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cedido a ninguna empresa editorial para su publicación u otros fines, sin contar previamente
con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este
trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto
en el Art. 144 de la Ley Orgánica de Educación Superior.
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Resumen

En esta tesis se estudia la existencia de soluciones y la controlabilidad de un sistema semi-
lineal de ecuaciones diferenciales de tipo neutral con impulsos no instantáneos, condiciones
no locales y retardo infinito. Primero, fijamos nuestro problema en un espacio de fase
que satisface la teoŕıa axiomática de Hale-Kato para ecuaciones diferenciales con retardo
infinito. Luego, asumimos que las funciones no lineales de nuestro sistema son localmente
Lipschitz y aplicamos el teorema de punto fijo de Karakostas para obtener la existencia
de soluciones. Adicionalmente, bajo nuevas condiciones, probamos la unicidad. Posterior-
mente, asumiendo que los términos no lineales son globalmente Lipschitz, consideramos un
sistema más simple en el cual aplicamos el teorema contractivo de Banach para demostrar
la existencia de soluciones. Finalmente, estudiamos la controlabilidad de nuestro sistema.
Por un lado, investigamos la controlabilidad aproximada aplicando la técnica desarrollada
por Bashirov y Ghahramanlou, la cual no usa teoremas de punto fijo. Por otro lado,
demostramos la controlabilidad exacta del mismo sistema. Para ello, transformamos el
problema de controlabilidad en un problema de punto fijo. Entonces, bajo ciertas condi-
ciones sobre las funciones no lineales de nuestro sistema, usamos el teorema de punto fijo
de Rothe para obtener el resultado deseado.
Palabras Clave: ecuaciones diferenciales neutrales, impulsos no instantáneos, condiciones
no locales, retardo infinito, teorema de punto fijo de Karakostas, teorema de punto fijo de
Rothe , controlabilidad.
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Abstract

In this thesis, we study the existence of solutions and controllability for retarded semilinear
neutral differential equations with non-instantaneous impulses, non-local conditions, and
infinite delay. First, we set the problem in a phase space satisfying the Hale-Kato axiomatic
theory for retarded differential equations with infinite delay. Second, we assume that the
nonlinear functions are locally Lipschitz, and Karakostas’s fixed point theorem is applied
to obtain the existence of solutions. Additionally, under some additional conditions, the
uniqueness is proved as well. Next, assuming that the nonlinear terms are globally Lips-
chitz, we consider a more simplified system that allows us to apply the Banach contraction
theorem to prove the existence of solutions. Subsequently, we study the associated control
problem. On the one hand, we investigate the approximate controllability by using the
technique employed by Bashirov and Ghahramanlou, which avoids the use of fixed point
theorems. On the other hand, we prove the exact controllability of the same system. To
this end, we transform the controllability problem into a fixed point problem. Then, under
some conditions on the nonlinear terms, we use Rothe’s fixed point theorem to obtain the
desired result.
Keywords: neutral differential equations, non-instantaneous impulses, non-local condi-
tions, infinite delay, Karakostas’s fixed point theorem, Rothe’s fixed point theorem, con-
trollability.
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Chapter 1

Introduction

1.1 Background
Whenever one desires to examine a problem arising in the real world mathematically, the
first step is selecting a mathematical model that best represents the problem. Usually,
the mathematical models chosen are differential equations, i.e., equations concerning the
derivative of some unknown function. For instance, elementary examples have the form
v′(t) = f(t, v(t)), where v is the unknown function and f is a given continuous function.

Real-world problems or systems in physics, engineering, biology, ecology, and economics
are often represented by simple differential equations. However, there are intrinsic phenom-
ena governing the behavior of the problem that must be considered. These phenomena
could vary and depend on the problem to be modeled. It is of recent interest to study
differential equations with non-instantaneous impulses, non-local conditions, and infinite
delay.

Non-instantaneous impulsive differential equations are characterized by abrupt changes
occurring at some points that remain active over a finite time interval. Hernández and
O’Regan [57] introduced this new class of differential equations motivated for the study of
the hemodynamical equilibrium of a person. For example, in the case of decompensation,
the injection of drugs in the bloodstream and their consequent absorption in the body are
gradual and continuous processes. One can interpret this situation as a non-instantaneous
impulsive action. Some recent results on non-instantaneous impulsive differential equations
have been reported in [8, 40, 41, 76, 90, 91, 97, 100] and in monographs [1, 101].

To determine a particular solution of a system, some additional data is needed. This
often takes the form of an initial condition, say v(t0) = v0. The previous formulation is
referred to as an initial value problem or a Cauchy problem. Byszewski [21] introduced
the study of the non-local Cauchy problem as a generalization of the classic initial value
problem. The advantage of using non-local conditions is that measurements at more places
are considered to get more realistic models. For a more detailed description of non-local
conditions and applications in physics, see [22, 23, 99] and references therein.

It is well known that the future state of realistic models in the natural sciences, eco-
nomics, and engineering depends not only on the present but on the past state and the
derivative of the past state. Such models that contain past information are called delay dif-
ferential equations (DDEs). There are simple examples in control theory, physics, biology,
ecology, economics, and inventory control (see, e.g., [38] and [28]). Differential equations

1
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with infinite (or unbounded) delay are a particular class of DDEs with important applica-
tions in mechanics, physics, and engineering. The literature related to these equations is
extensive, and we refer the reader to [59, 67] and the references therein.

Once the model representing the real problem is selected, the next step is to study the
existence and uniqueness of solutions for the differential equations governing the system.
Additionally, qualitative properties such as controllability, observability, and invertibility
could be addressed. In this work, we are interested in studying the existence of solutions
and controllability of semilinear neutral differential equations with non-instantaneous im-
pulses, non-local conditions, and infinite delay.

Neutral differential equations naturally arise in various applications, such as control
systems, mechanics, distributed networks, neural networks, the interaction of species, epi-
demiology, and many others [42]. In addition, neutral equations with infinite delay appear
in the description of heat conduction in materials with fading memory developed by Gurtin
& Pipkin [44] and Nunziato [88]. The theory of Neutral differential equations has become
an independent trend, and the literature on this subject is extensive. We shall mention the
survey on the theory of neutral equations by Akhmerov et al. [2], where a classification is
made and a statement of the main problems is given, as well as the books by Chukwu [28],
Bainov & Mishev [10] and Hale & Lunel [50].

There are some works on semilinear neutral equations with infinite delay [53], with infi-
nite delay and instantaneous impulses [55, 54], with instantaneous impulses and finite delay
[3, 81], with infinite delay and non-local conditions [52], with infinite delay, instantaneous
impulses and non-local conditions [7]. However, to our knowledge, there are no studies
considering the three phenomena simultaneously: non-instantaneous impulses, non-local
conditions, and infinite delay. This fact and the several applications of neutral differential
equations are the main motivations for this work. The results presented in this note can
be thought as an extension of the results obtained by Lalvay et al. [68] and Riera-Segura
[92].

1.2 Problem statement
In this manuscript, we are concerned with the existence of solutions and controllability of
the following first-order non-autonomous semilinear differential equations of neutral type,

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + F(t, vt), t ∈ J1

k , k = 0, 1, . . . ,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , (1.1)

v(s) + ζ(vλ1 , vλ2 , . . . , vλq)(s) = ϕ(s), s ∈ R− = (−∞, 0],

where the function v(·) takes values in Rn, s0 = 0, sk−1 < tk < sk < tk+1 →∞, as k →∞,
J1

0 = [0, t1], J1
k = (sk, tk+1], J2

k = (tk, sk]. Letting T > 0, the interval (0, T ] is the maximal
interval of local existence of solutions to (1.1), furthermore, there is ξ > 0 fixed such that
λq ≤ min{ξ, T}. Here 0 ≤ λ1 < λ2 < · · · < λq are prefixed numbers selected conveniently
according to the phenomenon to be modelled. The matrix A(t) is continuous of order
n × n. The function vt : (−∞, 0] −→ Rn given by vt(θ) = v(t + θ), θ ≤ 0, represents the
history of v up to t and belongs to the axiomatically defined phase space Cm to be specified
later. The functions F, g : [0, T ] × Cm −→ Rn, ϕ ∈ Cm, vt ∈ Cm, Γk : (tk, sk] × Rn → Rn

Mathematician 2 Graduation Project
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and ζ : C q
m → Cm are appropriate functions. In particular, Γk(t, v(t−k )), k = 1, ..., describes

the non-instantaneous impulses in the model and the function ζ denotes the non-local
conditions.

For each u fixed, we let F(t, vt) = B(t)u(t) + f(t, vt, u(t)). Then, the control problem
associated to (1.1) is given by

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + B(t)u(t) + f(t, vt, u(t)), t ∈

N⋃
k=0

J1
k ,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , N, (1.2)

v(s) + ζ(vλ1 , . . . , vλq)(s) = ϕ(s), s ∈ (−∞, 0],

where s0 = 0 < t1 < s1 < t2 < · · · < tN < sN < tN+1 = T , J1
0 = [0, t1], J1

k = (sk, tk+1]
and J2

k = (tk, sk] for k = 1, ..., N . The control u(·) belongs to a space of admissible control
functions. The matrices A(t) and B(t) are continuous of order n×n and n×m, respectively.
The function f : [0, T ] × Cm × Rm → Rn is smooth enough and the remaining terms are
the same as in equation (1.1).

The rest of this note is organized in the following manner:

• Chapter 2: This chapter provides the theoretical framework and the mathematical
tools needed to prove our results. In Section 2.1, we review the basic concepts of
metric, normed, Banach, and Hilbert spaces as well as some results on Operators
defined on normed spaces. Additionally, we give a characterization of dense range
operators in Hilbert spaces, which is useful to prove the controllability of the linear
system of differential equations. At the end of this section, we present the fixed
point theorems to be used in this work. Section 2.2 is devoted to the basic material
on differential equations. Here, we develop a systematic description of differential
equations with non-instantaneous impulses, non-local conditions, and infinite delay.
Also, we introduce neutral differential equations and the current research on this
area. In Section 2.3 , a brief review on control theory is given. Furthermore, a
characterization of the controllability of the linear system is provided.

• Chapter 3: In this chapter, we present our main results. In section 3.1, we apply
Karakostas’s fixed point theorem to prove the existence and uniqueness of solutions
to problem (1.1). Also, we provide an alternative proof of the existence of solutions
employing the Banach contraction theorem. In section 3.2, the approximate control-
lability of system (1.2) is proved by applying the technique developed by Bashirov and
Ghahramanlou. Finally, under some additional conditions, the exact controllability
of the same system is proved by using Rothe’s fixed point theorem.

• Chapter 4: In this chapter, we present our conclusions and final remarks.
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Chapter 2

Theoretical Framework

In this chapter we present elementary concepts and results of Functional Analysis, Differ-
ential Equations and Control Theory to be used in the next chapters.

2.1 Preliminary results of Functional Analysis
This section is essentially devoted to introduce some notations, definitions, and prelimi-
nary facts of Functional Analysis and Operator Theory that are used throughout the next
chapters.

2.1.1 Metric spaces
Definition 1 (Metric). Let X be a non-void set. A metric on X is a real-valued function
d defined on X ×X such that for all x, y, z ∈ X we have:

(i) d(x, y) ≥ 0;

(ii) (Symmetry) d(x, y) = d(y, x);

(iii) d(x, y) = 0 iff x = y;

(iv) (Triangle Inequality) d(x, y) ≤ d(z, x) + d(z, y).
Properties (i) and (ii) are derived from (iii) and (iv). For any three points x, y, z ∈ X one
has the following useful inequality:

|d(x, y)− d(x, z)| ≤ d(y, z).
The pair (X, d) is referred as a metric space. When no confusion can arise, we will denote
the metric space (X, d) by X.
Remark 1. Any subset A of a metric space X is a metric subspace when it is equipped
with the restriction of d to A× A.

In a metric space X, given a point a ∈ X and radius r > 0, we shall write
B(a, r) = {y ∈ X|d(y, a) < r},
B(a, r) = {y ∈ X|d(y, a) ≤ r},
Sr(a, r) = {y ∈ X|d(y, a) = r},

5
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referred to as open ball, closed ball and sphere of center a and radius r, respectively.
Observe that a set A ⊆ X is bounded if and only if A is contained in some ball.

A set O ⊆ X is said to be d-open iff

∀x ∈ O, ∃r > 0 : B(x, r) ⊆ O.

We denote by Td the set of d-open sets of X. Clearly, any open ball is a d-open set (see,
e.g., [31, Ch. 3]). Note that the last definition of open sets makes sense in the context of
metric spaces. A more general notion of open sets is considered in topology as follows:

Definition 2. Let Y ̸= ∅ and T a family of subsets of Y . We say that T is a topology
on Y iff

(i) The void set ∅ and Y belong to T ;

(ii) If U1, U2 ∈ T , then U1 ∩ U2 ∈ T ;

(iii) If (Uα)α∈I is a family of elements of T , then
⋃
α∈I

Uα ∈ T .

The pair (Y,T ) is called a topological space. The elements of T are called open sets and
their complements, closed sets.

The set Td is a topology on X and is referred to as the topology induced by the metric d.
A proof of this result can be found in [18, Th. 2.1.3].

In the context of Definition 2, we say that a set E ⊂ T is a basis of T if every set in
T is the union of a family of sets belonging to E . It is not difficult to show that

Ed = {B(x, r)|x ∈ X, r > 0}

is a basis of Td. This result leads to characterize the topological concepts of interior point
and adherent point in metric spaces as follows (see [39, Ch. 3, Ch. 13]):

Definition 3 (Interior point, Adherent point). Let X be a metric space, A ⊂ X and
x ∈ X. Then

(i) x is an interior point of A iff ∃r > 0 : B(x, r) ⊂ A.

(ii) x is an adherent point of A iff ∀r > 0 : B(x, r) ∩ A ̸= ∅.

The set of all interior points of A, denoted by int(A), is an open set in Td. The set of all
adherent points of A, denoted by A(Closure of A), is a closed set in Td.

The introduction of metric spaces allows us to generalize the concept of convergent
sequences in a fashion analogous to real numbers.

Definition 4. A sequence of points (xn)n∈N in a metric space X is said to converge to a
point x0 ∈ X iff

∀ϵ > 0,∃N(ϵ) ∈ N : d(xn, x0) < ϵ whenever n ≥ N. (2.1)

The point x0 is called the limit of the sequence. This is sometimes written limn→∞ xn = x0
or xn → x0 as n → ∞. In metric spaces, the limit of a convergent sequence is unique.
Indeed, if (xn)n∈N converges to x0 and y0, we should have

0 ≤ d(x0, y0) ≤ d(xn, x0) + d(xn, y0)→ 0 as n→∞,
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which from (iii) implies that x0 = y0. If (kn)n∈N is a strictly increasing sequence of positive
integers, the sequence (xkn)n∈N is called a subsequence of (xn)n∈N.

The next Theorem is useful to prove that a subset of a metric space is closed.

Theorem 1. Let X be a metric space, A ⊆ X and a ∈ X. Then
(i) a ∈ A iff there exists a sequence (xn)n∈N ⊆ A that converges to a.

(ii) A is closed iff the sequence (xn)n∈N ⊆ A, xn → a implies that a ∈ A.

A proof of this theorem can be found in [39, Ch. 14].

Definition 5 (Cauchy sequence). A sequence of points (xn)n∈N in a metric space X is said
to be a Cauchy sequence iff

∀ϵ > 0,∃N(ϵ) ∈ N : d(xn, xm) < ϵ whenever n,m ≥ N. (2.2)

Clearly, every convergent sequence is a Cauchy sequence; however, the converse is not
valid. A metric space X is said to be complete if every Cauchy sequence of points of X
converges to a point of X.

We now introduce the concept of compactness in metric spaces. There are at least
four equivalent ways of defining compactness in metric spaces. The definition we choose is
based on the notion of sequential compactness.

Definition 6. A metric space X is said to be sequentially compact iff for every sequence
(xn)n∈N ⊂ X there exists a subsequence that converges to some a ∈ X.

Definition 7. Let A be a set in a metric space X. A collection of open sets {Mα} in X
is said to be an open covering of A iff A ⊂ ⋃α Mα.

Definition 8. A metric space X is said to have the Heine-Borel property or to be compact
if from every open covering of the space it is possible to select a finite open covering.

Theorem 2. Let X be a metric space. Then the following statements are equivalent:
(i) X is compact.

(ii) X is sequentially compact.

We consider a compact metric space in Theorem 2-(i) as one which has the Heine-Borel
property. The reason for this is that Heine-Borel compactness can easily be generalized to
topological spaces that are not metrizable1. For a better understanding of all the equivalent
definitions of compactness and the proof of Theorem 2, we refer the reader to [31, Ch. 6].

Remark 2.
(i) If a subset A of a metric space is such that A is compact, we say that A is relatively

compact.

(ii) In finite dimension, a metric space X is compact iff it is closed and bounded.
1A topological space (X, T ) is metrizable iff there exist a metric d on X such that T = Td
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2.1.2 Normed and Inner product spaces
Normed linear spaces can be thought of as a generalization of the n-dimensional vector
space Rn together with its length function.

Definition 9 (Norm). Let V be a (real) linear space. A norm on V is a function ∥ · ∥V :
V −→ R satisfying the following conditions:

(i) ∀x ∈ V : ∥x∥V = 0 iff x = 0;

(ii) ∀x ∈ V, ∀λ ∈ R : ∥λx∥V = |λ|∥x∥V ;

(iii) (Triangle inequality) ∀x, y ∈ V : ∥x+ y∥V ≤ ∥x∥V + ∥y∥V .
The couple (V, ∥ · ∥V ) is called a normed space.

When there is no confusion, we shall say the normed space V instead of (V, ∥ · ∥V ) and the
norm ∥ · ∥ instead of ∥ · ∥V . The function d : V × V −→ R defined by

d(x, y) = ∥x− y∥, x, y ∈ V, (2.3)

is a metric on V . As a result, every normed space becomes a metric space and, consequently,
a topological space. Note that a normed space V is complete if the corresponding metric
space (V, d), where d is the metric defined in (2.3), is complete. In this case, we say that
V is a Banach space.

Once we generalize the length of a vector in normed spaces, it is easy to generalize the
concept of continuity from calculus.

Definition 10. Let V,W be normed spaces. A function f : V −→ W is said to be:
(i) Continuous at the point x0 ∈ V iff

∀ϵ > 0,∃δ = δ(x0, ϵ) : x ∈ V and ∥x− x0∥V < δ =⇒ ∥f(x)− f(x0)∥W < ϵ,

f is continuous on V if it is continuous at every point in V .

(ii) Uniformly continuous iff

∀ϵ > 0,∃δ = δ(ϵ) : x, y ∈ V and ∥x− y∥V < δ =⇒ ∥f(x)− f(y)∥W < ϵ.

Another important notion of continuity used throughout this work is the Lipschitz
continuity.

Definition 11. Let V and W be normed spaces and T : V −→ W . We say that T is
Lipschitz continuous iff

∃κ ≥ 0,∀x, y ∈ V : ∥Ty − Tx∥W ≤ κ∥y − x∥V .

If κ < 1, T is called a contraction.

A Banach space generalizes the notion of Rn as a linear space with a length function,
but in order to generalize the useful geometry property of orthogonality, we need some
extra structure.
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Definition 12 (Inner product). Let V be a (real) linear space. An inner product on V is
a function ⟨·, ·⟩ : V × V −→ R satisfying the following conditions:

(i) ∀x, y, z ∈ V, ∀λ ∈ R : ⟨λx+ y, z⟩ = λ⟨x, z⟩+ ⟨y, z⟩;

(ii) (Symmetry) ∀x, y ∈ V : ⟨x, y⟩ = ⟨y, x⟩;

(iii) (Non-negativity) ∀x ∈ V : ⟨x, x⟩ ≥ 0;

(iv) ∀x ∈ V : ⟨x, x⟩ = 0 iff x = 0.
The pair (V, ⟨·, ·⟩) is called an inner product space.

Lemma 1 (Cauchy-Bunyakovsky-Schwarz (CBS) inequality). Let V be an inner product
space. Then

∀x, y ∈ V : |⟨x, y⟩| ≤
√
⟨x, x⟩ ·

√
⟨y, y⟩.

For the proof of this Lemma, one can see [65, Ch. 3, Lem. 3.2-1]. By using CBS inequality,
we can prove that every inner product space induces the norm:

∥x∥ =
√
⟨x, x⟩.

In this setting, we shall say that an inner product space is a Hilbert Space if it is a
Banach space with respect to the norm induced by the inner product.

2.1.3 Operators on Normed spaces
Let (E, ∥·∥E) and (F, ∥·∥F ) be normed spaces. We say that T : E −→ F is a linear operator
iff

∀x, y ∈ E,∀α ∈ R : T (αu+ v) = αTx+ Ty.

The range of a linear operator T : E −→ F is the set

Ran(T ) = {y ∈ F |y = Tx for some x ∈ E},

and the null space or kernel of T is the set

Ker(T ) = {x ∈ E|Tx = 0}.

A linear operator T : E −→ F is further called bounded iff

∃c > 0,∀x ∈ E : ∥Tx∥F ≤ c∥x∥E. (2.4)

We denote by L(E,F )2 the space of all bounded linear operators from E to F . If F = R,
then T is called a bounded linear functional and L(E,R) is denoted by E⋆(Dual space of
E). The term “bounded operator” is motivated by the following proposition.

Proposition 1. Let E,F be normed spaces. A linear operator T : E −→ F is bounded if
and only if T maps bounded sets into bounded sets

2When F = E, we write L(E, E) = L(E).
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Proof. Assume that T is bounded. Then, there exists c > 0 such that ∥Tx∥ ≤ c∥x∥ for
all x ∈ E. If ∥x∥ ≤ k, for some constant k, then ∥Tx∥ ≤ c∥x∥ ≤ kc. That is, T maps
a bounded set into a bounded set. Conversely, assume that T maps bounded sets into
bounded sets. Then T maps the unit closed ball B(0, 1) = {x ∈ E : ∥x∥ ≤ 1} into a
bounded set. That is, there exists a constant c > 0 such that ∥Tx∥ ≤ c for all x ∈ B(0, 1).
Therefore, for any nonzero x ∈ E,

∥Tx∥
∥x∥

=
∥∥∥∥∥∥T

(
x

∥x∥

)∥∥∥∥∥∥ ≤ c.

Hence, ∥Tx∥ ≤ c∥x∥. This concludes the proof.

It leads naturally to define the operator norm:

∥T∥L(E,F )
3 := inf

{
c > 0

∣∣∣ ∀x ∈ E : ∥Tx∥F ≤ c∥x∥E

}
= sup

x ̸=0

∥Tx∥F

∥x∥E

= sup
∥x∥=1

∥Tx∥F .

It is not difficult to show that ∥T∥L(E,F ) is a norm on L(V,E), see for instance [65, Lem.
2.7-2]. Furthermore, we have that

∀x ∈ E : ∥Tx∥F ≤ ∥T∥∥x∥E.

Theorem 3. Let E and F be normed spaces. A linear operator T : E −→ F is continuous
if and only if it is bounded.

Proof. Assume that T is continuous. Then T is continuous at 0, that is,

∀ϵ > 0,∃δ > 0, ∀x ̸= 0 ∈ E : ∥x∥ < δ =⇒ ∥Tx∥ < ϵ. (2.5)

Take x = δy/2∥y∥. Hence ∥x∥ = δ/2 < δ, so that from (2.5), we have that

∥Tx∥ =
∥∥∥∥∥∥T

(
δ

2∥y∥y
)∥∥∥∥∥∥ = δ

2∥y∥∥Ty∥ < ϵ.

Setting c = 2ϵ/δ; since x was arbitrary, last shows that T is bounded. Conversely, assume
that T is bounded. Let x0 ∈ E and let ϵ > 0. Since T is bounded and linear, we have that

∥Tx0 − Tx∥ ≤ ∥T∥∥x0 − x∥, ∀x ∈ E.

By setting δ = ϵ/∥T∥ and assuming that ∥x0 − x∥ < δ we obtain that

∥Tx0 − Tx∥ < ∥T∥δ < ϵ.

Since x0 was arbitrary, T is continuous.

The following Theorem summarizes some important properties of the space L(E,F ).

Theorem 4. Let E,F and V be normed spaces. Then
3Usually, we will write ∥T∥ instead of ∥T∥L(E,F ).
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(i) If F is a Banach space, then L(E,F ) is a Banach space.

(ii) If T ∈ L(E,F ) and S ∈ L(F, V ), then the composition S ◦ T = ST is in L(E, V )
and ∥ST∥ ≤ ∥S∥∥T∥.

(iii) For the case that E = F , L(E) is an algebra; that is, αT1, T1 + T2 and T1T2 are in
L(E) for every T1, T2 in L(E).

For a proof of this result, see, e.g., [65, Ch. 2].
There are three very important theorems in functional analysis about bounded lin-

ear operators on Banach spaces: the Uniform Boundedness Principle, the Open Mapping
Theorem and the Closed Graph Theorem. Here, it is of our interest the open mapping
theorem.

Theorem 5 (Open Mapping Theorem). Let E and F be two Banach spaces and let T ∈
L(E,F ) surjective. Then there exists c > 0 such that

T (B(0, 1)) ⊃ B(0, c). (2.6)

For the proof of Theorem 5, we refer to [17, Ch. 2, Th. 2.6]. Note that relation in (2.6)
implies that T maps open sets into open sets. One of the most important consequences of
Theorem 5 is the following Corollary.

Corollary 1. Let E and F be two Banach spaces and let T ∈ L(E,F ) bijective. Then
T−1 ∈ L(F,E).

A proof of Corollary 1 can be found in [17, Ch. 5, Cor. 2.7].
Finally, we define a special subclass of bounded linear operators with valuable proper-

ties.

Definition 13. Let E and F be normed spaces. A linear operator T : E −→ F is said to
be compact iff

∀A ⊆ E, bounded: T (A) ⊆ F is relatively compact.

Equivalently, T is compact iff

∀(xn)N∈N ⊆ E bounded: (Txn)n∈N has a convergent subsequence.

2.1.4 Properties of Hilbert spaces.
In this part, we exploit the structure of the inner product to derive important properties
of Hilbert spaces. First, we give a definition of convex sets.

Definition 14 (Convex set). A subset M of a linear space V is said to be convex iff

∀x, y ∈M,∀λ ∈ [0, 1] : λx+ (1− λ)y ∈M.

The next Theorem has theoretical and practical applications in minimization problems.
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Theorem 6 (Projection on a closed convex set). Let H be a Hilbert space and let K ⊂ H
be a nonempty closed convex set. Then for every f ∈ H there exists a unique u ∈ K such
that

∥f − u∥ = min
v∈K
∥f − v∥.

A proof of this Theorem is in [17, Ch.5, Th.5.2]. The element u = PKf above is called the
projection of f onto K.

Corollary 2. Let H be a Hilbert space and M be a closed linear subspace of H. Let f ∈ H.
Then u = PMf is characterized by

u ∈M and ⟨f − u, v⟩ = 0, ∀v ∈M.

A proof of Corollary 2 can be found in [17, Ch.5, Cor.5.4].

One of the most important properties of a Hilbert space is that there is a particularly
simple representation of its dual space.

Theorem 7. (Riesz-Fréchet representation theorem). Let H be a Hilbert space and φ ∈
H⋆. Then there exists a unique fφ ∈ H such that

∀u ∈ H : φ(u) = ⟨fφ, u⟩, and ∥φ∥H⋆ =
∥∥∥fφ

∥∥∥
H
.

For the proof of this theorem, one can see [17, Ch.5, Th.5.5]. Thanks to Theorem 7, we
can prove that H and H⋆ are isomorphic.

Now, let H1, H2 be Hilbert spaces, T ∈ L(H1, H2) and y ∈ H2. We consider φy(x) =
⟨Tx, y⟩H2 as a linear functional on H1. Furthermore, from the CBS inequality we have
|φ(x)| = |⟨Tx, y⟩H2 | ≤ ∥T∥∥y∥∥x∥, that is, φy is bounded for fixed y ∈ H1. Therefore by
Theorem 7, there exists a unique T ∗y ∈ H1 such that

⟨Tx, y⟩H2 = ⟨x, T ∗y⟩H1 , ∀x ∈ H1. (2.7)

Thus, given a y ∈ H2, there is a unique T ∗y associated with it.

Theorem 8. Let T ∈ L(H1, H2), where H1 and H2 are Hilbert spaces. Then there exists
a unique operator T ∗ ∈ L(H2, H1) called the adjoint of T that satisfies

⟨Tx, y⟩H2 = ⟨x, T ∗y⟩H1 , ∀x ∈ H1,∀y ∈ H2, and ∥T∥ = ∥T ∗∥.

The existence of T ∗ comes by relation (2.7). The rest of the proof can be found in [65,
Ch.3, Th.3.9-2]. The following Theorem states the general properties of Hilbert adjoint
operators.

Theorem 9. Let H1, H2 be Hilbert spaces, S ∈ L(H1, H2), T ∈ L(H1, H2), and α ∈ R.
Then

(i) (S + T )∗ = S∗ + T ∗;

(ii) (αT )∗ = αT ∗;

(iii) (T ∗)∗ = T ;
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(iv) (ST )∗ = T ∗S∗ (H2 = H1);

(v) ∥T ∗T∥ = ∥TT ∗∥ = ∥T∥2;

(vi) If T has a bounded inverse T−1, then T ∗ has a bounded inverse and (T ∗)−1 = (T−1)∗.

Proof. (i)-(v) are easily checked and can be found in [65, Ch.3, Th.3.9-4]. Suppose that T
has a bounded inverse T−1, then by (iv)

T ∗(T−1)∗ = (T−1T )∗ = I∗ = (T−1)∗T ∗.

Moreover, since T−1 is bounded, (T ∗)−1 is bounded.

To finish this subsection, we present a useful Theorem that uses the adjoint T ∗ to
characterize the range and kernel space of T and vice versa. Before that, we recall the
concept of orthogonal complement. Let Z be an inner product space and x, y ∈ Z. We
say that x is orthogonal to y and write x ⊥ y iff ⟨x, y⟩ = 0. If M ⊂ Z, we define M⊥, the
orthogonal complement of M , by

M⊥ = {x ∈ Z : ⟨x, y⟩ = 0 for all y ∈M}.

Theorem 10. Let H1 and H2 be Hilbert spaces and T ∈ L(H1, H2), then
(i) Ran(T )⊥ = Ker(T ∗);

(ii) Ran(T ) = Ker(T ∗)⊥;

(iii) Ran(T ∗)⊥ = Ker(T );

(iv) Ran(T ∗) = Ker(T )⊥.

Proof. Since (T ∗)∗ = T , it will be suffice to prove (i) and (ii). Let z ∈ Ran(T )⊥, then
⟨z, Tx⟩ = 0 for all x ∈ H1. But by Theorem 8, it follows

⟨T ∗z, x⟩ = 0, ∀x ∈ H1.

So T ∗z = 0, i.e., z ∈ Ker(T ∗). Similarly, z ∈ Ker(T ∗), implies that ⟨T ∗z, x⟩ = 0 for all
x ∈ H1. Again, by Theorem 8, we obtain that z ∈ Rang(T )⊥. Now, Ran(T ) may not be
closed, so it is not necessarily the case that Ran(T )⊥⊥ = Ran(T ); but, we do always have
that Ran(T )⊥⊥ = Ran(T ) (see [84, Ch. 5, Th. 5.15.4]). This completes the proof.

2.1.5 Characterization of Dense Range Operators.
Let Y, Z be Hilbert spaces. This subsection will show an important characterization of
bounded linear operators with dense range on Hilbert spaces. This result will play a
substantial role in the controllability of linear differential equations.

Theorem 11. (Curtain & Pritchard [35]). Let T ∈ L(Y, Z). Then
(i) Ran(T ) = Z ⇐⇒ ∃γ > 0 : ∥T ∗z∥Y ≥ γ∥z∥Z , ∀z ∈ Z.

(ii) Ran(T ) = Z ⇐⇒ Ker(T ∗) = {0}.

Proof.
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(i) Assume that Ran(T ) = Z, we shall consider the cases:

(a) T is a one-to-one mapping, that is, T is a bijection. By Corollary 1, T−1 ∈
L(Z, Y ). Moreover by Theorem 9-(vi), (T−1)∗ = (T ∗)−1 ∈ L(Y, Z), and there
exists β > 0, such that ∥∥∥(T ∗)−1y

∥∥∥
Z
≤ β∥y∥Y , ∀y ∈ Y.

Now, for any z = (T ∗)−1y ∈ Z, we let y = T ∗z, then

∥T ∗z∥Y ≥ γ∥z∥Z , ∀z ∈ Z, γ = 1
β
.

(b) For the general case we consider the closed linear subspace W = Ker(T )⊥ ⊂ Y ,
which is a Hilbert space. Now, define the linear operator T̃ : W −→ Z by

T̃w = Tw.

Clearly, T̃ is one-to-one. Thus, T̃ is a bijection and there exists γ > 0 such that∥∥∥T̃ ∗z
∥∥∥

W
≥ γ∥z∥Z , ∀z ∈ Z. (2.8)

From Theorem 7, we have that∥∥∥T̃ ∗z
∥∥∥

W
= sup

w∈W
∥w∥Y ≤1

∣∣∣⟨w, T̃ ∗z⟩Y
∣∣∣ = sup

w∈W
∥w∥Y ≤1

∣∣∣⟨T̃w, z⟩Z ∣∣∣
= sup

w∈Y
∥w∥Y ≤1

∣∣⟨Tw, z⟩Z ∣∣ = sup
w∈Y

∥w∥Y ≤1

∣∣⟨w, T ∗z⟩Y
∣∣

= ∥T ∗z∥Y . (2.9)

Hence, from (2.8) and (2.9), the result follows.

Conversely, assume that there exists γ > 0 such that

∥T ∗z∥Y ≥ γ∥z∥Z , ∀z ∈ Z,

then we have that

⟨T ∗z, T ∗z⟩Z ≥ γ2∥z∥2, ∀z ∈ Z,
⟨TT ∗z, z⟩Z ≥ γ2∥z∥2, ∀z ∈ Z, (Theorem 7) (2.10)
∥TT ∗z∥Z ≥ γ2∥z∥Z , ∀z ∈ Z. (CBS inequality) (2.11)

Moreover Ran(TT ∗) = Z. In fact, we first see that Ran(TT ∗) is closed (see Theorem
1-(ii)). Let z̃ ∈ Ran(TT ∗), then there exists (zn)n∈N ⊂ Z such that TT ∗zn → z̃ as
n→∞. From (2.11), we get that

∥zn − zm∥Z ≤
1
γ2∥TT

∗zn − TT ∗zm∥Z .
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Since (TT ∗zn)n∈N is a Cauchy sequence, ∥zn − zm∥ → 0 as n,m→∞. Hence zn → z
as n→∞. Last implies that TT ∗zn → TT ∗z = z̃ as n→∞, that is, z̃ ∈ Ran(TT ∗).
Now, suppose that Ran(TT ∗) ⊊ Z. By the Perpendicular Theorem, there exists
z0 ∈ Z, with ∥z0∥Z = 1 such that

⟨TT ∗z, z0⟩ = 0, ∀z ∈ Z.

In particular, ⟨TT ∗z0, z0⟩Z = 0, so by (2.10), ∥z0∥2 = 0, wich is a contradiction.
Hence Ran(TT ∗) = Z. Clearly Ran(TT ∗) ⊂ Ran(T ); therefore Ran(T ) = Z.

(ii) The proof of this item is an immediate consequence of Theorem 10-(ii).

Corollary 3. Let T ∈ L(Y, Z). Then, the following assertions are equivalent
(i) Ran(T ) = Z;

(ii) ∃(TT ∗)−1 ∈ L(Z);

(iii) ∃α > 0,∀z ∈ Z \ {0} : ⟨TT ∗z, z⟩ ≥ α∥z∥2.

Proof. Let us show that (i) implies (ii). Assume that Ran(T ) = Z, then by Theorem 11,
there exists γ > 0 such that

∥TT ∗z∥Z ≥ γ∥z∥Z , ∀z ∈ Z. (2.12)

If z ̸= 0, then TT ∗z ̸= 0, which implies that Ker(TT ∗) = {0}, i.e., TT ∗ is one-to-one. Also,
from the proof of Theorem 11, it follows that Ran(TT ∗) = Z. Therefore, TT ∗ is bijective
and there exists (TT ∗)−1. From (2.12), let γ∗ = 1/γ, then we have that∥∥∥(TT ∗)−1z

∥∥∥ ≤ γ∗∥z∥, z ∈ Z. (2.13)

Corollary 4. Let T ∈ L(Y, Z) such that Ran(T ) = Z. Then, yz = T ∗(TT ∗)−1z is the
solution of the equation

Ty = z

with minimum norm, i.e.,

∥yz∥Y = inf{y ∈ Y : Ty = z}.

Proof. Let S := T ∗(TT ∗)−1 : Z −→ Y , and let yz = S z for some z ∈ Z. Consider the
following equation

Ty = z (2.14)

Clearly, yz is a solution of (2.14). Moreover, for y ̸= yz, such that Ty = z, we have that

⟨y − yz, yz⟩ = ⟨y, yz⟩ − ∥yz∥2 = 0,
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so that

∥y∥2 = ∥y − yz∥2 + ∥yz∥2.

In fact, it follows that

⟨y, yz⟩ = ⟨y, T ∗(TT ∗)−1z⟩ = ⟨Ty, (TT ∗)−1z⟩ = ⟨z, (TT ∗)−1z⟩
= ⟨TT ∗(TT ∗)−1z, (TT ∗)−1z⟩ = ⟨T ∗(TT ∗)−1z, T ∗(TT ∗)−1z⟩
= ∥S z∥2 = ∥yz∥2.

This completes the proof.

Corollary 5. If dim(Z) <∞ and T ∈ L(Y, Z). Then the following statements are equiv-
alent

(i) Ran(T ) = Z;

(ii) There exists γ > 0 such that ∥T ∗z∥Y ≥ γ∥z∥Z , ∀z ∈ Z;

(iii) Ker(T ∗) = {0};

(iv) ∃(TT ∗)−1 ∈ L(Z).

Proof. Since dim(Z) < ∞, it follows that Ran(T ) = Ran(T )(see [84, Th. 5.10.3]). Thus,
from Theorem 11 we obtain the desired result.

2.1.6 Fixed point theorems
Now, we present the fixed point theorems that will be used to prove our main results.

Theorem 12. Let (Y, d) be a complete metric space and F : Y −→ Y be a contractive
mapping. Then F has a unique fixed point u ∈ Y , and F n(y)→ u for each y ∈ Y .

This theorem is referred to as the Banach contraction theorem, and its proof can be found
in [43, Th. 1.1, pp. 10].

The next theorem is an extension of Krasnosel’skii’s fixed point theorem and was proved
by Karakostas in [62, Th. 2.2, pp. 183].

Theorem 13. Let Z and Y be Banach spaces and D be a closed convex subset of Z, and
let C : D → Y be a continuous operator such that C(D) is a relatively compact subset of Y,
and

F : D × C(D)→ D

a continuous operator such that the family {F(·, y) : y ∈ C(D)} is equicontractive. Then,
the operator equation

F(z, C(z)) = z

admits a solution on D.

Finally, we state the Rothe’s fixed theorem, which is a general version of the finite
dimensional Rothe’s fixed theorem.
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Theorem 14. Let X be a Banach space and consider D ⊆ X a closed convex subset
containing the zero of X in its interior. Let B : D → X be a continuous function with
B(D) relatively compact in X and B(∂D) ⊂ D. Then

∃x∗ ∈ D : B (x∗) = x∗.

A proof of Rothe’s fixed point theorem is given in [60, Th. 2, pp. 129].

2.2 Differential Equations
In this chapter, we present a brief review of the general theory of differential equations as
well as a description of differential equations with impulses, delay, and non-local conditions.

2.2.1 Existence and Uniqueness
The foundations of the theory of differential equations are the general theorems of existence
and uniqueness. Therefore, we begin by recalling these theorems. First, we define the
concept of a Differential Equation (DE).

Definition 15. Let D ⊆ Rn+1 be an open set; let f : D −→ Rn a continuous function and
v′ = dv(t)/dt. A differential equation is a relation of the form

v′(t) = f(t, v(t)). (2.15)

We say that v is a solution of (2.15) on I ⊆ R if v is a continuously differentiable function
defined on I, (t, v(t)) ∈ D for t ∈ I and v satisfies (2.15) on I. Suppose (t0, v0) ∈ D is
given. An initial value problem (IVP) for (2.15) consist of finding I ⊆ R containing t0 and
a solution v of (2.15) satisfying v(t0) = v0. The IVP formulated above is equivalent to

v(t) = v0 +
∫ t

t0
f(s, v(s))ds, t ∈ I. (2.16)

If f is continuous in D, then for any (t0, v0) ∈ D, there is at least one solution of (2.15)
passing through (t0, v0). This results is known as the Peano Existence Theorem (see [47,
Ch. 1]).

Theorem 15 (Picard-Lindelöf). If f is continuous in D and locally lipschitzian with re-
spect to v in D, there exists a unique solution v(t, t0, v0) of the IVP passing through (t0, v0)
and defined in some neighborhood of t0.

Theorem 15 can be found in [47, Ch. 1, Th. 3.1]. For additional information on the
classical theory of existence-uniqueness for DEs we refer the reader to [45, 51].

2.2.2 Linear Systems
Suppose that f(t, v(t)) = A(t)v(t) in (2.15); where A(t) is a continuous n × n matrix on
I ⊆ R. Then, given (t0, v0) ∈ D, the IVP becomes

v′(t) = A(t)v(t), t ∈ I, (2.17)
v(t0) = v0. (2.18)
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We refer to (2.17) as a Linear Homogeneous System (LHS). From the continuity of A(t),
Theorem 15 implies that the IVP (2.17)-(2.18) has a unique solution on I. In addition,
the set of all solutions of (LHS) on I form an n-dimensional vector space ( see, e.g., [29,
Ch. 3, Th. 2.1]).
Definition 16. If Φ is a matrix whose n columns are n linearly independent solutions of
(LHS) on I, then Φ is called a fundamental matrix of (LHS). A principal matrix of (LHS)
at initial time t0 is a fundamental matrix Φ such that Φ(t0) = In×n.

4

Evidently, Φ satisfies the matrix differential equation
d

dt
Φ(t) = A(t)Φ(t), t ∈ I.

Note that a general solution of the IVP (2.17)-(2.18) is given byW (t, t0)v0 := Φ(t)Φ−1(t0)v0,
where W (t, t0) is known as the evolution operator(or transition matrix). If we consider
W (t, s) for t, s ∈ I, then the following proposition holds.
Proposition 2. For all t, s, r ∈ I, it follows that

(i) W (t, t) = I;

(ii) W (t, r)W (r, s) = W (t, s);

(iii) d

dt
W (t, s) = A(t)W (t, s);

(iv) W (t, s) is continuous;

(v) There exist M ≥ 1 and K,α > 0 such that∥∥W (t, s)
∥∥ ≤ Keα(t−s) ≤M, 0 ≤ s ≤ t ≤ T.

(vi) W−1(s, t) = W (t, s).
Proof. (i)-(iv) are immediate by the definition of W (t, s). For the proof of (v) and (vi),
see [45, pp. 42-44].

Suppose now that h is a continuous vector function on I. Then the IVP

v′(t) = A(t)v(t) + h(t), t ∈ I, (2.19)
v(t0) = v0. (2.20)

admits a unique solution on I. In fact, suppose that v1 and v2 are two solutions, then
u = v1−v2 would be a solution of (LHS) on I and u(t0) = 0. But, by the uniqueness theorem
for (LHS), u = 0 on I, and thus v1 = v2. The equation (2.19) is called a Nonhomogeneous
Linear System(NHS).
Theorem 16. If Φ is a fundamental matrix of (LHS), then every solution of the IVP(2.19)-
(2.20) is given by

v(t) = Φ(t)Φ−1(t0)v0 + Φ(t)
∫ t

t0
Φ−1(s)h(s)ds. (2.21)

Formula (2.21) is referred to as the variation of constants formula. See [29, Ch. 3, Th.
3.1] for the proof of Theorem 16.

4In×n denotes the Identity matrix.
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2.2.3 Differential Equations with Delay
This subsection introduces the concept of differential equations with delay. In the litera-
ture, these equations also are known as differential equations with retarded argument or
delay differential equations. For this part, our primary reference is Driver [38].

By a Delay Differential Equation(DDE) we mean an equation of the form

v′(t) = f(t, v(t), v(t− τ)), (2.22)

where 0 < τ < ∞ is called the delay. Existence results of the IVP for (2.22) are studied
in [45, Ch. 4]. We shall consider a more general form of (2.22) by adding different delays.
Let I = [0, T ], D ⊆ Rn an open set and f : [0, T ]×Dm −→ Rn. Consider the differential
system

v′(t) = f(t, v(d1(t)), ..., v(dm(t))), t ∈ [0, T ], (2.23)

where each di(t)5 is a retarded argument, i.e., di(t) ≤ t for i = 1, ...,m. We shall assume
that

t− r ≤ dj(t) ≤ t, t ∈ [0, T ], j = 1, ...,m,
for some 0 ≤ r <∞. Given ϕ : [−r, 0] −→ D, an initial condition for (2.23) takes the form

v(t) = ϕ(t), t ∈ [−r, 0]. (2.24)

A solution of the last IVP is a continuous function v : [−r, T ] such that v(t) = ϕ(t) for
t ∈ [−r, 0], and v satisfies (2.23) for t ∈ [0, T ].
Example 1 (Smith [95]). Consider the scalar delay differential equation given by

v′(t) = −v(t− τ) (2.25)

where 0 < τ < ∞. When τ = 0, we obtain the differential equation v′(t) = −v(t), whose
general solution is v(t) = v(0)e−t. Suppose we set

v(t) = 1, −τ ≤ t ≤ 0 (2.26)

as initial condition for (2.25). Then, t − τ ≤ 0 for 0 ≤ t ≤ τ so v′(t) = −v(t − τ) = −1,
and therefore

v(t) = v(0) +
∫ t

0
(−1)ds = 1− t, 0 ≤ t ≤ τ. (2.27)

On τ ≤ t ≤ 2τ , we have 0 ≤ t− τ ≤ τ so by (2.27), v′(t) = −v(t− τ) = −[1− (t− τ)] and
thus

v(t) = v(τ) +
∫ t

τ
−[1− (s− τ)]ds = 1− t+ (t− τ)2/2, τ ≤ t ≤ 2τ.

Following this procedure, we can verify that

v(t) = 1 +
n∑

k=1
(−1)k [t− (k − 1)τ ]k

k! , (n− 1)τ ≤ t ≤ nτ, n ≥ 1.

Thus, v(t) is a polynomial of degree n on [(n − 1)τ, nτ) (See Fig. 2.1). Observe that v(t)
is a smooth function, except at each nτ, n ≥ 0.

5Some authors write t− τi(t) instead of di(t), where τi(t) ≥ 0, j = 1, ..., m are the delays.
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Figure 2.1: Solution of equation (2.25)-(2.26) for various τ

Let v ∈ C([−r, T ];Rn)6, then for t ∈ [0, T ] we let vt ∈ C([−r, 0];Rn) be defined by
vt(s) = v(t+ s). Define the map F from [0, T ]×C([−r, 0;Rn]) to Rn and consider the IVP

v′(t) = F (t, vt), t ∈ [0, T ], (2.28)
v(t) = ϕ(t), t ∈ [−r, 0]. (2.29)

Note that F is defined on a function space, usually called the phase space, and can con-
ceivably depend on any or all values of vt(s) = v(t + s),−r ≤ s ≤ 0. Equation (2.28) is
known as a Retarded Functional Differential Equation(RFDE) and generalizes DDEs. In
fact, for F defined by

F (t, vt) = f(t, vt(d1(t)− t), ..., vt(dm(t)− t))

we recover (2.23). If F is continuous with respect to t ∈ [0, T ] for each v ∈ C([−r, T ];Rn),
then a function v ∈ C([−r, T ];Rn) is a solution of (2.28)-(2.29) iff

v(t) =

 ϕ(0) +
∫ t

0
F (s, vs) ds, t ∈ [0, T ],

ϕ(t), t ∈ [−r, 0].
(2.30)

The existence theorem for problem (2.28)-(2.29) generalizes the one of subsection 2.2.1.
This is obtained by assuming that F satisfies a Lipschitz condition. A detailed proof of
existence and uniqueness theorems for FDEs can be consulted in [38, Ch. VI].

2.2.4 Differential Equations with Infinite Delay
In the last subsection we consider FDEs with finite delay, where the function vt belongs
to the phase space C([−r, 0];Rn), which is characterized by some axioms. The crucial
assumption is that the motion of vt in the phase space is continuous for t. If the phase

6C([−r, T ];Rn) is the space of continuous functions from [−r, T ] to Rn.
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space C([−r, 0];Rn) is endowed with the topology induced by the supremum norm, then
last assumption holds. Thus, we usually take this space as the phase space for equations
with finite delay. Here, we study this assumption for the case where the delay is infinite.
Our main reference in this part is Hino et al. [59].

In the case of infinite delay, we have several possibilities for the choice of the phases
spaces taken properly according to the problem. However, there are many facts which hold
independently of each concrete phase space.

The first axiomatic approach for equations with infinite delay was given by Coleman
& Mizel [30]. Later, Hale [46] introduced some other axioms, and contributions to these
axioms have been brought by Hino [58] and Naito [83]. Furthermore, Hale & Kato [49],
and Schumacher [94] gave a more systematic development of this subject, independently.

Suppose E is a Banach space, for a function f mapping a topological space S into E,
and for a subset K of S, we set

∥f∥K = sup
{∥∥f(x)

∥∥ : x ∈ K
}
.

If ∥f∥K < ∞ for every compact set K ⊂ S, f is said to be locally bounded on S. For a
function x : (−∞, a) −→ E and for t < a, we define the function xt : (−∞, 0] −→ E by

xt(s) = x(t+ s), −∞ < s ≤ 0.

The phase space B for equations with infinite delay is a linear space, with a seminorm
∥·∥B, consisting of functions mapping (−∞, 0] into E. Hale & Kato [49] provided the
following fundamental axioms on B

(A1) If x is a function mapping (−∞, σ + a) into E, a > 0, such that x ∈ B and x is
continuous on [σ, σ + a), then for every t ∈ [σ, σ + a) the following conditions hold;

(i) xt is in B,

(ii)
∥∥x(t)

∥∥
E ≤ H∥xt∥B,

(iii) ∥xt∥ ≤ K(t− σ) sup{
∥∥x(s)

∥∥
E : σ ≤ s ≤ t}+M(t− σ)∥xσ∥B,

where H is a constant, K,M : [0,∞) −→ [0,∞), K is continuous, M is locally
bounded, and both are independent of x.

(A2) For the function x in (A1), xt is a B-valued continuous function for t ∈ [σ, σ + a).

(A3) The space B is complete.
We can mention two standard spaces used in the study of some differential equations

with infinite delay.

BC =
{
φ ∈ C((−∞, 0];Rn) : ∥φ∥ := sup

−∞<θ≤0

∥∥φ(θ)
∥∥ <∞} .

For a positive continuous function g on (−∞, 0], let us consider the phase space Cg intro-
duced by Burton and Haddock [5]:

Cg =
{
φ ∈ C((−∞, 0];Rn) : ∥φ∥g := sup

−∞<θ≤0

∥∥φ(θ)
∥∥

g(θ) <∞
}
.
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The requirement that the motion of xt is continuous in the phase space is satisfied by
defining the new spaces

BC0 =
{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
and C0

g =
{
φ ∈ Cg : lim

θ→−∞

φ(θ)
g(θ) = 0

}
.

The space BC0 satisfies the axioms (A1)-(A3). Additionally, if the function g fulfills the
following condition

G(t) := sup
−∞<θ≤−t

g(t+ θ)
g(θ) is locally bounded for t ≥ 0

Then, the function spaces Cg, C
0
g satisfy the axioms (A1)-(A3). This result can be found

in [59, Th. 3.1, Th. 3.2].
Recently, some attention have been focused on the space Cg as a phase space for

functional differential equations with infinite delay; especially for many types of integro-
differential equations. Here, we will adopt some ideas from Liu [77] and consider a contin-
uous positive function m : R −→ R+ such that

(M1) m(0) = 1;

(M2) m(s)→∞ as s→ −∞;

(M3) m is decreasing.

For the function m given above, we define the space of functions

Cm =
{
φ ∈ C((−∞, 0];Rn) : ∥φ∥Cm := sup

−∞<θ≤0

∥∥φ(θ)
∥∥

m(θ) <∞
}
. (2.31)

The space Cm satisfies axioms (A1)-(A3) (see, e.g., [20], [59]).

2.2.5 Differential Equations with Non-local Conditions
The non-local condition is a generalization of the classical initial condition and was moti-
vated by physical problems such as the position of a material point at different moments.
Byszewski & Lakshmikantham [23] originally introduced the non-local problem

v′(t) = f(t, v(t)), t ∈ [0, T ],
v(0) = v0 − ζ(λ1, ..., λp, v(·)) ∈ En,

(2.32)

where E is a Banach space, v(t) ∈ Ω ⊆ En, 0 < λ1 < . . . < λp ≤ T ,f and ζ are suitable
functions. The symbol ζ(λ1, ..., λp, v(·)) is meant in the sense that in the place of · we can
substitute only elements of the set {λ1, ..., λp}. For instance, ζ can be defined by

ζ(λ1, ..., λp, v(·)) = C1v(λ1) + . . .+ Cpv(λp) (2.33)

where Ci, i = 1, ..., p are constants. To prove the existence and uniqueness of solutions for
(2.32), authors in [23] used the Banach contraction theorem.
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The semilinear non-local problem in finite dimension associated to (2.32) takes the form

v′(t) = A(t)v(t) + f(t, v(t)), t ∈ [0, T ],
v(0) = v0 − ζ(λ1, ..., λp, v(·)) ∈ Rn,

(2.34)

where A(t) is a continuous n × n matrix on [0, T ]. Byszewski [21] give three theorems
on the existence and uniqueness of solutions to (2.34) in infinite dimension using Banach
contraction theorem and semigroup theory. This result generalizes the local problem given
by Pazy [89, Sec. 6.1, Th. 1.4, Th. 1.6]. Balachandran & Ilamaran [12] studied (2.34)
with f(t, u(σ(t))) in place of f(t, u(t)), with σ an absolutely continuous function.

If we consider the non-local semilinear problem with delay, system (2.34) becomes

v′(t) = A(t)v(t) + f(t, vt)), t ∈ [0, T ],
v(s) = ϕ(s)− ζ(vλ1 , ..., vλp)(s), s ∈ [−r, 0].

(2.35)

Here ϕ(s) − ζ(vλ1 , ..., vλp)(s) incorporates the historical information of the solution on
[−r, 0]. Byszewski & Akca [22] discuss the existence, uniqueness and continuous depen-
dence on initial data of solutions for system (2.35). For a complementary bibliography
on differential equations with non-local conditions and applications in physics, refer to
[19, 99, 86].

2.2.6 Impulsive Differential Equations
Impulsive systems were introduced in the 1960s by Millman & Mishkis [80]. After that,
the theory of impulsive differential equations has increased rapidly. According to Agarwal
et al. [1], impulsive differential equations consist of two parts:

(i) Differential equation that describes the continuous part of the solutions;

(ii) Impulsive part that defines the rapid change and the discontinuity of the solution.
The first part could consist of ordinary differential equations, fractional differential equa-
tions, partial differential equations, integro-differential equations, etc. The points at which
the impulses occur are called moments of impulses, and the functions that define the
amount of the impulses are called impulsive functions.

In general, two types of impulses are described by impulsive differential equations.
The first type is concerned with instantaneous impulses [82], which are abrupt changes
with a relatively short duration compared to the overall duration of the whole process.
The fundamental theory of instantaneous impulsive differential equations is provided by
[15, 11, 93, 9, 66].

On the other hand, the second impulsive action are the so-called non-instantaneous im-
pulses, which start at fixed points and remain active over a finite time interval. Hernández
and O’Regan [57] introduced this new class of differential equations with non-instantaneous
impulses. Specifically, they study the existence of mild and classical solutions for an ab-
stract impulsive problem of the form

v′(t) = Av(t) + f(t, v(t)), t ∈ (si, ti+1], i = 0, ..., N,
v(t) = gi(t, v(t)), t ∈ (ti, si], i = 1, ..., N,
v(0) = v0.

(2.36)
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They used strongly continuous semigroup theory and fixed point methods to prove their
existence results.

Example 2 (Agarwal et al. [1]). Let {ti}∞
i=1 and {si}∞

i=1 be two increasing sequences of
real numbers such that 0 < s0 < tk ≤ sk < tk+1 for i = 1, 2, ...,∞, limk→∞ tk = ∞. Let
t0 ∈ [0, s0) and consider the following IVP with non-instantaneous impulses

v′(t) = f(t, v(t)), t ∈ (tk, sk], k = 0, 1, 2, ...,
v(t) = gk(t, v(t)), t ∈ (sk, tk+1], k = 0, 1, 2, ..., (2.37)
v(t0) = v0,

where v(t), v0 ∈ Rn and f : ∪∞
k=0[tk, sk]×Rn −→ Rn, gk : [sk, tk+1]×Rn −→ Rn, k = 1, 2, ...,

are suitable functions. Then, the solution v(·) of (2.37) satisfies the following integral
equation

v(t) =


v0 +

∫ t

t0
f(s, v(s))ds, t ∈ [t0, s0],

gk(t, v(t)), t ∈ (sk, tk+1], k = 0, 1, 2, ...,
gk−1(tk, v(tk)) +

∫ t

tk

f(s, v(s))ds t ∈ [tk, sk], k = 1, 2, ...

(2.38)

Let gk(t, v(t)) = 2t − v(t), k = 0, 1, ..., and f(t, v(t)) = akv(t), where ak are constants for
k = 0, 1, .... Hence, since v(t) = t is the unique solution of the equation v(t) = 2t − v(t),
the solution of (2.37) is

v(t) =


v0e

a0(t−t0), t ∈ [t0, s0],
t, t ∈ (sk, tk+1], k = 0, 1, 2, ...,
tke

ak(t−tk) t ∈ [tk, sk], k = 1, 2, ...
(2.39)

Several investigations for non-instantaneous impulsive equations have been considered
in the literature. Pierri et al. [91, 90] extended new existence results of equation (2.36) by
using analytic semigroup theory and fixed point techniques in fractional power space.

Later, Wang & Feckan [100] have a remark on the condition of the impulsive function
in (2.36), where gi ∈ C([ti, si] × X,X), with X a Banach space. Indeed, it follows from
Theorem 2.1 and 2.2 in [57, 91] that Banach fixed point theorem gives yi ∈ C([ti, si], X)
so that y = gi(t, y) if and only if y = yi. So (2.36) is equivalent to

v(t) = yi(t), t ∈ (ti, si], i = 1, ..., N,

which does not depend on the state v(·). Thus, authors in [100] recommend to modify
(2.36) by

v(t) = gi(t, v(t−i )), t ∈ (ti, si], i = 1, ..., N.

This new conditions is a better generalization of abrupt impulses to non-instantaneous
ones.
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2.2.7 Neutral Differential Equations
Neutral Differential Equations (NDEs) are frequently encountered in the literature for
systems of the form

v′(t) = f(t, v(t), v(t− τ), v′(t− τ)). (2.40)

Here, the past history and derivatives of the past history are involved as well as the present
state of the system. The general form of (2.40) can be written as

v′(t) = f(t, vt, v
′
t). (2.41)

For the general theory of neutral differential equations, one can see, for instance, Akmerov
et al. [2], Kolmanovskii & Myshkis [64], and Hale & Lunel [50].

In recent years a majority of authors prefer the general form of NDEs proposed by Hale
& Cruz [48]

d

dt
[v(t)− g(t, vt)] = f(t, vt), t ∈ [0, T ]

v(t) = ϕ(t), t ∈ [−r, 0],
(2.42)

where f, g : [0, T ] × C([−r, 0];Rn) −→ Rn are appropriate functions. Arino et al. [4]
studied the existence of solutions for system (2.42), while Ntouyas & Sficas [87] derived
results on continuation of solutions. In [81], authors use Schaefer’s fixed point theorem
to prove the existence of solutions for system (2.42) under the influence of instantaneous
impulses.

The semilinear version of problem (2.42) stands for
d

dt
[v(t)− g(t, vt)] = A(t)v(t) + f(t, vt), t ∈ [0, T ]

v(t) = ϕ(t), t ∈ [−r, 0].
(2.43)

Anguraj & Karthikeyan [3] showed the existence of solutions of problem (2.43) with in-
stantaneous impulses and non-local conditions in infinite dimension. The local version of
problem (2.42) with instantenous impulses has been considered in Cuevas et al. [33] and
Hernández [56].

Now, we state the semilinear neutral problem with infinite delay
d

dt
[v(t)− g(t, vt)] = A(t)v(t) + f(t, vt), t ∈ [0, T ]

v(t) = ϕ(t), t ∈ (−∞, 0].
(2.44)

Many authors investigate the existence of solutions of system (2.44) by employing an
axiomatic definition for the phase space of retarded functions with infinite delay. Such
space satisfies the axioms proposed by Hale & Kato [49]. Hernández & Henŕıquez [53]
established the existence of mild and strong solutions for system (2.44) in Banach spaces.
After that, Hernández & Henŕıquez [54] used analytic semigroup theory and Banach con-
traction principle in fractional power space to prove the existence of mild solutions for
system (2.44) with instantaneous impulses. Hernández et al. [55] did the same, but us-
ing the Leray-Schauder alternative. Chang et al. [27] studied the same problem using
Krasnoselski-Schaefer fixed point theorem. The infinite dimensional non-local version of
(2.44) is discussed in Hernández [52].
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2.3 Preliminary Control Theory
In this section, we present a brief review of control theory and a characterization for the
controllability of the linear system, which is helpful for the proof of the semilinear neutral
case.

A control system is a dynamical system on which one can act by using suitable controls.
According to Barnett [13], the main features of a control system can be represented as in
Fig. 2.2

Control imputs Outputs

Disturbances

Controlled system  
state variables  

Figure 2.2: Scheme of a control system

The state variables xi describe the condition of the system and provide the information
needed to calculate the future behavior from the knowledge of the inputs. In practice,
it is usually not possible to determine the values of the state variables directly; instead,
only a set of output variables is measured. Also, systems are often subjected to external
disturbances of an unpredictable nature. In general, the object is to make a system perform
in some required way by suitably manipulating the control variables ui.

There are many exciting applications of control theory in science and engineering, for
example, aircraft, spacecraft, chemical, industrial processes; such as distillation columns
and rolling mills, quantum systems theory, electric bulk power systems, etc., [16]. The
literature related to control theory is extensive; we refer the reader to [32, 13, 34, 69] and
the references therein.

An essential first step in dealing with many control problems is to study the controlled
linear system:

x′(t) = A(t)x(t) + B(t)u(t), t ∈ (0, T ],
x(0) = x0,

(2.45)

where A(t) and B(t) are as in eq. (1.2). By formula (2.21), system (2.45) has a unique
solution given by

x(t) = W (t, 0)x0 +
∫ t

0
W (t, s)B(s)u(s)ds, ∀t ∈ [0, T ]. (2.46)

Definition 17. We say that system (2.45) is exactly controllable on [0, T ] if for any pair
x0, x1 ∈ Rn, there exists a control u ∈ L2([0, T ];Rm) such that :

x(0) = x0 and x(T ) = x1.
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In 1960, Kalman [61] established a purely algebraic criterion for controllability of the
linear autonomous system; that is, whenever A(t) and B(t) are constant matrices in (2.45).
We state this result in the next theorem.
Theorem 17. The linear autonomous system is controllable if and only if

rank(B|AB| . . . |An−1B) = n.

A proof of this result can be found in [69, Th. 5, pp. 81].
For the non-autonomous case, exact controllability can not be checked via rank condi-

tion. Instead we can use results of subsection 2.1.5 to characterize the exact controllability
of system (2.45). In this regard, we define the controllability operator

S[0,T ] : L2 ([0, T ],Rm) −→ Rn

u 7−→ S[0,T ](u) =
∫ T

0
W (T, s)B(s)u(s)ds.

Proposition 3. The system (2.45) is controllable on [0, T ] if, and only if, Ran(S[0,T ]) =
Rn.
A detailed proof of this result can be found in [24, Prop. 3.2, pp.19]. Clearly, operator
S[0,T ] is linear and bounded and its adjoint is given by (see [25, Th. 2.1.1])

(S ∗
[0,T ]x)(t) = B∗(t)W ∗(T, t)x, ∀t ∈ [0, T ],∀x ∈ Rn.

Operators S[0,T ] and S ∗
[0,T ] lead us to define the Controllability Gramian:

Θ[0,T ] := S[0,T ]S
∗

[0,T ] : Rn −→ Rn

x 7−→ Θ[0,T ]x =
∫ T

0
W (T, s)B(s)B∗(s)W ∗(T, s)xds.

We apply the results of subsection 2.1.5 to S[0,T ], to obtain the following Lemma.
Lemma 2. The following statements are equivalent:

(i) Ran(S[0,T ]) = Rn;

(ii) Ker(S ∗
[0,T ]) = {0};

(iii) ∃γ > 0,∀x ∈ R \ {0} : ⟨S[0,T ]S
∗

[0,T ]x, x⟩ ≥ γ∥x∥2;

(iv) Θ[0,T ] is invertible.
Lemma 2 allows to define the steering operator G[0,T ] : Rn −→ L2([0, T ];Rm) by

G[0,T ]x(t) = S ∗
[0,T ](S[0,T ]S

∗
[0,T ])−1x(t) = B∗(t)W ∗(T, t)Θ−1

[0,T ]x, t ∈ [0, T ].

Observe that G[0,T ] is a right inverse of S[0,T ], i.e., S[0,T ]G[0,T ] = I. Hence, a control u
steering the system (2.45) from x0 to x1 is given by

u(t) = B∗(t)W ∗(T, t)Θ−1
[0,T ](x1 −W (T, 0)x0), t ∈ [0, T ].

Moreover, by relation (2.13),∥∥∥Θ[0,T ]x
∥∥∥ =

∥∥∥(S S ∗)−1x
∥∥∥ ≤ γ∗∥x∥, x ∈ Rn,

where γ∗ = 1/γ.
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Lemma 3. Let S be any dense subspace of L2([0, T ];Rn). Then, system (2.45) is con-
trollable on [0, T ], with control u ∈ L2([0, T ];Rn) iff it is controllable with control u ∈ S,
i.e.,

Ran(S[0,T ]) ⇐⇒ Ran(S[0,T ]|S) = Rn

A proof of this Lemma can be found in Leiva [71, Lem. 2.3].

Remark 3. According to the previous Lemma, the spaces C([0, T ];Rn) and C∞([0, T ];Rn)
are admissible space of controls. Furthermore, the operator S[0,T ] is well defined in these
spaces.

The natural extension of the finite dimensional concept of controllability to infinite di-
mensions may be too strong for many infinite dimensional systems [35]. For this reason, the
weaker notion of approximate controllability was defined. Here, we present the definition
of approximate controllability for the non-autonomous linear system.

Definition 18. We say that system (2.45) is approximate controllable on [0, T ] if for any
ε > 0 and any pair x0, x1 ∈ Rn, there exists a control u ∈ L2([0, T ];Rm) such that

x(0) = x0 and
∥∥x(T )− x1

∥∥ < ε.

The controllability of the linear system in finite and infinite dimensions is well known
and has been studied in [36, 32, 96]. On the other hand, the controllability of nonlinear
systems has been considered in [6, 37, 98]. The common direction followed by these authors
was to impose some conditions on the nonlinear terms and assume the exact controllability
of the linear system so that controllability is preserved under perturbation. Likewise,
the controllability of systems governed by instantaneous impulses has been treated by
many authors [73, 70, 85, 72, 71, 74, 26]. In [74], Rothe’s fixed point theorem is used to
prove the controllability of a semilinear system with instantaneous impulses and non-local
conditions. Nieto & Tisdell [85] use the Schaefer’s theorem to establish the controllability
of an impulsive system without delay and non-local conditions. The controllability of a
neutral equation with instantaneous impulses, delay, and non-local conditions is considered
in [26].

More recently, the study of controllability and approximate controllability of nonlinear
non-instantaneous impulsive systems has drawn the attention of many researchers. For in-
stance, Leiva et al. [76] investigated the approximate controllability of the semilinear Heat
equation with non-instantaneous impulses by employing a technique that avoids fixed point
theorems. In [78, 40], authors use Rothe’s fixed point to prove the exact controllability
of a semilinear system with non-instantaneous impulses. Garćıa & Leiva [41] addressed
the approximate controllability of a semilinear system with non-instantaneous impulses,
non-local conditions, and infinite delay. There are few works on the controllability of
neutral differential equations with non-instantaneous impulses. Kavitha et al. [63] inves-
tigated the exact controllability of a neutral system with non-instantaneous impulses and
non-local conditions in finite dimension. Malik & Kumar [79] documented existence and
controllability results to a second-order neutral equation with non-instantaneous impulses
in a Hilbert space.
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Chapter 3

Results

3.1 Existence of Solutions
This section aims to prove the existence and uniqueness of solutions for the semilinear
neutral problem (1.1). For achieving this goal, we apply two methods. First, Karakostas’s
fixed point theorem is applied to prove the existence and uniqueness of solutions for system
(1.1). Later, the Banach contraction theorem is used to prove the existence of solutions
for a simplified version of the system (1.1).

3.1.1 Existence and uniqueness of solutions
Let us consider the following semilinear neutral differential equation with non-instantaneous
impulses, non-local conditions, and infinite delay

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + F(t, vt), t ∈ J1

k , k = 0, 1, . . . ,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , (3.1)

v(s) + ζ(vλ1 , vλ2 , . . . , vλq)(s) = ϕ(s), s ∈ R− = (−∞, 0].

A thorough description of system (3.1) is given in (1.1). Now, we set the phase space
for equation (3.1). To this end, we use some ideas from subsection 2.2.4. Denote by
PC = PC((−∞, 0];Rn) the space of normalized piecewise continuous functions such that
their restriction to any interval [a, 0] is a piecewise continuous function, i.e.,

PC =
{
φ : (−∞, 0] −→ Rn : φ

∣∣∣
[a,0]

is a piecewise continuous function,∀a < 0
}
.

Consider a positive function m satisfying the conditions (M1)-(M3), and define the fol-
lowing space of functions,

Cm =
{
v ∈ PC : sup

s≤0

∥∥v(s)
∥∥

m(s) <∞
}
.

The space Cm endowed with the norm

∥v∥m = sup
s≤0

∥∥v(s)
∥∥

m(s) , v ∈ Cm,
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is a Banach space. Now, for T > 0, define the larger space PCm := PCm((−∞, T ];Rn) :

PCm =
{
v : (−∞, T ]→ Rn : v

∣∣∣
R−
∈ Cm and v

∣∣∣
(0,T ]

is continuous, except at

tk, k = 1, 2, ..., p with sp−1 < T,where the side limits v(t+k ), v(t−k )

exist and v(t−k ) = v(tk)
}
.

We shall consider the product space (Rn)q = ∏q
i=1 Rn endowed with the norm

∥y∥q =
q∑

i=1
∥yi∥Rn , y = (y1, . . . , yq)T ∈ (Rn)q,

and the Banach space C q
m = ∏q

i=1 Cm equipped with the norm

∥y∥mq =
q∑

i=1
∥yi∥m , y = (y1, . . . , yq)T ∈ C q

m.

Throughout this note, the elements of C q
m will be denoted by

z = (z1, . . . , zq)T ∈ C q
m and z̃ = (zλ1 , ..., zλq)T ∈ C q

m. (3.2)

Lemma 4. PCm is a Banach space endowed with the norm

∥v∥ =
∥∥∥v|R−

∥∥∥
m

+
∥∥v|I∥∥∞ ,

where
∥∥v|I∥∥∞ = sup

t∈I=(0,T ]

∥∥v(t)
∥∥.

The phase space PCm verifies the axioms (A1)-(A3) proposed by Hale & Kato [49].
The subsequent Lemma is fundamental to prove our existence theorem, and its proof uses
the fact that the function m is defined on the entire real line.

Lemma 5. (see [7]) For all function v ∈ PCm the following estimate holds for all s ∈ [0, T ]:

∥vs∥m ≤ ∥v∥PCm = ∥v∥.

The next proposition states without proof the characterization of the solutions to our
problem.

Proposition 4. Suppose that the nonlinear terms in (3.1) are smooth enough. Then the
semilinear system (3.1) has a solution v(·) on (−∞, T ] if, and only if, v(·) satisfies the
following integral equation

v(t) =



W (t, 0)
[
ϕ(0)− ζ(vλ1 , vλ2 , . . . , vλq)(0)− g(0, ϕ− ζ(vλ1 , vλ2 , . . . , vλq))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, vs) + F(s, vs)

]
ds+ g(t, vt), t ∈ [0, t1],

W (t, sk)
[
Γk(sk, v(t−k ))− g(sk, vsk

)
]

+ g(t, vt)

+
∫ t

sk

W (t, s)
[
A(s)g(s, vs) + F(s, vs)

]
ds, t ∈ J1

k , k = 1, . . . , p− 1,

Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , p− 1,

ϕ(t)− ζ(vλ1 , vλ2 , . . . , vλq)(t), t ∈ (−∞, 0].

(3.3)

Mathematician 30 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

In order to prove the existence theorem, the subsequent hypotheses are assumed:

(H1) There exist constants dq, L > 0,Θ ≥ 0, for all k = 1, 2, ..., such that:

(i)
∥∥Γk(t, y)− Γk(ℓ, z)

∥∥
Rn ≤ L

{
|t− ℓ|+ ∥y − z∥Rn

}
, y, z ∈ Rn, ℓ, t ∈ J2

k ;

(ii) ∥Γk(t, 0)∥ ≤ Θ, t ∈ J2
k ;

(iii)
∥∥ζ(z)− ζ(x)

∥∥
m ≤ dq ∥x− y∥mq , x, y ∈ C q

m, with ζ(0) = 0, and

M(L+ dqq + γ) < 1
2 .

(H2) The functions g and F satisfies, for all φ, φ1, φ2 ∈ Cm, the following

(i) ∥A(t)g(t, φ1)−A(t)g(t, φ2)∥Rn ≤ K
(
∥φ1∥m, ∥φ2∥m

)
∥φ1 − φ2∥m;

(ii) ∥g(t, φ1)− g(t, φ2)∥Rn ≤ γ∥φ1 − φ2∥m;

(iii) ∥A(t)g(t, φ)∥Rn ≤ Ψ
(
∥φ∥m

)
;

(iv) ∥g(t, φ)∥Rn ≤ Ψ
(
∥φ∥m

)
;

(v) ∥F(t, φ1)− F(t, φ2)∥Rn ≤ K
(
∥φ1∥m, ∥φ2∥m

)
∥φ1 − φ2∥m;

(vi) ∥F(t, φ)∥Rn ≤ Ψ
(
∥φ∥m

)
,

where K : R+ × R+ −→ R+,Ψ : R+ −→ R+ are continuous and non decreasing
functions.

(H3) The following relation holds for T, σ > 0

M
{
(L+ dqq)(∥ψ̃∥+ σ) + Ψ(∥ψ̃∥+ σ) + Ψ(∥ψ̃∥+ dqq(∥ψ̃∥+ σ)) + Θ

}
+ (2MT + 1)Ψ(∥ψ̃ + σ∥) < σ,

where the function ψ̃ ∈ PCm is defined by

ψ̃ =



W (t, 0)ϕ(0), t ∈ J1
0 ,

0, t ∈ J1
k ,

0, t ∈ J2
k ,

ϕ(t), t ∈ (−∞, 0].

(3.4)

(H4) The following relation hold for T, σ > 0

M
{
dqq(1 + γ) + L+ γ + 2TK(∥ψ̃∥+ σ, ∥ψ̃∥+ σ)

}
<

1
2 .
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Now, we are in a position to state and prove our existence result for the problem (3.1)

Theorem 18. Let the hypotheses (H1)-(H4) be satisfied. Then, system (3.1) has at least
one solution on (−∞, T ].

Proof. State the operators J : PCm × PCm −→ PCm and S : PCm −→ PCm, given by

J (z, w)(t) =



w(t) + g(t, zt), t ∈ J1
0 ,

w(t) +W (t, sk)[Γk(sk, z(t−k ))− g(sk, zsk
)]

+g(t, zt), t ∈ J1
k , k = 1, ..., p,

Γk(t, z(t−k )), t ∈ J2
k , k = 1, ..., p,

ϕ(t)− ζ(zλ1 , . . . , zλq)(t), t ∈ (−∞, 0].

S(z)(t) =



W (t, 0)
[
ϕ(0)− ζ(zλ1 , zλ2 , . . . , zλq)(0)− g(0, ϕ− ζ(zλ1 , zλ2 , . . . , zλq))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, zs) + F(s, zs)

]
ds, t ∈ J1

0 ,∫ t

sk

W (t, s)
[
A(s)g(s, zs) + F(s, zs)

]
ds, t ∈ J1

k , k = 1, ..., p,

0, t ∈ J2
k , k = 1, ..., p,

ϕ(t), t ∈ (−∞, 0].

From the definition of J and S, solving the fixed-point equation J (z,S(z)) = z is
equivalent to find a solution of problem (3.1). In agreement with Theorem 13, let Dσ ⊂
PCm be a closed and convex set, namely,

Dσ := D(σ, T, ψ) =
{
w ∈ PCm : ∥w − ψ̃∥ ≤ σ

}
, (3.5)

where the function ψ̃ is given by (3.4), and σ > 0. For better readability, the rest of the
proof is divided in six statements:

Statement 1: S is a continuous operator.
Let z, w ∈ PCm. Trivially, for t ∈ (−∞, 0],

∥S(z)(t)− S(w)(t)∥Rn = ∥ϕ(t)− ϕ(t)∥Rn = 0. (3.6)

Thus,

∥
(
S(z)− S(w)

)
|R−∥m = 0.

Let t ∈ (0, t1]. By (H1)-(iii), (H2)-(i), (ii), (v) and Lemma 5, the following estimate
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holds:∥∥S(z)(t)− S(w)(t)
∥∥ ≤ ∥W (t, 0)∥

{ ∥∥∥ζ(wλ1 , . . . , wλq)− ζ(zλ1 , . . . , zλq)
∥∥∥

m

+
∥∥∥g(0, ϕ− ζ(wλ1 , ..., wλq))− g(0, ϕ− ζ(zλ1 , ..., zλq))

∥∥∥ }
+
∫ t

0
∥W (t, s)∥

{
∥A(s)g(s, zs)−A(s)g(s, ws)∥

+ ∥F(s, zs)− F(s, ws)∥
}
ds

≤M [dq∥z̃ − w̃∥mq + γdq∥z̃ − w̃∥mq]

+
∫ t

0
2MK(∥zs∥m, ∥ws∥m)∥zs − ws∥mds

≤M
[
dqq∥z − w∥+ γdqq∥z − w∥

]
+
∫ t

0
2MK(∥z∥, ∥w∥)∥z − w∥ds

≤M
[
dqq∥z − w∥+ γdqq∥z − w∥

]
+ 2MTK(∥z∥, ∥w∥)∥z − w∥.

Hence, on J1
0 we get that

∥S(z)(t)− S(w)(t)∥ ≤M{dqq(1 + γ) + 2TK(∥z∥, ∥w∥)}∥z − w∥. (3.7)

Now, consider t ∈ J1
k for k = 1, 2, ..., p. Again, By (H2)-(i), (v) and Lemma 5,

∥S(z)(t)− S(w)(t)∥Rn ≤
∫ t

sk

∥W (t, s)∥
{
∥A(s)g(s, zs)−A(s)g(s, ws)∥

+ ∥F(s, zs)− F(s, ws)∥
}
ds

≤M
∫ t

sk

[2K(∥zs∥m, ∥ws∥m)∥zs − ws∥m]ds

≤
∫ t

sk

2MK(∥z∥, ∥w∥)∥z − w∥ds

≤2MTK(∥z∥, ∥w∥)∥z − w∥.

Therefore, on J1
k we get that

∥S(z)(t)− S(w)(t)∥ ≤ 2MTK(∥z∥, ∥w∥)∥z − w∥. (3.8)

Taking the supremum in (3.7), (3.8), and since ∥S(z)(t) − S(w)(t)∥Rn = 0 for t ∈ J2
k ,

k = 1, 2, ..., p, it yields that there exists Nw,z > 0 such that∥∥S(z)− S(w)
∥∥ ≤ Nw,z ∥z − w∥ .

Hence S is continuous. In fact, it is Lipschitz continuous.

Statement 2: S maps bounded sets of PCm into bounded sets of PCm.
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Without loss of generality, set R > 0 arbitrarily and prove that there exists r > 0 such
that, for each w ∈ BR =

{
v ∈ PCm : ∥v∥ ≤ R

}
, it follows that ∥S(w)∥ ≤ r. Let w ∈ BR

and t ∈ (−∞, 0], it gives that

∥S(w)(t)∥Rn = ∥ϕ(t)∥Rn ,

whence, ∥∥∥(S(w))|R−

∥∥∥ = sup
t≤0

∥S(w)(t)∥Rn

m(t) = sup
t≤0

∥ϕ(t)∥Rn

m(t) = ∥ϕ∥m := r1. (3.9)

For t ∈ (0, t1], (H1)-(iii), (H2)-(iii), (iv), (vi) yields

∥S(w)(t)∥ ≤
∥∥W (t, 0)

∥∥ ∥∥∥ϕ(0)− ζ(wλ1 , . . . , wλq)(0)− g(0, ϕ− ζ(wλ1 , . . . , wλq))
∥∥∥

+
∫ t

0

∥∥W (t, s)
∥∥ [∥∥A(s)g(s, ws)

∥∥+
∥∥F(s, ws)

∥∥] ds
≤M

{ ∥∥ϕ(0)
∥∥+

∥∥∥ζ(wλ1 , . . . , wλq)
∥∥∥

m
+
∥∥∥g(0, ϕ− ζ(wλ1 , . . . , wλq))

∥∥∥ }
+
∫ t

0
M
[
Ψ(∥ws∥m) + Ψ(∥ws∥m)

]
ds

≤M
{ ∥∥ϕ(0)

∥∥+ dq∥w̃∥mq + Ψ
(∥∥ϕ− ζ(w̃)

∥∥
m

) }
+ TM2Ψ(∥w∥m)

≤M
{ ∥∥ϕ(0)

∥∥+ dqq∥w∥+ Ψ
(
∥ϕ∥m +

∥∥ζ(w̃)
∥∥

m

) }
+ TM2Ψ(∥w∥)

≤M
{ ∥∥ϕ(0)

∥∥+ dqq∥w∥+ Ψ
(
∥ϕ∥m + dqq∥w∥

) }
+ TM2Ψ(∥w∥)

≤M
{ ∥∥ϕ(0)

∥∥+ dqqR + Ψ
(
∥ϕ∥m + dqqR

)
+ T2Ψ(R)

}
:= r2. (3.10)

Similarly, for t ∈ J1
k , we have that

∥S(w)(t)∥ ≤
∫ t

sk

∥∥W (t, s)
∥∥ [∥∥A(s)g(s, ws)

∥∥+
∥∥F(s, ws)

∥∥] ds
≤
∫ t

sk

M
[
Ψ(∥ws∥) + Ψ(∥ws∥))

]
ds

≤ 2MTΨ(∥w∥) ≤ 2MTΨ(R) := r3. (3.11)

Taking the supremum in (3.10), (3.11) and letting r = r1 + r2 + r3, boundedness is proved.

Statement 3:S maps bounded sets onto equicontinuous sets.
Let BR as in Statement 2, and w ∈ BR. It is enough to prove that S(BR) is equicon-

tinuous on (0, T ]. For some 0 < ν1 < ν2 ≤ t1, by (H1)-(iii), (H2)-(iii), (iv), (vi), and
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Lemma 5, the following estimate holds:

∥∥S(w)(ν2)− S(w)(ν1)
∥∥ ≤ ∥W (ν2, 0)−W (ν1, 0)∥

{
∥ϕ(0)∥+ ∥ζ(wλ1 , . . . , wλq)(0)∥

+ ∥g
(
0, ϕ− ζ(wλ1 , . . . , wλq)

)
∥
}

+
∫ ν1

0
∥W (ν2, s)−W (ν1, s)∥

{ ∥∥A(s)g(s, ws)
∥∥

+
∥∥F(s, ws)

∥∥ }ds
+
∫ ν2

ν1
∥W (ν2, s)∥

[∥∥A(s)g(s, ws)
∥∥+

∥∥F(s, ws)
∥∥] ds

≤ ∥W (ν2, 0)−W (ν1, 0)∥
{
∥ϕ(0)∥+ dqq∥w∥

+ Ψ(∥ϕ∥m + dqq∥w∥)
}

+ 2MΨ(∥w∥)(ν2 − ν1)

+ 2Ψ(∥w∥)
∫ ν1

0

∥∥W (ν2, s)−W (ν1, s)
∥∥ ds

≤ ∥W (ν2, 0)−W (ν1, 0)∥
{
∥ϕ(0)∥+ dqqR

+ Ψ(∥ϕ∥m + dqqR)
}

+ 2MΨ(R)(ν2 − ν1)

+ 2Ψ(R)
∫ ν1

0

∥∥W (ν2, s)−W (ν1, s)
∥∥ ds. (3.12)

Similarly, for every ν1, ν2 such that sk < ν1 < ν2 < tk+1, k = 1, ..., p, it follows that
∥∥S(w)(ν2)− S(w)(ν1)

∥∥ ≤ ∫ ν1

sk

∥W (ν2, s)−W (ν1, s)∥
{ ∥∥A(s)g(s, ws)

∥∥
+
∥∥F(s, ws)

∥∥ }ds
+
∫ ν2

ν1
∥W (ν2, s)∥

[∥∥A(s)g(s, ws)
∥∥+

∥∥F(s, ws)
∥∥] ds

≤ 2Ψ(∥w∥)
∫ ν1

sk

∥∥W (ν2, s)−W (ν1, s)
∥∥ ds

+ 2MΨ(∥w∥)(ν2 − ν1)

≤ 2Ψ(R)
∫ ν1

sk

∥∥W (ν2, s)−W (ν1, s)
∥∥ ds

+ 2MΨ(R)(ν2 − ν1). (3.13)

In (3.12) and (3.13), the continuity and boundedness of W (t, s) yield that, as ν2 approaches
to ν1, ∥S(w)(ν2) − S(w)(ν1)∥ goes to zero, independently of w. Therefore S(BR) is an
equicontinuous family.

Statement 4: The subset S(Dσ) is relatively compact in PCm.
Without loss of generality we can assume that tp ≤ T . Let Dσ ⊂ PCm be the bounded

set defined in (3.5) and let us take a sequence (wn)n∈N ⊆ S(Dσ). By Statements 2 and 3,
it is bounded and equicontinuous in PCm. Note that wn|(−∞,0] = ϕ, then by Arzelà-Ascoli
theorem applied to

(
wn|(0,t1]

)
n∈N
⊂ PCm, there exist an uniformly convergent subsequence
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(w1
n)n∈N on (−∞, t1]. Let’s consider now the sequence (w1

n)n∈N on the interval (t1, t2],
which is also bounded and equicontinuous. Then, applying Arzelà-Ascoli theorem, it has a
convergent subsequence (w2

n)n∈N over (t1, t2]. This sequence is actually an uniformly con-
vergent subsequence of (wn)n∈N over (−∞, t2]. We continue this process iteratively over
each interval (t2, t3], · · · , (tp, T ] and finally arrived to the conclusion that the subsequence
(wp

n)n∈N ⊆ (wn)n∈N is uniformly convergent on the whole interval (−∞, T ]. This implies
that S(Dσ) is compact.

Statement 5:The set {J (·, w) : w ∈ S(Dσ)} is comprised of equicontractive operators.
Let σ > 0, z, x ∈ PCm, w ∈ S(Dσ) and t ∈ (−∞, 0]. Thus, (H1)-(iii) yields

1
m(t)∥J (z,S(w))(t)− J (x,S(w))(t)∥Rn ≤ 1

m(t)
∥∥∥ζ (zλ1 , ..., zλq

)
(t)

− ζ
(
xλ1 , ..., xλq

)
(t)
∥∥∥
Rn

≤
∥∥∥ζ (zλ1 , zλ2 , ..., zλq

)
− ζ

(
xλ1 , xλ2 , ..., xλq

) ∥∥∥
m

≤ dq∥z̃ − x̃∥mq ≤Mdqq∥z − x∥. (3.14)

If t ∈ J1
0 , we have that∥∥J (z,S(w))(t)− J (x,S(w))(t)

∥∥
Rn =

∥∥g(t, zt)− g(t, xt)
∥∥

≤ γ∥zt − xt∥m ≤ γ∥z − x∥. (3.15)

Moreover, if t ∈ J1
k , we have

∥∥J (z,S(w))(t)− J (x,S(w))(t)
∥∥
Rn ≤M

{∥∥∥Γk(sk, z(t−k )− Γk(sk, x(t−k )))
∥∥∥

+
∥∥∥g(sk, zsk

)− g(sk, xsk
)
∥∥∥}

+
∥∥g(t, zt)− g(t, xt)

∥∥
≤ML

∥∥∥z(t−k )− x(t−k )
∥∥∥
Rn

+Mγ
∥∥∥zsk
− xsk

∥∥∥
m

+ γ ∥zt − xt∥m

≤ML∥z − x∥+Mγ∥z − x∥+ γ∥z − x∥
=[M(L+ γ) + γ]∥z − x∥. (3.16)

Finally, for t ∈ J2
k ,

∥∥J (z,S(w))(t)− J (x,S(w))(t)
∥∥
Rn = ≤

∥∥∥Γk(t, z(t−k ))− Γk(t, x(t−k ))
∥∥∥

≤ L∥z(t−k )− x(t−k )∥ ≤ L∥z − x∥. (3.17)

Combining (3.14)-(3.17), by (H1)-(iii) it follows that

∥J (z,S(w))− J (x,S(w))∥ < 1
2∥z − x∥.
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Hence, J is a contraction on the first variable, independently of w.

Statement 6: For σ > 0 and Dσ given as (3.5), J (·,S(·))(Dσ) ⊆ Dσ.
Take an arbitrary z ∈ Dσ, for t ∈ (−∞, 0], (H3) yields

1
m(t)∥J (z,S(z))(t)− ψ̃(t)∥Rn = 1

m(t)∥ζ(zλ1 , . . . , zλq)(t)∥Rn

≤ dq∥z̃∥mq ≤ dqq∥z∥ ≤ dqq(∥ψ̃∥+ σ) < σ. (3.18)

Similarly, t ∈ J1
0 imply

∥J (z,S(z))(t)− ψ̃(t)∥Rn ≤
∥∥W (t, 0)

∥∥ {∥ζ(zλ1 , . . . , zλq)∥S
+ ∥g(0, ϕ− ζ(zλ1 , . . . , zλq))∥

}
+
∫ t

0

∥∥W (t, s)
∥∥ [∥∥A(s)g(s, zs)

∥∥+
∥∥F(s, zs)

∥∥] ds
+
∥∥g(t, zt)

∥∥
≤M

{
dqq∥z∥+ Ψ(∥ϕ∥+ dqq∥z∥)

}
+ 2MTΨ(∥z∥) + Ψ(∥z∥)

≤M
{
dqq(∥ψ̃∥+ σ) + Ψ

(
∥ψ̃∥+ dqq(∥ψ̃∥+ σ)

)}
+ (2MT + 1)Ψ

(
∥ψ̃∥+ σ

)
< σ. (3.19)

Likewise, t ∈ J1
k , gives

∥J (z,S(z))(t)− ψ̃(t)∥Rn ≤
∥∥W (t, 0)

∥∥ {∥Γk(sk, z(t−k ))∥+
∥∥∥g(sk, zsk

)
∥∥∥}

+
∫ t

0

∥∥W (t, s)
∥∥ [∥∥A(s)g(s, zs)

∥∥+
∥∥F(s, zs)

∥∥] ds
+
∥∥g(t, zt)

∥∥
≤M

{
L(∥ψ̃∥+ σ) + Θ + Ψ(∥ψ̃∥+ σ)

}
+ (2MT + 1)Ψ(∥ψ̃∥+ σ). (3.20)

Additionally, if t ∈ J2
k , then

∥J (z,S(z))(t)− ψ̃(t)∥Rn = ∥Γk(t, z(t−k ))∥ ≤ L∥z∥+ Θ
≤ L(∥ψ̃∥+ σ) + Θ < σ. (3.21)

Thus, by taking the supremum in equations (3.18)-(3.21) gives∥∥∥J (z,S(z))− ψ̃
∥∥∥ ≤ σ.

Applying Theorem 13, it follows J (z,S(z)) = z, i.e., there exists a fix-point solution
z ∈ Dσ ⊂ PCm, equivalent to the system solution (3.1) given by Proposition 3.3.

The following theorem proves the uniqueness of the solution for system (3.1).

Theorem 19. Assuming (H1)-(H4), system (3.1) has a unique solution on (−∞, T ].
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Proof. Consider two solutions v1 and v2 to (3.1) which satisfy (3.3). Let σ > 0 such that
v1, v2 ∈ Dσ. Then, for t ∈ (−∞, 0], we have

1
m(t)∥v

1(t)− v2(t)∥Rn = 1
m(t)∥ζ(v

2
λ1 , · · · , v

2
λq

)(t)− ζ(v1
λ1 , · · · , v

1
λq

)(t)∥

≤ dq∥ṽ2 − ṽ1∥mq ≤ dqq∥v2 − v1∥ < 1
2∥v

2 − v1∥. (3.22)

If t ∈ (0, t1], we get that

∥∥∥v2(t)− v1(t)
∥∥∥ ≤ ∥W (t, 0)∥

{∥∥∥ζ(v1
λ1 , . . . , v

1
λq

)− ζ(v2
λ1 , . . . , v

2
λq

)
∥∥∥

m

+
∥∥∥∥g (0, ϕ− ζ(v1

λ1 , . . . , v
1
λq

)
)
− g

(
0, ϕ− ζ(v2

λ1 , . . . , v
2
λq

)
)∥∥∥∥
}

+
∫ t

0
∥W (t, s)∥

{
∥A(s)g(s, v2

s)−A(s)g(s, v1
s)∥

+ ∥F(s, v2
s)− F(s, v1

s)∥
}
ds+

∥∥∥g(t, v2
t )− g(t, v1

t )
∥∥∥

≤M [dq∥ṽ2 − ṽ1∥mq + γdq∥ṽ2 − ṽ1∥mq]

+ 2M
∫ t

0
K(∥v2

s∥m, ∥v1
s∥m)∥v2

s − v1
s∥mds+ γ

∥∥∥v2
t − v1

t

∥∥∥
m

≤M
[
dqq∥v2 − v1∥+ γdqq∥v2 − v1∥

]
+ 2MTK(∥v2∥, ∥v1∥)∥v2 − v1∥+ γ∥v2 − v1∥
≤M

{
dqq(1 + γ) + 2TK(∥ψ̃∥+ σ, ∥ψ̃∥+ σ)

}
∥v2 − v1∥+ γ∥v2 − v1∥.

(3.23)

If t ∈ J1
k , then

∥∥∥v2(t)− v1(t)
∥∥∥ ≤ ∥W (t, sk)∥

{∥∥∥Γk(sk, v
2(t−k ))− Γk(sk, v

1(t−k ))
∥∥∥

+
∥∥∥g(sk, v

1
sk

)− g(sk, v
2
sk

)
∥∥∥}

+
∫ t

sk

∥W (t, s)∥
{
∥A(s)g(s, v2

s)−A(s)g(s, v1
s)∥

+ ∥F(s, v2
s)− F(s, v1

s)∥
}
ds+

∥∥∥g(t, v2
t )− g(t, v1

t )
∥∥∥

≤M [L∥v2(t−k )− v1(t−k )∥Rn + γ∥v2
sk
− v1

sk
∥m]

+ 2MTK(∥v2
s∥m, ∥v1

s∥m)∥v2
s − v1

s∥m + γ
∥∥∥v2

t − v1
t

∥∥∥
m

≤M
[
L∥v2 − v1∥+ γ∥v2 − v1∥

]
+ 2MTK(∥v2∥, ∥v1∥)∥v2 − v1∥+ γ∥v2 − v1∥
≤M

{
L+ γ + 2TK(∥ψ̃∥+ σ, ∥ψ̃∥+ σ)

}
∥v2 − v1∥+ γ∥v2 − v1∥. (3.24)
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Lastly, if t ∈ J2
k , then

∥v2(t)− v1(t)∥ = ∥Γk(t, v2(t−k ))− Γk(t, v1(t−k ))∥

≤ L∥v2 − v1∥ < 1
2∥v

2 − v1∥. (3.25)

Therefore, taking the sup limit of equations (3.22)-(3.25) and (H4) imply that there exists
a constant ω, with 0 < ω < 1, such that

∥v2 − v1∥ ≤ ω∥v2 − v1∥.

Hence, v1 = v2.

3.1.2 Global Lipschitz conditions
This subsection will assume stronger hypotheses on the nonlinear terms that allow us to
apply the Banach contraction theorem. Specifically, we will suppose that the nonlinear
functions in our system are globally Lipschitz. Moreover, we are going to consider the
following more straightforward system

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + F(t, vt), t ∈ J1

k , k = 0, 1, ...,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, 2, . . . , (3.26)

v(s) = η(v)(s) + ϕ(s), s ∈ (−∞, 0],

where the non-local condition v(s) = η(z)(s) + ϕ(s), s ∈ (−∞, 0] means

v(s) = η
(
v
∣∣∣
(−∞,0]

)
(s) + ϕ(s), s ∈ (−∞, 0].

The remaining terms are the same as in system (3.1). Now, suppose that the following
global Lipschitz conditions on the nonlinear terms hold

(L1) There exist positive constants Lg and LF such that for all t ∈ [0, T ], ϕ, ϕ̃ ∈ Cm

∥g(t, ϕ)− g(t, ϕ̃)∥ ≤ Lg∥ϕ− ϕ̃∥m,

∥F(t, ϕ)− F(t, ϕ̃)∥ ≤ LF∥ϕ− ϕ̃∥m.

(L2) There exists LG ≥ 0, for all k = 1, 2, . . . , p such that

∥Γk(t, z)− Γk(t, z̃)∥ ≤ LG∥z − z̃∥Rn , t ∈ [0,∞), z, z̃ ∈ Rn.

(L3) There exists Lη ≥ 0 such that

∥η(ϕ)− η(ψ)∥m ≤ Lη∥ϕ− ψ∥m, ϕ, ψ ∈ Cm.

(L4)
Lg +M [Lη + LG + Lg + LgLη + ∥A∥LgT + LFT ] < 1,

where ∥A∥ = max{∥A(t)∥ : t ∈ [0, T ]}.
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Proposition 5. Let ϕ ∈ Cm. Then v is solution of system (3.26) if and only if v satisfies
the integral equation

v(t) =



W (t, 0)
[
η(v)(0) + ϕ(0)− g(0, η(v)(0) + ϕ(0))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, vs) + F(s, vs)

]
ds+ g(t, vt), t ∈ [0, t1]

W (t, sk)
[
Γk(sk, v(t−k ))− g(sk, vsk

)
]

+
∫ t

sk

W (t, s)
[
A(s)g(s, vs) + F(s, vs)

]
ds+ g(t, vt), t ∈ J1

k , k = 1, . . . , p

Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , p

η(v)(t) + ϕ(t), t ∈ (−∞, 0].
(3.27)

Theorem 20. Suppose that (L1)-(L4) hold. Then for ϕ ∈ Cm the system (3.27) has a
unique solution defined on [0, T ].

Proof. Let us define the following operator P : PCm −→ PCm, given by

(Pv)(t) =



W (t, 0)
[
η(v)(0) + ϕ(0)− g(0, η(v)(0) + ϕ(0))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, vs) + F(s, vs)

]
ds+ g(t, vt), t ∈ [0, t1]

W (t, sk)
[
Γk(sk, v(t−k ))− g(sk, vsk

)
]

+
∫ t

sk

W (t, s)
[
A(s)g(s, vs) + F(s, vs)

]
ds+ g(t, vt), t ∈ Ik, k = 1, . . . , p

Γk(t, v(t−k )), t ∈ Jk, k = 1, . . . , p
η(v)(t) + ϕ(t), t ∈ (−∞, 0].

(3.28)
If t ∈ (−∞, 0], then

∥(Pv)(t)− (P ṽ)(t)∥ = ∥η(v)(t)− η(ṽ)(t)∥ ≤
∥∥∥(η(v)− η(ṽ))|(−∞,0]

∥∥∥
m

≤ Lη∥(v − ṽ)|(−∞,0]∥m ≤ Lη∥v − ṽ∥.

For t ∈ (0, t1], we have that

∥(Pv)(t)− (P ṽ)(t)∥ ≤∥g(t, vt)− g(t, ṽ)∥+ ∥W (t, s)∥
[
∥η(v)(0)− η(ṽ)(0)∥

+ ∥g(0, η(v)(0) + ϕ(0))− g(0, η(ṽ)(0) + ϕ(0))∥
]

+
∫ t

0
∥W (t, s)∥∥A∥∥g(s, vs)− g(s, ṽs)∥ds

+
∫ t

0
∥W (t, s)∥∥F(s, vs)− F(s, ṽs)∥ds

≤Lg∥vt − ṽt∥m +M
[
Lη∥v − ṽ∥+ Lg∥η(v)− η(ṽ)∥m

]
+M∥A∥Lg

∫ t

0
∥vs − ṽs∥ds+MLF

∫ t

0
∥vs − ṽs∥ds

≤
(
Lg +M

[
Lη + LgLη + ∥A∥LgT + LFT

])
∥v − ṽ∥.
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If t ∈ J1
k , then

∥(Pv)(t)− (P ṽ)(t)∥ ≤∥g(t, vt)− g(t, ṽt)∥+ ∥W (t, sk)∥
{
∥Γk(sk, v(t−k ))

− Γk(sk, ṽ(t−k ))∥+ ∥g(sk, vsk
)− g(sk, ṽsk

)∥
}

+
∫ t

sk

∥W (t, s)∥∥A∥∥g(s, vs)− g(s, ṽs)∥ds

+
∫ t

sk

∥W (t, s)∥∥F(s, vs)− F(s, ṽs)∥ds

≤Lg∥vt − ṽt∥m +M
[
LG∥v − ṽ∥+ Lg∥vsk

− ṽsk
∥m

]
+M∥A∥Lg

∫ t

0
∥vs − ṽs∥ds+MLF

∫ t

0
∥vs − ṽs∥ds

≤
(
Lg +M

[
LG + Lg + ∥A∥LgT + LFT

])
∥v − ṽ∥.

For t ∈ J2
k , we obtain that

∥(Pv)(t)− (P ṽ)(t)∥ ≤ LG∥v(t−k )− ṽ(t−k )∥ ≤ LG∥v − ṽ∥.

Therefore, from the preceding inequalities, the operator P satisfies all the assumptions of
Theorem 12, and thus P has only one fixed point in the space PCm, which is the solution
of problem (3.26). This completes the proof.

Example 3. Let ϕ ∈ Cm and consider the following system

d
dt

[
v(t)−

(
1 + tan v(t)

8(t+10)2

)]
= −v(t) + e

− v(t)
10(t+5)3 , t ∈ ⋃1

k=0 J
1
k ,

v(t) = v(t−k ) + 1 + cos(v(t−
k

))
4(t+8)4 , t ∈ ⋃2

k=1 J
2
k ,

v(s) =
(
1 + sin v

302

)
(s) + ϕ(s), s ∈ (−∞, 0].

(3.29)

Here J1
0 =

[
0, 3

2

]
, J2

1 =
(

3
2 ,

5
2

]
, J1

1 =
(

5
2 ,

9
2

]
, J2

2 = (9
2 ,

11
2 ] and T = 7. Define the functions

g(t, v) = 1 + tan(v)
8(t+10)2 , F(t, v) = e

− v
10(t+5)3 , η(v) = 1 + sin(v)

302 , Γ(t, v) = 1 + cos(v)
4(t+8)4 and

A(t) = −1. Then we have,

|g(t, v)− g(t, ṽ)| = 1
8(t+10)2 | tan(v)− tan(ṽ)| ≤ 1

8·102 |v − ṽ|,
|F(t, v)− F(t, ṽ)| = |e− v

10(t+5)3 − e− ṽ
10(t+5)3 | ≤ 1

10·53 |v − ṽ|,
|Γ(t, v)− Γ(t, ṽ)| = 1

4(t+8)4 | cos(v)− cos(ṽ)| ≤ 1
4·84 |v − ṽ|,

|η(v)− η(ṽ)| = 1
302 | sin(v)− sin(ṽ)| ≤ 1

302 |v − ṽ|,
and

Lg +M [Lη + LG + Lg + LgLη + ∥A∥LgT + LFT ] < 1.
Hence, the conditions (L1)-(L4) are satisfied.
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3.2 Controllability
In this section, the approximate and exact controllability of system (1.2) is obtained. In
the first case, we apply the technique developed by Bashirov & Ghahramanlou [14], which
avoids the use of fixed point theorems. In the latter case, we transform the controllability
problem to a fixed point one. Then, we apply Rothe’s fixed point theorem to establish the
desired result. In both cases, we assume that the associated linear system is controllable.

3.2.1 Approximate Controllability
Let us consider the following controlled neutral system with non-instantaneous impulses,
non-local conditions, and infinite delay

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + B(t)u(t) + f(t, vt, u(t)), t ∈

N⋃
k=0

J1
k ,

v(t) = Γk(t, v(t−k ), u(t−k )), t ∈ J2
k , k = 1, . . . , N, (3.30)

v(s) + ζ(vλ1 , . . . , vλq)(s) = ϕ(s) s ∈ (−∞, 0],

where u ∈ L2([0, T ];Rm). A detailed description of eq. (3.30) is given in (1.2). Assume
that the nonlinear terms in (3.30) are smooth enough. Then, there exists a solution v(·)
on (−∞, T ] if, and only if, v(·) satisfies the following integral equation

v(t) =



W (t, 0)
[
ϕ(0)− ζ(vθ1 , ..., vθq)(0)− g(0, ϕ− ζ(vθ1 , ..., vθq))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t, vt)

+
∫ t

0
W (t, s)B(s)u(s)ds, t ∈ [0, t1],

W (t, sk)
[
Γk(sk, v(t−k ), u(t−k ))− g(sk, vsk

)
]

+
∫ t

sk

W (t, s)
[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t, vt)

+
∫ t

sk

W (t, s)B(s)u(s)ds, t ∈ J1
k = (sk, tk+1], k = 1, . . . , N,

Γk(t, v(t−k ), u(t−k )), t ∈ J2
k = (tk, sk], k = 1, . . . , N,

ϕ(t)− ζ(vθ1 , ..., vθq)(t), t ∈ (−∞, 0].

(3.31)

Definition 19. We say that system (3.30) is approximate controllable on [0, T ] if for any
ϕ ∈ Cm, v1 ∈ Rn and ε > 0, there exists a control u ∈ L2([0, T ];Rm) such that

v(0) = −ζ(vλ1 , . . . , vλq)(0) + ϕ(0) and ∥v(T )− v1∥ < ε.

Before proving the approximate controllability of system (3.30), we recall some results
of section 2.3. Let δ ∈ (0, T ). Then, consider the non-autonomous controlled linear system
with initial value x0 ∈ Rn at T − δ, namely,

x′(t) = A(t)x(t) + B(t)x(t)u(t), t ∈ [T − δ, T ],
x(T − δ) = x0.

(3.32)
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A control wδ steering the system (3.32) from the initial condition x0 to the final state
x(T ) = x1 is given by

wδ(t) = B∗(t)W ∗(T, t)(Θ[T −δ,T ])−1(x1 −W (T, T − δ)x0), t ∈ [T − δ, T ]. (3.33)

In order to prove the approximate controllability, we assume the following hypotheses:

(C1) The nonlinear terms g, f and Γ, k = 1, ..., N are smooth enough so that the system
(3.30) admits a unique solution given by (3.31).

(C2) The functions g and f satisfy

∥g(t, φ)∥ ≤ α(∥φ(−sN)∥) and ∥f(t, φ, µ)∥ ≤ β
(
∥φ(−sN)∥

)
(3.34)

where α, β : R+ −→ R+ are continuous functions.

(C3) For δ ∈ (0, T ), the linear system (3.32) is assumed to be exact controllable on [T −
δ, T ].

Theorem 21. Under the assumptions (C1)-(C3), the semilinear neutral system with
non-instantaneous impulses, non-local conditions and infinite delay (3.30) is approximate
controllable on [0, T ].

Proof. Let ϕ ∈ Cm, v1 ∈ Rn and ε > 0, we must find a control u such that the solution
v(t) = v(t, ϕ, v1, u) of the semilinear system (3.30) satisfies ∥v(T )− v1∥ < ε. Indeed, con-
sider any fixed control u ∈ L2([0, T ];Rm) and δ such that 0 < δ < min{T−sN , sN , ε/MN},
where

M = sup
s∈[0,T ]

{∥W (T, s)∥∥A(s)∥}, N = sup
s∈[0,T ]

{α(∥v(s)∥) + β(∥v(s)∥)}.

Now, define the control uδ as follows

uδ(t) =
 u(t), if 0 ≤ t ≤ T − δ,
wδ(t), if T − δ < t ≤ T,

where
wδ(t) = B∗(t)W ∗(T, t)(Θ[T −δ,T ])−1(v1 −W (T, T − δ)v0)(t),

with v0 to be defined later. Since T − δ > sN , the solution vδ(t) = v(t, ϕ, uδ) at time T can
be written as

vδ(T ) = W (T, sN)
[
δN

(
sN , v

δ(t−N), uδ(t−N)
)
− g(sN , v

δ
sN

)
]

+ g(T, vδ
T )

+
∫ T

sN

W (T, s)[A(s)g(s, vδ
s) + f(s, vδ

s , u
δ(s))]ds+

∫ T

sN

W (T, s)B(s)uδ(s)ds (3.35)
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Adding W (T, T − δ)g(T − δ, vδ
T −δ)−W (T, T − δ)g(T − δ, vδ

T −δ) = 0 to the righ hand side
of (3.35) and by the cocycle property W (t, s)W (s, l) = W (t, l), we have that

vδ(T ) = g(T, vδ
T )

+W (T, T − δ)
{
W (T − δ, sN)[δk(sN , v

δ(t−N), uδ(t−N))− g(sN , v
δ
sN

)]

+
∫ T −δ

sN

W (T − δ, s)[A(s)g(s, vδ
s) + f(s, vδ

s , u
δ(s))]ds+ g(T − δ, vδ

T −δ)

+
∫ T

T −δ
W (T, s)B(s)uδ(s)ds

}

+
∫ T

T −δ
W (T, s)[A(s)g(s, vδ

s) + f(s, vδ
s , u

δ(s))]ds

+
∫ T

T −δ
W (T, s)B(s)uδ(s)ds−W (T, T − δ)g(T − δ, vδ

T −δ)

Hence,
vδ(T ) = g(T, vδ

T ) +W (T, T − δ)vδ(T − δ)

+
∫ T

T −δ
W (T, s)[A(s)g(s, vδ

s) + f(s, vδ
s , w

δ(s))]ds

+
∫ T

T −δ
W (T, s)B(s)wδ(s)ds−W (T, T − δ)g(T − δ, vδ

T −δ).

The solution x(t) = x(t, v0, w
δ) of the initial value problem (3.32) at time T , for the control

wδ and the initial condition v0, is given by:

x(T ) = W (T, T − δ)v0 +
∫ T

T −δ
W (T, s)B(s)wδ(s)ds.

Letting v0 = vδ(T − δ) +W (T − δ, T )g(T, vδ
T )− g(T − δ, vδ

T ) and v1 = x(T ), we then have
that

∥vδ(T )− v1∥ ≤
∫ T

T −δ

∥∥W (T, s)
∥∥ [∥A(s)∥∥g(s, vδ

s)∥+ ∥f(s, vδ
s , w

δ(s))∥
]
ds

≤
∫ T

T −δ
M
[
α(∥vδ(s− sN)∥) + β(∥vδ(s− sN)∥)

]
ds

Since 0 < δ < sN and T − δ ≤ s ≤ T , we have that s−sN ≤ T −sN ≤ T − δ, consequently,
vδ(s− sN) = v(s− sN). Finally, we obtain

∥vδ(T )− v1∥ ≤
∫ T

T −δ
M
[
α(∥v(s− sN)∥) + β(∥v(s− sN)∥)

]
ds ≤ δMN < ε.

Example 4. In this section we propose the following example of a neutral differential
system including non-instantaneous impulses, non-local conditions and infinite delay,

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + B(t)u(t) + f(t, vt, u(t)), t ∈

N⋃
k=0

J1
k ,

v(t) = Γk(t, v(t−k ), u(t−k )), t ∈ J2
k , k = 1, . . . , N, (3.36)

v(s) + ζ(vλ1 , . . . , vλq)(s) = ϕ(s) s ∈ (−∞, 0].
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where A(t) = a(t)A,B(t) = b(t)B, with An×n and Bn×n being constant matrices. More-
over, a ∈ L1([0, T ]), b ∈ C([0, T ]) and∫ T

0
a(t)dt ̸= 0, b(t) ̸= 0, t ∈ [0, T ]. (3.37)

From [75], the linear system

v′(t) = A(t)v(t) + B(t)u(t), t ∈ [0, T ]

is exactly controllable in [0, T ] if, and only if, Kalman’s rank condition is satisfied, i.e.,

rank(B|AB| . . . |An−1B) = n. (3.38)

Here we assume that condition (3.38) holds. The nonlinear terms f : [0, T ]×Cm×Rm −→
Rn and g : [0, T ]× Cm ←→ Cm are given as follows

f(t, φ, u) =



3
√

sin ∥u∥+ 1 · 3
√
φ1(−sN)

3
√

sin ∥u∥+ 1 · 3
√
φ2(−sN)

... · ...
3
√

sin ∥u∥+ 1 · 3
√
φn(−sN)

 ,

g(t, φ) =



3
√
φ1(−sN)

3
√
φ2(−sN)

...
3
√
φn(−sN)

 .

The functions ζ : C q
m ←→ Cm and Γk : (tk, sk]×Rn ×Rm −→ Rn, k = 1, ..., N , are defined

by

ζ
(
φ1, φ2, · · · , φq

)
=

q∑
i=1


sin (φi1)
sin (φi2)

...
sin (φin)

 ,

Γk(t, v, u) = cos
(√
∥u∥+ 1

)


sin
(
vk

1

)
sin

(
vk

2

)
...

sin
(
vk

n

)

 .

Then

∥f(t, φ, u)∥ ≤
√
n∥φ(−sN)∥2/3 + 2

√
n sin ∥u∥2/3 + 2

√
n ≤
√
n∥φ(−sN)∥2/3

+ 3
√
n := α(∥φ(−sN)∥),

∥g(t, φ)∥ ≤
√
n∥φ(−sN)∥2/3 := β(∥φ(−sN)∥).

Since ζ and Γk, k = 1, ..., N are bounded, the conditions (C1)-(C3) are satisfied. Thus,
the system (3.36) is approximate controllable in [0, T ].
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3.2.2 Exact Controllability
In this part, we obtain the exact controllability of the following neutral problem with
non-instantaneous impulses, non-local conditions and infinite delay

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + B(t)u(t) + f(t, vt, u(t)), t ∈

N⋃
k=0

J1
k ,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , N, (3.39)

v(s) + ζ(vλ1 , . . . , vλq)(s) = ϕ(s) s ∈ (−∞, 0].

The control u in (3.39) belongs to the space of controls PCu := PCu((0, T ];Rm), given by

PCu =
{
u : (0, T ] −→ Rm : u is bounded and u ∈ C

(
∪N

k=0J
1
k ;Rm

)}
,

endowed with the norm
∥u∥ = sup

t∈[0,T ]

∥∥u(t)
∥∥
Rm .

Definition 20. We say that system (3.39) is exactly controllable on [0, T ] if for any ϕ ∈
Cm, v1 ∈ Rn, there exists a control u ∈ PCu such that the solution v of (3.39) verifies

v(0) = −ζ(vλ1 , . . . , vλq)(0) + ϕ(0) and v(T ) = v1.

To establish our main result, we list the subsequent assumptions:

(D1) The nonlinear terms are globally Lipschitz, i.e.,

(i)
∥∥ζ(v)− ζ(y)

∥∥
m ≤ L0∥v − y∥mq, v, y ∈ C q

m,

(ii)
∥∥g(t, φ)− g(t, ϕ)

∥∥
Rn ≤ Lg∥φ− ϕ∥m, φ, ϕ ∈ Cm,

(iii)
∥∥f(t, φ, u)− f(t, ϕ, w)

∥∥
Rn ≤ Lf{∥φ− ϕ∥+ ∥u− w∥}, φ, ϕ ∈ Cm, u, w ∈ Rm,

(iv)
∥∥Γk(t, v)− Γk(s, y)

∥∥
Rn ≤ Lk{|t − s| + ∥v − y∥Rn}, k = 1, ..., N, t, s ∈ J2

k , v, y ∈
Rn.

Given a bounded subset E of PCm, there exist continuous functions ξ1 : [0, T ] −→
R+, ξ2 : (−∞, 0] −→ R+ depending on E such that ξ1(0) = ξ2(0) = 0, and for any
v ∈ E, the following holds

(v)
∥∥g(τ2, vτ2)− g(τ1, vτ1)

∥∥ ≤ ξ1(|τ2 − τ1|)∥v∥PCmT
, τ2, τ1 ∈ [0, T ],

(vi)
∥∥ζ(ṽ)(τ2)− ζ(ṽ)(τ1)

∥∥ ≤ ξ2(|τ2 − τ1|)∥ṽ∥mq, τ2, τ1 ∈ (−∞, 0].

(D2) (i) ∥f(t, φ, u)∥ ≤ α0∥φ∥a0 + β0∥u∥b0 + c0, φ ∈ Cm, u ∈ Rm, t ∈ [0, T ]
(ii) ∥Γk(t, v)∥ ≤ αk∥v∥ak + ck, k = 1, ..., N, v ∈ Rn, t ∈ (tk, sk]

(iii) ∥ζ(ṽ)∥ ≤ ρ∥ṽ∥d0 , ṽ ∈ C q
m

(iii) ∥g(t, φ)∥ ≤ ∥φ∥d1 , φ ∈ Cm, t ∈ [0, T ]
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where 0 ≤ ak < 1, k = 0, ..., N , 0 ≤ b0 < 1, 0 ≤ d0 < 1, 0 ≤ d1 < 1 and αk, βk, ck, ρ are
positive constants for k = 0, ..., N .

Assume that the nonlinear terms in (3.39) are smooth enough. Then there exists a
solution v(·) on (−∞, T ] if, and only if, v(·) satisfies the following integral equation

v(t) =



W (t, 0)
[
ϕ(0)− ζ(vλ1 , ..., vλq)(0)− g(0, ϕ− ζ(vλ1 , ..., vλq))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t, vt)

+
∫ t

0
W (t, s)B(s)u(s)ds, t ∈ [0, t1],

W (t, sk)
[
Γk(sk, v(t−k ))− g(sk, vsk

)
]

+
∫ t

sk

W (t, s)
[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t, vt)

+
∫ t

sk

W (t, s)B(s)u(s)ds, t ∈ J1
k = (sk, tk+1], k = 1, . . . , N,

Γk(t, v(t−k )), t ∈ J2
k = (tk, sk], k = 1, . . . , N,

ϕ(t)− ζ(vλ1 , ..., vλq)(t), t ∈ (−∞, 0].

(3.40)

Suppose for a moment that system (3.39) is controllable, that is, given any ϕ ∈ Cm, v
tk+1 ∈

Rn, k = 0, ..., N , we can find a control u ∈ PCu such that the solution v(·) satisfies

v(0) = ϕ(0)− ζ(vλ1 , . . . , vλq)(0) and v(tk+1) = vtk+1 , where vtN+1 = v1.

Then, for t ∈ [0, t1] we characterize the control

u(t) = Υ0S0(v, u) := B∗(t)W ∗(t1, t)(Θ[0,t1])−1S0(v, u),

where

S0(v, u) = vt1 −W (t1, 0)[ϕ(0)− ζ(vλ1 , ..., vλq)(0)− g(0, ϕ− ζ(vλ1 , ..., vλq))]

−
∫ t1

0
W (t1, s)[A(s)g(s, vs) + f(s, vs, u(s))]ds− g(t1, vt1). (3.41)

Similarly, for t ∈ (sk, tk+1], k = 1, ..., N , we sustain the control

u(t) = ΥkSk(v, u) := B∗(t)W ∗(tk+1, t)(Θ[sk,tk+1])−1Sk(v, u),

where

Sk(v, u) = vtk+1 −W (tk+1, sk)[Γk(sk, v(t−k ))− g(sk, vsk
)]

−
∫ tk+1

sk

W (tk+1, s)[A(s)g(s, vs) + f(s, vs, u(s))]ds− g(tk+1, vtk+1). (3.42)

Now, we define the operator Q : PCm × PCu −→ PCm × PCu by the form

Q(v, u) = (Q1(v, u),Q2(v, u)) = (y, w).
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Operators Q1 : PCm × PCu −→ PCm and Q2 : PCm × PCu −→ PCu are given by

y(t) = Q1(v, u)(t) =



W (t, 0)
[
ϕ(0)− ζ(vλ1 , ..., vλq)(0)− g(0, ϕ− ζ(vλ1 , ..., vλq))

]
+
∫ t

0
W (t, s)

[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t, vt)

+
∫ t

0
W (t, s)B(s)u(s)ds, t ∈ [0, t1],

W (t, sk)
[
Γk(sk, v(t−k ))− g(sk, vsk

)
]

+
∫ t

sk

W (t, s)
[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t, vt)

+
∫ t

sk

W (t, s)B(s)u(s)ds, t ∈ J1
k = (sk, tk+1], k = 1, . . . , N,

Γk(t, v(t−k )), t ∈ J2
k = (tk, sk], k = 1, . . . , N,

ϕ(t)− ζ(vλ1 , ..., vλq)(t), t ∈ (−∞, 0].
(3.43)

and

w(t) = Q2(v, u)(t) =


Υ0S0(v, u), t ∈ [0, t1],
ΥkSk(v, u), t ∈ (sk, tk+1], k = 1, ..., N,
0, t ∈ (tk, sk], k = 1, ..., N.

(3.44)

Theorem 22. Assume that conditions (D1)-(D2) are satisfied. Then the system (3.39)
is controllable if and only if for all ϕ ∈ Cm and v1 ∈ Rn, the operator Q has a fixed point,
i.e.,

∃(v, u) ∈ PCm × PCu : Q(v, u) = (v, u).

Now, we are in a position to state and prove the main theorem of this subsection.

Theorem 23. Suppose conditions (D1)-(D2) hold and the linear system (2.45) is con-
trollable in any interval [α, β], with 0 < α < β ≤ T . Then the semilinear neutral system
(3.39) is controllable in [0, T ]. Moreover, for any ϕ ∈ Cm and vtk+1 ∈ Rn, k = 0, ..., N ,
there exists u ∈ PCu such that the corresponding solution v(t) = v(t, ϕ, u) of (3.39) fulfills

v(0) = ϕ(0)− ζ(vλ1 , . . . , vλq)(0) and vtk+1 = v(tk+1), k = 0, ..., N,

with
vtN+1 = v(T ) = v1,

and

u(t) =


B∗(t)W ∗(t1, t)(Θ[0,t1])−1S0(v, u), t ∈ [0, t1],
B∗(t)W ∗(tk+1, t)(Θ[sk,tk+1])−1Sk(v, u), t ∈ (sk, tk+1], k = 1, ..., N,
0, t ∈ (tk, sk], k = 1, ..., N,

where S0(v, u) and S0(v, u) are the same as defined in (3.41) and (3.42), respectively.

Proof. For better readability, the proof of this Theorem will be divided in Statements.
Statement 1: The operator Q is continuous.
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We shall prove that the operators Q1 and Q2 are continuous.
Let t ∈ [0, t1], then (D1)-(i), (ii), (iii) imply∥∥Q1(v, u)(t)−Q1(y, w)(t)

∥∥ ≤ C1∥v − y∥+ C2∥u− w∥, (3.45)

where constants C1 and C2 are such that

C1 = M(L0q + LgL0q + t1∥A∥Lg + t1Lf + Lg),
C2 = Mt1(Lf + ∥B∥).

Let t ∈ (sk, tk+1], k = 1, ..., N , then (D1)-(ii), (iii), (iv) yield∥∥Q1(v, u)(t)−Q1(y, w)(t)
∥∥ ≤ Dk∥v − y∥+ C3∥u− w∥, (3.46)

where

Dk = M(Lk + Lg + tk+1∥A∥Lg + tk+1Lf ),
C3 = MT (Lf + ∥B∥).

Let t ∈ (tk, sk], k = 1, ..., N , from (D1)-(iv), we obtain∥∥Q1(v, u)(t)−Q1(y, w)(t)
∥∥ ≤ Lk∥v − y∥. (3.47)

Let t ∈ (−∞, 0], then (D1)-(i) implies that∥∥Q1(v, u)(t)−Q1(y, w)(t)
∥∥ ≤ L0q∥v − y∥. (3.48)

The inequalities (3.45),(3.46),(3.47) and (3.48) imply the continuity of Q1. Likewise, the
continuity of Q2 comes from the continuity of B,W,Θ[0,t1],Θ[sk,tk+1], k = 1, ..., N,S0 and
Sk.
Statement 2: The operator Q maps bounded sets into equicontinuous sets.

Let E ⊂ PCm × PCu be bounded and consider the sequel:
Let τ1, τ2 ∈ (0, t1] with 0 < τ1 < τ2 ≤ t1, then from (D1)-(v), we have that∥∥Q1(v, u)(τ2)−Q1(v, u)(τ1)

∥∥ ≤∥∥W (τ2, 0)−W (τ1, 0)
∥∥[∥∥ϕ(0)

∥∥+
∥∥∥ζ(vλ1 , ..., vλq)

∥∥∥
+
∥∥∥g(0, ϕ− ζ(vλ1 , ..., vλq))

∥∥∥]
+
∫ τ1

0

∥∥W (τ2, s)−W (τ1, s)
∥∥∥∥B(s)

∥∥∥∥u(s)
∥∥ds

+
∫ τ2

τ1

∥∥W (τ2, s)
∥∥∥∥B(s)

∥∥∥∥u(s)
∥∥ds

+ ξ1(|τ2 − τ1|)∥v∥+
∥∥W (τ2, s)−W (τ1, s)

∥∥
×
(∫ τ1

0

∥∥A(s)g(s, vs) + f(s, vs, u(s))
∥∥ds)

+
∫ τ2

τ1

∥∥W (τ2, s)
∥∥∥∥A(s)g(s, vs) + f(s, vs, u(s))

∥∥ds,
and ∥∥Q2(v, u)(τ2)−Q2(v, u)(τ1)

∥∥ ≤∥∥∥(Θ[0,t1])−1S0(v, u)
∥∥∥

×
∥∥B∗(τ2)W ∗(t1, τ2)−B∗(τ1)W ∗(t1, τ1)

∥∥.
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Let sk < τ1 < τ2 ≤ tk+1, k = 1, ..., N , then (D1)-(v) yields
∥∥Q1(v, u)(τ2)−Q1(v, u)(τ1)

∥∥ ≤∥∥W (τ2, sk)−W (τ1, sk)
∥∥∥∥∥Γk(sk, v(t−k ))− g(sk, vsk

)
∥∥∥

+
∫ τ1

sk

∥∥W (τ2, s)−W (τ1, s)
∥∥∥∥B(s)

∥∥∥∥u(s)
∥∥ds

+
∫ τ2

τ1

∥∥W (τ2, s)
∥∥∥∥B(s)

∥∥∥∥u(s)
∥∥ds

+ ξ1(|τ2 − τ1|)∥v∥+
∥∥W (τ2, s)−W (τ1, s)

∥∥
×
(∫ τ1

sk

∥∥A(s)g(s, vs) + f(s, vs, u(s))
∥∥ds)

+
∫ τ2

τ1

∥∥W (τ2, s)
∥∥∥∥A(s)g(s, vs) + f(s, vs, u(s))

∥∥ds,
and ∥∥Q2(v, u)(τ2)−Q2(v, u)(τ2)

∥∥ ≤∥∥∥(Θ[sk,tk+1])−1Sk(v, u)
∥∥∥

×
∥∥B∗(τ2)W ∗(tk+1, τ2)−B∗(τ1)W ∗(tk+1, τ1)

∥∥.
Let tk < τ1 < τ2 ≤ sk, k = 1, ..., N , then∥∥Q1(v, u)(τ2)−Q1(v, u)(τ1)

∥∥ =
∥∥∥Γk(τ2, v(t−k ))− Γk(τ1, v(t−k ))

∥∥∥ ≤ Lk|τ2 − τ1|.

Let −∞ < τ1 < τ2 ≤ 0, then from (D1)-(vi), we obtain∥∥Q1(v, u)(τ2)−Q1(v, u)(τ1)
∥∥ ≤∥∥ϕ(τ2)− ϕ(τ1)

∥∥
+
∥∥∥ζ(vλ1,...,λq)(τ2)− ζ(vλ1,...,λq)(τ1)

∥∥∥
≤
∥∥ϕ(τ2)− ϕ(τ1)

∥∥+ ξ2(|τ2 − τ1|)∥v∥.

Since |τ2 − τ1| → 0, ξ1(|τ2 − τ1|) → 0, ξ1(|τ2 − τ1|) → 0,
∥∥W (τ2, s)−W (τ1, s)

∥∥ → 0 and∥∥W (τ2, sk)−W (τ1, sk)
∥∥→ 0 for all k = 1, ..., N as τ1 → τ2, the foregoing inequalities imply

thatQ1(E) is equicontinuous. Analogously, since
∥∥B∗(τ2)W ∗(t1, τ2)−B∗(τ1)W ∗(t1, τ1)

∥∥→
0,
∥∥B∗(τ2)W ∗(tk+1, τ2)−B∗(τ1)W ∗(tk+1, τ1)

∥∥→ 0 for all k = 1, ..., N as τ1 → τ2 and S0,Sk

are bounded in E, we obtain that Q2(E) is equicontinuous.
Statement 3: Q(E) is relatively compact.

Since the functions g, f, ζ and Γk are smooth enough, there are positive constants such
that for all (v, u) ∈ E it pursue that∥∥g(t, vt)

∥∥ ≤M0,
∥∥f(t, vt, u(t))

∥∥ ≤M1,
∥∥ζ(v)

∥∥ ≤M2,∥∥∥(Θ[sk,tk+1])−1Sk

∥∥∥ ≤Mk+3, k = 0, ..., N,∥∥∥Γk(t, v(t−k ))
∥∥∥ ≤MN+k+3, k = 1, ..., N.

Thus, Q(E) is bounded.
Now, let {ψi = (yi, wi) : i ∈ N} be a sequence in Q(E) ⊂ PCm × PCu. Subsequently,
(wi)i∈N is an uniformly and equicontinuous family on [0, t1]. By the Arzelà Ascoli theorem,
there is a convergent subsequence (w1

i )i∈N ⊆ (wi)i∈N on [0, t1]. Since (w1
i )i∈N is uniformly
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bounded and equicontinuous on [t1, t2], then there is a subsequence (w2
i )i∈N ⊆ (w1

i )i∈N which
is convergent on [t1, t2]. Maintaining this process, the subsequence (wN+1

i )i∈N converges
uniformly on each interval [0, t1], [t1, t2] · · · [tN , T ]. On the other hand, since (yi)i∈N is
contained in Q1(E) ⊂ PCm, then yi

∣∣∣
(−∞,−λq ]

= ϕ−ζ(ϕλ1 , ϕλ2 , ..., ϕλq) for i ∈ N, and (yi)i∈N

is bounded and equicontinuous on [−λq, t1]. Arzelà Ascoli theorem implies that there is
a subsequence (y1

i )i∈N ⊆ (yi)i∈N which is convergent on (−∞, t1]. Moreover, (y1
i )i∈N has a

convergent subsequence (y2
i )i∈N on [t1, t2]. Continuining with this process, the subsequence

(yN+1
i )i∈N converges uniformly on each interval (−∞, t1], [t1, t2], · · · [tN , T ]. Therefore, the

subsequence {ψN+1
i = (yN+1

i , wN+1
i )} of (ψi)i∈N is uniformly convergent. Thus, Q(E) is

relatively compact.
Statement 4:The following limit holds

lim
|||(v,u)|||→∞

|||Q(v, u)|||
|||(v, u)||| = 0

where |||(v, u)||| = ∥v∥+ ∥u∥ is the norm of the product space PCm × PCu.
For S0 and Sk, k = 1, ..., N , we have the following

∥S0(v, u)∥ ≤∥vt1∥+ ∥W (t1, 0)∥∥ϕ(0)− ζ(ṽ)(0)− g(0, ϕ− ζ(ṽ))∥+ ∥g(t1, vt1)∥

+
∫ t1

0
∥W (t1, s)∥∥A(s)g(s, vs) + f(s, vs, u(s))∥ds

Hypotheses (D2)-(i), (iii), (iv) yield

∥S0(v, u)∥ ≤∥vt1∥+M∥ϕ(0)∥+M [ρ∥ṽ∥d0 + ∥ϕ− ζ(ṽ)∥d1 ] + ∥vt1∥d1

+Mt1[∥A∥∥vs∥d1 + α0∥vs∥a0 + β0∥u∥b0 + c0]
≤Λ0 +M [ρqd0∥v∥d0 + 2d1ρd1qd0d1∥v∥d0d1 ] + ∥v∥d1

+Mt1[∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 ],

where Λ0 = ∥vt1∥+M [∥ϕ(0)∥+ 2d1∥ϕ∥d1 + t1c0].

∥Sk(v, u)∥ ≤∥vtk+1∥+ ∥W (tk+1, sk)∥∥Γk(sk, v(t−k ))− g(sk, vsk
)∥+ ∥g(tk+1, vtk+1)∥

+
∫ tk+1

sk

∥W (tk+1, s)∥∥A(s)g(s, vs) + f(s, vs, u(s))∥ds.

(D2)-(i), (ii), (iv) imply

∥Sk(v, u)∥ ≤∥vtk+1∥+M [αk∥v(t−k )∥ak + ck + ∥vsk
∥d1 ] + ∥vtk+1∥d1

+M(tk+1 − sk)[∥A∥∥vs∥d1 + α0∥vs∥a0 + β0∥u∥b0 + c0]
≤Λ1 +M [αk∥v∥ak + ∥v∥d1 ] + ∥v∥d1 +MT [∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 ],

where Λ1 = ∥vtk+1∥+M [ck + c0T ].
Consequently,

∥Q2(v, u)(t)∥ ≤∥B∗(t)∥∥W ∗(t1, t)∥∥(Θ[0,t1])−1S0(v, u)∥ ≤ ∥B(t)∥∥W (t1, t)∥γ−1∥S0(v, u)∥
≤∥B∥Mγ−1Λ0 + ∥B∥M2γ−1[ρqd0∥v∥d0 + 2d1ρd1qd0d1∥v∥d0d1 ]

+ ∥B∥Mγ−1∥v∥d1 + ∥B∥M2γ−1t1[∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 ],
t ∈ [0, t1]. (3.49)
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∥Q2(v, u)(t)∥ ≤∥B∗(t)∥∥W ∗(tk+1, t)∥∥(Θ[sk,tk+1])−1S(v, u)∥ ≤ ∥B∥Mγ−1
k ∥Sk(v, u)∥

≤∥B∥Mγ−1
k Λ1 + ∥B∥M2γ−1

k [αk∥v∥ak + ∥v∥d1 ] + ∥B∥Mγ−1
k ∥v∥d1

+ ∥B∥M2γ−1
k T [∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 ],

t ∈ (sk, tk+1], k = 1, ..., N. (3.50)

∥Q1(v, u)(t)∥ ≤M∥ϕ(0)∥+M [ρqd0∥v∥d0 + 2d1∥ϕ∥d1 + 2d1ρd1qd0d1∥v∥d0d1 ] + ∥v∥d1

+Mt1[∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 + c0] +M2∥B∥2t1γ
−1∥S0(v, u)∥

≤Λ2 + Λ3
(
M∥ϕ(0)∥+M [ρqd0∥v∥d0 + 2d1∥ϕ∥d1 + 2d1ρd1qd0d1∥v∥d0d1 ] + ∥v∥d1

+Mt1[∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 + c0]
)
, t ∈ [0, t1], (3.51)

where Λ2 = M2∥B∥2t1γ
−1∥vt1∥ and Λ3 = M2∥B∥2t1γ

−1 + 1.

∥Q1(v, u)(t)∥ ≤M [αk∥v∥ak + ck + ∥v∥d1 ] + ∥v∥d1

+MT [∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 + c0] +M2∥B∥2Tγ−1
k ∥Sk(v, u)∥

≤Λ4 + Λ5
(
M [αk∥v∥ak + ck + ∥v∥d1 ] + ∥v∥d1

+MT [∥A∥∥v∥d1 + α0∥v∥a0 + β0∥u∥b0 + c0]
)
, t ∈ (sk, tk+1], (3.52)

where Λ4 = M2∥B∥2Tγ−1
k ∥vtk+1∥ and Λ5 = M2∥B∥2Tγ−1

k + 1.

∥Q1(v, u)(t)∥ ≤ αk∥v∥ak + ck, t ∈ (tk, sk]. (3.53)

Let K1 = Λ3 + ∥B∥Mγ−1. Therefore, from (3.49) and (3.51), we sustain

|||Q(v, u)||| =∥Q1(v, u)∥+ ∥Q2(v, u)∥
≤K2 +K3∥v∥d1 +K4∥v∥d0d1 +K5∥v∥d0 +K6∥v∥a0 +K7∥u∥b0 ,

where

K2 = Λ2 +M
[
Λ3(∥ϕ(0)∥+ 2d1∥ϕ∥d1 + t1c0) + ∥B∥γ−1Λ0

]
,

K3 = Λ3 + Λ3Mt1∥A∥+ ∥B∥Mγ−1 + ∥B∥M2γ−1t1∥A∥, K4 = M2d1ρd1qd0d1K1,

K5 = Mρdd0K1, K6 = Mt1α0K1, K7 = Mt1β0K1.

Let K1 = Λ5 + ∥B∥Mγ−1
k . From (3.50) and (3.52), we obtain

|||Q(v, u)||| =∥Q1(v, u)∥+ ∥Q2(v, u)∥
≤K2 +K3∥v∥d1 +K4∥v∥ak +K5∥v∥a0 +K6∥u∥b0 ,

where

K2 = Λ4 +M [Λ5(ck + Tc0) + ∥B∥γ−1
k Λ1], K3 = (M + 1 +MT∥A∥)K1, K4 = MαkK1,

K5 = MTα0K1, K6 = MTβ0K1.

Addittionally, from (3.53), it follows

|||Q(v, u)||| =∥Q1(v, u)∥+ ∥Q2(v, u)∥ ≤ αk∥v∥ak + ck.
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Hence,
|||Q(v, u)|||
∥(v, u)∥ ≤ K2

∥v∥+ ∥u∥ +K3∥v∥d1−1 +K4∥v∥d0d1−1 +K5∥v∥d0−1 +K6∥v∥a0−1

+K7∥u∥b0−1;
|||Q(v, u)|||
∥(v, u)∥ ≤ K2

∥v∥+ ∥u∥ +K3∥v∥d1−1 +K4∥v∥ak−1 +K5∥v∥a0−1 +K6∥u∥b0−1;

|||Q(v, u)|||
∥(v, u)∥ ≤αk∥v∥ak−1 + ck

∥v∥+ ∥u∥ .

Therefore, we have

lim
|||(v,u)|||→∞

|||Q(v, u)|||
|||(v, u)||| = 0.

Statement 5:The operator Q has at least one fixed point.
Presently, using the previous statement, for 0 < ε < 1, there exists R > 0 such that

|||Q(v, u)|||
|||(v, u)||| < ε if |||(v, u)||| ≥ R.

Thus, if |||(v, u)||| = R, then |||Q(v, u)||| ≤ εR < R. Consequently,

Q(∂B(0, R)) ⊂ B(0, R), (3.54)

where B(0, R) is the closed ball of radius R centered at zero. Thus, by eq. (3.54), Statement
1, 2, 3, 4, and Theorem 14, we conclude that the operator Q has a fixed point, i.e.,

∃(v, u) ∈ PCm × PCu : Q(v, u) = (v, u),

which by Theorem 22, implies the controllability of system (3.39) on [0, T ]. Furthermore,

u(t) =


Υ0S0(v, u), t ∈ [0, t1],
ΥkSk(v, u), t ∈ (sk, tk+1], k = 1, ..., N,
0, t ∈ (tk, sk], k = 1, ..., N.

(3.55)

such that for a given ϕ ∈ PCm, and arbitrary points vtk+1 for k = 0, ..., N , the solution
v(t) = v(t, u) of (3.39) satisfies:

vt1 = v(t1) = W (t1, 0)
[
ϕ(0)− ζ(vλ1 , ..., vλq)(0)− g(0, ϕ− ζ(vλ1 , ..., vλq))

]
+
∫ t1

0
W (t1, s)

[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(t1, vt1)

+
∫ t1

0
W (t1, s)B(s)u(s)ds;

vtk+1 = v(tk+1) = W (tk+1, sk)
[
Γk(sk, v(t−k ))− g(sk, vsk

)
]

+
∫ tk+1

sk

W (tk+1, s)
[
A(s)g(s, vs) + f(s, vs, u(s))

]
ds+ g(tk+1, vtk+1)

+
∫ tk+1

sk

W (tk+1, s)B(s)u(s)ds, k = 1, ..., N,

where tN+1 = T , and vtN+1 = v(T ) = v1. This completes the proof.
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Chapter 4

Conclusions and Final Remarks

In this manuscript, the existence of solutions of the semilinear neutral equation with non-
instantaneous impulses, non-local conditions, and unbounded delay

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + F(t, vt), t ∈ J1

k , k = 0, 1, . . . ,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . ,

v(s) + ζ(vλ1 , vλ2 , . . . , vλq)(s) = ϕ(s), s ∈ R− = (−∞, 0],

was proved. To this end, Karakostas’s fixed point theorem was used. The phase space
that we choose fulfills the axioms proposed by Hale & Kato for retarded equations with
unbounded delay. However, in this case, our phase space is a subspace of piecewise contin-
uous functions due to the impulses and non-local conditions. The uniqueness of solutions
was obtained by imposing some conditions on the nonlinear terms.

Additionally, the approximate and exact controllability of the control neutral problem

d

dt
[v(t)− g(t, vt)] = A(t)v(t) + B(t)u(t) + f(t, vt, u(t)), t ∈

N⋃
k=0

J1
k ,

v(t) = Γk(t, v(t−k )), t ∈ J2
k , k = 1, . . . , N,

v(s) + ζ(vλ1 , . . . , vλq)(s) = ϕ(s) s ∈ (−∞, 0].

was obtained. To prove the approximate controllability, we assumed that the associated
linear system is controllable and applied the technique employed by Bashirov & Ghahra-
manlou. On the other hand, to prove the exact controllability, we impose sublinear con-
ditions on the nonlinear terms and assume the controllability of the linear system in any
interval [α, β] ⊂ (0, T ]. Then, Rothe’s fixed point theorem was applied.

The development of this work required the study of non-curricular topics such that
DDEs, NDEs, DEs with non-local conditions, and Control Theory. Most of the theory
and tools needed within this thesis were covered inside a research group of Yachay Tech
students, alumni and colleagues from other countries.

As a future research on this subject, we will study the existence of solutions, controlla-
bility, and stability of the same problem in infinite dimension. Furthermore, the extension
of our results to semilinear perturbed systems in time scales is a research area of our
interest.
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lutions for impulsive partial neutral functional differential equations. Journal of
Mathematical Analysis and Applications 331, 2 (jul 2007), 1135–1158.

[56] Hernández, E. Global solutions for abstract impulsive neutral differential equa-
tions. Mathematical and Computer Modelling 53, 1 (2011), 196–204.

[57] Hernández, E., and O’Regan, D. On a new class of abstract impulsive differ-
ential equations. Proc. Amer. Math. Soc. 141 (2013).

[58] Hino, Y. Asymptotic behavior of solutions of some functional differential equations.
Tohoku Mathematical Journal 22, 1 (1970), 98 – 108.

[59] Hino, Y., Murakami, S., and Naito, T. Functional Differential Equations with
Infinite Delay. Lecture Notes in Mathematics. Springer, Berlin, 1991.

Mathematician 60 Graduation Project

https://doi.org/10.1007/978-0-387-21593-8
https://doi.org/10.1007/BF00281373
https://doi.org/10.1007/BF00281373
https://doi.org/10.1016/S0076-5392(08)60959-5
https://doi.org/10.1016/0022-247X(69)90175-9
https://doi.org/10.1007/BF02413530
https://doi.org/10.1007/BF02413530
https://doi.org/10.1007/978-1-4612-0577-7
https://doi.org/10.1137/1.9780898719222
https://sites.icmc.usp.br/andcarva/cadernos/toc2.2/eduardo1.pdf
https://sites.icmc.usp.br/andcarva/cadernos/toc2.2/eduardo1.pdf
https://doi.org/10.1006/jmaa.1997.5875
https://doi.org/10.1006/jmaa.1997.5875
https://doi.org/10.1016/j.aml.2005.04.005
https://doi.org/10.1016/j.aml.2005.04.005
https://doi.org/10.1016/J.JMAA.2006.09.043
https://doi.org/10.1016/J.JMAA.2006.09.043
https://doi.org/10.1016/j.mcm.2010.08.004
https://doi.org/10.1016/j.mcm.2010.08.004
https://doi.org/10.1090/S0002-9939-2012-11613-2
https://doi.org/10.1090/S0002-9939-2012-11613-2
https://doi.org/10.2748/tmj/1178242864
https://doi.org/10.1007/BFb0084432
https://doi.org/10.1007/BFb0084432


School of Mathematical and Computational Sciences Yachay Tech University

[60] Isac, G. On Rothe’s fixed point theorem in general topological vector space. An.
St. Univ. Ovidius Constanta 12, 2 (2004), 127–134.
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