
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: REINFORCEMENT LEARNING NEURAL
AGENTS IN CLEVER GAME PLAYING

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor:

Cárdenas López Kevin Fabricio

Tutor:

Ph.D. Chang Tortolero Oscar Guillermo

Urcuqúı, abril 2022

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer Graduation Project

Autoŕıa

Yo, KEVIN FABRICIO CARDENAS LOPEZ, con cédula de identidad 1754319943,

declaro que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, defini-

ciones y conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos

y herramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la au-

tor/a del trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos

de la Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, marzo 2022.

Kevin Fabricio Cárdenas López

CI: 1754319943

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer ii Graduation Project

Autorización de publicación

Yo, KEVIN FABRICIO CARDENAS LOPEZ, con cédula de identidad 1754319943,

cedo a la Universidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos

de publicación de la presente obra, sin que deba haber un reconocimiento económico por

este concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser

cedido a ninguna empresa editorial para su publicación u otros fines, sin contar previamente

con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, marzo 2022.

Kevin Fabricio Cárdenas López

CI: 1754319943

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer iv Graduation Project

Dedication

“This thesis project is dedicated to my family and friends, especially to my mother

Mónica, who has been my guide and unconditional support during all these years.”

v

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer vi Graduation Project

Acknowledgment

I want to thank my family for always guiding my steps and being my motivation to keep

going. I thank my grandparents Alfredo and Fabiola, my uncles Yolita, Yoli, Darwin, and

Freddy, and my cousins Daniela, Gaby, and Bryan for watching over me since I began

my university education. I thank my mother, Mónica, the person I admire the most, for

her infinite love and unconditional support during all these years of study; She has been

my source of inspiration to not give up on my dreams and to whom I owe many of my

achievements, including this one. Also, to my sister Tania who brings joy to my soul and

for whom I try to be an excellent example to follow. To my girlfriend and best friend

Johanna, who has always been by my side and has encouraged me to be a better person

every day.

A special thanks to my friends Mabe, Rafa, Erick, and Mateo, with whom I shared

most of my university life and who are my second family. I have shared many beautiful

moments with them that I will always keep in my heart.

Finally, I thank Yachay Tech University for opening its doors for me, being my second

home, and providing high-quality education. To all the professors who were part of my

academic studies, especially my tutor, Oscar Chang, for guiding me and giving me all his

support and knowledge in developing this project.

vii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer viii Graduation Project

Resumen

Todas las culturas humanas a lo largo de la historia han jugado juegos y desde el comienzo

del desarrollo de la Inteligencia Artificial ha existido un gran interés en los juegos como

plataforma de investigación. Juegos como Backgammon, Ajedrez, Checkers, Go, Othello y

Tic-Tac-Toe son ampliamente utilizados para estudiar la capacidad de aprendizaje de las

máquinas y desarrollar algoritmos de aprendizaje por parte de los grandes concursantes

del mundo digital como Google, Facebook, Windows, etc. Este proyecto pretende mejorar

los programas, métodos y resultados obtenidos en el trabajo Self-taught Neural Agents in

Clever Game Playing, que utiliza agentes inteligentes y aprendizaje por refuerzo en redes

neuronales. La caracteŕıstica central de este proyecto es un agente inteligente capaz de

percibir su entorno a través de cuadros de video, y responder o actuar en su entorno de

manera racional, es decir, correctamente y con la tendencia a maximizar una recompensa

o resultado esperado, mediante el desarrollo de una capacidad de anticipación. La ĺınea

de investigación de este proyecto es la teoŕıa de juegos y sus posibles aplicaciones en otros

campos. Finalmente, el rendimiento se comparará con los métodos del art́ıculo para probar

su precisión y aplicabilidad.

Palabras Clave:

aprendizaje de refuerzo profundo, agentes, redes neuronales artificiales.

ix

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer x Graduation Project

Abstract

All human cultures throughout history have played games and from the beginning of Ar-

tificial Intelligence development, there has existed a great interest in games as a research

platform. Games such as Backgammon, Chess, Checkers, Go, Othello and Tic-Tac-Toe

are widely used for studying the learning ability of machines and developing learning algo-

rithms by the great contestants in the digital world such as Google, Facebook, Windows

etc. This project aims to improve the programs, methods and results obtained in the paper

Self-taught Neural Agents in Clever Game Playing, which uses intelligent agents and rein-

forced learning in neural networks. The central feature in this project is an intelligent agent

capable of perceiving its environment through video frames, and responding or acting in its

environment rationally, that is, correctly and with the tendency to maximize an expected

reward or result, by developing a look ahead capacity. The research track of this project

is game theory and its possible applications in other fields. Finally, the performance will

be compared with the paper’s methods to test its accuracy an applicability.

Keywords:

deep reinforcement learning, agents, artificial neural networks.

xi

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Contents

Dedication v

Acknowledgment vii

Resumen ix

Abstract xi

Contents xiii

List of Figures xvii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Objectives . 2

1.3.1 General Objective . 2

1.3.2 Specific Objectives . 2

1.4 Contributions . 3

1.5 Document Organization . 3

2 Theoretical Framework 5

2.1 Artificial Neural Networks . 5

2.1.1 Artificial Neuron . 6

2.1.2 Loss Function . 8

2.1.3 Transfer Function . 8

2.1.4 Learning Rate . 11

2.1.5 Epochs . 11

xiii

School of Mathematical and Computational Sciences Yachay Tech University

2.1.6 Artificial Neural Networks Paradigms 11

2.2 Backpropagation Algorithm . 14

2.2.1 Description of Backpropagation Algorithm in Mathematics 14

2.3 Reinforcement Learning . 18

2.3.1 Exploration . 19

2.3.2 Explotation . 19

2.4 Markov Decision Process . 19

2.5 Dynamic Programming . 20

2.6 Bellman Equation . 20

2.7 Q-Learning . 21

2.8 Convolutional Neural Networks . 22

2.8.1 Convolutional Layer . 22

2.8.2 Kernel . 23

2.8.3 Stride . 23

2.8.4 Padding . 23

2.8.5 Pooling Layer . 24

2.9 Deep Reinforcement Learning . 25

2.10 Summary of Concepts . 25

3 Related Work 27

3.1 Chang, Zhinin-Vera & Quinga . 27

3.2 Chang & Zhinin-Vera . 28

3.3 Gatti & Embrechts . 29

4 Methodology 31

4.1 Phases of Problem Solving . 31

4.1.1 Description of the Problem . 32

4.1.2 Analysis of the Problem . 32

4.1.3 Implementation . 32

4.1.4 Testing . 35

4.2 Model Proposal . 35

4.2.1 Environment and Deep Neural Network Architecture 36

Information Technology Engineer xiv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2.2 Convolutional Neural Network Settings 36

4.2.3 Fully connected sigmoidal Q-Neural Network Settings 38

4.2.4 Bellman Equation Aproximation . 38

4.2.5 Training and Testing . 39

4.2.6 Agent Graphical Interface . 41

5 Results and Discussion 43

5.1 Agent Moves . 43

5.2 Agent Results . 48

6 Conclusions and Future Work 51

6.1 Conclusions . 51

6.2 Future Work . 52

Bibliography 53

Information Technology Engineer xv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project

List of Figures

2.1 Working principle of an artificial neuron [1] 6

2.2 Biological Neuron [1] . 7

2.3 Artificial Neuron [1] . 7

2.4 Supervised Learning paradigm [2] . 12

2.5 Unsupervised Learning paradigm [2] . 13

2.6 Reinforcement Learning paradigm [2] . 13

2.7 The agent-environment interaction in reinforcement learning [3] 20

2.8 The operation of a convolution layer [4] . 23

2.9 The operation of max-pooling layer when the size of the pooling region is

2x2 and the stride is 1 [4] . 24

4.1 Convolutional Neural Network . 37

4.2 Neural agent deep network architecture . 38

4.3 Agent Graphical Interface . 41

5.1 The first move made by the agent, which is in one of the corners of the board 43

5.2 The second move made by the agent gives the possibility of achieving a

double rail in the game . 44

5.3 The third move made by the agent gives the security of achieving a double

rail in the game and winning it. 45

5.4 The fourth move made by the agent gives first victory in the game 45

5.5 The fourth move made by the agent gives second victory in the game . . . 46

5.6 The second move of the agent to force the double rail 46

5.7 The agent’s third move where it gets double rail 47

xvii

School of Mathematical and Computational Sciences Yachay Tech University

5.8 Position where the game ended in a draw 47

5.9 The found agent driving a robot playing tic-tac-toe 48

5.10 Performance of the agente playing Tic-Tac-Toe 49

Information Technology Engineer xviii Graduation Project

Chapter 1

Introduction

1.1 Background

Artificial intelligence over the last few years has made great strides with reinforcement

learning (RL) in the last century and with the advent of deep learning (DL) in the 1990s,

especially the advance of convolutional networks in the field of artificial vision. Both ap-

proaches have led to the adoption of neural networks in RL, which has allowed a significant

advance in human-level agents and autonomous systems [5]. This new technology called

deep reinforcement learning has proved very successful in mastering human-level control

policies in various tasks, such as object recognition with visual attention and control of

high-dimensional robots. In particular, Deep QNetworks (DQN) has been shown to be

effective for playing Atari 2600 games and most recently defeating world-class Go players

[6].

Since this new approach combining RL and DP has been quite successful in games

and computer vision, efforts have been made to develop and implement agents that can

think and act autonomously in the real world. In this work, we have implemented a

neural agent that learns to play tic-tac-toe, an ancient game that has been played for

many human generations, and historical records of its existence have been found in ancient

Egypt [7]. The neural agent is developed through an architecture formed by convolutional

networks and a fully connected sigmoidal neural network. In addition, it is based on an

approximation of the Bellman equation where MAX is not searched for in the Q domain

but in the R domain. Finally, the results obtained are compared with a previous work

1

School of Mathematical and Computational Sciences Yachay Tech University

called Self-taught Neural Agents in Clever Game Playing.

1.2 Problem Statement

Learning from video frames is an important issue in artificial intelligence because it opens

the way to many practical applications in real life, such as self-driven vehicles, robotics,

military, surveillance, computer-aided medicine, and others. Putting deep reinforcement

learning into practice, a new field of great interest for researchers today has motivated

the development of this study and work, where computer vision has allowed computers to

obtain understanding through images and videos. Moreover, the games, specifically the

tic-tac-toe, where reliable rules and enough complexity are combined to require strategies

to achieve victory.

Moreover, the evolution of Deep Reinforcement Learning requires an environment that

allows us to evaluate new strategies. The development of these environments imposes new

challenges such as studying the behavior of the agents to find optimal policies, adjusting

parameters of the visual processing components, implementing low-level algorithms to

reduce the execution time associated with high-level languages.

1.3 Objectives

1.3.1 General Objective

To develop a deep reinforcement learning (DRL) environment where a computer software

learns to play high level tic-tac-toe by watching video images of a physical board observed

through a web cam.

1.3.2 Specific Objectives

• To study the agent behavior and improve its ability to learn optimal policies that

give origin to intelligent game strategies.

• To tune the many parameters of the used visual processing and its deep neural

network so that a successful deep control system is obtained.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• To debug and stabilize the required software written in C++ so that it can be used

in future DRL research.

1.4 Contributions

This work proposes a deep reinforcement learning system where an agent rapidly learns to

play high-level tic-tac-toe. So, it develops the software structure that makes possible to

prove a valid, fast approximation of the Bellman equation, where the agent searches for

reward in the R-matrix and not in the Q-matrix as it is normally done. Fast reinforcement

learning is an important issue in rapid moving environments such as car driving or missile

guiding.

1.5 Document Organization

This work is structured with 6 main sections. These are Introduction, Theoretical Frame-

work, Related Works, Methodology, Results and Discussion, Conclusions and Future Work.

1. Section 1, presents a short introduction to this work, the problem statement and all the

objectives, contributions and the document organization.

2. Section 2, establishes all the concepts to understand this work.

3. Section 3, presents a brief summary about all the related works.

4. Section 4, presents the methodology used in this work.

5. Section 5, discuss the results obtained.

6. Section 6, summarizes the best of this work and gives some ideas about looking forward

in this work.

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

This chapter presents all the artificial intelligence concepts used to develop this work.

These concepts are explained so that they can be understood in an easily way, starting

from the basic concept of neural networks to neural agents.

2.1 Artificial Neural Networks

The human brain is a complex system capable of thinking, remembering, and solving prob-

lems. Throughout history, attempts have been made to emulate brain functions with a

computer model. Generally, these have involved simulating a network of neurons, com-

monly called Artificial Neural Networks [8]. An Artificial Neural Network (ANN) is a

mathematical model that tries to mimic the structure and functionalities of biological neu-

ral networks. The basic building block or basic unit of every artificial neural network is

an artificial neuron which is a simple mathematical model (function) [1]. This model has

three simple rules: multiplication, sum, and activation. The flow of information within an

artificial neuron occurs as follows; each input is weighted, which means that each input

value is multiplied by the individual weight. Then, the sum function is performed in the

middle section of the artificial neuron, where all the weighted inputs and biases are added

[1]. Finally, at the output of the artificial neuron, the sum of the previously weighted in-

puts and biases passes through the activation function, also called the transfer function, as

shown in Figure 2.1. Next, the components of a neural network and the elements required

for its training are described, such as loss function, transfer function, learning rate and

epochs. Also, the different paradigms that exist in artificial neural networks, the back-

5

School of Mathematical and Computational Sciences Yachay Tech University

propagation algorithm, the concepts of reinforcement learning, Markov decision process,

dynamic programming, Bellman equation, Q-learning, convolutional networks and deep

reinforcement learning are described.

Figure 2.1: Working principle of an artificial neuron [1]

2.1.1 Artificial Neuron

The artificial neuron is the essential component of any artificial neural network, and it

tries to replicate the structure and behavior of the natural neuron [9]. Its design and

functionalities have been implemented thanks to the study of the biological neuron, the

fundamental component of biological neural networks that are part of the brain, spinal

cord, and peripheral ganglia [1]. The similarities in the design and functionalities of the

biological neuron and the artificial neuron can be seen in Figure 2.2 and Figure 2.3. Figure

2.2 represents a biological neuron with its soma, dendrites, and axon, and Figure 2.3

represents an artificial neuron with its inputs, weights, transfer function, bias, and outputs.

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.2: Biological Neuron [1]

Figure 2.3: Artificial Neuron [1]

In the case of a biological neuron, information comes into the neuron via dendrite; soma

processes the information and passes it on via axon [1]. On the other hand, in an artificial

neuron, information enters through weighted inputs which are individually multiplied by

a weight. It then adds the weighted inputs, bias and processes the sum with a transfer

function. Finally, an output is produced. For more detail, an artificial neural network can

be studied using the following mathematical model:

y(k) = F

 m∑
i=0

wi(k) · xi(k) + b

 (2.1)

where:

• xi(k) is the input at discrete time k,

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• wi(k) is weight value in discrete time,

• b is bias,

• F is a transfer function,

• y(k) is output value in discrete time k.

2.1.2 Loss Function

The loss functions show how far the prediction is from the actual prediction. The machines

learn to change/decrease the loss function by moving closer to the ground reality. There

are many functions to find the loss based on predicted and actual values depending on the

problem. Moreover, optimizers are used to minimize loss to make better predictions [10].

One of the most used loss functions is the mean square error (MSE) which is the average

of the squared difference between the predicted values and the real values. It is defined as

follows:

MSE(x, x̂) =
∑N

i=1 ∥xi − x̂i∥2

N
(2.2)

Where x is the target, x̂ is the obtained value and N is the number of samples.

2.1.3 Transfer Function

Transfer functions or also known as activation functions are those that are used in artificial

neural networks to calculate the neuron’s output. It receives the weighted sum and biases,

which is used to decide if a neuron can be activated or not [11][12]. In addition, it is one

of the most important variables in equation 2.1, and it defines the properties of artificial

neurons and can be any mathematical function [1], there are different types, and each one

is used according to the problem that needs to be solved. The definition of the most used

activation functions is presented below.

Linear Function

The linear activation function is directly proportional to the input. For this reason, it is

not of great benefit to use this activation function because the neural network will not

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

be able to identify complex patterns from the data. Therefore, linear functions are ideal

where interpretability is required and for simple tasks [13]. It is defined as follows:

f(x) = x (2.3)

Binary Step Function

The binary step function is the most straightforward activation function and is generally

used to create a binary classifier. For its mathematical representation, the value of the

function changes abruptly when a threshold value θ is reached [14]. It is defined as follows:

f(x) =

0 if x ≤ θ

1 if x > θ

(2.4)

Sigmoid Function

Also known as the logistic or squashing function, it is one of the most used activation

functions since it is a nonlinear function, making it more effective than the linear and step

activation function. The sigmoid function transforms the values into the range from 0 to

1 in an S-shape [13]. The sigmoid function is used in the output layers of the Deep Neural

Networks presented in this work and is used for probability-based output [15]. It is defined

as follows:

f(x) = 1
1 + e−x

(2.5)

Hyperbolic Tanget Function

The hyperbolic tangent function is centered at zero, and its range is between -1 and +1.

So it makes it easy to model inputs with strongly negative, neutral, and strongly positive

values [15]. It is defined as follows:

f(x) = ex − e−x

ex + e−x
(2.6)

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Rectified Linear Unit Function

The Rectified Linear Unit function has excellent performance and a simple structure, is

more efficient than other functions because it helps deep neural networks realize sparse

activation, and sparse activation is not only more in line with the mechanism of human

brain activity, it has a good advantage at the mathematical level [16]. The ReLU activation

function produces 0 as an output when x ≤ 0, and then produces a linear with slope of 1

when x > 0. It is defined as follows:

ReLU(x) =

0 x ≤ 0

x x > 0
(2.7)

There are some variations of this activation function to avoid the problem of dead neu-

rons. There are cases where certain neurons do not participate and remain without activity

during the backpropagation step in neural network training. Some of these variations are:

Leaky ReLU function, Parametrized ReLU function, and Exponential Linear Unit [13].

Leaky ReLU Function

Leaky ReLU is a version of the ReLU function where for negative values of x, the values

are defined as a minimal linear component of x instead of defining the value as zero [16].

It can be expressed mathematically as:

Leaky-ReLU(x) =

0.001x x ≤ 0

x x > 0
(2.8)

Parametrized ReLU Function

It is also a variant of the ReLU function with a slight variation, just like Leaky ReLU.

This function solves the problem of the ReLU gradient becoming zero for negative values

of x by introducing a new parameter a. The value of a, when set to 0.01, behaves like

a leaky ReLU function, but here a is also a trainable parameter. For optimal and faster

convergence, the network learns the value of a [13].

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Parametrized-ReLU(x) =

ax x ≤ 0

x x > 0
(2.9)

Exponential Linear Unit

The Exponential Linear Unit or ELU is also a variant of the Rectified Linear Unit. ELU

introduces a parameter slope for negative values of x, for which it uses a logarithmic curve

[13]. It can be expressed mathematically as:

ELU(x) =

a(ex − 1) x ≤ 0

x x > 0
(2.10)

2.1.4 Learning Rate

In artificial neural networks, the learning rate is a parameter that determines how much

the weights can change during the training phase in response to the observed error. The

value of this constant is usually in the range [0;1], and the choice of this learning rate can

greatly affect generalization accuracy as well as training speed [17]. For example, if the

learning rate is too large, the accuracy will be poor, and the training speed will be poor.

2.1.5 Epochs

An epoch indicates the number of passes of the entire training dataset the neural network

has completed. It means if the training set is finite, training occurs by performing iterations

for one cycle [17]. For example, If a neural network is trained to 1000 epochs, the learning

algorithm moves through 1000 different models [18].

2.1.6 Artificial Neural Networks Paradigms

The three main learning paradigms or techniques are supervised, unsupervised, and re-

inforcement. Supervised is the most common training paradigm used today to develop

neural network prediction and classification applications. In contrast, unsupervised learn-

ing is often used for clustering and segmentation in data mining to support decision-making

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

in time optimization and adaptive control [19]. Figures 2.4, 2.5, and 2.6 show a general

representation of each paradigm.

Supervised Learning

Supervised learning is based on using labeled data sets to train algorithms that accurately

classify data or predict outcomes. As input data is fed into the model, the model adjusts

its weights until the model has been fitted correctly [20]. In this way, the model is trained

until it detects the relationship between the input data and the output labels, which allows

it to generate accurate tagged results when presented with never-before-seen data. In other

words, supervised learning employs a ”teacher” to assist in training the network by telling

the network what the desired response to a given stimulus should be [21].

Figure 2.4: Supervised Learning paradigm [2]

Unsupervised Learning

Unsupervised learning is very similar to supervised learning, but with the difference that

there is no ”teacher” in the learning process [21]. Unsupervised neural networks discover in

the input data and autonomously: characteristics, regularities, correlations, and categories.

Also, neural networks trained using unsupervised methods are considered self-organizing

because they are not given any indication of what to expect or what the correct output

should be. When presented with a set of input patterns, output processing units organize

themselves, initially competing to identify patterns and then cooperatively adjusting their

connection weights [2].

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.5: Unsupervised Learning paradigm [2]

Reinforcement Learning

Reinforcement learning is inspired by behavioral psychology; it is a machine learning tech-

nique that establishes the parameters of an artificial neural network, where data is generally

not provided but generated through interactions with the environment [19]. In addition,

the neural network reinforcement learning approach allows for solving challenging tempo-

ral (time-dependent) problems [2]. It has been applied successfully to various problems,

including robot control, telecommunications, and games such as chess and other sequential

decision-making tasks [19]. In section 2.4, we will delve into the concepts of this machine

learning technique.

Figure 2.6: Reinforcement Learning paradigm [2]

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.2 Backpropagation Algorithm

The backpropagation algorithm has become the most popular method of training neural

networks due to its underlying simplicity and relative power. It utilizes the loss function

explained in subsection 2.1.2 and gradient descent to realize the modification to the con-

nection weight of the network [22]. It contains two main phases, which are the forward

and backward phases, the first one is required to compute the output values and the local

derivatives at various nodes, and the second one is required to accumulate the products of

these local values over all paths from the node to the output.

i. Forward phase: In this phase, the neural network is fed through the inputs; this results

in a cascade of computations forward through the network layers, using the current

weight values. Then, the derivative of the loss function with respect to the output is

calculated. At this point, it is necessary to calculate the derivative of this loss for the

weights in all layers of the backward phase [23].

ii. Backward phase: The main objective of this phase is to learn the gradient of the loss

function for the different weights using the chain rule of the difference calculus [23].

These gradients are used to update the weights, and this process is from the output

node to the input nodes.

2.2.1 Description of Backpropagation Algorithm in Mathematics

Let’s define ZL as the result of the weighted sum of the last layer which is expressed as

ZL = W LX + bL (2.11)

where:

• W L are the weights of the layer L,

• X are the weight values,

• bL is bias of the layer L

The weighted sum of the last layer L is passed through the activation function (a), so

we have

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

a
(
ZL
)

The result of the activation of the neurons in the last layer makes up the result of the

artificial neural network, which is evaluated by the cost function to determine the error, it

is defined as

C
(

a
(
ZL
))

Thus, we obtain a composition of functions and to calculate its derivative the chain

rule is used, therefore we have the following expressions:

ZL = W LaL−1 + bL (2.12)

The derivative of the parameter wL with respect to the cost function is:

∂C

∂wL
= ∂C

∂aL
· ∂aL

∂zL
· ∂zL

∂wL
(2.13)

The derivative of the parameter bL with respect to the cost function is:

∂C

∂bL
= ∂C

∂aL
· ∂aL

∂zL
· ∂zL

∂bL
(2.14)

where:

• ∂C
∂aL is the derivative of the activation function with respect to the cost function,

• ∂aL

∂zL is the derivative of the activation function with respect to the weighted sum zL,

• ∂zL

∂wL and ∂zL

∂bL is the derivative of the weighted sum with respect to the parameters wL

and bL, respectively.

The derivative of the activation function with respect to the cost function tells us how

the cost of the artificial neural network varies when the output varies. For example, if our

cost function is the mean square error

C
(
aL

j

)
= 1

2
∑

j

(
yj − aL

j

)2
(2.15)

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The derivative of the function with respect to the output of the artificial neural network

is

∂C

∂aL
j

=
(
aL

j − yj

)
(2.16)

The derivative of the activation function with respect to zL tells us how the output of

the neurons varies when we vary the weighted sum. For example, if our activation function

is a sigmoid function

aL
(
zL
)

= 1
1 + e−zL (2.17)

The derivative will be

∂aL

∂zL
= aL

(
zL
)

·
(

1 − aL
(
zL
))

(2.18)

The derivative of the weighted sum with respect to the bias term is 1, since it is

independent, so its derivative is constant

∂zL

∂bL
= 1 (2.19)

The derivative of the weighted sum with respect to the term wL is the output of the

previous layer

∂zL

∂wL
= aL−1

i (2.20)

In this way, the first two terms of the equation 2.13 can be defined as

∂C

∂zL
= ∂C

∂aL
· ∂aL

∂zL
(2.21)

So, the equation 2.21 tells us how the error varies as a function of zL, which is the value

of the weighted sum, this is known as the error imputed to the neuron and is represented

by the symbol δL.

Therefore, restructuring and simplifying equations 2.13 and 2.14 as a function of the

error of the neurons in the L layer, we have that

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

∂C

∂bL
= δL · ∂zL

∂bL
(2.22)

∂C

∂wL
= δL · ∂zL

∂wL
(2.23)

Replacing equation 2.19 in 2.22 and equation 2.20 in 2.23 we have that

∂C

∂bL
= δL (2.24)

∂C

∂wL
= δLaL−1

i (2.25)

where equation 2.24 indicates that the derivative of the cost function with respect to

the bias term is equal to the error of the neurons and equation 2.25 indicates that the

derivative of the cost function with respect to the term wL is equal to the error of the

neurons multiplied by the activation of the previous layer.

Now, to calculate the parameters of the previous layer L − 1 we apply the chain rule

to our new composition of functions

C

(
aL
(

W LaL−1
(
W L−1aL−2 + bL−1

)
+ bL

))

so we have that

∂C

∂wL−1 = ∂C

∂aL
· ∂aL

∂zL
· ∂zL

∂aL−1 · ∂aL−1

∂zL−1 · ∂zL−1

∂wL−1 (2.26)

∂C

∂bL−1 = ∂C

∂aL
· ∂aL

∂zL
· ∂zL

∂aL−1 · ∂aL−1

∂zL−1 · ∂zL−1

∂bL−1 (2.27)

In equations 2.26 and 2.27 the only term that we need to calculate is

∂zL

∂aL−1 = W L (2.28)

which is the matrix of parameters that connects both layers, that is, the layer L and

L − 1

Finally, we can apply the same logic for the previous layers and it can be summarized

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

as follows:

i. Computation of the error of the last layer

δL = ∂C

∂aL
· ∂aL

∂zL
(2.29)

ii. Backpropagation of the error to the previous layer

δl−1 = W lδl · ∂al−1

∂zl−1 (2.30)

iii. Calculation of the derivatives of the layer using the error

∂C

∂bl−1 = δl−1 ∂C

∂wl−1 = δl−1al−2 (2.31)

2.3 Reinforcement Learning

Reinforcement learning (RL) refers to the problem of a learning agent interacting with its

environment to achieve a goal [24]. It mainly combines two tasks; the first is to explore

new situations because the agent does not receive examples or instructions of the desired

behavior; this is done by trial and error. The second is to use that experience to make

better decisions and get the most reward. In other words, the agent has to exploit what it

already knows to get the reward, but it also has to explore in order to make better action

selections in the future [25].

In addition to the agent and the environment, four main sub-elements of a reinforcement

learning system can be identified: a policy, a reward signal, a value function, and, option-

ally, an environment model [25].

i. A policy is the core of a reinforcement learning agent as it determines how it behaves

at any given time. Typically, the policy may be a simple function or lookup table,

while in others, it may involve extensive computation, such as search process [25].

ii. A reward signal is a goal in a reinforcement learning problem; it defines the good

and bad events for the agent. Therefore, the agent’s sole objective is to maximize the

total reward it receives in the long run [25].

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

iii. A value function depends on how the agent picks actions to perform.

iv. An environment model, which is an element of some reinforcement learning systems,

is something that mimics the behavior of the environment; it allows inferences to be

made about how the environment will behave. For example, given a state and an

action, the model could predict the next resulting state and the next reward [24].

2.3.1 Exploration

In the exploration phase, the agent has to test actions to gather information and thus make

better selections of actions in the future to obtain the highest reward.

2.3.2 Explotation

In the exploitation phase, the agent chooses actions that it has carried out in the past and

that maximized its accumulated reward where it proved to be more efficient.

2.4 Markov Decision Process

The Markov Decision Process (MPD) is a mathematical model used to solve reinforcement

learning problems, which is defined as follows [7] [3]:

i. S is a finite set of states, where S = {s1, s2, . . . , sn} , st ∈ S denotes the state at time

t.

ii. A is a finite set of actions, where A = {a1, a2, . . . , an} , at ∈ A denotes the action

executed at time t.

iii. P is a transition function, where P (s, a, s′) specifies the probability of arriving at any

state s′ ∈ S after performing action a in state s.

iv. R is a reward function, where R(s, a) is the reward of executing action a in state s, rt

denotes the reward function obtained at time t.

v. A discount factor 0 ≤ γ ≤ 1, which makes the agent value immediate rewards more

than later rewards.

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.7: The agent-environment interaction in reinforcement learning [3]

2.5 Dynamic Programming

Dynamic programming (DP) like the divide-and-conquer method, is a technique that solves

problems by combining the solutions to subproblems. It is usually used in optimization

problems and dynamic programming algorithms can be developed following the next steps

[26]:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Performing steps 1 through 3 forms the basis of a dynamic programming solution to

a problem. If we only need the value of an optimal solution, and not the solution itself,

then we can skip step 4. However, when we do step 4, we sometimes keep additional

information during step 3 so that we can easily build an optimal solution. In this context,

we can convert Bellman equations (section presented in 2.6) into update rules to improve

the approximations of the desired value functions.

2.6 Bellman Equation

The Bellman equation expresses a relationship between the value of a state and the values

of its successors states and is defined as follows [25]:

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

vπ(s) = Eπ

[
Gt | St = s

]
= Eπ

 ∞∑
k=0

γkRt+k+1 | St = s

 (2.32)

where Eπ[·] denotes the expected value of a random variable given that the agent follows

policy π, and t is any time step, the function vπ is called the state-value function for policy

π.

In the same way, the action-value function defined as qπ(s, a) for policy π define the

value of taking action a in state s under a policy π. This function is defined as:

qπ(s, a) = Eπ

[
Gt | St = s, At = a

]
= Eπ

 ∞∑
k=0

γkRt+k+1 | St = s, At = a

 (2.33)

So, the general equation used in reinforcement learning problems is the following:

Q(s, a) = r + γ max
a′

Q
(
s′, a′

)
(2.34)

2.7 Q-Learning

Q-learning was implemented in 1989; it is a form of model-free reinforcement learning,

and it can also be viewed as a method of asynchronous dynamic programming (DP) [27].

The basic version of Q-learning keeps a lookup table of values Q(s, a)(Equation 2.36) with

one entry for every state-action pair. Also, is one of the reinforcement learning techniques

which not require a model of the environment to learn to execute complex tasks [27].

It works by successively improving its evaluations of the quality of particular actions at

particular states. Therefore, the goal of Q-Learning is to learn a set of rules or travel chart

that tells an agent what action to take under what circumstances. Q (st, at) means the

value of taking action at in a state st. The equation 2.34 is the basis of the Q-learning

algorithm, the value Q (st, at) of a current state and action can be decomposed into to

the immediate reward r plus the discounted maximum future expected reward after the

transition to a next state st+1. This is known as the Bellman equation and can be written

as follows [28]:

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Q (st, at) = r + γ max
a

Q (st+1, at+1) (2.35)

where γ is the discount factor. The value Q (st, at) is computed by the agent and then

use the following equation 2.35 to update its own estimate of Q∗ (st, at). The equation is

defined by

Q∗ (st, at) = Q (st, at) + α
[
r + λ max

a
Q (st+1, at+1) − Q (st, at)

]
(2.36)

where α is the learning rate. The maxa Q (st+1, at+1) gives the maximum value for all

actions in the next state. Q-learning is an off-policy algorithm since it updates the Q-values

without making any assumptions about the actual policy being followed [28].

2.8 Convolutional Neural Networks

Convolutional Neural Networks (CNN or ConvNets) are among the most popular categories

of neural networks, especially for high-dimensional data, such as images or videos [4]. They

are a network architecture for deep learning that learns directly from data without manually

extracting features. Furthermore, these networks are particularly useful for finding patterns

in images to recognize objects, faces, and scenes directly from pixels. They also effectively

classify non-image data, such as audio data, time series, and signals [29]. Also, these

networks can have tens or hundreds of layers that learn to detect different features of an

image, from here the terminology of deep networks. Filters are applied to each training

image with different resolutions, and the output of each convolved image is used as input

for the next layer. Filters can range from elementary features, such as brightness and

edges, to more complex ones, such as features that uniquely define the object [29].

2.8.1 Convolutional Layer

Convolutional layers apply a convolution operation to the input, passing the result to the

next layer. A convolution takes groups of neighboring pixels from the input image, a tiny

image and operates mathematically with a small matrix called a kernel or filter.

(a)–(i) show the computations performed at each step, as the filter is slid onto the input

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.8: The operation of a convolution layer [4]

feature map to compute the corresponding value in the output feature map [4].

2.8.2 Kernel

The kernel is the number of pixels processed together as a tiny matrix. As in traditional

neural networks, the kernel values or weights have an initial value at the beginning of the

training. Later, during the process, these weights are updated until they approach the

optimal conditions to make good predictions.

2.8.3 Stride

The stride is a component of convolutional neural networks or neural networks tuned for

the compression of images and video data. Stride is a neural network’s filter parameter

that modifies the amount of movement over the image or video. If a neural network’s stride

is set to 1, the filter will move one pixel at a time.

2.8.4 Padding

Padding is the number of pixels added to an image when it is being processed, allowing

for more accurate analysis. This padding adds extra space around the image, which helps

the kernel improve performance.

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.8.5 Pooling Layer

A pooling layer operates on blocks of the input feature map and combines the feature

activation. This combination operation is defined by a pooling function such as the average

or the max function. Similar to the convolution layer, we need to specify the size of the

pooled region and the stride [4].

Figure 2.9: The operation of max-pooling layer when the size of the pooling region is 2x2
and the stride is 1 [4]

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.9 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is one of the fields with remarkable growth both in

industry and in research. It represents a step towards constructing autonomous systems

with a higher level of understanding of the visual world. DRL combines deep networks with

reinforcement learning and allows the techniques of machine learning to be extended to

previously intractable problems, such as learning to play video games directly from pixels

[30].

One of the goals of DRL is to create systems that are capable of learning to adapt to

the real world. For this reason, several investigations and previous works in DRL have

been based on the extension of the previous work in RL to high-dimensional problems.

This involves bringing together the learning of low-dimensional feature representations and

neural networks’ powerful function approximation properties. For example, convolutional

neural networks (CNNs) can be used as components of RL agents, allowing them to learn

directly from visual inputs. DRL is generally based on training deep neural networks to

approximate the optimal policy and the optimal value functions [30].

2.10 Summary of Concepts

This chapter began by introducing the concept of artificial neural networks, their basic

structure, the artificial neuron, and how it can be implemented mathematically to have

the same functionalities as a biological neuron. The elements required for training are the

loss function which shows how far the prediction is from the actual. The transfer function

which is used to decide if a neuron can be activated or not, its different types such as linear

function, binary step function, sigmoid function, hyperbolic tangent function, rectified

linear unit function, and its different variations. In addition, learning rate and epochs were

explained which are essential during training. Then, the different paradigms that exist in

artificial neural networks such as supervised, unsupervised, and reinforcement learning were

explained. The backpropagation algorithm is the most popular method for training neural

networks. The concepts of reinforcement learning in detail since it is a fundamental topic

in the development of this thesis. Finally, the concepts of the Markov decision process,

dynamic programming, Bellman Equation, Q-learning, and convolutional neural networks

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

were presented. All these concepts are related to the methodology (Chapter 4) to create a

neural agent that learns and finds the best policies to play three in a row.

Information Technology Engineer 26 Graduation Project

Chapter 3

Related Work

In this chapter, some deep reinforcement learning works were reviewed, including the meth-

ods used to obtain a neural agent that learns to play a specific game.

3.1 Chang, Zhinin-Vera & Quinga

In this work, Chang, Zhinin-Vera, and Quinga [7] proposed a Tic-Tac-Toe learning envi-

ronment based on a self-motivated neural agent that learns the game situations and then

uses the knowledge in real-world tournaments, where it mimics a Markov model. Their

work aimed to develop self-taught agents who take on a future vision of the game, that is,

a brilliantly anticipated sequence of moves, as the authors call it, an “I already won” or

IAW+4 game vision. They implemented the model of the self-motivated neural agent as

a chain of 9 sigmoidal neurons that operate in real-time and inhibit each other with small

common negative weights. All neurons are equally excited by a repetitive ramp K. On

each repetition, the agent burns “dark energy,” fires, and declares a single winner, which

is used to pick a tile on the board. The agent will continue to give valid moves even if it

is disconnected from the (external) advisory neurons.

Furthermore, for the learning networks, they first took the state of each tile, which is

represented by three neural signals 010, 001, and 100, representing filled “empty” tiles,

“O” and “X,” respectively. The resulting 27 signals are a sparse encoding representation

of the state of the board and are fed into a network with 27 inputs, 67 hidden, and 9

output neurons. During training, the agent explores future moves based on the Bellman

equation, which involves the first three terms of the equation, and thus memorizes game

27

School of Mathematical and Computational Sciences Yachay Tech University

patterns that ensure winning situations. After training, the most exciting output neuron

will indicate the optimal policy predicted by the network, which is what should be filled or,

in other words, what move should be made. Many of these subnets are used and trained

as indexable advisors, which advise the agent to make smart moves.

Finally, during the operation phase, the neural agent receives advice from the trained

networks and recognizes and executes IAW+4 game situations with high security. There-

fore, the authors have succeeded in showing that the self-motivated neural network can

be used as a free-running random agent that explores all possible game situations and is

trained with backpropagation to memorize good game sequences by using advisory index-

able subnets. Also, the reinforcement learning method used supports a successful future

search for maximum rewards. This work could be improved by introducing deep reinforce-

ment learning in the model and this is what this thesis proposes.

3.2 Chang & Zhinin-Vera

Chang and Zhinin-Vera [31] presented an inspired robot capable of learning high-level tic-

tac-toe game policies on its own and then using that knowledge to compete advantageously

with humans. The robot has been designed to execute the physical actions resulting from

the logical decisions of the self-taught neural agent. The robot was built with a robotic

arm, a machine vision system, and a self-motivated neural agent.

The agent is based on the architecture implemented in the related work of section

3.1, where the Bellman equation with three terms has been proposed to search for future

rewards. The mechanical design of the robot uses three axes: shoulder, elbow, finger, and

servo motors, power supply, Arduino board, and connections from the computer to the

servo motor. Regarding artificial vision, this has been implemented with a camera that

captures color images of the real world. These images are processed using OpenCV and

sent to a convolutional network specialized in recognizing Xs, Os, and empty spaces.

As a result, the authors have managed to implement a robot where it observes the game

board and uses its robotic arm to perform its movements. These actions carried out by

the robot are thanks to the neural agent that has learned to play the game of tic-tac-toe

in an extraordinary way and to the artificial vision system to look at the board in the real

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

world. This work is related to 3.1 and has been taken into account since the built robot

can be used to test the deep reinforcement learning software that will be implemented in

this thesis.

3.3 Gatti & Embrechts

Gatti and Embrechts [32] presented an agent that learns to play tic-tac-toe; first, they

built the environment, which consists of encoding the board’s structure and the rules of

the game. The environment consisted of a 3×3 matrix with each element corresponding

to a location on the tic-tac-toe board. The game’s rules defined the legal actions that

each player could take; players could only place pieces in open locations on the board.

In addition, it was verified if any of the players had won to end the game and give the

corresponding reward to the agent. The agent represented by O, received a reward of 1 if

he had won the game, -1 if he had lost game, or 0 if the game ended in a draw.

The agent was represented by a 3-layer neural network with 11 input nodes, 40 hidden

nodes, and 1 output node. They used nodes in the input and hidden layers, with a constant

input of 1. The nodes in the hidden layer used the hyperbolic tangent transfer function

and used a linear transfer function at the output node. On the other hand, the learning

rates α for each layer were established individually, with α = 0.01 for the input hidden

layer weights and α = 0.007 for the output hidden layer weights. The network weights

were updated through an iterative method to update them after each training episode.

The agent was trained and evaluated to know the performance it can perform. The

agent was trained with a game strategy of its own. Greedy late-game moves were allowed

during training games, including greedy wins and greedy bans. Later, during evaluation

games, the agent was not allowed to make greedy moves at the end of the game but had to

rely only on his learned knowledge. The agent’s gaming performance was evaluated over

500 games against a random opponent so that all of this player’s moves were randomly

selected. Furthermore, the agent represented by O always made the first move in both the

training and evaluation games.

The results obtained by the authors were that the agent was able to learn to play the

game of tic-tac-toe against a random opponent at an acceptable level with relatively little

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

training. In addition, the game was learned by the agent in about 500 games to win almost

95% of the evaluation games. This work presents very good results, however, it is tied to

the Q matrix. For the development of this thesis, it is proposed to change the Q matrix

by a neural network called Q-net to give the model more flexibility.

Information Technology Engineer 30 Graduation Project

Chapter 4

Methodology

This chapter presents the entire process that has been followed to meet the objectives of the

project. It describes the implementation of a neural agent which learns to play tic-tac-toe.

4.1 Phases of Problem Solving

• The first step is to implement the environment and rules on which the tic-tac-toe

game is based.

• The second step is to implement the deep neural network architecture defining the

number of convolutional layers, filters, max pool layer, inputs (input layer), the

number of hidden neurons (hidden layer), and the number of output neurons (output

layer).

• The third step is to implement the fully connected sigmoidal artificial network that

substitutes the Q-matrix, it will be called the Q-net.

• The next step is to implement the architecture’s graphical model to visualize the

agent’s behavior during the deep neural network training process.

• The last step is to use the deep network training during the exploiter stage to analyze

the agent’s behavior, its moves, its convergence to a stable and efficient solution and

its capacity to generate look ahead moves and tested in a real robot already built.

31

School of Mathematical and Computational Sciences Yachay Tech University

4.1.1 Description of the Problem

Recent advances in deep learning have made it possible to extract high-level features from

raw sensory data, leading to big advances in machine vision [17]. These methods use

a variety of neural network models, including convolutional, perceptron, multilayer, and

recurrent neural networks. These methods already have different applications to a wide

range of problems, such as robotics, where control policies for robots can now be learned

directly from real-world camera inputs [30]. This is the kind of problem treated in this work,

where a neural agent has to learn to play high-level tic-tac-toe by looking at a real-world

board through a webcam. The first problem is to reduce the dimension of the real-world

board image that the webcam perceives and converts it to a low-dimensional, compressed

form of neural information. The second problem is creating a reinforcement learning agent

that uses this compressed information and a fully connected network to learn an optimal

policy to win the game. In order to be optimal, this policy must be able to recognize

the implicit sequential logic of the game and use this information in its decision-making

structure, right from the beginning of the process, i.e., from the first moves or aperture up

to winning game situations. This is capacity to link present states with future states is the

main objective of reinforcement learning. Finally the capacities of the agent will be tested

in a real robot used in a previous works [31].

4.1.2 Analysis of the Problem

To solve the first problem and reduce the dimension of the image of the real tic-tac-toe

board, a software developed with OpenCV, that has been developed and used in previous

computer vision works, was studied an adapted to this thesis. To solve the second problem

and implement the neural agent, several software modules and functions have been devel-

oped, tested an debugged using the C++ language. They constitute the main contribution

of this thesis and are explained in detail in section 4.1.4.

4.1.3 Implementation

This phase consists of planning and executing the coding of the proposed model. We

decided to use the C++ programming language because it is a high-level language used for

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

writing applications when performance and proper use of resources are essential and used in

resource-intensive applications, AI in games, and robot locomotion. Also extensive libraries

in neural networks and agents has been developed through the years by the adviser of this

thesis and his students. The compiler used for the proposed model is Borland C ++ 5.5,

which is a C and C++ IDE (integrated development environment), including our neural

libraries. In addition OpenCV libraries, previously used and tested in real-time computer

vision projects in Yachay, where used for training purposes. Below are the modules and

functions utilized by the neural agent. Some of these modules where developed from scratch

for the purposes of this thesis. Other where adapted or refined from existing libraries.

• CheckGameWin.h

Module that checks if there is a winner, O or X.

– check game winner is the function implemented in this module where it

checks if O or X has won vertically, horizontally or diagonally.

• NeuralLibmmt.h

Module that contains the structure of the network such as its hidden layer and output

layer, its hyperparameters and the calculation functions of the neural network.

– random weight is the function that generates random weights.

– initialize weights is the function that initializes the weights of the hidden

layer and the output layer.

– correct weights is the function that calculates the error for the hidden layer

and the output layer. In addition, it corrects the weights for the hidden layer

and the output layer.

– sigmoide is the activation function used for network training.

– calculate hidden layer is the function to calculate the values of the hidden

layer.

– calculate output layer is the function to calculate the values of the output

layer.

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– backpropagation is the function that contains the function calculate hidden layer

and calculate output layer.

– inject noise weights is the function that injects noise into the weights of the

hidden layer and the output layer.

• OLearns.h

Module developed from scratch containing the following functions:

– look winning neuron is the function that indicates the best move when the

agent has to play.

– X fill square is the function that performs the moves of random player X.

– O plays is the function that makes the moves of agent O.

– human plays is the function that allows to play a person against the agent

with a defined layout of keys.

– feed forward is the function that combines backpropagation and correct the

weights.

• PlotNetItem.h

Module that graphs the parameters of the network

– plot inputs is the function that plots the neurons of the input layer.

– plot hidden outputs is the function that plots the neurons of the hidden layer.

– plot outputs is the function that plots the neurons of the output layer.

– plot targets is the function that plots the targets, that is, the output neuron

that shows the best move.

– plot hidden weights is the function that plots the hidden weights.

– plot board is the function that plots the board.

– plot guide board is the function that shows the keys with which a human can

play against the agent.

– plot board map is the function that shows the number of squares on the board

in this case from 0 to 8.

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– plot game graphics is the function that contains all the previously mentioned

functions to observe the game environment and the agent.

• PrintConsole.h

Module that shows the value of the output and ordinate neurons.

– print ordered neurons is the function that returns the neurons ordered from

largest to smallest.

• LoadWeights.h

Module that saves and loads the weights of the neural network.

– save weights is the function that saves the network weights in a file with a

.dat extension.

– load weights is the function that loads the weights of the network which have

been generated by the function save weights in a file with extension .dat.

• AgentPlayer.cpp

It is the main program that contains all the modules described above to be able to

set up the environment and that the agent can play.

4.1.4 Testing

For the agent tests, it will first be trained with a random player, in this case X. After

its training, the agent will play against the same random player and then with a human

player, all this will be done to verify if it can generate residual knowledge of the future and

thus have a look ahead capacity and do good moves right from the beginning of the game

(aperture).

4.2 Model Proposal

In the present work, the architecture to develop the neural agent that we propose is based

on a deep neural network that replaces the Q matrix that is usually used in reinforcement

learning. This architecture is based on an approximation of the Bellman equation. This

section explains in detail how the model we propose is established.

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2.1 Environment and Deep Neural Network Architecture

The neural agent has to learn to play tic-tac-toe by looking at video frames of a real-

world board with an image dimension of 720x480. As mentioned before the used software

was mostly developed for previous papers an used OpenCV to obtain a 100x100 pixels

version. For the agent to recognize this reduced tic-tac-toe board of 100x100, nine convo-

lutional networks with identical structures are implemented, where each network analyzes

one square of 30x30 pixels on the board. This 30x30 dimension is the square where the

’O’, X’ or empty will be located and is a portion of the total 100x100 board image. Thus

each convolutional network processes the image of a board square through a stride of one,

which is multiplied by four filters of dimension 3x3; horizontal, vertical, and two diago-

nals, one diagonal to the left and one diagonal to the right. Afterward, a feature map is

generated for each filter which is represented by a 27x27 matrix. Then the sum of the four

feature maps is performed, and we obtain the main feature map, which is processed with

the max-pooling operation with a window of 3x3 and stride of 3 obtaining a 9x9 matrix.

Finally, after obtaining all these feature maps, we can pass them as independent inputs to

our fully connected network. This process describes how these convolutional networks help

in pre-processing the video images and reduce their dimension to identify if each square

has X, O or empty in terms of three output neurons, as represented in Figure 4.1. These

three outputs across the nine board frames produce the 27 inputs that constitute the game

state in sparse code. This code is delivered to a fully connected sigmoidal network called

the Q-net that is trained to behave as a Q-matrix and provide an optimal policy to decide

what move to make on the board.

4.2.2 Convolutional Neural Network Settings

The hyper parameters in each convolutional neural network (one for each board square)

are tuned as follows:

• The input layer has 900 input neurons (image of 30X30)

• The filters have a dimension of 3x3

• The stride is set to 1

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• The feature matrix has a dimension of 27x27

• The max pool window size is 3x3

• max pool matrix has a dimension of 9x9

• The max pool stride is set to 3

• For the training of the convolutional network, a sigmoidal neural network has been

used with the following configuration

– The input layer has 81 input neurons

– The hidden layer has 18 hidden neurons

– The output layer has 3 output neurons

Figure 4.1: Convolutional Neural Network

Information Technology Engineer 37 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.2.3 Fully connected sigmoidal Q-Neural Network Settings

To establish the configuration of this neural network, several previous experiments were

carried out where the hyperparameters, the hidden layers, number of hidden neurons as

well as the activation function were manually varied. Initially, a configuration with a ReLU

activation function with one and two hidden layers was tested. These experiments had no

relevance in terms of results since ReLU network turns out to be quite unstable. Finally,

the experiment with the best results was a sigmoidal network with a hidden layer which is

explained in detail below.

• The input layer has 27 input neurons for sparse board state representation

• The hidden layer has 41 hidden neurons with gain set to 0.5

• The output layer has 9 output neurons with gain of 1.5

• Eta has 0.25; learning coefficient.

Figure 4.2: Neural agent deep network architecture

4.2.4 Bellman Equation Aproximation

Since we are doing a particular type of search for max, we are bringing back the max in

a spatial neural ambient where the max is not a single real number but a neural vector.

Therefore, the approximation of the Bellman equation that we are using is stated as follows:

Information Technology Engineer 38 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

-

Q(s, a) = r + γ max
a′

R
(
s′, a′

)
(4.1)

Notice that equation 4.1 is an approximation and does not search for MAX in the Q

matrix but rather in the R matrix, becoming a fast solution since the neural agent does not

search for a gradient connection with early plays or apertures in the memory Q. Instead,

it creates a deep search for future events that lead to a maximal reward in the R-matrix.

The expected result is that this search for the future produces a useful “residual future

information” in the neural network that is substituting the Q-matrix.

4.2.5 Training and Testing

Below is the pseudo-code of the implemented code for training the neural agent

Algorithm 1 shows the pseudo-code of how a game between the agent and a random

player has been implemented. This algorithm is used for the agent exploration phase, when

agent must make its move, it first explores the future and then makes its move.

Algorithm 1: Agent O plays vs X random player

1 while non-trained do

2 if player-selector then

3 explore future;

4 O plays;

5 end

6 if !player-selector then

7 X plays;

8 end

9 end

Algorithm 2 shows the pseudocode of how the exploration of the agent’s future has

been implemented. As a first step all targets in the network are set to zero. The agent O

explores all the squares, looks for the empty ones and places an O in it. Then it checks to

see if with this placed O it wins. If this is the case, the target of that position is set equal

to 1, equivalent to getting the maximum immediate reward. In addition, when performing

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the feed forward if a specific flag (b flag) is active, one backpropagation cycle is performed.

This loop is performed several times (about 2000 cycles) until the error in the network

decreases below a chosen value and the net is considered to be trained

Algorithm 2: Agent O explores future

1 for 9 times do

2 set all targets to zero;

3 if board is empty then

4 put O on an empty space on the board;

5 check game winner;

6 if O wins then

7 delete added O from board;

8 target pointer points to the winning square;

9 set the target with the winning square position to 1;

10 fill inputs;

11 feed forward;

12 if exploring do backpropagation;

13 end

14 end

15 end

After the exploration phase, the exploitation phase is carried out where the previously

trained agent plays against the same random player with whom it was trained and can

also be faced with a human player.

Algorithm 3 shows the pseudocode When agent O plays by exploiting the knowledge

obtained during the exploration phase. First O does the first move. Then, after X plays,

the agent checks the Q-net output and search for the most excited neuron and takes this

pointer as its decision. If the game is won the record of the games won by O is increased.

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Algorithm 3: Agent O exploit knowledge

1 O plays random;

2 while game not ends do

3 X plays random;

4 feed forward the net;

5 look for most excited neuron;

6 used pointer to place O move;

7 if O wins then

8 record O wins;

9 end

10 end

4.2.6 Agent Graphical Interface

The figure 4.3 shows the graphical interface of the agent with all its parts.

Figure 4.3: Agent Graphical Interface

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 42 Graduation Project

Chapter 5

Results and Discussion

This chapter presents all the experimental and final results obtained by the neural agent

we developed. The game process of the agent will be shown, from its first moves to the

strategy it uses to win the game against random or human players.

5.1 Agent Moves

The neural agent learned to play the game of tic-tac-toe in a creative way and employs

a good strategy from the first plays in order to win. In figure 5.1, when the agent starts

playing, it makes its move in one of the corners, which gives excellent chances of winning

if the opponent makes a wrong move.

Figure 5.1: The first move made by the agent, which is in one of the corners of the board

43

School of Mathematical and Computational Sciences Yachay Tech University

After the opponent’s first move, in figure 5.2, the agent shows its second move to be

made, the agent shows the best move as the “winning move,” and the output neurons are

sorted according to their value. This value is the probability of making the said winning

move, and since each neuron is associated with a quadrant of the board, the move made

by the agent is for the square of the first row and the first column. This move denotes a

look ahead capacity and opens a “double rail” situation where the agent assures a future

victory.

Figure 5.2: The second move made by the agent gives the possibility of achieving a double
rail in the game

Likewise, after the opponent’s second move, the agent chooses its third “winning move.”

However, the Q-network also shows other possible actions that it can take. Figure 5.3 shows

the agent’s behavior; in this case, given that the opponent has made a regular move, the

agent seizes the opportunity and uses the best strategy, which is to open two possible wins

patterns and ensure victory in the game.

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.3: The third move made by the agent gives the security of achieving a double rail
in the game and winning it.

Finally, Figure 5.4 and Figure 5.5 shows the move made by the agent to win the game

despite having other possible actions. The agent is very clear about the winning move it

must take, even if the rival tries to avoid one of the two possible victories that it produced

with the strategy previously used.

Figure 5.4: The fourth move made by the agent gives first victory in the game

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.5: The fourth move made by the agent gives second victory in the game

On the other hand, if the opponent is more experienced in the game (human player)

and makes his move in the middle square of the second row, the agent tries to force the

double rail by making its move in the top corner, in this example, the first box from the

left. as shown in Figure 5.6.

Figure 5.6: The second move of the agent to force the double rail

If the opponent makes the mistake of making his move in one of the corners, the game

Information Technology Engineer 46 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

ends with a double rail by the agent where it wins as shown in Figure 5.7.

Figure 5.7: The agent’s third move where it gets double rail

But in the event that the opponent makes its move on the edge of the second column,

the game ends in a draw as shown in Figure 5.8.

Figure 5.8: Position where the game ended in a draw

Information Technology Engineer 47 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Although the agent explores the future with the Bellman equation approximation pre-

sented in Chapter 4, a gradient between early moves and final winning moves is indeed

created. This gradient is not absolute and sometimes fails in pointing the optimal path

during the first moves. However, despite this, we can say that it plays with a residual

knowledge of the future that spontaneously appears during the Q-net training. Further

mathematical analysis is required to explain this phenomena, which for the best of our

knowledge, has not been previously described. Additionally, we connect the agent’s output

to the a previously constructed robot with Arduino interface to play on the actual board

as shown in Figure 5.9. and again the agent shows its look ahead capacity.

Figure 5.9: The found agent driving a robot playing tic-tac-toe

5.2 Agent Results

Figure 5.10 shows the agent’s performance playing tic-tac-toe concerning the percentage

of wins and losses against an opponent with random actions. As a result, it can be verified

that our agent has been trained in approximately 22500 games, which shows a fairly fast

training with the implementation in which it has been developed.

With respect to a human player, the game ends in a draw if the correct moves are made

as shown in the position in Figure 5.8.

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.10: Performance of the agente playing Tic-Tac-Toe

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 50 Graduation Project

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We can conclude that this thesis presents a deep reinforcement learning system where an

agent learns to play high-level tic-tac-toe by looking at frames of video that are captured

with a previously built webcam system that watches a physical board. The captured image

is processed with OpenCV until a canny border image is obtained. This image is delivered

to a convolutional neural network that produces a primary classification of images into

O’s, X’s, and empty squares. Subsequently, this classified composed image is delivered to

a fully connected network that is trained to behave as a Q-matrix and produce a policy

that optimizes the control of the game execution.

The main contribution of this work is the development of computer software that makes

possible to prove a valid, fast approximation of the Bellman equation, where the agent

searches for reward in the R-matrix and not in the Q-matrix as it is normally done. The

results of this work shows that the proposed method produces future residual information

that spontaneously appears during the Q-net training and can be successfully used in the

optimal decision taken of sequential process, represented by a tic-tac-toe game. In other

words, the policy or strategy that the neural agent finds creates a gradient between the

first moves (aperture) and future moves that lead to a maximal reward or game-winning.

Further mathematical analysis is required to explain this not previously described phe-

nomena, to the best of our knowledge.

51

School of Mathematical and Computational Sciences Yachay Tech University

The found solution makes it possible for an agent to rapidly learn in an unsupervised

way to play a sequential game by watching video frames. In addition, its training is

fast and does not consume many computational resources. However, at the end of the

training stage, the degree of information that the agent has acquired is not absolute, and

on some occasions, it fails in its decision taken. In principle this situation could be improve

by incorporating further neural networks training techniques like dropout, etc. Due to its

efficiency, the found fast solution opens the way to practical applications in real life, such as

self-driven vehicles, robotics, military, surveillance, computer-aided medicine, and others.

6.2 Future Work

Since the work carried out presents a deep reinforcement learning system, as future work,

the Bellman equation approximation can be implemented in other games and fields that

need rapid decision making. The found programmed result shows that the proposed fast

solution indeed generates look ahead capacities. This phenomenon requires to be mathe-

matically proved.

Information Technology Engineer 52 Graduation Project

Bibliography

[1] K. Suzuki, Artificial Neural Networks - Methodological Advances and Biomedical

Applications. Rijeka: IntechOpen, Apr 2011. [Online]. Available: https:

//doi.org/10.5772/644

[2] J. P. Bigus, Data Mining with Neural Networks: Solving Business Problems from

Application Development to Decision Support. McGraw-Hill Inc.,US, 1996, ch. Neural

Network Models and Architechtures, pp. 63–64.

[3] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,

“An introduction to deep reinforcement learning,” 2018. [Online]. Available:

http://arxiv.org/abs/1811.12560

[4] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, A Guide to Convolutional

NeuralNetworks for Computer Vision. Morgan Claypool, 2018, ch. Convolutional

Neural Network, pp. 43–45.

[5] Y. Fenjiro and H. Benbrahim, “Deep reinforcement learning overview of the state of

the art,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 12, pp.

20–39, 12 2018.

[6] G. Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement

learning,” CoRR, vol. abs/1609.05521, 2016. [Online]. Available: http://arxiv.org/

abs/1609.05521

[7] O. Chang, L. Zhinin-Vera, and F. Quinga, “Self-taught Neural Agents in Clever Game

Playing.” Proceedings of the Future Technologies Conference, 2020.

[8] R. E. Uhrig, “Introduction to Artificial Neural Networks,” pp. 33–37, Nov 1995.

53

https://doi.org/10.5772/644
https://doi.org/10.5772/644
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1609.05521
http://arxiv.org/abs/1609.05521

School of Mathematical and Computational Sciences Yachay Tech University

[9] H. Kukreja, B. N, S. C. S, and K. S, “An Introduction to Artificial Neural Network,”

pp. 27–30, 2016.

[10] S. C. Nerella, “Loss Functions in Neural Networks,” July 2021. [Online]. Available:

https://becominghuman.ai/loss-functions-in-neural-networks-ec6482a15e97

[11] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:

Comparison of Trends in Practice and Research for Deep Learning,” 2018.

[12] M. Malik, “Basics of neural networks,” Apr 2018. [Online]. Available: https:

//becominghuman.ai/basics-of-neural-network-bef2ba97d2cf

[13] S. Sharma and A. Athaiya, “Activation Functions in Neural Networks,” International

Journal of Engineering Applied Sciences and Technology, vol. 4, pp. 310–316, Apr

2020.

[14] K. Debes, A. Koenig, and H.-M. Gross, “Transfer functions in artificial neural networks

- a simulation-based tutorial,” Brains Minds Media, 2005.

[15] S. Bhardwaj, “Neural Networks and Activation Function,” Apr

2021. [Online]. Available: https://www.analyticsvidhya.com/blog/2021/04/

neural-networks-and-activation-function/

[16] E. N. Sanchez, J. D. Rios, A. Y. Alanis, N. Arana-Daniel, and C. Lopez-

Franco, “Appendix a - artificial neural networks,” in Neural Networks Modeling

and Control. Academic Press, 2020, pp. 117–124. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/B9780128170786000167

[17] D. Wilson and T. Martinez, “The need for small learning rates on large problems,”

in IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat.

No.01CH37222), vol. 1, July 2001, pp. 115–119 vol.1.

[18] J. G. Carney and P. Cunningham, “The epoch interpretation of learning,” 1998.

[19] A. Krenker, J. Bester, and A. Kos, Introduction to the Artificial Neural Networks,

Apr 2011. [Online]. Available: https://www.intechopen.com/chapters/14881

Information Technology Engineer 54 Graduation Project

https://becominghuman.ai/loss-functions-in-neural-networks-ec6482a15e97
https://becominghuman.ai/basics-of-neural-network-bef2ba97d2cf
https://becominghuman.ai/basics-of-neural-network-bef2ba97d2cf
https://www.analyticsvidhya.com/blog/2021/04/neural-networks-and-activation-function/
https://www.analyticsvidhya.com/blog/2021/04/neural-networks-and-activation-function/
https://www.sciencedirect.com/science/article/pii/B9780128170786000167
https://www.sciencedirect.com/science/article/pii/B9780128170786000167
https://www.intechopen.com/chapters/14881

School of Mathematical and Computational Sciences Yachay Tech University

[20] I. C. Education, “What is supervised learning?” https://www.ibm.com/cloud/learn/

supervised-learning, Agust 2020.

[21] K. L. Priddy and P. E. Keller, “Supervised training methods,” in Artificial Neural

Networks: An Introduction, 2005, pp. 13–14.

[22] J. Li, J.-h. Cheng, J.-y. Shi, and F. Huang, “Brief introduction of back propaga-

tion (bp) neural network algorithm and its improvement,” in Advances in Computer

Science and Information Engineering, D. Jin and S. Lin, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 553–558.

[23] C. C. Aggarwal, Neural Networks and Deep Learning. Cham: Springer, 2018.

[24] P. Winder, Reinforcement Learning Industrial Applications of Intelligent Agents.

O’Reilly Media, Inc, November 2020.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT

Press, 2018.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. The MIT Press, 2001. [Online]. Available: http:

//www.amazon.com/Introduction-Algorithms-Thomas-H-Cormen/dp/0262032937%

3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%

3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032937

[27] C. J. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8, pp. 279–292,

May 1992.

[28] M.-J. Li, Y.-J. H. An-Hong Li, and S.-I. Chu, “Implementation of deep

reinforcement learning,” in Proceedings of the 2019 2Nd International Conference

on Information Science and Systems, 2019, pp. 232–236. [Online]. Available:

https://doi.org/10.1145/3322645.3322693

[29] Matlab, “CNN design and training with matlab.” [Online]. Available: https:

//es.mathworks.com/discovery/convolutional-neural-network-matlab.html

Information Technology Engineer 55 Graduation Project

https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/supervised-learning
http://www.amazon.com/Introduction-Algorithms-Thomas-H-Cormen/dp/0262032937%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032937
http://www.amazon.com/Introduction-Algorithms-Thomas-H-Cormen/dp/0262032937%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032937
http://www.amazon.com/Introduction-Algorithms-Thomas-H-Cormen/dp/0262032937%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032937
http://www.amazon.com/Introduction-Algorithms-Thomas-H-Cormen/dp/0262032937%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032937
https://doi.org/10.1145/3322645.3322693
https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://es.mathworks.com/discovery/convolutional-neural-network-matlab.html

School of Mathematical and Computational Sciences Yachay Tech University

[30] K. Arulkumaran, M. Deisenroth, M. Brundage, and A. Bharath, “A brief survey of

deep reinforcement learning,” IEEE Signal Processing Magazine, vol. 34, 08 2017.

[31] O. Chang and L. Zhinin-Vera, “A wise up visual robot driven by a self-taught neural

agent,” 10 2020.

[32] C. J. Gatti and M. J. Embrechts, Reinforcement Learning with Neural Networks:

Tricks of the Trade. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.

275–310. [Online]. Available: https://doi.org/10.1007/978-3-642-28696-4 11

Information Technology Engineer 56 Graduation Project

https://doi.org/10.1007/978-3-642-28696-4_11

		2022-07-22T10:36:59-0500
	KEVIN FABRICIO CARDENAS LOPEZ

		2022-07-22T10:37:49-0500
	KEVIN FABRICIO CARDENAS LOPEZ

