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Resumen

Las computadoras cuánticas son de gran interés para entender los sistemas cuánticos debido a
sus ventajas para abordar problemas que las computadoras clásicas no podrían debido a sus
diferencias computacionales. Así, una de las líneas de investigación más prometedoras dentro de este
campo es la simulación cuántica. En este trabajo de tesis desarrollamos e implementamos un
Simulador Cuántico Universal (UQS) en la plataforma Qiskit capaz de implementar el circuito
cuántico de cualquier sistema físico, el cual se representa como una suma de potenciales de
contribución local. Para probar la viabilidad del UQS, hemos implementado dos sistemas físicos bien
estudiados: el Oscilador Armónico Cuántico y el Potencial de Doble Pozo; se comparó la
implementación de los circuitos finales, la evolución de sus estados y la profundidad de sus circuitos
con trabajos de investigación anteriores. Todos estos sistemas fueron ejecutados en el simulador
statevector, simulador sin ruido, y luego ejecutados por computadoras cuánticas reales: ibmq_quito e
ibmq_lima, proporcionadas por IBM-Q. Las posiciones de estado experimentales obtenidas de chips
cuánticos reales se compararon con el simulador silencioso para verificar la fidelidad de los estados
utilizando su definición clásica. Como resultado obtuvimos que debido a la aproximación de las
funciones de Walsh, el proceso de trotterización y el tiempo de coherencia experimental de cada
puerta, existe una cantidad considerable de ruido que no permite notar la evolución del sistema como
en el simulador sin ruido.

Palabras Clave: Computación cuántica, simulación cuántica, fidelidad, funciones de Walsh,
Simulador Cuántico Universal.



Abstract

Quantum Computers are of great interest for understanding quantum systems due to their
advantages in tackling problems that classical computers could not because of their computational
differences. Thus, one of the most promising research lines within this field is quantum simulation. In
this thesis work, we develop and implement a Universal Quantum Simulator (UQS) in the Qiskit
platform capable of implementing the quantum circuit of any physical system, which is represented as
a sum of local contribution potentials. To test the feasibility of the UQS, we have implemented two
well-studied physical systems: Quantum Harmonic Oscillator and the Double Well Potential; and
compared their final circuit implementation, state evolution, and circuit depth with previous research
work. All these systems were executed by the state vector simulator, noiseless simulator, and then run
by real quantum computers: ibmq-quito and ibmq-lima, provided by IBM-Q. The experimental state
positions obtained from real quantum chips were compared with the noiseless simulator to verify the
states' fidelities using the classical definition. As a result, we obtained that due to the Walsh
Functions approximation, Trotterization process, and experimental coherence time of each gate, there
exists a considerable amount of noise that does not allow us to notice the system evolution as in the
noiseless simulator.

Keywords: quantum computing, quantum simulation, fidelity, Walsh Functions, Universal
Quantum Simulator.
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Chapter 1

Introduction

In the last few years, it has been advertised that quantum computers will revolutionize our world. This statement has
become familiar and quite abstract, at the same time. Mainly due to the ongoing hype of quantum computers and,
unfortunately, the lack of knowledge that most people have about this field, respectively. Indeed, in the Ecuadorian
academia, the quantum computing has started to be used as a research line a couple of years ago. Whereas, there
has been considerable interest in countries like the United States of America, United Kingdom, and others since a
couple of decades ago. However, how valid is the predicted quantum computing revolution? And why must Ecuador
be interested in this kind of technology?

Before answering these questions, let us define roughly a quantum computer. According to Perez-Delgado
and Kok in Ref. 2, a quantum computer is a device that can run a quantum algorithm efficiently, where a quantum
algorithm is a classical bit string that encodes a series of quantum operations (typically quantum gates). The quantum
computer should be able to take this string as an input and produce another bit string as an output. The probability
distribution of the result should be consistent with the predictions of quantum theory. Finally, the time it takes the
computer to produce the result should agree with the algorithm’s difficulty. Let us consider Shor’s factoring as in
Ref. 3. It is a quantum algorithm used to find prime numbers of an integer. The number of steps in the algorithm
scales polynomially with the input size, but the actual classical implementation will rise exponentially. And as the
other example we can think the boson sampling , see Ref. 4. These are some examples among others where classical
computers enter to difficulties.

Even though that we can not say that quantum computers have already overcome classical computers, there
exist certain areas that play a crucial technological role in the near and extended future that is expected to be
revolutionized by quantum computing. Above mentioned Shor’s algorithm is one of the most promising results of
quantum computing applications, because it enables us to crack the Rivest-Shamir-Adleman (RSA) encryption in
a resonable short time, see Ref. 5. This kind of encryption is used for banking, internet, block-chain, and other
industries. Additionally, It has led to the development of new encryption techniques based on quantum mechanics
as shown in Refs. 6–8, as well as in other fields, like in finances Refs. 9–11 and optimization problems Refs. 12–14.

As a result, It is mandatory that Ecuador being involved in the so-called quantum-computing race from the
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2 1.1. PROBLEM STATEMENT

different transversal fields: experimental, theoretical, or computational; presented in the Ref. 2. Being involved in
fundamental and applied research will allow us to be knowledge generators in an area of high demand, and high
funding. Furthermore, it could support the development of our industry. Especially the ones related to retail and
agriculture, as their optimization features could benefit from finding new ways to increase their productivity with
fewer resources. Thus, quantum computing is a unique opportunity for Ecuador.

1.1 Problem Statement
Although the research scope in quantum computing is entirely extending, we will focus on simulating quantum
physical systems. Actually, within this area, one of the challenges, and the problem that is meant to be tackled in this
thesis, is the implementation of arbitrary Hamiltonian evolution via quantum circuits.

We believe that it is essential not only because it allows us to understand the physical systems in research
better and compare them with their classical analogs but also to simulate physical systems that are hard, or almost
impossible, to do in classical computers because of the computational resources.

Our motivation was to develop and implement a universal quantum simulator implementing a physical system
by using the Qiskit platform and testing some simple physical systems. The demonstrations will be run by the real
quantum computers of IBMQ and their simulation environments like in Ref. statevector− simulator 15. In addition,
we compare the evolved states with previously reported research works.

1.2 General and Specific Objectives
The general objective of this thesis project is to design and implement a Universal Quantum Simulator (UQS) in the
Qiskit platform that could be used on simulating physical quantum systems in IBM quantum computers. Therefore,
this thesis has five chapters, and the structure of each one is the following:

• In the second chapter, Theoretical Background, we make a historical overview of quantum computing and
related fields; then, we review key concepts of quantum computing: the qubit, quantum gates, foundation of
quantum simulation, how to make a universal quantum simulator using Walsh operators, and we finish with
some technical characteristics of IBM quantum computers used in this thesis.

• In the third chapter, Methodology. We start by explaining the general algorithm structure used in the sim-
ulator and explain the circuit implementation of each module (Kinetic, Potential operator, Quantum Fourier
Transform, and its inverse) in the qiskit platform.

• In the fourth chapter, Results, and Discussion, we show the simple physical systems simulated with the UQS:
Quantum Harmonic Oscillator (QHO) and the Double Well Potential (DWP), using the state vector simulator
the ibmq-quito and ibmq-lima quantum computers. Additionally, we measure the fidelity with their classical
definition and set some calibration parameters of the number of qubits to get a reduced error in the simulation.
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• In the fifth chapter, Conclusions and Outlook, we show the operational performance of the UQS using the
QHO and DWP physical systems. Finally, we provide a future outlook for this research work predominantly
focused on increasing the fidelity of executing our simulation in real quantum processors.





Chapter 2

Theoretical Background

2.1 Historical Review
Quantum mechanics is one of the most intriguing physical theories ever developed because of the different inter-
pretations that it may have at the same time. For instance, Bohr believed that particles have probability amplitudes
if not observed. Nonetheless, it caused much discussion in the scientific society of those times, mainly because:
First was wave-particle duality. Light can act like particles, and particles such as electrons interfere like light waves.
According to Bohr, a system behaves as a wave or a particle depending on the context. Second, Heisenberg showed
that the uncertainty, for instance, about a particle’s position and momentum, is hard-wired into physics. Third, Bohr
argued that we could have only probabilistic knowledge of a system: in the Schrödinger’s thought experiment, a cat
in a box is both dead and alive until is seen. Fourth, particles can become entangled. For example, two spin particles
might be in a superposition of their compound states. No matter how far apart they are: if you measure one, you
instantly know the state of another one, as in Ref. 16 explains.

All of these features gave birth to different interpretations. The Copenhagen interpretation supported by Bohr
stated that quantum mechanics is intrinsically indeterministic and the probabilities are only one thing we are able
to acquire from an experiment about the system of interest. Indeed, quantum mechanics is a highly effective tool
for predicting measurement results that takes the configuration of the measuring apparatus as input and produces
probabilities for the possible measurement outcomes.

Additionally, we have the Many-worlds interpretation stated by Hugh Everett, who proposed a radically new way
of interpreting the quantum state. He proposed to take quantum mechanics as descriptive and universal; the quantum
state is a genuine description of the physical system concerned, and macroscopic systems are just as well described in
this way as microscopic ones. This interpretation immediately solves the “cut” between the micro and macro worlds,
and the explanation of particle interference in terms of waves is retained. This interpretation led us to a measurement
that results in multiple outcomes occurring in various branches of reality. The complexity of these various scenarios
led us to think of extra variables describing the actual state of the world, the hidden variable interpretation proposed
by Einstein. Nonetheless, the Bell theorem has offered a tool to test that no hidden-variable completion of quantum

5



6 2.2. QUANTUM COMPUTATION

mechanics is not necessary, as in Ref. 17.
In 1969, It was demonstrated, in principle, that quantum systems could be isolated as in Ref. 18 with the invention

of the first 3-dimensional optical trap for single neutral particles as in Ref. 18. It helped scientists to explore Nature
in a new regime. After three decades and a series of experimental and theoretical discoveries, in 1998, Isaac Chuang
from Los Alamos National Laboratory, Neil Gershenfeld from the Massachusetts Institute of Technology (MIT), and
Mark Kubinec from the University of California at Berkeley created the first two qubits quantum computer that could
be loaded with data and its output represented a solution. Thus, using the definition of Ref. 2, a quantum computer
can be defined mathematically correctly. Let s(n) in be a string of classical symbols, and let the program P of size r
be a symbolic representation of an algorithm.

Definition 1. An ideal quantum computer is a hypothetical device that accepts as input a classical bit string s(n)in,
and a quantum program P with size r, acting on a Hilbert space Hn of dimension 2n. For any given program P, the
quantum the computer produces the classical output bit string s(m)out with probability as in Ref. 2

PP

(
s(m)

out |s
(m)
in

)
= PP

〈
s(n)

in

∣∣∣ U†PIn−m ⊗
(∣∣∣s(m)

out

〉 〈
s(m)

out

∣∣∣) UP

∣∣∣s(n)
in

〉
where |s(n)

in 〉 encodes the input string andUp is related to the quantum program. The total amount of resources used
by the device scales polynomially in r. The main differentiation property of quantum computing is the superposition
state allowance which gives birth to the concept of qubit.

2.2 Quantum Computation

2.2.1 The qubit

In classical computation, the basic unit for information is the bit. Quantum computation and quantum information
are built upon an analogous concept, the qubit. It is defined as a mathematical object where information can be kept
as in Ref. 3 with certain specific properties. Considering them as abstract objects allows the possibility of building a
theory of quantum computation and quantum information that does not depend upon a specific experimental method
to obtain these qubits. It has a state on either |0〉, |1〉, or in a combination of the previous states, often called
superposition:

|ψ〉 = α |0〉 + β |1〉 (2.1)

We use Dirac notation for representing each state: | 〉. Where α and β ∈ C. We can represent their states in a
two-dimensional complex vector space:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
|ψ〉 =

(
α

β

)
The states |0〉 or |1〉 become the computational basis states, an orthonormal basis, a set of vectors is orthonormal

if it is an orthogonal set having the property that every vector has a magnitude of 1, in this vector space. Measuring
α or β values separately we measure a qubit state we get either the result 0, with probability |α|2, or the result in 1,
with probability |β|2 where |α|2 + |β|2 = 1. It can be noticed that the state is normalized.
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Experimentally, there are different approaches to get a qubit like: nuclear magnetic resonance (NMR) as in Refs.
19, 20, atoms in optical lattices as in Refs. 21, 22, atoms in coupled cavity arrays as in Refs 23, 24, spin lattices
as in Refs. 25, 26, quantum dots as in Refs. 27, 28, and photonic systems as in Refs. 29, 30. The concept behind
these experimental generation quantum information processors is that they must provide a stable ground state (see
Fig. 2.1.a), an excited state (see Fig. 2.1.b), and a superposition of the previous states (see Fig. 2.1.c).

(b) (c)

Ground State

Excited State

(a)

Figure 2.1: Graphical representation of a particle’s energy states. (a) shows a particle in its ground state which can
be associated with the |0〉 qubit state. (b) shows a particle in its excited state which can be associated with the |1〉
qubit state. (c) shows a particle in its superposition state which can be associated with the α |0〉 + β |1〉 qubit state.

Mathematically, a qubit (2.1) may be reformulated by using the Euler Formula as:

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 (2.2)

Where θ and ϕ ∈ R. As it is shown in Ref. 3. We can visually represent the state of the qubit by using the Bloch
sphere, as shown in Figure 2.2. In theory, the amount of information that can be kept in a single qubit is infinite
since there are many points within it. There is no straightforward generalization of the Bloch Sphere known so far
for multiple qubits.

2.2.2 System of Multiple Qubits

The mathematical space where qubits reside is the Hilbert Space - it is a linear vector space, finite or infinite, where
its vectors have a complete inner product. A system of n qubits will have a corresponding Hilbert space of dimension
N = 2n. Thus, the computational basis states of the system have the form:

|x1x2...xn〉 = |x1〉 ⊗ |x2〉 ... ⊗ |xn〉 ,

Where ⊗ denotes a tensor product, any linear combination of this basis is a valid state. A multiple qubit system may
behave in two ways. First, the qubits measurements are independent of each other, then the state of the extensive
system can be written as a tensor product and is called a separable state. On the other hand, qubits’ measurements
can be correlated among them, in a non-local, non-classical way, and then we say that these are entangled qubits.
Clear examples of this case are the Bell state as in Ref. 31, which shows the simplest and maximal of quantum
entanglement between two qubits.
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x

y

z

θ

ᵠ

ψ

1

0

Figure 2.2: Bloch sphere representation of a qubit, where θ is the polar angle and φ is the azimuthal angle. Adapted
from Ref. 3.

Theoretically, we can have a n − qubit system with no limitation; experimentally, it becomes a headache. For
instance, let n = 500 qubits, the amount of storage required to save this amount of information is larger than the
number of atoms in nature ≈ 1082, according to Ref. 32. Currently, the maximum number of ready-to-work qubits
is 100, developed by IBM as Ref. 33 shows.

2.2.3 Quantum Gates

As in classical computation, quantum gates are elementary operations that alter the state of a qubit. In the compu-
tational basis, these operators are represented by matrices which are unitary, U is a unitary matrix if UH = U−1,
where UH is the conjugated transpose matrix, UH = UT and U−1 is the inverse matrix and Û†Û = Î. There are two
types of quantum gates that act in a single qubit and multiple qubit gates.

Single quantum gates

One example of a single-qubit gate is the quantum NOT gate. It takes |0〉 to |1〉 state and vice versa. Matricially, it is
expressed as:

X =

0 1
1 0


Other single-qubit-gates are the Y and Z gates which together with X matrix are known as the Pauli matrices.
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Their matrix representations are given by:

Y =

0 −i
i 0

 ; Z =

1 0
0 −1

 (2.3)

Furthermore, another essential and valuable quantum gate is the Hadamard gate. It turns |0〉 into 1
√

2
(|0〉 + |1〉), and

turns |1〉 into 1
√

2
(|0〉 − |1〉):

H =
1
√

2

1 1
1 −1

 (2.4)

Although there exist numerous single-qubit gates, all may be decomposed into the general form as Ref. 3 shows:

U = eiα

e−iβ/2 0
0 eiβ/2

 cos γ
2 − sin γ

2

sin γ
2 cos γ

2

 , e−iδ/2 0
0 eiβ/2

 , (2.5)

where α, β, and δ are real-valued. The second matrix is just an ordinary rotation. The first and the last matrices
are rotations in a different plane. This decomposition can be used to give an exact prescription for performing an
arbitrary single quantum logic gate.

Multiple qubit gates

The multi-qubit quantum gates act on more than one qubit at once. For instance, the quantum CNOT gate has two
qubits fixed like the control qubit and the target qubit, respectively. It reverses the state of the target qubit if and only
if the control qubit is in |1〉 state as shown in the table 2.1. Its matrix representation is represented in the equation
2.6.

Before After
Control Target Control Target
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Table 2.1: Two-qubit gate Controlled NOT.

Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.6)
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2.2.4 Measurement

It is represented by a "meter" symbol. It converts a single qubit state |ψ〉 = α |0〉 + β |1〉 into a probabilistic classical
bit M, which is 0 with probability |α|2, or 1 with probability |β|2.

ψ M

Figure 2.3: Quantum circuit symbol for measurement adapted from Ref. 3.

Fidelity of states

In this thesis, to compare the output probabilities from the different quantum processors, we will use the classical
fidelity definition.

Definition 2. Let p = {pi} and q = {qi}, where i = 1, ..., n, be the probability distributions. The fidelity between p
and q is defined as:

F′(piqi) =

n∑
i=1

√
piqi (2.7)

The fidelity is bounded as 0 ≤ F′ ≤ 1 and it reaches the value 1 only if p = q. Alternatively, it can be expressed in
percentage, such 0 ≤ F′ ≤ 100. Additionally, to analyze the measurements we will use the criteria of absolute and
relative error.

Definition 3. Let xr be the real value, and xi the measured value. Thus the absolute error ε is given by

ε = |xi − xr | (2.8)

and the relative error, εr is given by
εr =

ε

xr
(2.9)

2.3 Quantum Simulation
As Deutsch-Jozsa suggested in Ref. 34, quantum computers might be capable of solving some computational
problems much more efficiently than classical computers. Generally speaking, three classes of quantum algorithms
help to perform better than the known classical counterparts. Although this simulation process can be executed in
classical computers, they are not efficient. classical algorithms: Quantum Fourier Transforms Ref. 35, Quantum
Search Algorithms Ref. 36, and Quantum Simulation Ref. 3.

Using quantum computers to simulate nature through a set of mathematical identities and its complexity is
an obvious candidate. The main problem is that the number of complex numbers needed grows exponentially.
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Generally, storing the quantum state of a system with n distinct components takes something like cn bits of memory
on a classical computer as Ref. 37 indicates, where c is a constant which depends on the details of the system and
the desired accuracy. Conversely, a quantum computer can perform the simulations using kn qubits, where k is a
constant that depends upon the simulated system’s details. This makes it feasible to simulate quantum systems using
quantum computers. However, it does not mean that having a fast simulation will allow the desired information
about the quantum system to be obtained. When measured, a kn qubit simulation will collapse into a definite state
as Ref. 38 explains, giving only kn bits of information; the cn bits of "hidden information" in the wavefunction are
not entirely accessible.

The heart of simulations is the solution of differential equations that capture the physical laws governing the
system’s dynamical behavior. The objective is that given an initial state of the system, we must predict what will be
the state at some other time and position. Therefore, it is necessary to approximate the solution and then discretize
the differential equation in space and time. An iterative application of a procedure carries the initial state to the final
conditions. As you may be guessing, the error through this process can grow fast; this is why it is bounded into a δ
maximum.

Let us start by exploring the physics behind the simulation of these quantum systems. Schrodinger’s equation
describes the behavior of most dynamical quantum system, except relativistic dynamical systems:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (2.10)

A typical Hamiltonian of interest to physicists, if we were just dealing with a real single particle in a potential
and stationary solutions, makes 2.10 be reduced to:

i~
∂

∂t
ψ(x) =

[
−
~2

2m
∂2

∂x2 + V(x)
]
ψ(x) (2.11)

Importantly, the interactions of multiple particles can be modeled in a similar way, using the split-step method as
in Ref. 39. However, for the sake of clarity, we focus herein on Hamiltonians of the form given by Eq.(2.11). The
critical challenge to simulating these quantum systems is the exponential differential equations that must be solved.
For instance, two differential equations must be solved for one qubit evolving according to (2.11). For two qubits, it
grows to 4, and for n qubits, 2n equations. Thus, simulating these systems with quantum computers may allow us to
explore interest quantum systems for which classical computers would not.

In a quantum simulator, the evolution of the physical model ismapped, following the rule of quantum mechanics,
onto the practical algebra of quantum registers made of qubits. The quantum time propagator, namely a unitary
operator, can be programmed in digital steps using a sequence of quantum logic states (unitary transformations on
the qubits) defining a quantum circuit as Ref. 3 states.

The Schrodinger equation (2.10) can be fully solved in principle by computing the unitary time-evolution operator
Û(t) = e−iĤt. Once it is known, any initial condition can be evolved linearly as:

|ψ(t)〉 = Û(t) |ψ(0)〉 (2.12)
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In the following paragraphs, wewill review some recipes both formapping the target system and for the translation
of evolution operators into quantum register operations.

2.3.1 From Feynman to Lloyd

In 1982, Feynman conjectured that using a controllable quantum mechanical system as a computing resource would
allow simulating quantum systems with better performance than a classical computer. However, it was not until 1996
that Seth Lloyd proved this idea, see Ref. 40, with a single limitation that the systems to be simulated can carry local
interactions between their constituent subsystems. Thus, we will concentrate on system Hamiltonians of the form:

Ĥ =

L∑
k=1

Ĥk (2.13)

where Ĥk are often near terms interactions such as XiX j. Additionally, there are thee symmetry constraints such us
particle statistics. Thus, it is easier to simulate (2.13) than (2.11) because it acts into a subsystems, the next step is
to implement using a quantum circuit. Since [Ĥ j, Ĥk] , 0, in general e−iĤt , Πke−iĤk t. Therefore, a question arises,
how can we use (2.13) to construct (2.11)? We shall take advantage of the Suzuki-Trotter formula stated in Ref. 41,
the heart of quantum simulation algorithms.

Theorem 1. Let Â and B̂ be Hermitian operators. Then

eÂ+B̂ = lim
n→∞

(eÂ/neB̂/n)n

Where its first order expansion represents:

e(Â+B̂)∆t ≈ (eÂ ∆t
n eB̂ ∆t

n )n + O(
∆t
n

2

) (2.14)

where∆t is the time-steps size where if∆t << 1 theO approximation is negligible; n is the total number of time-steps.
Note that Theorem 1 is true regardless the commutative properties of A and B operators, see Ref. 42. Following
the Suzuki-Trotter Formula, let’s focus in the physical simulation where Ĥ = K̂ + V̂ =

p̂2

2m + V(x̂),where p is the
momentum operator and x is the position operator. Thus, the time evolution operator is given by:

Û(∆t) = e−iĤ∆t = e−iK̂∆te−iV̂∆t + O(∆t2) (2.15)

Thus, (2.12) becomes:

|ψ(t)〉 ≈ e−iK̂te−iV̂t |ψ(0)〉 (2.16)

2.3.2 Universality of the Hamiltonian’s Simulation

Using (2.13), we may describe a wide range of different potentials representing different physical systems by only
varying the potential term. Both Hamiltonian components, kinetic and potential operators, are expressed as functions
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of momentum and position operators, respectively. We have that operators represented by diagonal unitaries of the
form ei f (x) can be implemented generically by using a correspondence between Walsh functions stated in Ref. 43
and a basis for diagonal operators following Welch’s method without using an ancilla qubit. Therefore, let us take a
look at the foundations of Walsh Functions.

Walsh Functions

The Paley-ordered Walsh functions are defined on the continuous interval 0 ≤ x < 1, see Ref. 44:

w j(x) = (−1)
∑n

i=1 ji xi (2.17)

where j ∈ Z+. Walsh functions form a complete and orthonormal set. Here ji is the ith bit in the binary expansion,
j =

∑n
i=1 ji2i−1 Thus, j = ( jn, jn−1, ..., j1) and the nth term is the index of the most significant non-zero bit; and xi is

the ith bit in the dyadic expansion, x =
∑∞

i=1
xi
2i where x = (x1, x2, ..., xn) is the dyadic representation of x, the most

significant bit is on the left. In Figure 2.4, we can see the first 4 Walsh functions.

0 0.5 1

1

-1

0

j=0

0 0.5 1

1

-1

0

j=1

0 0.5 1

1

-1

0

j=2

0 0.5 1

1

-1

0

j=3

Figure 2.4: First four Walsh functions, in Paley order. adapted from Ref. 43.

Walsh functions can be used as a basis for orthonormal expansion. If we are treating with a discrete function,
it can be performed by a discrete Walsh-Fourier transform. For arbitrary n, let us discretize the interval [0, 1) into
N = 2n points, xk = k/N, where k = [0,N − 1]. Let’s define discrete Walsh functions as w jk = w j(xk). In terms of
the bits of j, k, and x, we have:

w jk(x) = (−1)
∑n

i=1 ji xi (2.18)

where ki is the ith bit in the dyadic expansion as before. (2.18) shows whether x is continuous or discrete, the only
difference will be the number of bits in the expansion of x. This makes the Walsh series useful for representing
discretely sampled functions. In the discrete case, orthonormality and completeness properties are obtained. Thus,
the discrete Walsh-Fourier transform a j of a function fk = f (xk) is:

a j =
1
N

N−1∑
k=0

fkw jk (2.19)
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fk =

N−1∑
j=0

a jw jk (2.20)

For expansions in trigonometric functions, the relevant group is that of translations. For Walsh functions up to
order 2n, it is the group Z⊗n which is formed by a basis for diagonal operators on n qubits; these operators are called
the Walsh operators, which will be introduced below.

Walsh Operators

The state of an n-qubit register in a quantum computer is expressed as a superposition:

|ψ〉 =

N−1∑
k=0

ck |k〉 (2.21)

of N = 2n states in the computational basis, see Ref. 43, defined as |k〉 = |k1, ..., kn〉. k = 0, 1, ...,N − 1 is represented
as an n-bit dyadic expansion, as in Walsh series. The bits ki = 0 or 1 denote the state of the ith qubit. A unitary
operator U = ei f (x) that its diagonal in this basis is given in terms of its eigenvalues as f |k〉 = fk |k〉.

Functions f (x) of a continuous variable x ∈ [0, L)may be represented following this procedure if they are discrete.
For instance, let L = 1, and the (grid) points as xk = kL/N, so that fk ≡ f (xk). Thus xk ∈ [0, 1). So, let Ẑi denote the
Pauli Ẑ operator acting on the ith qubit:

Ẑi |k1, ..., kn〉 = (−1)ki |k1, ..., kn〉

We define the Walsh operator of order j on n qubits as:

ŵ j = ⊗n
i=1(Ẑi) ji = (Ẑ1) j1 ⊗ (Ẑ2) j2 ⊗ ... ⊗ (Ẑn) jn (2.22)

where j = 1, ..., 2n, and ji is the ith bit in the binary expression. Powers of (Ẑi)1 = (Ẑi) and (Ẑi)0 = 1. The set of all
Walsh operator j = 1, ..., 2n forms a basis for diagonal operator on n qubits, given by all possible tensor products of
single-qubit Pauli Ẑ gates. Their eigenvalues in the computational basis |x〉, x ∈ [0, 1), are Walsh functions index j
and independent variable x:

x̂ j |x〉 : ⊗n
i=1 (Ẑi) ji |k〉 =

n∏
i=1

(−1) jiki |k1, ..., kn〉 = w jk |k〉 = ŵ j(x) |x〉 (2.23)

Thus, the locations of the Ẑ operators in ŵ j correspond to the position of the 1’s in the bit reversed binary string
for j. For instance: The Walsh operator, wi j, where j = 6 on n = 3 qubits is w6 = 1 ⊗ Ẑ ⊗ Ẑ since j = 6 in binary
is ( j3 j2 j1) = (110). The gate representation of w6 is shown in Figure 2.5. The general Walsh operator requires O(n)
gates for its implementation a single Z gate and up to 2n controlled NOTs.

Using (2.20), any diagonal operator on n qubits may be expanded as a sum of N = 2n walsh operators,
f =

∑N−1
j=0 a jw j since theses operators commute characteristic. Therefore, any diagonal unitary may be written as a

product of exponential of Walsh operators:

Û = ei f =

N−1∏
j=0

eia jŵ j (2.24)
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k1

k2

k3 Z

Figure 2.5: w6 gates implementation adapted from Ref. 43.

Each term of the product of Û j = eia jŵ j has the form exp(−i θ j

2 ⊗i (Zi) ji ), where θ j = −2a j. Hence, it is similar to
(2.22), with only one difference: the Z-gate is replaced by a Ẑ-rotation, R̂z(−2a j), where R̂z(θ) ≡ e−iẐθ/2. Thus, the
circuit for Û is given by successively applying the circuits for Û j.

(a) (b)

k1

k2

k3 R7

k1

k2

k3 R7

U7 = =

Figure 2.6: w7 gates implementation using n = 3 qubits, equivalent for implementing the operator U7 =

exp (ia7(Ẑ ⊗ Ẑ ⊗ Ẑ)). (a) shows one possible implementation, but (b) shows our preferred implementation method
where the CNOTs are always targeted on the highest order qubit possible adapted from 43.

Figure 2.6 shows two ways of implementing U7. As we see, there is not a unique gate configuration. Therefore,
we are going to use the convention of Welch using Ref. 43 where the CNOTs are always targeted on the highest order
qubit possible. Then a rule for constructing the circuit U j can be given in terms of the binary expansion of j:

A rotation gate, R̂z(−2a j), is placed on the qubit corresponding to the most significant non-zero bit (MSB) of j.
Then CNOTs are placed on either side, targeted on the same qubit as the rotation gate, and controlled on the qubits
corresponding to the 1’s other than the MSB in the binary expansion of j.

(2.24) can be generalized for more than one dimension easily. For a d-dimensional system represented by d
registers of n qubits each, the single Walsh operators will be replaced by tensor products of up to d Walsh operators
over the different registers. The actual number depends on the number of variables in the function f . It does not
increase the gate complexity as interaction potentials are generally few-body, and the product of Walsh operator
are also other Walsh operators. Additionally, this representation allows us to a reduction in the circuit depth for
implementing U if some of these coefficients are zero, see Ref. 43.
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2.3.3 Quantum Fourier Transform

It acts on a quantum state |X〉 =
∑N−1

j=0 x j | j〉 and maps it to the quantum state |Y〉 =
∑N−1

k=0 yk |k〉 according to the
formula:

yk =
1
√

N

N−1∑
j=0

x jw
jk
N (2.25)

where w jk
N = e2πi jk

N . It can be represented by the unitary matrix:

ÛQFT =
1
√

N

N−1∑
j=0

N−1∑
K=0

w jk
N |k〉 〈 j| (2.26)

The Inverse Quantum Fourier Transform may be obtained by taking the inverse of (2.26) since they are unitary and
hermitian matrices.

2.3.4 Initialization

To simulate the wave function, we must provide an initial state which can be a delta function, gaussian wave, or a
sinusoidal wave. Thus, it may be mapped using the Walsh functions, and implemented by using the Walsh Operators
into Z−rotations. in this thesis we will use a delta function which will be represented as an X-gate.

2.4 IBM Quantum Computers
ust like classical computers, quantum computers need to have some internal and external physical conditions to work
properly, such as:

1. A suitable temperature. In order for an IBMQuantum Computer works appropriately, the quantum processor
must remain cold - about milikelvins above the absolute zero. IBM uses super-cooled superfluids to create
superconductors.

2. A suitable platform. At ultra-low temperatures, the processor’s material becomes superconducting, and elec-
trons move through them without resistance forming "Cooper pairs." These pairs produce quantum tunneling,
carry a charge across barriers—two superconductors placed on either side of an insulator form a Josephson
junction, which together with a capacitor form a transmon qubits ? .

3. A suitable control system. IBM quantum computers use transmon qubits, with a particular configuration
operating a microwave regime, as superconduting qubits. Therefore, by firing microwave photons at these
qubits, they can control, change, and read out the qubits information.

4. A set of suitable properties. In order to create a multidimensional computational space, qubits are placed in
a superposition state. Thus, complex problems can be represented in new ways in these spaces. Additionally,
these qubits can be entangled in order to explore this quantum mechanical feature.
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Figure 2.7: Quantum Computer Hardware, courtesy from IBM.

IBM-Q has created the QISKIT (Quantum Information Software Kit) project, which supports Python3.6 or later
15; it is highly recommended to use Anaconda as a cross-platform Python distribution for scientific computing. The
workflow used in Qiskit consists of three high-level steps:

• Build: design a quantum circuit that represents the problem you are considering

• Execute: run experiments on different backends (quantum computers and simulators)

• Analyze: calcualte summary statistics and visualize the results of experiments.

Qiskit has four computing elements where specific tasks are executed. Terra composes quantum programs at the
level of circuits, optimize them for the constraints of a particular device, and manages the execution of batches of
experiments on remote-access devices. Aer is used to understand the limits of classical processors by demonstrating
to what extent they can mimic quantum computation. Ignis is focused on fighting noise and errors and forging a
new path like errors characterization, improving gates, and computing in the presence of noise. Aqua is focused on
finding out real-world applications. This is the place where quantum algorithms are designed and built.

IBM-Q has 23 quantum computers available in its quantum computing platform. Nonetheless, in this thesis, we
will use ibmq − quito and ibmq − lima to perform our simulations. Their performance is evaluated by a function of
their technical characteristics, and architecture which are found in Table 2.2, we have the next terms:

1. Quantum Volume. According to Nikolaj Moll et. al in Ref. 45, It depends on the number of qubits N as well
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as the number of steps that can be executed, the circuit depth:

ṼQ = min[N, d(N)]2

However, IBM’s researchers modified its definition to be an exponential of the circuit size:

log2VQ = maxn≤N

{
min[n, d(n)]2

}
2. CLOP It is a metric correlated with how fast a quantum processor can execute circuits as in Ref. 15.

3. Transpilation It is a process of rewriting an input circuit to match the topology of an specific quantum device,
and optimize their time execution by using the basis gates associated with each quantum computer.

Backend ibmq-quito ibmq-lima 0 1

3

4

2

Number of Qubits 5 5
Quantum Volume 16 8

CLOP 2.5 2.7
Processor Falconr4T Falconr4T 0 1

3

4

20 1

3

4

2

Version 1.1.26 1.0.33
Basis Gates CX, ID, RZ, SX, X CX, ID, RZ, SX, X

Gate time (ns) 295.111 405.333

Table 2.2: Technical Characteristics of IBM-Q processors, adapted from the IBM Quantum Experience, adapted
from Ref. 1
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Methodology

3.1 Algorithm Development

3.1.1 Time Evolution Algorithm Design

The Universal Quantum Simulator seeks for generating a quantum gate circuit implementation, automatically, of
physical systems which are represented like (2.13) which allows us to implement a modular-building logic behind
each quantum system. Once we have a physical quantum system represented using a Hamiltonian representation, we
can simulate the system by letting it evolve from the initial state like (2.12) using the real-space, or first-quantized,
representation of the wave-function in terms of position eigenstates as:

|ψ(t)〉 =

∫
|x〉 〈x| |ψ(t)〉 dx (3.1)

Each xi is discretized and represented on the quantum computer in the computational basis as in (2.19) of n qubits
each; the basis states corresponding to a grid of 2dn bits. We can perform this change of basis independently since
this change of basis works for all diagonal unitary matrices, see Ref. 43. Thus, they have the form (2.24). For our
calibration, we will use a pulse represented by an X-gate in an arbitrary qubit as in Figure 3.4. (2.12) is evaluated
by using the Trotterization formula represented by the theorem (1), which is true regardless of the commutativity of
their operators. Since we have a kinetic and potential Hamiltonian terms like (2.15), (2.12) becomes (2.16) where ∆t
is an integer called the Trotter number. The next step is to diagonalize the kinetic operator K̂ by using the Quantum
Fourier Transform (QFT) and its inverse (IQFT), which are represented by F and F† operators as in Figure 3.1, and
Figure 3.2, respectively.

The final K̂ operator circuit implementation is shown in Figure 3.3. We do not need to diagonalize the potential
operator V̂ as it is already expressed into the position x representation. The final quantum algorithm that simulates
(2.12) is, and its implementation is shown in Figure (3.4) :

|ψ(t)〉 = (F̂†e−iK̂∆tF̂e−iV̂∆t)
t

∆t |ψ(0)〉 (3.2)
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Figure 3.1: 4 − qubit Quantum Fourier Transform

Figure 3.2: 4 − qubit Inverse Quantum Fourier Transform

The process how we will proceed on exeuting the Universal Quantum Simulator will be following two main
stages:

• Statevector Simulator. Here we will use a noiselss simulator to perform our simulation. It will give us a set
of probabilities distributions along time evolution. Additionally, if we place the measurment component we
will let the qubit be collapsed in a certain state based on its probability distribution.

• IBM-Q Experience. After our noiseless simulations, we can outperform the same circuit implementation on
quantum computers by using the IBM terminal. There are two main characteristics associated to this stage, by
one side the circuit will be transpilled, re-written, in function of the basis gates of each processor; by another
side, the processor will send a series of electrical signals called shots which result states will be averaged and
its average is the final probability will be displayed as the final result.
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Figure 3.3: Momentum Gate Implementation

Figure 3.4: Circuit Gate Modular Implementation





Chapter 4

Results & Discussion

4.1 Calibration
We use a 1D harmonic oscillator as the calibration physical system for the Universal Quantum Simulator’s variables.
Thus, let us consider a potential given by:

ˆV(x) = a(x − x0)2 (4.1)

where a = 1
2 k, k is the Hooke’s constant given in [N/ f m] as well as a, x0 represents the rest position given in [ f m].

We will expand (4.1) by using the Walsh Functions. Thus, we set a = 5 [N/ f m], and x0 = 15 [ f m] with ∆t = 0.01
[ns], and varying the number of used qubits for the expansion. Note, that the scale of physical units have been
selected for our simulations. The absolute errors of the potential operator approximation are distributed as shown in
Figure 4.1a, and for the momentum, in the Figure 4.1b

For each qubit, the absolute errors of the potential and kinetic operators were calculated in to get the optimized
number of qubits that gives the least absolute error approximation. Table 4.1 shows the different potential and kinetic
absolute errors distributions in function of the number of qubits.

As the deviation is fluctuating since the number of outliers as it can be seen in Table 4.1, it is important to select
the number of qubits with the least absolute error, dispersion, and lower outliers points from Figure 4.1, to get this
task, we use the relative error definition as it is shown in Figure 4.2 Thus, we use five qubits to approximate (4.1)
into the Walsh Functions basis. The potential and kinetic operators are plotted in Figure 4.3a, and Figure 4.3b,
respectively. As the operators expand their position, the time factor does not affect the error propagation. Thus, the
error distribution of the expanded potential and kinetic operators remains the same.

Even though the absolute minimum errors were obtained when the approximation was made using six qubits
(see Table 4.1), it was not chosen as the optimized number of qubits since the number of outliers points that it had.
These outliers points are present because of the x−discretization into Walsh Functions. Furthermore, it was seen that
from six qubits approximation, there are oscillations in the approximation errors, as it is seen in annex Figure (C.1).
Indeed, to have a relative comparison term, we have got the relative errors from the Walsh Function approximations.
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(a) Potential Error Distribution (b) Kinetic Error Distribution

Figure 4.1: Operators Approximation with ∆t = 0.01 [ns] using the Walsh decomposition.

(a) Potential Relative Error (b) Kinetic Relative Error (c) 5-qubit Absolute Errors Distribution

Figure 4.2: Potential and Kinetic Operators approximated using the Walsh decomposition.

(a) 5-qubit Potential Walsh Function Transformation (b) 5-qubit Momentum Walsh Function Transformation

Figure 4.3: Potential and Kinetic Operators approximated in Walsh Function Basis
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Number of Qubits
Potential Operator Kinetic Operator

Absolute Error [10−15J] σ Absolute Error [10−15J] σ

1 0.03 0 28.55 x 10−3 0
2 15.62 x 10−3 14.37 x 10−3 14.72 x 10−3 13.83 x 10−3

3 3.42 x 10−3 12.14 x 10−3 2.25 x 10−3 11.7 x 10−3

4 1.52 x 10−3 9.51 x 10−3 4.06 x 10−4 9.31 x 10−3

5 7.26 x 10−4 7.10 x 10−3 3.67 x 10−4 6.82 x 10−3

6 5.55 x 10−4 5.14 x 10−3 7.73 x 10−4 4.85 x 10−3

7 4.65 x 10−3 6.39 x 10−3 4.74 x 10−3 7.04 x 10−3

Table 4.1: Operator’s Error Approximation

As a result, when using five qubits, we have a relative error of 0.06 and 0.03 in the potential and kinetic operators.
Thus, we use five qubits as the optimized number of qubits, as it can be seen in Figure 4.2, to expand our operators
and to simulate our physical system.

4.2 Circuit Implementation
We will use a delta function to initialize the simulation, which is placed into the last qubit (four qubit) as a bit-flip
(X-gate) as it is shown in Figure 4.4. This places the initial position of a particle in the middle of our coordinate
system. Note that the potential, QFT, Momentum, and IQFT circuits implementations are attached in the appendix
in Figure 4.16.

Figure 4.4: 4th-qubit position Circuit Gate Implementation of the initial position of a particle.

Once all this process is set, it is time to run in the qiskit simulator with ∆t = 0.01 [ns], and for a period of t = 20
[ns], We use the statevector − simulator to run all simulations. This simulator gives us a noiseless result. Thus,
our physical system evolves, as Figure 4.5 shows. Nonetheless, if we want an accelerated evolution, we could set a
bigger ∆t which will allow us to see with a broader perspective the system evolution. Thus, with this objective, we
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(a) Histogram Evolution Matrix (b) State Evolution Matrix

Figure 4.5: Quantum Harmonic Oscillator Evolution in the Statevector Simulator with ∆t = 0.01 [ns]

will use ∆t = 0.1 [ns] and let it evolve for a larger time period t = 40 [ns] as it is shown in Figure 4.6.
If we compare Figures 4.5 and 4.6, We can observe a broader perspective of the system evolution, Figure 4.5

represents the two first steps of Figure 4.6 of the Harmonic Oscillator Evolution in time. The histogram evolution
matrix representation results from a projective measurement of the qubit. Thus, we are affecting the qubit’s state
position, causing a wavefunction collapse in a state within the probabilistic distribution. On the other hand, the state
vector evolution matrix represents how the states are distributed along with position (classical registers represented
on the y-axis) and time evolution (x-axis) without measuring. By using the latter matrix representations, we can
obtain the state probability distribution along time by using (2.1). Thus, we will measure the |α|2 value, which
represents the probability of being at its respective state.

In Figure 4.6a we can notice how the initial state is changing as time goes on as in classical models. Its state
measurement has been collapsed, so it means that there is a probability of the delta wave function is placed there
as well as in other states in superposition, as it is shown in Figure 4.6a, where the initial wave is diffracted in a set
of states in superposition as it is observed in known simulations like the ones represented with Matlab. This model
was developed by using the model expressed in annex in Figure 4.7. Thus, the first two time steps of Figure 4.6a
represent the ground state of the system as in Figure 4.7a, the next two time steps represent our initial state in its
first excited state as in Figure 4.7b. Finally, the rest of the time evolution shows a linear combination of previous
states as in Figure 4.7c. These states have energy associated with them which causes a shifting in their position over
time. This evolution result was hoped as it backs up the working and usefulness state of the Universal Quantum
Simulator. It is important to notice that this physical system has being widely studied computationally and this is
the main reason why it was chosen, to have a well-known sand to make comparisons regrading the feasibility of our
UQS. Compare the Matlab simulations of the system. We can notice that there is some blurring in the superposition
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(a) Histogram Evolution Matrix

(a) Statevector Evolution Matrix

Figure 4.6: Quantum Harmonic Oscillator Evolution in the Statevector Simulator with ∆t = 0.1 [ns]
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(a) Ground State (b) First Excited State (c) Linear Combination of States

Figure 4.7: Quantum Harmonic Model using Matlab

of states because there are some phase-flips that occur during the circuit implementation, especially in the Quantum
Fourier Transform. It means that there are some perturbations of the system during long-time evolution.

Letting the Quantum Harmonic Oscillator circuit system evolve during t = 20 [ns], ∆t = 0.1 [ns] in ibmq-lima
and ibmq-quito quantum computers. The evolution of the system is shown in Figure 4.8. In order to compare the
performance of previously mentioned real quantum machines, we will compare their states’ probabilities with the
noiseless simulation developed in the previous section. Thus, we will get a state’s fidelity along the time evolution.
For this purpose, we will use the classical fidelity definition as shown in (2.7).

In Figure 4.8, we can see how the states’ probabilities evolve. For example, the first two time steps can be shown
the ground state position, the next time steps simulate the initial state in its first excited state, and as time evolves, we
can notice how the superposition of both states is created. Specifically, in the 4th column, we notice how a bit-flip
was produced, denoting the system evolution.

Analyzing the ibmq-lima and ibmq-quito final states’ probabilities, it is vital to notice how after the first time
step, the probabilities distribution degenerates along with the computational states, which is reflected in the fidelity
fluctuation along time evolution shown in Table 4.2 and plot in Figure 4.9. We may suggest that as ibmq-lima and
ibmq-quito have the same architecture, shown in Table 2.2 and the transpiling working principle using the same basis
gates, their performance will be similar. It is partially true as although they computationally have the same running
circuit, their hardware characteristics (CLOP, Processor, Gate time [ns]) affect the final measurements directly. This
is the reason why the fidelity of ibmq-quito and ibmq-lima differs. Nonetheless, both fidelities fluctuations behave
like an inverse parabolic function per cycle, having a maximum fidelity of 52.83 at t = 12 [ns] in ibmq-lima and
fidelity of 52.82 at t = 10 [ns] in ibmq-quito. It suggests that the ibmq-quito processor evolved faster, which makes
sense as this processor has a higher quantum volume (16); consequently, its performance is higher.
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Figure 4.8: Harmonic Oscillator evolution state’s probabilities by using ∆t = 0.1, t = 20, and 1000 shots; executed
on ibmq-quito and ibmq-lima

Regarding the computational performance of the QuantumHarmonic Oscillator circuit while running in quantum
processors. As both quantum computers have the same transpiling working principle and the same basis gates, both
share the same depth, size, and width characteristics. As was mentioned in the theory chapter, the main advantage
of quantum computing is that its algorithms run on time that grows linearly. Thus, the depth of the circuit shows this
parameter. As it can be shown in Figure (4.10), QHO circuit time running evolves linearly. It suggests to us that the
UQS is capable of implementing quantum circuits that can be run in some time that evolves linearly.

Finally, we can compare this QHO system evolution with other previous work like 46 where a quantum simulation
of a discretized harmonic oscillator is developed. Although the UQS uses a different implementation process the
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Figure 4.9: Fidelity along Time Evolution

Figure 4.10: Harmonic Oscillator Performance Indicators

results obtained from quantum computers are noisy, and with a little information to extract. Our work is no exception.

4.3 Double Well Potential
Let us consider another potential, the double-well potential where its tunneling dynamics are one of the most active
research areas. For example, they appeared in the mean-fields dynamics of Bose-Einstein condensates, the recent
development of ion trap technology, the ultra cold trapped atoms theory, and other applications as in Ref 47. This
potential is given by:

V(x) = E0(ax4 − x2) (4.2)

where E0 is the ground state energy given in hartrees, and a is the damping factor of the double-well potential. The
physics behind this physical system is quite rich, especially when a = 0 and a ≤ 0. Nonetheless, in this case, we
will set E0 = 1 hartrees and a = 0.5, and we will be treated with the symmetric double-well potential. We will use
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five qubits to expand our potential operator and implement our quantum circuit as in the calibration process. Thus,
the potential Walsh Function approximation is shown in Figure 4.11a, and their error distribution is shown in Figure
4.12b. The median absolute error is given by 0.0066 with a σ = 0.109.

(a) Double Potential Well in Walsh Function Basis (b) Double Potential Well Error Approximation

Figure 4.11: Double Potential Well Approximation

As in the QuantumHarmonic Oscillator, wewill initialize the function using Dirac’s delta function in the 4−qubit.
The circuit implementation has the same structure as in Figure 4.4, and their potential, QFT, kinetic, and IQFT circuit
implementations are attached in the Annexs. We will take a ∆t = 0.1 [ns], t = 40 [ns], and it is run into the state
vector simulator as it is shown in Figure 4.12.

4.3.1 Discussion

In Figure 4.12, we can see how a particle represented by a delta function evolve in a physical system where a
double-well potential represents its potential part. At the beginning of its time steps, it can be shown how, after
the third time step, the initial position is being changed between the computational state 14 (01110) and the state
15 (01111) as it is shown in the simulation of the Manchester Particle Physics Group 48. We can interpret that if
it is not an exact energy eigenstate, it is a superposition of two nearly degenerate states, and as such, it will evolve
slowly with time. After t = 40 [ns], we can see the initial state in its first excited state, having a more noticeable
superposition of two degenerate states, separated in their position mapped on the fifth and 25th classical registers.

After that, we run our circuit into the ibmq-quito and ibmq-lima quantum computers for ∆t = 0.1 [ns] and t = 40
[ns] with 1000 shots which were averaged and the final result is shown in Figure 4.13, we can notice how states’
position evolves in time. Similarly to the Quantum Harmonic Oscillator, we compare the simulation executed with
the state vector simulator and the ibmq-quito and ibmq-lima final measurements. This comparison is developed by
using the classical fidelity measurement.

In Figure 4.13, we can see how the states’ probabilities of the double-well potential evolve. During the three
first columns, we can notice more explicitly how the behavior simulated in Ref. 48 is present. It shows two nearly
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(a) Histogram Evolution Matrix

(b) Statevector Evolution Matrix

Figure 4.12: Double Potential Well Evolution in the Statevector Simulator with ∆t = 0.1 [ns] and t = 40 [ns]

degenerate states of oscillation. At the same time, in the fourth column, the superposition of these two states is taking
place along time slowly. This shows us how the bit-flips are produced as the system evolves. Finally, in the fourth
column, we can see some quantum tunneling effect between the two potential wells, as expected in this system.
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Analyzing the ibmq-lima and ibmq-quito final states’ probabilities, we can notice that the initial state spreads
alongwith the computational basis after the first time, similar to theQHO system. By analyzing the fidelity fluctuation
along time, as shown in Figure 4.14, we notice that the behavior of both quantum machines is cyclical and has a
parabolic behavior. The maximum fidelity obtained in ibmq-lima is 50.49 at t = 21[ns], and in ibmq-quito is 49.09
at t = 21[ns]. Nonetheless, both devices’ fidelities fluctuations have the same pattern. The processor’s performance
can be discussed as the ibmq-quito has a better one represented by a higher Quantum Volume factor. Thus it may
suggest that it is necessary to let the system run for a more extensive t to develop a complete performance.

Regarding the computational performance of this system represented by a Double Well Potential, all of these
circuits can be run in a linear time. Moreover, it means that this circuit implementation can be efficient compared
with the classical ones. Finally, we can compare our simulation developed by using the UQS and other previous
work as in Ref. 49 where the final probabilities show the same behavior as in Ref. 48.

4.4 Error Analysis
The obtained fidelity from the Quantum Harmonic Oscillator and the Double Well Potential are around the 50s
percent. This is because of some hardware, software, and computational factors. Thus, let us analyze why this
happens. At the very least, there will be a sampling error in going from the continuous |x〉 to the discrete |xk〉

representation. Additionally, the Trotter error from splitting the propagator into non-commuting parts introduces
further errors. Finally, by using (2.12), the total simulation error satisfies:

E(U, e−iHt) ≤ αtδt + EG (4.3)

where αtδt is the first order Trotter error, and EG denotes the gate error in evaluating the kinetic and potential
propagators. We shall take into account that EG ≤ εvt + εkt which belong to the approximation errors of the potential
and kinetic part, correspondingly.
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Fidelity Fluctuations
Quantum Harmonic Oscillator Double Well Potential

Time Steps ibmq-quito ibmq-lima Time Steps ibmq-quito ibmq-lima Time Steps ibmq-quito ibmq-lima
1 30.82 32.71 1 30.82 36.47 21 49.09 50.49
2 35.66 34.72 2 33.99 36.26 22 44.30 43.73
3 38.21 39.06 3 35.69 39.54 23 40.49 46.02
4 40.82 40.92 4 33.10 34.24 24 43.19 43.75
5 45.31 43.41 5 37.74 33.99 25 41.85 40.48
6 45.37 42.95 6 32.48 36.51 26 36.80 41.31
7 46.73 44.36 7 30.54 30.95 27 36.36 35.68
8 47.82 41.81 8 33.68 35.02 28 34.89 36.30
9 50.82 48.57 9 31.70 27.17 29 36.60 35.01
10 52.82 49.98 10 23.23 24.07 30 31.98 33.75
11 52.61 47.21 11 23.96 25.17 31 30.64 31.96
12 52.00 52.83 12 32.76 35.59 32 37.75 41.72
13 48.75 45.48 13 35.13 30.66 33 40.16 38.16
14 47.08 44.12 14 35.14 36.25 34 40.90 42.20
15 44.16 40.90 15 39.86 39.33 35 42.19 42.01
16 35.52 36.35 16 46.28 48.76 36 44.07 47.07
17 38.64 30.79 17 43.64 43.25 37 44.82 45.51
18 37.65 35.51 18 40.23 43.99 38 42.49 46.29
19 38.91 37.47 19 39.46 43.45 39 40.55 45.10
20 46.19 42.63 20 43.25 42.46 40 47.87 47.48

Table 4.2: Experimental fidelity fluctuations obtained from each time running in ibmq-quito and ibmq-lima from
the Quantum Harmonic Oscillator, and the Double Well Potential.
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Figure 4.13: Double well potential evolution state’s probabilities by using ∆t = 0.1 [ns], t = 40 [ns], and 1000 shots
executed on ibmq-quito and ibmq-lima
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Figure 4.14: Double Well Potential Fidelity along Time Evolution

Figure 4.15: Double Well Potential Performance Indicators
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(a) 5-qubit Potential Circuit Gate Implementation (b) 5-qubit Momentum Circuit Gate Implementation

(c) 5-qubit Quantum Fourier Transform Gate Implementation (d) 5-qubit Inverse Quantum Fourier Transform Gate Implementation

Figure 4.16: QHO Modular Circuit Implementation

(a) 5-qubit Potential Circuit Gate Implementation (b) 5-qubit Momentum Circuit Gate Implementation

(c) 5-qubit Quantum Fourier Transform Gate Implementation (d) 5-qubit Inverse Quantum Fourier Transform Gate Implementation

Figure 4.17: Double Well Potential Modular Circuit Implementation
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(a) Quantum Harmonic Oscillator Transpilled Circuit. (b) Double Well Potential Transpilled Circuit.

Figure 4.18: Transpilled Circuits in function of the ibm-quantum computers basis gates. In ibmq-quito and ibmq-lima
cases, the basis gates are the same: CX, ID, RZ, SX, X.



Chapter 5

Conclusions & Outlook

In this work, we have developed and implemented a Universal Quantum Simulator by using the gate circuit building
methodology. The main feature of this simulator is that the gate implementation is automatic, as it is only necessary
to place the Hamiltonian representation that describes the physical system. After that, we discrete and expand
the Hamiltonian constituents on Walsh functions and proceed to use the group Z⊗n, Walsh operators, to the gate
implementation. All this process is done by using the qiskit platform.

In order to test the feasibility of the UQS, we use two 1D well-known systems: Quantum Harmonic Simulator
and the Double Well Potential as the extensive research done upon these two physical systems and the possibility
that it gives us to test the feasibility of the Universal Quantum Simulator. However, we can simulate in more than
1D by increasing the number of simulated variables. At first, select the number of qubits where their absolute error
distribution is the lowest possible. Thus, we work with a five qubits system. As the initial state, we use a Dirac
function represented by a X gate representing a bit-flip. Our initial state is placed in the 4 qubit in both cases. After
that, we set ∆t = 0.1 [ns] as the time steps; we let the systems evolve along with time and position in the state vector
simulator and the ibmq-quito and ibmq-lima quantum processors.

Using the state vector simulator, the (QHO) showed how the initial state was evolving and the presence of the
ground, first, and a linear combination of both energy states associated with each state. These energy states were
shown by identifying a bit-flip along time. In the same way, the second simulated physical system (Double Well
Potential) showed an initial ground state, which evolved from previous classical models. Over time, there appeared
the initial state in its first energy state. Additionally, we captured the tunneling happening in each potential well in
this system, as predicted initially.

After that, we run the circuits of each system in the ibmq-lima and ibmq-quito processors. In the QHO, the
maximum fidelities obtained were 52.83 at t = 12 [ns] and 52.60 [ns] at t = 9 [ns], correspondingly. after some time
evolution. In the DWP, the maximum fidelities obtained were 50 at t = 23 [ns] and 49 at t = 23 [ns]. In both cases,
the running time grows linearly as its depth circuit. The final fidelities, calculated using the classical definition of
fidelity, were affected by errors from hardware, software, and computational factors. Thus, in the hardware field,
the performance of each quantum processor will be affected by their technical characteristics summed up into the
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Quantum Volume parameters. The error can be associated with the IBM-quantum-experience platform calibrations
of each qubit, which are done periodically. Furthermore, regarding the contribution of the computational error,
we can notice that the x−discretization process carries an error, the Trotterization process, and the gate error in
evaluating each kinetic and potential operator.

Finally, as an option to increase the fidelity, it would be interesting to use a Variational Quantum Eigensolver
as a method to capture the state evolution in each time evolution; as a result, we have an increasing the fidelity,
decreasing the circuit depth size, and have an optimized size circuit and consequently higher fidelities. Furthermore,
error correction techniques can also be used to encode information as a tool to keep a highf idelity. Moreover, it will
be interesting to explore the UQS functionality with more quantum physical systems in different dimensions.
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Quantum Fourier Transform Gate
Representation
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Appendix B

Simulation of the Quantum Harmonic
Oscillator on Matlab

Let us consider an Harmonic Oscillator Hamiltonian given by:

Ĥ =
P̂2

2m
+

1
2

mω2Q2 =

(
â†â +

1
2

)
~ω (B.1)

formed by the kinetic and potential energy. Its time dependant solution is given by:

Ĥ |n〉 = En |n〉 (B.2)

En = ~ω

(
n +

1
2

)
(B.3)

where the annihilation and creation operators are given by:

â |n〉 =

 0 n = 0
√

n |n − 1〉 otherwise

â† |n〉 =
√

n + 1 |n + 1〉

Wecanwrite the general state as a superposition of eigenstates as inB.2. Thus, we can generate amatrix representation
of diverse eigenstates by using the annhilation and creation matrices:

â↔ ã =



0 1 0 0 ...

0 0
√

2 0 ...

0 0 0
√

3 ...

0 0 0 0 ...
...

...
...

...
. . .


(B.4)

43



44

â† ↔ ã† =


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0
√
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0 0
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...
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. . .


(B.5)

Finally, our Hamiltonian is represented as:

Ĥ ↔ H̃ = ~ω(â†â +
1
2
I) = ~ω



1 0 0 0 ...

0 3 0 0 ...

0 0 5 0 ...

0 0 0 7 ...
...

...
...

...
. . .


(B.6)

We have plot this model in Matlab and the different energy states of our function are plotted in Figure 4.7.



Appendix C

Errors of Walsh Function Approximation
for more than 6 qubits
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(a) 6-qubit Potential Approximation Error Distribution (b) 6-qubit Kinetic Approximation Error Distribution

(c) 7-qubit Potential Approximation Error Distribution (d) 7-qubit Kinetic Approximation Error Distribution

Figure C.1: Operator Approximation Error Distributions for 6 and 7 qubits.
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