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Resumen 

La radiación de Fondo Cósmico de Microondas (CMB, por sus siglas en inglés) es la evidencia 

más notable que respalda la cosmología del Big Bang y ha sido una herramienta 

fundamental para comprender el Universo primitivo. La mayoría de la información 

codificada en el CMB se encuentra en su campo de temperatura. Su espectro de energía 

tiene una forma de cuerpo negro casi perfecta, sin embargo, exhibe anisotropías al nivel de 

δT/T ∼ 10-5. La cosmología de la inflación nos ayuda a explicar características de esta 

radiación que la teoría del Big Bang no puede explicar. El propósito de este trabajo es utilizar 

un potencial caótico con una característica para reproducir y estudiar el espectro de 

potencia angular del CMB. Para la obtención del espectro se utilizó el Código de 

Anisotropías en el Fondo de Microondas (CAMB, por sus siglas en inglés). El potencial que 

utilizamos para este estudio tiene tres parámetros libres (c, d and ϕstep) y encontramos un 

conjunto de valores para estos parámetros que mejor reproduce el espectro de potencia 

angular con respecto a los datos de la colaboración Planck (con un error relativo menor a 

0.09). La posición y amplitud de los picos encontrados con nuestro potencial son similares 

a los reportados por la colaboración Planck, de hecho, algunos valores están dentro del 

rango de error. Además, usando CAMB encontramos los valores de algunos parámetros 

cosmológicos; edad del universo, Ωm, Ωb, ΩΛ and ΩK. También calculamos el índice espectral 

escalar, ns = 0.966942, y sus términos asociados. 

 

Palabras Clave: 

Fondo Cósmico de Microondas, parámetros cosmológicos, anisotropías, oscilaciones 

acústicas, escalas angulares. 

 



Abstract 

Cosmic Microwave Background (CMB) radiation is the most remarkable evidence that 

support the Big Bang cosmology and has been a fundamental tool to understand the early 

Universe. The vast majority of information encoded in the CMB lies in its temperature field. 

Its energy spectrum has a nearly perfect black body shape, however, it exhibits anisotropies 

at the level of δT/T ∼ 10-5. Inflation cosmology helps us to explain features of this radiation 

that the Big Bang theory cannot. The purpose of this work is to use a chaotic potential with 

a step to reproduce and study the angular power spectrum of the CMB. In order to obtain 

the spectrum, the Code for Anisotropies in the Microwave Background (CAMB) was used. 

The potential we used for this study has three free parameters (c, d and ϕstep) and we found 

a set of values for these parameters which best reproduces the angular power spectrum 

with respect to the data of Planck Collaboration (with a relative error < 0.09). The position 

and amplitude of the peaks found with our potential are similar to the reported by Planck 

collaboration, in fact, some values are inside the range of error. Additionally, using CAMB 

we found the values of a few cosmological parameters; age of the Universe, Ωm, Ωb, ΩΛ and 

ΩK. Besides, we computed the scalar spectral index, ns = 0.966942, and its running terms. 

 

Keywords:  

Cosmic Microwave Background, cosmological parameters, anisotropies, acoustic 

oscillations, angular scales. 
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Chapter 1

Introduction

The study of the Universe on its largest scales was once the least precise in all astrophysics. The vast distances made
accurate measurements near impossible. However, as our telescopes and our techniques improved over the last few
decades, we now live in an era of precision cosmology. In fact, we know to stunning detail the properties that govern
the birth, evolution and the end of our universe. One of the most remarkable observations is the Cosmic Microwave
Background (CMB) radiation, this radiation is the remnants of an epoch known as recombination where the hot
dense universe became transparent for the first time. In 1948, Alpher and Herman predicted that the temperature of
CMB had to be 5 K7. Later, in 1965 Penzias and Wilson measured by "accident" the CMB, when they were looking
at the sky they measured a background noise temperature of about 3.5 K8.

CMB provides information from 370,000 years after the very birth of the universe and from its discovery the
precision in its measurement has increased dramatically. In fact, Far-InfraRed Absolute Spectrophotometer (FIRAS)
experiment has measured the temperature of the CMB to an extraordinary precision of 2.72548 ± 0.00057 K4,9. A
surprising feature of the CMB was its almost perfect black body distribution which is interpreted as evidence of the
Big Bang and resulting in a homogeneous and isotropic universe.

After the discovery of CMB, the next goal was to look for spectral distorsions in the black body shape of the
spectrum and anisotropies in the CMB. The reason for this was that the CMB should have evidence of the initial
fluctuations resulting by gravitational stability and these fluctuations were assumed to be the origin of the structure
of the present universe10. Theoretical studies of these anisotropies were performed such as the prediction of the
physical processes that could generate them (e.g. gravitational redshift and diffusion damping)11,12, the evolution
of the density perturbations13 and the consequences of the thermal history and structure formation of the universe
on the CMB14. Despite the studies began soon after the discovery of Penzias and Wilson, the observations of those
days could not corroborate these studies due to technological limitations to perform experiments that could measure
the anisotropies.

The dipole anisotropy was the first measurement of the anisotropies on the CMB15,16, but this anisotropy is the
result of the Doppler effect due to the peculiar motion of the solar system relative to the rest frame of the CMB.
In 1989, Cosmic Background Explorer (COBE) satellite was launched and it measured temperature anisotropies in

1



2 1.1. PROBLEM STATEMENT

the CMB17 on the level of δT/T ∼ 10−5. COBE’s discovery led to theoretical work that helps to understand the
inherent features of the CMB and this revealed the need of improving the precision of the measurements of CMB. As
a result, Wilkinson Microwave Anisotropy Probe (WMAP) and Plack missions were carried out by NASA and ESA,
respectively. In 2001 MAP satellite, later called WMAP, was launched and reported the first results in 200318,19. It
took nine years of data on 5 frequencies and mapped the full sky CMB anisotropy, the final results were reported in
201320. In 2009 Planck satellite was launched and it was scanning the sky for four years. It collected data in nine
frequency bands from 30 to 857 GHz, this allows to produce deep and high resolution maps of all sky. These results
along with calculation of cosmological parameters were reported in 201821–23.

1.1 Problem Statement
The Hot Big Bang Theory is the accepted theory that explains the evolution of our Universe. However, this theory
presents some problems that can not be explained such as the flatness problem, the horizon problem and others24–26.
In order to solve these problems a new theory was born, the inflationary theory. The simplest inflationary scenarios
is based on a scalar field ϕ rolling down a smooth potential V(ϕ). There exist several models, however, thanks to the
improvement in the measurements of the CMB it is possible to assess these models and find the ones that fits better
the data reported by Planck Collaboration23.

1.2 General and Specific Objectives
General Objective:

Reproduce and study the angular power spectrum of the CMB with the chaotic inflationary model with a step into
the slow-roll approximation. For this purpose the Code for Anisotropies in the Microwave Background (CAMB)
will be used.

Specific Objectives:

1. Find the best parameters of the potential that allows to reproduce with more accuracy the angular power
spectrum of the CMB.

2. Study in detail the different regions of the angular power spectrum.

3. Assess the relation of the angular power spectrum with the value of cosmological parameters.

Throughout this work natural units will be used (c = ℏ = 1) and reduced Planck mass Mpl = 1.



Chapter 2

Methodology

2.1 The Hot Big Bang Theory
Modern cosmology is based on the Cosmological Principle, which tells us that the Universe is homogeneous and
isotropic at large scales27. It also is the basis of the Big Bang Cosmology that explains the development of the
universe from a much hotter and denser earlier universe5. This model of cosmology is supported by a number of
observational evidence among them are the Hubble’s law that explains the expansion of the universe, the existence of
the Cosmic Microwave Background (CMB), and the Nucleosynthesis that explains abundances of the light elements.
Furthermore, there is a theoretical foundation to explain the evolution of the universe; General Relativity (GR)
developed by Albert Einstein.

2.1.1 Theoretical bases

In a curved spacetime, the metric gives the physical distance between two infinitesimally close points defined in
some arbitrary coordinate system5. From the premise that the Universe is homogeneous and isotropic at large scales,
the most general metric that satisfies this condition is the Friedmann–Robertson–Walker (FRW) metric

ds2 = −dt2 + a(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2θdϕ2)
]
, (2.1)

where t is time, r , θ and ϕ are comoving spatial coordinates. The scale factor, a(t), is a time dependent quantity that
characterizes the expansion of the universe, and k is a parameter that measures the curvature of space. The parameter
k can take the values 1, 0 and -1 for positive, zero, and negative curvature respectively.

The dynamics evolution of the universe is contained in the Einstein equations. The set of equations can be
summarized as the tensor equality

Gµν + Λgµν = 8πGTµν, (2.2)

3



4 2.1. THE HOT BIG BANG THEORY

where G is the gravitational constant, Λ is the cosmological constant and Gµν is the Einstein tensor defined by

Gµν ≡ Rµν −
1
2

gµνR, (2.3)

here Rµν is the Ricci tensor and R is the Ricci scalar (R ≡ gµνRµν).
Applying the field equations of GR to the FRW metric we obtain the Friedmann equations28

H2 =

( ȧ
a

)2
=

8πGρ
3
−

k
a2 +

Λ

3
, (2.4)

ä
a
= −

4πG
3

(ρ + 3p) +
Λ

3
, (2.5)

where H = ȧ/a is the Hubble parameter, ρ and p are the total energy density (matter, radiation and dark energy) and
the total pressure of the Universe, respectively. Eq. (2.5) is also known as the acceleration equation.

The evolution of the energy density is ruled by the equation-of-state parameter, wi ≡ pi/ρi. The subindices i
stands for the constituents of the universe: matter (m), radiation (r) and vacuum energy (vac). For a constant wi

wi =
pi

ρi
= constant, (2.6)

The equation-of-state parameter for each component is

wm = 0, matter,

wr = 1/3, radiation,

wvac = −1, vacuum energy.

(2.7)

The critical energy density ρc is given by

ρc =
3H2

8πG
, (2.8)

and its present value is ρc = 8.10 × 10−47h2 GeV. It allows to normalize the cosmic energy densities as

Ωi =
ρi(t0)
ρc
, (2.9)

this is the density parameter. Ω0 > 1 results in a positively curved Universe, while Ω0 < 1 gives a negatively curved
Universe. The information from the CMB suggests that the Universe is nearly spatially flat (Ω = 1).

The evolution of the energy density with respect to the scale factor is given by

ρ ∝ a−3(1+w), (2.10)
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so, for the different constituents we have

ρ ∝ a−4, radiation,

ρ ∝ a−3, matter,

ρ ∝ a0, cosmological constant.

(2.11)

The evolution of the scale factor depends on the dominant energy form, given by

a(t) ∝ t2/3(1+w), (2.12)

and the Universe has gone through a radiation dominated era, a(t) ∝ t1/2, a matter dominated era, a(t) ∝ t2/3, and a
dark energy dominated era, a(t) ∝ exp(Ht).

2.2 Obsevational evidence of Big Bang

2.2.1 Hubble’s law

Nowadays it is well known and we have solid evidence that the universe is expanding, however, around 100 years
ago the prevailing picture was a static universe. The first hints of an evolving universe were given by Alexander
Friedmann and Georges Lemaitre. In 1922 Friedmann found that Einstein’s equations allow a dynamical universe29

and in 1927 Lemaitre derived a nonstatic solution to Einstein’s equations and based on observational evidence he
suggested that the universe is expanding30. In 1929, conclusive evidence was provided by Edwin Hubble, he found
a correlation between distance and recession velocity of galaxies31. This changed our understanding of the universe.
This relation is the known as the Hubble Law (also known as Hubble-Lemaitre Law) and is expressed as

v = H0d, (2.13)

where v is the recession velocity, d is the distance of the galaxy and H0 is the Hubble constant. This shows a linear
relation between the velocity and the distance of the galaxy and a constant rate of expansion given by H0. The
Hubble diagram shown in Fig. 2.1 is the graphical representation of Hubble’s law. This suggest that time ago distant
galaxies were closer to us, which supports the Big Bang Theory.

H0 represents the constant expansion rate in all directions and its is the value of the Hubble parameter, H(t) =
(1/a)(da/dt), today. The scale factor , a, is a time dependent quantity that characterizes the expansion of the universe
and the Hubble parameter measures how fast the scale factor changes. By convention, a = 1 today and the value of
the Hubble Constant is parameterized by a dimensionless quantity h and is defined by

H0 = 100 h km s−1Mpc−1, (2.14)

where Mpc is a megaparsec and is equal to 3.0856 × 1022 m. Since the measurement made by Hubble in 1929, the
value of the Hubble Constant has changed and even today there is no consensus about its exact value, at the 5%
level5. Observations of the Cepheids and supernovae1,32, CMB21,33, H2O masers of accretion disks34–36, quasars
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Figure 2.1: Hubble diagram from the Hubble Space Telescope Key project1.

strongly lensed by galaxies37–39 and the combined analysis of gravitational wave and electromagnetic data40,41 have
been used to measure the value of H0. Now, the current value of h is about 0.7.

2.2.2 Big Bang Nucleosynthesis

Before Big Bang Nucleosynthesis (BBN), it was taken for granted that all the stars initiate their lives made out of
hydrogen and the heavier elements formed through the nuclear reactions at their cores. Although it is true this is
the via to generate heavy elements, the light elements ( D,3He, Li and especially 4He ) could not be produced in
this way. Instead, the abundances of these elements seem to be from the primordial gas which gave rise to the stars.
They were synthesized in the first three minutes of the Universe life which supports the Big Bang Cosmology2,42,43.

BBN occured at the point were the temperature of the Universe was 1 MeV. At temperatures above this value,
weak interactions were in thermal equilibrium. At that moment, the cosmic plasma consisted of photons, electrons,
positrons, neutrinos and baryons. The ratio of baryons to photons is small,

ηb ≡
nb

nγ
= 6.0 × 10−10

(
Ωbh2

0.022

)
, (2.15)

where nb and nγ are the number density of baryos and photons, respectively.
At high temperatures, compared to nuclear binding energies, immediately after a nucleus is produced, it is

destroyed by a high energy photon. Consider the deuterium production, n + p↔ D + γ, at the equlibrium condition
of weak interactions. The fraction of deuterium is given by5

nD

nb
∼ ηb

(
T

mp

)3/2

eBD/T , (2.16)
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where T is the temperature, mp is the proton mass, and BD is the binding energy of deuterium and is equal to 2.22
MeV. Eq. (2.16) shows that the smallness of nb inhibits nuclei production until T drops well below the nuclear
binding energy. Then, at temperatures above 0.1 MeV, there are no nuclei and only free protons and neutrons exist.

Since there are are just free protons and neutros, we need to know in which ratio to find the nuclei they can form.
Protons can be transformed to neutrons via weak interactions and the expression at equilibrium ratio is given by

np

nn
= eQ/T , (2.17)

where Q ≡ mn − mp = 1.293 MeV. Hence, at high temperatures, the ratio of protons and neutrons is around ∼ 1.
However, as the temperature drops below 1 MeV the amount of neutrons decreases. This amount would drop to zero
if the weak interactions could work efficiently to maintain the equilibrium indefinitely. In the real world this is not
the case.

The evolution of the ratio of neutrons to total nuclei, Xn, is given by

dXn

dt
= λnp

[
(1 − Xn)e−Q/T − Xn

]
, (2.18)

with

Xn ≡
nn

nn + np
. (2.19)

Fig. 2.2 shows the time-temperature evolution of nn/np = Xn/(1−Xn). As the temperature decreases below ∼ 1 MeV,
weak interactions become too slow to maintain equilibrium and the n/p falls out of equilibrium. This ratio frezzes
out at ∼ 1/7 and at temperatures below 0.1 MeV the neutron decay and Deuterium production become important.
This is the beginning of the BBN and the sharp drop at this level is the result of the Deuterium production.

At the point where decays become relevant, the time temperature relation is

t = 132s
(

0.1MeV
T

)2

, (2.20)

and at the moment light elements production (onset of BBN) the neutron abundances is2

Xn(Tnuc) = 0.11, (2.21)

where Tnuc ∼ 0.07 MeV is the temperature at which BBN begins.
Now that we know the fraction of neutrons at the beginning of BBN, we can turn to light element formation.

Comparing helium to deuterium formation, the former is favored because its binding energy is larger than the binding
energy of deuterium, recall the factor eB/T . In fact, Fig. 2.3 exhibit that almost instantly after deuterium production,
helium is produced. Practically all the remaining neutrons are used to form 4He at T ∼ Tnuc. The production of 4He
requires 2 neutrons, therefore, its abundance is equal to half the neutron abundance. The mass fraction of helium is
given by
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Figure 2.2: Evolution of neutronn to proton ratio. The solid curve shows the true variation, the dashed curve shows
the equilibrium n/p ratio (with ∆m ≡ Q) and the dotted curve shows the free-neutron decay2.

Figure 2.3: Time and temperature evolution of the mass fraction in light elements during the standard BBN. The
gray vertical bands shows the main BBN stages3.
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Yp ≡
4n(4He)

nb
= 2Xn(Tnuc), (2.22)

this yields Yp = 0.22, which is in concordance with a full numerical calculation44

Yp = 0.2262 + 0.01351 ln(ηb/10−10). (2.23)

Then, from the total matter in the Universe ∼ 22% of the matter is made up of 4He. A track of a whole network
of nuclear reactions allow us to calculate the abundances of the other nuclei. These contributions are deuterium
∼ 10−4, 3He ∼ 10−5 and 7Li 10−10 27. Remarkably, all these abundances can be measured and for that reason BBN is
a powerful tool to tests the Hot Big Bang model.

2.2.3 Cosmic Microwave Background

During decoupling the mean free path of the photons increased to become virtually infinite. Then, the temperature of
the photon-baryon fluid at that moment was transferred to the photons. After decoupling photons hardly interacted
with matter, therefore its temperature could only change due to the redshift produced by the expansion of the Universe.
As a consequence, the flux of photons that we see today in the CMB is the same flux arriving from the Last Scattering
Surface (LSS). Given an homogeneous and isotropic Universe, the interaction of photons with electrons for the last
time should occur, in average, at the same level for every point and in all directions of space. And this is exactly
what an observer sees no matter its position, an homogeneous and isotropic distribution of photons.

Taking into account that the photon-baryon fluid was at thermal equilibrium, we could assume that energy
distribution should be a Planck black body spectrum before decoupling. For a black body spectrum, the intensity of
a gas of photons is given by

Iν =
4πℏν3/c2

exp[2πℏν/kBT ] − 1
, (2.24)

where ν is its frequency, kB is the Boltzmann constant and T is the temperature.
It is not too impressive that photons shows a perfect black body spectrum even after travelling billion of years and

considering that they have no way to maintain in thermal equilibrium with its environment. Besides, the background
radiation has an homogeneous temperature though it may seem strange because it was released not instantaneously
and resulting in different redshifts and different initial temperatures. These things can be understood by taking a
look at the energy density dependence on the temperature

ϵr = ρrc2 = αT 4. (2.25)

The frequency of radiation inversely scales with the scale factor, ν ∼ 1/a, due to the cosmic expansion. Besides,
their energy density scales as: ρr ∼ 1/a4, so from Eq. (2.25): T ∼ 1/a. Consequently, though all photons were not
released at the same time, the photons released later at a lower temperature, experimented a bit less redshift compared
with those released earlier. This effect compensates the possible difference in redshift and initial temperatures that
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Figure 2.4: Intensity as a function of frequency of cosmic microwave radiation from FIRAS instrument4. The plot
shows a black-body spectrum with T0 = 2.728 K.

photons could have during decoupling. Since this predictions are based in a FRW Universe, the detection of the
CMB and its features confirms that we live in such Universe. The volume of the Universe scale as: 1/a3, hence
from Eq. (2.24) it can be realized that a Planck spectrum can be maintained in the expanding Universe and a
decreasing temperature inversely proportional to a. Fig. 2.4 shows the extraordinary agreement between the black-
body spectrum prediction of the Big Bang and the observations made by Far-InfraRed Absolute Spectrophotometer
(FIRAS) instrument on the COBE satellite4.

During the first 25 years of studying the CMB, no anisotropies were detected, which pointed out to a smooth
universe. This interval of time solidified the idea of a smooth Big Bang. However, in 1992 COBE satellite reported the
discovery of anisotropies in the CMB17,45 which suggested a not fully smooth universe. The fractional temperature
fluctuations founded in the cosmic plasma were of the order of 10−5.

2.3 Issues with the Big Bang

2.3.1 Horizon problem

According to observations, when the universe had 380,000 years, it was very smooth to about 10−5. Besides, photons
and baryons were extraordinarily close to thermal equilibrium. However, the reason for this was not clear because if
we take a random patch of the size of the observable universe, this should be inhomogeneous to a high level. Now, a
possible explanation could be inhomogeneous, then if the universe began being highly inhomogeneous by letting be
in contact, after some time it eventually will reach an equilibrium point to share the same temperature. To see if this
scenario is possible, it is useful to introduce the conformal time
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Figure 2.5: The horizon problem5. An observer at the top (blue dot) receives light signals coming from his past light
cones. The cone intersects the LSS at η = η∗ and the CMB is emitted and found to be uniform. Only signals coming
from the shaded region below x∗,1 andx∗,2 can influence this CMB photon, however, these regions do not overlap.

η(t) =
∫ t

0

dt′

a(t′)
, (2.26)

it is the comoving distance that light could travel starting at t = 0. Taking a look to Fig. 2.5 gives the impression that
this solution do not work, since the observations of the CMB shows that different parts of the universe were so distant
at time of decoupling that they could not be in causal contact with one another. Hence, the idea of thermalization
seems impossible.

This problem can be shown by finding the comoving horizon η at recombination, that is, the comoving distance
light is able to travel from η = 0 to η∗. After that, we can check if this is able to join different patches of the CMB
that we see today. Assuming that only matter and radiation are present in the universe and going back to t = 0, the
comoving horizon at recombination is η = (a) ≡ 281h−1 Mpc5. Looking the CMB today, the comoving distance
between two points apart by a small angle θ is

χ(θ) ≃ χ∗θ = (η0 − η∗)θ. (2.27)

Since η0 ≈ 14200h−1 Mpc, then we can conclude that two points in the CMB separated by

θ ≥
η∗
η0 − η∗

≈ 1.2◦, (2.28)

are not able to be in thermal contact at recombination. The difference between η0 and η∗ is larger than Fig. 2.5
suggest, the difference is of the order of 50, so this aggravates the problem. An assumption of what underlies the
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problem is obtain by rewriting Eq. (2.26) and changing the integration variables from t′ to ln a′

η(a) =
∫ a

0
dlna′

1
a′H(a′)

. (2.29)

Now, it becomes in the logarithmic integral of the comoving Hubble radius (1/aH), which is the distance that light
travels during one expansion time. This gives a measuring rod to evaluate if photons or baryons can communicate
within one e-fold of expansion. For a matter dominated universe or a radition dominated universe, H evolves as
a−3/2 or a−2. Then, we get a Hubble radius that is always increasing, in which case the largest contribution to η is
given by the most recent epochs.

2.3.2 Flatness problem

To see the flatness problem, consider the Friedmann equations (Eq. (2.4) and Eq. (2.5)) and neglet the cosmological
constant, then one can obtain he evolution equation for the curvature density

Ωk =≡ −
k

a2H2 = 1 −Ω, (2.30)

where Ω ≡ 8πρ/(3H2) . Then, one can find

dΩk

dlna
= (3w + 1)(1 −Ωk)Ωk, (2.31)

remember, w = P/ρ is the equation of state parameter. Now, one can integrate Eq. (2.31), when w is constant, and
obtain

Ωk0

Ωk(a)
= (1 −Ωk0)

(
a
a0

)(−1−3w)

+ Ωk0, (2.32)

whereΩk0 is the curvature today. The observations46 constrain |Ω−1| ≲ 0.01 and one can find that at radiation-matter
equality

|Ω(aeq) − 1| ≲ 3 × 10−6, (2.33)

and at the Planck time,

|Ω(ap) − 1| ≲ 10−60. (2.34)

Since radiation, non relativistic matter and curvature evolve as a−4, a−3 and a−2, respectively, then curvature
should eventually dominates. However, today it does not dominate, so it should very negligible in the past. The
ΛCDM model can not explain why the spatial curvature is so small.
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2.4 Inflation
Inflation is a period of the universe that occurs before the hot big bang history. Information from the BBN suggest
that the radiation dominated era was at t ∼ 1 − 100 sec, therefore, inflation should occur at least earlier than this47.
Furthermore, the dominant form of energy during inflation needs to have w ≃ −1 or H ≃ const. Via the Friedmann
equations one can find three equivalent conditions that are needed for inflation.

The first condition is a decreasing comoving horizon. A shrinking Hubble sphere is defined as

d
dt

(
1

aH

)
< 0, (2.35)

this relation is fundamental to solve the horizon and flatness problems, besides, it is key for the mechanism to
generate fluctuations.

The second condition is the definition of inflation itself, an era of repulsive gravity. From Eq. (2.35)

d
dt

(aH)−1 =
−ä

(aH)2 , (2.36)

from this we can see that a shrinking comoving Hubble radius results in an accelerated expansion

d2a
dt2 > 0. (2.37)

The third condition is the existence of a material with a negative pressure. To have an accelerated expansion we need

p < −
1
3
ρ, (2.38)

where p is the pressure and ρ is the energy density, i,e., we need a negative pressure.
The number of e-folds, N measures the amount of expansion during inflation and is given by48

N(t) ≡ ln
[
a(t)
ai

]
, (2.39)

where ai is the scale factor at the begining of inflation.

2.4.1 Horizon problem’s solution

Inflation solves in an easy way the horizon problem if the number of e-folds is sufficiently large. In fact, the primordial
phase of inflation can explain why regions of the CMB that seems to be causally disconnected at recombination
share almost the same temperature. Assuming an exponential expansion during inflation,

a(t) = aieH△t, (2.40)

then, one can compute the number of e-folds needed to solve the horizon problem. We have that our current
observable Universe, dH0 , has to be smaller at the end of inflation than the size of a causal region at the beginning of
inflation48 dHi , then
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dH0 (t0)
aend

a0
< dHi

aend

ai
= dHi (ti)e

N , (2.41)

here, aend is the scale factor at the end of inflation. If inflation ends at the Grand Unification scale (ρ1/4
end ∼ 1016 GeV),

assuming

dHi (ti) ∼
lPlTPl

Tend
, (2.42)

where TPl and lPl are the the Planck temperature and the Planck length, respectively. Then, one needs

N ∼ ln
[

T0dH0 (t0)
TenddHi (ti)

]
≳ 57, (2.43)

where T0 is the current photon temperature. If this condition is satisfied, one can conclude that the entire observable
Universe emerges out of the same causal region before the beginning of inflation.

2.4.2 Flatness problem’s solution

Consider the curvature density

Ωk ≡ −
k

a2H2 = 1 −Ω, (2.44)

to decrease Ωk, we need an epoch of the universe in which 1/aH decreases with time. As already mentioned the
condition for (aH)−1 to decrease with time is to have an accelerate expansion,

d
dt

(
1

aH

)
< 0 ⇒ ä > 0. (2.45)

If the 1/aH decreases this leads the universe toward flatness. Furthermore, from the exponential growth at inflation,
we have

|Ω − 1| ∝ e−2Ht, (2.46)

and one can immediately see that the difference |Ω − 1| tends to zero exponentially with time. This allows an
extremely flat Universe. If we assume H ≃ 1 during inflation, one has

|Ωk(aend)| = |Ωk(ai)|e−2N , (2.47)

and assuming at the Planck scale a curvature of the order of unity and with N ≳ 70, then, the flatness problem is
naturally solved.
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2.5 The Physics of Inflation

2.5.1 Scalar field dynamics

The simplest model capable of driving a period of inflation involve a single scalar field ϕ, the inflaton. The dynamics
of a scalar field coupled to gravity has the following action49

S =
∫

d4x
√
−g

[
1
2

R +
1
2

gµν∂µϕ∂νϕ − V(ϕ)
]
= S EH + S ϕ. (2.48)

The first term is the gravitational Einstein-Hilbert action, S EH and the other two terms are action of a scalar field,
S ϕ. The self interactions of the scalar field are described by the potential, V(ϕ). The energy momentum tensor of ϕ
is

T (ϕ)
µν ≡ −

2
√
−g
δS ϕ
δgµν

= ∂µϕ∂νϕ − gµν

[
1
2
∂σϕ∂σϕ + V(ϕ)

]
, (2.49)

and the field equation of motion is

δS ϕ
δϕ
=

1
√
−g
∂mu(
√
−g∂µϕ) + V ′ = 0, (2.50)

where V ′ = dV
dϕ . Assuming FRW metric of Eq. (2.1) and for a homogeneous field configuration, the energy density

and pressure are

ρ =
1
2
ϕ̇2 + V, (2.51)

p =
1
2
ϕ̇2 − V. (2.52)

Therefore the equation of state is

w =
p
ρ
=

1
2 ϕ̇

2 − V
1
2 ϕ̇

2 + V
. (2.53)

If the potential energy dominates the kinetic energy, we have a negative pressure (w < 0) and consequently an
accelerated expansion. The dynamics of the scalar field is given by

ϕ̈ + 3Hϕ̇ = −V ′, and H2 =
1
3

[
1
2
ϕ̇2 + V(ϕ)

]
. (2.54)

Large values of the potential leads to significant Hubble friction from the term Hϕ̇
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2.5.2 Slow-roll Inflation

A Universe dominated by a scalar field has an acceleration equation with the form

ä
a
= −

1
6

(ρ + 3p) = H2(1 − ϵ), (2.55)

where

ϵ ≡
3
2

(w + 1) =
1
2
ϕ̇2

H2 , (2.56)

it is known as slow-roll parameter and it is related to the the evolution of the Hubble parameter

ϵ = −
Ḣ
H2 . (2.57)

If ϵ < 1, then it leads to an accelerated expansion. The de Sitter limit, p → −ρ leads to ϵ → 0 and the potential
energy dominates over kinetic energy

ϕ̇2 ≪ V(ϕ). (2.58)

To have a sustained accelerated expansion the second time derivative of ϕ has to be small enough

|ϕ̈| ≪ |3Hϕ̇|, |V ′(ϕ)|. (2.59)

This condition requires the second slow-roll parameter to be small

η = −
ϕ̈

Hϕ̇
= ϵ −

1
2ϵ

dϵ
dN
, (2.60)

and |η| < 1 ensures a small change of ϵ per e-fold. The slow-roll conditions can also be expressed in term of the
potential

ϵV =
M2

Pl

2

(
V ′

V

)2

, (2.61)

and

ηV = M2
Pl

(
V ′′

V

)
, (2.62)

In the slow-roll regime

ϵV ≪ 1 and |ηV | ≪ 1. (2.63)

and the background evolution is

H2 ≈
V(ϕ)
3MPl

, (2.64)
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ϕ̇ ≈ −
V ′(ϕ)
3H
, (2.65)

and the spacetime is approximately de Sitter

a(t) ∼ eHt. (2.66)

The number of e-folds before inflation ends is

N(t) = ln
a(tend)

a(t)
, (2.67)

where tend is the time at the end of the inflation. This can be expressed in terms of the scalar field potential:

N =
∫ tend

t
H dt ≃

1
Mpl

∫ ϕ

ϕend

V
V ′

dϕ, (2.68)

or

N =
∫ ϕ

ϕend

dϕ
√

2ϵ
≈

∫ ϕ

ϕend

dϕ
√

2ϵV
. (2.69)

2.6 The CMB temperature power spectrum
CMB exhibits an almost perfect black-body spectrum at a temperature of 2.72K. It provides a lot of information
about the universe and the vast majority of information lies in its temperature field. Although across the celestial
sphere the average temperature is amazingly uniform, there are small fluctuations at the level of 10−5. The deviations
from the average temperature are defined by50

Θ(n̂) =
δT (n̂)

T
=

T (n̂) − ⟨T ⟩
⟨T ⟩

, (2.70)

where n̂ is the direction of the signals in the sky n̂ = (θ, ϕ).
Since temperature fluctuations are projected in a 2D spherical surface, spherical harmonics are used to expand

the temperature field. The spherical harmonics are defined as

Ylm =

√
2l + 1(l − m)!

4π(l + m)!
Pm

l (cosθ)eimϕ, (2.71)

where Pm
l are the Legendre polynomials and the indices l = 0, 1, ...,∞ and l ≤ m ≥ l. They form a complete

orthonormal set. l is called the multipole and constitutes a given angular scale in the sky surface α, with α = 1800/l.
Temperature fluctuations field are expanded using these functions

Θ(n̂) =
l=∞∑
l=0

l∑
m=−l

almYlm(n̂), (2.72)

where,
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alm =

∫ π

θ=−π

∫ 2π

ϕ=0
Θ(n̂)Y∗lm(n̂)dΩ. (2.73)

Average over an isotropic on average Universe and random field of temperature fluctuations, have the property

⟨alma∗l′m′⟩ = δll′δmm′CT
l , (2.74)

where the delta functions arises from isotropy and the coefficient Cl depends only on the total angular momentum l.
We know only one universe, then, we can study only one set of coefficients alm. Assuming the validity of Eq. (2.74),
one can obtain the the coefficients Cl from observations51

CT
l =

1
2l + 1

l∑
m=−l

|alm|
2. (2.75)

There is an unavoidable error in the estimation of any given CT
l of △CT

l =
√

2/(2l + 1), This is known as the cosmic
variance.

A two-point correlation function of the temperature fluctuation is determined by the coefficients Cl. From (Eq.
2.70), the two point function is given by

⟨δT (n̂1) δT (n̂2)⟩ = T 2
∑

l

2l + 1
4π

Cl · Pl(n̂1n̂2). (2.76)

The variance of temperature is obtained from Eq. (2.76),

⟨δT (n̂)⟩ = T 2
∑

l

2l + 1
4π

Cl ≈ T 2
∫

d log l
(l + 1)l

2π
Cl, (2.77)

where the last equality holds for large l. Hence, the amplitude squared of the temperature fluctuation in a decimal
interval of multipoles is given by

Dl ≡ T 2 l(l + 1)
2π

Cl. (2.78)

Fig. 2.6 shows results of the measurements of CMB temperature anisotropy made by different experiments6.

2.6.1 Cosmological perturbations

The power spectrum is useful to characterize the properties of the fluctuations of the inflaton. The power spectrum
of tensor and scalar expands around a pivot scale defined by k∗ , and it parameterizes by

PR(k) = As

(
k
k∗

)ns−1+ 1
2 dns/d lnk ln(k/k∗)+ 1

6 d2ns/d lnk2(ln(k/k∗))2+...

, (2.79)

Pt(k) = At

(
k
k∗

)nt+
1
2 dns/d lnkln(k/k∗)+...

, (2.80)



CHAPTER 2. METHODOLOGY 19

Figure 2.6: CMB temperature anisotropy from WMAP, BOOMERANG and ACBAR experiments6.

where As , At is the scalar, tensor amplitude respectively. On the other hand, the tensor and scalar spectral indices
and their running terms are given by

nt(k) ≃ −2ϵv, (2.81)

ns(k) ≃ 1 − 6ϵv + 2ηv, (2.82)
dnt(k)
dn ln k

≃ 4ηv − 8ϵ2v , (2.83)

dns(k)
dn ln k

≃ 16ηvϵv − 24ϵ2v − 2ξ2v , (2.84)

d2ns(k)
dn ln k2 ≃ 192ϵ3v − 192ϵ2v ηv + 32ϵvη2

v + 24ϵvξ2v − 2ηvξ
2
v − 2ϖ3

v , (2.85)

where

ξ2v =
M4V ′(ϕ)V ′′′(ϕ)

V2(ϕ)
, and ϖ3

v =
M6V ′2(ϕ)V ′′′′(ϕ)

V3(ϕ)
. (2.86)

The tensor-scalar ratio is given by

r =
Pt(k∗)
PR(k∗)

≃ 16ϵv ≃ −8nt. (2.87)
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2.7 Chaotic Potential with a step
In 1983, Linde proposed a scenario where inflation may emerge from chaotic initial conditions in the early universe52.
A power law potential used in this scenario is

V(ϕ) = gϕn, n > 0, (2.88)

where g is the coupling and has dimension

[g] = (mass)4−n. (2.89)

This scenario is also called "chaotic inflation", due to the nature of the initial conditions which allow inflation. Since
in this work we use only the second power of this potential, we call it "chaotic potential"

V(ϕ) =
m2

2
ϕ2, (2.90)

where ϕ is the inflaton field. Now, the step is modeled by assuming the potential

V(ϕ) =
1
2

m2ϕ2
[
1 + c tanh

(
ϕ − ϕstep

d

)]
. (2.91)

From Eq. (2.51) and Eq. (2.52) we find the energy density and pressure

ρ =
1
2
ϕ̇2 +

1
2

m2ϕ2
[
1 + c tanh

(
ϕ − ϕstep

d

)]
, (2.92)

and

ρ =
1
2
ϕ̇2 −

1
2

m2ϕ2
[
1 + c tanh

(
ϕ − ϕstep

d

)]
. (2.93)

From Eq. (2.54), the dynamics of the scalar field is determined by

H2 =
1
3

{
1
2
ϕ̇2 +

1
2

m2ϕ2
[
1 + c tanh

(
ϕ − ϕstep

d

)]}
, (2.94)

and

ϕ̈ + 3Hϕ̇ = −m2ϕ

[
1 + c tanh

(
ϕ − ϕstep

d

)
+ 2dcϕ sech2

(
ϕ − ϕstep

d

)]
. (2.95)

And there is no analytical solution for ϕ.
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2.8 CAMB
In this work, it was used the Code for Anisotropies in the Microwave Background (CAMB). It is a Python and
Fortran code based on CMBFast. CAMB is used to compute different things related to the CMB radiation such as the
CMB itself, CMB lensing, transfer functions and matter power spectra, and background cosmological functions53.
It is a powerful tool that is used by many papers54–56. It works by providing initial conditions, quantum fluctuations
and inflation gives rise to primordial perturbations. In CAMB the natural logarithm of the scalar and tensor power
spectra is

ln Ps = ln As + (ns − 1)ln
(

k
ks

)
+

nrun

2

[(
k
ks

)]2

+
nrun,run

6

[(
k
ks

)]3

, (2.96)

and

ln Pt = ln At + ntln
(

k
kt

)
+

nt,run

2

[(
k
ks

)]2

, (2.97)

where As and At are the scalar power amplitude and tensor tensor power amplitude, respectively. They determine
the variance of the primordial density and gravitational wave fluctuations. The pivot scale, ks, is the scale best
constrained by a given set of observations. The scalar spectral index, ns, relates the change in density fluctuations
with the scale. The running terms of the spectral index are nrun and nrun,run.

In this work we need to obtain the angular power spectrum, therefore, we need

Dl ≡ T 2 l(l + 1)
2π

Cl. (2.98)

This code use input parameters which are defined in a ”params.ini”. This file have to contain all information
about the cosmology (cosmological parameter values, etc). Besides, we can ask to output the observables of interest
by specifying it in the ”params.ini” file. Fig. 2.7 shows an example of this type of files.

There are several output files that CAMB can generate, but the file used for this work looks like the one in Fig.
2.8. In this work the first two columns are used to obtain the angular power spectrum. In the first column is the
multipole moment, l, and in the second column is the amplitude of the power spectrum, Dl. The other columns are
the polarization and temperature-polarization cross-correlation power spectra.
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Figure 2.7: Example of a file that contains the cosmological information need by CAMB.

Figure 2.8: Output file from CAMB.



Chapter 3

Results & Discussion

As mentioned, the Cosmic Microwave Background (CMB) shows an almost perfect black body distribution, with a
temperature of T = 2.72548±0.001 K. However, the are temperature anisotropies over the celestial sphere. The dipole
anisotropy is the strongest at the level of δT/T ∼ 10−3, this anisotropy is generated due to the motion of the Earth
respect to the reference frame of the CMB. While the remaining anisotropies are at the level of δT/T ∼ 10−4 − 10−5.
The temperature power spectrum shows these temperature anisotropies along the celestial sky. The power spectrum
can be divided in three main regions: large angular scales (l ≲ 100), intermediate angular scales (l ≲ 1000) and large
angular scales(l ≳ 1000). As we will see, each of these three regions are affected to a different extent by a specific
physical process.

The present chapter introduces the different power spectra obtained with a chaotic inflationary potential with a
step in the slow-roll approximation by changing the values of parameters present in this potential. Later, the analysis
of the mentioned three different regions are analyzed separately. Finally, the method used to obtain the tensor and
spectral indices and their running terms, as well as the results obtained using the Code for Anisotropies in the
Microwave Background (CAMB).

3.1 Scalar power spectra for a chaotic inflationary potential with a step
into a slow-roll approximation

CMB anisotropies at the level of δT/T ∼ 10−5 have an extraordinary importance for cosmology. These anitropies
carry important information about cosmological perturbations from the epoch of recombination and properties of
the Universe after last scattering. The scalar power spectrum shows these anisotropies at different angular scales.
The potential used in this work is

V(ϕ) =
1
2

m2ϕ2
[
1 + c tanh

(
ϕ − ϕstep

d

)]
. (3.1)
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3.1. SCALAR POWER SPECTRA FOR A CHAOTIC INFLATIONARY POTENTIAL WITH A STEP INTO A

SLOW-ROLL APPROXIMATION

Different values were given to the parameters c, d, and ϕstep in order to obtain different spectra and find the one that
fits best to the data of Planck mission23.

(a) (b)

(c) (d)

Figure 3.1: Power spectrum obtained using the chaotic potential with a step. The black dashed line shows the best-fit
reported from Planck data. The rest of the lines shows the power spectrum obtained with the chaotic potential with
a step by changing the value of the parameters. In (a) and (b) changes the value of ϕstep, in (c) changes the value of c
and in (d) changes the value of d . The multipole moment for 2 < l < 29 is represented in logarithmic scale.

The data of Planck mission is used for comparison because it is the more recent data compare to Cosmic
Background Explorer (COBE) and Wilkinson Microwave Anisotropy Probe (WMAP) data. Fig. 3.1a, Fig. 3.1b
Fig. 3.1c and Fig. 3.1d show the different power spectra obtained by changing the values of ϕstep, c and d. Fig. 3.1a
shows that for certain values of ϕstep (14.5 and 15) the power spectrum obtained using Eq. (3.1) is far below from
the spectrum obtained using Planck data. The power spectra of Fig. 3.1c and Fig. 3.1d look similar to the spectrum
from Planck data for the values chosen for the parameters c and d.
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3.1.1 Relative error

The validity of a model can be judged by the goodness of fit to the data19. Then, in order to assessed the goodness
of fit, it has been computed the relative error and the percentage error is shown in Fig. 3.2b.

(a) Angular power spectrum

(b) Percentage error

Figure 3.2: (a) Angular power spectrum and (b) percentage error of the temperature power spectrum obtained from
the chaotic potential with a step. The relative error is respect to the Planck data.

From all the values used to reproduce the temperature power spectrum with the potential V(ϕ) of Eq. (3.1), the
ones that produced the lower relative error with respect to the Planck data are: c = 0.08, d = 0.03 and ϕstep = 14.09.
Fig. 3.2b shows the percentage error, and one can see that along all the spectrum the difference between our model
and the Planck data is below 9%.
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SLOW-ROLL APPROXIMATION

Figure 3.3: Best fit to Planck data for the chaotic potential with a step.

Comparing Fig. 3.2a and Fig. 3.2b, one can see that the uncertainty of the model is different for different regions
of the power spectrum and the relative error goes from almost 0 to less than 0.09. These two figures show that our
model at intermediate angular scales (100 ≲ l ≲ 1000) exhibits a low relative error (around 2%) and at large angular
scales (l ≲ 100) the relative error is larger (compared to intermediate angular scales, although it is still low, around
6%). Fig. 3.2b shows that the uncertainty is larger for small angular scales(l ≳ 1000), although we can realize that it
exhibits oscillations with respect to the Planck data. As a result, even if the uncertainty is larger with respect to the
other two regions, there are points where the relative errors drops to almost zero.

From this quantitative analysis of the obtained temperature power spectrum, one can say that this model reproduce
to a good level the temperature fluctuations present at the early universe. Besides, it reproduces pretty well the
acoustic oscillations, since these are present at intermediate angular scales, this part of the spectrum has the smallest
uncertainty (∼ 2%). Finally, Fig. 3.3 shows the power spectrum obtained with the potential of Eq. (3.1) and with
the parameters that display the lowest relative error, c = 0.08, d = 0.03 and ϕstep = 14.09.
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3.2 Large angular scales
At large angular scales the contribution to the CMB anisotropies comes from perturbations that are superhorizon
at recombination51. At these scales is present relatively unprocessed primordial fluctuation spectrum due to the
distance of patches on the sky18. Large angular scales of the angular power spectrum is shown in Fig. 3.4.

Figure 3.4: Large angular scales region. The blue line was obtained with the chaotic potential with a step and the
black dashed line is from Planck data.

At these scales the Sachs–Wolfe (SW) effect and Integrated Sachs–Wolfe (ISW) effect dominates for the shape
of the spectrum51. The SW effect was pointed out by Sachs and Wolfe11 in 1967 and it is the result of spatial
fluctuations in the gravitational potential at the Last Scattering Surface (LSS) which causes a red and/or blue shifts
in the frequency of photons57. In a high density region, compared to the average at LSS, photons are gravitationally
redshifted when they try to escape from the potential well, varying their temperature. The ISW is produced by the
variation over time of gravitational potentials, this have changed the temperature of the photons between decoupling
and the present.

The ISW effect emerges at transient epochs and it can be divided in two. The early ISW emerges during the
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transition from radiation dominated era to matter dominated era, while the late ISW emerges during the transition
from matter dominated era to dark energy dominated era. Acording to Fig. 3.4 and Fig. 3.2b the difference of our
model with respect to data is larger for small l. Late ISW effect is present at small l ∼ 2−4. The measurement of
the late ISW effect is associated with obtaining a information of dark energy51, then the model may present some
difference at predicting the amount of dark energy present in the universe. This will be discussed in the following
section.

3.3 Intermediate angular scales

Figure 3.5: Intermediate angular scales region. The blue line was obtained with the chaotic potential with a step and
the black dashed line is from Planck data.

Before recombination photons and baryons were coupled through Compton and Coulomb interactions, this allows
us to consider them as a mixed compressive fluid58. In a compressive fluid the density perturbations are just acoustic
waves. As soon as a perturbation enters the sound horizon of the fluid, it starts to oscillate. Fig. 3.5 shows the the
presence of acoustic oscillations at intermediate angular scales.
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These oscillations are the result of an interplay of pressure and gravitational attraction. The gravitational
attraction is created by overdensities in the fluid produced by dark matter that attracts baryons and photons, this
generates a pressure on the fluid that opposes gravity and leads matter and photons away (rarefaction). As the
pressure decreases, gravity takes over and compresses the fluid once again; this cycle produce the oscillations. The
region of 100 ≲ l ≲ 1000 is composed by tree peaks and two troughs as one can see in Fig. 3.5. The first peak in
the angular power spectrum is the fundamental mode which was caught in its first compression, when it achieved its
maximum density and temperature. The second peak is the mode that had time to perform a full cycle of compression
and rarefaction before recombination took place59. The third peak correspond to a mode that had time to perform
two complete collapses before recombination and so on with the following peaks at small angular scales. In Table
3.1 appear the peaks, with their position and amplitude reported by Planck Collaboration and the ones obtained using
the chaotic potential with a step of Eq. (3.1).

Table 3.1: Peaks and troughs of the CMB angular power spectrum reported by Planck satellite and peaks obtained
using the chaotic potential with a step.

Extremum Multipole [l] Amplitude [µK2]

Planck results
Peak 1 220.6 ± 0.6 5733 ± 39

Trough 1 416.3 ± 1.1 1713 ± 20
Peak 2 538.1 ± 1.3 2586 ± 23

Trough 2 675.5 ± 1.2 1799 ± 14
Peak 3 809.8 ± 1.0 2518 ± 17

Chaotic potential with a step
Peak 1 221 5652.65

Trough 1 411 1683.98
Peak 2 537 2573.24

Trough 2 674 1765.82
Peak 3 814 2556.88

Cosmological parameters are directly related with the peak characteristics of the angular power spectrum18,60 ;
position (l) and amplitud (µK2). Table 3.2 shows some cosmological parameters reported by Planck and the values
obtained using the chaotic potential with a step. The position of the first peak has a strong relation with the age of
the Universe60. From Table 3.1 we find that the Planck results give the position of the first peak at 220.6± 0.6, while
our model gives l = 221 for the position of the first peak. It is inside the range, therefore there could be a small
difference in the age of the Universe reported by Planck Collaboration and the age predicted by our model. Looking
at Table 3.2 one find that the age reported by Planck is 13.797± 0.023 Gyrs and the one we predicted is 13.798 Gyrs
which has a difference of the order of 10−3, but still inside the range of the error.

The value of the first peak is also directly related to Ωm, since decreasing the height of the first peak increases
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Table 3.2: Cosmic parameters reported by Planck and the ones obtained for the chaotic potential with a step.

Parameter Planck Step potential

Age(Gyrs) 13.797 ± 0.023 13.798
Ωm 0.3153 ± 0.0073 0.315823
Ωbh2 0.02237 ± 0.00015 0.022383
ΩΛ 0.6847 ± 0.0073 0.684097
ΩK -0.0096 ± 0.0061 0.00000
ns 0.9649 ± 0.0042 0.966942

Ωm. This happens because the the depth of the well is decreased due to the additional mass loading of the fluid18.
In Fig. 3.5 we can see that the angular power spectrum obtained with our model is lower in the first peak. Besides,
in Table 3.2 amplitude reported by Planck is 5733 ± 39 µK2 and our model gives 5652.65 µK2. These difference is
reflected in the difference of Ωm shown in Table 3.2. Our model gives Ωm = 0.315823 and the value reported by
Planck is Ωm = 0.3153 ± 0.0073. As one could expect, the value obtained from our model is larger, since the height
of the first peak is lower.

The most important feature of the second peak is that increasing Ωb decreases its height. This happens beacuse
as one increases Ωb, it also increases the inertia in the photon-baryon fluid18 which results in a smaller rarefaction
and a lower peak. In Table 3.1 peak 2 reported by Planck Collaboration has an amplitude of 2586± 23 µK2 while the
value obtained by our model is 2573.24 µK2. Table 3.2 shows that Planck reported Ωbh2 = 0.02237± 0.00015 while
our model gives Ωbh2 = 0.022383, the difference is small but the statement holds. On the other hand, for the third
peak increasing Ωb increases its height and increasing Ωm decreases its height. The third peak has an amplitude of
518 ± 17 µK2 reported by Planck and the value obtained for our model is 2556.88 µK2.

The position of the peaks are also sensitive to the spatial curvature and at a lower level to the dark matter and
dark energy densities51. As we saw, the positions of the first and second peak obtained with our model are similar
to the ones reported by Planck. However, the position of the third peak gives a larger difference, Planck reported the
third peak at l = 809.8 ± 1.0 while in our model it is at l = 814. From Table 3.2 the values reported by Planck are
ΩΛ = 0.6847 ± 0.0073 and ΩK = −0.0096 ± 0.0061, while our model gives ΩΛ = 0.684097 and ΩK = 0.0 which
would explain the different position of the third peak.

The second peak also depends on ns and is the result of the overall slope of the CMB angular power spectrum.
The relation is: increasing ns increases the height of the second peak relative to the first. Planck reported ns =

0.9649±0.0042 and our model gives a larger value ns = 0.966942. Computing the height of the second peak relative
to the first peak for the Planck data gives 0.4528 while for our model gives 0.4552 which confirms the previous
statement.
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3.4 Small angular scales
At small angular scales there are two important effects that occurs at recombination. The first effect is known as
Silk damping which is the responsible for the suppression of acoustic oscillations in baryon-photon fluid51. During
the process of recombination the mean free path of photons is large and number density of electrons is small. Here,
photons from overdense regions travel large distances and tranfer their energy to underdense regions, this erases the
density fluctuations. The other effect is produced because photons do not decouple simultaneously, which leads to
the suppression of the angular spectrum at small angular scales51.

Figure 3.6: Small angular scales region. The blue line was obtained with the chaotic potential with a step and the
black dashed line is from Planck data.

The shape of the damping tail is related to Ωb, since increasing Ωb increases the coupling of the photon-baryon
fluid. This produce that the damping tail shifts to smaller angular scales because the mean free path of the photons
has been reduced. Since the value of Ωb predicted by our model is larger (by a small amount), we expect to see in
Fig. 3.6 a small shift to the right (to smaller angular scales).

Fig. 3.2b shows that at these scales the percentage error of our model is larger than percentage error of large
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and intermediate scales. Comparing with Fig. 3.2a one can appreciate that the peaks present lower error than the
troughs and Fig. 3.6 seems to corroborate this.

3.5 Methodology
The results shown in this chapter were obtained by using Mathematica to get the tensor and scalar spectral indices
and their respective runing terms, different values for ϕstep, c and d were used. This was made numerically due to
the nature of the equations that do not let compute analytically some results, as it will be shown. After getting these
values, it was used the CAMB code to obtain different scalar power spectra.

Recall that for a single field model, the slow roll parameters are

ϵV =
M2

2

(
V ′

V

)2

, ηV = M2
(

V ′′

V

)
, (3.2)

and
ξ2v =

M4V ′(ϕ)V ′′′(ϕ)
V2(ϕ)

, ϖ3
v =

M6V ′2(ϕ)V ′′′′(ϕ)
V3(ϕ)

. (3.3)

The number of e-folds is defined as

N =
∫ tend

t
H dt ≃

1
M2

pl

∫ ϕi

ϕ f

V
V ′

dϕ =
∫ ϕi

ϕ f

1
√

2ϵV

dϕ
Mpl
. (3.4)

Using these definitions and some others of chapter 2, we look for the values we need to use in CAMB code.

3.5.1 "Chaotic potential"

The "chaotic potential" is

V(ϕ) =
1
2

m2ϕ2, (3.5)

from which the slow roll parameters are

ϵV = 2
M2

pl

ϕ2 , ηV = 2
M2

pl

ϕ2 , ξ
2
v = 0, ϖ3

v = 0. (3.6)

Now, from Eq. 3.4, ϕi and ϕ f are the values of the inflaton at the beginning and at the end of inflation, respectively.
Since ϵV = 1 at the end of inflation, we can compute ϕ f and one gets

ϕ f =
√

2Mpl (3.7)

and the value of the inflaton in terms of N is

ϕ = 2Mpl

√
N +

1
2
≈ 2Mpl

√
N. (3.8)
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Then, the analytic prediction for the inflationary parameters in terms of N are

ns = 1 −
2
N
, (3.9)

nt = −
1
N
, (3.10)

dns

dln k
= −

2
N2 , (3.11)

dnt

dln k
=

1
N2 , (3.12)

d2ns

dln k2 = −
7

N3 , (3.13)

r =
8
N
. (3.14)

3.5.2 Chaotic potential with a step

The model used for this work is a chaotic potential with a step of Eq. (3.1), for this potential the slow roll parameters
are
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d
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Unlike the simple chaotic potential, in this case there is no analytical solution for ϕ. Therefore, the software
Wolfram Mathematica was used to obtain the values for the tensor and scalar spectral indices and their corresponding
running terms. The values obtained with our model show smaller values for the running terms of the scalar spectral
index, however, it is consistent with a vanishing running of the scalar spectral index.

Table 3.3: Values of the scalar index and their running terms reported by Planck Collaboration and the values
obtained for the chaotic potential with a step.

Definition Parameter Planck Step potential

Scalar spectral index ns 0.9649 ± 0.0042 0.966942
Running of scalar spectral index dns/d ln k -0.0045 ± 0.0067 -0.000546404

Running of running of scalar spectral index d2ns/d ln k2 0.022 ± 0.012 -0.0000180628
Tensor-to-scalar ratio r <0.1 0.132231



Chapter 4

Conclusions & Outlook

This thesis aimed to study the angular power spectrum of the CMB with the chaotic inflationary model with a step.
For this purpose, the software Wolfram Mathematica and Code for Anisotropies in the Microwave Background
(CAMB) were used. The former helped to obtain spectral indices and running terms needed to work with CAMB.
The second one allows to obtain the value the shape of the angular power spectrum and the value of the cosmological
parameters for our model.

Our potential have three free parameters which were adjusted to obtain the closest shape to the temperature power
spectrum reported by Planck Collaboration23. The values that allows to have the best fit are: c = 0.08, d = 0.03 and
ϕstep = 14.09. Fig. 3.2 shows that the choice of this parameters gives a relative error below 0.09 or a percentage
error < 9%. The following step was to separate the power spectrum in three parts and analyze each one. The first
part corresponds to a large angular scales (l ≲ 100), the second part corresponds to intermediate angular scales
(100 ≲ l ≲ 1000) and the third part corresponds to small angular scales (l ≳ 1000).

For large scales, our model shows a larger differences at small l ∼ 2 − 4. Since at these scales the late Integrated
Sachs–Wolfe (ISW) is present, the value we obtain for ΩΛ is different from the value reported by Plank as shown in
Table 3.2. The part of the spectrum that shows the smallest difference is the region of intermediate angular scales.

At intermediate angular scales our model shows a small deviation from the shape of the power spectrum obtained
using Planck data, the relative error is ∼ 0.02. Since the oscillations present in the power spectrum are related with
the dynamics of the baryon-photon fluid present before recombination, we could expect small differences for Ωm

and Ωb compared to Planck data. In Table 3.2 corroborates that the values of Ωm and Ωb obtained with our model
are inside the range of the error reported by Planck. Additionally, the position (l) of the first peak is related to
the age of the Universe and the value obtained with our model (l = 221) is close to the value reported by Planck
(l = 220.6 ± 0.6). Table 3.2 shows that the age of the universe obtained for our model is close to the value reported
by Planck.

At large angular scales the difference between Planck data and our model is larger compared to the other regions.
Besides, our spectrum exhibits a small shit to the right due to the small difference in Ωb. The position of the peaks
are sensitive to the spatial curvature and the dark matter and dark energy densities, which explains the difference in
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the position of the third peak (Table 3.1) and the shift of the tail of the spectrum.
The value of the ns is larger for our model, which is expected since the height of the second peak relative to the

first peak is larger. The values of the running terms are lower than the ones reported by Planck, nevertheless, this is
consistent with a vanishing running of the scalar spectral index.

Finally, future works could consider other potentials with a step to evaluate the possibility of model the angular
power spectrum of the Cosmic Microwave Background (CMB) with a higher accuracy. Another option is to consider
models with concave potentials since these are consistent with Planck data.
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