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Autor/a:

Castro Izurieta Roberto Raúl
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Roberto Raúl Castro Izurieta

v



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer / Mathematician vi Graduation Project



Acknowledgment

I thank my parents for their infinite love, their tireless support, their invaluable parenting

and their endless desire to see their children living what they love and always nourishing

themselves with the valuable knowledge that this world holds.

I thank my tutor, Manuel Eugenio Morocho, for his tremendous support for my devel-

opment as a young researcher.

Finally, I thank SDAS Research Group, together with Dr. Wansu Lim of Kumoh

National Institute of Technology, for trusting and seeing in me a student and researcher of

great value.
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Resumen

Este trabajo se centra en atención visual, un enfoque de vanguardia para las tareas de sub-

titulación de imágenes dentro del área de visión por ordenador. Estudiamos el impacto,

en términos de eficiencia, que generan diferentes configuraciones de hiperparámetros en

una arquitectura de atención visual codificadora-decodificadora. Los resultados muestran

que la correcta selección tanto de la función de coste como del optimizador basado en el

gradiente puede tener un impacto significativo en los resultados del subtitulado. Nuestro

sistema considera las funciones de pérdida de entroṕıa cruzada, divergencia de Kullback-

Leibler, error medio al cuadrado y log-verosimilitud negativa, aśı como los optimizadores

de momento adaptativo (Adam), AdamW, RMSprop, descenso de gradiente estocástico y

Adadelta. Tras la experimentación, se identifica una combinación de entroṕıa cruzada con

Adam como la mejor alternativa que devuelve un valor de precisión Top-5 de 73,092, y un

BLEU-4 de 20,10. Además, se realizó un análisis comparativo de arquitecturas convolu-

cionales alternativas para demostrar su rendimiento como codificador. Nuestros resultados

muestran que ResNext-101 destaca con una precisión Top-5 de 73,128, y un BLEU-4 de

19,80; posicionándose como la mejor opción cuando se busca la calidad óptima de subtit-

ulado. Sin embargo, MobileNetV3 demostró ser una alternativa mucho más compacta con

2.971.952 parámetros y 0,23 giga de operaciones de multiplicación-acumulación de punto

fijo por segundo (GMAC). En consecuencia, MobileNetV3 ofrece una calidad de salida

competitiva a costa de un menor rendimiento computacional, respaldado por los valores de

19,50 y 72,928 para el BLEU-4 y el Top-5 Accuracy, respectivamente. Por último, al probar

los modelos transformador de visión (ViT), y transformador de imagen con eficiencia de

datos (DeiT) para sustituir el componente convolucional de la arquitectura, DeiT logró

una mejora sobre ViT, obteniendo un valor de 34,44 en la métrica BLEU-4.
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Abstract

This thesis focuses on visual attention, a state-of-the-art approach for image captioning

tasks within the computer vision research area. We study the impact, in terms of effi-

ciency, that different hyperparemeter configurations generate on an encoder-decoder visual

attention architecture. Results show that the correct selection of both the cost function and

the gradient-based optimizer can have a significant impact in the captioning results. Our

system considers the cross-entropy, Kullback-Leibler divergence, mean squared error, and

negative log-likelihood loss functions, as well as the adaptive momentum (Adam), AdamW,

RMSprop, stochastic gradient descent, and Adadelta optimizers. After experimentation,

a combination of cross-entropy with Adam is identified as the best alternative returning a

Top-5 accuracy value of 73.092, and a BLEU-4 of 20.10. Further, a comparative analysis

of alternative convolutional architectures was conducted to demonstrate their performance

as an encoder. Our results show that ResNext-101 stands out with a Top-5 Accuracy

of 73.128, and a BLEU-4 of 19.80; positioning itself as the best option when looking for

the optimum captioning quality. However, MobileNetV3 proved to be a much more com-

pact alternative with 2,971,952 parameters and 0.23 giga fixed-point multiply-accumulate

operations per second (GMACs). Consequently, MobileNetV3 offers a competitive out-

put quality at the cost of lower computational performance, supported by values of 19.50

and 72.928 for the BLEU-4 and Top-5 Accuracy, respectively. Finally, when testing vi-

sion transformer (ViT), and data-efficient image transformer (DeiT) models to replace the

convolutional component of the architecture, DeiT achieved an improvement over ViT,

obtaining a value of 34.44 in the BLEU-4 metric.

Keywords:

Image captioning, visual attention, computer vision, supervised learning, artificial intelli-
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Chapter 1

Introduction

1.1 Background

Image captioning is a branch of computer vision whose main objective is the generation

of accurate and organic text descriptions of any type of scenario portrayed in an image or

frame [1].

Traditional approaches (i.e., before the neural network’s era) tackled the image cap-

tioning problem using classical image processing methodologies that usually relied on the

generation of templates together with object detection to produce the caption given an

input image [2, 3]. Following a similar line to the use of image templates, the construction

of pattern recognition systems has made a meritorious historical space in the resolution

of computer vision tasks involving images, as in the case of content-based image retrieval

problems [4]. Moreover, the incorporation of fuzzy logic was of great interest over time as it

positioned itself as a popular method that maps labels from previously extracted features

[5, 6].

As a consequence, joined to the usage of neural structures, visual attention has emerged

as a high potential alternative, proposing to replicate human vision by enabling an emula-

tion of attention by the neural network on the most relevant sections of an image [7].

Several researchers have replicated the state-of-the-art implementation proposed by Xu

et al. for further study [8]. The latter convolutional architecture can be broadly divided

into two well-defined structures. First, a convolutional network, which takes as input

the raw images to be processed, while it outputs a set of feature vectors, each of which

1
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represents a D-dimensional part of a section of the illustration. Thus, the decoding part

of the model will be able to selectively focus on specific parts of the image by making use

of subsets of the feature vectors. In addition, a long short-term memory (LSTM) network

makes use of the previous output to generate a word at each time instant in dependence

on a context vector, previously generated words, and the previous hidden state.

Modern artificial intelligence models provide promising results for the captioning prob-

lem. However, one of the remaining challenges is the optimization of hyperparameters

which is far from trivial and remains a challenge for captioning and other applications [9].

In this paper, three experimental scenarios are examined with the Show, Attend and

Tell architecture as the object of study. First, we conduct a study that serves as comple-

mentary content to our work, seeking to leave tangible evidence that support the general

configuration of the original contribution. Otherwise stated, alternatives that equal or

exceed the performance obtained in the benchmark work. In order to achieve the previ-

ously mentioned objective, it was decided to study the performance impact of different

model hyperparameters, conducting a comparative study to select the cost function that

minimizes the training error over a certain number of epochs for our specific application,

setting the optimizer as a fixed variable. Then, the same principle is applied to test dif-

ferent gradient-based optimizers with the cost function as an independent variable. As

a second experiment, once the optimal configuration of hyperparameters was established,

we sought to study the performance and computational requirements that various con-

volutional models can achieve by replacing the original encoder. And finally, to analyze

the viability of recent models that leave aside the notion of convolutions, we tested the

performance of architectures based on transformers, replacing the encoder component of

the baseline original work.

In response to the uncertainties raised by the previously described experimental scenar-

ios, the combination of cross-entropy loss and Adam optimizer was highlighted as the best

hyperparameter configuration according to the Top-5 Accuracy, BLEU-4, and loss value

metrics. By reusing this configuration for the following experiment, different decisions can

be made depending on the final purpose of the researcher [10]. If the architecture with the

best metrics concerning response quality is required, the convolutional models ResNet-152

and ResNeXt-101 provided the best results in the metrics used in the previous experi-

Information Technology Engineer / Mathematician 2 Graduation Project
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mentation. On the other hand, looking for the alternative with the lowest computational

demands, the MobileNet V3 model is the most attractive, decreasing the number of param-

eters, training time, and inference, together with the giga fixed-point multiply-accumulate

operations per second (GMACs), without sacrificing the accuracy metrics considerably. Fi-

nally, as the last experimental scene, it was decided to dispense with the original encoder

used by the benchmark architecture in order to decide for alternatives outside the convo-

lutional principles. Two different transformer-based models, initially conceived for image

classification tasks, were selected for this last examination. According to the corresponding

results, an improvement of state of the art in terms of the BLEU-4 metric was obtained

when using the Vision Transformer (ViT) and Data-efficient Image Transformer (DeiT)

models. However, the best results were obtained when using the second of these couple of

models, in conjunction with a training process consisting of an initial phase where only the

decoder of the architecture is subjected to training, while as a second stage, the parameters

that conform the last transformer encoder block are also optimized.

1.2 Problem statement

The problem lies in the historical and current landscape of the image captioning area. Re-

search branches such as image classification, present results that are close to the maximum

possible values for accuracy metrics for the most famous challenges such as MNIST or

Imagenet [11, 12]. In contrast, the most reputed approaches within the image captioning

world are far from being close to a hypothetical perfection in terms of metrics [13, 14, 8].

Among the aspects that reinforce the demand for solving this problem, is the role played

by image captioning in image indexing. It represents a large part of the contribution made

by the development of technologies in this area. The fact that a machine is capable of

understanding high-level details from basic features, not only makes it possible to increase

the automation of multimedia content in social networks, but also to boost sectors such as

education, commerce or biomedicine [15, 16].

Information Technology Engineer / Mathematician 3 Graduation Project
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1.3 Objectives

1.3.1 General Objective

The general objective is to improve the performance records established by the Show,

Attend and Tell architecture [8], either through conservative procedures such as hyperpa-

rameter tuning, or others that involve a partial reinvention of the encoder of the model.

1.3.2 Specific Objectives

1. To train and evaluate the benchmark model using the different hyperparameter con-

figurations selected for the present contribution.

2. To compare the performance of the different alternative models arising from the

use of different convolutional models to replace the original encoder of the studied

architecture.

3. To compare the feasibility and performance obtained by the different attentional

encoders used to replace the original choice in the benchmark architecture.

Information Technology Engineer / Mathematician 4 Graduation Project



Chapter 2

Theoretical Framework

Here is a summary of all the Deep Learning concepts that are scattered throughout this

work. The different topics are covered according to their chronology and complexity, start-

ing from basic neural networks and ending with fully attentional models. Each of the

architectures are paired with their corresponding graphical and mathematical representa-

tions.

2.1 Artificial Neural Networks (ANN)

In the race to find a way to endow a computer with the inherent learning capacity of a

human being, scientists are inspired by the anatomy of the human brain to come up with

an innovative approach that marks a turning point in the area of artificial intelligence and

machine learning [17].

Building on the initial work of McCulloch and Pitts, scientist Frank Rosenblatt refines

a mathematical recreation of a human neuron capable of solving binary classification tasks,

even modeling logical AND, OR gates [17]. This invention, known as perceptron, results

in the beginning of the area known today as Deep Learning.

As shown in Fig. 2.1, the best known version of the perceptron today, performs an

internal summation of the input arguments or features that make up the instance to be

processed. Subsequently, the output is subjected to an activation function, finally obtaining

the model prediction [18]. Unlike the initial approach of McCulloch and Pitts, Rosenblatt’s

contribution avoids having to modify the weights of the model by hand, but rather proposes

the first mathematical methods to carry out this task with respect to the model output.

5
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Figure 2.1: Overview of the current perceptron architecture.

Figure 2.2: Overview of a multi-layer perceptron architecture.

However, in 1969, Minsky and Papert demonstrated the shortcomings of a simple neural

network consisting of a single neuron. These limitations are exhibited mainly by demon-

strating the inability to obtain a model capable of learning the XOR function, since it is

not a linearly separable problem [19]. Precisely in this same work, these authors propose

the idea of creating networks composed of multiple perceptrons organized in layers, thus

being able to learn much more complex patterns.

Thanks to the latter authors, the neural architecture known as multi-layer perceptron

(MLP) was consolidated. In general, this structure consists of three sections. On the one

hand, a layer of input neurons, which only provide the input arguments to the network. On

the other hand, at the end of it is the output layer, whose purpose will be to carry out the

last computations necessary to generate the final prediction of the model. Finally, in the

intermediate zone of the architecture are the hidden layers [18]. These layers provide the
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Figure 2.3: Overview of a recurrent neural network with a single hidden layer.

largest amount of computation and learnable parameters within the network. The number

of layers within this portion of the model can be increased depending on the problem to

be solved, and architectures with a considerable number of these intermediate layers are

called deep neural network.

For the example shown in Fig. 2.2, taking all the parameters involved to the matrix

plot, the model output would be expressed as:

y = Wyf(W2f(W1x)) (2.1)

where W1, W2 and Wy correspond to the matrices formed by the weights of the corre-

sponding neural layers, while f corresponds to an arbitrary activation function [18].

2.2 Recurrent Neural Networks (RNN)

Despite the feasibility of MLP for learning more complex patterns, the reality is that

its nature makes it impossible to process sequential data. As seen in its mathematical

formulation, each processed instance is completely independent, since no prior information

is considered for the generation of subsequent predictions. As a result, data such as frames

of a video, letters within a word or vital signs represent a new challenge that cannot be

properly addressed by the previously introduced methodology.

Thus, recurrent neural networks (RNNs) appear in order to work with sequen-
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tial data [20]. For this new approach, the preservation of information between iterations

is proposed. Starting from the example shown in Fig. 2.3, an abstraction of a neural

architecture composed of a single layer of hidden neurons is considered.

For this new scenario, the examples that compose each input instance must be processed

individually in different time steps. What is intended is that at each iteration, when

computing the output of the hidden neurons using the formula used for the MLP, the

output generated by these same neurons in the previous time slot is also incorporated.

Explicitly, this methodology is expressed as follows:

ht
i = f(Whxt

i + Uht−1
i ) (2.2)

where ht
i corresponds to the current hidden state of the example i; ht−1

i represents the

previous hidden state; and U appears as a new matrix of learnable weights in charge of

directly modifying the information to be reincorporated into the new time space [20].

Once the hidden layer output is generated, one can proceed with the same methodology

used to compute the network prediction as would be done in an MLP architecture.

yt
i = f(Wyht

i) (2.3)

2.3 Long Short Term Memory (LSTM)

The mathematical approach behind the RNN’s manages to establish a way to implement a

memory system over different time spans, constantly reincorporating the previous hidden

state. However, the new inherent problem of this new approach lies in its shortcomings in

having only short-term memory.

Due to their design, RNNs tend to progressively forget the content of the initial hidden

states as the number of computational time slots increases within the architecture. For

example, in the case of needing to process a 40-word text, the hidden state generated

from the first element of that input will be entirely reconsidered for the generation of the

second word. However, as new hidden states are computed, the information related to the

first word of the text will be considerably attenuated for the time slot t = 40, which is

problematic due to the nature of the natural language processing (NLP) area.
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Figure 2.4: General representation of the composition of an LSTM unit, with its inherent
gates and learnable parameters.

Thus, the architecture known as long short-term memory (LSTM) was born [21].

In this variation of the recurrent network, the aim is to continue incorporating the previous

hidden state in each time instance. However, the introduction of new elements within the

operation of an LSTM layer is noteworthy. On the one hand, the idea of using a memory

system is consolidated, relegating this role to an argument known as cell-state. In this

way, this new component will seek to function as a much more extended and selective

memory that will interact directly with the corresponding hidden state.

Speaking of its explicit operation, this architecture follows the same line of classical

RNN’s, generating a computation relating the input vector and the hidden state of the

previous spacetime in a linear transformation. At the same time, this result is subjected

to an activation function, which by convention uses a hyperbolic tangent [21].

kt = tanh(XtUk + ht−1Wk) (2.4)

Now, both for the computation of the current hidden state and the corresponding cell

state, the LSTM relies on the incorporation of three gates in charge of very well defined

functions: input, output and forget gate.

These gates are MLP structures that involve again the input vector Xt and the previous

hidden state ht−1 within an activation function. However, it should be emphasized that
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each of these gates will incorporate a different weight matrix that will proceed to directly

modify the hidden state to be processed.

ft = s(XtUf + ht−1Wf ) (2.5)

it = s(XtUi + ht−1Wi) (2.6)

Ot = s(XtUo + ht−1Wo) (2.7)

where ft, it, and Ot are the outputs of the forget, input and output gates; having that

(Uf , Wf ), (Ui, Wi), and (Uo, Wo) are their respective learnable parameters applied, on the

one hand, to the current input, and on the other hand, to the previous hidden state [22].

Once the outputs of the corresponding gates have been computed, we proceed to update

the cell state, in order to generate the final output. Considering that the current hidden

state of a classical RNN would correspond only to that computed in kt, for this new

approach, such output must first be considered for the update of the current cell state Ct

as follows:

Ct = ftCt−1 + itkt (2.8)

In this way, ft is able to regulate the relevance that the content previously collected in

the cell state will have for the next iteration. Likewise, input gate plays a similar role, this

time modifying the impact of kt within the long-term memory of the system, being even

able to disregard such information in case the values of it tend to zero [21].

Finally, the network prediction equivalent to the current hidden state ht will be com-

puted from the previously updated cell state. After the application of an activation func-

tion, the output gate will directly modify the information captured in the cell state to

consolidate the corresponding output [21].

ht = Ot ∗ tanh(Ct) (2.9)
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Figure 2.5: Example of application of convolutional processing to a 3x3 image using a 2x2
kernel and a 1 unit stride.

2.4 Convolutional Neural Networks (CNN)

Despite the feasibility of the multi-layer perceptron to perform image classification

tasks, relevant information was neglected by these architectures during the processing of

the corresponding instances. Since these models receive as input a one-dimensional vector

of data, image processing was only feasible if the images were subjected to a flattening

process. This previous procedure results in disregarding the spatial distribution of the

pixels along the image, which is why an approach was sought to preserve this information

in order to improve the corresponding state of the art.

Given this context, the idea arises to take advantage of convolutions as the main

mechanism for image feature extraction.

This process seeks to generate a matrix such that each of its values contains relevant

information of the processed image, seeking to respect the spatial distribution of the data.

For this purpose, a convolution matrix (also known as kernel) is used, which will be

superimposed on top of the image, going from left to right, and from top to bottom

moving a certain number of pixels known as stride. In each iteration of this process, the

values present in the region where the convolution matrix is located will be subjected to a

linear combination with the kernel, thus obtaining the output pixel containing the analyzed

information of the original image [23, 24]. As shown in Fig. 2.5, an example is carried out

with a 2x2 kernel, a 3x3 image and a stride of 1, showing the correspondences between

data by means of the colors shared between the input image and the resulting matrix.

As a second main component within the convolutional networks, the process known

as pooling is incorporated. The objective of this process is the controlled and optimal
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Figure 2.6: Example of application of max pooling process to a 4x4 image using a 2x2
kernel and a 2 unit stride.

Figure 2.7: Graphical representation of the LeNet convolutional architecture [26].

reduction of the dimensionality of a given image by selecting or computing the values that

best represent specific portions of the matrix. Similar to convolutions, a kernel of defined

size will also be used during this process, which will be applied to sub-regions of the image

until the entire image is covered. However, in this case the objective will not be to calculate

each output pixel as a linear combination, but rather the kernel in question will apply a

defined function using only the pixels of the image. Among the existing alternatives, the

operation known as max-pooling stands out [25]. As shown in the example shown in Fig.

2.6, in each sub-region of the image, the kernel selects the pixel with the highest value so

that it becomes part of the resulting matrix.

Using convolutions and pooling as tools for sequential image processing, the idea of

using them in conjunction with MLP arose. One of the pioneer models in this field cor-

responded to LeNet [26], conceived for the classification of handwritten characters. As

shown in Fig. 2.7, starting from a grayscale image, the authors organize the convolution

and pooling processes as sequentially organized layers. The number of channels obtained

increases progressively due to the application of multiple filters in each convolutional layer,
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until fully connected layers are reached. In these final layers, all the features extracted in

each of the corresponding channels are re-structured into a single vector, which can then

be processed by the linear layers and generate the corresponding prediction.

2.5 Attention in Neural Networks

As the world of deep learning evolved, areas such as image segmentation and natural

language processing opted to structure their neural architectures in such a way that they

always consisted of two sections with complementary roles [27, 28]. On the one hand, a first

encoder section is used to compact the input information, and then a decoder component

takes advantage of this condensed feature representation in order to progressively construct

an output that provides a solution to the task at hand.

The area of natural language processing was one of the most benefited from the trend

of encoder-decoder architectures, with recurrent models being widely used as main players

in one or both parts of the resulting neural networks [29, 30]. However, as the inherent

memory problem of the recurrent approaches presented in previous sections was not com-

pletely solved, the demand for a solution to adequately process larger and larger input text

compositions remained on the rise. Given these precedents, attention mechanisms arise

as a way to provide the decoding part of a recurrent network with the ability to not only

produce the corresponding output for a given time t, but also to perform a search for the

most relevant elements of the supplied input in order to be taken into consideration for the

computation of the corresponding hidden state [31].

While variations of the original attention system have taken place for different type of

tasks [32, 33, 34], the reality is that they all start from the same original principle.

Starting from an encoding recurrent network, it receives an input text composed of

its corresponding words X = {x1, x2, x3, ..., xm}. Instead of generating a single fixed-size

element containing the full input expression, each of the hidden states hj resulting from the

encoding process, which will be used as annotation vectors to represent each input word.

Using this approach, with respect to each hidden state of the decoder part si a βi, j score

associated with each annotation vector is computed. This task is assigned by convention

to a single layer multi-layer perceptron model, formulated as follows:
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Figure 2.8: Attention matrices constructed from the weights associated with each input
word with respect to the elements generated as output of the system [31].

βi, j = V ∗ g(W ∗ [hj; si]) (2.10)

where V and W are learnable parameters of the attention system, [hj; si] corresponds

to the concatenation of the immiscible vectors, and g represents a nonlinear function [31].

After the calculation of each of the m scores, they are subjected to a softmax function

in order to normalize each of the treated scores as weights αi,j:

αi,j = exp(βi,j)∑m
j=1 exp(βi,j)

(2.11)

In this way, each of these weights represents the relevance that each word of the input

instance will have at the time of generalizing the token related to the hidden state si. By

analyzing in a graphical way each of these weights αi,j, the matrices included in Fig. 2.8

are generated where each pixel corresponds to the weights computed using the attentional

model. Having on the x-axis the words of the input sentence, and on the y-axis the output

ones, we perceive with higher pixel intensities the input text positions of higher relevance

for the generation of each output intensity.

Subsequently, a context vector is computed as a weighted sum between the attentional

weights and their associated annotation vectors:
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Figure 2.9: General composition of the Multi-head Attention and Scaled Dot Product
blocks that make up the Transformer architecture [35].

ci =
m∑

j=1
αi,jhj (2.12)

Precisely, it is through the context vector that the decoder can include the attentional

information when computing the next hidden state si+1, satisfying the following expression:

si+1 = f(Ux′
t + Ksi + Qci) (2.13)

where U, K and Q are learnable parameters, f a nonlinear function, and x′
t the input

token to the decoder module for a specific time t [31].

2.6 Transformer Networks

Once the precedent created by the attention mechanisms was set, the initiative arose to

formulate a system that dispensed with any convolutional or recurrent network and relied

on attentional techniques for problem solving. This approach is embodied in the form of

the innovative Transformer [35] network. This reimagining of machine translation systems

stems from the hypothesis that suggests that attentional systems alone are sufficient to

perform this type of task, dispensing with the recursive components that had historically

been well accepted.

This end-to-end attentional architecture preserves the classic structure of an encoder-
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decoder model, however, they use a generalization of the attention systems. A similarity

with database information retrieval systems is used, where a query Q and key K define

the search to be performed within a set of available values V , thus generating the desired

result. This approach is materialized as the component known as Scaled Doc-Product

Attention, which is diagrammed in Fig. 2.9. Moving this scheme to the mathematical

terrain, this attentional principle would be embodied as:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V (2.14)

where dk is the embedding size selected to represent the words in the dataset. At

the same time, the matrices V , K, and Q are the product of separate linear projections

for each. In this way, the result of the softmax function generates a series of attentional

weights similar to those seen in the classical method, which are applied on a representation

of the input elements in order to obtain the context sought [35].

This Scaled Doc-Product Attention is employed within a composite structure called

Multi-Head Attention. Referring again to Fig. 2.9, that component is responsible,

in the first instance, for carrying out the projections for matrices V , K and Q, with the

distinction that these structures are divided into h new matrices each. In this way, each

trio of resulting matrices are subjected to the attentional process previously described, thus

seeking to detect in a more detailed way a greater number of existing relations between the

input words. The results obtained in each of these h heads are concatenated and finally

subjected to a new linear projection.

Having already consolidated an attentional mechanism, it is incorporated as a corner-

stone within the final architecture of the Transformer contained in Fig. 2.10. From this

model it is highlighted that, unlike the recurrent models, the encoder of this new approach

allows the processing of all the input text at the same time, instead of word by word, giv-

ing the possibility of parallelizing this part of the system. This is achieved thanks to the

fact that, in addition to the use of classical learned embeddings from the area of natural

language processing, the notion of positional embeddings is included. These are added

to the classical embedding in order to provide the system with a way to keep a notion

of the position of each word within the sentence, using sinusoidal and cosine functions as
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Figure 2.10: General scheme of the architecture known as Transformer, conceived to carry
out natural language processing problems [35].

follows:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.15)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.16)

where pos represents the position of the token within the input text, i corresponds to

the dimension, and dmodel the embedding size [35].

Having already given a solution for the incorporation of positioning within sentences,

we are now faced with the structure of the encoder part of the Transformer. This part

of the model is composed of N identical coding blocks stacked one on top of the other.

Each of these is made up of four functional blocks. First, once the V , K and Q matrices

are generated, they pass through the Multi-Head Attention block previously analyzed in

depth. After this, the addition of the content provided by a skip connection takes place,

in conjunction with a layer normalization. Then, a double linear projection is carried out,
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through a feed forward neural network, ending with a layer normalization preceded by the

influence of a skip connection.

As for the blocks that make up the decoder, they present few important changes with

respect to their encoding counterparts. Given that the model processes the entire text at

the same time, during training it must be ensured that the decoder only uses as a premise

the words prior to the time slot to be executed. In other words, the aim is to prevent the

model from cheating by seeing the subsequent words, which is why a ground-truth masking

is applied that varies as the translation process progresses.

Furthermore, as an intermediate sub-layer, the decoder block includes a new Multi-

Head Attention module and another addition module with layer normalization. These

maintain the same operation described so far, with the difference that at this specific point

of the architecture, the knowledge of the encoder is incorporated, being now the one that

provides the K and V matrices.

As in the encoder, the decoder blocks are stacked one on top of the other, ending the

whole process in a final linear projection coupled to a softmax function, which will define

the probability for each dictionary word to be selected as an inference at the time t of the

translation.
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Chapter 3

State of the Art

The following is an overview of the context and research direction of the technologies and

areas of study involved in this work. Factors such as the most frequent datasets, metrics,

hyperparameters and results of major relevance to the state of the art are taken into

consideration.

According to the historical summary presented in Table 3.1, one of the pioneering

research works incorporating an attention system is the one proposed by Larochelle &

Hinton, based on a variant of the restricted Boltzmann machine (RBM) mainly used for

digit classification. They used the benchmark MNIST dataset, where a limited set of pixels

is provided from which the architecture collects both high- and low-resolution information

about neighboring pixels [36]. Moving forward in the timeline, Bahdanau et al. reused

the notion of attention applied to different convolutional architectures. In this case, a

much more novel model such as an encoder-decoder makes use of a reduced but visible

attention system to take into consideration certain parts of a sentence when performing

the translation of a specific word [31]. The idea of taking advantage of the benefits offered

by recurrent architectures was a common factor that persisted in later works, among which

stand out research-oriented to digit classification such as that presented by Mnih et al.

[37], and the one proposed by Ba et al. [38].

In order to substantiate the evolution within the area of image captioning, a brief

historical review of relevant works is presented in Table 3.2. Throughout this summary,

we can find contributions such as the one proposed by Kiros et al., using a multi-log

bilinear model for exploiting the characteristics of images to generate a biased version
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of this architecture [39]. Followed this research, the same author incorporated recurrent

structures within an encoder-decoder model, a common factor among image captioning

proposals [40]. This fact is mainly due to the nature of human speech that is sought to be

incorporated into the learning algorithm. Furthermore, authors such as Mao et al. [41],

Vinyals et al. [42], and Donahue et al. [43] have reused this idea in their respective research

efforts.

Finally, Table. 3.3 contains an excerpt from previous works that promote our hy-

pothesis of incorporating a non-convolutional model within the proposed benchmark. The

transformer architecture originates with the proposition that attentional systems are suffi-

cient tools to replace approaches that employ recurrent networks for machine translation

tasks. The achievement obtained in this work is evidenced by an improvement in the BLEU

metric for English-to-German translation tasks compared to the state-of-the-art [35].

The novel transformer architecture attracted the attention of engineers and practition-

ers by dispensing the conventional convolutional or recurrent models, usually used to build

encoders and decoders. Hence, researchers were fast to evaluate the feasibility of both

parts that constructed this outstanding model.

On the one hand, regarding the machine translation tasks, the encoder of the trans-

former has been sought to be used as an alternative for the encoding of the content coming

from an input text. One of the main attractions of this specific part of the transformer

is the high parallelization capacity due to the nature of the multi-head attention mod-

ules. On the other hand, the decoder, similar to recurrent models, requires previous states

when generating a new word during the inference process. Thus, Wang et al. proposed to

counteract the impact of the large number of parameters of a transformer decoder by re-

placing it with a classical LSTM network to perform the translation task given the output

generated by the transformer encoder. Thereby, the authors end up with an architecture

capable of decoding four times faster than using the classical transformer, with a slightly

lower performance in terms of BLEU metric [44].

As time went by, the scientific community became much more aware of the role that

both transformer parts played in performing translation tasks. During training, the encoder

acquires the general understanding of the source language, considering the context in which

each word was initiated. At the same time, the decoder is trained to map the words
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from the source language to the target language. Therefore, the underlying knowledge

of the language that both neural network architectures had separately granted to the

scientific community, have provided two great weapons to tackle natural language tasks. By

exploiting the decoder modules of the transformer we obtain the GPT architecture, whose

later versions leave a hegemony mainly in text generation [45]. In contrast, models such

as BERT have been proposed to take advantage of the encoder modules. The versatility

of this model is undeniable at the moment of performing almost any task in the area of

natural language processing by executing fine-tuning according to the specific application

[46].

Once the precedent set by BERT was established, its use in conjunction with recurrent

networks continued to be a great experimental attraction thanks to the computational ben-

efits mentioned above. Thus, Chen et al. proposed the acceleration of sentence correction

tasks in Chinese, using a BERT-RNN model trained by applying the TF technique as an

additional measure to accelerate the training process. After experimentation with various

recurrent models functioning as decoder, the BERT-GRU combination outperformed the

best BLEU metric, and improved the inference time of the base transformer model by

1131% [47].

Despite the progressive dominance of transformer-based networks in natural language

processing, the feasibility of this type of architecture in the world of computer vision has

been the focus of many researchers in the last couple of years. An example of the first

approach to this new challenge can be found in the work of Patel and Varier. They

contributed to the research community with a comparison between a CNN-LSTM model

and a CNN-Transformer architecture for image captioning tasks on the Flickr8k dataset.

This work concludes by showing the feasibility of the transformer decoder within the pro-

posed architecture. However, the performance metrics remained slightly behind in terms of

BLEU, METEOR, ROGUE and CIDER in comparison to the classical alternatives using

LSTM networks as a decoder [48].

Subsequently, because of the considerable impact caused by the work ”An image is

worth 16x16 words: transformers for image recognition at scale” by Dosovitskiy et al., the

ViT model was considered as a viable approach to the use of transformer-based architec-

tures for computer vision. The authors of this work proposed an architecture that uses
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the transformer encoder reusing configurations from the BERT model. The output of this

encoder part is then reused within an multi-layer percepton (MLP) layer to perform image

classification. The modification that allows this architecture to take an image as input,

is that the corresponding input is previously divided into N patches, each one contain-

ing an specific section of the image, ensuring no overlapping between them. These image

portions are then flattened and each of these structures is treated as if it were a word

within the classical transformer architecture. The impact that this paper generated was

not only due to the alternative proposed to use an image as input, but also for being a

new state-of-the-art in the task of image classification [49].

After this recent approach of using transformers for tasks involving images had been

consolidated, the desire to use a full-transformer architecture for this type of tasks contin-

ued to be studied. Liu et al. proposed the use of such an architecture, using the ViT model

as the coding part together with the classical decoder of the transformer [50]. This proposal

was tested in image captioning tasks on the MSCOCO dataset, obtaining an improvement

of the state-of-the-art in terms of BLEU, METEOR, ROGUE and CIDER metrics.

As mentioned so far, the current trend corresponds to the exploitation of attentional

systems based on transformers, even pursuing the possibility of consolidating a model capa-

ble of being specialized in multiple vision-language tasks after a short period of fine-tuning

[51]. However, new approaches inspired by the one proposed in the Show, Attend and

Tell work remain on the table as fierce competitors in the area of image captioning [8].

Thus, progress continues to be made in the generation of descriptions in Chinese, using

architectures that not only continue to employ convolutional structures for the extraction

of features present in the images, but the decoding process remains in charge of a recur-

rent network, more specifically using bidirectional LSTM networks supported by a fuzzy

attentional module [52].

Information Technology Engineer / Mathematician22 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Ta
bl

e
3.

1:
Su

m
m

ar
y

of
vi

su
al

at
te

nt
io

n
re

la
te

d
wo

rk
s.

A
rc

hi
te

ct
ur

e
D

at
a

in
pu

t
C

os
t

Fu
nc

ti
on

O
pt

im
iz

er
P

er
fo

rm
an

ce
m

et
ri

c
R

ef
er

en
ce

M
ul

ti-
fix

at
io

n
R

e-
st

ric
te

d
B

ol
tz

m
an

n
M

ac
hi

ne
(R

B
M

)

Im
ag

es
H

yb
rid

C
os

t
H

yb
rid

-S
eq

ue
nt

ia
lC

os
t

SG
D

Er
ro

r
ra

te
an

d
ac

cu
ra

cy
La

ro
ch

el
le

&
H

in
to

n
(2

01
0)

En
co

de
r-

D
ec

od
er

So
ur

ce
se

nt
en

ce
of

1-
of

-K
co

de
d

w
or

d
ve

ct
or

s

N
/A

SG
D

an
d

A
da

de
lta

B
LE

U
.

B
ah

da
na

u
et

al
.

(2
01

4)

R
ec

ur
re

nt
N

eu
ra

l
N

et
w

or
k

Im
ag

es
C

ro
ss

en
tr

op
y

an
d

R
ei

n-
fo

rc
em

en
t.

SG
D

w
ith

m
o-

m
en

tu
m

Er
ro

r
ra

te
M

ni
h

et
al

.
(2

01
4)

D
ee

p
R

ec
ur

re
nt

A
t-

te
nt

io
n

M
od

el
Im

ag
es

Lo
g-

Li
ke

lih
oo

d
SG

D
w

ith
th

e
N

es
te

ro
v

m
om

en
tu

m

Er
ro

r
ra

te
B

a
et

al
.

(2
01

4)
.

En
co

de
r-

D
ec

od
er

Im
ag

es
an

d
en

-
co

de
d

ca
pt

io
ni

ng
C

ro
ss

en
tr

op
y

A
da

m
B

LE
U

an
d

M
ET

EO
R

X
u

et
al

.(
20

16
).

Ta
bl

e
3.

2:
Su

m
m

ar
y

of
im

ag
e

ca
pt

io
ni

ng
re

la
te

d
wo

rk
s.

A
rc

hi
te

ct
ur

e
D

at
a

in
pu

t
C

os
t

fu
nc

ti
on

O
pt

im
iz

er
P

er
fo

rm
an

ce
m

et
ri

c
R

ef
er

en
ce

R
N

N
Im

ag
e

an
d

se
nt

en
ce

de
sc

rip
tio

ns
.

Lo
g-

lik
el

ih
oo

d
ca

lc
ul

at
ed

by
pe

rp
le

xi
ty

pl
us

a
re

gu
-

la
riz

at
io

n
te

rm
.

N
/A

B
LE

U
,

Pe
rp

le
xi

ty
,

R
e-

ca
ll@

K
an

d
M

ed
ia

n
ra

nk
.

M
ao

et
al

.
(2

01
4)

LS
T

M
Im

ag
e

pa
ss

es
th

ro
ug

h
a

C
N

N
.

Su
m

of
th

e
ne

ga
tiv

e
lo

g
lik

el
ih

oo
d

of
th

e
co

rr
ec

t
w

or
d

at
ea

ch
st

ep
.

SG
D

B
LE

U
,

M
ET

EO
R

,
C

ID
ER

,
R

ec
al

l@
k

an
d

M
ed

ia
n

ra
nk

.

V
in

ya
ls

et
al

.
(2

01
4)

LS
T

M
Im

ag
es

or
Te

xt
N

eg
at

iv
e

lo
g

lik
el

ih
oo

d
SG

D
B

LE
U

,
M

ET
EO

R
,

C
ID

ER
,

R
ec

al
l@

k,
M

e-
di

an
ra

nk
an

d
R

og
ue

-L
.

D
on

ah
ue

et
al

.
(2

01
4)

M
ul

tim
od

al
lo

g-
bi

lin
ea

r
m

od
el

Im
ag

es
Pe

rp
le

xi
ty

N
/A

B
LE

U
,P

er
pl

ex
ity

K
iro

s
et

al
.

(2
01

4a
)

En
co

de
r-

D
ec

od
er

Im
ag

es
Pa

irw
ise

ra
nk

in
g

lo
ss

SG
D

R
ec

al
l@

k
an

d
M

ed
ia

n
ra

nk
K

iro
s

et
al

.
(2

01
4b

)

Information Technology Engineer / Mathematician23 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Table
3.3:

Sum
m

ary
ofrelated

works
about

transform
er

architectures.

A
rchitecture

D
ata

Input
T

ask
D

ataset
C

ost
Function

O
ptim

izer
P

erform
ance

M
etric

R
eference

O
riginalFullTrans-

form
er

Text
M

achine
Trans-

lation

W
M

T
2014:

-English-to-G
erm

an
-English-to-French

N
/A

A
dam

B
LEU

,FLO
PS

Vasw
ani

et
al.

(2017)

Transform
er

En-
coder

+
R

N
N

Text
M

achine
Trans-

lation

-N
IST

O
penM

T
C

hinese-to-English
-W

M
T

2017
C

hinese-to-English

-Fist
Stage:

N
egative

Log-Likelihood
-Second

Stage:
Sequence-level
K

now
ledge

D
istillation

K
D

N
/A

B
LEU

W
ang

et
al.

(2019)

C
N

N
Encoder

+
Transform

er
D

ecoder

Im
ages

Im
age

C
aption-

ing
Flickr8k

N
/A

A
dam

B
LEU

,
M

E-
T

EO
R

,
C

ID
Er,

R
O

U
G

E

Patel
&

Varier
(2020)

Transform
er

en-
coder

(B
ERT

)
+

LST
M

Text
Sentence

C
or-

rection
N

LPC
C

2018
N

/A
A

dam
B

LEU
C

hen
et

al.
(2020)

Transform
er

En-
coder

+
M

LP
Im

ages
Im

age
C

lassifi-
cation

-Im
ageN

et
-C

IFA
R

10/100
-O

xford-IIIT
Pets/Flow

ers-102
-V

TA
B

N
/A

A
dam

Top-1
A

ccuracy
D

osovitskiy
et

al.
(2021)

Full
V

ision
Trans-

form
er

Im
ages

Im
age

C
aption-

ing
M

S-C
O

C
O

C
ross-entropy

loss
A

dam
B

LEU
,

M
E-

T
EO

R
,

C
ID

Er,
R

O
U

G
E

Liu
et

al.
(2021)

Information Technology Engineer / Mathematician24 Graduation Project



Chapter 4

Methodology

This section details all the aspects related to the execution of the experiments that will

allow fulfilling the objectives of this work, together with the composition and formats fol-

lowed by the dataset used. Additionally, specific details about the mathematical principles

involved in the benchmark architecture, hyperparameters of major relevance, and auxil-

iary information about the nature of the alternative convolutional and non-convolutional

models used for the respective experimental scenarios are shared.

4.1 Description of the Problem

4.1.1 The Dataset Structure

The dataset used for training the network is the 2014 version of the MS COCO variant

oriented to image captioning tasks [53]. Three inputs are structured in the dataset to be

used by the neural network during the training stage. It should be noted that these three

components are prepared for the training, testing, and validation sets.

4.1.2 Input Images

The set of images obtained from MS COCO must have pixels values in the domain b ∈

{0, 1} to be compatible with the pre-trained convolutional model used as the encoder

block. For the effect, a normalization of the RGB channels is applied using the values of

µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225], where µ and σ represent the mean

and the standard deviation of the ImageNet dataset [54], respectively. Each image in the
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Figure 4.1: Image taken from the train-
ing set with an associated groundtruth
caption: “a man with a red helmet
on a small moped on a dirt road”.

Word Encoded Version
a 1
man 2
with 3
red 4
helmet 5
on 6
small 7
moped 8
dirt 9
road 10
... ...
<start> 9488
<end> 9489
<pad> 0

Table 4.1: Mapping system used to en-
code the caption the example image.

dataset is represented as X(i) ∈ R256×256, where X(i) is a matrix of 256×256 pixels. We let

m be the total number of images on MS COCO dataset, and represent the entire dataset

as X ≜ {X(1), . . . , X(m)}, where each image X(i) is mapped to a ground truth caption

Y (i) that represents the corresponding ground-truth encoded caption.

4.1.3 Encoded Captions

In order to be able to manipulate the descriptions associated with each image in the dataset,

the model uses a .json mapping file. Within this file, each word used in the captioning of

the entire dataset has an identification number. Thus, the complete vocabulary supported

by the network and its numerical equivalents can be visualized in this file. This new .json

file will contain an array where each of its elements will correspond to the word-by-word

captioning of each image using the numerical equivalences defined within the mapping file.

Considering that the model can work with descriptions of a maximum length of 52

words, the inclusion of three special characters within the mapping file is required. The

network requires a start and end signal to delimit the extension of the descriptions. Also,

since not all descriptions occupy the maximum sentence size, it is required to fill in the

missing spaces within the encoded captioning with a character denoting a blank space.
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Figure 4.2: Overall representation of the convolutional encoder-decoder architecture built
to generate real captioning. The model uses a pre-trained ResNet architecture as the
encoder backbone, along with recurrent LSTM operations for the decoder. The objects
with discontinuous contours are only used during the training stage.

As an example, in Fig. 4.1 it can be seen an instance included in the validation group.

This image is associated with a corresponding C description: “a man with a red helmet

on a small moped on a dirt road”. Referring to the file, which contains its encoded

description EC , one can find an encoding of the form:

EC = [9488, 1, 2, 3, 1, 4, 5, 6, 1, 7, 8, 6, 1, 9, 10, 9489, 0, 0, ..., 0],

considering that it has been generated from the equivalences contained in the mapping file,

the contents of which are presented in Table 4.1.

4.1.4 Caption lenghts

Finally, the last file is generated whose purpose is to house an array, whose elements

represent the number of words that make up the description associated with each of the

images.

4.2 Benchmark Model

The convolutional model employed for this study is built following an encoder-decoder

architecture supported by a visual attention model. The proposed neural architecture is
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schematized in Fig. 4.2, where an instance of the dataset is outlined in order to show

its operation. The encoder makes use of transfer learning by borrowing the convolutional

architecture of Resnet [55]. This operation aims to generate an encoded version of the input

RGB image composed by a set of L D-dimensional annotation/feature vectors, where each

one corresponds to a simplified representation of a part of the original image.

a = {a1, a2, ..., aL}, aL ∈ RD (4.1)

On the decoder side, given the sequential nature of the problem to be solved, an LSTM

recursive architecture is constructed [21]. Up to this point, the description of the input

image is generated in a word-by-word basis. At each decoding step, the Att-MLP attention

network uses the set of annotation vectors together with the previous hidden state, passing

this output through a softmax function.

λti = Att(ai, ht−1) (4.2)

αti = exp(λti)∑L
k=1 exp(λtk)

(4.3)

Once the corresponding weights have been computed for each annotation vector at

time t, we proceed to compute the vector ẑt, which is a dynamic representation of the

relevant parts of an image for an specific time. For the present work, we analyze the

deterministic approach of the original architecture, parsing the context vector as a soft

attention-weighted annotation vector.

ẑt =
L∑

i=1
αtiai (4.4)

Through this outcome, the previously generated word and the previous hidden state,

the LSTM network generates the corresponding output word probability:

p(yt|a, yt−1
1 ) ∝ exp(L0(Eyt−1 + Lhht + Lzẑt)) (4.5)

where L0, Lh, Lz, and E are learnable parameters initialized randomly [8]. The objects

in Fig. 4.2 denoted with discontinuous contours are the groundtruth components extracted
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from the dataset. Notwithstanding, those objects are only used during the training phase

of the model. Their nature is described in the next section of the paper.

4.3 Hyperparameter Notions

This section describes the loss and optimizer functions employed by the reference bench-

mark. In addition, Algorithm 1 details the intervention of these components during the

training phase of the neural network.

4.3.1 Cross-entropy loss function

To describe the loss function of our attention model, we let a be the function parametrized

by θ, the caption output of the network is represented as C = a(X, θ), where C is the

collection of words inferred from the MS COCO dictionary. The loss function measures the

inference performance of our attention model when compared with its respective ground

truth. In order to measure the difference between the ground truth distribution and the

distribution of the caption outcome, we define J(θ) as the cross-entropy. The cross-entropy

loss function penalizes the attention model when it infers a low probability for a given

caption. Our attention model works by updating the values of θ, moving the loss towards

the minimum of J(θ) [56].

For our training set of (X(i), Y (i)) for i ∈ {1, . . . , m}, we estimate the parameters

θ = {θ(1), . . . , θ(n)} that minimizes J(θ) by computing:

J(θ) = − 1
m

m∑
i=1

L(X(i), Y (i), θ)

= − 1
m

m∑
i=1

Y (i)log
(

p̂(i)
)

,

(4.6)

where Y (i) represents the expected caption C of the ith image, and p̂(i) constitutes the

probability that the ith image outcomes the intended value of C.

Information Technology Engineer / Mathematician29 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

4.3.2 Adaptive moment optimizer

In order to optimize our attention model through a gradient-based optimization method,

we express the gradient vector of (4.6) with respect to θ as

g = ∇θJ(θ)

= 1
m
∇θ

m∑
i=1

L(X(i), Y (i), θ)

= 1
m

m∑
i=1

(
p̂(i) − Y (i)

)
X(i).

(4.7)

To locate the minimum of J(θ), the proposed optimization algorithm moves to the

negative direction of (4.7) iteratively. Our model computes individual adaptive learning

rates for different parameters from estimates of first and second moments of g [57].

4.4 Experimental Setup

It is essential to point out that for the three study cases, the training of the corresponding

models was performed considering that the aim was to take advantage of the use of transfer

learning on the encoder part. Therefore, only the part of the architecture directly in charge

of generating the words of the final captioning was subjected to training. In addition, the

TF technique (mentioned in the related works section) was applied so that training can

be accelerated by allowing the recurrent network to access the ground-truths during the

inference process.

4.4.1 Hyperparameter Tuning

As a first experiment, we maintain all the default hyperparameters of the model to study

the impact of the different cost functions. Since the cross-entropy cost function was used

to train the benchmark model, we contrasted the performance of the architecture using

the negative log-likelihood (NLL), mean squared error (MSE), and the Kullback-Leibler

Divergence (KLDIVLOSS) cost functions.

Once the first experimental phase is completed, the aim is to keep the cost function as an

independent variable to sweep different optimizers. Once again, in addition to the optimizer
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Algorithm 1 Parameter optimization and training
Input: Set of images X, set of ground-truths Y , set of caption sizes S, initial learning rate γ,

batch size β.
Output: Predicted caption C, Set of individual attention masks α.

Initialization:
1: Initialize γ to 4e-4 and β to 32. ▷ Value of γ will depend on the training type.
2: Initial memory and hidden LSTM states are initialized by using separate MLPs given an

image:
c0 = finit,c0( 1

L

∑L
i=1 ai)

h0 = finit,h0( 1
L

∑L
i=1 ai)

Data acquisition and pre-processing. (In Sect. II-A.)
3: Get MSCOCO dataset ▷ From online server.
4: for each image do
5: Resize and Normalize.
6: end for
7: Sample a minibatch of m′

tr examples from the training
set B =

{[
X(1) : Y (1)

]
, . . . ,

[
X(m′

tr) : Y (m′
tr)
]}

Cross-Entropy cost function definition (Sect. V-A.)
8: J(θ) = − 1

m′
tr

∑m′
tr

i=1 L(X(i), Y (i), θ)
Parameter optimization for convol. enc.-dec. (V-B.)

9: while stopping criterion not met do
10: Compute gradient estimate:

g ← 1
m′

tr
∇θ

∑m′
tr

i=1 L
(
X(i), Y (i), θ

)
11: Update parameters: θ ← θ + g
12: end while

Caption generation of unseen image.
13: Get input image.
14: Generate the caption for the input image using optimized θ parameters.
15: Extract caption matrix C and the set of masks α from line 14.

Information Technology Engineer / Mathematician31 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.3: Overall representation of the ViT adaptation proposal for solving images cap-
tioning tasks. The MLP of the original implementation is replaced by the decoder used in
previous experimental scenes.

used in the benchmark implementation (Adam), we examined the effect of AdamW, root

mean square propogation optimizer (RMSprop), stochastic gradient descent (SGD), and

Adadelta optimizers.

4.4.2 Encoder Analysis

In this scenario, once the optimal configuration of hyperparameters has been found, both

the cost function and the network optimizer are set as fixed variables, allowing us to proceed

with the second part of the experiment. Within this final stage, it is proposed to evaluate

the performance of the architecture, both in terms of response quality and computational

requirements, using different convolutional structures to replace the Oxford VGG model

used in the encoder of the default implementation. The alternatives to be evaluated in this

work correspond to the ResNet-101, ResNet-152, ResNeXt-101, and MobileNetV3 models.

4.4.3 Transformer-based Approaches

For this last experimental environment, the objective is to study the alternative of re-

placing the convolutional encoder of the original architecture by a model that dispenses

with the traditional convolutional principles forged within the computer vision area, more

specifically, focusing on incorporating transformer-based models in this specific part of the

Information Technology Engineer / Mathematician32 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

image captioning system. Despite its origin related to natural language processing, the

ViT model demonstrated its viability for image classification tasks. Given the potential of

this network to surpass our state-of-the-art, it was proposed as an experiment to verify the

performance of such a model to carry out image captioning tasks. Consequently, it was

decided to use both the original version of ViT and its version with distillation (DeiT).

It should be noted that since the present work does not require image classification

tasks, both architectures were stripped of the last MLP layer since the attentional model

will reuse the output of the transformer model. The schematization of the final model for

image captioning is shown in Fig. 4.3.

Finally, it is worth mentioning that both the ViT and DeiT models correspond to

models retrieved from the Huggingface repository, being pre-trained in the ImageNet-21k

and ImageNet-1k datasets respectively.

The first method to be studied consists of defining γ = 4e−4 to train only the learnable

parameters belonging to the decoder system architecture. This method is taken into con-

sideration since the aim is to take advantage of the knowledge contained in the pre-trained

models. By contrast, the second proposed methodology corresponds entirety with the pre-

viously described approach, with the difference that γ = 1e− 4 is defined. Lastly, and as a

final modality, we seek to rescue the model obtained with the second training experiment

so that, in the last four iterations of the process, not only the decoder parameters are

subjected to training, but also those that make up the last transformer block of both the

ViT and DeiT models.

The final objective of this experiment was to use the BLEU-4 metric on both versions

of the image captioning model to contrast the margin of improvement achieved concerning

the state-of-the-art.
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Chapter 5

Results and Discussion

From Table 5.1, it is possible to highlight an evident improvement in the performance of the

model when using the cross-entropy as a loss function. Although the MSE loss is positioned

as the second-best alternative throughout the experimental process, a difference of 31.584

in the Top-5 accuracy indicator and 0.187 in BLEU-4 metric shows a large gap between

the cross-entropy function and this alternative. Considering this significant difference, the

results obtained by the KLDIVLOSS and the NLL position them as unsuitable alternatives

for the model to be trained on.

In addition to the quantitative results, Fig. 5.1 illustrates a captioning example gen-

erated using each one of the loss functions under study. The outcomes prove that the

cross-entropy loss function is positioned not only as the one with the best results, but also

the only loss function capable of generating a complete and meaningful description for an

illustration that has never been seen by our model.

Proceeding with the second part of this scene, the results offered in Table 5.2 reveal a

Top-5 Accuracy† BLEU-4†

Cross-entropy 73.092 20.10
MSE 41.508 1.40
KLDIVLOSS 32.186 1.173e-153
NLL 32.186 1.173e-153

†Trained using a workstation with 8GB of RAM and an NVIDIA
GTX1650 GPU.

Table 5.1: Experimental results using Top-5 accuracy and the BLEU-4 performance metric
for each one of the loss functions under study.
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(a) Image captioning result using cross entropy
loss.

(b) Image captioning result using
MSE loss.

(c) Image captioning result
using NLL loss.

(d) Image captioning result using KL-
DIVLOSS.

Figure 5.1: Image captioning results using an attention model with: (a) cross entropy
loss, (b) MSE loss, (c) NLL loss, and (d) KLDIVLOSS. The results reveal an inadequate
inference of MSE, NLL and KLDIVLOSS functions. By far, cross entropy is the only loss
function that allows a proper training of our attention model.

tighter situation when defining an optimal alternative. In the first instance, the optimizer

Adam is positioned with the best results according to the three defined metrics. However,

its variation, AdamW, not only returns the same BLEU-4 value as Adam, but it represents

only a 0.005 and 0.133 of difference in the loss and Top-5 Accuracy indicators, respectively.

This closeness in terms of results can be visualized using Fig. 5.2. In this illustration,

each optimizer is tested by predicting the captioning for an image consisting of a child in

front of a laptop computer. When contrasting both variations of the Adam optimizer, it is

observed that the predictions only differ when mentioning the gender of the person in the

image.

It is worth highlighting the performance of the RMSprop, which ranks as the third-best

alternative, presenting a loss value of 3.663, along with 71.444 and 19.20 for Top-5 accuracy

and BLEU-4, respectively. RMSprop shows promising results when comparing the output

caption with the example image shown in Fig. 5.2. This optimizer is capable of generating

a fully meaningful captioning by portrying to the content of the image. However, it missed

minor details like not including a reference to the elderliness of the person in the illustration.
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(a) Image captioning result using
SGD and Adadelta optimizers.

(b) Image captioning result using RMSprop
optimizer.

(c) Image captioning result using AdamW op-
timizer.

(d) Image captioning result using Adam opti-
mizer.

Figure 5.2: Image captioning results using: (a) SGD and Adadelta optimizers, (b) RM-
Sprop optimizer, (c) AdamW optimizer, and (d) Adam optimizer. The image illustrates the
inadequate inference results of SGD and Adadelta when compared with their alternatives.
Also, note that Adam optimizer yields the finest result over the test image (a recurrent
outcome obtained for further experiments using images from the test set).

Loss† Top-5 Accuracy† BLEU-4†

Adam 3.413 73.092 20.10
AdamW 3.418 72.989 20.10
RMSprop 3.663 71.444 19.20
SGD 7.011 33.606 1.273e-153
Adadelta 7.133 33.045 1.272e-153

†Trained using a workstation with 8GB of RAM and an NVIDIA
GTX1650 GPU.

Table 5.2: Experimental results using the training loss, the Top-5 Accuracy, and the
BLEU-4 performance metrics for each one of the optimizers under study.
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BLEU-4 Top-5 Accuracy Loss Total Parameters Training Time
(Hours)

Inference Time
(Seconds)

Computational
Performance (GMAC’s)

ResNet-101 20.10 73.092 3.413 42,500,160 5.6046 0.10765 7.85
ResNet-152 20.20 73.077 3.412 58,143,808 6.4077 0.14021 11.58
VGG-16 20.00 73.069 3.413 14,714,688 4.8353 0.08430 15.38
ResNeXt-101 19.80 73.128 3.404 86,742,336 7.8939 0.11023 16.5
MobileNet V3 19.50 72.928 3.424 2,971,952 3.5379 0.07975 0.23

Table 5.3: Once the experimental phase has been completed with each proposed archi-
tecture for the system encoder, the quantitative results are shown. The chosen metrics
denote both the quality of the response generated and the computational performance of
each architecture.

Finally, the SGD and Adadelta optimizers provided the worst results. Although both

optimizers presented slightly different metrics, it is observed that neither of them were able

to create a model capable of generating meaningful captions.

Now, referring to the results of the encoder testing phase shown in Table 5.3, two

isolated analyses were conducted. At first, when looking for the convolutional model that

allows the best captioning quality, the superiority of the ResNeXt-101 model is evidenced.

This model stands out with a Top-5 Accuracy of 73.128 and a loss value of 3.404, surpassing

the original encoder based on the VGG-16 architecture and the rest of the convolutional

alternatives. In contrast, the situation changes when looking for the architecture with

lower computational requirements, trying to minimize the sacrifice of the output quality

as much as possible. Therefore, MobileNetV3 demonstrates its inherent qualities as an

architecture oriented to embedded environments, requiring 2,971,952 parameters, 3.5379

hours of training time, and 0.07975 seconds of average inference time. Such indicators

become much more meaningful when referring to the BLEU-4, Top-5 Accuracy, and loss

metrics, returning 19.50, 72.928, and 3.424, respectively.

The evident closeness between the results, in terms of response quality, can be seen

in the example of captioning included in Fig. 5.3. The ability of each of the models

to generate descriptions according to the scenario depicted in the input image, including

different details regarding colors, positions, and environmental conditions, can be perceived.

Likewise, this example provides a visualization of possible minor failures when generating

the corresponding caption. In the aforementioned image, the encoder based on the VGG-16

architecture returns a description with redundancy, which can be justified by the training

period established for the present experimentation.
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(a) Image captioning result using ResNet-152
as encoder.

(b) Image captioning result using ResNet-101
as encoder.

(c) Image captioning result using VGG-16 as
encoder.

(d) Image captioning result using ResNext-101
as encoder.

(e) Image captioning result using MobileNet
V.3 as encoder.

Figure 5.3: Image captioning results using as encoder: (a) ResNet-152, (b) ResNet-101,
(c) VGG-16, (d) ResNext-101, and (e) MobileNet V.3. All the convolutional architectures
allowed the generation of sentences with complete meaning matching considerably to the
scenario presented in the input image. Reduced redundancy errors are appreciated when
using VGG16.
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(a) Image captioning result using ResNet-152
as encoder.

(b) Image captioning result using ResNet-101
as encoder.

(c) Image captioning result using VGG-16 as
encoder.

(d) Image captioning result using ResNext-101
as encoder.

(e) Image captioning result using MobileNet
V.3 as encoder.

Figure 5.4: Image captioning results using as encoder: (a) ResNet-152, (b) ResNet-101,
(c) VGG-16, (d) ResNext-101, and (e) MobileNet V.3. It can be seen that the first four
architectures generated results that were significantly close to the content of the input
image. On the contrary, when using MobiliNet V. 3, the generated result consists of a
description completely unrelated to the target scenario, even though the sentence was
grammatically correct and made complete sense.
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Figure 5.5: Evolution of the loss obtained during each of the corresponding iterations.
These results were recovered using TF during the inference process on the validation set.

Relying on a second example, Fig. 5.4 once again demonstrates the ability to gener-

ate a fully meaningful sentence by all architectures; however, not all of them manage to

match the context of the image despite occasional errors in specific words. Under this

scenario, the MobileNetV3 network generates an output that is entirely far from a possi-

ble ground-truth for the given image. Although this specific example is not a compelling

reason to contradict the quantitative results previously shown, this example is intended to

demonstrate a scenario where the robustness of a model for mobile environments becomes

evident.

As for the results concerning the transformer-based architectures, Fig. 5.5 evidences

the loss curves generated from the inference process on the validation group. Although

both the ViT and DeiT based models show the lowest losses using the training method

with the highest gamma value, it should be taken into account that from the fifth iteration

onwards, these models seem to suffer from possible overfitting. On the other hand, the

loss curves behave more regularly throughout the iterations analyzed, showing little or no

overfitting when using the alternative training methods. Therefore, beyond taking these

values as indicators of the performance of the models, the aim is to show the evident

convergence that exists throughout each training lapse.

Having contemplated the convergence of the models, it is worthwhile to perform a
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Figure 5.6: Evolution of the BLEU-4 metric obtained during each of the corresponding
iterations. These results were recovered using TF during the inference process on the
validation set.

similar visualization now using a metric related to the nature of natural language. Thus,

Fig. 5.6 shows the evolution of the BLEU-4 with the passing of the iterations. Furthermore,

within this graph, the results during the inference process on the validation set are shown.

Therefore, when analyzing the impact of using a higher gamma value, both ViT and DeiT-

based models present a relatively early learning plateau when reaching the fifth iteration.

Conversely, the other two training methods present a significant improvement of BLEU-

4. remaining in optimization even when reaching the last iterations. Both procedures

allow a progressive improvement of the metric even during the last iterations; however, the

methodology that contemplates the re-training of the transformer component stands out

slightly.

However, considering that the inferences generated for the realization of this graph

involved the use of TF, such values might not fully represent the capabilities of the models,

since when seeking to caption an image devoid of a ground-truth, TF could not be applied.

For this reason, it was decided to construct the results included in Fig. 5.7.

By employing much more realistic conditions for the inference process, it can be seen

that the models trained with a lower γ outperformed the performance metrics of those with

a slightly higher γ in a very few number of iterations. Moreover, when using these results,
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Figure 5.7: Evolution of the BLEU-4 metric obtained during each of the corresponding
iterations. These results were retrieved without using TF during the inference process on
the validation set.

Encoder model (Inference modality) Training 1 Training 2 Training 3
ViT (No TF) 32,07 32,98 33,24
ViT (TF) 23,07 23,09 23,24
DeiT (No TF) 33,53 34,19 34,44
DeiT (TF) 24,02 23,61 23,84

Table 5.4: BLEU-4 metric obtained by the best checkpoint generated from each training
process applied to the ViT and DeiT based models using a beam size of 3 units.

a clear metrics boost is perceived, in contrast to when TF was used during inference. Thus,

to contrast the best checkpoints obtained in each stage of this experimental scene, Table

5.4 allows to have a superior contrast of the maximum performance obtained when using

ViT and DeiT through the application of each of the three training.

As a result, it can be verified that the use of TF during the inference process camou-

flaged the real performance of both models. Simulation results show that the DeiT-based

model can be selected as the alternative with enhanced outcomes, specifically reaching a

BLEU-4 of 34.44 through the training process involving the calculation of gradients for

the last transformer block. Additionally, when reviewing the partial results of each train-

ing method, it is observed that regardless of the method applied, the DeiT-based model

achieves the best BLEU-4 metrics.
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Figure 5.8: Examples of inference using images from the validation group. Models based
on ViT and DeiT with best BLEU-4 metrics are used to contrast with the ground-truth
provided by the dataset.

As a complement to the quantitative results shown above, Fig. 5.8 provides a brief

sample of the accuracy that ViT- and DeiT-based models can provide when generating

inference. The images used for this section were extracted from the validation set to use

the ground truth linked to each image as a referential description.

Within this brief comparative scheme, we observe the ability of the models not only to

describe relationships between objects or people, but also qualities related to the capture of

physical aspects and generalization of similar entities. On the one hand, when working on

the first image of Fig. 5.8, the DeiT model can not only denote the interaction of the dog

with the frisbee, but it can also contribute with additional information about the colors of

both entities. Also, when the image is presented with food, both models can recognize that

the main content of the dish is pasta, however, the DeiT model can identify the presence

of multiple vegetables within the dish, therefore, this architecture generalizes these foods

into a single category.
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Chapter 6

Conclusions

1. During the first experimental stage, it was possible to determine that the cross-

entropy was the loss function that achieved the best results, returning a Top-5 accu-

racy and BLEU-4 metrics of 73.092 and 0.201, respectively. On the contrary, once

the loss function is set as an independent variable, the Adam optimizer returned

the best indicators, completing the first training period with a loss value of 3.414, a

Top-5 Accuracy of 73.092, and a BLEU-4 of 0.201. However, the results obtained are

tight close to the outcomes obtained with the AdamW optimizer, sharing the same

BLEU-4 value.

2. Furthermore, the comparative study focused on the convolutional model and its use as

an encoder to yield two attractive alternatives depending on the final objective. First,

using the ResNeXt-101 architecture generated the best results in terms of response

quality. This architecture returned values of 73.128 in Top-5 Accuracy, and 3.404 for

the loss value, denoting an improvement with respect to the results obtained using

VGG-16. Then, when analyzing the models under lower computational demands,

the encoder based on MobileNetV3 registered 2,971,952 parameters, a training time

of 3.5379 hours, an inference time of 0.07975 seconds, and 0.23 GMACs. Thus,

MobileNetV3 emerges as the most compact alternative without neglecting the quality

of the generated captioning, which is evidenced by its great closeness in the BLEU-4,

Top-5 Accuracy, and loss value metrics.

3. Regarding the study involving the use of transformer-based architectures as a replace-
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ment for convolutional models, both the ViT and DeiT models demonstrate their

viability by verifying their convergence through the evolution of the loss through-

out the iterations. In addition, the DeiT-LSTM model stands out as the alternative

with the best BLEU-4 metric when trained in two phases: the first one in attempt

to optimize only the decoder parameters, and the second phase incorporating the

parameters of the last transformer block to be optimized using a value of γ = 1e− 4.

As a result, the model achieved a BLEU-4 of 34.44, surpassing the state-of-the-art

from the paper Show, Attend and Tell, whose best results consisted in a BLEU-4 of

24.3 in its soft-attention based model, and 25.0 for its hard-attention alternative.

6.1 Future Works

Although we have proved that the three optimizers and two encoder options offer feasible

results for this architecture, future works can benefit from the individual training epoch to

further study the convergence pace of the model under limited edge-computational devices.

In addition, future researchers can study the viability of not only using different encoder

architectures than the presented ones, but also analyze the impact of other alternatives

to LSTM models for the decoding step, together with an extended investigation on the

architectural frameworks. Another element concerning the training stage of our model is

the decision to use the MSCOCO 2014 dataset. The selection was made based on: i) the

need of a large image set, and ii) the need to replicate the results of the benchmark paper.

However, both the convolutional and transformer-based variants have potential for further

research, where the reader can study the performance and behavior of our model when

trained with other datasets such as Flickr8k or Flickr30k. Finally, another alternative to

foster this work would be to include further hyperparameters to the study (e.g., dropout

rate, batch size, different types of stride and pooling, size of the kernels, weight initialization

methods, model depth, weight decay, etc.), enabling an in-depth research of the attention

architecture.
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