := n(W ) ≈ n

K

K∑
k=1

W (Λk) (28)

where n is the chain density and K is the number of chains.

2.5 Assumptions

In order to simplify the work, some assumptions have to be done regarding the characteristics of rubber mate-

rials, and therefore, soft tissues. These assumptions consider that rubber materials, as well as soft tissues, are

homogeneous, isotropic and incompressible.

2.5.1 Homogeneous Materials

A homogeneous material has a uniform composition which cannot be separated into different materials. Ac-

cording to [2], it is reasonable to consider that soft tissues and rubber materials have a homogeneous response

although they are composites. This consideration is more valid for macroscopic problems. However, there may

be occasions where the heterogeneity has to be considered, but it happens in special cases only as in the mod-

eling of the structure of arterial walls because they are composed of three layers [2]. So, as the homogeneity of

rubber and soft tissues is a valid assumption, especially in macroscopic problems, this work will assume that

these materials are homogeneous in its development.
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2.5.2 Isotropic Materials

Isotropic materials are simply materials that are uniform in all directions, so their properties are the same in

all directions. Chagnon et al. [6] have performed a literature review where it is mentioned that many authors

have considered isotropic approaches to model soft tissues such as liver, kidney, bladder and rectum, pelvic

floor, breast, cartilage, meniscus, ligaments, eardrum, arteries, brain, lungs, uterus, and skin. Besides, many

authors have assumed rubber materials to be isotropic [1, 5, 7, 8, 9, 10, 11] too. So, this work will consider

rubber materials and soft tissues as isotropic in order to simplify the equations, given that the consideration of

anisotropy leads to very complex forms that involve much more strain invariants than it would be assuming

isotropy. The forms for this type of mathematical model can be reviewed in [6].

2.5.3 Incompressible Materials

An incompressible material does not change significantly its volume when it is subjected to any deformation,

so that, such change can be despised. This is the case of rubber materials, which have a Poisson ratio of approx-

imately 1
2 . The relationship between Poisson’s ratio and the incompressibility of material will be explained in

the next lines based on the information provided in [12].

Poisson’s Ratio

The Poisson’s ratio v compares the strains in the transverse et and longitudinal el directions under uniaxial

stress in the following way:

v = −et
el

=
∆D/D

∆L/L
(29)

In addition, v can be expressed in terms of the bulk and shear modulus for isotropic materials:

v =
3(B/G− 2)

6(B/G+ 2)
(30)

whereB andG are the bulk (related to the change in size of a material) and shear (related to the change in shape

of a material) modulus respectively. So, the Poisson’s ratio is numerically limited by −1 and 1
2 : −1 ≤ v ≤ 1

2 ,

for 0 ≤ B
G < ∞. Therefore, when B

G << 1, materials are extremely compressible; and when B
G >> 1,

materials are extremely incompressible. Figure 4 shows this relationship, and identifies the rubber materials as

incompressible, with v = 1
2 approximately.
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Figure 4: Relationship between bulk/shear modulus and Poisson’s ratio [12]

Invariants for Incompressible Materials

As previously stated, principal stretches λ1, λ2 and λ3 are the ratios of extended to initial length in the principal

directions, that is:

λ1 =
lx
lx0
, λ2 =

ly
ly0

and λ3 =
lz
lz0

(31)

where lx0, ly0 and lz0 are the initial length in the directions x, y and z respectively; while lx, ly and lz are the

final length in the directions x, y and z respectively. The rest of the deductions will be done assuming that the

material of the study has the shape of a cube for simplicity, the calculus for other shapes are analogous.

For materials with cubic shape, its volume can be obtained in the following way:

V olume = lx0 ∗ ly0 ∗ lz0 = c (32)

where c is any number. As the volume of an incompressible material does not change when subjected to

deformations, the volume of this material after it has been deformed is:

V olume = λ1lx0 ∗ λ2ly0 ∗ λ3lz0 = c (33)

Grouping stretches and longitudes, we obtain:

(λ1λ2λ3) ∗ (lx0ly0lz0) = c (34)

From equations 33 and 34, we deduce:

λ1λ2λ3 = 1 (35)
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In addition, the third invariant I3 is defined as the determinant of C, that is:

I3 = det(C) = λ2
1λ

2
2λ

2
3 (36)

From equations 35 and 36, we finally obtain that for incompressible materials I3 = 1.

Given the previous explanations, from now on rubber materials and, therefore, soft tissues will be assumed

to be homogeneous, isotropic and incompressible.

2.6 Stress-Strain Curve

Some laboratory tests are needed to obtain the stress-strain curve of material, and this curve is usually built with

engineering stresses and strains. Then, this part explains in detail the process to obtain the stress-strain curve

for materials starting from the different laboratory tests commonly performed on materials to determine their

characteristics, the way of computing engineering and true stresses and strains, a description of the curve and its

main components, and finishing with an explanation of the procedure to obtain the curve for the mathematical

models to be studied in this work.

2.6.1 Laboratory Tests

In order to find the stress-strain curve of a material, laboratory tests must be done where the material is subjected

to tension or compression forces. The common types of tests performed to determine the characteristics of a

material are six, which can be seen in Figure 5.

Now, considering hyperelastic materials as incompressible, which is the case of rubber and soft tissues, the

number of tests needed to determine its characteristics is reduced to three uniquely because hydrostatic stresses

can be superimposed on other stresses without altering the material deformation as Figure 6 shows. These three

tests that can be used to characterize a hyperelastic material are uniaxial tension, uniaxial compression, and

planar tension; however, compression can be replaced by an equal biaxial tension test for experimental reasons

[14]. This leads to the conclusion that the mechanical tests commonly performed in hyperelastic materials are

those shown in Figure 7.

The uniaxial tension test is performed using a uniaxial tension machine with dumbbells up and down and

placing the material in the middle, subjected by the dumbbells. Then, the material is pulled from both sides

using the same load, and the displacement is measured using an extensometer.

A planar tension test is similar to a uniaxial tension test, but the specimen is designed such that the gauge

width is much larger than the gauge height or specimen thickness. The importance of using this design of

20



School of Mathematical and Computational Sciences YACHAY TECH

Figure 5: Test methods used to determine material properties [13]

the test is that the large aspect ratio constrains the specimen and prevents “thinning” in the width direction,

resulting in a plane strain state of stress.

Equal biaxial tension of a specimen creates a state of strain which is equivalent to pure compression for

incompressible or nearly incompressible materials. Even though the actual experiment is more complex than

the simple compression experiment, a pure state of strain can be achieved which will result in a more accurate

material model. The equal biaxial strain state can be achieved by radial stretching a circular disc.

The uniaxial compression can be performed simply by using forces from both (up and down) sides to

compress the material and use a machine to measure the deformation that the material suffers.

2.6.2 Engineering Stress and Strain

Measurements for engineering stress and strain are obtained using the original specimen [15] (without defor-

mations). Engineering stress, also called nominal stress or first Piola-Kirchhoff stress, is given by the formula:

σe =
F

A0
(37)

where:

• σe is the engineering stress
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Figure 6: Test methods used to determine hyperelastic material properties because of superposition of hydro-

static stresses [13]

Figure 7: Mechanical tests performed on rubber [8]

• F is the force, and

• A0 is the undeformed or initial area

The engineering strain is given by:

εe =
l − l0
l0

(38)

where:

• εe is the engineering strain

• l0 is the initial length of the material, and

• l is the length at the time the strain is measured.
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2.6.3 True Stress and Strain

Measurements for true stress and strain are obtained using the specimen in question at a time t. True stress,

also called Cauchy stress, is given by:

σtrue(t) =
F

A(t)
(39)

where:

• σ(t) is the true stress at a time t

• F is the force, and

• A(t) is the area of the specimen at a time t

On the other hand, the true strain is given by:

εtrue =

∫ l

l0

dl

l
= ln

(
l

l0

)
(40)

where:

• εtrue is the true strain

• l0 is the initial length of the material, and

• l is the instantaneous length.

2.6.4 Analysis of Stress-Strain Curve

Typically, the laboratory measurements are expressed in engineering stresses and strains, so, the result of plot-

ting the engineering stress σe against the engineering strain εe gives as result an engineering stress-strain curve

such as that shown in Fig 8. In the x-axis goes the engineering strain and in the y-axis goes the engineering

stress. The stress is usually expressed in Pascals [15, 14, 8, 16, 17] (1Pa = 1 N
m2 ) and the strain in percentage

of deformation.

Many materials obey Hooke’s law of elasticity in the initial part of the curve [15], which can be seen in the

gray part of Figure 8. In this portion of the curve, the stress is approximately proportional to the strain with a

constant of proportionality E, known as modulus of elasticity or Young’s modulus.

σe = Eεe (41)

As the strain is increased, a wide range of materials usually reach a point where they deviate from the linear

proportionality of Hooke’s law, such a point is called the proportional limit [15]. After passing this limit,
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Figure 8: Stress-strain curve of a medium-carbon structural steel [18]

materials reach a point called the elastic limit; from this point on, materials will no longer recover their original

shape, i.e. the deformation is permanent. The yield point is the point at which the material will suffer an

elongation or yielding without increasing the load. The ultimate strength is the maximum stress that a material

can resist before breaking and the rupture strength is the point where the material does not resist more load

and finally breaks.

Two principal regions can be distinguished in most stress-strain curves: elastic and plastic regions. In

Figure 8 the elastic region goes from O to P, and the region from P to R is known as plastic region. While the

applied load produces a strain that is within the elastic region, the material will be able to return to its initial

shape, but, if the produced strain surpasses the elastic region and falls into the plastic region, the deformation

will be irreversible.

Each material has its own characteristics, so the stress-strain curve is unique for each material. It is possible

to find materials that do not present all the characteristics previously mentioned, which is the case of the brittle

materials that do not have plastic region [19]. According to Kaufman [19], materials can be classified into

ductile, brittle, and polymeric; each type of material presents differentiating characteristics and stress-strain

curves as shown in Figure 9.
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(a) Stress-strain curve for a ductile material
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(d) Stress-strain curve for a polymeric material: Rubber band

Figure 9: Stress-strain curves for different types of materials

Ductile materials such as the copper deform elastically at the beginning and stretch with little load increases

after passing the yield point 9(a). This type of material presents an elastic limit that marks the point from which

the deformation is irreversible, and shows necking before reaching the breaking point or rupture strength.

Brittle materials do not have plastic region as Figure 9(b) shows. Instead, this type of material obeys

Hooke’s law in all strain range and breaks without advice.

Polymeric materials can be divided into two types based on how they behave after the load is removed in

a tensile test, these subdivisions are the polythene and rubber materials. Both types of materials behave in a

similar way when a load is applied, but when the load is removed after passing the elastic limit, polythene
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adopts a new shape in a linear way 9(c), whereas rubber materials return their initial shape in a particular way

9(d).

2.6.5 Stress-Strain Curve for Mathematical Models

The way of obtaining the stress-strain curve for a mathematical model differs a little from the way it is done

with experimental data. Although the computation of strain is the same, stresses must be obtained from the own

definition of the model. Stresses are internal forces that neighboring particles of a continuous material exert on

each other. For the matter of large strain problems, as mentioned before, there are two major classifications of

stress tensors: the Cauchy or true stress tensor, denoted σtrue, and the first Piola-Kirchhoff or nominal stress

tensor, denoted σe. In order to be in concordance with the literature, σ will denote the Cauchy stress tensor and

P will denote the first Piola-Kirchhoff stress tensor. These two types of stress tensors are related as follows:

P = det(F)σF−T (42)

where −T represents the transpose of the inverse. In this formula, P and σ are matrices that have the stresses

of each direction in the diagonal.

In laboratory tests, the stresses are computed using the simple formula stated in 37; however, for the mathe-

matical models, they must be obtained from the SEF corresponding to the model, which is denoted W . So, the

Cauchy stress tensor, which depends on both strain and an arbitrary scalar parameter p, can be obtained with

equilibrium equations as follows:

σ = 2B
∂W

∂B
− pI (43)

where I is the identity tensor. From equations 42 and 43 we obtain the formula for the first Piola-Kirchhoff

stress tensor:

P =
∂W

∂F
− pF−T (44)

Assuming the material as isotropic and incompressible, the SEF depends only on the first and second invariants

of Green-Cauchy deformation tensor. Then:

σ = 2

(
∂W

∂I1
+ I1

∂W

∂I2

)
B− 2

∂W

∂I2
B2 − pI (45)

and

P = 2F

[(
∂W

∂I1
+ I1

∂W

∂I2

)
I− ∂W

∂I2
C

]
− pF−T (46)
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Expressing the stress tensors in terms of principal stretch ratios, we obtain:

σi = 2

(
λ2
i

∂W

∂I1
− 1

λ2
i

∂W

∂I2

)
− p i = 1, 2, 3 (47)

and

Pi = 2

(
λi
∂W

∂I1
− 1

λ3
i

∂W

∂I2

)
− p 1

λi
i = 1, 2, 3 (48)

Given the general form of obtaining stress tensors, it must be adapted to the different types of experiments that

are performed on rubber or soft tissues: uniaxial tension, equibiaxial tension, and pure shear. As experimental

data is usually given in engineering strains and stresses, only the first Piola-Kirchhoff stress tensor will be

considered for the deduction of stresses in the different experiments.

• Uniaxial Tension (UT)

In a uniaxial tension experiment, the material is elongated in one direction uniquely, that is, for instance,

λ1 = λ. Assuming the material in question is isotropic and incompressible, the other principal stretches

have the form λ2 = λ3 = λ−1/2. Therefore, the corresponding deformation gradient F and the invariants

I1 and I2 has the form:

FUT =


λ 0 0

0 λ−1/2 0

0 0 λ−1/2

 , IUT1 = 2λ−1 + λ2, IUT2 = λ−2 + 2λ (49)

In this type of experiment, the contraction is unhindered in the traversal directions, so, the stresses PUT2,3

are zero and the only stress to be determined is PUT1 . This stress is obtained by making equation 48 equal

to zero for either i = 1 or i = 2 and determining the value of p as follows:

p =
2

λ

(
∂W

∂I1
− λ2∂W

∂I2

)
(50)

Then , the first principal stress is obtained by inserting the value of p into the equation 48 for i = 1:

PUT1 = 2

(
λ− 1

λ2

)(
∂W

∂I1
+

1

λ

∂W

∂I2

)
(51)

• Equibiaxial Tension (ET)

In equibiaxial tension experiments, the material is equally stretched in two orthogonal directions, i.e.

λ1 = λ2 = λ. As previously, by assuming isotropy and incompressibility on behalf of the material in

question, the remaining stretch has the form λ3 = λ−2, and the corresponding deformation gradient and
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invariants have the form:

FET =


λ 0 0

0 λ 0

0 0 λ−2

 , IET1 = λ−4 + 2λ2, IET2 = 2λ−2 + λ4 (52)

In this type of experiment the stresses are equal in the load directions, i.e. PET1 = PET2 and the un-

hindered contraction in third direction causes it to be stress free, PET3 = 0. So, the stresses PET1,2 are

obtained by making equation 48 equal to zero for i = 3 and determining the value of p as follows:

p =
2

λ4

(
∂W

∂I1
− λ8∂W

∂I2

)
(53)

Then, the first and second principal stresses are obtained by inserting the value of p into the equation 48

for i = 1 or i = 2:

PET1 = PET2 = 2

(
λ− 1

λ5

)(
∂W

∂I1
+ λ2∂W

∂I2

)
(54)

• Pure Shear (PS)

This type of experiment uses rectangular sheets, which have a much larger width than length to realize

a zero deformation perpendicular to the loading direction λ1 = λ, so λ2 = 1 holds almost everywhere

except for the vicinity of the free edges. Again, by assuming isotropy and incompressibility in the

material, the deformation gradient and invariants are:

FPS =


λ 0 0

0 1 0

0 0 λ−1

 , IPS1 = IPS2 = λ2 + λ−2 + 1 (55)

As contraction is unhindered in the third direction, p can be obtained, in a similar way than before, by

setting the equation 48 equal to zero for i = 3. Then:

p =
2

λ2

(
∂W

∂I1
− λ4∂W

∂I2

)
(56)

Inserting p into the equation 48 for i = 1, 2 will finally give the two stresses for this type of experiment:

PPS1 = 2

(
λ− 1

λ3

)(
∂W

∂I1
+
∂W

∂I2

)
(57)

PPS2 = 2

(
1− 1

λ2

)(
∂W

∂I1
+ λ2∂W

∂I2

)
(58)

Material Parameters Determination

As the stresses for a mathematical model are derived from its strain energy function, obtaining such stresses
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will require to compute the material parameters corresponding to the model in question. According to [20],

the material constants determined for a specific type of load may not be valid for other types of loads, so it is

necessary to compute these constants for each type of load, which are: uniaxial tension, equibiaxial tension, and

pure shear. The material parameters are obtained through the least squares procedure to make the deviations of

the experimental data and the fitted data least [21]. So the function to be minimized is:

φ = w

n∑
i=1

[
Yi − Ŷi

]2
(59)

where w is a weighting factor that depends on the type of load being modeled, n is the number of experimental

data for each type of load, Yi are the values of stresses provided by the experimental data, and Ŷi are the theo-

retical values calculated from equations 51, 54 and 58 depending on the type of load.

Data Sets Used to Fit The Mathematical Models

In the wide range of literature, the most used data set used to fit the different mathematical models and com-

pute the material parameters is the Treloar’s data set [22], which contains engineering stress-strain data for

vulcanized rubber under various types of deformation. This data set has been widely used by many authors

[1, 3, 5, 9, 8, 23, 24, 25, 26]. The rubber used in this data set exhibits a highly reversible elastic response and

no stretch-induced crystallization up to 400% [1]. Another data set that can be used for fitting the mathematical

models is that provided by [27] which contains data about isoprene rubber vulcanizate. This data set has been

obtained using an experimental apparatus for general biaxial tension testing [1]. This work will use information

from papers that perform studies of mathematical models using the data set of Treloar, because such data set is

used in most of the researches found in literature and because it will allow comparing the models with equality

of conditions.

Once the strains and stresses have been obtained for the mathematical model, the stress-strain curve can

finally be plotted using the results provided by each model.

2.7 Mathematical Models

Many models found in the literature for the characterization of elastomers, such as the rubber and soft tissues,

can be classified according to the addressed stress-strain relationship. This main classification would be hyper-

elastic for those models able to reproduce the highly non-linear mechanical behavior of elastomers; and linear

for those models that are based in the Hooke’s law of elasticity, which establish a linear relationship between

stress and strain. This work will focus on hyperelastic mathematical models because they are the ones that

produce an adequate prediction of soft tissue behavior with reasonable complexity.
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Many hyperelastic models express the strain energy function depending on the three strain invariants I1, I2

and I3 stated before, as follows:

W = f(I1, I2, I3) (60)

These three parameters are invariants of Green deformation tensor, which are expressed in terms of principal

stretch ratios λ1, λ2 and λ3 as equations 10, 11, and 12 state. Other mathematical models use the stretch

ratios to build their SEF as well. As elastomers are considered incompressible, models that use the three strain

invariants can be simplified by using the assumption I3 = 1, and therefore, W can be expressed in function of

two invariants only:

W = f(I1 − 3, I2 − 3) (61)

In addition, hyperelastic models use different material constants, which vary depending on the material that

is being modeled. Most of these constants will be denoted as Cij during this work, with some exceptions.

Several mathematical models have been found in the literature which can be classified according to the

approach the author follows to develop the strain energy function [1, 5] or the treatments used in the model

[25]. According to Marckman and Verron [1], hyperelastic models are classified into three types, depending

on the approach that the authors follow to develop the SEF. These three types are phenomenological, based on

the experimental determination of ∂W
∂I1

and ∂W
∂I2

, and physical-based. Other authors [5] suggest a classification

in two types: phenomenological and micro-mechanical, this classification is also based on the approach of the

authors to define the strain energy function. In addition, Boyce and Aruda [25] have performed a division of

mathematical models considering the treatments used in the model, leading to three principal groups of models:

statistical mechanics treatments, invariant-based continuum mechanics treatments and stretch-based continuum

mechanics treatments.

In the following, a fundamental classification is presented taking into account the taxonomy proposed in [1],

mainly focused on the approach followed to the develop the SEF of the models, with the particular difference

that herein 14 models are added for the revision and the variants of each model are mentioned within the

principal model. In addition, a detailed description has been added for each model and some deductions are

explained in detail for a better understanding.

2.7.1 Phenomenological Models

Phenomenological Models are simply models that express mathematically the results of observed phenomena

without paying detailed attention to their fundamental significance [28]. Material parameters are usually dif-

ficult to determine for these models, and they can conduct to errors when used out of the deformation range
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in which their parameters were identified [1]. Most of the phenomenological hyperelastic models found in the

literature are described next:

• Money-Rivlin Model

Initially known as the Money model, it was first proposed by Money [29] in 1940 and then expressed

in terms of invariants by Rivlin [30] in 1948. It is known by being one of the first hyperelastic models,

which can handle very well strains lower than 100% [24]. However, it cannot capture the upturn (S-

curvature) of the force-extension relation in the uniaxial test and the force-shear displacement relation in

shear test [23]. The form of the model for a compressible material is:

W = C10(I1 − 3) + C01(I2 − 3) +
1

D1
(Jel − 1)2 (62)

where:

– C10 and C01 are material parameters.

– Jel is the elastic volume ratio, obtained as Jel = det(F) = λ1λ2λ3.

– D1 is a constant that defines the compressibility of the material. This constant can be estimated

from volumetric test.

– I1 and I2 are the first and second invariants of C, being C = J−
2
3 C the unimodular component of

C and J = det(C). The form of C and the way of obtaining the invariants have already been stated

in 2.3. I1 and I2 can be written as:

I1 = J−
2
3 I1 (63)

I2 = J−
4
3 I2 (64)

Considering an incompressible material, such as the rubber, the elastic volume ratio J becomes 1; and

therefore, I1 = I1 and I2 = I2. So, the Money-Rivlin model for an incompressible material has the SEF:

W = C10(I1 − 3) + C01(I2 − 3) (65)

The Money-Rivlin model has some variants which extend the basic model using different approaches.

Some of these variants are:

– Full Polynomial Model

This variant can be found in the literature with the same name ”Money-Rivlin” [1] or as Full Poly-

nomial model [23]. The form of the Full Polynomial model for compressible materials is:

W =
∞∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j +
∞∑
i=1

1

Di
(Jel − 1)2i (66)
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This form can be reduced for incompressible materials, in the same way 62 was reduced, as follows:

W =

∞∑
i,j=0

Cij(I1 − 3)i(I2 − 3)j (67)

This series is often truncated to terms of second and third order [1], such truncations can constitute

another model. From now on, all given strain energy functions for the mathematical models will be

assuming an incompressible material because this work is focussed on soft tissues and the way of

simplifying the equations is similar to the way previously shown.

– Biderman Model

This model, is a truncation of 67, but retaining only the terms for which i = 0 or j = 0. The first

three terms for I1 and one term for I2 were considered by Biderman [31]:

W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (68)

– Hynes-Wilson Model

This model is another truncation of 67, this time choosing to retain only six terms of the series based

on the comparison of invariants and principal stretches development of the SEF of Full Polynomial

model [32]. The form of W for this model is:

W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C02(I2 − 3)2 + C20(I1 − 3)2 + C30(I1 − 3)3

(69)

– Yeoh Model

This model, also known as reduced polynomial, is based in the first invariant I1 only and was

proposed by Yeoh [33] in 1993. Like the previous models, it is also the result of selecting specific

terms of the series 67. It can capture the upturn of the stress-strain curve of rubber, has good fit

over a large strain range and can simulate various modes of deformation with limited data [23].

Specifically, the Yeoh model proposes a SEF for incompressible materials as follows:

W =

3∑
i=1

Ci0(I1 − 3)i (70)

• Ogden Model

It was proposed in 1972 by Ogden [34], who based his model on principal stretch ratios λ1, λ2, and λ3

instead of invariants as the previous models. This model can capture upturn (stiffening) of the stress-

strain curve and model rubber accurately for large ranges of deformation, which can reach up to 700%
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[23]. It is not advisable to use this model with limited data, the general form of the model is:

W =

n∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3) (71)

where µn and αn are material parameters and should fulfill the following stability condition:

µiαi > 0 ∀i = 1, n (72)

An excellent convergence between theoretical and experimental results is achieved when n = 3 [1]. This

model is one of the most widely used for large strain problems, even if it is hard to determine the material

parameters [1].

• Shariff Model

In this model, proposed by Shariff [35], W takes the form of a function series, obeying Valanis-Landel

hypothesis form as follows:

W = ω(λ1) + ω(λ2) + ω(λ3) (73)

where ω is a series of regular functions φj and the parameters αj are linear coefficients of these functions.

The functions φj are chosen such that they satisfy the linear theory of incompressible isotropic elasticity

for all values of αj . Then, the form of ω proposed for this model is:

ω(λi) = E

n∑
j=0

αjφj(λi) (74)

where the functions φj , until four expansion points, are:

φ0(λi) =
[ln(λi)]

2

3
(75)

φ1(λi) =

∫ λi

1

e1−s

s
ds+ λi − 2ln(λi)− 1 (76)

φ2(λi) =

∫ λi

1

es−1

s
ds+ λi + 1 (77)

φ3(λi) = − 1

0.6λ0.6
i

+
3

1.6λ1.6
i

− 3

2.6λ2.6
i

+
1

5.6λ5.6
i

+
107200

139776
(78)

• Swanson Model

This model, proposed by Swanson [36], introduces a SEF that contains two sums of weighted noninteger

powers of the first two invariants of Green deformation tensor. This form of strain energy function offers

the possibility of choosing the complexity of the model by modifying its number of parameters and

adjusting its nonlinearity. The material parametersAi, αi, Bj and βj of this model do not have a physical
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meaning and are difficult to determine. This complication in determining the material parameters is due

to their fast-growing, which is the result of being inside a summation. The form of W for this model is:

W =
3

2

n∑
i=1

Ai
1 + αi

[
I1

3

]1+αi

+
3

2

n∑
j=1

Bi
1 + βj

[
I2

3

]1+βj

(79)

• Carroll Model

This model was proposed by Carroll [37], and it is based on a successive extension of the strain energy,

using terms that help to reduce the errors that remain from the prediction of the previous terms. First,

uniaxial tension data are fitted with the Neo-Hookean function, then the error obtained in that prediction

is fitted with a term proportional to I4
1 . Finally, those terms are used to fit equibiaxial tension data, and the

error obtained in that prediction is approximated with the last term, which is proportional to the square

root of I2. The form of this model is:

W = C1I1 + C2I
4
1 + C3

√
I2 (80)

where C1, C2 and C3 are stiffness parameters that must be determined from laboratory tests.

• Fung-Demiray Model

In 1967, Fun [38], based on experimental results on the rabbit’s mesentery, stated that the stress-strain

relation in a one-dimensional case should be exponential in the stretch. Then, Demiray [39], based on

the studies performed by Fun, finally proposed a simple SEF for the model as follows:

W =
C1

2C2

[
eC2(I1−3) − 1

]
(81)

where C1 and C2 are material parameters to be determined through laboratory tests.

• Veronda-Westmann Model

This hyperelastic model [40] is based on uniaxial tests performed on cat skin. It was developed by

comparing the experimentally obtained force-extension curves with the analytical stress-strain relations.

The form of the model for incompressible materials is:

W = C1

[
eβ(I1−3) − 1

]
− C2(I2 − 3) (82)

where C1, C2 and β are constants to be determined by curve fitting the plot:

σ

2
(
λ1 − λl

λ1

) vs λl (83)

Being λl =
√
λ2λ3.
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• Humphrey Model

This model was proposed by Humphrey [41] to be used in the study of passive cardiac tissue and proposes

a SEF based on limited structural information and multiaxial experimental data. The form of this model,

which is the result of experimental observations, is the following:

W = C1

[
eC2(I1−3) − 1

]
+ C3

[
eC4(α−1)2 − 1

]
(84)

were C1, C2, C3 and C4 are material parameters, and α =
√

NTCN. C has already been defined in 2.3

and N is a unit vector in the direction of an undeformed fiber. This model has a variant called Martins

models, which is described next:

– Martins Model

This model, proposed by Martins [42], is a generalization of the Humphrey model in order to

consider compressible materials, which is the case of skeletal muscles. The model, using the same

notation as Humphrey, presents the following form:

W = C1

[
eC2(Ī1−3) − 1

]
+ C3

[
eC4(ᾱ−1)2 − 1

]
+

1

D
(J − 1)2 (85)

where ᾱ =
√

NT C̄N; and C̄, Ī1, D and J have the same meaning as in the Money-Rivlin model.

Note that, for an incompressible material, this model is simplified into the Humphrey model.

• Attard Model

This model proposes a SEF for isotropic hyperelastic materials which can be considered a generalization

of the Mooney-Rivlin model with high order terms in the incompressible part. It has been introduced by

Attard and Hunt [43, 44], and the proposed form of W , in function of principal stretch ratios, is:

W =

n∑
i=1

[
Ai
2i

(
λ2i

1 + λ2i
2 + λ2i

3 − 3
)

+
Bi
2i

(
λ−2i

1 + λ−2i
2 + λ−2i

3 − 3
)]

(86)

where Ai and Bi are material parameters or shear modules, which must fulfill some stability criteria.

2.7.2 Models Based on Experimental Determination of ∂W∂I1 and ∂W
∂I2

This type models directly determines material functions ∂W
∂I1

and ∂W
∂I2

by using experimental data [1]. The

following models correspond to this classification:

• Rivlin-Saunders Model

The authors of this model, Rivlin and Saunders [45], used a biaxial tensile tester to obtain experimental

conditions for which I1 and I2 are set constant. They found out that ∂W∂I1 does not depend on I1 and I2
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and ∂W
∂I2

does not depend on I1 for carbon black filled natural rubber. In addition, they showed that the

ratio ∂W
∂I2

/∂W∂I1 decreases with I2. So, the proposed form of W for this model is:

W = C(I1 − 3) + f(I2 − 3) (87)

Experimental data is needed to determine the function f .

• Gent-Thomas Model

Gent and Thomas [46] proposed an empirical SEF which involves only two material parameters, based

in the general form of Rivlin-Sanders model 87. However, this model has not proved to be more efficient

than the basic Money-Rivlin model 65. The form of this proposed model is:

W = C(I1 − 3) + C2ln

(
I2

3

)
(88)

• Hart-Smith Model

This model, proposed by Hart-Smith [47] is an improvement of the model proposed by Rivlin and Sanders

[45]. They realized that ∂W∂I1 is constant when the values of I1 are smaller than 12, and it increases when

the values of the first principal invariant are higher. This result was justified by the author of the model

by invoking the limit of extensibility of macromolecules which led to the strain-hardening phenomenon

observed during mechanical tests. Then, the proposed model has the form:

W = C1

∫
exp

(
C2 [I1 − 3]2

)
dI1 + C3ln

[
I2

3

]
(89)

where C1, C2 and C3 are the material parameters of the model.

– Alexander Model

This model is an extension of Hart-Smith model, proposed by Alexander [48], which adds more

material parameters, leading to a much more complicated SEF:

W = C1

∫
exp

(
C3 [I1 − 3]2

)
dI1 + C2ln

(
I2 − 3 + C4

C4

)
+ C3 [I2 − 3] (90)

where C1, C2, C3 and C4 are the material constants of the model.

• Valanis-Landel Assumption

Valanis and Landel [49] proposed that the form of W should be in terms of principal stretch ratios λ1,

λ2 and λ3 because; according to them, the difficulties inherent in the dependence of W on the strain

invariants have caused that no efficient SEF has been found yet. So, they assume the strain separability

of the strain energy function as:

W = ω(λ1) + ω(λ2) + ω(λ3) (91)
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So, the determination of ω restricts that of W . The proposed form of ω is done through its derivative as

follows:

∂ω

∂λ
= 2µln(λ) (92)

• Gent Model

Gent [50] proposed a SEF by using the concept of limiting chain extensibility to consider that I1 should

admit a maximum value denoted Im. The proposed form of W is:

W = −Im
µ

2
ln

[
1− I1 − 3

Im

]
(93)

where µ and Im are material parameters.

– Pucci-Saccomandi Model

Pucci and Saccomandi [51] and Ogden found that the Gent model makes very good predictions of

uniaxial data for large strains, but it is not so recommendable for small strains. The authors of this

model though that it is worth to consider the dependence on the second invariant in the SEF of the

model, so they added a logarithmic term to Gent model as follows:

W = −Im
µ

2
ln

[
1− I1 − 3

Im

]
+ C2ln

[
I2

3

]
(94)

where µ, Im and C2 are the material constants of the model.

• Yeoh-Fleming Model

This model, proposed by Yeoh and Flemming [52], is a modification of the Gent Model, which has the

SEF stated in 93. Yeoh-Fleming Model proposes a new form for W which involves three new material

parameters A, B and Im. This proposal is a consequence of the observation that the reduced Mooney

stress tends to a constant value that does not depend on I1 for large strains. So, the form of W that Yeoh

and Flemming proposed is:

W =
A

B
(Im − 3)(1− e−BR)− C10(Im − 3)ln(1−R) (95)

where R = (I1−3)
Im−3 .

2.7.3 Physically-Based Models

These models have been developed from physical motivation, involving the physics of polymer chains network

and statistical methods [1]. This type of models tend to have complex formulations, such models are described

next:
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• Neo-Hookean Model

It is the simplest physically based model, being first proposed in 1943. The Neo-Hookean [53] model is

very similar to Hooke’s law although it is a hyperelastic model, in fact, it is a particular case of Money-

Rivlin (cannot capture the upturn of stress-strain curve) when C01 = 0. This model can be used when

material data is limited, being able to make good approximations at small strains. The form of W for this

model is:

W = C10(I1 − 3) (96)

where C10 can be expresed as C10 = 1
2nkBΘ, being n the chain density per unit time, kB the Boltzman

constant and Θ the abolute temperature.

• Lopez-Pamies Model

This model was built by Lopez-Pamies [54] with the objective of being as simple as Neo-Hookean and

having a minimum number of material parameters with physical interpretation. So, the proposed form of

W for this model is:

W =
n∑
i=1

31−αi

2αi
µi
[
Iαi1 − 3αi

]
(97)

where µi and αi are the material parameters of the model.

• 3-Chain

This model was first proposed in 1943 [55], and it is based in a non-Gaussian theory that takes into

account the limiting extensibility of polymer chains. The model is based on the theory of micromechanics

described before and substitutes the true polymer network by K = 3 chains besides assuming that each

chain is aligned with one of the eigenvectors Ni of the isochoric right Cauchy Green tensor. The Figure

10 shows these configurations.

Figure 10: Initial and deformed chain orientations and stretches for 3-Chain model [5]
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The chain stretch Λ adopts a particular form due to the choice of orientations:

Λk =
‖λkr0Nk‖
r0ek

= λk, k = 1, 2, 3 (98)

The Langevin chain has proved to provide a rubber model able to simulate large strains, while the Gauss

chain produces a model that behaves just like the Neo-Hookean model [5]. So, the SEF for this model,

which uses the Langevin chain, is:

W =
n

3

3∑
k=1

WLangevin(Λk) =
µN

3

3∑
k=1

[
√
N−1λkγk + ln

(
γk

sinh(γk)

)]
(99)

where µ = nkBΘ is the shear modulus and γk = L−1(
√
N−1Λk) denote the inverse Langevin function

of the chain stretches.

• Isihara Model

This model, proposed by Isihara [56], uses non-Gaussian theory and linearizes the corresponding equa-

tions to obtain a Rivlin series form for W as follows:

W = C10(I1 − 3) + C20(I1 − 3)2C01(I2 − 3) (100)

• General Theory of Real Chain Network

The phantom assumption has been imputed for the deviation in experimental data of the ideal chain

models [1]. Then, some researchers have presented the idea of entanglement or topology conservation

constraints. This theory proposes the SEF as:

W = Wph +Wc (101)

where Wph represents the phantom network and Wc is the constrained part. This theory has inspired

some models, which are described in the next lines:

– Slip-Link Model

This model, developed by Ball et.al. [57] considers that chains can slip on a length around a link.

The form of the model is:

W =
1

2
kBΘNc

3∑
i=1

λ2
i +

1

2
kBΘNs

3∑
i=1

[
(1 + η)λ2

i

1 + ηλ2
i

+ ln|1 + ηλ2
i |

]
(102)

being Nc, Ns, and η material parameters. The equation 102 corresponds to the Phantom Gaussian

model.
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– Van der Waals Model

As its name suggests, this model takes into account the Vander Waals forces by treating the rubber

network as a gas where interaction forces are applied between quasi-particles. The model was

proposed by Killian [58] and is expressed in terms of strain energy as follows:

W = −µ
(
λ2
m − 3

) [
ln(1−∆) + ∆

]
− 2

3
aµ

(
Ĩ − 3

2

) 3
2

(103)

where ∆ =
√

Ĩ−3
λ2m−3

and Ĩ = βI1 + (1 − β)I2. In addition, µ, a, λm and β(0 ≤ β ≤ 1) are the

material parameters of the model. Even though this model is based on molecular considerations, its

nature is empirical because the material parameter β does not have a physical meaning.

– Flory-Erman Model

This model, proposed by Flory and Erman [59], is based on equation 100 and considers that junction

points between chains are constrained to move in a restricted neighborhood due to other chains.

The phantom part is derived from the Neo-Hookean SEF and the cross-linking is obtained from

micromechanics of chains:

W = C10

3∑
i=1

(λ2
i − 1)

[
1− 1

φ

]
+ C10

3∑
i=1

[
Bi +Di − ln(Bi + 1)− ln(Di + 1)

]
(104)

where C10 = nkBΘ/2 = µ/2, Bi = κ2(λ2
i − 1)(λ2

i + κ)−2 and Di = λ2
iκ
−1Bi. The parameter

µ represents the shear modulus, φ counts the number of chains than join at a junction and κ is a

measurement of the constraints strength. The cross-linking part in this model improves the Neo-

Hookean model by achieving a better agreement with experimental data, increasing the deformation

range that the model is able to emulate correctly up to 300%.

• Aruda-Boyce (8-Chain)

Also called the 8 Chain Model because of its basis on the representative volume element where 8 chains

emanate from the center to the corners of the volume [23]. The Arruda-Boyce [60] model cannot define

the transition point between elastic and inelastic response clearly. This model works well with limited

data and its SEF, based on strain invariants, for incompressible materials is:

W = µ
5∑
i=1

Ci

λ2i−2
m

(Ii1 − 3i) (105)

This model has also a form with a basis on micromechanics. It substitutes the true polymer network

by K = 8 chains, with each chain oriented along one of the half diagonals of a cuboid as Figure 11

illustrates.
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Figure 11: Initial and deformed chain orientations and stretches for 8-Chain model [5]

The chain stretch also changes for this model, due to the choice of orientations. The end-to-end distance

between chains adopts the form rk = r0

√
3−1
√
λ2

1 + λ2
2 + λ2

3, and therefore the chain stretch can be

expressed as:

Λ = Λk =
r

r0
=

1√
3

√
λ2

1 + λ2
2 + λ2

3 =

√
I1

3
, for k = 1, 2, ..., 8 (106)

which means that one stretch is valid for all chains no matter their orientation within the cuboid. So, the

SEF for this model, which uses the Langevin chain, is:

W =
n

8

8∑
k=1

WLangevin(Λk) = nWLangevin(Λk) = µN

[
√
N−1Λγ + ln

(
γ

sinh(γ)

)]
(107)

where µ = nkBΘ is the shear modulus and γ = L−1(
√
N−1Λk) again denotes the inverse Langevin

function.

• Tube Model

This model, proposed by Heinrich and Kaliske [61], considers that chains are constrained to stay in a

tube formed by surrounding chains. The authors have considered such assumption because the rubber

network is highly entangled. They propose the use of statistical mechanics to determine the topology

restoring potential that rules the confinement of chains. The form of W for this model is:

W =
3∑
i=1

µc
2

(
λ2
i − 1

)
+

2µe
β2

(
λ−βi − 1

)
(108)

where µc, µe and β are the material parameters of the model and 0 < β ≤ 1. The Tube Model has

the limitation of moderate deformation and cannot reproduce strain-hardening. This model has a variant,

which was developed with the objective of reducing the limitations in the modeling of deformations due

to the entanglement constraints. This variant is:

– Extended-Tube Model

This model, proposed by the same authors of the previous one [62] two years later, uses a non-
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Gaussian distribution instead of the Gaussian one that the Tube model uses. An inextensibility

parameter denoted δ has been added, so the new form of W is:

W =
µc
2

[
(1− δ2)(I1 − 3)

1− δ2(I1 − 3)
+ ln

(
1− δ2(I1 − 3)

)]
+

3∑
i=1

2µe
β2

(
λ−βi − 1

)
(109)

• Unit-Sphere Model

This model assumes a unit sphere where the chains are oriented along radius vectors from the center to

the surface. The model was first proposed by Miehe [11], and then Swanson [5] applied a numerical

scheme based on discrete integration over spheres. The resulting SEF for this model is:

W = n
21∑
k=1

wkW
Langevin(Λk) = µN

21∑
k=1

wk

[
√
N−1Λkγk + ln

(
γk

sinh(γk)

)]
(110)

where wk are weight factors chosen in such a way that an approximately uniform distribution of the

chains across the sphere is performed, µ = nkBΘ and γk = L−1(
√
N−1Λk) denote the inverse Langevin

function as in 3-Chain and 8-Chain models.

• Full-Network Model

The term full-network is used when the chains are assumed to be randomly oriented in space and the

SEF for the corresponding model is derived by integrating the response of all chains over the space. This

model proposes a weighted average, instead of computing the integral numerically, by combining the

results of individual 3-Chain and 8-Chain models [63]:

W = (1− ρ)W3−Chain + ρW8−Chain (111)

where ρ is a constant parameter related to some physical quantity (related to the deformation process),

and W3−Chain and W8−Chain represent the SEF of 3-Chain and 8-Chain models respectively.

Tables 1, 2 and 3 provide a summary of the reviewed classification with the most important aspects of each

model in order to facilitate the information handling. The tables show the name of the model, an identifier for

the model, and the strain energy function for each respective model.
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Table 1: Classification of hyperelastic models: Phenomenological

Phenomenological

Models
(I.N.) Formula

Money-Rivlin 1 W = C10(I1 − 3) + C01(I2 − 3)

Full Polynomial 1.1 W =
∑∞

i,j=0Cij(I1 − 3)i(I2 − 3)j

Biderman 1.2
W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2+

C30(I1 − 3)3

Hynes-Wilson 1.3
W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3)

+C02(I2 − 3)2 + C20(I1 − 3)2 + C30(I1 − 3)3

Yeoh 1.4 W =
∑3

i=1Ci0(I1 − 3)i

Ogden 2 W =
∑n

i=1
µi
αi

(λαi1 + λαi2 + λαi3 − 3)

Shariff 3
W = E

∑n
j=0 αjφj(λ1) + E

∑n
j=0 αjφj(λ2)+

E
∑n

j=0 αjφj(λ3)

Swanson 4 W = 3
2

∑n
i=1

Ai
1+αi

[
I1
3

]1+αi
+ 3

2

∑n
j=1

Bi
1+βj

[
I2
3

]1+βj

Carroll 5 W = aI1 + bI4
1 + c

√
I2

Fung-Demiray 6 W = C1
2C2

[
eC2(I1−3) − 1

]

Veronda-Westmann 7 W = C1

[
eβ(I1−3) − 1

]
− C2(I2 − 3)

Humphrey 8 W = C1

[
eC2(I1−3) − 1

]
+ C3

[
eC4(α−1)2 − 1

]
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Phenomenological

Models
(I.N.) Formula

Martins 8.1
W = C1

[
eC2(Ī1−3) − 1

]
+ C3

[
eC4(ᾱ−1)2 − 1

]
+

1
D (J − 1)2

Attard 9
W =

∑n
i=1

Ai
2i

(
λ2i

1 + λ2i
2 + λ2i

3 − 3
)

+∑n
i=1

Bi
2i

(
λ−2i

1 + λ−2i
2 + λ−2i

3 − 3
)

Table 2: Classification of hyperelastic models: Based on Experimental Determination of ∂W∂I1 and ∂W
∂I2

Models Based on Experimental

Determination of ∂W∂I1 and ∂W
∂I2

(I.N.) Formula

Rivlin-Saunders 10 W = C(I1 − 3) + f(I2 − 3)

Gent-Thomas 11 W = C1(I1 − 3) + C2ln
(
I2
3

)

Hart-Smith 12 W = C1

∫
exp

(
C2 [I1 − 3]2

)
dI1 + C3ln

[
I2
3

]

Alexander 12.1
W = C1

∫
exp

(
C3 [I1 − 3]2

)
dI1+

C2ln
(
I2−3+C4

C4

)
+ C3 [I2 − 3]

Valanis-Landel 13 W = ω(λ1) + ω(λ2) + ω(λ3)

Gent 14 W = −Imµ
2 ln

[
1− I1−3

Im

]

Pucci-Saccomandi 14.1 W = −Imµ
2 ln

[
1− I1−3

Im

]
+ C2ln

[
I2
3

]

Yeoh-Fleming 15
W = A

B (Im − 3)(1− e−BR)−

C10(Im − 3)ln(1−R)
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Table 3: Classification of hyperelastic models: Physically-Based

Physically-Based

Models
(I.N.) Formula

Neo-Hookean 16 W = C10(I1 − 3)

Lopez-Pamies 17 W =
∑n

i=1
31−αi
2αi

µi
[
Iαi1 − 3αi

]

3-Chain 18 W = µN
3

∑3
k=1

[√
N−1λkγk + ln

(
γk

sinh(γk)

)]

Isihara 19 W = C10(I1 − 3) + C20(I1 − 3)2C01(I2 − 3)

Slip-Link 20 W = 1
2kBΘNc

∑3
i=1 λ

2
i + 1

2kBΘNs
∑3

i=1

[
(1+η)λ2i
1+ηλ2i

+ ln|1 + ηλ2
i |
]

Vander Waals 21 W = −µ
(
λ2
m − 3

) [
ln(1−∆) + ∆

]
− 2

3aµ
(
Ĩ−3

2

) 3
2

Flory-Erman 22
W = C10

∑3
i=1(λ2

i − 1)
[
1− 1

φ

]
+

C10
∑3

i=1

[
Bi +Di − ln(Bi + 1)− ln(Di + 1)

]
Aruda-Boyce

(8-Chain)
23 W = µN

[√
N−1Λγ + ln

(
γ

sinh(γ)

)]

Tube 24 W =
∑3

i=1
µc
2

(
λ2
i − 1

)
+ 2µe

β2

(
λ−βi − 1

)

Extended-Tube 24.1 W = µc
2

[
(1−δ2)(I1−3)
1−δ2(I1−3)

+ ln
(
1− δ2(I1 − 3)

)]
+
∑3

i=1
2µe
β2

(
λ−βi − 1

)

Unit-Sphere 25 W = µN
∑21

k=1wk

[√
N−1Λkγk + ln

(
γk

sinh(γk)

)]

Full-Network 26 W = (1− ρ)W3−Chain + ρW8−Chain
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3 Mathematical Models for Realistic Soft Tissue Simulations

3.1 Methodology

Currently, there exists a wide range of mathematical models that can be used for soft tissue simulations and no

explanatory studies, that analyze all or most of them, have been done to provide the reader with a framework to

choose between such amount of models. So, most of the models existing in literature, that can be used for this

purpose, have been selected to provide a perspective to choose optimal mathematical models for simulations

of soft tissue deformations depending on the context they are needed for. The general framework used for the

analysis is organized as depicted in Figure 12.

State of The Art

Review in

Mathematical Models

Models Selection
Analysis and Evaluation

of Selected Models

Stablishment of

Classification Criteria
Obtaining Results

Figure 12: Methodology used to select and classify the mathematical models existing in literature

3.1.1 State of The Art Review in Mathematical Models

The state of the art in mathematical models that can be used for soft tissue simulations is extensive, it practically

starts in 1940 when the first hyperelastic model was introduced [29]. The mathematical models, which are

studied in this work, have been found in many different papers published across the years [1, 5, 7, 9]. In

order to facilitate the finding of the different mathematical models, it was necessary to look for works that

perform classifications, comparisons or reviews of such models. After finding such works, the mathematical

models were extracted to be analyzed, in case, not enough information was provided in the initial source, it was

necessary to appeal to the original source of the model to obtain more details. In addition, in case the original

source was not enough, more works, that have performed studies with the model in question, were reviewed

(Figure 13 illustrates the described process). So, not only one source was used, but instead, many sources were

consulted in order to understand better each model and the way that they have been evolving across the years.

As the models use a theory that goes even further back, this theory necessary to understand the models was also

reviewed and analyzed.
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Look for papers that perform

classiffications or comparisons

of mathematical models

Extract the models

Use the information

provided

Go to the sorce

of the model

Use the information

provided

Look for more information

on other works

Is there enough information?

Yes No

Is there enough information?

Yes No

Study the

mathematical model

Figure 13: Methododology used to review the state of the art in mathematical models

3.1.2 Models Selection

The review of the state of the art in mathematical models led to the finding of 34 models that can be used for soft

tissue simulations. Then, the options for this work were whether to use all the models that had been found or

select only the most important ones. Such a decision was made based on a literature review of previous works

related to this topic in order to determine their successes and flaws. Besides, the necessities that researchers in

the field of soft-tissue simulations may have were also considered at the moment of selecting the models found

in the literature.
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3.1.3 Analysis and Evaluation of Selected Models

Once the mathematical models to be used in this work had been selected from the literature, they were analyzed

in order to understand their advantages and disadvantages regarding their use to simulate the mechanical be-

havior of soft tissues. Firstable, their way of defining the strain energy function, and the theory they are based

on were studied; and then the most important aspects about the selected models, such as the material constants

that they use, the deformation range they are applicable for and the accuracy in the prediction, were analyzed.

Such studies and analyses were important in order to establish the conditions for which it is better to apply each

model.

3.1.4 Establishment of Classification Criteria

After analyzing the different mathematical models, it was determined to classify them into groups according

to different criteria in order to provide a perspective of the models to use on different occasions. In order to

establish the different criteria for classifications, more literature review was performed to understand the exis-

tent necessities regarding soft tissue simulations. In addition, for the different classifications, the mathematical

models are ordered according to different aspects for a better appreciation.

3.1.5 Obtaining Results

The results of this work are different classifications of mathematical models that can be used for soft tissue

simulations. All results are organized in tables and figures to provide a fast way of identifying the adequate

model according to the necessities of the researcher in the field of soft tissue simulations. The classifications

that will be presented are based on deformation range, complexity, and application. These three types of

classifications have been determined, through literature review, to be the most accurate in order to provide a

perspective of which model to choose depending on the circumstances.

3.2 Models

A total of 34 models have been found in literature among principal and derived models. The most known

and studied models are Money-Rivlin, Neo-Hookean, Yeoh, Ogden, and Aruda-Boyce; having an extensive

literature about them and their applications to real data [1, 25, 8, 24, 23, 7, 64, 26]. The rest of the models

described in the theoretical framework have been studied in a lesser extent, having no much information about

their performance in simulations of mechanical behavior of soft tissues or rubber materials. The applications

and comparisons performed in literature, which are few, consider only the most known models mentioned

before and/or a few of the other models, but there is no work that analyzes all of them. This could be in part due
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to the lack of information about some models and the increasing number of models that have been proposed

across the years. Then, this work intends to be as complete as possible in the task of providing a framework

to choose among all the possible options of mathematical models currently available when performing soft

tissue simulations, which makes imperative to consider all of them. So, all 34 models found in the literature are

analyzed and classified according to some parameters described later. The models to be analyzed and classified

in this work are listed in Table 4, where the classification of the model according to literature, the name of the

model with its respective year of proposal, and a brief description of the model, are provided.

Table 4: Summary of hyperelastic models with a description

Classification Model (year) Description

Ph
en

om
en

ol
og

ic
al

Money-Rivlin (1940)

Model that handles very well smoderate strains and

cannot reproduce the S-curvature of the force-extension

relation in uniaxial test and the force-shear displacement

relation in shear test.

Full Polynomial (1948)
Extension of Money-Rivlin, which uses a series of

powers of invariants as SEF.

Biderman (1958)
Truncation of Full Polynomial series but retaining only the

terms for which i = 0 or j = 0.

Veronda-Westmann (1970)

Model based on uniaxial tests performed on cat skin and

developed by comparing the experimentally obtained force-

extension curves with the analytical stress-strain relations.

Ogden (1972)

Model based on stretch ratios that can capture upturn of

stress-strain curve and model rubber accurately for

deformations up to 700%.

Fung-Demiray (1972)
Model based on experimental results on rabbit’s mesentery

that proposes an exponential stress-strain relation.

Haines-Wilson (1975)

Truncation of Full Polynomial series that retains only six

terms based on the comparison of invariants and principal

stretches development.

Swanson (1985)

Model that proposes a SEF containing two sums of weighted

noninteger powers of the first two invariants, which allows

to choose the complexity of the model.
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Classification Model (year) Description

Humphrey (1987)

Model proposed to be used in the study of passive cardiac

tissue and based on limited structural information and

multiaxial experimental data.

Yeoh (1993)

Result of specific terms selection of the Full Polynomial

series, which can capture the upturn S-curvature of rubber,

has good fit over a large strain range and works well with

limited data.

Martins (1998)
Generalization of Humphrey model to consider compressible

materials, which has been applied to skeletal muscles.

Shariff (2000)
Model where the SEF takes the form of a function series and

considers principal stretch ratios.

Attard (2003)
Generalization of Mooney-Rivlin model with high order terms

in the incompressible part.

Carroll (2011)

Model based on a successive extension of the free energy,

using terms that help to reduce the errors that remain from

the prediction of the previous terms.

B
as

ed
on

D
er

iv
at

iv
es

Rivlin-Sanders (1951)
Model deduced from the obtaining of experimental conditions

for which I1 and I2 are set constant.

Gent-Thomas (1958)
Model based on the general form of Rivlin-Sanders model

which involves only two material parameters.

Hart-Smith (1966)

Improvement of Rivlin-Sanders model that uses the limit of

extensibility of macromolecules, which leads to a strain-

hardening phenomenon observed during mechanical tests.

Alexander (1968)
Extension of Hart-Smith model which adds more material

parameters.

Valanis-Landel (1967)

Model that defines its SEF in terms of principal stretch ratios

instead of invariants in order for this function to be more

efficient.

Gent (1996)

Model that uses the concept of limiting chain extensibility

to consider that the first invariant should admit a maximum

value.
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Classification Model (year) Description

Yeoh-Fleming (1997)

Modification of Gent model which is consequence of the

observation that the reduced Mooney stress tends to a

constant value that does not depend on the first invariant

for large strains.

Pucci-Saccomandi (2002)
Modification of Gent model that considers dependence on

second invariant and adds a logarithmic term.

Ph
ys

ic
al

ly
-B

as
ed

Neo-Hookean (1943)

Particular case of Money-Rivlin model that can be used

when material data is limited, achieving good

approximations at small strains.

3-Chain (1943)

Model based in a non Gaussian theory that takes into

account the limiting extensibility of polymer chains,

especifically 3 chains.

Isihara (1951)

Model that uses a non-Gaussian theory and linearizes the

corresponding equations to obtain a Rivlin series form

for its SEF.

Slip-Link (1981)
Model based on the General Theory of Real Chain Network

which considers that chains can slip on a length around a link.

Flory Erman /

Constrained Junctions

(1982)

Model based on the General Theory of Real Chain Network

which considers that junction points between chains are

constrained to move in a restricted neighborhood due to other

chains.

Vand der Walls (1986)

Model that model considers Vander Waals forces by treting

the rubber network as a gas where interaction forces are

applied between quasi-particules.

Aruda-Boyce

/ 8-Chain (1993)

Model based on the representative volume element where

8 chains emanate from the center to the corners of the

volume.

Full-Network (1993)
Model that combines the results of individual 3-Chain and

8-Chain models.

Tube (1997)
Model that considers that chains are constrained to stay in

a tube formed by surrounding chains.
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Classification Model (year) Description

Extended-Tube (1999)
Improvement to Tube model which uses a non-Gaussian

distribution and adds an inextensibility parameter.

Unit-sphere (2004)
Model that assumes a unit sphere where the chains are

oriented along radius vectors from the center to the surface.

Lopez-Pamies (2010)
Simple model with a minimum number of material parameters

with physical interpretation.

3.3 Parameters

Some parameters have been established in order to classify and evaluate the models selected for this work.

Such parameters, which have been determined from an extensive literature review, are described next:

3.3.1 Material Constants Used to Define the SEF of The Model

Material constants are invariable quantities unique for each material and must be determined through laboratory

tests on the material in question. All mathematical models that can be used for soft tissue simulations use ma-

terial constants in the definition of their strain energy function, so they are an important part in a mathematical

model. The more constants a mathematical model has the more difficult it is to implement it because material

parameters are generally hard to determine [1]. So, this parameter influences the complexity of a model; in

fact, a study performed in [1], established a high number of material constants to be the cause of a model to

be ranked lower in contrast with other models that are evaluated in such study. These background information

about material constants have led to the inclusion of them as a parameter for the evaluation of mathematical

models in this work. The determination of material constants is done often by minimizing the function:

φ = w
n∑
i=1

[
Yi − Ŷi

]2
(112)

where:

• w is a weighting factor,

• Yi are values of experimental data and

• Ŷi are values approximated by the model.
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3.3.2 Deformation Range

The deformation range of a mathematical model, in this case, is the area of variation in which the model can

make good predictions of the mechanical behavior of a material. Mathematical models are not often valid

for the whole range of deformation of a material, some models can predict better small strains while others

have better performance in large strains. The wider the validity range of a model the better [1], which makes

this parameter a determinant in the scope of a mathematical model. This parameter has been considered in

[5] and [1] when evaluating the performance of a model, having to reduce the deformation range in order to

obtain better predictions in case large ranges of deformations cause the model to be inaccurate. Therefore,

the deformation range has been included as a parameter to evaluate the mathematical models described in this

work. As previously mentioned, the stretch that the material has suffered can be obtained as:

λ =
li
l0i

(113)

where li is the final length of the material in question in the direction i and l0i is the initial length of the material

in the direction i. So, the range of these stretches that the model is able to predict well will define its validity

range.

3.3.3 Accuracy

The accuracy of a mathematical model is a measurement of how good the prediction made by the model is

in contrast with the real-life data provided by laboratory tests. Different models have different accuracy in

the prediction of deformations, and those differences can be huge because there are simple models with few

material constants as well as really complex models which are based on micromechanics. The reason of creating

a mathematical model is to simulate the real mechanical behavior of a material, and in order to achieve that goal

the accuracy of the model must be good, therefore, accuracy is the most important parameter when analyzing

a mathematical model. Most of the papers that analyze or propose mathematical models consider the accuracy

when evaluating the overall performance of the model [5, 24, 26, 25, 7, 8, 1, 64, 23]. Specifically, the study

performed in [1] used the accuracy as the principal parameter to rank a total of 20 hyperelastic models from

best to worst in the task of reproducing two sets of experimental data. Another study, took into account the

accuracy when analyzing different hyperelastic models by fitting different types of experimental data (Uniaxial

Tension, Biaxial Tension, and Pure Shear) [5]. The other mentioned works have also use the accuracy to

compare different mathematical models and determine their usefulness in the reproduction of experimental

data. So, given the addressed importance of this parameter, it is considered when classifying and evaluating the

mathematical models of this work. The common way of measuring the accuracy of any prediction is through

53



School of Mathematical and Computational Sciences YACHAY TECH

the standard error:

E =

√∑n
i=1(Yi − Ȳi)2

n− 2
(114)

where:

• n is the number of observations,

• Yi are values of experimental data and

• Ŷi are values approximated by the model.

3.4 Classifications

This work proposes three classifications for the 34 models found in the literature with the objective of providing

a framework that researchers in the field of soft tissue simulations can use to choose the optimal mathematical

model, depending on their needs, among the huge quantity of models developed for such purpose. As previously

mentioned, most of the models presented in the Theoretical Framework section had been tested on rubber

materials, but they can be perfectly applied to soft tissues because of their similarities [2]. The three proposed

classifications are described next:

3.4.1 By Deformation Range

This classification is proposed because the validity range of a mathematical model is a determinant part in the

performance of the model, and therefore, it conditions the circumstances under which a model can be used with

optimal results. There are no previous works that perform classifications of mathematical models according

to the deformation range, but there are studies that mention the importance of it and evaluate the performance

of the models according to it [1, 5, 23]. So, a classification according to the deformation range will be useful

to experimentalists, doctors, and computational modelers when it comes to choosing a model to simulate the

behavior of soft tissues at a specific deformation range. However, this classification does not consider the

inherent difficulties of implementing the models being analyzed, which is also an important detail to consider

when making simulations. So, it is necessary to analyze the complexity of the models too.

3.4.2 By Complexity

This classification is considered in this work because the complexity of a mathematical model determines the

possibility of using it under different circumstances. Sometimes the high computational cost of implementing a

model is not worth for the accuracy it can provide. The complexity of a problem is given by the best algorithm
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used to solve it and the way of implementing such an algorithm. In the case of the reviewed mathematical

models, their complexity is determined by the way their stress tensors, which are computed from invariants or

stretches, are obtained in the context of an algorithm and the number of material constants to be determined

previous to the implementation. Assuming that all mathematical models are implemented under the same

circumstances and at their prime, the number of material constants that they use is a big influence on their

complexity due to the minimization problem that the computation of such constants requires [1, 21, 65]. There

are no classifications by complexity in literature, but there is a study that considers that a high number of

material constants makes a model not recommendable due to the increase in complexity that the computation

of such constants causes [1]. Besides the computation of the material parameters, that is a step previous to

the implementation of the model, the form of the SEF of each model also influences their complexity. So, the

material constants determine the complexity of the model previous to its implementation, and the form of the

SEF influences the complexity at the moment of its implementation. Therefore, both aspects will be considered

in this work. Classification according to complexity will provide experimentalists, doctors, and computational

modelers with enough information for them to decide whether it is appropriate to use a complex or a simple

model depending on their problem.

3.4.3 By Application

This classification is actually a combination of the previous two classifications because it uses their information

in order to offer the best models to be used in preoperative plans and real-time simulations. Regarding preoper-

ative plans, they refer to the act of prepare all the elements needed for a surgery, so that, everything is planned

beforehand. In this case, mathematical models can be used to make simulations of the possible scenarios that

may arise in surgery or simulate the steps to be performed during the surgery. In this case, there is plenty of

time to prepare the surgery and fast models are not a priority, instead, the priority is accuracy. On the other

hand, in case real-time simulations are needed to simulate surgeries so that the inexperienced surgeons can

practice how an operation would be, the speed of the model is preferred over the accuracy. Such preference is

considered because this kind of simulators must react fast for the trainee to practice with immediate responses.

No previous classifications have been done regarding the application the models are going to be used for so

this work will be a good contribution to researchers in the sense that it will make it easier for them to choose a

model without having to check all of them in different sources.
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4 Results and Discussion

Table 5: Classification according to deformation range for Uniaxial Tension (UT), Equibiaxial Tension (ET)

and Pure Shear (PS) tests

Models
UT ET PS

SMA MOD LAR SMA MOD LAR SMA MOD LAR

Money-Rivlin x x x

Neo-Hookean x x x

3-Chain x x x

Isihara x x x

Biderman x x x

Gent-Thomas x x x

Hart-Smith x x x

Valanis-Landel x x x

Alexander x x x

Veronda-Westmann x - - - - - -

Ogden x x x

Haines-Wilson x x x

Slip-Link x x x

Flory Erman x x x

Swanson (n=1) x x x

Vand der Walls x x x

Humphrey x - - - - - -

Arruda–Boyce /

8-Chain
x x x

Yeoh x x x

Full-Network x x x

Gent x x x

Tube x x x

Yeoh-Fleming x x x

Martins x - - - - - -

Extended-Tube x x x

Shariff x x x

Pucci-Saccomandi x x x

Attard x x x

Unit-sphere x x x

Lopez-Pamies x x x

Carroll x x x
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Table 5 shows the classification according to the deformation range of the models being reviewed in this work

for different types of loading conditions; which are Uniaxial Tension (UT), Equibiaxial Tension (ET) and Pure

Shear (PS). According to the range of validity of a model, it can be useful for small strains (SMA), moderate

strains (MOD) or large strains (LAR). Small strains in this work refer to deformations lower than 150%, mod-

erate strains refer to deformations from 151% to 250% and large strains make reference to deformations bigger

than 250%. An ”X” indicates the corresponding classification for each mathematical model in the different

types of loading conditions. In case the symbol ”-” appears, it means that there is not enough information in the

literature to classify the model adequately. This case occurs for the models Rivlin-Saunders, Full Polynomial

and Fung-Demiray; however, the Full Polynomial model does not need a classification because it is actually

a series which can be truncated in any way and there are already models that are particular truncations of this

series.

From Table 5 it is possible to infer that there is no such thing as the best model for soft tissue simulations,

it depends on the range of deformation and the type of loading that must be modeled. In this way; experimen-

talists, doctors, and computational modelers can easily recur to the presented table when they already know the

conditions under which they want to model the behavior of soft tissues.

Figure 14: Deformation range for the mathematical models in the Uniaxial Tension (UT) type of load

57



School of Mathematical and Computational Sciences YACHAY TECH

Figure 15: Deformation range for the mathematical models in the Equibiaxial Tension (ET) type of load

Figure 16: Deformation range for the mathematical models in the Pure Shear (PS) type of load

Figures 14, 15 and 16 illustrate the value of deformation ranges for the mathematical models in the three

types of loads that are commonly performed on rubber and soft tissues: Uniaxial Tension (ET), Equibiaxial

Tension (ET) and Pure Shear (PS). These figures are a complement to the Table 5 because they provide the

value of deformation range for each model in comparison with the others. This can help researchers to have a

more precise idea about the deformation range the models are valid for.
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Table 6: Classification according to complexity based on number of material constants

Model Complexity #M.P M.P

Neo-Hookean

Low

1
C10

Rivlin-Saunders C

Money-Rivlin

2

C10, C01

Valanis-Landel µ

3-Chain µ,N

Gent-Thomas C1, C2

Fung-Demiray C1, C2

Gent µ, Im

8-Chain µ,N

Full-Network µ,N

Unit-sphere µ,N

Isihara

Medium

3

C10, C01, C20

Hart-Smith C1, C2, C3

Veronda-Westmann C1, C2, β

Slip-Link Nc, Ns, η

Flory Erman C10, φ, κ

Yeoh C10, C20, C30

Tube µc, µe, β

Pucci-Saccomandi µ, Im, C2

Carroll C1, C2, C3

Biderman

4

C10, C01, C30, C30

Alexander C1, C2, C3, C4

Swanson (n=1) A,B, α, β

Humphrey C1, C2, C3, C4

Vand der Waals µ, a, λm, β

Yeoh-Fleming A,B,C10, Im

Martins C1, C2, C3, C4

Extended-Tube µc, µe, β, δ

Lopez-Pamies (n=2) µ1, µ2, α1, α2

Shariff (n=4)

High

5 E,α1, α2, α3, α4

Ogden (n=3)

6

µ1, µ2, µ3, α1, α2, α3

Haines-Wilson C10, C01, C11, C02, C20, C30

Attard (n=3) A1, A2, A3, B1, B2, B3
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Table 6 shows the classification according to complexity for the models being analyzed in this work, only for

the computation of material constants. The material constants have been considered as the principal determinant

of the complexity of a model because there is no data about the time that each model lasts to give a result for a

determined data set and because they are hard to determine as previously stated. So, the mathematical models

have been grouped into low, medium and high complexity groups according to the number of material constants

they use in their SEF. When the models have 1 or 2 materials parameters they are placed in the low complexity

group, the models with 3 or 4 parameters belong to the medium complexity group, and the models with 5

or 6 parameters are in the high complexity group. The table also shows the specific parameters that must be

computed through experiments on the material in question (rubber or soft tissues). The Full Polynomial model

has not been considered in this classification because it is a series that can be truncated at any number and there

are other models being analyzed that are truncations of this series.

Table 6 offers the possibility of extracting the most simple, medium and complex models, for the computa-

tion of material parameters, depending on the needs of the modeler. However, it is important to consider that a

bigger number of parameters does not guarantee the model a better accuracy nor a bigger range of validity as

the previous classification, which is based on the deformation range, illustrated. So, it is necessary to consider

both classifications in order to get a better perspective of what model should be chosen given their pros and

cons.

Although the number of material constants used by the mathematical model in question is a good indicator

of its complexity, it is not enough to consider only such constants. It is not enough because the computation of

material parameters is only a step previous to the simulation with a mathematical model. Besides, among the

models being analyzed, there are models based on micromechanics which require to iterate over a big number of

polymer chains, and therefore, the complexity of the model increases because of it. There are also models that

use powers of invariants as well as exponential and logarithms. So, it is necessary to perform a classification

based on the complexity that goes further and considers more than just the material constants.
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Table 7: Complexity of the mathematical models considering material constants and the complexity of their

SEF

Model #M.P.
Complexity of SEF

Total
REPS SUMS MULTS E.OP.

Money-Rivlin (1940) 2 1 3(6) 2(12) 0 20

Neo-Hookean (1943) 1 1 1(3) 1(3) 0 9

3-Chain (1943) 2 3 1 8 4 41

Rivlin-Saunders (1951) 1 1 3(6) 1(12) 0 23

Isihara (1951) 3 1 4(6) 5(12) 0 30

Biderman (1958) 4 1 7(6) 7(12) 0 36

Gent-Thomas (1958) 2 1 2(6) 3(12) 1 26

Hart-Smith (1966) 3 1 2(6) 5(12) 3 31

Valanis-Landel (1967) 2 3 1 2 1 14

Alexander (1968) 4 1 6 6 3 19

Veronda-Westmann (1970) 3 1 4(6) 3(12) 1 29

Ogden (1972)

n=3
6 3 3 2 0 21

Fung-Demiray (1972) 2 1 2(3) 4(3) 1 15

Haines-Wilson (1975) 6 1 12(6) 11(12) 0 47

Slip-Link (1981) 3 1 6 41 2 52

Flory Erman (1982) 3 4 7 16 2 103

Swanson (1985)

n=1
4 1 5(6) 10(12) 2 39

Vand der Walls (1986) 4 1 9(6) 12(12) 3 46

Humphrey (1987) 4 1 5(3) 4(3) 5 24

Arruda–Boyce /

8-Chain (1993)
2 1 1 8 4 15

Yeoh (1993) 3 3 1(3) 1(3) 0 27

Full-Network (1993) 2 1 6 33 16 57

Gent (1996) 2 1 2(3) 4(3) 1 15

Tube (1997) 3 3 3 7 1 36
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Model #M.P.
Complexity of SEF

Total
REPS SUMS MULTS E.OP.

Yeoh-Fleming (1997) 4 1 7(3) 6(3) 2 25

Martins (1998) 4 1 7(3) 7(3) 5 29

Extended-Tube (1999) 4 1 12 20 4 40

Shariff (2000)

n=4
5 3 12 19 10 128

Pucci-Saccomandi (2002) 3 1 3(6) 6(12) 2 32

Attard (2003)

n=3
6 3 7 12 6 81

Unit-sphere (2004) 2 21 2 8 4 296

Lopez-Pamies (2010)

n=2
4 2 2 4 3 22

Carroll (2011) 3 1 2(6) 6(12) 1 30

Table 7 shows an overall grade for the complexity of each mathematical model being reviewed in this work,

considering the calculus previous to the model implementation, such as the computation of material parameters,

and the calculus associated to the model itself. The Full Polynomial model has not been considered, as in

the previous classification, due to its generality. The models are presented in chronological order and the

parameters used to evaluate their complexity are the number of material parameters (#M.P.), the number of

sums to be computed (SUMS), the number of multiplications (MULTS) and the number of special operations

(E.OP.). Among the special operations, the models use logarithms, exponentials, decimal or fractional powers,

hyperbolic sines and Langevin functions. In addition, there is a number in parenthesis next to the number of

sums and multiplications in some models, which means the extra sums and multiplications that involve the

computation of strain invariants. In the end, a total grade is shown, which is the result of summing all the

parameters considered important in the complexity of the model. As result, the most complex model provided

by this approach is the Unit Sphere model, which makes sense because this model involves the iteration over 21

polymer chains and performs complex calculus as the inverse of the Langevin function. This overall evaluation

of complexity greatly contrasts with the previous table which grouped the Unit-Sphere model within the models

with low complexity. On the other hand, the most simple model is the Neo-Hookean model with an overall

grade of 9, which is expected because of the low number of calculations to be performed to implement it and

the use of only one material parameter. So, Table 7 is an improvement to Table 6 because it provides an overall
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grade to evaluate the complexity of the models instead of only classify them qualitatively into a big group. This

approach even offers the possibility to rank the mathematical models from the simplest to the most complex.

As previously mentioned, knowing the complexity of a mathematical model provides an idea about the

increase in time that will occur depending on the size of the data set. However, the complexity is not all that

matters when performing soft tissue simulations because there may be really complex models that offer poor

predictions, being not worthy for the computational time they use. So, it is necessary to also consider the

accuracy and range of validity of a model before making a decision on the optimal mathematical model for a

specific task.
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Table 8: Classification according to application

Application Model #M.P Complexity
Def. Range

UT ET PS

Real-Time Simulations

of Surgical Procedures

Neo-Hookean [66, 67] 1 9 SMA SMA SMA

Valanis-Landel 2 14 MOD SMA SMA

Fung-Demiray 2 15 - - -

Arruda–Boyce /

8-Chain
2 15 LAR LAR LAR

Gent 2 15 LAR LAR LAR

Alexander 4 19 LAR LAR MOD

Money-Rivlin 2 20 SMA LAR LAR

Ogden (n=3) 6 21 LAR LAR LAR

Lopez-Pamies (n=2) 4 22 LAR LAR LAR

Rivlin-Saunders 1 23 - - -

Humphrey [68] 4 24 MOD - -

Yeoh-Fleming 4 25 LAR LAR LAR

Gent-Thomas 2 26 LAR SMA LAR

Yeoh (n=3) [66, 67] 3 27 SMA SMA SMA

Preoperative Plans

Veronda-Westmann 3 29 MOD - -

Martins 4 29 MOD - -

Pucci-Saccomandi 3 32 LAR SMA LAR

Tube 3 36 MOD MOD MOD

Swanson (n=1) 4 39 SMA SMA SMA

3-Chain 2 41 LAR SMA LAR

Slip-Link 3 52 LAR SMA LAR

Attard (n=3) 6 81 LAR LAR SMA

Flory Erman 3 103 SMA SMA LAR

Surgical Implants

Development

Isihara 3 30

LAR LAR LAR

Carroll 3 30

Hart-Smith 3 31

Biderman 4 36

Extended-Tube 4 40

Vand der Walls 4 46

Full-Network 2 57

Shariff (n=4) 5 128

Unit-sphere 2 296
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Table 8 shows the classification according to the application, which is a combination of the previous two

classifications (by deformation range and by complexity). Three main applications have been determined for

soft tissue simulations: real-time simulations of surgical procedures, preoperative plans, and surgical implants

development. This table shows each model with its corresponding classification as well as the number of

material parameters it uses, its complexity and the range of deformations it is valid for in different loading

conditions.

For real-time simulations of surgical procedures, the most important aspect to consider is the complexity

of the model because real-time simulations must show results within milliseconds, so, mathematical models

with a low complexity have been selected for this application. Neo-Hookean model is the fastest among the

other models presented in this application due to its simplicity, but also the less accurate, being able to predict

correctly very little strains. On the other hand, Gent and Aruda-Boyce models are the most optimal models

to use for this application because they are able to predict large ranges of strains with a low computational

cost due to their small number of material parameters (only two). In addition, when selecting a model for this

specific application, it is important to address the deformation range to be predicted and the type of loading, so

the choice is the most accurate according to the conditions of the problem.

In the case of preoperative plans, the accuracy of the models is more important than their speed, so, more

complex models can be used for this specific application. In addition, as surgical procedures often do not

require large deformations of the tissue due to the fragility of the human body, models with good accuracy at

small and moderate ranges of deformations have been selected. The Tube model presents good predictions of

soft tissue behavior at moderate strains while the Swanson model does the same job at small strains.

In surgical implants development, the range of validity of the used model must be large because the tests of

such implants involve stretching the material many times its size. So, in this case, models with high accuracy

at large strains have been selected. The optimal models to use for this application are the Isihara and Carroll

because they present a high accuracy for large strains predictions at a lower computational cost than the other

models. On the other hand, Shariff and Unit-Sphere models also present good accuracy in the prediction of

soft tissue behavior but the high computational cost of their implementation makes them not feasible due to the

existence of models like Isihara that present better accuracy at a lower computational cost.
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Table 9 shows a summary of the mathematical models analyzed in this work, ordered chronologically, with

their principal characteristics, such as: their strain energy function (SEF), whether they are based on strain

invariants (I1, I2) or principal stretches (λ), whether they are able to reproduce the S-shape (S?) that rubber

and soft tissues show in their stress-strain curve, their number of material parameters (#M.P), their material

parameters (M.P.) and their deformation range in different types of loads (UT, ET, PS). This table is useful to

find out some principal characteristics of the mathematical models, but the other tables must be checked in case

more information is needed as the theory in which the model is based, their complexity or the applications they

are recommended for.

5 Conclusions

There is a wide range of mathematical models suitable for realistic soft tissue simulations, so that, programmers,

engineers, biomedical and modelers in general, do not know which of them to use for their specific necessities.

Therefore, the aim of the work is to perform an explanatory study of such mathematical models by finding

their most important characteristics and parameters. A total of 34 models have been found in literature, which,

according to literature, can be classified based on the approach that the author has followed to define their

strain energy function. The classification of the literature has placed the mathematical models into the groups:

phenomenological models, models based on the experimental determination of ∂W
∂I1

and ∂W
∂I2

, and physically

based models.

It has been determined that the most important aspects of the mathematical models are the material constants

that they use, the deformation range they are valid for and their accuracy. The material constants are important

because they are hard to determine, and therefore, influence the complexity of the model. The deformation

range of the models is imperative to consider in order to establish the conditions under which the model can be

used. The accuracy is, perhaps, the most important aspect of a mathematical model because it informs about

the usefulness of the model in the prediction of the material’s behavior.

After analyzing the most important aspects of a mathematical model, it has been decided to classify the

mathematical models being studied by deformation range, by complexity, and by the application. The classifi-

cation by deformation range divides the mathematical models into those that can make good predictions at small

strains (< 150%), at moderate strains (151%− 250%) and at large strains (> 250%) in different types of loads.

The classification by complexity orders the mathematical models by its complexity, which has been determined

from their number of material parameters and the operations that must be performed to obtain their strain en-

ergy function. Finally, the classification according to the application takes the information of the previous two

classifications to recommend the models depending on the application established; the applications analyzed
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are real-time simulations of surgical procedures, preoperative plans, and surgical implants development.

In conclusion, there is no best model for all cases, it depends on the conditions of the problem to be

modeled. There may be cases when smalls strains need to be modeled as well as cases where large strains need

to be modeled. In other occasions speed may be a priority instead of accuracy, making necessary to choose

simple models and sacrifice some precision in the predictions. So, the application where the model is going to

be used will determine what model must be chosen.
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Appendices

A Appendix 1

This appendix presents the stress-strain curves for some mathematical models, which have been obtained from

many sources.

Figure 17: Stress-Strain curve for Money-Rivlin model [1]

Figure 18: Stress-Strain curve for Yeoh model [5]
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Figure 19: Stress-Strain curve for Ogden model [1]

Figure 20: Stress-Strain curve for Ogden model [9]
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Figure 21: Stress-Strain curve for Shariff model [9]

Figure 22: Stress-Strain curve for Swanson model [5]
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Figure 23: Stress-Strain curve for Carroll model [5]

Figure 24: Stress-Strain curve for Attard model [9]
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Figure 25: Stress-Strain curve for Gent-Thomas model [5]

Figure 26: Stress-Strain curve for Hart-Smith model [9]
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Figure 27: Stress-Strain curve for Alexander model [9]

Figure 28: Stress-Strain curve for Valanis-Landel model [1]
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Figure 29: Stress-Strain curve for Gent model [5]

Figure 30: Stress-Strain curve for Pucci-Saccomandi model [9]
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Figure 31: Stress-Strain curve for Yeoh-Fleming model [5]

Figure 32: Stress-Strain curve for Neo-Hookean model [5]
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Figure 33: Stress-Strain curve for Lopez-Pamies model [9]

Figure 34: Stress-Strain curve for 3-Chain model [5]
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Figure 35: Stress-Strain curve for Isihara model [5]

Figure 36: Stress-Strain curve for Van der Waals model [1]
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Figure 37: Stress-Strain curve for Van der Waals model [9]

Figure 38: Stress-Strain curve for Flory-Erman model [1]
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Figure 39: Stress-Strain curve for Flory-Erman model [9]

Figure 40: Stress-Strain curve for 8-Chain model [1]
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Figure 41: Stress-Strain curve for 8-Chain model [5]

Figure 42: Stress-Strain curve for Tube model [9]
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Figure 43: Stress-Strain curve for Extended-Tube model [1]

Figure 44: Stress-Strain curve for Extended-Tube model [9]
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Figure 45: Stress-Strain curve for Unit-Sphere model [1]

Figure 46: Stress-Strain curve for Unit-Sphere model [5]
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Figure 47: Stress-Strain curve for Full-Network model [9]
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