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Resumen
� � Al2O3 es un material importante para muchas aplicaciones industriales, tales como en petroquímica, industria

automotriz, y especialmente en catálisis, debido a su gran área superficial. A pesar de que este material tiene gran

relevancia tecnológica, su estructura atómica es desconocida. Puesto que, tener la estructura atómica adecuada es

crucial para entender y mejorar las propiedades de este material, éste es un campo de investigación activo con muchas

preguntas abiertas. Por lo tanto, en este trabajo realizamos estudios de DFT en las superficies de � � Al2O3 usando

dos de los modelos teóricos propuestos más citados en la literatura: Pinto (Modelo 1) y Digne (Modelo 2). Se

realizó el análisis de las configuraciones electrónicas de la estructura del bulk, y de las superficies (111), (001), (110)

para ambos modelos. Adicionalmente, las energías superficiales se calcularon para determinar que las superficies

(111)a and (111), fueron las más energéticamente favorables para el Modelo 1 y 2, respectivamente. Partiendo de

las superficies más estables en cada Modelo, se obtuvieron superficies no estequiométricas generando vacancias de

oxígeno. Finalmente, los espectros UPS y las funciones de trabajo fueron simuladas para los casos más estables.

Estos resultados pueden ser contrastados con experimentos futuros para corroborar los exactitud de los modelos.

Palabras clave: � � Al2O3, SCAN, VASP, DFT, superficies, UPS, funciones de trabajo, energía superficial.
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Abstract
� � Al2O3 is an important material for many industrial applications, such as petrochemistry, automotive and

especially in catalysis, due to its large surface area. Even though, this material has great technological relevance,

its atomic structure it is still unknown. Given that, having the proper atomic structure of this material is crucial

to understanding and improving its properties, this is an active field of research with many open questions. So, in

this work we perform DFT studies in � � Al2O3 surfaces using two of the most cited theoretical models proposed

in the literature: Pinto (Model 1) and Digne (Model 2). The analysis of the electronic configurations of the bulk

structure and the surfaces (111), (001) and (110) was done for both models. Additionally, the surface energies were

computed to determine that the surfaces (111)a, and (111) were the most energetically favorable for Model 1 and 2,

respectively. From the most stable surfaces in each Model, non-stoichiometric surfaces were obtained by generating

O vacancies. Finally, UPS spectra and work functions were simulated for the most stable cases. These results can be

used to contrast with future experiments and test the accuracy of the Models.

Keywords: � � Al2O3, SCAN, VASP, DFT, surfaces, UPS, work function, surface energy.
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Chapter 1

Introduction

Nanomaterials have supposed an important breakthrough for the improvement of many applications. Catalysis is

one of the fields that has benefited a lot from nanostructures, which can be used as catalysts or as a support for

catalysis. This field in general is of great importance for the industry, since 75% of all the chemicals are produced

by this mean
8
, as well as in the global economy, where catalysis process are associated with approximately 30% of

European gross domestic product
9
.

Currently, a very important material for catalysis applications is � � Al2O3, which is a metastable phase of

Al2O3. Its synthesis is commonly done via thermal dehydration of boehmite that undergoes phase transitions when

temperature increases. The transitions generally occur in this order: boehmite! � ! �! ✓ ! ↵, being ↵� Al2O3

the most stable
10

. However, it was reported
11

that � � Al2O3 is more thermodynamically stable than the ↵ phase at

specific surface areas greater than 75m2g�1. It is precisely, due to this large surface area, among its pore volume and

size distribution, why � � Al2O3 is suitable for catalysis applications
12

.

The usefulness of � � Al2O3 for applications in catalysis is very wide. For instance, it acts as a support for Co-

based catalysts in the production of clean fuels
13

. Likewise, it has been used as a catalyst support for CoMoS or

NiMoS phases in the refining industry
14

. However, in this process there are still some challenges to address like the

dissolution or dehydration of this material during catalytic processes
13

. Additionally, this material can be used for

other applications like petrochemistry
15

, automotive industry
16

and the dehydration of alcohols
17

. Furthermore, a

recent experimental work demonstrated that ��Al2O3 works well as an activated surface for the removing of fluoride

from water.
18

It is clear that ��Al2O3 has a great relevance in many fields, but as was said before, there are still some problems

related to its usage. An accurate way to find solutions for these problems is, for instance, to understand how the

catalytic reactions occur, which can be done via simulations. However, theoretical studies in this material are a

challenging task because they require performing surface analysis, but for that, it is necessary to start from the bulk

structure of the material
19

. This is a major issue, since the atomic structure of � � Al2O3 remains unknown
16

.

In the literature, there has been a tremendous e�ort for revealing the actual crystal structure of this material,

since the earliest works on this matter that date back to 1935
20

. Those works have been summarized in these

1



2 �.�. PROBLEM STATEMENT

reviews
21,19,16,17,22

. Among the most cited atomic models are the cubic models of Smrcok
23

and Digne
15

, and the

non-cubic models from Pinto
24

and Paglia
25

. These models have been proposed considering the di�erent information

that has been possible to obtain with experimental data. The experimental techniques used so far to characterize

this material are Infrared (IR), X-ray di�raction (XRD), nuclear magnetic resonance (NMR), Transmission electron

microscopy (TEM), selected area electron di�raction (SAED)
16

and Ultraviolet Photoelectron Spectroscopy (UPS)
6
.

1.1 Problem Statement

The unstable nature of ��Al2O3 makes it really hard to perform experimental characterization of this material. This

constitutes a problem in the search for the actual atomic structure, since the theoretical models are usually validated

with experimental results.

First of all, it is a hard task to synthesize a highly, pure crystalline � � Al2O3 due to the conditions needed to get the

phase transition. Thus, without proper samples, the experimental data can lead to wrong conclusions. Additionally,

the most common characterization technique used is XRD, which in principle has been useful to determine lattice

parameters, but the spectra for �� Al2O3 samples look really similar to other phases. This generates a high di�culty

when it comes to choose suitable results for comparison with theoretical models
16,19,26

. On the other hand, UPS

is a surface sensitive technique, ideal for catalytic active materials, which can be a good approach to obtain reliable

information on this material. However, I have only found one experimental work on UPS characterization of this

material
6
.

Alongside the experimental challenges, the theoretical work in this area also has several complications. At the

moment of deciding how should be the atomic structure of � � Al2O3, there are several questions that has not been

answered for more than twenty years. These questions are: is this material completely dehydrated? does it contain

Al vacancies? is it in general a cubic structure? is it a spinel-like structure? After many years of research, some

authors report that spinel-like structures with vacancies are in more agreement with experiments, but there are still

a lot of points that need to be understood first before finding the actual structure. DFT has been the most used tool

for the theoretical description of this material
16

.

In this work, I am going to test two of the most cited � � Al2O3 models (Pinto and Digne), by performing di�erent

simulations with a more sophisticated DFT functional (SCAN) compared to the functional used in those works

(GGA). I will also focus on acquiring UPS simulations of the surfaces to have available theoretical data on this

particular technique. Finally, I am going to study non-stoichiometric systems, to understand the behaviour in the

presence of di�erent atmospheres.

1.2 General and Specific Objectives

The general objective of this work is to perform DFT calculations on � � Al2O3 surfaces by using a state-of-the-art

functional and two atomic models (Model 1 and Model 2) of the material available in the literature. To accomplish

this, the following specific objectives are needed:
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• Explain the theoretical formalism behind DFT, including the basic aspects of the state-of-the-art SCAN

functional

• Study the electronic structure and the optimized bulk structure systems of Models 1 and 2.

• Construct stoichiometric surfaces for each Model using the bulk structures as starting points.

• Calculate the surface energy of all the surfaces for Models 1 and 2, to determine the most stable configuration

in each case.

• Generate non-stoichiometric surfaces from the most stable surfaces in each Model

• Galculate the surface energy for all the non-stoichiometric surfaces to determine the most stable ones in each

Model.

• Perform UPS simulations as well as the calculation of the work functions for stoichiometric surfaces in Models

1 and 2.

• State the conclusions of the work by comparing the results with the available experiments.





Chapter 2

Theoretical Background

This section, is devoted to show the process of linking first principle approaches to the description of a real material.

The important concepts and mathematical formalism related to the modelling of a many-electron system are going

to be described. Likewise, the theory related to the description of material’s properties is going to be explained

by introducing the Surface Energy concepts and the Ultraviolet Photoelectron Spectroscopy Simulation (UPS)

framework.

2.1 Density Functional Theory

2.1.1 Many-Body Schrödinger Equation

Nowadays, it has been shown in many fields that significant enhancement of di�erent properties can be achieved by

understanding a system at a fundamental level. For applications in Condensed Matter Physics, this usually means the

study of the atomic and electronic structure of a material. In this scenario, Quantum Mechanics plays a fundamental

role in the description of matter, where the Schrödinger Equation will provide the relevant information about a

quantum system. However, this equation can only be solved exactly for a system with one electron (Hydrogen

atom)
27

. When, the system becomes larger and more complicated (more electrons and nuclei), it is described by a

many-body wave function  (Eq. 2.1) that will depend in the electron (~ri, i = 1, ...,N) and nuclei (~Ri, i = 1, ...,M)

coordinates. Also, for many applications, it is important to define the Electron Density n(r) (Eq. 2.2) which is "the

probability of finding any electron at position r" 28
. Therefore, the integration of n(r), along the whole material is

equal to the total number of electrons N, since  is normalized to unity
28

.

 =  (r1, r2, ..., rN ; R1,R2, ...,RM) (2.1)

n(r) = N
Z
| (r, r2, ..., rN ; R1,R2, ...,RM)|2dr2...drNdR1...dRM (2.2)

5
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On the other hand,  satisfies the time-independent Many-body Schrodinger equation (Eq. 2.3), where the

lowercase and uppercase indexes are related to the electron and nuclei coordinates, respectively. The factors ZI

and ZJ are the atomic numbers of atoms I and J. The terms inside the brackets constitute the Hamiltonian H of

the system and have all the interactions that the electron and nuclei can perceive. The first two terms in H are

the kinetic energies of the electron and nuclei (T̂ ), while the third and fourth terms correspond to the repulsive

Coulomb’s interaction between electron-electron (Ve�e) and nucleus-nucleus (Vn�n). The last term in H is the

attractive Coulomb’s interaction between the electrons and the nuclei (Ve�n). Although, this equation contains all the

information to describe the properties of any system, it is practically impossible to solve due to its high complexity
28

.

An important point is that, Eq. 2.3 only requires fundamental constants that are independent of any material and no

empirical information is needed (first principle approach).

2
6666664�
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~2

2me
r2

i �
X
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~2

2mI
r2

I +
1
2

X

i, j

e2

4⇡✏o

1
|ri � r j|

+
1
2

X

I,J

e2
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ZIZJ

|RI � RJ |
�

X

i,I

e2

4⇡✏o

ZI

|ri � RI |

3
7777775 = ETOT (2.3)

It is possible to simplify Eq. 2.3 by re-arranging the units considering the relevant energy scales. The average

orbital radius of the H atom at the fundamental state is ao ⇡ 0.529Å. Also, from Coulomb’s interaction in the system,

one can get the energy associated that is called Hartree energy (Eq. 2.4). Then, using a semi-classical argument,

setting e = 1 and the Bohr model for the H atom it is possible to re-write Eq. 2.3 in "Hartree-atomic units" (Eq.

2.5)
28

. The relation with the S.I. system is given by:

1Ha = 27.2114eV = 4.3596 ⇤ 10�18J

1bohr = 0.529177Å = 0.529177 ⇤ 10�10m

1a.u. of mass = 9.10938291 ⇤ 10�31kg

EHa =
e2

4⇡✏oao
(2.4)

2
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X
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1
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1
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X

I,J

ZIZJ

|RI � RJ |
�

X

i,I

ZI

|ri � RI |

3
7777775 = ETOT (2.5)

Now, Eq. 2.5 becomes easier to handle, since the number of constants have been reduced. Nevertheless, it

still depends in too many variables. Another simplification to this equation is to apply the Born-Oppenheimer

Approximation
29

, which states that the electronic and nuclei contribution to the overall wave function can be treated

separately. Considering that the nuclei masses are around 105 times greater than the electron masses, it is possible to

set the limit of MI ! 1, that causes the kinetic energy of the nuclei to become negligible. Using the same argument,

it is fair to say that the nuclei are practically immobile as compared to the electrons, therefore the term Vn�n becomes

a constant. If RI is considered as an external parameter, such that the wave function  only depends on the electron

coordinates, the many-body Schrodinger equation has now the form of Eq. 2.6. which is known as the fundamental

equation of electronic structure theory, following the treatment done by ref.
28

.
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2
6666664�

X

i

r2

2
+

X

i

Vn(ri) +
1
2

X

i, j

1
|ri � r j|

3
7777775 = E (2.6)

with E = ETOT �
1
2

X

I,J

ZIZJ

|RI � RJ |
and Vn(r) = �

X

I

ZI

|r � RI |

2.1.2 Hartree-Fock equations

With the previous simplifications, it is possible to write the Many-electron Hamiltonian as Eq. 2.7, where Eq. 2.8

gives the single-electron Hamiltonian. Now, with the general idea of the terms involving the Hamiltonian, it is also

important to think about other two aspects: (i) the shape of the wave function and (ii) how to include the repulsion

between electrons in a simpler way.

Ĥ(r1, ..., rN) =
X

i

Ĥo(ri) +
1
2

X

i, j

1
|ri � r j|

(2.7)

Ĥo(r) = �1
2
r2 + Vn(r) (2.8)

For point (i), it has to be considered that  should obey Pauli’s principle. The use of the Slater Determinant
27

formalism for a system with N electrons (Eq. 2.9) yields the right mathematical behaviour for , where the pre-factor

is used for normalization purposes. The wave function in Eq. 2.9, depends on �i, which is a function that considers

the electrons as if they were independent of each other. Here, N refers to the number of electrons and � is a term that

includes the information of the spin
27

. It is possible to prove
28

that the electron density in this scenario is actually

the sum of the probabilities of the independent electrons (Eq.2.10).

 HF(r1�1...rN�N) =
1p
N!

��������������������

�1(r1�1) �1(r2�2) ... �1(rN�N)
�2(r1�1) �2(r2�2) ... �2(rN�N)
. . . .

. . . .

. . . .

�N(r1�1) �N(r2�2) ... �N(rN�N)

��������������������

(2.9)

n(r) =
X

i

|�i(r)|2 (2.10)

For the point (ii), it is used a classical concept related to the fact that, for a given distribution of electronic charge

n(r), an electrostatic potential ' that obeys Poisson’s equation (r2'(r) = 4⇡n(r)) is generated. Then, the electrons

will be immersed in a electrostatic potential that is called Hartree Potential VH(r) = �'(r). This potential can be

included in Eq.2.7 as the term that accounts for the electron repulsion, resulting in the self-consistent set of equations
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(Eqs. 2.11, 2.12, 2.13, that have to be solved simultaneously. For a given �i, n(r) can be obtained and replaced in

Eq. 2.13 to get VH . Then, VH is replaced in Eq. 2.11 to obtain �i again. The latter result is used in Eq. 2.12 to get

n(r) that should be equal or close enough to the initial density. The process is repeated until consistency is achieved.

It is important to remark that the general form of VH can be obtained from Eq.2.14.

"
�r

2

2
+ Vn(r) + VH(r)

#
�i(r) = "i�i(r) (2.11)

n(r) =
X

i

|�i(r)|2 (2.12)

r2VH(r) = �4⇡n(r) (2.13)

VH(r) =
Z

dr0
n(r0)
|r � r0| (2.14)

The set of self-consisted Equations 2.11-2.12, are the simplest approach to solve the many-body Schrodinger equation,

but it considers electrons as classical particles. To take into account the quantum behaviour of these systems it is

important to add a proper term that expresses the Coulombic repulsion. An accurate method for this task is to

consider that this repulsion exists, but the interaction is not too strong. Therefore, it is possible to use Variational

Principle
27

, to account for this e�ect, but still recover solutions in the form of a Slater Determinant, that results

in a electron density under the independent electron approximation. In this scenario, one can consider the ground

state energy (2.15), and minimize this term with respect to �i functions (Eq. 2.16). After that, it is a matter of

replacing Eq. 2.15 into Eq. 2.16 to obtain the Hartree-Fock Equations (Eq. 2.17), that now take in consideration

the Fock-exchange functional (Eq. 2.18). The latter functional, is a sum over single occupied states that allows to

account for quantum e�ects, but adds non-locality to the self-consistent equations, which means that now there are

two variables involved (r, r0)28
.

E =
D
 
���Ĥ

��� 
E

(2.15)

�E
��i⇤

= 0 (2.16)

"
�r

2

2
+ Vn(r) + VH(r)

#
�i(r) +

Z
dr0V�(r, r0) (r0) = "i�i(r)

n(r) =
X

i

|�i(r)|2 (2.17)

r2VH(r) = �4⇡n(r)

V�(r, r0) = �
X

j

�⇤j(r
0) j(r)

|r � r0| (2.18)



CHAPTER �. THEORETICAL BACKGROUND 9

Nevertheless, the latter equations are not taking into account another relevant quantum e�ect. It is necessary to

include a correlation term Vc, that results from the intuition that Coulomb repulsion will decrease the probability of

finding an electron, due to the presence of another electron in close proximity
28

. Also, it is possible to simplify even

more by considering a local exchange potential Vx. Then, Eq. 2.17 are modified by including the terms Vx and Vc.

2.1.3 DFT principles

Density Functional Theory (DFT) is a quantum mechanical method that solves approximate versions of the

Schrodinger Equation. It is useful to calculate the electronic structure of atoms, molecules and solids
30

, for

di�erent fields like catalysis, trace of impurities and even in planetary formation
31

. The main principle of this theory

is the fact that, for calculating the ground state energy of a system, it is just necessary to focus on the electron density

n(r), rather than in the full wave function  . This is a major benefit since it allows to go from a 3n-dimensional

equation (many-body Schrödinger equation) to n separate three dimensional equations, reducing the computational

cost
32

. In this section, it is going to be described how the full wave function  can be associated with the electron

density by explaining the main theories that gave birth to this method.

Hohenberg-Khon theorem

The total energy of a system can be calculated using Eq. 2.15, where the Hamiltonian (Eq. 2.8) is general for any

material. Thus, any change in E must be associated with changes in the wave function  (E is a functional of  ).

Using this idea, Hohenberg and Khon (1964) stated the main theorem in DFT: "if E is the ground state energy, then

E is a functional of the electron density only" (Eq. 2.19).

E = F[n] (2.19)

This theorem is based on three premises, whose proof is explained in ref.
28

.

• For a given ground-state electron density n(e), it is not possible to obtain two di�erent external potentials Vn.

Therefore, Vn = F[n]

• If the atomic configuration changes, it will change the wave function. Therefore, the external potential

determines uniquely the wave function  ( = F[Vn])

• As it was mentioned before, at any quantum state, the energy E is determined uniquely by the wave function

E = F[ ]

Gathering these three points, one can observed a relation that goes like n ! Vn !  ! E. Consequently, it is

obtained a final relation like Eq. 2.19, where it is concluded that only the electron density is necessary to calculate

the ground-state energy.
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Khon-Sham Equations

The Hohenberg-Khon theorem is a powerful tool, since it tells that to calculate the ground state energy is only needed

the electron density instead of the full complex wave function. However, this theorem does not explain what is the

form of the functional. Using the complete expression for E by replacing Eq. 2.8 into 2.15, and used the idea behind

Eq. 2.19, one can get a general expression of the functional (Eq. 2.20)
28

. This equation is arranged in such way that

all the unknown quantities are included in the last term that is called the exchange and correlation energy.

E = F[n] =
Z

drn(r)Vn(r) �
X

i

Z
dr�⇤i (r)

r2

2
�i(r) +

1
2

"

drdr0
n(r)n(r0)
|r � r0| + Exc[n] (2.20)

Then, the ground state energy will be obtained by considering which functional F[n] will minimize the total

energy. Therefore, applying a similar approach as the one used in the Hartree-Fock equations, Eq. 2.21 yields to the

Khon-Sham equations (Khon and Sham, 1965) (Eq. 2.22) Here, the terms of Vn and VH were described previously,

and Vxc is the exchange and correlation potential obtained with Eq. 2.23. The exact form of this potential remains

unknown, but many approximations have been made with di�erent levels of sophistication. Then, using also the

expression for n(r), this also become a self-consistent method.

�F[n]
�n

�����
no
= 0 (2.21)

"
�1

2
r2 + Vn(r) + VH(r) + Vxc(r)

#
�i(r) = "i�i(r) (2.22)

Vxc(r) =
�Exc[n]
�n

�����
n(r)

(2.23)

It is important to remark that here, �i are the single-electron wave functions. Depending in the system under

study, a proper basis-set for the wave functions has to be chosen for  i. In the case of crystal modelling, it is used

the Bloch’s theorem
33

expressed as Eq. 2.24, where the first term is a plane wave times a function unk that contains

the periodicity of the lattice. The subscripts n and k are used for the band index and k point in the Brillouin zone,

respectively. Performing all the mathematical steps, it is arrived to Eq. 2.25, where ⌦ is the cell volume and the sum

is over all the reciprocal lattice vectors G = m1b1 + m2b2 + m3b3 for integer values mi. In principle, this Equation

goes to infinity, but for computational modelling it is possible to truncate this sum up to some value that ensures an

accurate result. This is going to be explained with more detail in the Chapter 3

 nk(r) = eik·runk(r) (2.24)

 nk(r) =
1p
⌦

X

G
Cnkei(k+G)·r (2.25)
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2.1.4 Functionals

Through the years, there have been many proposals
34

to approximate the functional term for Vxc with di�erent levels

of prediction and accuracy. Here, a brief description of some of the most used functionals it is going to be provided.

In Fig. 2.1, it is shown the Jacob’s ladder that is used to represent the di�erent levels of sophistication regarding the

functionals. The functionals in the ladder were constructed by considering di�erent factors with a explicit form of

the electron density. For the functionals with higher accuracy, it has also been considered some non-local e�ect by

using a explicit dependence with orbitals. When climbing the ladder, the accuracy increases, but it comes with a

significant cost in computational resources.

Figure 2.1: Jacob’s ladder of density functional theory
1
, where the di�erent families of functionals are listed in a

scheme from the least (bottom) to the most (top) accurate tools

The simplest proposal for a functional has been the Local Density Approximation (LDA)
35

or Local Spin Density

Approximation (LSD), which is located at the bottom of the Jacob’s latter. This model
28

uses the homogeneous

electron gas problem, from which is possible to know the exact form of the exchange energy Ex and find a
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numerical solution for correlation energy Ec. Then, it is possible to approximate any material as it was composed

by di�erent regions with a di�erential volume where it is considered a local electron density n(r). This is the

simplest approximation, that can be used for some basic calculations, but it does not give good results for some

molecular properties
36

. However, it has been the based for many other functional approaches. The next step is

the Generalized Gradient Approximation (GGA)
1
, that additionally contains the gradient of the electron density

rn(r) and accounts for the e�ect that in reality, n(r) is in fact, in-homogeneous, contrary to the assumptions made in

LDA. This functional has achieved good accuracy for simulating chemical reactions and calculating surface energies,

but it also overestimates lattice constants, band-gaps, Van der Waals forces and magnetization properties.
36,37

.

The next step is the meta-GGA approximation
1
, which is considered a semi-local functional that takes into

account the Laplacian of the density r2n(r) and the orbital’s kinetic energy ⌧, that allows to satisfy more constraints.

It has shown great improvements for many properties, specially in the prediction of type of bindings
36

. Under

this approximation, it was proposed the Strongly Constrained and Appropriately Normed semilocal density
functional (SCAN)

38
. This functional fulfills the 17 known constraints that arise from the semi-local terms and it

is more predictive than the GGAs
36

. SCAN can predict geometries, energies, bonds, Van der Waals interactions,

among other properties of molecules or crystals, improving the accuracy at lower costs
39

.

2.1.5 Pseudopotentials

In Section 2.1.3, it was stated that at some point it is necessary to set a limit for the number of plane waves that are

going to be used in the calculations. However, a basis that reproduces the exact behaviour of an atom, which has to

take account the tightly bound nature of the electrons and the rapid oscillations of the wave functions (nodal features)

near the core, will need a really high number of plane waves
2
. This upper limit will enhance the computational

cost and timing. A good way to address this issue is to have in mind that it may not be necessary to include all

the electrons of a material into the calculations, since most of the physical phenomena involve mainly the valence

electrons. Therefore, one can use a Pseudopotential, which is a function that will simulate the e�ect of the core

electrons for the valence electrons
31

.

In Fig. 2.2, it is shown the general idea behind a pseudopotential. A modified potential Ṽ is used to get a smooth

pseudo-wave function  ̃, that will be easier to handle. Beyond a critical distance away from the nucleus (rC), the

approximations (dashed lines) and real quantities (solid lines), start to coincide in the region where the relevant

chemistry occurs (green zone)
2
. Nevertheless, the pseudo-wave function used for the valence electrons should

fulfill the orthogonality between the valence and core electron wave functions, meaning that it should contain nodes

according to the expected core orbital behaviours
3,2 . In this scenario, the first approaches to build a mathematical

expression for a pseudopotential were the hard pseudopotential, norm-conserving pseudopotential, or ultrasoft

pseudopotential pseudopotentials
40

. However, these pseudopotentials have some disadvantages since they either

require a high number of plane waves, or they do not fulfill the orthogonality requirements
3
.

In 1994, Blöchl proposed another formalisim for the pseudopotential called the Projector-Augmented-Wave method

(PAW)
41

, that solves the drawbacks from the other types of pseudopotentials. The idea is summarize in Eq. 2.26
3
,

where 'v is the function that will be used to simulate the system as exact as possible. The first term '̃v is a function
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that is exact outside the core region, while becomes smooth and inexact inside the core region. The second term

�v is the opposite, since it is exact inside the core region and incorporates the node structures needed to accurately

simulate the wave function in this zone, while outside it smoothly tends to zero. Finally, the last term �̃v helps to get

the right behaviour in each zone, by being equal to '̃v inside the core, so it can cancel out, and vice versa with the

term �̃v (Fig. 2.3).

'v = '̃v + �v � �̃v (2.26)

Figure 2.2: Adapted from ref.
2
. Representation of a pseudopotential. The solid lines represent the exact wave

function  and potential, while the dashed lines are the approximations with a pseudopotential

2.2 Ultraviolet Photoelectron Spectroscopy (UPS)

UPS is a characterization technique to determine the di�erent types of bonding present in a material, that uses

photons in the energy range of 10 � 150eV 42
. The general process is the following: a photon hits a material and,

if the photon energy is equal or higher than one the orbital states, an electron can be ejected
43

. Due to the photon

energy range, this technique is surface sensitive and allows to obtain a great description of the valence band, which

makes it suitable for studying catalytic active materials like ��Al2O6
3 . Another important features are that, UPS is a

non-destructive technique that is suitable for conductor or semiconductor materials. Nevertheless, insulator samples

can also be studied if previous preparation is made to avoid charging. Additionally, this technique needs ultra-high

vacuum conditions and a spectrum analyzer. For experiments, the most common photon source is the He discharge

lamp with resonance lines at 21.2eV and 40.8eV 42
.

To perform the simulation, it is important to understand the theoretical aspects of this e�ect. The probability

for an electron to be ejected from the surface is related to the energy of the incident photon, the photoionization

cross-section, and the material composition itself
44

. The main equation behind the working principle is Eq. 2.27
42

,

where the kinetic energy Ekin of the ejected electrons is related to the photon energy ~!, the binding energy Ebin
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Figure 2.3: Graphical description of Eq.2.26 that describes the mechanism of the PAW pseudopotential. Taken from

ref.
3

and the workfunction of the material �. Thus, this technique is also very useful since it allows to calculate the

workfunction that can help in the validation of simulations and general characterization of the material
45

. The last

aspect to be addressed for this technique is the concept of the Inelastic Mean Free Path (IMFP), which is the distance

from which the electrons will be ejected from the surface, as a result of the interaction with incident photons of a

specific energy. The IMFP becomes useful to acquire experimental or simulation spectra to study the outermost

layers
4
. In Fig. 2.4 (taken from ref.

4
), it is shown an example of the relation of the IMFP with the photon energy.

If for a particular material, the photons of interest have an energy of 50eV approximately, then they will penetrate

the sample up to a distance of around 6Å. In general, for the simulations it is going to be used the Density of states

(DOS), the IMFP and the photon-cross section probabilities taken from ref.
7

Ekin = ~! � Ebin � � (2.27)

2.3 Surface Energy

The surface energy is an important thermodynamic parameter, since it allows to determine the most stable configura-

tions. It is a measure of the cost of increasing the surface area or the excess energy due to breaking bonds
46,47

. This

parameter will be used in this work to determine best configurations for each model, that will be in principle, the

surfaces with the lowest energy values, that are more likely to appear in nature. Also, the surface energy calculation

will be performed for both stoichiometric and non-stoichiometric surfaces.
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Figure 2.4: Adapted from ref.
4
. The figure shows the IMFP of a sample where the y axis is in Å. The yellow region

correspond to energies around 40� 70eV , that are related to IMFP of around 3� 7Å. This means that for this energy

range, the photons will penetrate that distance into the surface

2.3.1 Stoichiometric surfaces

In the case of stoichiometric surfaces, Eq. 2.28, it is used to calculate the surface energy. Here, A, Eslab and N, are

the area, the energy obtained from the calculations and the number of atoms in the system. The term Ebulk is the

energy of the bulk structure. A common approach to ensure that a surface has the proper thickness, meaning the

atoms at the top perceive the rest of the atoms as if they were part of the bulk structure, is following the approach

done in refs.
24,48

. The Eq. 2.29, is a linear relation between the energy obtained from the calculations and the

number of atoms (N). Therefore, for a particular surface it is possible to try configurations varying the thickness that

will have di�erent number of atoms and calculate the energy (Eslab) for each of them. Then, this data (Eslab vs. N)

can be fitted with Eq. 2.29 and the slope should yield the energy of the bulk structure.

� =
1
A

lim
N!1

1
2

(EN
slab � NEbulk) (2.28)

Eslab ⇡ 2A� + NEbulk (2.29)
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2.3.2 Non-stoichiometric surfaces

The study of non-stoichiometric surfaces is really useful to relate DFT simulations with high pressure applications

(e.g. catalysis)
49

. The surface energy for the non-stoichiometric case was calculated using the formalism provided

by ref.
49

. If we consider a surface oxide with chemical formula MxOy, where M is any metal. This surface is in

contact with an oxygen atmosphere at a certain pressure (p) and temperature (T), and the environment can give or

take O atoms from the surface.

In this scenario, the appropriate thermodynamic potential to describe the energy involved in this process is the Gibbs

Free Energy G(T, p,NM ,NO) which is given by Eq. 2.30
50

. Here, Gslab refers to the total energy of a system obtained

from self-consistent calculations. The value of G will also depend on the number of atoms of M and O (NM ,NO),

and the chemical potential µi, where the index i = M,O. The remaining term is the vibrational contribution �Gvib,

which can be neglected, as it has been proved in previous works with metal oxides
51,49

.

G = Gslab + �Gvib �
X

Niµi(T, p) (2.30)

Therefore, considering the surface energy per unit area �, it is obtained Eq. 2.31. The pre-factor 1/2 it is used to

account for the fact that when modelling surfaces, there are two equivalent faces. In this case, the chemical potentials

are related by Eq. 2.32
49

. Finally, using Eqs. 2.31 and 2.32 it is possible to obtain the � expression for, � � Al2O3.

In this case, M = Al, x = 2 and y = 3, that result in Eq. 2.33, and is going to be used for the calculations in this

work. In principle, it is going to be observed the dependence of � with respect to changes in µO

�(T, p) =
1

2A

h
Gslab(T, p,NM ,NO) � NMµM(T, p) � NOµO(T, p)

i
(2.31)

xµM(T, p) + yµO(T, p) = gbulk
MxOy

(T, p) (2.32)

�(T, p) =
1

2A

"
Gslab(T, p,NAl,NO) � NAl

2
gbulk

Al2O3
+

 
3
2

NAl � NO

!
µO

#
(2.33)

Now, it is possible to associate the surface energy results with specific T and p conditions, using the expression

for µ given by Eq.2.34
49

, where po is the pressure at normal conditions. In ref.
52

, it is possible to find the data that

contains the value of µO(T, po) for di�erent temperatures. Therefore, it is possible to relate µO(T, p) to a range of

pressures at a specific temperature. It is important to mention that this relation is done by setting a zero reference

state as the half of the total energy of an isolated oxygen molecule(µO(0K, p) = 1/2Etotal
O2
= 0)

49

µO(T, p) = µO(T, po) + 1/2kT ln
p
po (2.34)



Chapter 3

Computational Method

The calculations were done using Vienna ab initio Simulation Package (VASP)
53

under the strongly constrained and

appropriately normed (SCAN) meta generalized gradient approximation (GGA). In the following section, I am going

to give an overview of VASP characteristics to perform computational modelling of crystals. The general process is

to start from the optimized bulk structure of a material to model di�erent surface planes. The results in this work

were achieved by choosing parameters that allow to have an energy convergence of 1meV/atom54
. The computations

are going to be static and structural relaxation calculations, where the ions are allowed to move considering the

internal stress e�ect. The relaxation is done until the internal forces felt by the ions is less than 0.02eV/Å.

3.1 VASP

VASP is a code to perform DFT calculations that uses an atom-independant basis set of wave functions to solve the

Khon-Sham equations. For this reason, it is ideal to simulate crystalline systems. Additionally, it uses pseudopoten-

tials for the core electrons. In this work, the Projector Augmented Wave (PAW) potentials are used for the electronic

configuration in Al ([Ne]3s23p1) and O ([He]2s22p4). To run a VASP simulation you need four input files: INCAR,

where all the simulations parameters are included depending on which properties you want to consider; POSCAR,

that contains the atomic positions and reciprocal lattice vectors; KPOINTS, where it is specified the k-points grid

of the system; and finally the POTCAR, that has the pseudopotentials of the atoms involved in the calculations, in

the same order as they appear in the POSCAR file. VASP uses the pseudopotential formalism explained in Section

2.1.5.

3.2 Bulk system

These simulations require the use of a plane-wave basis set, which in theory is an infinite sum over wave vectors.

However, for practical purposes it is necessary to define a maximum number of plane waves that are going to be

17
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used in the calculations. In VASP, this parameter is set with the ENCUT tag in the INCAR file, which is the energy

associated to the wave vector in the reciprocal space. Therefore, the first step in the simulation of the bulk structure

is to find the minimum value of ENCUT that can be used, that will be related to the ground state wave function. For

this, it is necessary to calculate the total energy of the system using di�erent ENCUT values to determine at which

point we observed a behaviour with the desired convergence.

Once the ENCUT energy is found, then is necessary to focus in the grid of k-points (M ⇥ N ⇥ K), since most of

the integrals in DFT are evaluated in the reciprocal space. Since the reciprocal space is continuous, it is important

to use accurate methods to discretize this space to get the minimum number for irreducible k-points, by finding the

proper distance �k(Å�1), in which the space is going to be divided. One of the most common procedures to do this

k-points sampling is the Monkhorst-Pack
55

method with the improvements of the Moreno-Soler approach
56

. Then,

as the previous step, the total energy needs to be calculated with respect to the k-points grid, to choose the proper �k

at which the system reaches convergence.

Now that we have the proper ENCUT energy and k-points grid, it is possible to optimize the bulk structure volume.

The previous processes were done only with static calculations, but now the INCAR file will be set to allow the

structural relaxation of the systems with the conditions mentioned before. Also, before the actual relaxation occurs,

a rapid relaxation with a lower ENCUT energy and k-points grid, will be performed to help in the convergence

process. In this part, the total energy is calculated using di�erent cell volumes. The resulting data is fitted with the

Birch-Murnaghan Equation of State
57

(Eq. 3.1) that can relate the energy with the volume. Here, Eo,Vo, Bo and

B0o are the ground state energy and volume, the bulk modulus, and the bulk modulus derivative, respectively. Using

the data from the calculation, it is possible to find these parameters. In particular, Vo will be the optimal volume

of the system, that can be found by applying the condition that it should minimize the energy (dE(V)/dV = 0).

Additionally, the Bulk modulus can be found with the Eq. 3.2.

E(V) = Eo +
9VoBo
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3.3 Surfaces

From the optimized Bulk structure, it is possible to construct surfaces by cutting the system at di�erent crystallo-

graphic planes. Surfaces are only periodic in two directions (x and y). Thus, to model these systems in VASP, that

considers periodicity in all directions, it is necessary to consider a slab surface that impose a separation (vacuum)

between images in the z axis, and allow to neglect the interaction in this direction. In this work it was used a vacuum

slab of 15Å. Additionally, dipole corrections are necessary to be considered in surfaces modeling and this can be

done by writing the tag IDIPOL = 3 in the INCAR file. Also, the KPOINTS file has to be modified taking account

that a new grid will be used since the cell dimensions have changed. For the surfaces, the grid if k-points is in the
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form of M ⇥ N ⇥ 1. Additionally, the treatment with Eq. 2.29, is used to define the proper thickness of the surfaces.

After these considerations, the static and structural relaxations can be performed in the surface systems.

For experimentalists, it is generally easier to consider results in a cubic system. That is why, for our Models, we

are going to consider miller planes, whose equivalent planes in the cubic system, might be of relevance. The idea

is that if we want to study the plane (xyz) in the cubic system, we have to take the models, which have non-cubic

symmetries, and find the planes (abc) that are equivalent to (xyz), by analyzing our models as if they would actually

have cubic symmetries. Finally, once we find the proper (abc) planes, we use these them to cleavage the bulk

structure and get a surface. Using this idea, the miller planes of interest in the cubic system (due to their appearance

in the literature) are (111), (001) and (110). These planes correspond to the (010), (11̄0) and (001) for the symmetry

in M1, respectively. For the symmetry in M2, the equivalent planes are (032), (001) and (100), respectively. It is

important to state that these equivalences are being made with respect to a perfect cubic spinel system. In Fig. 3.1

it is displayed an example of how to get this equivalence. As it is observed in Fig. 3.1a, it shows the (111) surface

of a perfect cubic spinel system for the material (no defects), where appears a characteristic hexagonal form. In

Fig. 3.1b, it is observed the system M1, showing the surface (010), where it can also be distinguished the hexagonal

forms, therefore, it is possible to say that these two surfaces are equivalent. Finally, the same situation it is shown in

Fig. 3.1c, where the surface (032) contains the familiar hexagonal forms. This is the general procedure to get the

surface planes. From now on, we are only going to refer to the planes in the cubic system for simplification.

Figure 3.1: (a) Perfect cubic spinel system showing the (111) surface plane. (b) Defective spinel system (M1)

showing the (010) surface plane which shows equivalent atomic organization as in (a). (c) Non-defective spinel

system (M2) showing the (032) surface plane which shows equivalent atomic organization as in (a)

Di�erent reconstructions appear for each direction as a result of getting all the possible stoichiometric surfaces.

After obtaining the total energy of each surface, the surface energy �was calculated to determine which are the most

energetically-favorable surfaces. Using the most stable surfaces in each model, non-stoichiometric surfaces were

also constructed and their stability was analyzed using Eq. 2.33.

UPS spectra and the workfunctions were simulated for the main cases in stoichiometric systems. For the

workfunction, the local potential was calculated without considering exchange-correlation potential (VXC(~r)) and it

was saved in an output VASP file called LOCPOT. This is done by setting the tag LVHAR = T in the INCAR file.

The Inelastic Mean Free Path (IMFP) considered for this material is 7Å and it was obtained using NIST Electron

Inelastic-Mean-Free-Path Database
5
, with a photon energy of 50eV . This is a software that allows to predict the

IMFP from inorganic compounds using Eq. 3.3, that was developed in the work described in ref.
58

. In this equation,
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� is the IMFP (Å), E is the electron energy (eV), Ep is the free-electron plasmon energy (eV), ⇢ is the density (g/cm3),
Nv is the number of valence electrons per molecule, M is the molecular weight and Eg is the band gap energy (eV).
In Fig. 3.2, it is shown the steps to follow in the software. First, in the tool Database!Inorganic compounds, we

have to choose IMFPs from predictive formula. Then, we select the elements involved. After that, we provide the

materials properties that appear in Eq. 3.3. Finally, we will obtain a plot of the IMFP as a function of the energy.

� =
E

E2
p[� ln(�E) � (C/E) + (D/E)2]

(3.3)

Ep = 28.8(Nv⇢/M)1/2

� = �0.0216 + 0.944/(E2
p + E2

g)1/2

� = 0.191⇢�0.5

C = 1.97 � 0.91U

D = 53.4 � 28.8U

U = Nv⇢/M = E2
p/829.4

Figure 3.2: General view of the NIST Electron Inelastic-Mean-Free-Path Database
5
. Starting from the upper left

side, the images show the steps to get the IMFP from inorganic compounds using the predictive formula (Eq. 3.3)



Chapter 4

Results & Discussion

4.1 Bulk structure

4.1.1 Model 1 (M1)

In the Methodology section, it was mentioned the general procedure to perform the optimization for the bulk systems.

In Fig. 4.1, it is shown the results of the ENCUT energy and KPOINTS analysis for M1. It was obtained an ENCUT

value of 750eV and a �k = 0.040Å�1 that corresponds to a 5x5x2 mesh, which are the parameters that allow a total

energy convergence of 1meV/atom. The next step was to calculate the optimal cell volume by performing a structural

relaxation in the system and calculating the total energy varying the unit cell volume. After that, the data was fitted

using Eq. 3.1 (Fig. 4.2) to get the optimized volume that corresponds to the ground state system.

Figure 4.1: Results of the static calculations in M1 for the (a) Total Energy vs. ENCUT energy and (b) Total Energy

vs. KPOINTS computations

The bulk structure for the Model 1 used in this work is displayed in Fig. 4.3, where the indexes A and B

correspond to tetrahedral and octahedral sites, and the letter V is used to label the vacancies in the octahedral

sites. From the results of the relaxation, it was possible to get relevant parameters like the optimal cell volume

(Vo = 365.986Å3), lattice parameters and Bulk modulus (Bo = 219GPa), which is higher than the one reported

21
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Figure 4.2: Data for the Total Energy calculations with respect to the cell volume (red dots) and the fitting with the

Birch-Murnaghan Equation of State (blue solid line) for M1.

in ref.
24

. This information is summarized in Table 4.1, that contains the crystallographic data for Model 1. The

lattice parameter in the cubic system obtained with this functional is 7.87Å, which is lower than the one reported

by Pinto
24

, but much closer to the experimental value reported in ref.
59

(7.88Å). The Table 4.1 shows the fractional

coordinates of sites u,w and w, including the location of the vacancies (V1B,V2B). It was also obtained the electronic

structure for M1 (Fig. 4.4), where is observed an insulating behaviour as it is expected. The band gap energy for M1

is EM1
g = 4.9 eV.

Figure 4.3: Defective spinel bulk system for Model 1 (M1). The tetrahedal AlA, and octahedral AlB atoms are

represented in purple and blue, respectively. The vacancies are represented with black and grey spheres and the O

atoms are the red spheres.
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Table 4.1: Crystallographic data of � � Al2O3 for Model 1.

Property Calculated

Space group C2/m
a = b(Å) 5.5803

c/a 2.4224

↵ = �(o) 90.5

�(o) 60.401

Volume (Å3) 365.986

Bo(GPa) 219

Sites u v w
Al(1)A 0.3239 0.3239 -0.7925

Al(2)A 0.0020 0.0020 -0.8777

Al(3)A 0.6677 0.6677 -0.4530

Al(4)B 0.6772 0.1662 -0.3400

Al(5)B 0.6514 0.6514 -0.8397

Al(6)B 0.1672 0.1672 -0.3389

Al(7)B 0.0000 0.5000 0.0000

O(1) 0.8446 0.3456 -0.9138

O(2) 0.4902 0.0326 -0.2545

O(3) 0.8377 0.3332 -0.4061

O(4) 0.8224 0.8224 -0.9164

O(5) 0.6793 0.6793 -0.0793

O(6) 0.4951 0.4951 -0.2526

O(7) 0.8368 0.8368 -0.4062

O(8) 0.3368 0.3368 -0.4125

O(9) 0.0045 0.0045 -0.2582

V1B 0 0 0.5

V2B 0.5 0.5 0
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Figure 4.4: SCAN computed DOS for system M1. The line represents the Fermi level at zero and it is observed a

bandgap of EM1
g = 4.9 eV

4.1.2 Model 2 (M2)

In the case of M2, it is observed in Fig. 4.5, the results of the ENCUT energy and KPOINTS analysis. It was obtained

an ENCUT value of 750eV and a �k = 0.040Å�1 that corresponds to a 4x3x3 mesh, which are the parameters that

allow a total energy convergence of 1meV/atom. The ENCUT energy and �k is the same as in M1 and it is probably

related with the fact that both systems are really similar. To get the optimal cell volume, it was used again Eq. 3.1 to

fit data after the structural relaxation (Fig. 4.6)

Figure 4.5: Results of the static calculations in M2 for the (a) Total Energy vs. ENCUT energy and (b) Total Energy

vs. KPOINTS computations

In Fig. 4.7 it is observed the bulk structure for M2, which is a cubic system without vacancies. For this case, the

optimal cell volume (Vo = 364.777 Å3) and Bulk modulus (Bo = 200 GPa), which is higher than the value reported

in ref.
15

. The crystallographic information is summarized in Table 4.2. The Density of States calculated for this
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Figure 4.6: Data for the Total Energy calculations with respect to the cell volume (red dots) and the fitting with the

Birch-Murnaghan Equation of State (blue solid line) for M2.

system also shows an insulating behaviour as it is observed in Fig. 4.8. The bandgap energy for M2 is EM2
g = 5.79eV .

It is important to remark that the bandgaps for both models calculated with the SCAN functional are closer to the

experimental value (EM2
g = 8.7eV 60

) as compared to the previous calculations with GGA functional
24,15

.

Figure 4.7: Non-defective spinel bulk system for Model 2 (M2). The tetrahedal AlA, and octahedral AlB atoms are

represented in purple and blue, respectively. The O atoms are the red spheres.

4.2 Surfaces

4.2.1 Stoichiometric surfaces

In this section, it is going to be shown stoichiometric surfaces for three di�erent planes. For each plane, the results

for both models are going to be compared. The arrows in the Figures represent the movement of the atoms when
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Table 4.2: Crystallographic data of � � Al2O3 for Model 2.

Property Calculated

Space group P21/M
a(Å) 5.5089

b(Å) 8.2933

c(Å) 7.9846

↵ = �(o) 90.0

�(o) 90.5

Volume (Å3) 364.777

Bo(GPa) 200

Sites u v w
Al(1)A 0.6169 0.7500 0.7464

Al(2)A 0.8688 0.2500 0.4996

Al(3)B 0.3676 0.0754 0.6132

Al(4)B 0.1177 0.5784 0.8629

Al(5)B 0.3781 0.7500 0.1258

Al(6)B 0.8759 0.7500 0.1252

O(1) 0.8874 0.4061 0.8980

O(2) 0.6062 0.9179 0.6139

O(3) 0.3574 0.4061 0.8543

O(4) 0.1364 0.9168 0.6370

O(5) 0.8833 0.7500 0.8769

O(6) 0.3628 0.7500 0.8898

O(7) 0.6123 0.2500 0.6404

O(8) 0.1338 0.2500 0.6284
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Figure 4.8: SCAN computed DOS for system M1. The line represents the Fermi level at zero and it is observed a

bandgap of EM1
g = 4.9 eV

passing from an un-relaxed to a relaxed state.

Surface (111)

For M1, the plane (010) of the system was cleavage to get the surface that is equivalent to the (111) plane in the

cubic system. To maintain an stoichiometric surface it was observed that there were two possible reconstructions

that were labeled as (111)a and (111)b, and di�er in the coordination of the top Al atom. In Figs. 4.9 and 4.10 are

shown the side and top view of the surfaces (111)a and (111)b, respectively. For the first one, the terminations are

tetrahedral Al atoms, while for the latter, the top Al atoms occupy octahedral sites. In the relaxed (111)a surface, the

AlA moves down while the surrounding oxygens (see Fig. 4.9 b) move up in z direction. The oxygen closer to the

AlB atoms in Fig. 4.9 b also moves down as the arrows are indicating. The oxygens in the top-most layer of surface

(111)b behave in a similar way after relaxation, as it is observed in Fig. 4.10a,b, but now the AlB atom at the top is

the one that moves down.

On the other hand, for M2 the first surface slab is the plane (032) that is also equivalent to the (111) plane in the

cubic system. In Fig. 4.11, it is observed the side view of this surface, where it is clear that the top layer consists of

a mixture of AlA and AlB atoms, in sort of a combination of the (111) reconstructions in M1. After relaxation, most

of the atoms in the top layer move down, except for one oxygen that moves approximately 1.8Å in the z direction.

This oxygen at the top is forming a small lump at the surface. It is also noticeable that the there is a region in the

top layers, where a kind of an amorphous phase is formed, while the middle zone short range order is maintained.

Another important point is that this re-ordering of the atoms after relaxation, is not observed in ultra-thin films

(⇡ 9Å), but it starts to appear in thicker films (⇡ 16.9Å). In the work done by Digne, et. al
15

, they studied this
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Figure 4.9: (a) Side and (b) top view of surface (111)a for M1. The circles in part (b) correspond with the atoms

with arrows in part (a)

Figure 4.10: (a) Side and (b) top view of surface (111)b for M1. The circles in part (b) correspond with the atoms

with arrows in part (a)

surface and obtained a similar result of stacking of O and Al atoms, and some of the amorphous reconfiguration is

observed. However, they did not study thicker films to observe the reconstruction observed in this work.

Surface (001)

For M1, The surface (001) in the cubic system is obtained by cutting the bulk structure in (11̄0) plane. The surfaces

reconstructions are called (001)a and (001)b and their side views are shown in Fig. 4.12. After structural relaxation,

in the surface (001)a most of the Al atoms at the top move down, with the exception of two AlA atoms that move up

(Fig. 4.12a); while in surface (001)b we get a very similar behaviour, but the AlA atoms that move up are located at

di�erent zones, and the top-most AlA atom maintains a constant position in z direction.

In the case of M2, the plane (001) was used to get (001) surface in the cubic system. There are also two

reconstructions (001)a and (001)b (see Fig. 4.13) that di�er because of the di�erence in position of the layer that

contains the characteristic rhombus formed by AlA atoms. The surface (001)a presents this layer at the top, while in
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Figure 4.11: Surface (111)b plane for M2

Figure 4.12: Side view of the surfaces (a) (001)a and (b) (001)b for M1.

surface (001)b it is the middle. After relaxation, in the surface (001)a most of the atoms at the top remain unchanged

with the exception of an AlA atom that moves down while the two O atoms around it, move up (Fig. 4.13a). In the

surface (001)b, all the O atoms move upwards, while the Al atoms move downwards. The AlA atom pointed out in

Fig. 4.13b has the most pronounced movement.

Surface (110)

The final surface is obtained for M1 by cleaving the (001) plane that is equivalent to the (110) plane in the cubic

system. There are three reconstructions (110)a, (110)b, (110)c that can be observed in Fig. 4.14. In the relaxed



30 �.�. SURFACES

Figure 4.13: Side view of the surfaces (a) (001)a and (b) (001)b for M2.

surfaces, the Al atoms move downwards in all the cases, but the behaviour of the O atoms mark the di�erence. For

the surface (110)a there are only two O that move up (Fig. 4.14a), in the surface (110)b most of the O atoms move

up with the exception of one atom (Fig. 4.14b), finally in the surface (110)c the O atoms have a more pronounced

displacement outwards the surface. In general, the three surfaces change by the displacement of the O atoms in the

z direction. Particularly, the surface (110)c coincides with the surface observed by Pinto, et al. (2004)
24

, where in

the same direction they obtained a "saw-tooth surface" but only with AlB terminations.

Figure 4.14: Side view of the surfaces (a) (110)a, (b) (110)b and (c) (110)c for M1.
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For M2, the plane (100) yields the equivalent (110) surface in the cubic system. Now, there are two reconstructions

(110)a and (110)b. After relaxation, all the O atoms in both reconstructions move up, but for surface (110)a there

are two Al atoms that move down (AlA) and up (AlB) to get closer. On the other hand, in the surface (110)b all the

Al atoms move down, except one AlB that moves upwards. The same "sawtooth-like surface" it is observed for this

reconstruction.

Figure 4.15: Side view of the surfaces (a) (110)a and (b) (110)b for M2.

4.2.2 Most stable surfaces

To determine the most stable configurations in each model, the surface energy was calculated for each system using

Eq. 2.28. The results for M1 and M2, are shown in Tables 4.3 and 4.4, respectively. The most stable surfaces in

M1 are (111)a and (001)a, with surface energy values of 79.028meV/Å2 and 86.465meV/Å2, respectively. For M2,

the most stable surfaces are (111) and (001)a with a surface energy equal to 112.97meV/Å2 and 118.54meV/Å2,

respectively.

In M1, the values of the surface energy obtained with the SCAN functional are a little bit higher than the results

obtained in the work done by Pinto, et. al
24

, but they predict the same stable surfaces. In the case of M2, the

di�erence in surface energy of both surfaces is really small, given the fact that the values are in the order of meV .

Therefore, it is possible to say that these two surfaces are equally likely to appear in nature. Additionally, the (111)
surface for M2 is predicted to be more stable as the results provided by Digne, et. al

15
.

Regarding the experimental measurement of the surface energy of � � Al2O3, there are very few works that have

focused on this task
61,11,62,63

. The reason is that the experimental measurement of this quantity is really challenging

for solid samples
63

, but the amount of theoretical works on this material state the importance of having experimental

parameters to help elucidate the most stable structures
61

. In the work done by McHale (1997)
62

, they obtained a

value of 1.34J/m2, which is really close to the value obtained for the surface (001)a in M1. The other works show
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values around 1.67J/m2, that is in the middle of the surface energy of (111)a in M1 and (111) in M2.

Table 4.3: Surface energy � calculations of the relaxed slabs in di�erent surfaces for the cubic system of � � Al2O3

in the model 1
Surfaces N. atoms � (meV/Å2) � (J/m2) Eg (eV)

(111)a 40 79.028 1.26 3.7

(111)b 40 146.916 2.35 4.2

(001)a 100 86.465 1.38 4.3

(001)b 100 132.075 2.11 3.0

(110)a 180 159.692 2.55 3.1

(110)b 180 156.726 2.51 3.2

(110)c 180 145.881 2.33 3.0

Table 4.4: Surface energy � calculations of the relaxed slabs in di�erent surfaces for the cubic system of � � Al2O3

in the model 2
Surfaces N. atoms � (meV/Å2) � (J/m2) Eg (eV)

(111) 280 112.974 1.81 2.9

(001)a 100 118.547 1.89 4.3

(001)b 120 126.892 2.03 4.0

(110)a 120 150.660 2.41 4.0

(110)b 100 139.221 2.23 4.2

The surface energies can also help to determine the trends that the configurations follow during relaxation to

reach stability. It is clear that the O atoms at the top prefer to move outwards in z direction. For the surface (111) in

M1, it is observed a preference for having AlA atoms at the top, since the (111)a surface is more stable than (111)b
surface. Analyzing the case for M2, it can be said that there is a preference for planar surfaces, since (111) surface

in M2, is less stable than in M1, due to the O atom that forms an abrupt lump. For the surface (001) in M1, it is

observed again a preference of having AlA at the top, but also that it is more favorable to have bare surfaces. In the

case of M2, the stability is governed by the structure with a major concentration of AlA atoms at the top. For the

(110) surface in M1, the most stable surfaces are mainly governed by the presence of O atoms at the top, since Al

atoms remain mostly unchanged. For M2, the most stable surface is (110)b since it has more O atom terminations

rather than AlB atoms. In general, the most stable systems are bare surfaces with preference for O and AlA atoms.

In Figs. 4.16 and 4.17, it is displayed the Partial Density of States (PDOS) of the most stable surfaces of each Model.

Likewise, the UPS spectra were simulated for these surfaces, and they are shown in Fig. 4.18 for M1, and Fig. 4.19

for M2. The main contribution to the total UPS is given by the O atoms, for each Model. In this sense, each plot
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lays out the total UPS simulation and the contribution of the O atomic orbitals. It is clear that the O2p orbital has

the major e�ect in the spectra for all the cases. In the experimental work of Jiménez-González
6

for � � Al2O3 thin

films, it was obtained the UPS spectrum where the peak with the highest intensity corresponds to the O2p that is

located at 8eV . It also appears a small shoulder at the left, and the workfunction was reported as � = 2.5eV . The

overall shape of the spectrum is in agreement with our theoretical work, but the peaks were shifted to coincide with

the experiment. Additionally, the shapes of the shoulders and the work functions values di�er from the experiment.

In Fig. 4.20, it is shown the experimental data obtained in ref.
6
, where is possible to see the similarities with our

theoretical work, and determine that, the UPS spectrum of the surface (001)a � M1 is the closest to the experiment.

Figure 4.16: PDOS of the surfaces (a) (111)a and (b) (001)a of system M1. The Fermi level is represented by the

line

4.2.3 Non-stoichiometric surfaces

Non-stoichiometric surfaces were derived from the most stable stoichiometric surfaces for each Model. These

surfaces were obtained by removing O atoms from the top layers. For the calculation of the surface energy it was

used a reference value of ETotal
O2
= �12.34eV

Model 1

The most stable stoichiometric surface in this model was (111)a. At the top layer of this surface there are two

possible O vacancies. The vacancy type a is the removal of an O atom connected to a AlA atoms, while vacancy

type b, is an O atom that was connected to AlB atoms only. Additionally, it was studied two di�erent geometrical

considerations: trigonal (tri), which is the normal unit cell used previously, and the rectangular (rec), which is

the structure arranged in a rectangular lattice (bigger). The main di�erence between these two configurations is

the average distance at which the vacancies will be distributed. Finally, the highlighted atoms in the figures will
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Figure 4.17: PDOS of the surfaces (a) (111) and (b) (001)a of system M2. The Fermi level is represented by the line

Figure 4.18: UPS of the surfaces (a) (111)a with a workfunction of � = �4.7eV and (b) (001)a with a workfunction

of � = 7.7eV of M1 considering the atomic orbital contribution

represent the vacancies.

In Fig. 4.21, it is shown the first non-stoichiometric surfaces type a, where it is clearly observed that the O atoms

that will be removed, are connected to AlA atoms. Here, the unit cells are repeated twice in the x and y direction to

get a better idea of the di�erences between the trigonal (Fig. 4.21 a) and rectangular (Fig. 4.21 b) configurations.

On the other hand, in Fig. 4.22, it is shown the non-stoichiometric surfaces type b, where it is clearly observed that

the O atoms that will be removed, are connected to AlB atoms only.

In the previous structures, only one vacancy was considered. Now, it is going to be showed the results of removing
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Figure 4.19: UPS of the surfaces (a) (111) with a workfunction of � = 6.3eV and (b) (001)a with a workfunction of

� = 6.2eV of M2 considering the atomic orbital contribution

Figure 4.20: Comparison of the total UPS spectra of the most stable surfaces for Model 1 and 2 with the experimental

UPS of � � Al2O3 thin films obtained in ref.
6

two O atoms. Here, the color green will represent a vacancy type a, and the color yellow, will be type b. In Fig.

4.23, it is observed the trigonal configuration of a surface where two vacancies (type a and b) have been removed.

For the case of the rectangular configuration, it was observed six di�erent reconstructions to get a non-

stoichiometric surfaces with two vacancies. In general, it was studied the case when the vacancies were equal
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Figure 4.21: Top view of the non-stoichiometric surfaces type a in a (a) trigonal and (b) rectangular configuration.

The green and yellow spheres are the vacancies type a

Figure 4.22: Non-stoichiometric surfaces type b in a (a) trigonal and (b) rectangular configuration. The yellow

spheres represent the vacancies type b

or di�erent. In the case of equal vacancies (Fig. 4.24), there were three possibilities: aa, with two vacancies type a

that are far from each other, aa2, with two vacancies type a that are closer, and bb, with two vacancies type b. In

the case for di�erent vacancies (Fig. 4.25), there were also three possibilities: ab1, with two close vacancies in a

vertical plane, ab2, with two vacancies in a diagonal plane, and ab3, with two vacancies that are further from each

other.

Finally, using Eq. 2.33, it is possible to calculate the most stable configuration among these non-stoichiometric

surfaces. The results are shown in Fig. 4.26, were it is associated with O atmosphere values at a specific temperature.

It is observed that at these conditions of pressure and temperature, the non-stoichiometric surfaces are less stable,

than the stoichiometric case (black).
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Figure 4.23: Non-stoichiometric surface type ab in the trigonal configuration. The colored spheres represent the

vacancies

Figure 4.24: Non-stoichiometric surfaces with two vacancies of the same type, where (a) is the aa case, (b) is the

aa2 case and (c) is the bb case. The colored spheres represent the vacancies

Model 2

The most stable surface in Model 2 was (111). This structure is a little bit more complicated for determining the

possible O vacancies, since there are regions that do not show periodicity. That is why only two possibilities were

considered for this model: ov1, with one vacancy and ov2, with two vacancies. Naturally, the O atoms that were

removed were the top-most atoms. In Fig. 4.27 it is observed the results for both cases. Again the highlighted

atoms are the O atoms that will be removed. After that, the surface energy was again calculated for this surfaces

and the results are shown in Fig. 4.28. The same behaviour as in the case for Model 1 is observed, where the

stoichiometric case shows more stability. In this scenario, it is possible to infer that for � � Al2O3 it may be more



38 �.�. SURFACES

Figure 4.25: Non-stoichiometric surfaces with two vacancies of the di�erent type, where (a) is the ab1 case, (b) is

the ab2 case and (c) is the ab3 case. The colored spheres represent the vacancies

Figure 4.26: Surface energy of the non-stoichiometric surfaces of Model 1

favorable to have non-stoichiometric surfaces with an excess of O atoms instead of vacancies. Actually, for this

work, a non-stoichiometric surface with an extra O atom was also studied, and the behaviour shows a great stability

in the region of interest for µO values. However, the results cannot be shown here, since it was not possible to finish
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the energy calculations for this system.

Figure 4.27: Non-stoichiometric surfaces of Model 2. (a) Type ov1 and (b) Type ov2. The colored spheres represent

the vacancies
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Figure 4.28: Surface energy of the non-stoichiometric surfaces of Model 2.



Chapter 5

Conclusions & Outlook

In this work, it was performed DFT calculations to study � � Al2O3 surfaces. The main purpose was to test two

atomic models (Model 1 and Model 2) from the literature using a SCAN functional that has a higher level of accuracy

than the functionals used in the works where the models were introduced.

In the first stage, I performed the bulk structure optimization for both models and obtained the electronic structure

results. In general, the crystallographic parameters like the lattice parameter values using SCAN were closer to the

values obtained using GGA, but the Bulk modulus di�er a lot. Also, the bandgaps values increase for both models

with this functional and as was expected it yields a result closer to the experimental value.

After that, di�erent stoichiometric surfaces were obtained from the bulk structures and the surface energy was

computed to determine the most stable configurations. For Model 1, the most stable surfaces were (111)a and

(001)a, while for Model 2, the most stable surfaces were (111) and (001)a in the cubic system. For Model 2, in

surface (111), it was observed an interesting e�ect where an amorphous phase was formed in the films, and this

e�ect was not shown for ultra-thin films. The structural relaxation calculations show that, in general, bare surfaces

are most favorable than surfaces with lumps. Also, the AlA atoms at the top yield more stable surfaces than AlB

atoms, but the most stable cases will always prefer a major concentration of O atoms at the top of the surface.

After this, UPS simulations were done for the most stable surfaces. It was observed that the biggest contributions

come from the O atoms, specifically with the O2p orbitals. Additionally, it is observed a small shoulder at the left of

the major peak. This behaviour was the same for both models and it is similar to the experimental result where the

di�erences are mainly in the peak positions and intensities. The UPS spectrum for the surface (001)a � M1 is the

one that has the most similar shape compared to the experimental spectrum.

Additionally, non-stoichiometric surfaces were obtained from the surface (111)a in Model 1, and surface (111) in

Model 2, by generating O vacancies. For the Model 1, there were eleven di�erent configurations to get a non-

stoichiometric surface. It was distinguished between two types of vacancies (a and b), where the first one was

connected to an AlA atom and the latter, to an AlB atom, as well as di�erent geometrical configurations (trigonal

and rectangular). For the Model 2, there were only two non-stoichiometric surfaces that were obtained by removing

either one or two oxygen atoms at the top. The surface energy calculations, in this case, showed that the pressure

41
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range of interest, the stoichiometric surfaces are most favorable in both models.

There are still many questions that need to be addressed for this material. The results from this work can be used

to validate these models with future experiments. The next stage in this research will include the extension of the

work to other models and the exploration of other non-stoichiometric surfaces, by considering an excess of O atoms

instead of vacancies.



Appendix A

PDOS of the computed surfaces

Figure A.1: Detailed computed PDOS for the surface (111)a studied in M1
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Figure A.2: Detailed computed PDOS for the surface (001)a studied in M1

Figure A.3: Detailed computed PDOS for the surface (111) studied in M2
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Figure A.4: Detailed computed PDOS for the surface (001)a studied in M2

Figure A.5: PDOS of the rest of the surfaces generated for M1

Figure A.6: PDOS of the rest of the surfaces generated for M2





Appendix B

IMFP and Photon Cross Section for the
UPS

Figure B.1: Photoionization Cross Section used to simulate the UPS. Taken from ref.
7
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Figure B.2: IMFP used to simulate the UPS



Appendix C

Workfunctions computed for the most
stable surfaces

Figure C.1: Computed workfunction for the surface (111)a of M1
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Figure C.2: Computed workfunction for the surface (001)a of M1

Figure C.3: Computed workfunction for the surface (111) of M2

Figure C.4: Computed workfunction for the surface (001)a of M2
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