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Resumen

En este trabajo, definimos la Transformada de Fourier Cuaterniónica Bidi-
mensional (izquierda) (2D-QFT) de f ∈ L1

(
R2; H

)
, la cual es la función

Fq{ f } : R2 →H definida por

Fq{ f }(ω) = f̂ (ω) =
∫

R2
e−µω·x f (x)d2x,

donde x = x1e1 + x2e2, ω = ω1e1 + ω2e2, con kernel de Fourier cu-
aterniónico e−µω·x tal que |µ| = 1.

Derivamos las propiedades de desplazamiento, modulación y convolución
y establecemos el teorema de Plancherel y el teorema de derivación vecto-
rial. Además, estudiaremos la aplicación de esta transformada de Fourier
a la resolución de la ecuación del calor.

Palabras claves: Cuaternión, Transformada de Fourier Cuaterniónica Bidi-
mensional (izquierda), ecuación de calor.
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Abstract

In this work, we define the Two-dimensional (left) Quaternion Fourier
Transform (2D-QFT) of f ∈ L1

(
R2; H

)
, which is the function Fq{ f } :

R2 →H defined by

Fq{ f }(ω) = f̂ (ω) =
∫

R2
e−µω·x f (x)d2x,

where x = x1e1 + x2e2, ω = ω1e1 + ω2e2, with quaternion Fourier kernel
e−µω·x such that |µ| = 1.

We derive the shift, modulation, and convolution properties and estab-
lish the Plancherel and vector differential theorem. Furthermore, we will
study the application of this Fourier transform to the resolution to the heat
equation.

Keywords: Quaternion, Two-dimensional (left) Quaternion Fourier Trans-
form, heat equation.
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Chapter 1

Introduction

The use of quaternion algebra to generalize the conventional Fourier transform (FT)
and employ it in image analysis has recently become popular. For example, to calcu-
late the FT of a color image without splitting it into three gray-scale images, suggested
a single and holistic FT that treats a color image as a vector field [15]. Quaternions
are used to represent color picture pixels in this system. The quaternion Fourier
Transform (QFT) is the name given to these extensions [6].

This transformation is based on a unit pure quaternion µ. The value of µ is chosen
to produce embedding spaces that are resilient and/or have perceptual qualities. In
the proposed method, µ is a function of a block’s mean color value, and a perceptual
component [9]. A color picture pixel may be converted to a quaternion pixel by
putting the three components (in the case of RGB images, the red, green, and blue
components) into the three imaginary portions of the quaternion while leaving the
real part zero [34, 15]. This decision is neither arbitrary nor coincidental. A complete
quaternion can be thought of as the ratio of two vectors or the number that multiplies
one vector to produce another. This is a valuable geometric interpretation that is used
in color picture filter design [15].

Due to the noncommutative property of quaternion multiplication, there are at
least three different types of 2D QFTs as follows (see [13],[24],[23],[8],[31],[33])

F I
q{ f }(ω) =

∫
R2

e−µ1ω·x f (x)d2x, ω · x = ω1x1 + ω2x2,

F II
q { f }(ω), =

∫
R2

f (x)e−µ1ω·xd2x, ω · x = ω1x1 + ω2x2,

F III
q { f }(ω), =

∫
R2

e−µ1ω1x1 f (x)e−µ2ω2x2d2x,

where µ1 and µ2 are any two unit pure quaternions (µ2
1 = µ2

2 = −1) that are
orthogonal to each other. These three QFTs are so-called left-side, right-side and
double-side, or type I, II and III, respectively.

Assefa et al. [3] used QFTs of type II to establish the 2D quaternion Stockwell (QS)
transform and then apply it for the analysis of local color image spectra. Recently, Guo
and Zhu [20] introduced the quaternion Fourier–Mellin moments as a generalization

5
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of traditional Fourier–Mellin moments to quaternion algebra. Several properties of
this generalization are investigated using QFTs of type II [6].

In this work, we concentrate on 2D − QFT of Type I with kernel µ1 = µ ∈ H.
We derive the shift, modulation and convolution properties and also establish the
Plancherel theorem. Furthermore, we will study the application of this Quaternion
Fourier transform to the resolution of partial differential equations.

This document is organized as follows:

• In Chapter 2 we summarize some applications of the quaternions.

• In Chapter 3 we present the mathematical support for the Fourier Transform.
The concept of convolution, the Fourier inversion theorem is present as such as
the relation of this theory with the spaces L1 and L2. Furthermore, we review
the extension to Rn and some applications.

• In Chapter 4 we review the mathematical support of some properties about
quaternions.

• In Chapter 5 we introduce the two-dimensional (left) Quaternion Fourier Trans-
form. Some important properties are studied. Finally, we will use the Quater-
nion Fourier Transform to solve a partial differential equation.

• In Chapter 6 we present our conclusions and recommendations.

Mathematician 6 Final Grade Project



Chapter 2

Quaternion’s Applications

In the Chapter 4 we shall review with more details about quaternions. For now, we
are just going to focus on some applications that can help the reader understand the
importance of this theory and will be a guide for future works.

2.1 A brief summary of history

Quaternions were invented in 1843 by the Irish mathematician William Rowan Hamil-
ton. He had worked since 1830 in the field of complex numbers and in 1833 ob-
tained the result that complex numbers form an algebra of pairs of real numbers.
W.R. Hamilton tried for more than ten years to extend this concept to triples of real
numbers with one real and two imaginary units. He could himself well imagine
suitable operations of addition and multiplication of triples (which he later defined
as ‘vectors’), but he was unable to find a method for the division of such vectors.
W.R. Hamilton was often asked by his elder son during breakfast: “Father, have you
learned how to divide vectors?” After the rejection of the commutativity law of mul-
tiplication, he could answer on October 16, 1843. “Yes, I have!” This introduction of a
non-commutative structure into this algebra led to the dispute over more than twenty
years with other famous mathematicians of his time [21].

He had the idea for quaternions while strolling down the Royal Canal on his way
to an Irish Academy conference, and he was so thrilled with his discovery that he
scratched the fundamental formula of quaternion algebra,

i2 = j2 = k2 = ijk = −1,

into the stone of the Brougham bridge. Although the quaternions are not commu-
tative, they are associative, and they constitute the quaternion group. Moreover, the
quaternions are members of William Rowan Hamilton’s non-commutative division
algebra [38].

7
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2.2 Previous works

2.2.1 Applications to Physics

Despite the fact that for many years after its conception, quaternions were considered
a “solution in search of a problem,” applications in classical mechanics and relativity
theory were discovered in the early twentieth century. The capacity of quaternions to
represent three-dimensional rotations around any axis led to the usage of quaternion
algebra in rotational kinematics equations [29].

Applications to Estimation of Rotating Body Attitude

If the vehicle’s angular velocity is known and there are further observations of one or
more known stars, one must estimate the vehicle’s attitude relative to some inertial
reference frame. Of course, the differential equation of the vehicle’s rotation can be
used alone. However, measurement and computation mistakes make it difficult to
arrive at a right solution, especially over a lengthy period of time. If one obtains extra
measurements of some external items, the situation can be improved. We assume
that these are known stars that are periodically monitored with the assistance of on-
board measuring equipment. The equation of a rotating body motion is taken into
consideration, as well as the equation of observations in quaternion form (see [1]).

2.2.2 Dual Quaternion and Applications to Neuroscience

Using quaternions, we can easily handle rotations, but not translations. However,
since the sources of the reference frames linked with each body are rarely the same,
we must deal with translations. The rotation center of the eye, for example, is not
the same as the rotation center of the head. In addition to rotation, we will use
dual quaternions’ geometric algebra (see [14],[27]) to deal with translations. Dual
quaternions may also be used to succinctly depict a screw motion, which is defined
as a combination of rotation and translation along the rotation axis [27].

3D kinematics using dual quaternions

Much behavioral neuroscience research is planned in one or two spatial dimensions,
but when scientists attempt to solve problems in three dimensions (3D), they typ-
ically face obstacles or extra challenges. Lower-dimensional findings aren’t always
three-dimensionally extendable. In motor planning of eye, gaze, or arm motions, or
sensorimotor transformation difficulties, the 3D kinematics of external (stimuli) or
internal (body parts) items must regularly be considered: how to describe the 3D
location and orientation of these things and connect them together. The dual quater-
nions make it simple to represent rotations, translations, and screw movements, as
well as combinations of these, by providing a simple way to define 3D kinematics
for the position (point transformation) or coupled position and orientation (coupled
position and orientation) (via line transformation) (for more detail see [27]).

Mathematician 8 Final Grade Project
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2.2.3 Applications to computer science

Computer/robot vision, computer graphics, and animation all benefit from the ana-
lytical properties of quaternions. Special focus is paid to vision methods for 3D pose
estimation, animation systems that incorporate viewpoint/object rotations, motion
interpolation algorithms, and quaternion fractals. The benefit of using quaternions
over other representations like Euler angles isn’t restricted to singularity-free kine-
matics connections; we can also utilize quaternions to construct closed-form solutions
for algebraic systems with unknown rotational parameters. Some of the exquisite
mathematical features of quaternions in complex space, together with a set of useful
equations, are offered for the benefit of the technically inclined [29].

In Section 4.2.1 we will give more details about rotation in R3. For now, we will
just give a brief summary of this and its applications in science computer. Three-
dimensional rotations are traditionally represented using a set of Euler angles ψ, φ, θ,
which signify rotations about independent coordinate axes. A succession of rotations
can therefore be used to generate any general rotation, as shown below.x′

y′

z′

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ


1 0 0

0 cos ψ − sin ψ
0 sin ψ cos ψ


x

y
z

 .

(2.1)
If v = (l, m, n) denote a vector in three-dimensional space, then θ denotes a rotational
transformation about this vectorx′

y′

z′

 =

 l2(1− cos θ) + cos θ lm(1− cos θ)− n sin θ nl(1− cos θ) + m sin θ
lm(1− cos θ) + n sin θ m2(1− cos θ) + cos θ mn(1− cos θ)− l sin θ
nl(1− cos θ)−m sin θ mn(1− cos θ) + l sin θ n2(1− cos θ) + cos θ


x

y
z

 .

Clearly, the shortest path between two object orientations is defined by a single ro-
tation around an analogous axis. A quaternion product may be used to describe the
aforementioned transformation:

w = qvq∗ (2.2)

where

w =
(
0, x′, y′, z′

)
, v = (0, x, y, z), and q =

(
cos

θ

2
, l sin

θ

2
, m sin

θ

2
, n sin

θ

2

)
The length of a vector is obviously unaffected by rotation, therefore |w| = |v|. As
a result, for a proper rotation, q in (2.2) must be a unit vector. We also have the
condition q−1 = q∗ when q is a unit quaternion (for more detail see Section 4.1.1).
We may therefore define

Lq(v) = qvq∗.

This operator is used widely in both classical mechanics and computer graphics as a
three-dimensional space quaternion rotation operator that works on any vector v. It
is straightforward to show that the operator is linear, therefore

Lq(ka + b) = k Lq(a) + Lq(b)

Mathematician 9 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

for any constant k, and vector quaternions a and b.

Quaternion Applications in Graphics and Animation

Let q1 and q2 be two unit quaternions that express three-dimensional rotations in any
direction. The first rotation, followed by the second, has the following composition in
quaternion notation:

Lq2

(
Lq1(v)

)
= q2

(
q1vq1

∗) q2
∗

= (q2q1) v (q2q1)
∗

= Lq2q1(v).

As a result, the quaternion product q2q1 defines the quaternion rotation operator
Lq2q1, which represents a series of operators Lq1 followed by Lq2. The composition
of any number of rotations may be generalized using this characteristic.

The rotation of the frame when the point is inertially fixed is the dual operation
of rotating a point within a fixed frame. The fixed point’s coordinate transformation
with respect to the rotating frame is given by [26]

v′ = q∗vq = L−1
q (v) = Lq∗(v).

When defining rotations, quaternions provide a variety of benefits over Euler angles.
The angle and the axis (vector) are the sole parameters used to parameterize rotations
using quaternions, whereas Euler angles describe a rotation as a composite of three
distinct rotations about coordinate axes. Furthermore, when the second Euler angle
approaches 90 degrees, the mutually independent feature of the Euler angle rotations
breaks down, resulting in the loss of one degree of freedom. The gimbal lock [37] is
the name given to this occurrence. Despite several Euler angle formulations in the
rotation matrix (2.1), this singularity remains. In a graphic animation, the state of the
gimbal lock might have negative consequences.

In comparison to a quaternion-based method, the parameterization of orientation
using Euler angles necessitates more arithmetic operations. A few essential issues are
summarized in Table 2.1

Quaternions Euler Angles
Representation of 4 Elements 9 Elements
Rotations (16 Elements if homogeneous

coordinates are used)
Composition of 16 Multiplications and 27 Multiplications and
Rotations 12 Additions 18 Additions

Table 2.1: Computational Complexity: Quaternions vs. Euler Angles. Source [29]
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Chapter 3

The Fourier Transform

In this chapter, we shall present some concepts about the Fourier Transform, which
are important for our study. Our main reference is [16], in which the reader will be
able to find all the proof with all details.

In the same manner that Fourier series are used to expand functions on a finite in-
terval, the Fourier transform allows functions on the whole real line R = (−∞,+∞) to
be expanded as (continuous) superpositions of the fundamental oscillatory functions
eiξx(ξ ∈ R). Let us run a few formal calculations to offer some motivation.

Assume that f is a R function. We can expand f on the interval [−l, l] in a Fourier
series (see [16]) for every l > 0, and we want to investigate what happens when we
allow l → +∞, To this goal, the Fourier expansion is written as follows: x ∈ [−l, l],

f (x) =
1
2l

+∞

∑
−∞

cn,leiπnx/l, cn,l =
∫ l

−l
f (y)e−ixny/ldy.

Let ∆ξ = π/l and ξn = n∆ξ = nπ/l; then these formulas become

f (x) =
1

2π

+∞

∑
−∞

cn,leiξnx∆ξ, cn,l =
∫ l

−l
f (y)e−iξnydy.

Let us suppose that f (x) vanishes rapidly as x → | + ∞|; then cn,l will not change
much if we extend the region of integration from [−l, l] to (−∞,+∞):

cn,l ≈
∫ +∞

−∞
f (y)e−iξnydy.

This last integral is a function only of ξn, which we call f̂ (ξn) , and we now have

f (x) ≈ 1
2π

+∞

∑
−∞

f̂ (ξn) e−iξnx∆ξ (|x| < l).

This looks very much like a Riemann sum. If we now let l → +∞, so that ∆ξ → 0,
the ≈ should become = and the sum should turn into an integral, thus:

f (x) =
1

2π

∫ +∞

−∞
f̂ (ξ)eiξxdξ, (3.1)

11
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where
f̂ (ξ) =

∫ +∞

−∞
f (x)e−iξxdx. (3.2)

These limiting calculations are utterly nonrigorous as they stand; nonetheless, the
final result is correct under suitable conditions on f . The function f̂ given by (3.2) is
called the Fourier transform of f , and (3.1) is the Fourier inversion theorem.

We’ll start by establishing a few notational conventions. We’ll be working with
real-line functions, and the majority of our integrals will be definite integrals over the
entire line. As a result, we’ll agree that an integral sign without specified bounds
denotes an integral over R (rather than an indefinite integral):∫

f (x)dx =
∫ +∞

−∞
f (x)dx.

Moreover, L2 will mean L2(R), the space of square-integrable functions on R. We also
introduce the space L1 = L1(R) of (absolutely) integrable functions on R :

L1 =

{
f :
∫
| f (x)|dx < +∞

}
.

Remark 1. We note that L1 is not a subset of L2, and that L2 is not a subset of L1.

Remark 2. The singularities of a function in L1 (that is, places where the function’s values
tend to +∞) can be worse than those of a function in L2, because squaring a large number
makes it larger; on the other hand, functions in L2 do not have to decay as quickly at infinity
as those in L1, because squaring a small number makes it smaller.

We have the following useful facts:

(i) If f ∈ L1 and f is bounded, then f ∈ L2. Indeed,

| f | ≤ M =⇒ | f |2 ≤ M| f | =⇒
∫
| f (x)|2dx ≤ M

∫
| f (x)|dx < +∞.

(ii) If f ∈ L2 and f vanishes outside a finite interval [a, b], then f ∈ L1. This follows
from the Cauchy-Schwarz inequality:

∫
| f (x)|dx =

∫ b

a
1 · | f (x)|dx ≤ (b− a)1/2

(∫ b

a
| f (x)|2dx

)1/2

< +∞.

3.1 Convolution

Definition 1 (Convolution). If f and g are functions on R, their convolution is the function
f ∗ g defined by

f ∗ g(x) =
∫

f (x− y)g(y)dy, (3.3)

provided that the integral exists.
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Various conditions can be imposed on f and g to ensure that the integral will be
absolutely convergent for all x ∈ R, for example:

(i) If f ∈ L1 and g is bounded (say |g| ≤ M ), then∫
| f (x− y)g(y)|dy ≤ M

∫
| f (x− y)|dy = M

∫
| f (y) | dy < +∞.

(ii) If f is bounded (say | f | ≤ M) and g ∈ L1, then∫
| f (x− y)g(y)|dy ≤ M

∫
|g(y)|dy < +∞.

(iii) If f and g are both in L2, then by the Cauchy-Schwartz inequality,

∫
| f (x− y)g(y)|dy ≤

√∫ [
f (x− y)

∣∣2 dy
√∫

|g(y)|2dy =
∥∥ f
∥∥∥∥g

∥∥ < +∞.

(iv) If f is piecewise continuous and g is bounded and vanishes outside a finite
interval [a, b], then f ∗ g(x) exists for all x, since the function y → f (x − y) is
bounded on [a, b] for any x.

(v) It can be shown that if f and g are both in L1, then f ∗ g(x) exists for “almost
every” x, i.e., for all x except for some set having Lebesgue measure zero; more-
over, f ∗ g ∈ L1.

This list could go on and on. We assume implicitly in what follows that the func-
tions we specify meet the requirements for all integrals in question to be absolutely
convergent.

We now investigate the basic algebraic and analytic properties of convolutions

Theorem 1. Convolution obeys the same algebraic laws as ordinary multiplication:

(i) f ∗ (ag + bh) = a( f ∗ g) + b( f ∗ h) for any constants a, b;

(ii) f ∗ g = g ∗ f ;

(iii) f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

Theorem 2. Suppose that f is differentiable and the convolutions f ∗ g and f ′ ∗ g are well-
defined. Then f ∗ g is differentiable and ( f ∗ g)′ = f ′ ∗ g. Likewise, if g is differentiable, then
( f ∗ g)′ = f ∗ g′.

We emphasize that in Theorem 2 one can throw the derivative in ( f ∗ g)′ onto
either factor. Thus f ∗ g is at least as smooth as either f or g, even when the other
factor has no smoothness properties.
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Let us take a moment to make a few observations that may help to clarify the
meaning of convolutions. To begin with, consider the convolution integral as a limit
of Riemann sums. ∫

f (x− y)g(y)dy ≈∑ f
(

x− yj

)
g
(

yj

)
∆yj.

The function f j(x) = f
(

x− yj

)
is the function f translated along the x -axis by the

amount yj, so the sum on the right is a linear combination of translates of f with

coefficients g
(

yj

)
∆yj. We can therefore think of f ∗ g as a continuous superposition

of translates of f ; and since f ∗ g = g ∗ f , it is also a continuous superposition of
translates of g.

Second, convolutions may be interpreted as “moving weighted averages.”

Remark 3. The average value of a function f on the interval [a, b] is defined to be

(b− a)−1
∫ b

a
f (y)dy.

As a generalization of the previous Remark, we have the following definition

Definition 2 (Weighted average of f ). The weighted average of f on [a, b] with respect to
a non-negative weight function w is ∫ b

a f (y)w(y)dy∫ b
a w(y)dy

.

Suppose now that g is non-negative and
∫

g(y)dy = 1. If we write f ∗ g(x) as∫
f (y)g(x− y)dy, we see that f ∗ g(x) is the weighted average of f (on the whole line)

with respect to the weight function w(y) = g(x− y).

Observation 1. If g(x) = 0 for |x| > a then g(x− y) = 0 for |x− y| > a, so f ∗ g(x) is a
weighted average of f on the interval [x− a, x + a]. In particular, if

g(x) =

{
(2a)−1 if − a < x < a,
0 otherwise ,

then
f ∗ g(x) =

1
2a

∫ x+a

x−a
f (y)dy,

which is the (ordinary) average of f on the interval [x− a, x + a].

Remark 4. One respect in which convolution does not resemble ordinary multiplication is
that whereas f ∗ 1 = f for all f , there is no function g such that f ∗ g = f for all f . (The
Dirac ” δ -function” does the job, but it is not a genuine function). However, we can easily
find sequences {gn} such that f ∗ gn converges to f as n → +∞. In fact, If g(x) vanishes
(or at least is negligibly small) outside an interval |x| < a, then f ∗ g(x) will be a weighted
average of the values of f on the interval [x− a, x + a], and if a is very small this should be
approximately f (x).
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As an excellent example to visualize Remark 4, we have the following example

Example 1. Suppose that g ∈ L1, and for ε > 0 let

gε(x) =
1
ε

g
(

x
ε

)
. (3.4)

That is, gε is obtained from g by compressing the graph in the x -direction by a factor of ε and
simultaneously stretching it in the y direction by a factor of 1/ε (We are thinking of the case
ε < 1; if ε > 1 the words compressing and stretching should be interchanged. See Figure 3.1
) As ε → 0 the graph of gε becomes a sharp spike at x = 0, but the area under the graph
remains constant: ∫

gε(x)dx =
∫

g
(

x
ε

)
d
(

x
ε

)
=
∫

g(y)dy.

More generally, the substitution x = εy yields

∫ b

a
gε(x)dx =

∫ b/ε

a/ε
g(y)dy. (3.5)

Figure 3.1: A function g(x) (left) and its dilates g2(x) = 1
2 g
(

1
2 x
)

(middle) and
g1/2(x) = 2g(2x) (right).

With this in mind, we can state a precise theorem.

Theorem 3. Let g be an L1 function such that
∫ +∞
−∞ g(y)dy = 1, and let α =

∫ 0
−∞ g(y)dy

and β =
∫ +∞

0 g(y)dy. (Note that α + β = 1 and that α = β = 1
2 if g is even.) Suppose that f

is piecewise continuous on R, and suppose either that f is bounded or that g vanishes outside
a finite interval so that f ∗ g(x) is well-defined for all x. If gε is defined by (3.4), then

lim
ε→0

f ∗ gε(x) = α f (x+) + β f (x−) for all x.
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In particular, if f is continuous at x, then

lim
ε→0

f ∗ gε(x) = f (x). (3.6)

Moreover, if f is continuous at every point in the bounded interval [a, b], the convergence in
(3.6) is uniform on [a, b].

There are several variants of Theorem 3, which say that f ∗ gε → f in some sense
or other as ε → 0 under suitable hypotheses on f and g. We shall content ourselves
with stating a result for norm convergence of L2 functions.

Theorem 4. Suppose g ∈ L1 is bounded and satisfies
∫

g(y)dy = 1, If f ∈ L2 then f ∗ g(x)
is well-defined for all x, and if gε, is defined as in (3.4), f ∗ gε converges to f in norm as
ε→ 0.

The family
{

gk
}

in Theorems 3 and 4 is called an approximate identity, since the
operation of convolution with gε tends to the identity operator as ε → 0 (see Figure
3.2).

One of the functions g that is most often used in this context is the Gaussian

G(y) = π−1/2e−y2
. (3.7)

Figure 3.2: A function f with an infinite singularity and a jump discontinuity (left),
f ∗ G0.1 (middle), and f ∗ G0.3 (right), where G is the Gaussian (3.7).

It satisfies
∫

G(y)dy = 1 because∫ +∞

−∞
e−y2

dy = 2
∫ +∞

0
e−y2

dy =
∫ +∞

0
e−tt−1/2dt = Γ

(
1
2

)
= π1/2. (3.8)

G is even, so that when it is used as the g in Theorem 3 we have a = β = 1
2 . G and

its dilated versions Gε have the property that all their derivatives are bounded inte-
grable functions. Indeed, it is easily established by induction that G(k)(y) = Pk(y)e−y2
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where Pk is a polynomial of degree k, and it follows that
∣∣∣G(k)(y)

∣∣∣ ≤ Cke−y2
, with sim-

ilar estimates (involving some powers of ε ) for Ge. Hence we can apply Theorems 3
and 4: If f is (say) bounded and piecewise continuous, then f ∗Gε is of class C(∞), and
it approximates f when ε is small. These convolutions may be regarded as “smeared
out” or “smoothed out” versions of f . We’ve established a method for approximating
generic functions with smooth ones, which can be beneficial in various scenarios. It
proves the following fundamental result in particular.

Theorem 5 (The Weierstrass Approximation Theorem). If f is a continuous function
on [a, b] (−∞ < a < b < +∞), then f is the uniform limit of polynomials on [a, b] That is
for any δ > 0 there is a polynomial P such that

sup
a≤x≤b

| f (x)− P(x)| < δ.

a b a b

Figure 3.3: A continuous function f on [a, b] (left) and a continuous extension of f to
R( right ).

The Gaussian is not the only commonly used approximate identity. Another one
is given by

H(y) =
1

π
(
1 + y2

) ,

which, arises in the solution of the Dirichlet problem for a half-plane. It has the same
properties as G in terms of being even and having bounded integrable functions as
derivatives of all orders; as a result, it may approximate generic bounded functions
smoothly. Another approximation identity with comparable qualities and an extra
aspect that makes it particularly useful in certain situations is given by

K(y) =

C−1e−1/(1−y2) for |y| < 1
0 for |y| ≥ 1

C =
∫ 1

−1
e−1/(1−y2)dy. (3.9)

K possesses derivatives of all orders, even at y = ±1 (because e−1/(1−y2) vanishes to
infinite order as y approaches 1 from the left or −1 from the right), and it vanishes
outside the bounded set |y| ≤ 1. Hence the convolutions f ∗ Kε are well-defined for
any piecewise continuous f , bounded or not, and they provide smooth approxima-
tions to all such f .
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3.2 The Fourier Transform

Definition 3 (Fourier transform). If f is an integrable function on R, its Fourier transform
is the function f̂ on R defined by

f̂ (ξ) =
∫

e−iξx f (x)dx.

We shall also occasionally write
F [ f (x)] = f̂ (ξ)

for the Fourier transform of f . (This involves an ungrammatical use of the symbols x and ξ
but is sometimes the clearest way of expressing things.)

Since e−iξx has absolute value 1, the integral converges absolutely for all ξ and
defines a bounded function of ξ :

| f̂ (ξ)| ≤
∫
| f (x)|dx. (3.10)

Moreover, since |e−iηx f (x)− e−iξx f (x)
∣∣∣ ≤ 2| f (x)|, the dominated convergence theo-

rem implies that f̂ (η)− f̂ (ξ)→ 0 whens η → ξ, that is, f̂ is continuous. The following
theorem summarizes some of the other basic properties of the Fourier transform.

Theorem 6. Suppose f ∈ L1

(a) For any a ∈ R

F [ f (x− a)] = e−iaξ f̂ (ξ) and F
[
eiax f (x)

]
) = f̂ (ξ − a).

(b) If δ > 0 and fδ(x) = δ−1 f (x/δ) as in 3.4, then

[ fδ] (̂ξ) = f̂ (δξ) and F [ f (δx)] = [ f̂ ]δ(ξ).

(c) If f is continuous and piecewise smooth and f ′ ∈ L1, then

[ f ′]̂(ξ) = iξ f̂ (ξ).

On the other hand, if x f (x) is integrable, then

F [x f (x)] = i[ f̂ ]′(ξ).

(d) If also g ∈ L1, then
( f ∗ g)̂ = f̂ ĝ.

Mathematician 18 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Parts (a), (b), and (c) exhibit a remarkable set of correspondences between func-
tions and their Fourier transforms.

i) When a function is translated, its Fourier transform is multiplied by an expo-
nential, and vice versa.;

ii) When a function is dilated by the factor δ, its Fourier transform is dilated by the
factor 1/δ, and vice versa.

iii) When a function is differentiated, its Fourier transform is multiplied by the
coordinate variable, and vice versa. (Of course, this formulation is a little sloppy;
there are −1, i,, and δ factors to consider.)

iv) Part (d) continues the symmetry between f and f̂ : From (d) and the Fourier
inversion formula below, it follows that

f̂ ∗ ĝ = 2π( f g)̂. (3.11)

One other basic property of Fourier transforms of L1 functions should be mentioned
here. We observed earlier that if f ∈ L1, then f̂ is a bounded, continuous function on
R; but something more is true. We have the following Lemma

Lemma 1 (The Riemann-Lebesgue Lemma). If f ∈ L1, then f̂ (ξ)→ 0 as ξ → |+ ∞|.

3.3 The Fourier inversion theorem

We now turn to the Fourier inversion formula, that is, the procedure for recovering
f from f̂ . The heuristic arguments in the introduction to this chapter led us to the
formula

f (x) =
1

2π

∫
eiξx f̂ (ξ)dξ. (3.12)

Observation 2. Note that this is the same as the formula that gives f̂ in terms of f , except for
the plus sign in the exponent and the factor of 2π. This accounts for the symmetry between f
and f̂ in Theorem 6 .

Our mission now is to determine the correctness of (3.12). This is not as clear as
the question of whether the Fourier series of a periodic function f converges to f . The
first issue is that f̂ may not be in L1, as χ̂a(ξ) indicates (see [16]), therefore the integral
in (3.12) is not absolutely convergent in this situation. Even if it is, one cannot obtain
(3.12) by simply inserting f̂ in the defining formula,∫

eiξx f̂ (ξ)dξ =
∫∫

eiξ(x−y) f (y)dydξ,

and interchanging the order of integration, because the integral
∫

eiξ(x−y)dξ is di-
vergent. The easiest solution to each of these issues is to multiply f̂ by a “cutoff
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function” to make the integrals converge and then to pass to the limit as the cutoff is
removed.

One convenient cutoff function is e−ε2ξ2/2 : For any fixed ε > 0 it decreases rapidly
as ξ → |+ ∞|, and to remove it we simply let ε→ 0. Accordingly, instead of (3.12) for
f ∈ L1 we consider

1
2π

∫
eiξxe−ε2ξ2/2 f̂ (ξ)dξ =

1
2π

∫∫
eiξ(x−y)e−ε2ξ2/2 f (y)dydξ.

Now the double integral is absolutely convergent and it is permissible to interchange
the order of integration. The ξ -integral is evaluated as follows∫

eiξ(x−y)e−ε2ξ2/2dξ = F
[
e−ε2ξ2/2

]
(y− x)

=

√
2π

ε
e−(x−y)2/2ε2

.

On the other hand,

1
2π

∫
eiξxe−ε2ξ2/2 f̂ (ξ)dξ =

1
ε
√

2π

∫
f (y)e−(x−y)2/2ε2

dy

= f ∗ φε(x),

where

φ(x) =
1√
2π

e−x2/2, φε(x) =
1
ε

φ

(
x
ε

)
=

1
ε
√

2π
e−x2/2ε2

.

But this is exactly the case with Theorem 3 and Example (3.7) (with ε replaced by ε
√

2
), and we conclude that if f is piecewise continuous,

lim
ε→0

1
2π

∫
eiξxe−ε2ξ2/2 f̂ (ξ)dξ =

1
2
[ f (x−) + f (x+)]

for all x. Hence, our primary outcome has been reached.

Theorem 7 (The Fourier Inversion Theorem). Suppose f is integrable and piecewise
continuous on R, defined at its points of discontinuity so as to satisfy f (x) = 1

2 [ f (x−) +
f (x+)] for all x. Then

f (x) = lim
ε→0

1
2π

∫
eiξxe−ε2ξ2/2 f̂ (ξ)dξ, x ∈ R. (3.13)

Moreover, if f̂ ∈ L1, then f is continuous and

f (x) =
1

2π

∫
eiξx f̂ (ξ)dξ, x ∈ R. (3.14)

Observation 3. The inversion formula (3.14) or its alternative (3.13) describes a general
function f as a continuous superposition of the exponential functions eiξx.
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In this sense, the Fourier series expansion of periodic functions gives an equivalent
for nonperiodic functions.

Corollary 1. If f̂ = ĝ, then f = g.

If φ is the Fourier transform of f ∈ L1, we say that f is the inverse Fourier trans-
form of φ and write f = F−1{φ}, The operation F−1 is well-defined by Corollary
1.

Remark 5. Functions f such that f and f̂ are both in L1 exist in great abundance, one needs
only a little smoothness of f to ensure the necessary decay of f̂ at infinity. For example, if the
functions f and f̂ , are both bounded, continuous, and integrable, and so f and f̂ are also in
L2.

A number of variations on the Fourier inversion theorem are possible. For one
thing, a version of (3.13) is true for functions f ∈ L1 that are not piecewise continuous;
namely, if f ∈ L1, we have

f (x) = lim
ε→0

1
2π

∫
eiξxe−ε2ξ2/2 f̂ (ξ)dξ

for “almost every” x ∈ R, in the sense of Lebesgue measure. For another, one can re-
place the cutoff function e−ε2ξ2t2/2 in (3.13) by any of a large number of other functions
with similar properties. (See Folland [17]. Theorem 8.31.) On the more naive level,
one can ask whether the integral in (3.12) can be interpreted simply as a (principal
value) improper integral, that is, whether

f (x) = lim
r→∞

1
2π

∫ r

−r
eiξx f̂ (ξ)dξ.

This amounts to using the cutoff function that equals 1 on [−r, r] and 0 elsewhere,
and letting r → +∞; it is the obvious analogue of evaluating a Fourier series as the
limit of its symmetric partial sums. Just as in that case, piecewise continuity of f does
not suffice, but piecewise smoothness does.

Theorem 8. If f is integrable and piecewise smooth on R, then

lim
r→+∞

1
2π

∫ r

−r
eiξx f̂ (ξ)dξ =

1
2
[ f (x−) + f (x+)] (3.15)

for every x ∈ R.

3.4 The Fourier transform on L2

We built the Fourier transform in the space L1, but our experience with Fourier series
implies that the space L2 should play an important role as well. This is indeed the
case, There is an initial difficulty to be overcome, in that the integral

∫
e−iξx f (x)dx
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may not converge if f is in L2 but not in L1, but there is a way around this problem.
The key observation is that the analogue of Parseval’s formula holds for the Fourier
transform. Namely, suppose that f and g are L1 functions such that f̂ and ĝ are in L1.
Then f , g, f̂ , and ĝ are also in L2, and by (3.14) we have

2π〈 f , g〉 = 2π
∫

f (x)g(x)dx

=
∫∫

f (x)eiξx ĝ(ξ)dξdx

=
∫∫

f (x)e−iξx ĝ(ξ)dxdξ

=
∫

f̂ (ξ)ĝ(ξ)dξ

= 〈 f̂ , ĝ〉.

The Fourier transform, in other words, maintains inner products up to a factor of 2π.
In particular, taking g = f , we obtain

‖ f̂ ‖2 = 2π
∥∥ f
∥∥2,

which is the “Parseval formula” for the Fourier transform.
Now, if f is an arbitrary L2 function, we can find a sequence

{
fn
}

such that fn and
f̂n are in L1 and fn → f in the L2 norm. Then

‖ f̂n − f̂m‖
2
= 2π

∥∥ fn − fm
∥∥2 → 0 as m, n→ +∞,

so { f̂n} is a Cauchy sequence in L2. Since L2 is complete, it has a limit that can be
demonstrated to depend only on f and not on the approximation sequence { fn}.

The domain of the Fourier transform is therefore extended to include all of L2,
and a simple limiting argument demonstrates that this extended Fourier transform
still retains the norm and inner product up to a factor of 2π, as well as the features of
Theorem 6. In summary, we have the following outcome.

Theorem 9. (The Plancherel Theorem). The Fourier transform, defined originally on
L1 ∩ L2 extends uniquely to a map from L2 to itself that satisfies

〈 f̂ , ĝ〉 = 2π〈 f , g〉 and ‖ f̂ ‖2 = 2π
∥∥ f
∥∥2 for all f , g ∈ L2.

Moreover, the formulas of Theorem 6 still hold for L2 functions.

If f is in L2 but not in L1, the integral
∫

f (x)e−iξxdx defining f̂ may not converge
pointwise, but it may be interpreted by a limiting process like the one we used in the
inversion formula (3.13). That is, if f ∈ L2, as ε→ 0 the functions gε defined by

gε(ξ) =
∫

e−iξxe−ε2x2/2 f (x)dx,
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converge in the L2 norm, and pointwise almost everywhere, to f̂ . Likewise, the func-
tions f ε defined by

f ε(x) =
1

2π

∫
eiξxe−ε2ξ2/2 f̂ (ξ)dξ,

converge in the L2 norm, and pointwise almost everywhere, to f .
The Fourier inversion theorem is also a useful device for computing Fourier trans-
forms. Indeed, upon setting φ = f̂ the inversion formula (3.14) can be restated as

φ = f̂ =⇒ f (x) = (2π)−1φ̂(−x).

(The original formula (3.14) is valid when φ and φ̂ are in L1, but in the present form
it continues to hold for any φ ∈ L2, ) But this means that if φ is the Fourier transform
of a known function f , we can immediately write down the Fourier transform of φ by
setting ξ = −x :

φ = f̂ =⇒ φ̂(ξ) = 2π f (−ξ).

N° Funtion Fourier transform

1. f (x) f̂ (ξ)

2. f (x− c) e−icξ f̂ (ξ)

3. eicx f (x) f̂ (ξ − c)

4. f (ax) a−1 f̂ (a−1ξ)

5. f ′ iξ f̂ (ξ)

6. f (x) i f̂ ′(ξ)

7. ( f ∗ g)(x) f̂ ĝ

8. f (x)g(x) (2π)−1( f̂ ∗ ĝ)(ξ)

9. e−ax2/2
√

2π/ae−ξ2/2a

10. (x2 + a2)−1 (π/a)e−a|ξ|

11. e−a|x| 2a(ξ2 + a2)−1

12. χa(x) =

{
1 (|x| < a)
0 (|x| > a) 2ξ−1 sin aξ

13. x−1 sin ax πχa(ξ) =

{
1 (|ξ| < a)
0 (|ξ| > a)

Table 3.1: SOME BASIC FOURIER TRANSFORMS
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Table 3.1 contains a brief list of basic Fourier transform formulas that we have
derived in this section. Much more extensive tables of Fourier transforms are available
- for example, Erdelyi et al. [10].

3.5 Multivariable convolutions and Fourier transforms

In this section we consider functions of n real variables, that is, functions on the space
Rn of n -tuples of real numbers. The notation for points in Rn will be x = (x1, . . . , xn) .
We denote by x · y and |x| the usual dot product and norm on Rn :

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| = (x · x)1/2 =
(

x2
1 + · · ·+ x2

n

)1/2
.

Also, an integral sign with no limits will denote integration over all of n -space:∫
f (x)dx means

∫ +∞

−∞
. . .
∫ +∞

−∞
f (x1, . . . , xn) dx1 . . . dxn.

Most of the ideas of sections 3.1-3.2 can be generalized in a straightforward way
to functions of several variables1. We then sketch out the expansions of our prior
results to functions on Rn, adding details only where new concepts are needed. As
previously, convolutions are defined as follows:

f ∗ g(x) =
∫

f (y)g(x− y)dy.

The basic algebraic properties of convolution stated in Theorem 1 and the differentia-
tion property of Theorem 2 (with ordinary derivatives replaced by partial derivatives)
still remain valid in the n-variable case, with the same proofs:

(i) f ∗ (ag + bh) = a( f ∗ g) + b( f ∗ h);

(ii) f ∗ g = g ∗ f ;

(iii) ( f ∗ g) ∗ h = f ∗ (g ∗ h);

(iv) ∂j( f ∗ g) = (∂, f ) ∗ g = f ∗
(

∂jg
) (

∂j = ∂/∂xj

)
.

By other hand, since

d(rx) = (rdx1) · · · (rdxn) = rndx (r > 0),

1One exception: For functions with more than one variable, the concepts of one-sided limits, piece-
wise continuity, and piecewise smoothness have no clear analogs. We will not be concerned with
minimal smoothness assumptions for functions with several variables, which necessitate a more com-
plex theory.
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the appropriate analogue of the dilation formula (3.4) is

gε(x) = ε−ng
(

ε−1x
)

. (3.16)

The factor ε−n is the right one to ensure that the integral of gε is independent of ε :∫
gε(x)dx =

∫
g
(

ε−1x
)

d
(

ε−1x
)
=
∫

g(y)dy.

The notion of one-sided limits does not make sense for functions of several variables,
but we still have the following analogue of Theorems 3 and 4.

Theorem 10. Suppose g ∈ L1 and
∫

g(x)dx = 1, and let gε be defined by (3.16).

(a) Suppose that either f is bounded or g vanishes outside a bounded set, so that f ∗ g is
well-defined. If f is continuous at x, then

lim
x→0

f ∗ gε(x) = f (x).

If f is continuous on a closed, bounded set D. the convergence is uniform on D

(b) If f ∈ L2, then
lim
δ→0

∥∥ f ∗ gε − f
∥∥ = 0.

The Fourier transform of an integrable function f on Rn is defined by

f̂ (ξ) = F [ f (x)] =
∫

e−iξ·x f (x)dx.

The estimate | f̂ (ξ)| ≤
∫
| f (x)|dx and the fact that f̂ (ξ) is continuous and tends to

zero as |ξ| → +∞ are still valid. The basic transformational properties of the n-
dimensional Fourier transform are just as in Theorem 6, with one new feature.

Theorem 11. Suppose f ∈ L1 (Rn) .

a) For any a ∈ Rn

F [ f (x− a)] = e−ia·ξ f̂ (ξ) and F
[
eia·x f (x)

]
= f̂ (ξ− a).

b) If δ > 0 and fδ(x) = δ−n f
(

δ−1x
)

, then[
fδ

]
(̂ξ) = f̂ (δξ) and F [ f (δx)] = ( f̂ )δ(ξ).

c) If ∂ f /∂xj, exists and is in L1, then[
∂ f /∂xj

]
(̂ξ) = iξ j f̂ (ξ),

whereas if xj f (x) is integrable, then

F
[

xj f (x)
]
= i∂ f̂ /∂ξ j.
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d) If g ∈ L1 and f ∗ g ∈ L1, then
( f ∗ g)̂= f̂ ĝ.

e) The Fourier transform commutes with rorations: If R is a rotation of Rn, then

F
[

f (Rx)
]
= f̂ (Rξ).

The following is another useful and elementary fact. Suppose f is a product of
functions of the individual variables:

f (x) = f1 (x1) f2 (x2) · · · fn (xn) .

Then the Fourier transform of f is the corresponding product of one-dimensional
Fourier transforms:

f̂ (ξ) = f̂1 (ξ1) f̂2 (ξ2) · · · f̂n (ξn) .

This is so because e−iξ·x =
(

e−iξ1x1

)
. . .
(

e−iξn xn

)
, so the n-dimensional integral

defining f̂ decomposes into a product of one-dimensional integrals. An important
example is the Gaussian f (x) = e−a|x|2/2(a > 0), which is the product of the func-

tions f j

(
xj

)
= e−ax2

j /2. As in one dimension, we have the following important result

F
[
e−a|x|2/2

]
=

(
2π

a

)n/2

e−|ξ|
2/2a, a > 0. (3.17)

With this knowledge, the arguments that lead to the formulas (3.13) and (3.14)
result in the n-dimensional Fourier inversion formula:

Theorem 12 (The Fourier Inversion Theorem). If f is integrable and continuous an Rn,
then

f (x) = lim
ε→0

1
(2π)n

∫
eiξ·xe−ε2|ξ|2 f̂ (ξ)dξ, x ∈ Rn. (3.18)

If also f̂ is integrable, then

f (x) =
1

(2π)n

∫
eiξ·x f̂ (ξ)dξ. (3.19)

If f is only in L1, formula (3.18) holds for virtually every x, and the cutoff function
e−ε2ξ2/2 may be substituted by a variety of alternatives, just as it does in the one-
dimensional case. However, the n-dimensional analogs of Theorem 7.6, in which
the Fourier inversion integral is interpreted as the pointwise limit of integrals over a
family of bounded regions Ωr, which expand to fill out Rn as r → +∞, are rather
delicate and not particularly useful, and we will not attempt to discuss them here.

The Plancherel theorem also remains true in the n -dimensional setting, with the
same proof, except that the factor of 2π must be replaced by (2π)n

〈 f̂ , ĝ〉 = (2π)2〈 f , g〉, ‖ f̂ ‖2 = (2π)n∥∥ f
∥∥2.

Limiting processes like (3.18) can again be used to construct the Fourier transform
and inverse Fourier transform of L2 functions.
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3.5.1 Applications

In any number of dimensions, the many discussions of linear operators that commute
with translations are valid. The Fourier transform, in particular, turns any constant-
coefficient differential operator into polynomial multiplication. For example, if

L[u] = au +
n

∑
j=1

bj
∂u
∂xj

+
n

∑
j,k=1

cjk
∂2u

∂xj∂xk
,

so, (
L[u]

)
(̂ξ) = P(ξ)û(ξ) where P(ξ) = a + i

n

∑
j=1

bjξ j −
n

∑
jx=1

cjkξ jξk.

Formally, then, we can solve the non homogeneous equation L(u) = f on Rn by
taking û = f̂ /P. If P(ξ) is never zero, this leads to a Fourier integral formula for u,

u(x) =
1

(2π)n

∫ f̂ (ξ)
P(ξ)

eZ·xdξ, (3.20)

or to the convolution formula u = f ∗K where K is the inverse Fourier transform of
1/P. If P has zeros, the situation is technically more complicated since once has to
worry about the integrability of f̂ /P, but the same ideas work in principle.

We can solve the initial value problem for the heat equation in Rn,

ut = k∇2u, u(x, 0) = f (x),

by taking the Fourier transform in x just as before. In view of (3.17), the result is

u(x, t) = f ∗Kt(x), Kt(x) = (4πkt)−n/2e−|x|
2/4kt,

which has the same physical interpretation as before. Similarly, to solve the Dirichlet
problem in a half-space

H =
{
(x1 . . . . . . , xn+1) : xn+1 > 0

}
in Rn+1, we adopt the notation y = xn+1,x = (x1, . . . , xn) , so that the problem is

∇2u = ∇2
xu + uyy = 0 in H, u(x, 0) = f (x).

Taking the Fourier transform in x and imposing the requirement of boundedness, we
obtain û(ξ, t) = f̂ (ξ)e−|ξ|y as before, and hence u(x, y) = f ∗ Py(x) where P̂y(ξ) =

e−|ξ|y. The calculation of the inverse Fourier transform of e−|ξ|y is trickier than in the
1-dimensional case. The result is the n-dimensional Poisson integral formulas:

u(x, y) = f ∗Py(x), Py(x) =
Γ((n + 1)/2)

π(n+1)/2

y(
|x|2 + y2

)(n+1)/2
.
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Chapter 4

Quaternions

In this chapter we shall present a number of concepts of quaternions which are im-
portant for our study. Our main reference is [21].

4.1 Real and complex quaternions

4.1.1 Elementary properties of real quaternions

In this section we assemble a number of well known properties of real quaternions,
which we found in different classic books in this field.

Let e0 = 1, e1, e2, e3 the basic elements in R4 where the vector ek is to identify
with this 4-tupel which has at the (k + 1)-th component the number one and is zero
otherwise. An arbitrary element x ∈ R4 now has the representation x = x0e0 + x1e1 +
x2e2 + x3e3. We will call the part x0e0 =: Sc x the scalar part of x and x = x − x0e0,
written by Vec x is the vector part of x. Let x, y ∈ R4. Now we define a product in R4

which fulfils the following conditions:

i) e2
1 = e2

2 = e2
3 = −1,

ii) e1e2 = e3, e2e3 = e1, e3e1 = e2,

iii) eiej + ejei = 0 (i, j = 1, 2, 3; i 6= j).

If we write for short (x, y) := x1y1 + x2y2 + x3y3 and x × y :=
(
x2y3 − x3y2

)
e1 +

(x3y1 − x1y3)e2 + (x1y2 − x2y1)e3, then by using of the algebraic rules (i),(ii),(iii) the
quaternionc product xy is given by

xy = x0y0 − (x, y) + x0y + y0x + x× y.

After introduction of this product, the tuple
(

R4, .
)

is called algebra of real quater-

nions. In honour of W.R. HAMILTON we signify (R4, .) by H. If x = x then x is called
a pure quaternion. The subset of all pure quaternions is denoted by Vec H, while the
subset of all scalars will be signified by Sc H. For x ∈ Vec H, we identify x = x. The

28
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quaternion x̄ = x0 − x is called the conjugate to x. The mapping x 7−→ x̄ is called
conjugation. The number |x| defined by xx̄ = |x|2 is named norm or absolute value
of x. If |x| = 1 then a quaternion is said to be a unit quaternion.

Example 2. Let x = 2 + e1 + 3e2 + e3 then x̄ = 2− e1 − 3e2 − e3. Sc x = 2,
|x|2 = 4 + 1 + 9 + 1 = 15. Let y = e1 − 2e3 be another quaternion then

xy = 2− (−1) + 2e1 − 2e3 + (−6)e1 + 4e2 − 3e3

= 3− 4e1 + 4e1 − 5e3.

Lemma 2. xy is an R -bilinear and associative product, but it is not commutative.

Remark 6. For x, y ∈H and µ ∈ R one has the relations

(i) x + y = x + y,

(ii) µx = µx,

(iii) x = x,

(iv) xy = y x which is named anti-involution.[6]

Corollary 2. Let x, y ∈ Vec H, then

(i) x× y = Vec (xy) = 1
2(xy− yx),

(ii) (x, y) = Sc (x̄y) = 1
2(x̄y + yx̄).

Corollary 3. From x2 = y2 it does not follow that x = ±y.

Proof. Take for instance e1 and e2.

Lemma 3. A quaternion x is a vector if and only if x2 < 0 or x = 0.

Proof. (⇒) Let x = x, then

x2 = −xx̄
= −(x, x)

= −
(

x2
1 + x2

2 + x2
3

)
.

(⇐) In the opposite direction we have x2 = x2
0 − |x|2 + 2x0x. Now only two cases are

possible:

(i) If x0 = 0 and then we are ready.

(ii) If x = 0 and x0 6= 0 then x2 would be positive contrary to the assumption.

Lemma 4. A quaternion x is real if and only if for each other quaternion y holds yx = xy.
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Proof. It is necessary to show only that from the commutativity relation with an ar-
bitrary quaternion y it follows that x has to be a real number. Taking for y = e1 we
get

xe1 = −x1 + x0e1 − x2e3 + x3e2

= −x1 + x0e1 + x2e3 − x3e2

= e1x.

Hence 0 = 2 (x2e3 − x3e2). It immediately follows that x2 = x3 = 0. After repeating
this procedure with the quaternion y = e2 we obtain that x1 also has to be zero.

Proposition 1. For all x, y ∈ H the identity |xy| = |x||y| holds. If x 6= 0 then x−1 exists
and we have

x−1 = x̄|x|−2. (4.1)

From (4.1) we can see that H is a normed division algebra. [6] Furthermore, we get

|x|−1 =
∣∣∣x−1

∣∣∣ .

Lemma 5. Let y be an invertible vector. Then for any vector x the expression yxy−1 is also a
vector.

Proof. As x is a vector, x2 is real and non-positive. Using Lemma 4 we have
(

yxy−1
)2

=

x2 and so yxy−1 has to be a vector.

Corollary 4. The map ρy : R3 3 x → −yxy−1 ∈ R3 is a reflection in the plane which lies
orthogonal to the vector y.

Proof. The map ρy is linear and ρyy = −y, while for any vector r ⊥ y it follows that

ρy(r) = −yry−1

= ryy−1

= r.

Corollary 5. Each rotation in R3 has for some non-zero y the form −ρy. Conversely, any
such map can be seen as rotation in R3.

Proof. We already know that the product of two plane reflections is just a rotation and
vice versa.

Lemma 6. Let y be a quaternion. Then there exists a vector a 6= 0, such that ya is also a
vector.
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Proof. Let a be a vector in R3 orthogonal to the vector part of y. Then ya = y0a + y×
a ∈ R3.

Corollary 6. Each quaternion can be described as a product of two vectors.

Lemma 7. An arbitrary unit quaternion can be represented as the product y = y−1x−1,
where x = x and y = y are non-zero vectors.

Proof. We know from Lemma 6 that for any unit quaternion e a non-zero vector x
exists such that ex is a vector. Because of |e| = 1 we have |ex| = |x|. In this way ex
has to be a rotation. Then there exists a vector y 6= 0 with ex = yxy−1 and so the
statement follows.

4.1.2 Representation of real quaternions

We will group here some of the most important properties of the representation of
real quaternions.

Theorem 13. An arbitrary quaternion x ∈H, x 6= 0 permits the representation

x = |x|(cos φ + ω(x) sin φ)

where φ = arc cot
(
x0/|x|

)
and ω(x) = x/|x| ∈ S3.

Proof. It is well known that

sin φ =
1√(

1 + cot2 φ
) and cos φ =

cot φ√(
1 + cot2 φ

) .

We obtain under our assumption

sin arc cot
x0

|x| =
1√

1 +
(

x0
|x|

)2
and cos arc cot

x0

|x| =
x0
|x|√

1 +
(

x0
|x|

)2

Then we get by a straightforward calculation

cos φ + (x/|x|) sin φ = x/|x|,

which verifies our theorem.

Remark 7. For x0 = 0, we get the decomposition mentioned in Proposition 1.

Example 3. Let x = 3 + 2e1 + 2e2 + e3 then |x| = 3
√

2, |x| = 3, φ = 45◦. Thus we obtain
the representation

x = 3
√

2
[

cos 45◦ +
(2c1 + 2c2 + ε3)

3
sin 45◦

]
.
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Corollary 7 (MOIVRE’s formula.). Let x ∈H, x 6= 0, n ∈N, then the following formula
is valid:

(cos ρ + ω(x) sin φ)n = cos nφ + ω(x) sin nφ.

Lemma 8. The R-linear hull of the set {1, x}, where x is not real, forms a subalgebra which
is isomorphic to C.

Theorem 14. The algebra of real quaternions H can be represented by the matrices(
1 0
0 1

)
,

(
−i 0
0 i

)
,

(
0 −1
1 0

)
,

(
0 −i
−i 0

)
.

Therefore each quaternion x permits the representation

x =

(
z̄1 −z̄2
z2 z1

)
,

with z1 := x0 + ix1 and z2 := x2 + ix3.

Corollary 8. The algebra of real quaternions H can be generated by the real matrices
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

Remark 8. In [1] the following good relations between quaternions and matrices are given.
For this reason we introduce a vector u = (u0, u1, u2, u3)

T ∈ R4 and a corresponding matrix

T±(u) =

(
u0 −uT

u u0E3 ± K(u)

)
,

with

k(u) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 and E3 =

1 0 0
0 1 0
0 0 1

 .

It is clear that K(v)w = v× w, where v, w ∈ R3.

Lemma 9. Let u, v, w ∈ R4. Then we have

i) vw = T+(v)w = T−(w)v.

ii) uvw = T+(u)T+(v)w = T+(u)T−(w)v = T−(w)T−(v)u.
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4.1.3 Complex quaternions

More than real quaternions, complex quaternions play an important role in theoretical
physics. Let us now discuss the fundamental properties of quaternions with complex-
valued coefficients. We will use the so-called PAULI matrices:

σ0 =

(
1 0
(1 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
0 1
1 0

)
.

PAULI matrices form an algebra P. Then we get the representation of an arbitrary
element x ∈ P in the form

x = x0σ0 + x1σ1 + x2σ2 + x3σ3 + x4σ2σ3 + x5σ3σ1 + x6σ1σ2 + x7σ1σ2σ3

We have to distinguish four classes of elements, namely complex linear combina-
tions of scalars σ0, vectors σ1, σ2, σ3, bivectors σ2σ3, σ3σ1, σ1σ2 and pseudoscalars σ1σ2σ3.
PAULI matrices satisfy the conditions σiσj + σjσi = 2δijσ0, i, j = 1, 2, 3, where δij de-
notes KRONECKER’s symbol. On account of (σ1σ2σ3)

2 = −σ0 we obtain that the
linear space generated by {σ0, σ1σ2σ3} is isomorphic to the field of complex numbers
C.

Remark 9. The centre of P is C.

Lemma 10. With ε := iσ0 we get

−εσ0 = σ1σ2σ3,
−εσ1 = σ2σ3,
−εσ2 = σ3σ1,
−εσ3 = σ1σ2,
εσ1σ2 = +σ3,
εσ2σ3 = +σ1,
εσ3σ1 = +σ2,

εσ1σ2σ3 = +σ0,

i.e. the multiplication by ε transforms scalars into pseudoscalars, vectors into bivectors, bivec-
tors into vector, and pseudoscalars into scalars.

Remark 10. The operator of multiplication by ε is often called HODGE map and marked by
∗.
Definition 4. Let x = x1σ1 + x2σ2 + x3σ3 and y = y1σ1 + y2σ2 + y3σ3 be vectors in P. The
formal determinant

det

 σ1 σ2 σ3
x1 x2 x3
y1 y2 y3


is called cross product and denoted by x× y.
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Lemma 11. The algebra P contains zero divisors.

Proof. One has to take only the complex quaternions (1− σ1) and (1 + σ1) . The prod-
uct of both is zero.

We find for each element x = p + qε of the PAULI algebra with p, q ∈ H the con-
jugation (do not confuse with the notions of the complex-conjugation) acts as follows
x = p̄ + q̄ε.

Definition 5. Let x = p + qε, p = p0 + p q = q0 + q. Then we call the complex
magnitude ‖x‖C of the element x defined by

‖x‖2
C = xx = |p|2 − |q|2 + 2ε[p0q0 + (p, q)]

complex-valued norm in P where |p|2 = pp and |q|2 = qq̄.

Lemma 12. There exists a unique real-valued norm ‖x‖ of x ∈ P which satisfies the condi-
tions

(i)
∥∥xy

∥∥ = ‖x‖
∥∥y
∥∥,

(ii)
∥∥µσ0

∥∥ = |u|(µ ∈ R)

This norm is given by

‖x‖4 =
∣∣∣‖x‖2

C

∣∣∣2 .

4.2 Rotations

As is well known, the matrices

R(φ) =

(
cos θ − sin φ
sin φ cos φ

)
,

with φ ∈ R, form a group. It is easy to verify that for φ, ψ ∈ R the relation

R(φ + ψ) = R(φ)R(ψ)

holds. A matrix of this type may be used to describe any rotation in the plane. special
orthogonal group SO(2) is the corresponding group of all rotations in the plane. The
unit circle S1 in the complex plane, with complex multiplication as the group action, is
another manifestation of this group. The complex number eiφ can be used to identify
the matrix R(φ).
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4.2.1 Rotations in R3

In R3, each rotation R(φ) is defined by an axis a and a rotation angle φ around this
axis. SO(3) denotes the group of all rotations. Linear transformations with matching
matrices R(φ) = R that maintain the scalar product

(x, y) = (Rx, Ry)

and det R = 1, can be used to realize this group. Rotations around the coordinate
axis can be expressed by the matrices

R1(a) =

1 0 0
0 cos α − sin a
0 sin a cos a

 ,

R2(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 ,

R3(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .

The angles a, β, γ are called EULER angles. Now, let us explain the role of quater-
nions for the representation of rotations in the space. We already know from Section
4.1.2 that a real quaternion x permits the binary representation

x = |x|
(

x0

|x| + ω
|x|
|x|

)
,

with

ω2 =

(
x
|x|

)2

= −1.

Definition 6. Let ω ∈ Vec H, ω2 = −1. The exponential function eωθ is defined by the
formal expansion

eωθ := 1 + ωθ − 1
2!

θ2 − 1
3!

ωθ3 + . . . ,

where we have uniform convergence of the expansion

eθ = 1 + θ +
1
2!

θ2 + . . . , θ ∈ R

and the estimation ∣∣∣eωθ
∣∣∣ ≤ 1 + |θ|+ 1

2!
|θ|2 + · · · = e|θ|.

Mathematician 35 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Proposition 2. Let ω ∈ Vec H with ω2 = −1. Then

(i) eωθ = cos θ + ω sin θ.

(ii)
∣∣∣eωθ

∣∣∣ = 1.

(iii) ln the binary representation we have

cos θ =
x0

|x| , sin θ =
|x|
|x| .

Proof. It is sufficient to compare separately the vector parts and scalar parts in the
definition of eωθ.

Corollary 9. Let x, y ∈ Vec H. Then

(i) xy = yx −→ exey = ex+y.

(ii) From exey = ex+y if does not follow that xy = yx.

Proof. We have only to verify (ii). For this reason we take x := 3πe1 and y := 4πe2.
Then we obtain e3πe1 = −1, e4πe2 = 1 and e3πe1+4πe2 = e((3/5)e1+(4/5)32)5π. The latter
identity is minus one, because of ((3/5)e1 + (4/5)e2)

2 = −1. On the other band,
4πe2 · 3πe1 = −3πe1 · 4πe2 6= 3π · e14πe2.

A similar definition can also be given in the algebra P.

Definition 7. Let ω ∈ Vec P, θ ∈ R, ω2 = 1 then the exponential function can be defined by
the series

eφω = 1 + ωθ +
1
2!

θ2 + ω
1
3!

θ3 + · · ·

The convergence of this series is ensured in definition 6.

Proposition 3. Let ω ∈ Vec P, ω2 = 1 then we have

(i) eθω = cosh θ + ω sinh θ,

(ii) eθ(jω) = cos θ + (jω) sin θ, j2 = −1,

where jω is a unit vector in P.

Proof. It follows from the complex analysis in the plane. We have only to consider the
relations cosh θ = cos jθ and sin jθ = −j sinh θ.

Remark 11. In physic from the mapping x → eθe1e2e3 x (θ ∈ R) with (e1e2e3)
2 = −1, where

{e1, e2, e3} is a basis in R3, is called the LARMORREINICH transformation.

Corollary 10 (EULER’s formula.). For the rotation of a vector x ∈ Vec H we have the
formula

x′ = x cos θ + (cos θ − 1)(x, ω) + (ω× x) sin θ,

with ω2 = −1 and ω stands for the rotation axis.
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Proof. We start with the decomposition x = u + v, with u×ω = 0 and (v, ω) = 0. We
do the same for x′ = u′ + v′ with u′ × ω = 0 and (v′, ω) = 0 Since ω commutates
with u, we get

u′ = u = −(ω, x)ω.

Furthermore
v′ = e

1
2 θωve−

1
2 θω = ve−θω.

Hence.
v′ = v(cos θ −ω sin θ) = v cos θ − (v×ω) sin θ

and

x′ = u′ + v′ = −(ω, x)ω + v cos θ − (v×ω) sin θ

= −(ω, x)ω + x cos θ − u cos θ + (ω× v) sin θ

= −(ω, x)ω− u cos θ + x cos θ + (ω× x) sin θ

= (cos θ − 1)(ω, x)ω + x cos θ + (ω× x) sin θ.

Corollary 11. The coordinates of x ∈ Vec H transform as follows:

x′1 = x1 cos θ + ω1(cos θ − 1)
[
− (x1ω1 + x2ω2 + x3ω3)

]
+ (ω2x2 −ω3x2) sin θ,

x′2 = x2 cos θ + ω2(cos θ − 1)
[
− (x1ω1 + x2ω2 + x3ω3)

]
+ (ω3x1 −ω1x3) sin θ,

x′3 = x3 cos θ + ω3(cos θ − 1)
[
− (x1ω1 + x2ω2 + x3ω3)

]
+ (ω1x2 −ω2x1) sin θ.

Remark 12. For ω = e1 we get

x′1 = x1 cos θ + x1(1− cos θ),

x′2 = x2 cos θ − x3 sin θ,

x′3 = x3 cos θ + x2 sin θ.

This is equivalent to

x′ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 x1

x2
x3

 = R1(θ)x.

Similarly, we achieve x′ = R2(θ)x for ω = e2 and x′ = R3(θ)x for ω = e3.

Definition 8. Let u ∈ R3. Each vector x ∈ R3 permits the decomposition x = v + λu, with
v ∈ {z : (z, u) = 0} = u⊥. Then the map

Rux = v− λu

is called reflection along u, i.e., Ru is the identity onto u⊥ and minus the identity on the fine
through u.
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Corollary 12. Any reflection has the representation

Rux = x− 2
(x, u)
(u, u)

u.

Proof. Let x = v + λu then Rux = v− λu. Obviously, λ = (x,u)
(u,u) , such that

Rux = x− 2λu.

Theorem 15 (CARTAN-DIEUDONNE). Each orthogonal transformation R ∈ O
(

R3
)

can
be represented as a product of a finite number s of reflections along the vectors ωj, (ωj, ωj) 6=
0(j = 1, . . . , s), i.e., R = Rω1, Rω2 . . . Rωs.

Remark 13. Theorem 15 can be generalized to vector spaces with signature p, q and dimension
n (for more detail see [22]).
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Chapter 5

Two-dimensional (left) Quaternion
Fourier Transform (2D-QFT)

In this chapter, we introduce the Two-dimensional (left) Quaternion Fourier Trans-
form (2D−QFT). Some important properties are studied. Moreover, we applied this
transform to solve the heat equation in R2.

5.1 Basics

From Theorem 13, we can can written any quaternion q as

q = |q|eµφ, (5.1)

where where θ = arctan | Sc(q)|/ Vec(q), 0 ≤ θ ≤ π, is the eigenangle or phase of q.
When |q| = 1, q is a unit quaternion. Euler’s and De Moivre’s formulas still hold in
quaternion space, that is, for a pure unit quaternion the following holds:

eµθ = cos φ + µ sin φ,

eµnφ =
(
cos φ + µ sin φ

)n
= cos nφ + µ sin nφ.

As in the algebra of complex numbers, we can define three nontrivial algebra
involutions for quaternions

α(q) = −iqi = −i
(
q0 + iq1 + jq2 + kq3

)
i = q0 + iq1 − jq2 − kq3,

β(q) = −jqj = −j
(
q0 + iq1 + jq2 + kq3

)
j = q0 − iq1 + jq2 − kq3,

γ(q) = −kqk = −k
(
q0 + iq1 + jq2 + kq3

)
k = q0 − iq1 − jq2 + kq3.

(5.2)

For our purposes, it is convenient to introduce the inner product of two quaternion-
valued functions, f , g : R2 →H, as follows:

( f , g)L2(R2;H) =
∫

R2
g(x) f (x)d2x. (5.3)

In particular, if f = g, then we obtain the associated norm:

‖ f ‖2
L2(R2;H)

=
∫

R2
| f (x)|2d2x. (5.4)
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5.2 Basic Properties of 2D-QFT

We list some of their basic properties with proofs. Most of them are essentially
straightforward extensions of the Two-dimensional Fourier Transform (2D-FT) prop-
erties. Denote by {e1, e2} the standard basis of R2.

Definition 9. Let f ∈ L1
(

R2; H
)

. We define the Two-dimensional (left) Quaternion

Fourier Transform of f (2D-QFT for short) is the function Fq{ f } : R2 →H defined by

Fq{ f }(ω) = f̂ (ω) =
∫

R2
e−µω·x f (x)d2x, (5.5)

where µ ∈ H is a pure unit quaternion, x = x1e1 + x2e2, ω = ω1e1 + ω2e2 and e−µω·x is
called the quaternion Fourier kernel.

Previous to present the Inversion formula for the 2D − QFT, we present some
important results (for more details see [2]).

Definition 10. Let f ∈ L1(R; H). We define the One-dimensional (left) Quaternion
Fourier Transform of f (1D−QFT for short), by

F{ f (x)}(t) = f̂ (t) =
∫

R
e−µtx f (x)dx.

Theorem 16 (Fourier Inversion Formula for the 1D−QFT [2]). Let f be an integrable
and piecewise continuous on R, with values in H, defined at its points of discontinuity as to

satisfy f (x) =
1
2
[ f (x−) + f (x+)] for all x. Then

f (x) = lim
ε→0

1
2π

∫
eµtxe−ε2t2/2 f̂ (t)dt, x ∈ R.

Moreover, if f̂ ∈ L1(R; H), then f is continuous and

f (x) =
1

2π

∫
eµtx f̂ (t)dt, x ∈ R.

Theorem 17 (Inversion formula for the 2D-QFT). Suppose that f ∈ L2
(

R2; H
)

and

Fq{ f } ∈ L1
(

R2; H
)

. Then the 2D−QFT is invertible with inverse

F−1
q

[
Fq{ f }

]
(x) = f (x) =

1
(2π)2

∫
R2

eµω·xFq{ f }(ω)d2ω. (5.6)

Proof. Applying Definition 10 with respect to xk, for k = 1, 2, by F{ f (x)}, we have

Fx1{ f (x)}(ω1, x2) =
∫

R
e−µω1x1 f (x)dx1
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and
Fx2{ f (x)}(x1, ω2) =

∫
R

e−µω2x2 f (x) dx2.

Then we are able to write

Fq{ f (x1, x2)}(ω) =
∫

R2
e−µω·x f (x)d2x

=
∫

R
e−µω1x1

(∫
R

e−µω2x2 f (x1, x2)dx2

)
dx1

=
∫

R
e−µω1x1Fx2{ f }(x1, x2)dx1

= Fx1x2{ f (x1, x2)}(ω).

By Theorem 16, we have

f (x1, x2) =
1

2π

∫
R

eµω1x1Fx1{ f }(ω1, ω2)dω1

=
1

2π

∫
R

eµω1x1

(
1

2π

∫
R
Fx2x1{ f }(ω1, ω2)dω2

)
dω1

=
1

(2π)2

∫
R2

eµω1x1eµω2x2Fx2x1{ f }(ω1, ω2)dω2dω1.

On the other hand, since

eµαeµβ = eµβeµα, ∀α, β ∈ R,

we have
Fx1x2{ f (x1, x2)}(ω1, ω2) = Fx2x1{ f (x1, x2)}(ω2, ω1).

Then,

f (x1, x2) =
1

2π

∫
R2

eµω·xFq{ f }(ω1, ω2)d2ω.

5.2.1 Right linearity

It is easy to show the following lemma.

Lemma 13. Let f1, f2 ∈ L2
(

R2; H
)

. The 2D−QFT is right H−linear, that is,

Fq
{

f1α + f2β
}
(ω) = Fq

{
f1
}
(ω)α +Fq

{
f2
}
(ω)β, α, β ∈H. (5.7)

Proof. By (5.5), we have that

Fq
{

f1α + f2β
}
(ω) =

∫
R2

e−µω·x { f1(x)α + f2(x)β
}

d2x

=
∫

R2

(
e−µω·x f1(x)α + e−µω·x f2(x)β

)
d2x

= Fq
{

f1
}
(ω)α +Fq

{
f2
}
(ω)β.
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Note that left linearity is not valid for the 2D−QFT. However, we can write

Fq
{

α f1 + β f2
}
(ω) =

∫
R2

e−µω·x {α f1(x) + β f2(x)
}

d2x

=
∫

R2

(
e−µω·xα f1(x) + e−µω·xβ f2(x)

)
d2x

= Fq
{

α f1
}
(ω) +Fq

{
β f2
}
(ω).

5.2.2 Shift property

Lemma 14. The 2D−QFT of a shifted function is given by

Fq{ f (x− b)}(ω) = e−µω·bFq{ f }(ω). (5.8)

Proof. From (5.5), we have

Fq{ f (x− b)}(ω) =
∫

R2
e−µω·x f (x− b)d2x.

Substituting t = x− b in the above expression, we have x = t+ b and d2x = d2t
Hence,

Fq{ f (x− b)}(ω) =
∫

R2
e−µω·(t+b) f (t)d2t

=
∫

R2
e−µω·(b+t) f (t)d2t

=
∫

R2
e−µω·be−µt·ω f (t)d2t

= e−µω·bFq{ f }(ω).

Here, we use the fact that: let q1, q2 ∈H, then eq1+q2 = eq1eq2 if and only if q1q2 = q2q1.
This proves ( 5.8 ).

5.2.3 Scaling property

Lemma 15. Let a ∈ R\{0}. The 2D− QFT of the scaled function fa(x) = f (ax) is given
by

Fq
{

fa
}
(ω) =

1
|a|2Fq{ f }

(
ω

a

)
.

Proof. We first assume that a > 0. By Definition 9, we have

Fq
{

fa
}
(ω) =

∫
R2

e−µω·x f (ax)d2x.
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Substituting u for ax, we have

Fq
{

fa
}
(ω) =

1
a2

∫
R2

e−µω
a ·u f (u)d2u

=
1
a2Fq{ f }

(
ω

a

)
.

For a < 0, we have

Fq
{

fa
}
(ω) =

1
(−a)2Fq{ f }

(
ω

a

)
,

which completes the proof.

5.2.4 Modulation property

Lemma 16. Let ω0 ∈ R2 and F0(x) = eµω0·x f (x). Then, we have

Fq {F0} (ω) = Fq{ f } (ω −ω0) .

Proof. Using Definition 9 and simplifying it, we obtain

Fq {F0} (ω) =
∫

R2
e−µω·xeµω0·x f (x)d2x

=
∫

R2
e−µ(ω−ω0)·x f (x)d2x

= Fq{ f } (ω −ω0) .

Remark 14. Note that this property is different from the usual modulation property of the 2D
FT. If the modulation term is multiplied from the right, that is

F0(x) = f (x) · eµω0x

then the modulation property holds only for

f (x) = f0(x) + µ f1(x), f0(x), f1(x) ∈ R, µ ∈H.

In fact, by Corollary 9 and (5.1), we have

µex = exµ.

Then

Fq {F0} (ω) =
∫

R2
e−µω·x f (x)eµω0·xd2x

=
∫

R2
e−µω·x ( f0(x) + µ f1(x)

)
eµω0·xd2x

=
∫

R2

(
e−µ(ω−ω0)·x f0(x) + e−µ(ω−ω0)·xµ f1(x)

)
d2x

=
∫

R2
e−µ(ω−ω0)·x f (x)d2x

= Fq{ f } (ω −ω0) .
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5.3 Main Properties of the 2D-QFT

This section describes important properties of the 2D− QFT, such as the Plancherel
and convolution theorems. First, we establish the Plancherel theorem.

Theorem 18. (2D-QFT Plancherel). Let f , g ∈ L2
(

R2; H
)

. Then, we have

( f , g)L2(R2;H) =
1

(2π)2

(
Fq{ f },Fq{g}

)
L2(R2;H)

. (5.9)

In particular, with f = g, we have the Parseval theorem:

‖ f ‖L2(R2;H) =
1

2π

∥∥∥Fq{ f }
∥∥∥

L2(R2;H)
. (5.10)

Proof. Equation (5.9) follows from

( f , g)L2(R2;H) =
∫

R2
g(x) f (x)d2x

=
1

(2π)2

∫
R2

g(x)
[∫

R2
eµω·xFq{ f }(ω)d2ω

]
d2x

=
1

(2π)2

∫
R2

[∫
R2

g(x)eµω·xd2x

]
Fq{ f }(ω)d2ω

=
1

(2π)2

∫
R2

[∫
R2

eµω·xg(x)d2x

]
Fq{ f }(ω)d2ω

=
1

(2π)2

∫
R2

[∫
R2

e−µω·xg(x)d2x

]
Fq{ f }(ω)d2ω

=
1

(2π)2

∫
R2
Fq{g}(ω)Fq{ f }(ω)d2ω

=
1

(2π)2

(
Fq{ f },Fq{g}

)
L2(R2;H)

.

Which concludes (5.9). Now, if f = g and by (5.4), we arrive to (5.10), which completes
the proof of Theorem 18.
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The most important property of the 2D−QFT for applications in signal processing
is the convolution theorem [5]. Due to the non-commutativity of quaternion multipli-
cation, we obtain the following definition.

Definition 11. Let f , g ∈ L2
(

R2; H
)

. The convolution f ? g is defined by

( f ? g)(x) =
∫

R2
f (x− y)g(y)d2y. (5.11)

Remark 15. In general, f ? g 6= g ? f because the quaternion multiplication is not commuta-
tive: f (x− y)g(y) 6= g(y) f (x− y).

Theorem 19. Let f , g ∈ L2
(

R2; H
)

be two quaternion-valued functions. If g has the
following representation

g(x) = g0(x) + ig1(x) + jg2(x) + kg3(x),

then, the 2D−QFT of the convolution f ? g is given by

Fq{ f ? g}(ω) =Fq{g0}(ω)Fq
{

f
}
(ω) + Fq{g1}(ω)Fq

{
f
}
(ω)i

+ Fq{g2}(ω)Fq
{

f
}
(ω)j + Fq{g3}(ω)Fq

{
f
}
(ω)k. (5.12)

Note that, denoting
e0 := 1, e1 := i, e2 := j, , e3 := k;

we can rewritten (5.12) as follows

Fq{ f ? g}(ω) =
3

∑
m=0
Fq{gm}(ω) · Fq{ fm}(ω)em. (5.13)

Proof. Applying the definition of the 2D−QFT and by (5.11) we have

Fq{ f ? g}(ω) =
∫

R2
e−µω·x( f ? g)(x)d2x

=
∫

R2
e−µω·x

[∫
R2

f (x− y)g(y)d2y

]
d2x

=
∫

R2

[∫
R2

e−µω·x f (x− y)g(y)d2y

]
d2x

=
∫

R2

[∫
R2

e−µω·x f (x− y)d2x

]
g(y)d2y. (5.14)
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Putting z = x−y and applying again the definition of the 2D−QFT, we can rewrite
(5.14) as

Fq{ f ? g}(ω) =
∫

R2

[∫
R2

e−µω·(z+y) f (z)d2z

]
g(y)d2y

=
∫

R2

[
e−µω·y

∫
R2

e−µω·z f (z)d2z

]
g(y)d2y

=
∫

R2
e−µω·yFq{ f }(ω)

[
g0(y) + ig1(y) + jg2(y) + kg3(y)

]
d2y

=

[∫
R2

e−µω·yg0(y)d2y

]
Fq{ f }(ω) +

[∫
R2

e−µω·yg1(y)d2y

]
Fq{ f }(ω)i

+

[∫
R2

e−µω·yg2(y)d2y

]
Fq{ f }(ω)j +

[∫
R2

e−µω·yg3(y)d2y

]
Fq{ f }(ω)k

= Fq{g0}(ω)Fq{ f }(ω) +Fq{g1}(ω)Fq{ f }(ω)i+Fq{g2}(ω)Fq{ f }(ω)j
+Fq{g3}(ω)Fq{ f }(ω)k,

which finishes the proof.

As a special case of Theorem 19, we have the following corollary.

Corollary 13. (i) If Fq{ f }(ω) ∈ R, then

Fq{ f ? g}(ω) = Fq{ f }(ω)Fq{g}(ω). (5.15)

(ii) If g(x) ∈ R, then

Fq{ f ? g}(ω) = Fq{ f }(ω)Fq{g}(ω). (5.16)

Note that the convolution of two Gaussian functions is again a Gaussian function
by Corollary 13. In fact note that if f , g ∈ L2

(
R2; H

)
, are given by

f (x) = e−ax2 ; g(x) = e−bx2 , a, b > 0.
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Then, by Definition 11, we have

( f ? g)(x) =
∫

R2
e−a(x−y)2

e−by2
dy

=
∫

R2
e−ax2+2axy−ay2−by2

dy

= exp

(
−ax2 +

a2x2

a + b

) ∫
R2

exp

(
−(a + b)

(
y − ax

a + b

)2
)

dy

= exp

(
−abx2

a + b

) ∫
R2

e−(a+b)z2
dz

=
π

a + b
exp

(
−abx2

a + b

)

in which the change of variable z = y − ax

a + b
is used.

Applying the inverse 2D−QFT to the left-hand side of (5.15), we have the follow-
ing Corollary, which is important for solving partial differential equations in quater-
nion algebra.

Corollary 14. Assume that Fq{ f }(ω) ∈ R. Then, we have

F−1
q

[
Fq{ f }Fq{g}

]
(x) = ( f ? g)(x). (5.17)

Proof. By the 2D−QFT inversion, we have

F−1
q

[
Fq{ f }Fq{g}

]
(x) =

1
(2π)2

∫
R2

eµω·y
(

Fq{ f }(ω)Fq{g}(ω)
)

d2ω

=
1

(2π)2

∫
R2

eµω·yFq{ f }(ω)
(∫

R2
e−µω·yg(y)d2y

)
d2ω

=
1

(2π)2

∫
R2

(∫
R2

eµω·yFq{ f }(ω)e−µω·yd2ω

)
g(y)d2y

=
∫

R2

(
1

(2π)2

∫
R2

eµω·(x−y)Fq{ f }(ω)d2ω

)
g(y)d2y

=
∫

R2
f (x− y)g(y)d2y

=( f ? g)(x).
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5.4 Differentiation of 2D-QFT

Differentiation properties of 2D− FT can be generalized to the proposed 2D− QFT
without changing their invariant expressions (independence of coordinates) in terms
of vector differentials and vector derivatives. First, we define the properties of vector
differentials (compare to Hitzer and Bahri, [7] Bahri and Hitzer [25] ). Let (Rn, Q) =
V be a real vector space with basis {ẽ1, . . . , ẽn} and nondegenerate quadratic form
Q : V 7→ R :

Q(x) = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q, p + q = n, p, q ∈ Z+,

where x = ∑n
i=1 xi ẽi represents an arbitrary element of V and Z+ = {n ∈ Z | n > 0}.

It is required that the following basic multiplication rules hold:

ẽ2
i = 1, 1 ≤ i ≤ p

ẽ2
i = −1, p + 1 ≤ i ≤ n

ẽi ẽj + ẽj ẽi = 0, i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Sylvester’s theorem guarantees that p and q do not depend on the choice of the basis
{ẽ1, . . . , ẽn} . We use the abbreviation Rp,q for (Rn, Q) . The pair p, q is called the sig-
nature of Rp,q. The spaces Rn,0 are called Euclidean spaces while all spaces of type
R0,n are called anti-Euclidean spaces [21].

Remark 16. x ∈ R0,2 is of the form

x = x1ẽ1 + x2ẽ2,

where
ẽ2

1 = ẽ2
2 = −1 and ẽ1ẽ2 = −ẽ2ẽ1.

Definition 12. Let a ∈ R0,2. The vector differential a · ∇ along the direction a is defined by

a · ∇ = a1∂1 + a2∂2, (5.18)

where ∇ = ẽ1∂1 + ẽ2∂2, ak = a · ẽk and ∂k =
∂

∂xk
, k = 1, 2. Applying the vector derivative ∇

twice, we have

∇2 = ∇∇ =

(
ẽ1

∂

∂x1
+ ẽ2

∂

∂x2

)(
ẽ1

∂

∂x1
+ ẽ2

∂

∂x2

)
= −

(
∂2

∂x2
1
+

∂2

∂x2
2

)
, (5.19)

which is −∆, i.e., minus the Laplacian.

Remark 17. A function f ∈ L2
(

R0,2, H
)

can be seen as a function f ∈ L2
(

R2, H
)

. In

fact, if f : R0,2 →H, we can write

f (x1ẽ1 + x2ẽ2) = f (x1, x2).
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Remark 17, implies that, for a given function f ∈ L2
(

R0,2, H
)

, the inverse formula
can be used as (5.6).

Theorem 20. (Vector differential). The 2D−QFT of the vector differential of f ∈ L2
(

R0,2; H
)

is given by
Fq{a · ∇ f (x)}(ω) = a ·ωµFq{ f }(ω). (5.20)

Proof. Applying the vector differential a · ∇ to the inversion formula (5.6), we have

a · ∇ f (x) = a · ∇ 1
(2π)2

∫
R2

eµω·xFq{ f }(ω)d2ω.

Since

a · ∇
(
eµω·x) = (a1∂1 + a2∂2)

(
eµ(ω1x1+ω2x2)

)
= (a1µω1 + a2µω2)eµω·x

= (a ·ω)µeµω·x.

Then

a · ∇ f (x) =
1

(2π)2

∫
R2

(a ·ω) µeµω·xFq{ f }(ω)d2ω

= F−1
q

[
a ·ωµFq{ f }(ω)

]
(x),

so,
Fq{a · ∇ f (x)}(ω) = a ·ωµFq{ f }(ω).

As a special case of Theorem 20, we have the following Corollary.

Corollary 15. Considering a = ẽk, for k = 1, 2, one has

Fq{∂k f (x)}(ω) = ωkµFq{ f }(ω). (5.21)

Theorem 21. Let a, b ∈ R0,2. Then, we have

Fq{(a · ∇)(b · ∇) f }(ω) = −(a ·ω)(b ·ω)Fq{ f }(ω). (5.22)

Proof. Let a, b ∈ R0,2 and f ∈ L2(R0,2, H). Define g(x) = (b · ∆) f (x). Then, we have

Fq{a · ∆g}(ω) = a ·ωµFq{g}(ω)
= a ·ωµFq{b · ∆ f }(ω)
= (a ·ω)µ(b ·ω)µFq{ f }(ω)
= (a ·ω)(b ·ω)µ2Fq{ f }(ω)
= −(a ·ω)(b ·ω)Fq{ f }(ω).

Mathematician 49 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

As a special case of Theorem 21, we have the following Corollary.

Corollary 16. Considering a = ẽk, for k = 1, 2 and b = ẽl, for l = 1, 2, we have

Fq{∂k∂l f (x)}(ω) = −ω1ω2Fq{ f }(ω). (5.23)

Theorem 22. Let x ∈ R0,2. Then, the 2D−QFT of the mth vector moment is given by

Fq
{
xm f (x)

}
(ω) = µm∇m

ωFq{ f }(ω), m ∈N. (5.24)

where ∇ω is the vector derivative with respect to the vector variable index ω, i.e.

∇ω = ẽ1∂ω1 + ẽ2∂ω2 . (5.25)

Proof. A direct calculation of the first vector moment (m = 1) gives

Fq{x f (x)}(ω) =
∫

R2
e−µω·xx f (x)d2x

=
∫

R2
e−µω·xµ · ∇ω f (x)d2x

=
∫

R2
µ · ∇ωe−µω·x f (x)d2x

= µ · ∇ω
∫

R2
e−µω·x f (x)d2x

= µ · ∇ωF{ f }(ω).
In the second equality, we used the Corollary 3.18 from [25]. Also we are used the fact
of a · ∇ is a scalar operator, therefore the left and the right vector differentials agree.
Repeating this procedures m− 1 times, we have

Fq
{
xm f (x)

}
(ω) = µm∇m

ωFq{ f }(ω), m ∈N,

which completes the proof.

Theorem 23. The 2D−QFT of the mth vector derivative is given by

Fq
{
∇m f

}
(ω) = (ωµ)mFq{ f }(ω), m ∈N. (5.26)

In particular, the case of the Laplacian ∆ = ∇2 is

Fq{∆ f }(ω) = −ω2Fq{ f }(ω). (5.27)

Proof. A simple computation gives

∇ f (x) = ∇ 1
(2π)2

∫
R2

eµω·xFq{ f }(ω)d2ω

=
1

(2π)2

∫
R2
∇eµω·xFq{ f }(ω)d2ω

=
1

(2π)2

∫
R2
ωµeµω·xFq{ f }(ω)d2ω

= ωµ
1

(2π)2

∫
R2

eµω·xFq{ f }(ω)d2ω

= F−1
q

[
ωµFq{ f }(ω)

]
(x). (5.28)
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Therefore, we have

Fq
{
∇ f
}
(ω) = (ωµ)Fq{ f }(ω), m ∈N.

Applying the vector differential, ∇, to (5.28) once more, we have

Fq

{
∇2 f

}
= Fq{∇(∇ f )}

= ωµFq{∇ f }(ω)
=
(
ωµ
)2Fq{ f }(ω)

= −ω2Fq{ f }(ω).

Then, applying mathematical induction, we have

Fq
{
∇m f

}
(ω) = (ωµ)mFq{ f }(ω), m ∈N, (5.29)

which completes the proof.

Remark 18. Notice that ω2 = ω ·ω+ω ∧ω = ω ·ω. This means that ωm is a scalar if m
is even and a vector if m is odd.

5.5 Application of the 2D-QFT

In this section, we apply the 2D−QFT to partial differential equations in quaternion
algebra (compare to Obolashvili [30] and Bahri [5] ). We consider the following initial
value problem:

∂u
∂t
−∇2u = 0, on R0,2 × (0,+∞) (5.30)

and
u(x, 0) = f (x), f ∈ S

(
R0,2; H

)
, (5.31)

where S
(

R0,2; H
)

is the quaternion Schwartz space, that is, the set of rapidly de-

creasing functions from R0,2 to H. Applying the 2D − QFT to both sides of (5.30)
with respect to x and using (5.27) , we have

Fq {ut} (ω) = −ω2Fq{u}(ω)

= −
(

ω2
1 + ω2

2

)
Fq{u}(ω). (5.32)

Assume that u(x, t) is sufficiently nice to allow the interchange of differentiation with
respect to t and the 2D−QFT, that is,

Fq

{
∂u
∂t

}
=

∂

∂t
Fq{u}.
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Then, the general solution of (5.32) is given by

Fq{u}(ω, t) = Ce−(ω2
1+ω2

2)t, (5.33)

where C is a quaternion constant. We impose the initial condition

Fq{u}(ω, 0) = Fq{ f }(ω)

to obtain
Fq{u}(ω, t) = e−(ω2

1+ω2
2)tFq{ f }(ω). (5.34)

Note that the 2D − QFT of a Gaussian quaternion function is also a Gaussian
quaternion function (compare to Bahri, Hitzer, Hayashi and Ashino [8]). In fact,
consider a Gaussian quaternion function of the form

f (x) = C0e−(a1x2
1+a2x2

2),

where C0 = C00 + iC01 + jC02 + kC03 ∈H is a quaternion constant and a1, a2 ∈ R are
positive real constants. Then the 2D−QFT of f is given by

Fq{ f }(ω) = 1
(2π)2

∫
R

∫
R

e−µ(w1x1+ω2x2)C0e−(a1x1+a2x2)dx1dx2

=
1

(2π)2

∫
R

∫
R

e−µω1x1e−µw2x2e−a1x1e−a2x2dx1dx2C0

=
1

(2π)2

∫
R

∫
R

e−µω1x1e−µω2x2e−a1x1e−a2x2dx1dx2C0

=
1

2π

∫
R

e−µω1x1

[
1

2π

∫
R

e−µω2x2e−a2x2
2 dx2

]
e−ax1dx1C0.

Since

F{ f } (ω1) =
1

2π

∫
R

e−µω1x1 f (x1)dx1

=
1

2π

∫
R

e−µω1x1e−a1x2
1 dx1

=
1

2π

∫
R

e−µω1x1−a1x2
1 dx1

=
1

2π

∫
R

exp

[
−a1

(
x1 +

µω1

2a1

)2

−
ω2

1
4a1

]
dx1

=
1

2π
exp

(
−

ω2
1

4a1

) ∫
R

e−a1y2
1dy1

=
1

2π
exp

(
−

ω2
1

4a1

)√
π

a1

=

√
1

4πa1
e
−
(

ω2
1

4a1

)
,
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in which the change of variable y1 = x1 +
µω1
2a is used. In the same way, we have

F{ f }(ω2) =

√
1

4πa2
e
−
(

ω2
2

4a2

)
.

Then

Fq{ f }(ω) = 1
2π

∫
R

e−µω1x1


√

1
4πa2

e
−
(

ω2
2

4a2

) e−a1x1dx2C0

=


√

1
4πa2

e
−
(

w2
1

4a1

) 1
2π

∫
R

e−µω1x1e−a1x1dx1C0

=


√

1
4πa2

e
−
(

w2
2

4a2

)

√

1
4πa1

e
−
(

ω2
1

4a1

)C0

=
1

4π
√

a1a2
e
−
(

w2
1

4a1
+

w2
2

4a2

)
C0.

This shows that the 2D− QFT of the Gaussian quaternion function is another Gaus-
sian quaternion function. More precisely, taking a1 = a2, we have

Fq{ f }(ω) = 1

4π
√

a2
1

e
−
(

w2
1+w2

2
4a1

)
C0

=
1

4π|a1|
e
−
(

w2
1+w2

2
4a1

)
C0.

By t = a1 > 0, we have

Fq{ f }(ω) =
1

4πt
e
−
(

w2
1+w2

2
4t

)
C0,

so,
1

4πt
Fq

{
e−(x2

1+x2
2)/(4t)

}
= e−(ω2

1+ω2
2)t. (5.35)
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Applying the inverse 2D−QFT, we have

u(x, t) = F−1
q

[
e−(ω2

1+ω2
2)tFq{ f }

]
(x)

= F−1
q

[
1

4πt
Fq

{
e−(x2

1+x2
2)/(4t)

}
Fq{ f }

]
(x)

= F−1
q

[
Fq

{
1

4πt
e−(x2

1+x2
2)/(4t)

}
Fq{ f }

]
(x).

Since

Fq

{
e−(x2

1+x2
2)/(4t)

}
(ω) = 4πte−(ω2

1+ω2
2)t ∈ R,

then we can apply the Convolution Corollary (5.15) and Corollary 14 to have

u(x, t) = F−1
q

[
Fq

{
1

4πt
e−(x2

1+x2
2)/(4t)

}
Fq{ f }

]
(x)

= F−1
q

[
Fq

{
1

4πt
e−(x2

1+x2
2)/(4t) ? f

}]
(x)

= Kt(x) ? f , (5.36)

where Kt(x) = 1
4πt e−(x2

1+x2
2)/(4t). If we decompose f = f0 + i f1 + j f2 + k f3, then

(5.36) reduces to

u(x, t) = Kt(x) ? f0 + iKt(x) ? f1 + jKt(x) ? f2 + kKt(x) ? f3, (5.37)

where fi ∈ R, i = 0, 1, 2, 3. By Definition 11 of convolution, (5.11) gives

u(x, t) =
1

4πt

∫
R0,2

e−(y)
2/(4t) f0(x− y)d2y +

i

4πt

∫
R0,2

e−(y)
2/(4t) f1(x− y)d2y

+
j

4πt

∫
R0,2

e−(y)
2/(4t) f2(x− y)d2y +

k

4πt

∫
R0,2

e−(y)
2/(4t) f3(x− y)d2y

(5.38)
by changing of variable, z = x− y, (5.38) can be written as follow

u(x, t) =− 1
4πt

∫
R0,2

e−(x−z)
2/(4t) f0(z)d2z − i

4πt

∫
R0,2

e−(x−z)
2/(4t) f1(z)d2z

− j
4πt

∫
R0,2

e−(x−z)
2/(4t) f2(z)d2z − k

4πt

∫
R0,2

e−(x−z)
2/(4t) f3(z)d2z.

(5.39)

Thus, we have the following theorem.

Theorem 24. Let fi, i = 0, 1, 2, 3, belong to Lp
(

R0,2; R
)

, 1 ≤ p ≤ +∞. Put ui (x, t) =

Kt(x) ? fi. Then, each ui(x, t), i = 0, 1, 2, 3, is a solution of

∂ui

∂t
−∇2ui = 0 on R0,2 × (0,+∞)
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and
u(x, t) = u0(x, t) + iu1(x, t) + ju2(x, t) + ku3(x, t)

is a solution of (5.30).

Proof. It is well-known that each ui(x, t) = Kt(x) ? fi satisfies the heat equation [18].
Using the superposition principle, we have that

Kt(x) ? f0 + iKt(x) ? f1 + jKt(x) ? f2 + kKt(x) ? f3

is a solution of the quaternion heat equation (5.30).

A similar argument gives the following theorem.

Theorem 25. Let fi, i = 0, 1, 2, 3, be bounded and continuous. Then, we have the following:

(i) Each ui(x, t) = Kt(x) ? fi, i = 0, 1, 2, 3, is continuous on R0,2 × (0,+∞) and satisfies
ui(x, 0) = fi(x).

(ii) The solution u is continuous on R0,2 × (0,+∞) and satisfies u(x, 0) = f (x).
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Using basic quaternion properties, we introduced the two-dimensional (left) Quater-
nion Transform (2D−QFT). Because of the non-commutativity of the multiplication
in the quaternion space H, several important properties of the classical FT, such as
modulation and convolution, must be modified. We also studied a simple application
of the 2D−QFT to partial differential equations.

6.2 Recommendations

As a extension of this work, using the kernel of the 2D− QFT is possible to develop
a 2D continuous quaternion wavelet transform (2D− CQWT) and prove some of the
most important properties of this new transform, extending the theory of the classical
continuous Wavelet Transform (WT).

It’s also possible to develop the same properties established in this work in the
3-dimensional case.
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