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Resumen

La detección de mascarillas faciales se ha convertido en un gran desaf́ıo en la visión por

computadora, lo que exige la unión de la tecnoloǵıa con la conciencia de COVID-19. Los

investigadores han propuesto modelos de aprendizaje profundo para detectar el uso de

mascarillas. Sin embargo, el uso incorrecto de una mascarilla puede ser tan perjudicial

como no llevar protección alguna. En esta tesis, proponemos una arquitectura de red neu-

ronal convolucional (CNN) basada en dos tareas de visión por computadora: localización

de objetos para descubrir rostros en imágenes/videos, seguida de un modelo de CNN de

clasificación de imágenes para categorizar los rostros y mostrar si alguien está usando una

mascarilla correctamente, incorrectamente o no utiliza alguna. La primera CNN se basa

en RetinaFace, un modelo para detectar rostros en imágenes; mientras que la segunda

CNN utiliza una arquitectura Resnet-18 como columna vertebral de clasificación. Nuestro

modelo permite una identificación precisa de las personas que no están siguiendo correc-

tamente las recomendaciones sanitarias de COVID-19 sobre el uso de mascarillas. Hemos

lanzado al público tanto el conjunto de datos utilizado para entrenar el modelo de clasifi-

cación como nuestro modelo propuesto de visión artificial, y los hemos optimizado para la

implementación de sistemas integrados, lo que permite un uso global de nuestra tecnoloǵıa.

Palabras Clave:

Inteligencia artificial, aprendizaje profundo, visión artificial, reconocimiento de rostros con

mascarilla, detección de objetos, clasificación de imágenes, COVID-19.
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Abstract

Face mask detection has become a great challenge in computer vision, demanding the coali-

tion of technology with COVID-19 awareness. Researchers have proposed deep learning

models to detect the use of face masks. However, the incorrect use of a face mask can be as

harmful as not wearing any protection at all. In this thesis, we propose a compound con-

volutional neural network (CNN) architecture based on two computer vision tasks: object

localization to discover faces in images/videos, followed by an image classification CNN

to categorize the faces and show if someone is using a face mask correctly, incorrectly, or

not wearing any mask at all. The first CNN is built upon RetinaFace, a model to detect

faces in images; whereas the second CNN uses a Resnet-18 architecture as a classification

backbone. Our model enables an accurate identification of people who are not correctly

following the COVID-19 healthcare recommendations on face masks use. We have released

both the dataset used to train the classification model and our proposed computer vision

pipeline to the public, and optimized it for embedded systems deployment, empowering a

global use of our technology.

Keywords:

Artificial intelligence, deep learning, computer vision, face mask recognition, object detec-

tion, image classification, COVID-19.
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Chapter 1

Introduction

1.1 Problem statement

The beginning of 2020 was an atypical year for different areas of research: a pandemic began

to spread worldwide; with Wuhan, Hubei, China, as the epicenter of the new virus. The

first cases of a strange respiratory disease appeared, whose worst consequence was the death

of the infected patient [1]. The new virus was called “severe acute respiratory syndrome

coronavirus-2” (SARS-CoV-2, 2019-nCoV) [2], causing the disease named COVID-19 [3].

The origin of the disease is still being studied today, but some research works point the root

to zoonotic transmission [4]. However, the human-to-human transmission plays an essential

role in the spread of the disease. This fact is mainly due to asymptomatic patients’ presence,

and the time of incubation of the virus, which can take several days [3]. The latter facts

make the detection of the virus imperceptible in most cases, facilitating the spread of the

disease between individuals. At the beginning of the pandemic, the principal actions taken

by almost all the countries around the world was confinement and quarantine. Nevertheless,

confinement was not a feasible solution due to the economic impact it entailed. It is known

that one of the principal ways of SARS-CoV-2 transmission is through tiny droplets ejected

from a pre-symptomatic patient while sneezing, coughing, or only speaking. Therefore, the

use of face masks was imposed by the World Health Organization (WHO), especially in

public areas to reduce the rates of virus spreading [5]. The mandatory use of face masks

varies over countries; for instance, due to the arrival of COVID-19 vaccines and the low

contagion rate, some countries like Israel have waived the obligatory face mask use [6].

1
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However, some countries still have high rates of COVID-19 cases, and a significant part

of the population is not vaccinated yet, making the use of face masks a mandatory rule

[7, 8, 9, 10]. These countries have been facing the challenge of creating a preventive system

to detect the incorrect (or the absence) use of face masks.

1.2 Justification

In general, monitoring people who do not respect the use of face masks is a challenging

task, especially in crowded public areas where it becomes impossible to track if everybody

is using face masks according to the WHO recommendations. For this reason, the need of a

computer system that enables the automatic monitoring of correct/incorrect face mask use

becomes highly-demanded. Currently, computer vision (CV) tasks are useful for solving

problems related to object detection, classification, object counting, visual surveillance,

etc., while taking advantage of video resources from public surveillance cameras located

in most of the public areas (i.e., shopping malls, supermarkets, airports, train stations,

stadiums, etc.). The problem related to the correct/incorrect wearing of face masks implies

two CV tasks: 1) object detection, and 2) object classification. The object detection task is

helpful to find the faces of people in images or videos, and the object classification task uses

the faces detected by the object locator to classify them in different classes (e.g., correct

or incorrect use of face masks).

1.3 Contribution

In this work, a compound convolutional neural network (CNN) pipeline for COVID-19

face mask detection and classification is proposed. In addition, we introduce an optimal

hyperparemeter configuration for the cost function and the gradient-based optimizer in

the classification stage. Moreover, a new cleaned dataset is presented to train the object

classification model. To enable reproducible research, we have used the public and open

Face-Mask Label Dataset (FMLD) [11] and Medical Mask Dataset (MMD)[12] to train the

classifier with distinct DL models.
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1.4 Objectives

1.4.1 General objective

CV is an exciting approach that provides the necessary tools to build systems capable of

detecting and classifying the correct/incorrect use of face masks. However, to increase the

accuracy of the detection and classification models, CV researchers are needed to help in

the development of models that enhance the existent systems. In the last year, the CV

research community have worked hard to propose deep learning (DL) models to tackle this

vital area in benefit of society’s healthcare [13, 14, 15]. However, a significant part of the

research is focused on generating suitable datasets to train the models, especially for the

detection and classification of occluded faces. Therefore, the general objective of this thesis

is to address related approaches to the classification of the COVID-19 face mask-wearing

to give an accurate DL model.

1.4.2 Specific objectives

• Design a covid mask-wearing classification pipeline to identify the incorrect use of

face masks for COVID-19 awareness.

• Training different DL models in order to perform the covid mask classification task.

• Determine an optimal set up of hyperparameters such as the learning rate, number

of epochs, and optimizer to be used during the training of a DL model.

• Apply different CV techniques to pre-process public datasets in order to guarantee

their quality and, therefore, the training of the DL models.

• Extend the covid mask classification classes from two compliant and non-compliant

to three: compliant, incorrect, and non-compliant.

Information Technology Engineer / Mathematician 3 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer / Mathematician 4 Graduation Project



Chapter 2

Theoretical Framework

2.1 Artificial intelligence

Artificial intelligence (AI) was first defined in 1955 by John McCarthy as the science and

engineering of making intelligent machines [16]. Currently, AI has multiple applications in

fields such as business, healthcare, education, military, and manufacturing, among others

[17]. Furthermore, some of the branches of AI include machine learning (ML), natural

language processing (NLP), DL, CV, robotics, and speech recognition.

2.1.1 Machine learning

ML is a branch of AI that can be defined as a set of computational techniques capable

of improving performance and precision through experience, and the usage of data [18].

However, this learning does not occur in a unique manner, but can be carried out in

different ways, depending on the amount of human supervision. In this manner, ML can be

divided into three main categories that are: supervised learning, unsupervised learning, and

reinforcement learning [19]. In supervised learning, the learning process uses labeled data,

which contains the information that needs to be predicted. Classification and regression are

the main applications of supervised learning. Unsupervised learning makes use of unlabeled

datasets, and the model by itself is in charge of inferring patterns from it. This type of

learning is mainly applied in clustering and dimensional reduction tasks. Finally, there

are three fundamental elements in reinforcement learning: an agent, the environment and

actions. In this type of learning, the agent observes the environment, selects and performs
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actions, and obtains a reward or penalty in return. The agent’s objective is to choose the

actions that maximize the expected reward in a time interval, in other words, to choose the

best strategy or policy [19]. Reinforcement learning is commonly used in gaming, robotics,

and navigation. [20].

2.1.2 Deep learning

DL is a subfield of ML that involves the use of artificial neural networks (ANNs) and

algorithms to train them [21]. ANNs are inspired by the functioning of biological neural

networks. A network can be made to learn how to solve different problems by applying

algorithms that mimic the process of real neurons [22]. A DL model requires more than

one hidden layer in a neural network. Additionally, different types of neural network archi-

tectures can be found. Among them, it can be mentioned convolutional neural networks

(CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs).

In ML, classification tasks are performed in sequential steps that include preprocessing,

feature extraction, intelligent feature selection, learning, and classification. However, a non-

optimal selection of features can lead to incorrect results in discrimination between classes.

Different from this, DL allows for the automation of feature learning so that learning and

classification can be accomplished at once [23].

2.1.3 Computer vision as a field of artificial intelligence

CV is a field of AI that aims to endow a computer with the ability to obtain a detailed

understanding of visual data like human vision systems [24]. CV is applied in different tasks

such as object detection, face recognition, action and activity recognition, human pose

estimation, and semantic segmentation [25]. Some examples of CV applications include

facial detection and recognition, optical character recognition (OCR), autonomous driving,

image generation (GAN), virtual reality (VR), and the detection of pathologies and tumors

in medicine.
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2.2 Artificial neural networks

2.2.1 Standard neural network

An ANN is a collection of stacked layers, each one composed of neurons. This concept

by itself can be challenging to understand, so it is better to introduce them in parts and

examples. Suppose you want to predict the number of COVID-19 infections according to

the size of a population. It is clear that a linear regression representation to predict this

problem is as in Figure 2.1a. If we want to transform the linear regression representation

presented in Figure 2.1a into a neural network representation can be something similar to

Figure 2.1b. Here, we can see a simplest neural network. It has three principal components:

the input, which is the size of the population; the output, which is the number of infections,

and a “neuron” between them. A neuron is a unit in charge of taking the input, performing

the linear function, and producing the output. Later, we will see that the linear function

is called the activation function. In particular, this primary neural network represents

only two features: the size of the population and the number of infections. However,

many real applications have a considerable number of features. Representing them as a

neural network is by adding multiple basic units presented in Figure 2.1b and stacking

multiple layers. A layer is a set of neurons. Therefore, a more accurate representation

of a neural network is presented in Figure 2.2. This example shows a standard neural

network with four inputs, a hidden layer composed of three neurons (hidden because it is

between the input and output), and unique output. If we pay attention to the connection

between the neurons, we can see all are connected to the other ones, and in this case,

we say they are dense connected. This means that all the neurons will contribute to the

computation of the output of each one. Finally, all the neural networks can be understood

as inputs/features/training samples that produce a prediction.

2.2.2 Training an ANN

Let us define a set of training examples

M =
{(

x(1), y(1)
)

,
(
x(2), y(2)

)
, . . . ,

(
x(m), y(m)

)}
, with x ∈ Rnx , n, m ∈ R+, y ∈ R (2.1)
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(a) A Linear Regression to predict the
number of COVID-19 infections accord-
ing to the size of a population.

Size Neuron # Infections

(b) COVID-19 infections according to the size of a
population represented as a neural network. The
input p represents the size of the population and the
output q is the number of infections.

Figure 2.1: Linear Regression and a Neural Network representation of COVID-19 infections
prediction.

Inputs

Hidden

Output

Figure 2.2: A simple neural network composed by a input layer, one hidden layers and an
output.

where x(i) is the vector of dimension nx1 corresponding to one training example, y(i) as

its corresponding label, nx as the dimension of the input feature x and, m as the number

of training examples. From here, we can define a matrix of inputs x as

X = [x(1), x(2), ..., x(m)], with X ∈ Rnx x m (2.2)

and a vector of outputs y
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Y = [y(1), y(2), ..., y(m)], with Y ∈ R1 x m (2.3)

The main purpose of training is to find a set of parameters for the ANN to make

predictions for each training sample. These predictions are found through probabilities in

the final layer of the ANN and said probabilities would lean towards one class or another.

A set of predictions ŷ for the training samples X can be defined as

Ŷ = [ŷ(1), ŷ(2), ..., ŷ(m)], with Ŷ ∈ R1xm (2.4)

Additionally, the are two principal parameters to be fine-tuned: The weights and the

bias term. The weights w can be seen as a set of coefficients that will multiply each

component of some input vector to produce an output determining how important is that

particular input for the prediction. On the other hand, the bias b term is a constant added

to the product between the inputs and weights as an offset, empowering or weakening the

importance of that input to give more flexibility and generalization to the model. In formal

notation we can define them as

w ∈ Rnx and b ∈ R (2.5)

Finally, we can not forget the activation function σ. This function will determine the

output for a particular neuron. There are many activation functions presented in section

2.2.3. Therefore, with all elements described, we can define a prediction as follows:

ŷ = σ(wT x + b) (2.6)

Also, Equation 2.6 can be represented as in figure 2.3. The way to know how far is the

prediction from the real label of a particular training sample is using a loss function L

L(ŷ, y), with L ∈ R (2.7)

One of the more used loss function is cross-entropy described in section 4.1.4. In

addition, we can define a cost function J to measure the average performance over all the
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activation function

output
inputs 

and 
weights

Figure 2.3: A basic ANN composed by inputs, weights, bias, activation function and the
output. Note that in the neuron is performed the sum of the product between the vector
x and the weights b and the the activation function is applied to generate the output.

training samples taking into account each loss function per sample:

J(w, b) = 1
m

m∑
i=0

L(ŷ(i), y(i)) (2.8)

The main objective of the training is to try to keep the cost function lower as possible.

In order to get this, it is necessary to update the weights w and bias b parameters in such a

way that the cost function converges to a global minimum. There are many optimizers to

converge the cost function, such as the ones described in section 4.1.4. The most simple is

gradient descent, and it is going to be used to show how the parameters are updated. For

example, suppose you define a e number of epochs to do the training, and on each epoch,

the parameters w and b will be updated. Therefore, we can define the gradient descent

optimization as follows:

Repeat e times {

w := w − α
∂J(w, b)

∂w
(2.9)

b := b − α
∂J(w, b)

∂b
(2.10)

}, where α is the learning rate.

During training, two principal stages are performed: forward propagation and backpropa-

gation.

1. Forward propagation: A stage where the prediction (output) of the neural network

is computed (equation 2.6), i.e., perform computing from the input layer to the output
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layer. Before starting this stage, it is preferable to initialize the parameters w and b

with random numbers.

2. Back propagation: Stage where the update of the parameters w and b is per-

formed. As the cost function is computed at the final of the forward propagation

stage, backward implies computing the “gradients”, i.e., computing the derivatives

to update the parameters as is shown in the gradient descent optimization along with

the neural network from the last layer to the first layer.

Surely, the way to represent the training process in this work is quite simple but no less

useful because the same concepts can be extrapolated to shallow and deeper ANNs due to

these basic ideas are the same used to construct ANNs.

2.2.3 Activation functions

As the section above shows, the activation function is an essential part of ANN training

because it produces a neuron’s output to feed the next layer. It is common to use non-

linearity functions to predict real phenomenons better than linearity functions. Then, we

are going to introduce some non-linearity activation functions.

Sigmoid activation function

This function is one of the most used in ANN. It is defined as follows:

f(x) = 1
1 + e−x

(2.11)

Since the output of the sigmoid function is between 0 and 1, it is very used to give

probabilities in the last layer, i.e., the layer in charge to make the prediction. In addition,

it is helpful to normalize the output of the neurons.

Hyperbolic tangent activation function (tanh)

It is similar to the sigmoid function in its definition and its graph, but it has some advan-

tages. Let us define this function:
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f(x) = tanh(x) = 2
1 + e−2x

− 1 (2.12)

Note that the range of the output of the function is between -1 and 1, i.e., data is

centering to 0, and, as a result, the learning in the next layer will be faster and less

complex. In addition, if there is a negative input in the neuron, the tanh function will

highlight it even more in inhibiting the activation of the said neuron. A disadvantage of

this function is the presence of small gradients leading to slow convergence of the cost

function when the inputs are large or small. This function is generally used in the middle

layers of an ANN, while the sigmoid function is used in the final layer to make predictions.

Rectified linear unit activation function (ReLU)

ReLU activation function is specially used in deep neural networks and CNNs because it

prevents the gradient saturation problem. ReLU is defined as follows:

f(x) =


max(0, x) , x >= 0

0 , x < 0
(2.13)

As all negative inputs will be mapped to 0, the computing is faster than other activation

functions. However, if the input is negative, the derivative in the backpropagation will be

zero, meaning that the neuron will not contribute to the training. This problem is called

dying ReLU, and it can be solved with the use of the LeakyReLU activation function.

2.3 Convolutional neural networks

2.3.1 Convolution in CNN

Convolution is the main idea behind CNN. Convolution is an output matrix in which each

element is the sum of the element-wise product between the pixels of a receptive field and

the values of the filter, which are the weights.

Mathematically, the element-wise product of two matrixes can be defined as follows:
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Filter
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(a) Sum of the element-wise product between
a receptive field and a filter (both in yellow).
The result is written in the red square in the
output feature map.

* =

Feature Map Filter

Output
5x5x3 3x3x3

3x3

R channel Filter
G channel Filter

B channel Filter

Receptive Field

(b) Convolution in volumes. An RGB image
is convolved with a 3D filter. There is a filter
per channel and the output is a 3x3 feature
map.

Figure 2.4: Examples of 2D and a volume convolution. In this particular case, the volume
convolution is 3D.

 u1 u2

u3 u4

 ⊙

 v1 v2

v3 v4

 =

 u1 · v1 u2 · v2

u3 · v3 u4 · v4

 (2.14)

Taking the idea of equation 2.14, Figure 2.4a shows the sum of element-wise product

between a particular 2D receptive field and a filter. For simplicity, the 2D feature map is a

gray-scale image. Take into account that the size of the receptive field should be the same

as the filter. In this case, we have a n × n feature map and f × f filter, where n = 5 and

f = 3. The dimension of the output will be (n − f + 1) × (n − f + 1), therefore 3 × 3. The

∗ symbol means convolution. The operation made in Figure 2.4a is

(1 ·1)+(1 ·1)+(1 ·1)+(1 ·0)+(1 ·0)+(1 ·0)+(0 · (−1))+(0 · (−1))+(0 · (−1)) = 3 (2.15)

As the filter slides through the feature map, in figure 2.5a we can see all the convolution

of the complete 2D feature map with the filter.

The example in Figure 2.5a shows a simple case, but in reality, there are a couple of

concepts related to convolution. These concepts are padding and stride.
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(a) A complete 2D convolution is performed.
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each sum of the element-wise product is lo-
cated in the corresponding space in the out-
put feature map.
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(b) A complete 3D convolution is performed.
The volume filter slides across the volume
feature map, and each sum of the element-
wise product is located in the corresponding
space in the output feature map.

Figure 2.5: Examples of complete 2D and a 3D volume convolution.

Padding

If we see the sliding filter through the feature map, we can observe that the external pixels

of the features maps are less used than the inner pixels. However, these external pixels

have valuable information. In addition, as the convolution es performed, the size of the

feature maps decreases. For both reasons, we can add extra zeros columns and zeros rows

to the features maps’ external pixels to avoid wasting valuable information and keep the

size of the feature maps. The value of padding is represented by the letter p. There are

two types of padding:

1. Valid padding: The valid padding means no padding, i.e., no extra columns and

rows. On this case, the output will be (n − f + 1) × (n − f + 1). When we define

a model in some framework like Tensorflow or Torch, we should specify the valid
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padding because we need to say to the model that all values of the feature maps are

valid for the convolution; otherwise, the model will not take into account the more

external values.

2. Same padding: Adding padding with the purpose of keeping the size of the input.

For this particular case, the filter size is f × f with f usually odd. Consequently, the

formula to find the value of the padding is p = (f − 1)/2. In Figure 2.6 we can see a

convolution with p = 1.

Stride

As we can see in the examples, the convolution slides the filter across the feature map

at every column and row. However, what happens if we want the filter to move two

columns/rows simultaneously? or three? Here comes the necessity to define a value to the

step size through the columns and rows. This value is known as a stride. In Figure 2.7 we

can see a convolution with padding p = 1 and stride s = 2.

Finally, to find the the dimension of the output, we need to use the formula described

in Equation 2.3.1. This formula uses the floor operator.

⌊
n + 2p − f

s
+ 1

⌋
×

⌊
n + 2p − f

s
+ 1

⌋
(2.16)

Previously, the convolution has same padding, i.e., no padding with s = 1 but, if we

like to perform same padding with stride, the formula is as follows:

p = s(n − 1) − n + f

2 (2.17)

Before, we considered the most straightforward case with 2D feature maps and 2D

filters, which can be understood as a convolution over a grayscale image. However, it is

common to work with RGB images in real applications. This means that the CNN should

be able to take as input 3D images and make convolution over them.

In Figure 2.4b, we can see that both the feature map and the filter are three-dimensional,

where the feature map represents an RGB image with dimension 5 × 5 × 3, i.e., an image
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Figure 2.6: A summary of a convolution with padding is presented.

of 5 × 5 pixels with three channels. If it is taken as a volume, the dimensions represent

the width, the height, and the depth, respectively. As the number of channels is three, the

convolution needs a filter per channel. Therefore, the filter dimension is 3 × 3 × 3. Finally,

the output will be of dimension 4 × 4.

The convolution follows the same idea applied for 2D images but with the difference

that now it should work with volumes. Consequently, the 3D filter slides across the RGB

image to find the sum of the element-wise product between the filter and each receptive
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Figure 2.7: A convolution with padding and stride is presented.

field. As the filter dimension is 3 × 3 × 3, there are 27 numbers, and each one should be

multiplied by its respective one in the receptive field. The sum of the element-wise product

fills the respective space in the output. Figure 2.5b represents a complete convolution in

volumes.

In Figure 2.5b we only use one type of filter (for example, it can be specialized in

detecting vertical edges). However, in practice, it is desirable to pass not just one but

multiple filters at a time in order to extract more information about the image. As a result

of multiple filters, we will get a stack of outputs, one output by filter as in Figure 2.8.
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Figure 2.8: A convolution with two filters is presented. The outputs of each filter are
stacked to form the final output.

2.4 CNN architecture

CNNs are composed of three principal layers: convolutional (CONV) layers, pooling (POOL)

layers , and fully connected (FC) layers.

2.4.1 Convolutional layers

In Figure 2.8, there is a CONV layer with multiple filters. For simplicity, the addition of

the bias b and the application of the nonlinearity for each output have been ignored. The

bias is a real number added to each value of an output from a particular filter. Finally, the

nonlinearity function is applied to this new output. A common choice for the nonlinearity

function is the ReLU, defined as follows:

R(z) = max(0, z) (2.18)

The equation before says that all negative numbers will be changed by 0. Therefore, a

better representation of a CONV layer can be seen in Figure 2.9.
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Figure 2.9: A convolution with two filters is presented. The bias term is added to the each
output and then the ReLU function is applied. The final result is stacked in order to form
the final output.

Number of parameters in one CONV layer

As a consequence of the complete representation of a CONV layer, a question arises: how

many parameters are in a CONV layer? Remember that the CONV layer parameters are

the values of the filter, most commonly known as weights. The weights are adjusted in

the backpropagation stage. Not only the weights are parameters but the bias values. As

we can appreciate in Figure 2.9, a bias value is needed per filter. Consequently, for this

particular case, there are two 3 × 3 × 3 filters. Each filter has 27 weights and a bias value

leading to 28 parameters. Since there are two filters, this particular CONV layer’s total

number of parameters is 56.

2.4.2 Pooling layers

CNNs use POOL layers to reduce the space of the feature maps. Reducing the size of a

feature map reduces the number of trainable parameters and, therefore, the computational

overhead caused by the network’s training. POOL layers have two principal hyperparame-

ters: the size of the pooling layer filter defined by f and the stride defined by s. The most

common value for both hyperparameters is 2. Also, padding can be used, but its use is

rare. For example, in Figure 2.10, we can find the two types of pooling: max pooling and
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average pooling.
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(a) Max pooling.
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4x4
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Output
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(b) Average pooling.

Figure 2.10: Two types of figures are presented: max pooling and average pooling.

Figure 2.10a shows a max-pooling operation over a 4 × 4 feature map. With f and

s equal to two, max-pooling takes the maximum value of each group and fills the corre-

sponding space in the output feature map. The maximum value indicates that there is a

strong feature on this pixel that helps to make the right object recognition. On the other

hand, in Figure 2.10b there is an average pooling. As its name says, it takes a region of

pixels and computes the average of its values. Actually, max pooling is often used because

it has been shown to work better than average pooling.

2.4.3 Fully connected layers

These layers are used in the final part of CNNs. FC layers are similar to the layers in

the traditional ANNs, and therefore, each neuron is connected to all the neurons from the

previous layer. If the previous layer is a volume, a squeezing of the volume is performed,

and the dimension is converted to 1 × 1 × n, where n is the depth of the volume. The

final FC layer will be of dimension 1 × 1 × n, with n in this particular case as the number

of classes. The neurons on this layer are in charge of giving each class scores to make the

final classification.

The overall architecture of a CNN can be seen in Figure 2.11
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Input layer Convolutional layers Fully connected layers Output layer

Figure 2.11: A CNN is presented. It is composed by the input layer, the convolutional
layers, the fully connected layers and the output layer. Pooling layers are implicity next
to the CONVs.

2.5 Convolutional neural networks from the begin-
ning to VGG

CNNs are a particular class of ANNs widely used in computer vision systems and image

processing. The base of CNNs is a mathematical operation called “Convolution”; therefore,

their name. In the last decade, notably, CNNs have been one of the most studied areas

leading to the fast development of new states of the art in different image processing tasks.

Thus, the CV field became one of the most developed in AI. Contrary to what many people

may think, CNNs have been used since the eighties, not in the same way we know them

today, but with the main concepts. Furthermore, if we go further back, we can notice

that CNNs inspiration came from biology. Next, we will present some of the most relevant

works related to the development of CNNs over time.

2.5.1 Simple and complex cells

David Hubel and Torsten Wiesel, in their work called “Receptive Fields of Single Neurones

in the Cat’s Striate Cortex” [26], present two types of cells: simple and complex. They

said both are used in pattern recognition in human vision, but they have a fundamental

difference. Simple cells can detect edges and bars in a specific orientation in a specific

part of the scene. Complex cells can do the same but with an extra advantage: they can

detect edges and bars in a specific orientation but any location of the scene. We can call

the location receptive field. For example, a simple cell can respond to vertical bars in the

superior part of the scene. However, a complex cell can detect all the vertical bars in the

superior, inferior, or central part of the scene. This property of complex cells is known as
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“spatial invariance”.

Hubel and Wiesel, in the second part of their study in 1962 [27] showed that the spatial

invariance is gotten by making a sum of the output of the simple cells, all of them with

a particular orientation but with different receptive fields. In this way, the complex cell

acquired the capacity to respond to any receptive field from anywhere. This simple concept,

i.e., summing individual outputs from simple cells to give complex cells the ability to see

anywhere, is the basic idea in CNNs.

2.5.2 Neocognitron

In 1980, the japanese scientific Kunihijo Fukushima, in his work called “Neocognitron: A

self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected

by Shift in Position”[28] presents a neural network applied to pattern recognition inspired

in the visual nervous system described by Hubel and Wiesel. Fukushima designed two

types of layers: the first one is composed of “S-cells,” and the second layer is composed

of “C-cells”, both with the same function as the simple and complex cells described by

Hubel and Wiesel years before. The cells are nothing more than mathematical operations.

He made a simulation in a digital computer to present a set of stimulus patterns to the

neural network. The first layer was composed of S-Cells and the last two layers of C-cells.

A particular stimulation produces an output in a unique C-cell of the output layer, and

this C-cell only will respond to this particular stimulation. The principal idea behind the

neural network is to reflect the concept of going from simple to complex applied to an

intelligent model for pattern recognition.

2.5.3 From invariant recognition to convolutional neural net-
works: LeNet-5

The Ph.D. Yann Lecun presented the first CNN called LeNet-5 applied to document recog-

nition. It was developed from 1989 to 1998 with minor improvements each year applied

to different tasks like recognizing handwritten characters, special-purpose chip (ANNA),

and reverse time-delay neural net. In 1989, Lecun became interested in how to solve the

problem of invariant visual perception. He demonstrated that local connections and shared
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weights improved the neural network’s performance in general. He called “Convolutional

Neural Networks”, the networks optimized by local connections and shared weights. In

1993 Lecun made the presentation of the early version of LeNet for character recogni-

tion. In the subsequent years, Lecun continued conducting some studies and experiments.

Finally, in 1998 he presented his work named “Gradient-Based Learning Applied to Doc-

ument Recognition” [29] where he designed a multilayer neural network trained with a

backpropagation algorithm applied to standard handwritten digit recognition. The neural

network was called LeNet-5, and also, it was inspired by the Neocognitron. Lecun preserves

the idea presented by Fukushima, adding simple features to more complex features using

complex cells to enhance the performance of handwritten character recognition. The CNN

was trained on the MNIST dataset, and it beats other digits’ contemporary classification

methods. The architecture of LeNet-5 is Conv-Pool-Conv-Pool-FC-FC layers with a total

of sixty million parameters, and it can be seen in Figure 2.12.

Figure 2.12: LeNet-5 architecture for digits recognition [29].

2.5.4 Convolutional neural networks from 1998 to 2010

In this period, computer sciences continue to apply simple CNNs to different simple tasks.

In general, the progress of CNNs was slow due to limited available hardware and data

to train the models. As time passed, cheaper cameras and cell phones appeared, making

more images available to form extensive datasets. In 2005 appears, the PascalVoc dataset

[30] with twenty thousand images with twenty different tasks. Five years later, i.e., in

2010, the PascalVoc team feat other collaborators presented the ImageNet dataset [31].

Nowadays, this dataset has approx 15 million images. At the same time, more powerful

CPUs and GPUs appears oriented to train CNNs. The improvements in datasets and

hardware became CNNs more interesting for researchers. In 2010, Dan Claudiu and Jurgen

Information Technology Engineer / Mathematician23 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Schmidhuber, in their work called “Deep Big Simple Neural Nets Excel on Handwritten

Digit Recognition” [32] present the first neural network trained on a GPU. The GPU was

the NVIDIA GTX 280, and nine layers formed the neural network. Therefore, a new era

started for the CNNs.

2.5.5 AlexNet, 2012

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton presented their paper called

“ImageNet Classification with Deep Convolutional Neural Networks” [33]. Their design

is an eight layers CNN composed of five CONV layers (some of them followed by POOL

layers) and three FC layers. The final FC layer has one thousand outputs, the number of

classes of the ImageNet dataset. AlexNet achieved a 17% error rate on this dataset, an

important improvement concerning the previous state of the arts. It was the first time

a deep CNN with sixty million updatable parameters was presented. Some of the most

important features of this network are the presence of non-saturating neurons, very efficient

implementation of the convolutional operation, dropout method to avoid overfitting in the

FC layers, ReLU as non-linearity for the activation, and overlapping max pooling. The

training was able using NVIDIA GTX 580 GPUs. It is important to take into account

that before AlexNet, the standard activation function was f(x) = tanh(x) or f(x) =

(1 + e−x)−1. Both are known as saturating nonlinearities and they are slower than non-

saturating nonlinearity f(x) = max(0, x). Therefore, the neurons called ReLUs are faster

than other ones computed with for example f(x) = tanh(x). The AlexNet architecture

can be appreciated in Figure 2.13.

Input layer Convolutional layers
Fully connected 

layers
Output 

layer

227x227x3

55x55x96 27x27x256
13x13x384 13x13x384 13x13x256

4096 4096 1000

Figure 2.13: AlexNet architecture with eight layers: five convolutional layers and three
fully connected layers.
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All these improvements and the performance of AlexNet meant the beginning of a new

era for CNNs. With more large available datasets, and faster GPUs, the need to apply

CNNs to the real world induced the look for new models with more advanced optimized

techniques.

2.5.6 VGG

Karen Simonyan and Andrew Zisserman from Oxford University 2014 presented a work

called “Very Deep Convolutional Networks for Large-Scale Image Recognition”[34] which

focused on the design of the CNN. The main idea is to show that the depth of a CNN is

critical to get better accuracies. They increased the depth of the CNN by adding more

CONV layers. To avoid the loss of the spatial size volume on each layer, they use 3 × 3

filters in stacked CONV layers of two and three. It is different from AlexNet, where we

have 11×11 filters. Putting staked CONV layers of two and three CONV layers with 3×3

filters, we can get a similar behavior as using large receptive fields like 5 × 5 and 7 × 7,

respectively but with the advantage of getting depth in the model. In addition, we can

use one ReLU for each CONV layer. The architecture is generally homogeneous, doubling

the number of filters after each maxpool layer. Finally, they present the following models:

VGG-11, VGG-13, VGG-16, and VGG-19. The architecture won the ImageNet challenge

in 2014 with an error rate of 7.3%, becoming state of the art. Some facts to consider on

VGG are an increase in the number of parameters up to 140 million and the size of the

model to 46.6MB (AlexNet has only 1.9MB). Finally, an important fact presented in the

paper is that VGG-19 only performs a minimal improvement in the accuracy of the model;

therefore, after VGG-16 the accuracy of the model stays saturated. This fact became the

starting point for new researchers to give a solution to the problem that from VGG-16 it

was impossible to increase the accuracy of increasing the depth of a CNN. The architecture

of VGG-16 can be seen in Figure 2.14.
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Figure 2.14: VGG-16 architecture [35].

2.6 ResNet: the way to effective deeper CNNs

2.6.1 The problem

As we said before, the CNNs faced a principal problem: deeper architectures began to be

saturated in terms of accuracy. It was not enough anymore to add more CONV layers to the

network to get more accuracy even when Karen Simonyan and Andrew Zisserman [34] had

shown that depth is a critical factor in the design of an accurate CNN because deeper layers

can extract complex features. As a consequence, Kaiming He, Xiangyu Zhang, Shaoqing

Ren, and Jian Sun, in their work called “Deep Residual Learning for Image Recognition”

[36] addressed the following question: “Is learning better networks as easy as stacking more

layers?”. It was clear that stacking more and more layers was not useful anymore because

it does not increase, and contrary, it begins to drop at a certain point in the training.

Some facts that showed the above behavior were that CNNs were hampered by problems

related to vanishing/exploding gradients, leading to avoiding convergence. However, van-

ishing/exploding gradients were solved in some works using normalized initialization and

intermediate normalization layers, allowing the models to converge for stochastic gradient

descent (SGD) and backpropagation.

Although resolving the problem of vanish/exploding gradients, He et al. [36] observed
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that the accuracy in the training dataset dropped in models with more layers. The graph

presented in Figure 2.15 shows this phenomenon.

Figure 2.15: Deeper plain networks error rate [36].

Note that the authors of the paper began to distinguish between CNNs given the name

of “plain network” to the ones similar to the VGG architectures. Continuing with the idea,

they noticed that when deeper models were able to start converging, a degradation problem

appeared. This problem leads to the saturation of the accuracy in the training dataset, but

they affirm it is not caused by overfitting. They adduced that the graph can appreciate a

high training error, not only a high test error. In other words, if it was overfitting, there

should only be a high test error, not a high training error.

Deeper CNNs having higher training errors than shallower CNNs is counterintuitive.

The theory holds that deep CNNs can extract complex information from the data. There-

fore, very deep CNN should be more accurate. They make the following assumption.

Suppose there are two plain CNN of deep a and b layers, respectively, with a < b. If the

error of the first CNN, i.e., the CNN of depth a, is e, the error of the deeper CNN should

be at least the same or better as the first one. Of course, the deeper network is composed

of a + (b − a) layers. As the error of the shallow network is e, the rest of the network, i.e.,

(b − a) should keep the same error as an identity function (if the network does not need

more learning) or smaller because theoretically, this part of the network is in charge to

learn complex features and therefore, get better accuracy. However, the reality is that the

error begins to increase in the (b − a) part; therefore, a worse accuracy in gotten shown in

Figure 2.16.
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Figure 2.16: Deeper networks error in the training dataset. In theory, as more layers, less
error rate. However, from a certain number of stacked layers, in reality, the error rate
begins to increase.

2.6.2 Deep residual learning framework as a solution to the degra-
dation problem

He et al. [36] presented ResNets as a solution to the degradation problem. They realized

that the deeper layers were not identity mapping. They called “identity mapping” the

ability to maintain at least the same error across the deeper layers like an identity function

avoiding hurt performance. Therefore, it would be the desired underlying mapping. Instead

of waiting for the layers to fit the desired underlying mapping, the authors explicitly let the

layers fit a residual mapping. Figure 2.17 and some mathematical formulas let us explain

this new approach.

Figure 2.17: Residual learning: a building block [36].

Lets denote the desired underlying mapping of a few stacked layers as H(x) with x as

the inputs to the first of these layers, and F(x) = H(x) − x as another mapping fitted
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by the same stacked layers. F(x) can be defined as the residual mapping. Thus, the

original mapping is recast to H(x) = F(x) + x. It is better to try to convert the residual

function F(x) to zero and add to it the identity x rather than let the stacked layers

approximate the original H(x) by themselves. As we see in Figure 2.17, x is the identity

copied from the input of the first stacked layer to the last. It is called shortcut connections

or skip connections, and they are an important part of addressing the desired mapping and

avoiding layers that can hurt performance.

A mathematical formulation to define a building block is as follows:

y = F
(
x, {Wi}

)
+ x (2.19)

On this formula, x and y are the input and output vector of the stacked layers and

F
(
x, {Wi}

)
(2.20)

represents the residual mapping. The building block presented on Figure 2.17 can be

formulate as

F = W2σ (W1x) (2.21)

with σ as ReLU activation function. Here, biases are omitted to avoid complexity.

Finally, F +x represents the operation performed by the shortcut connection and element-

wise addition. Then, the second nonlinearity is performed. Graphically, this building block

can be represented as in Figure 2.18.

CONV2D CONV2D
Batch
Norm

Batch
Norm

ReLUReLU +

x (shortcut)

x

Figure 2.18: Residual learning: a building block.

This building block is composed of two stacked layers with an identity shortcut. On

Equation 2.19, F and x must be of the same dimension but it is not always possible. A

solution is to perform a linear projection WS by the shortcut to make a match between the
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input and output dimensions. This is known as a projection shortcut, and the equation is

as follows:

y = F
(
x, {Wi}

)
+ Wsx (2.22)

After applying the above equation, we can get the building block in a 3 stacked layer

as is present in Figure 2.19.

CONV2D CONV2D
Batch
Norm

Batch
Norm

ReLUReLU +

x (shortcut)

x

CONV2DCONV2D
Batch
Norm

Figure 2.19: Conv Block.

Any advantage is gotten if a building block is composed of a unique layer. For this

reason, the most common building blocks are composed of two and three layers. Next,

a Resnet with 34 layers is presented in Figure 2.21 with its counterpart, a 34-layer plain

network, and VGG-19. The objective of the Figure 2.21 is to show the difference between

a residual and plain network as well the identity shortcuts (solid lines) and the projection

shortcuts to make a match between the input and output dimensions (dotted lines). It is

essential to say that another way to match input and output dimensions in a building block

is by adding extra zeros without introducing extra parameters. In both cases, a stride of

two is used across features maps.

After applying the residual blocks in deeper CNNs, a significant improvement was made.

Figure 2.20 shows a comparison of the error rate between plain networks and CNNs.

2.7 Training a CNN

Training a CNN can be quite a challenge because it depends on several factors like the

nature of the problem, the availability of sufficient data, a DL model capable to performs

the learning in a proper way, some hyperparameters which need to be fine tuned, complexity

of the task to be solved, the hardware infrastructure to make the trainings (specially
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Figure 2.20: ResNet error improvement in the training dataset with deeper layers [36].

powerful GPUs and storage capacity), and other factors that may appear in the training

and testing of the CNN. In general, the training of a CNN follows the same guideline

presented in section 2.2.2 which refers to the training of an ANN.

2.7.1 Datasets

The datasets are a fundamental part of the training of a CNN because, depending on the

data, the model would be capable of learning the desired task. Basically, the dataset is a

set of samples as was described in Equation 2.1.

Types of datasets

1. Public datasets: This dataset type is available on platforms like GitHub, Google

Drive, DropBox, and Kaggle. In general, these datasets are released by the scientific

community to let the computer science community give solutions to general problems

like image classification, object detection, panoptic segmentation, image segmenta-

tion, etc. Thanks to these datasets, significant advances have been made in CV,

such as the availability of pre-trained models to perform transfer learning. Among

the most important, we can find ImageNet, CIFAR 10 and CIFAR 100, COCO, and

MNIST. In addition, these datasets often are used as benchmarks to test different

improvements and techniques in DL models.

2. Custom Datasets: They are used to train models to solve specific problems. Some-

times, we need to make a model specialized in a particular task, and there are no
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Figure 2.21: Plain and Residual Networks [36].
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available public datasets to satisfy it. For example, suppose we need a model capable

of recognizing dogs and their breed. For this particular task, we need to form a

dataset with images of different breeds of dogs to let the model learn specific features

related to the breed of dogs.

Techniques to prepare a dataset

1. Dataset labeling: When we construct a custom dataset, it is necessary to assign

labels to the samples. This task can be difficult depending on the size of the dataset

if we do not use suitable tools. For example, if we use the image viewer of Windows

or Ubuntu and manually copy and paste the images to each folder class, the labeling

of the dataset would be stressful. Therefore, it is preferable to use publicly available

tools to make the labeling task. Some helpful tools are IBM Cloud Annotations1

and VGG Image Annotator2. However, there are cases when we need to do complex

labeling. For example, imagine you need to label a dataset to identify sex in pedes-

trians. Some features to make a difference between males and females are personal

objects and clothes. In this particular case, we need to assign many labels to the

same image, and finding a public tool to perform this task can be difficult. For this

reason, it is preferable to develop a custom app with an image viewer and a check

options component to assign the labels. The simplest way to do this custom app can

be using Python and a library like PySimpleGUI3.

2. Dataset cleaning: It is necessary, primarily when we use public datasets because

they can have images wrong labeled, images with low resolution, or noise which can

hurt the learning and performance of our model. It is common to reassign images to

another class in a cleaning process and remove some of them. This task can be done

using some of the tools described above.

3. Data augmentation: This is useful when there is not enough data to train a CNN.

Some techniques applied to make data augmentation are rotations, flips, crops and

random crops of the images, change illumination, and saturation of the images or a
1https://cloud.annotations.ai
2https://www.robots.ox.ac.uk/ vgg/software/via/
3https://pysimplegui.readthedocs.io/en/latest/
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combination of them. We can identify two principal types of data augmentation:

• The data augmentation is made at running time each time a batch of images

enters the CNN without storing the images. It can be done with the transforms

package in PyTorch.

• The data augmentation performed before the training where each image pro-

duced by the data augmentation techniques is stored to increase the size of the

dataset.

Dataset splitting

In order to train the model, it is necessary to split the dataset in three parts:

1. Training dataset: This dataset will contain the images used by CNN to learn

features.

2. Validation dataset: We need a validation dataset to ensure the CNN is learning and

to prevent overfitting, i.e., the model should be capable of generalizing the learning

to new images that it has never been seen. The validation dataset enters the CNN

at the final of each epoch. The computing of the accuracy and loss in the validation

dataset compared with the accuracy and loss in the training dataset will show if there

is overfitting.

3. Test dataset: This dataset is used to test the model. CNN has never seen the

images in this dataset, and testing the model on these images is an excellent way to

know if the model can generalize or not the learning to new images.

It is common to split the dataset as follows: 80% for the training dataset and 10% for

both the validation and test dataset. The percentage can be changed depending on the

size of the dataset.

2.7.2 Deep learning frameworks

A framework in computer science is a platform provided with the necessary tools to speed

up development. In the case of DL, the frameworks will contain libraries to work with
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images, download pre-trained models, do training, construct custom CNNs, analyze results

and, in some cases, deploy models to production. The most used Deep Learning frameworks

are TensorFlow by Google Inc., PyTorch by Facebook, Keras, MXNet, and NVIDIA TAO

toolkit.

2.7.3 Training approaches

Training a model from scratch

Training a model from scratch is suitable when we have enough data to ensure the learning

in the CNN. In this approach, the parameters like the weights and bias are randomly

initialized, and then they are updated in the training to learn about the data. We can

use standard CNNs (like VGG or ResNet) available in the repository of the framework or

ensemble a custom CNN.

Transfer learning

Transfer Learning is a method based on using a pre-trained model in a new task related

to the original one used to train it. A great example is the ResNet classification models

available in the PyTorch Hub repository. These models were trained in the ImageNet

dataset to perform classification in one thousand classes. These classes are common real-life

objects like animals, means of transport, cookware, etc. Resuming the example proposed

in the section of custom datasets, we can use a ResNet pre-trained model to specialize it

to recognize breeds of dogs. There are two type of transfer learning:

1. Fine tuning: In fine-tuning, we train the pre-trained model to specialize it to the

new custom task updating the parameters (weights and biases) of all or some layers.

To keep the weights unchanged of some layers, we freeze them. If we want to update

the weights in the new training, we should unfreeze the desired layers. The idea of

freezing and unfreezing layers is the basis behind fine-tuning.

2. Feature extractor: In this transfer learning, we use the feature extractor provided

by the pre-trained model to get meaningful features from the new dataset. In addi-

tion, a new classification layer is added to the top of the pre-trained model to take the

features and make the predictions. The classification layer is trained from scratch.
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The use of fine-tuning or feature extractor will always depend on the complexity of the

new task. Sometimes, the feature extractor of the pre-trained model can be sufficient to

make transfer learning, and sometimes it will not be sufficient, and we have to update the

parameters of the layers with fine-tuning.

2.7.4 Hyperparameters

The hyperparameters are parameters selected by the user before the training, and they are

not upgradeable. For example, in the training of a CNN, the principal hyperparameters

are:

Number of epochs

The number of epochs is the number of times the entire training and validation dataset

will pass across the CNN.

Batch size

Often, it is impossible to pass all the images to CNN in one go. Therefore, the dataset

should be divided into groups of images called “batches”. As a result, the batch size is

the number of images entering the CNN by batch. The batch size depends on the GPU

capacity in terms of memory and computation capacity, affecting the total time of training.

Loss function

The Loss Function is in charge of indicating how far the predictions from the real labels

are. The most used is cross-entropy defined in section 4.1.4.

Optimizer

The optimizer is used to make the cost function converge to a global minimum. There are

many optimizers like SGD, ADAGRAD, ADAM, and RMSprop.

Learning rate α

If we remember the Gradient Descent optimization presented in section 2.2.2, we can notice

the presence of parameter α. This parameter α is called learning rate. The learning rate
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will determine how much to update the weights and biases in the backpropagation stage. A

common value to the learning rate is α = 0.001 . In addition, sometimes, it is desirable to

manage a dynamic value for the learning rate as the number of performed epochs increases

to improve the adjusting of the parameters after a certain number of epochs. This means

that we can decrease the learning rate value in a γ value after s number of epochs. The

s number of epochs is called step size. The assigning of dynamic learning rate can be

performed using a learning rate scheduler that receives as parameters s and γ. Some

common choices for both hyperparameters are s as the third part of the number of epochs

and γ = 0.1 Taking α(0) = 0.001 and γ = 0.1, the new learning rate α(1) after s number of

epochs will be computed as follows:

α(1) = α(0) · γ (2.23)

α(1) = 0.001 · 0.1 (2.24)

α(1) = 0.0001 (2.25)

2.7.5 Analyzing results

The analysis of results lets us understand the performance of a CNN model once the

training is over. Next, we will explain a set of tools that will allow us to analyze the

performance of a model.

Confusion matrix

A confusion matrix is a graph used to visualize the performance of a model trained with su-

pervised learning. It is similar to a table where each cell is filled with numbers correspond-

ing to the comparatives between the true labels and predicted ones. The comparatives

are the true positives (TP), true negatives (TN), false positives (FP), and false negatives

(FN). An example of a confusion matrix is presented in Figure 2.22.

Metrics

The metrics are formulas used to measure the performance of a particular model based on

the results obtained in the test dataset. Metrics show us how good or bad is a particular

Information Technology Engineer / Mathematician37 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

TP FP

FN TN

Positive

Negative

Positive Negative

Actual Values

Pr
ed

ic
te

d 
V

al
ue

s

Figure 2.22: A confusion matrix for two classes is presented. We can see the TP, TN, FP
and FN.

model overall and per class. In general, metrics use the information provided by the

confusion matrix.

1. Accuracy: The accuracy is the percentage to represent the correct predictions. It

is defined as follows:

accuracy = all correct predictions
all samples = TP + TN

TP + FN + FP + TN
(2.26)

2. Precision: It indicates how many predictions were correct. The precision formula

is defines as follows:

precision = TP

TP + FP
(2.27)

3. Recall: The recall metric tell us what proportion of the true positives where correct.

The formula is:

recall = TP

TP + FN
(2.28)

4. F1-score: It is very used when there is an imbalance in the dataset. It is a com-

bination of the precision and recall metrics. Formally, we say that the F1-score is

the harmonic mean between the precision and recall. One crucial fact is that these

metric considers how many errors the model has per class and its influence on the

final performance of the model and not only the number of absolute right or wrong
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predictions. The formula for F1-score is:

F1-Score = 2 · Precision · Recall

Precision · Recall
(2.29)

Additional tools to analyze results

It is said in the CV community that a CNN is similar to a black box where we cannot see

what is happening inside it and how the predictions are performed. To make CNNs more

understandable, we can make plots about some principal components in a convolution.

1. Plotting filters and feature maps: In summary, we can say that plotting the

filters is equivalent to plotting the weights as pixels. The feature maps are the

images produced after applying a particular filter. These plots let us understand

that some filters specialize in identifying particular features in an image, like vertical

or horizontal borders. After being applied to the feature map, they can activate

particular zones of the image that will contribute to making the final predictions.

Most of the time, filters and features maps can be abstract to understand.

2. Gradient-weighted Class Activation Mapping (Grad-CAM): This technique

was presented in a work called “Grad-CAM: Visual Explanations from Deep Networks

via Gradient-based Localization”, and it is explained as – Gradient-weighted Class

Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’

in a classification network or a sequence of words in captioning network) flowing

into the final convolutional layer to produce a coarse localization map highlighting the

important regions in the image for predicting the concept [37]. In simple terms, the

Grad-CAM will let us plot the images as heatmaps where the zones of the image that

more contribute to the prediction will be highlighted.

All the ways to analyze results described in this section will be used in Chapter 5.
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Chapter 3

State of the Art

As soon as the pandemic hit the globe, research works related to the generation of datasets

containing images of face masks were released to the CV community. However, before

the pandemic, there was an active research field studying the detection of face masks and

related datasets formation. In addition, some papers put special attention on occluded faces

(i.e., detecting any face containing accessories like sunglasses, face masks, and partially

visual faces). In the following subsections, related works on the topic are outlined.

3.1 Face and face-mask datasets

3.1.1 Face datasets

They are specialized datasets used to train models that detect faces on images or frames of

a video. WiderFace is one of the most extensive datasets oriented to CV tasks on human

faces [38]. The dataset was presented in 2016, and it contains 32203 images with 393703

face labels. It inherits images from the extensive Wider dataset.

Another important dataset is face detection dataset and benchmark (FDDB) [39]. FDDB

was published in 2010, and it contains the annotations from 5171 faces in 2845 images.

The dataset was generated using real-life scenarios like occluded faces. FDDB has been

one of the pioneer datasets in the topic.

Annotated face in-the-wild (AFW) is composed of 205 images with 468 faces. It was

released in 2012 as a part of the work in face detection and pose estimation [40].
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3.1.2 Face-mask datasets

Researchers have already addressed an important challenge in face detection: occluded

faces. Years before the pandemic, the CV community had been trying to generate a stan-

dard dataset oriented to accomplish this task without success. Notwithstanding, one of the

most relevant datasets is called MAFA, which was published in 2017 with 30811 images

downloaded from the internet, containing 35806 masked faces annotations [41].

Figure 3.1: Several pictures obtained from the MAFA dataset that includes general occlu-
sions considered as masks [41].

On each image is at least one face occluded with a mask. This dataset’s labels only

indicate if there is an occlusion in the face, rather than telling if a facial mask is appropri-

ately placed. The COVID-19 pandemic demands special attention to creating new datasets

representing modern COVID-19 face masks scenarios, either real or virtual. In this con-

nection, MaskedFace-Net was released in 2021 to solve the lack of large mask datasets

[42]. It comprises 137016 editable images (i.e., masks added to faces through photo edition

programs), with two classes: “correctly masked dataset”, and “incorrectly masked face

dataset”.

Additionally, work [43] introduced three datasets: the Masked-Face Detection Dataset

(MFDD), the Real-World Masked Face Dataset, and the Simulated Masked-Face Recog-

nition Dataset (SMFRD) having 24771, 95000 and 500000 images respectively. MFDD

contains images crawled from the internet, and the labels are only if the subjects wear

masks. RMFRD is the world’s largest dataset of real-world masked faces according to

authors. The dataset contains 5000 images, 525 images of people using mask, and 90000
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images of real people without masks. The dataset is free and available in GitHub. However,

the dataset has also some faces wearing masks inappropriately. So, a future classification to

train the model in order to recognize this new class might be developed. Besides, SMFRD

contains real face images with facial masks added artificially to simulate faces wearing

masks; only one part of this dataset is publicly available for download.

Figure 3.2: Image extracted from the RMFRD dataset showing 4 pictures of different
persons using masks [43]

Finally, the Moxa3k dataset [44] contains images captured from Russia, Italy, China,

and India during pandemic. The dataset has 3000 images in total. The number of faces

that can be extracted from the dataset is 9161 without masks; 3015 masked.

3.2 Relevant face detection models

Through the years, multiple research works have been presented on face detection. One

of the most influential works is the paper presented by Paul Viola and Michael Jones [45].

The model was based on rapid object detection using a boosted cascade of simple features.

The Viola and Jones proposal is known worldwide for being the first CV model that em-

ployed a rudimentary ML technique known as boosted decision trees. The central idea was

to create an algorithm capable of recognizing faces and drawing a box around them. With
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Figure 3.3: Pictures extracted from the Moxa3k database: a) Blurred faces b) top angle
camera view c) rotated face d) crowded image e) foggy environment f) sunny day faces
[44].

the advent of CNNs, the face detection error decreased significantly [46, 47]. Subsequently,

DL research accelerated its pace, and novel deep neural networks architectures were pro-

posed to tackle the face detection problem. The main advantage of using DL architectures

is the increased accuracy of the models. In [48], the authors used a faster region-based

CNN framework to perform face detection. The latter work obtained the state-of-the-art

face detection performance on the FDDB benchmark.

Refine Face: A face detection improved model that is based in ResNet with 6-level

feature pyramidal structure used as the base of the network [49]. RefineFace is also based

on face detector RetinaNet with five newly modules: STR, STC, SML, FSM, and RFE.

Results varying the modules are presented in the paper having accuracy near and above

90%. A diagram of the model is presented in Figure 3.4.

Face detection using improved TinyYOLOv3 and attention mechanism: The necessity

for a model to detect faces in a complex background and the long time it consumes are

reasons the authors take to present a new algorithm. It is composed of an improved TinyY-

OLOv3 capable of extracting significant semantic information by changing the traditional

convolution by deep separable convolution, i.e., dividing a single convolution into two or

more parts to get a model of less size and with high detection speed. Also, the attention

mechanism is added to the feature extractor layers to improve the detection position [50].
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Face Detection Algorithm Based on Double-Channel CNN with Occlusion Perceptron:

This method used a VGG16 as a backbone with the addition of a specialized unit to judge

occluded areas becoming an occlusion perceptron neural network. The double channel

makes reference to the capacity of the residual network to extract features of the whole

face while the perception neural network extracts the features of the occluded parts. Both

results are combined to produce the final prediction. In addition, this method improves

detection speed and accuracy [51].

Figure 3.4: RefineFace structure. Modules, SML and FSM are only involved in training.
STC, STR and RFE introduce a small amount of overhead in the model [49].

3.3 Face mask detection and classification for COVID-
19

Multiple DL models were released from the beginning of the COVID-19 pandemic with

different approaches to solve the face mask detection and classification challenges. For

example, in [14], the authors propose a hybrid model using DL and classical ML. The first

part uses a ResNet-50 architecture as a feature extractor, while decision trees and sup-

port vector machines are used to classify the position of the masks. Similarly, in [15], the

authors presented a model capable of identifying face mask-wearing conditions by combin-

ing super-resolution images and classification networks such as SRCNet. Also, the use of
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Resnet-50 as a feature extractor and YOLOv2 as a detector has been recently proposed [10].

In [52] proposed the so-called FMD-Yolo framework to detect whether people wear

masks in public spaces correctly. This framework employs Im-Res2Net-101 and path ag-

gregation network En-PAN for the steps of feature extractor and feature fusion, respec-

tively. They test their approach against several state-of-art detection algorithms using two

publicly available datasets. Their results on both datasets outperform the works that were

compared.

Faster R-CNN-based: The author employed a faster method based R-CNN structure

[53]. This new method allows the detection of complex faces poses, beard faces, differ-

ent types of masks, and images of people using scarfs. The accuracy of detection for the

method is 93.4%.

Context-Attention R-CNN-based is another detection method that shows a new frame-

work used in masked faces recognition [54]. The method is based in multiple context feature

extractor components, decoupling branches component, and attention components. Also,

the detection method researches created a dataset with 8635 faces in different experimental

conditions. The mean average precision (mAP) for the model is 84.1% over the dataset

before mentioned, 6.8% mAP higher than Faster R-CNN. An overall schematic of the ar-

chitecture is observed in Figure 3.5.

MobileNet-based: Dey et al [55] show a deep learning method that has multi-phase facial

mask detection. The classifier depends on ResNet-10 and ROI detection. The model re-

quires minimal processing capability and has a lightweight model. Also, the MobileNet-V2

is a good option for embedded systems.

Neural Network + Hand-crafted Feature: This classification method is an hybrid of

deep learning and machine learning with the purpose of detecting facial masks. The model

is based on two components: ResNet-50 that is the feature extractor, and SVM. The SVM

classifier achieves accuracy of 99.49% on the dataset the author used [14].
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Figure 3.5: Context-Attention R-CNN-based model schematic: In the left, the region
proposal module outputs some class-agnostic region proposals. At the right, the decoupling
classification-localization branches, which consists of an effective attention module and also
three fully-connected layers. They predict the classification scores and localization offsets.
Finally, Non-Maximum Suppression(NMS) method is applied and the final results can are
obtained [54].

Face Mask Recognition Network (FMRN): This detection model uses an algorithm to

classify images by posture recognition. Then, the network process the images according to

the classes [56]. A design of the architecture used in this method can be observed in Figure

3.6. Also, daytime and nighttime settings were used to train the network. The accuracy

in daytime was 95.8%. The accuracy in nighttime was 94.6%. The processing time for

a single face was around 1.826 seconds in daytime, and 1.791 seconds in nighttime. This

processing time might vary depending of the hardware used.
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Figure 3.6: FMRN architecture has a total of eleven layers except for the input layer and
the output layer. The input layer receives an image of size 100×100×3 (because RGB
channels). The middle part of FMRN model serves as feature extraction that has four
convolutional layers and four pooling layers which are alternatively arranged. Each layer
has its own training parameters. Also, each layer contains multiple feature maps [56].
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Chapter 4

Methodology

Before beginning a Computer Vision project, it is important to set the guidelines to follow

in order to achieve the objectives and satisfy the requirements. Therefore, Figure 4.1 shows

the workflow followed to develop the two-stage pipeline to detect the incorrect use of face

masks for COVID-19 awareness. As the pipeline consists of two tasks: the detection of

faces and the classification of them according to the covid mask-wearing, two DL models

are needed. The detection model to be used is the pre-trained RetinaFace. For the classi-

fication, different ResNet architectures will be trained to get two classification models: the

first one to work with two classes (compliant and non-compliant) and the second to work

with three classes (compliant, non-compliant, and incorrect). The datasets used for doing

the training are the FMLD and MMD, which will be introduced in the following sections.

MMD is used to complement the incorrect class dataset in the three classes classification

model.

4.1 System design

4.1.1 The datasets used to train the proposed model

WiderFace dataset

This dataset was presented in the work “WIDER FACE: A Face Detection Benchmark”

[38] and it was used by the authors of RetinaFace to produce the face detection model.

WiderFace is a public dataset that has been previously used to train alternative face

recognition models. Some important features of this dataset are challenging faces due
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Figure 4.1: Workflow followed to develop the two-stage pipeline to detect the incorrect use
of face masks for COVID-19 awareness .

to the presence of faces of different dimensions, poses, expressions, illumination, make-up,

resolution, scale, and occlusion (See Figure 4.2). This fact closes the gap between real-world

requirements and the available faces dataset. In addition, Wider Face is one of the most

extensive publicly available datasets, becoming a benchmark in the face detection model

task. Moreover, the dataset offers additional information like bounding boxes coordinates,

categories, poses, and occlusions. This dataset is based on the WIDER dataset, and it has

32.203 images with 393.703 labeled faces with different poses, occlusions, and sizes [57].

Face-mask label dataset (FMLD)

This dataset is used in our model to detect the correct or incorrect use of face masks from

the images obtained from the face recognition task using WiderFace. FMLD was first pre-
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Figure 4.2: WiderFace dataset images with different features [38].

sented in work [11], where the authors released the dataset with bounding box annotations

around face masks. This dataset has labels of images with faces with i) appropriate and ii)

inappropriate use of COVID-19 masks. It is worth noticing that the masks used during the

COVID-19 pandemic come in different shapes, colors, models, and patterns, and it requires

an updated dataset to cover all those instances. The FMLD dataset takes images from two

datasets donators: MAFA [41], and WiderFace [38]. The MAFA dataset is the principal

source of correctly and incorrectly worn face masks. In contrast, the WiderFace dataset

is used as the source of different images with faces without masks. Therefore, the FMLD

dataset contains a realistic set of images of faces with and without COVID-19 masks in

Information Technology Engineer / Mathematician51 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

different situations in real life. The FMLD dataset gives information such as the dataset

donator, the folder and file name, the label (mask or no mask use) and the coordinates of

the pixels where the face is located. Another important feature about FLML dataset is the

variety in terms of the gender of the subjects, the pose of the face and the ethnicity of the

subjects. This helps the DL models to learn a diversity of features present in real-world

images. The proportion of each group is shown in Figure 4.3.

Figure 4.3: FMLD dataset proportions according to gender, pose and ethnicity of people
[38].

FMLD dataset was used to train and test the different face mask detection DL models

studied in this article. Figure 4.5 presents a subset of examples of the class “compliant”,

where a correct use of face mask is shown; whereas Figure 4.6 shows examples of the

“non-compliant” class. Table 4.1 summarises the FMLD dataset construction.

Table 4.1: Summary of the construction of the FMLD dataset. FMLD takes the donor
datasets MAFA and WiderFace to construct the “compliant” and “non-compliant” classes.

Donor Dataset Purpose Images Faces
Labels

With mask Without
maskCorrect Incorrect

MAFA Training 25876 29452 24603 1204 3645
Testing 4935 7342 4929 324 2089

WiderFace Training 8906 20932 0 0 20932
Testing 2217 5346 0 0 5346

FMLD
Training 34782 50384 24603 1204 24577
Testing 7152 12688 4929 324 7435
Totals 41934 63072 29532 1528 32012
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Input image Face detection stage Classification model Outputs

Compliant

Non-compliant

Figure 4.4: Two-stage pipeline. The first stage is in charge to detect all the faces in an
image, while the second stage is in charge to make the classification.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: A subset of images taken from the “compliant” class of the FMLD dataset. The
examples (a)-(h) show faces with the correct use of masks according to the WHO advice.

Medical Mask Dataset (MMD)

MMD is a dataset composed of 6000 images of faces. This dataset has three principal

classes: with a mask, without a mask, and incorrect mask-wearing. A special feature of

this dataset is information about different accessories like caps, hats, and glasses, which

may influence a covid mask-wearing classification task. It was released by the Human

in the Loop organization, and it is available on the official organization’s website1 after

filling out a form to request the dataset. This dataset can complement the FMLD dataset,

particularly for the incorrect class images, because FMLD does not have enough incorrect

covid-mask wearing images.
1https://humansintheloop.org/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: A subset of images taken from the “non-compliant” class of the FMLD dataset.
The examples (a)-(h) show faces that are incorrectly using (or not using) the masks.

4.1.2 Detection and clasification models

Face detection: RetinaFace

This is also known as single-shot multi-level face localization in the wild. This DL model

is state-of-the-art technique in face detection that uses an end-to-end detector, and it

performs three different face localization tasks together: i) face detection, ii) 2D face

alignment, and iii) 3D face reconstruction. RetinaFace uses ResNet architecture plus fully

pyramidal networks (FPN) to obtain a robust feature representation of the image. It

outputs the bounding box of the face, five facial landmarks (denoting eyes, nose, and

mouth), and a dense 3D mapping of points to represent the face [58]. The composition of

RetinaFace is presented in Figure 4.7.

Face classification: ResNet

Since the revolution of CNNs with the successful introduction of AlexNet [33], researchers

have tried to get more accurate models to work with CV image tasks. Nevertheless, making

deeper CNNs does not only involve adding more layers together since problems like the

vanishing gradient might appear (when the gradient is back-propagated to previous layers,

it can converge to an infinitely small number causing low performance in the CNN). Various
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Figure 4.7: RetinaFace model has three main components: 1) Feature Pyramid Network,
2) Context Head Module, and 3) Cascade Multi Task Loss [58].

approaches have been presented to avoid this problem. ResNet is a robust solution to the

latter problem since it introduces the concept of residual blocks (identity blocks). Residual

blocks skip one or more connection layers to enable a fine-grained level of detail at the

inference [36]. ResNet-18 is a variant of ResNet and its architecture is present in Figure

4.8.

po
ol

, 
/2

 

7x
7 

co
nv

, 
64

 /
 2

3x
3 

co
nv

, 
64

 

3x
3 

co
nv

, 
64

 

3x
3 

co
nv

, 
64

 

3x
3 

co
nv

, 
64

 

3x
3 

co
nv

, 
12

8 
/ 

2 
 

3x
3 

co
nv

, 
12

8 

3x
3 

co
nv

, 
12

8 

3x
3 

co
nv

, 
12

8 

3x
3 

co
nv

, 
25

6 
/ 

2 

3x
3 

co
nv

, 
25

6

3x
3 

co
nv

, 
25

6

3x
3 

co
nv

, 
25

6

3x
3 

co
nv

, 
51

2 
/ 

2 

3x
3 

co
nv

, 
51

2

3x
3 

co
nv

, 
51

2

3x
3 

co
nv

, 
51

2

FC
 1

00
0

Im
ag

e

av
g 

po
ol

Figure 4.8: ResNet-18 architecture composed by residual blocks with two types of shortcuts:
identity shortcuts and projection shortcuts.

Face classification: ResNeSt

This variant of the original ResNet takes advantage of the introduction of feature map

attention and multi-path representation, both being essential techniques for visual recogni-

tion. In addition, ResNeSt adds split-attention blocks (i.e., computational units composed

of feature groups and split attention operations). As a result, ResNeSt presented better

transfer learning results when used as a backbone on many public benchmarks [59].
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4.1.3 The two-stage pipeline CNN

The proposed pipeline is composed of 1) a face detection stage, with its output being

the input for the 2) face classification stage to detect the use of COVID-19 face masks.

According to the mask placement, the pipeline will take images or frames and classify

them into “compliant” and “non-compliant”. The pipeline deployment was tested, keep-

ing RetinaFace as the predefined detection model and changing the classification models,

specifically the ResNet and ResNeSt variants. In addition, the inference behavior of all

the models was studied under different optimization algorithms.The pipeline can be seen

in Figure 4.4

4.1.4 Loss function and optimizers

Theorem 1 Let f be the proposed classification function which takes the weight matrix W
as an input, and returns the predicted label l̂ ∈ {compliant, non-compliant, incorrect}.
The classification task can be mathematically formalized as

l̂ = f(X, W ). (4.1)

To measure the performance of our classification model, the loss L between the ground

truth and the distribution l̂ has to be computed. We define L(W ) as the cross-entropy

loss function. The classification network iteratively updates the values of W by backprop-

agating the error through the neural network and converging to the local minimum value

of L(W ). The labeled images from the FMLD dataset can be formalized as

(X(i), Y (i)) for i ∈ {1, . . . , n}, (4.2)

where n represents the total number of images in the dataset, and X(i) and Y (i) repre-

sents the ith image and its estimated label, respectively. Our model computes the weights

W = {W (1), . . . , W (n)} that corresponds to the minimum value of L(W ) as follows:

L(W ) = − 1
n

n∑
i=1

L(X(i), Y (i), θ), (4.3)
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which can be written in the logarithmic likelihood form as follows:

L(W ) = − 1
n

n∑
i=1

Y (i)log
(

p̂(i)
)

, (4.4)

with p̂(i) as the estimation probability that the ith image matches the intended l value

[60]. For the CNN optimization, we let the cross entropy with respect to W (eq. (4.4)) be

represented as δ = ∇W L(W )

δ = 1
n

∇W

n∑
i=1

L(X(i), Y (i), W ). (4.5)

Adagrad [61], ADAM [62], SGD [63], SGD with Momentum [64], and RMSprop [64]

were used to estimate the optimal set of values in W that minimizes L(W) .

4.1.5 Framework and hardware acceleration

ML framework

The framework employed to design and implement the pipeline is PyTorch since all the

pre-trained models under study are implemented in the framework, and they can be easily

imported through torchvision.

Hardware acceleration

On the hardware acceleration side, we used a Tesla V100 and Tesla P100 graphical pro-

cessing units (GPUs) with 16GB from Google Colaboratory with a CPU Intel ® Xeon(R)

2.00GHz. The GPUs play an important role in training a DL model because, depending

on their capacity, the training can take more or less time. It is essential to know that

the Tesla V100 GPU has a performance of 14,029 gigaflops while Tesla P100 has 10,609

gigaflops of performance. In addition, the Tesla V100 is also superior in the number of

cores because it has 5120 and the Tesla P100 3584 cores. Therefore, it is clear that Tesla

V100 is more powerful than Tesla P100.
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4.1.6 Performance measures

To attest the performance of the classification stage, a mean average precision (mAP) was

used as a metric to determine the most appropriate model. Also, additional metrics will

be used:

1. Accuracy: Percentage to represent the correct predictions.

accuracy = all correct predictions
all samples (4.6)

= TP + TN

TP + FN + FP + TN
(4.7)

2. Precision: The number of correct predictions.

precision = TP

TP + FP
(4.8)

3. Recall: The proportion of the true positives which were correct.

recall = TP

TP + FN
(4.9)

4. F1-score: The F1-score is the harmonic mean between the precision and recall.

F1-Score = 2 · Precision · Recall

Precision · Recall
(4.10)

4.1.7 Prepare the dataset

The FMLD and MMD datasets need to be processed before the training because both

give complete images of people in different scenes and not only the people’s faces. For this

reason, they provide annotations in XML format for each image. These annotations specify

the bounding box of each face on each image, the class label, and additional information

described in subsection 4.1.1. Therefore, a python code is made. This code can read the

XML annotations, make the crops of the faces, and store them. The library used to read

XML files in python is the XML Processing Module. On the other hand, the OpenCV

library was used to read images and crop them. In the particular case of the FMLD
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dataset, it was necessary to download the donor datasets, i.e., the MAFA and WiderFace

datasets, and then use the annotations provided in work [11] to get the images of the faces.

Dataset splitting

In order to do the trainings, it is important to split the dataset in training, validation and

test dataset. The proportion for each dataset is as follows:

1. Training dataset: 80%.

2. Validation dataset: 10%.

3. Test dataset: 10%.
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Chapter 5

Results and Discussion

5.1 Phase I: Test deep learning classification models
with different optimizers

In this section, the results obtained in the two-stage pipeline are presented. Special atten-

tion is taken to the classification stage since the pre-trained RetinaFace model performs

the face detection part, requiring no fine-tuning. Therefore, the image classification task

concerning COVID-19 masks is the pivotal part of this study. The principal objective is to

gain an insight into the performance of DL models while solving an urgent real-life prob-

lem. We have implemented all the variants of ResNet and one variant of ResNeSt using

transfer learning. The initial weights were borrowed from the pre-trained model with the

ImageNet dataset. Then, all the models were trained using the FMLD dataset, with RBG

input images of size W × H pixels as inputs, where W and H are ≥ 10 to avoid losing the

activation maps during the pooling operations. The dataset was randomly divided into

training, validation, and test sets. An overview of the resulting dataset can be found in

Table 5.1.

Table 5.1: An overview of the dataset split used to train the different classification models.

Classes
Dataset Compliant Non-compliant
Training 7028 17525
Validation 1757 4382
Test 4795 13750
Total 13580 35657

61
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Figure 5.1: ResNet-34 accuracy on train
dataset.

Figure 5.2: ResNet-34 loss on train
dataset.

The cross-entropy was adopted as a loss function. At the same time, the following

optimizers were considered: 1) SGD with a learning rate equal to 0.001 and a reduction

factor of 0.1 after seven epochs, 2) SGD with a momentum value of 0.9, 3) Adam with

a learning rate of 0.001, 4) RMSprop with a learning rate of 0.01, and 5) Adagrad with

a learning rate of 0.01. The models were trained with 15 epochs, each with a batch size

equal to 16. The behavior of the accuracy and loss during the training and validation

stages of ResNet-34 with Adagrad optimizer was selected as the optimal configuration.

The ResNet-34 with Adagrad results can be found in Figures [5.1-5.4]. The RMSprop,

Adam, and SGD are the less effective optimizers either in training and validation datasets

since they cause the highest losses and lowest accuracy. On the other hand, SGD with

momentum and Adagrad optimizers got the highest accuracy and lowest loss, but their

differences are minimal. The details are given as follows:

1. ResNet-18 and ResNet-152: The best performance is obtained with the Adagrad

optimizer for both the training and validation dataset.

2. ResNet-34, ResNet-50, ResNet-101 and ResNeSt-200 : On these models, the

best result in the training dataset is obtained with Adagrad optimizer, and for the

validation dataset, SGD with momentum is more robust.

However, it is necessary to analyze the results obtained on the test dataset to verify

the performance of each model. Therefore, the experiments were performed over 18545

images (4745 compliant and 13750 non-compliant), and the accuracy results are presented

in Table 5.2.
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Figure 5.3: Resnet-34 accuracy on valida-
tion dataset.

Figure 5.4: Resnet-34 loss on validation
dataset.

Table 5.2: Models with different optimizers.

Accuracy %
Model SGD RMSprop Adam SGD with Momentum Adagrad
ResneSt-200 96.44 92.41 95.79 97.01 96.78
Resnet-18 96.06 95.24 95.95 96.35 96.64
Resnet-34 96.06 95.28 95.86 96.4 97.24
Resnet-50 96.54 95.82 95.82 96.59 96.21
Resnet-101 95.64 94.95 95.29 96.8 96.63
Resnet-152 95.33 94.92 95.29 97.21 97.08

As can be seen, all the models achieved an accuracy greater than 94% except ResNetSt-

200 with RMSprop optimizer, which obtains 92.41%. The more accurate models are the

ones trained with SGD with momentum and Adagrad optimizers. ResNet-34 with Adagrad

is the model configuration with the highest accuracy, followed by ResNet-152 with SGD

with momentum and ResNet-152 with Adagrad. All the models ordered by their accuracy

percentage can be seen in Figure 5.5. The lowest accuracy models are the ones trained

with RMSprop optimizer.

To analyze the results obtained in the test dataset, we choose ResNet-34 with Ada-

grad optimizer as the model to perform the predictions. Therefore, a confusion matrix is

presented in Figure 5.6 to understand the results. A value of 0 represents the label “com-

pliant”, and a value of 1 represents the class “non-compliant”. According to Table 5.1, we

have 4795 “compliant” images, and the model finds 4673 of them (with 122 wrong predic-

tions). For the “non-compliant” class, the model finds 13360 from 13750 (with 390 wrong

predictions). Therefore, the model gets an accuracy performance of around 97%.
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Figure 5.5: Test results of all the considered models with different optimizers.

Since all models perform with high accuracy, it is essential to know the training speed,

and the value is proportional to the number of layers. Therefore, the deeper model, i.e.,

ResNeSt-200, was trained, consuming longer, while the less deep model, i.e., ResNet-18,

finished the training in less time. The time is proportionally related to the computational

power needed to train the dataset, demanding powerful GPUs. Sometimes these compu-

tational resources are not available, and the experiments are difficult to do on personal or

desktop computers. From this phase, we can conclude that a light model like ResNet-34

can accurately perform the COVID-19 mask-wearing classification task using Adagrad as

an optimizer. Therefore, we can part from here to implement different CV techniques to

get a better classification model.
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Figure 5.6: Confusion matrix of the results obtained from ResNet-34 with Adagrad opti-
mizer in the classification stage.

5.2 Phase II: Improving the dataset, training the clas-
sification model for two classes, and extending it
to 3 classes

5.2.1 Datasets

The accuracy obtained in the previous training was good (about 97.23%). In order to

improve the accuracy of the model, it was necessary to check the dataset. We found that

the dataset has many wrong labeled images and others are too noisy. For this reason, a

data cleaning was performed. An important tool to perform this activity was IBM Cloud

Annotations. It is a simple web platform where we can upload our dataset as zip files, add

the classes and begin to classify. The images are shown as a mosaic, and we can select

them one by one, or keep pressing the mouse’s left button and move to the left and right,

up and down, and select all the images we want to put inside a class. In our particular

project, our classes for the first dataset were Compliant and Non-compliant, and for the

second dataset were, Compliant, Incorrect, and Non-Compliant. After the cleaning, we

should balance the dataset as is shown in Table 5.3.

In order to extend the classification task to three classes, it was necessary to look for

another dataset similar to FMLD because there were not enough images for the ‘incorrect’

class. The dataset selected was the MMD. Although we add images from another dataset,
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Table 5.3: New FMLD dataset after cleaning.

Dataset Classes
Compliant Non-Compliant

Training 20937 20937
Validation 1231 1231

Test 2463 2463
Total 24631 24631

Table 5.4: New dataset formed by FMLD + MMD datasets extended to three classes.

Dataset Classes
Compliant Incorrect Non-Compliant

Training 20937 935 20937
Validation 1231 55 1231

Test 2463 109 2463
Total 24631 1099 24631

there is an imbalance in the number of images for incorrect classes concerning the other

two classes. Later, in the results subsection, we will see if the imbalance affects or not the

performance of the classification model. The new dataset formed by FMLD and MMD is

detailed in Table 5.4.

In addition, a data augmentation was performed using transforms available in the

Torchvision library. This type of data augmentation is different from the one we know

because we will not produce n number of images from one. Instead, before a batch of

images enters the CNN, randomly, some of them are modified by applying effects like

horizontal flips and rotation. This data augmentation helps to improve the variety of the

dataset in training. Moreover, as the input to the ResNet is 3 × 224 × 224, a resize of

the images should be applied. Finally, a normalization of the images using the means

and standard deviation of the RGB channels of the ImageNet dataset is useful to take

full advantage of transfer learning because the ResNet pre-trained model was trained on

the ImageNet dataset and our COVID-19 face masks images pixels values should be in a

similar scale.

5.2.2 Training

The training was performed with ResNet light models like ResNet-18 and ResNet-34 avail-

able on the TorchVision repository. The decision to only test these two models is based
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on phase I where it was proved that ResNet-34 was enough to perform the classification.

Therefore, the objective is to improve the accuracy of ResNet-34 or try to get better accu-

racy with ResNet-18, a smaller model.

Cross-entropy loss function was used. The optimizer used for the training was Adagrad

with a learning rate of 0.001, step size equal to one third of the number of epochs, and

gamma equal to 0.1. The training consisted of 10 epochs for the model of two classes and

15 for the three classes. Finally, the batch size of the training was 64 because we reached

the maximum capacity of the GPU. Each epoch takes approximately 1.14 seconds to finish.

5.2.3 Hardware

In order to perform the training, a Tesla P-100 GPU was used on a Google Colab instance

with a CPU Intel ® Xeon(R) 2.00GHz.

5.2.4 Results and analysis

To evaluate the model, a test dataset was used.

Two classes

The best accuracy obtained for the two classes (compliant and non-compliant) was 99.6%

with a ResNet-18. Additional metrics like precision, recall and F1-score are given in Table

5.5. Also, a confusion matrix is plotted in Figure 5.7 to see the TPs, TNs, FPs and, FNs.

There were thirteen compliant images classified as non-compliant and seven non-compliant

images wrong predicted as compliant images. As we can see, the error rate is very low.

Next, the wrong predicted images are plotted according to each class.

Table 5.5: Additional evaluation metrics for COVID-19 mask wearing classification model
on New Test dataset.

Precision Recall F1-score Images
Compliant 1.00 0.99 1.00 2463
Non-Compliant 0.99 1.00 1.00 2463

• Compliant images classified as non-compliant
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Figure 5.7: Confusion matrix about the testing of ResNet-18 COVID-19 mask wearing
classification model on the new test dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.8: Compliant images classified as non-compliant.

In Figure 5.8, there are three images 5.8a, 5.8h, 5.8i with the wrong labels, i.e., the

true label must be ‘noncompliant’ but they were labeled as compliant. The last six

images were wrong classified by the model. We can see the model has problems with

the classification of industrial masks (images 5.8b and 5.8d) and with profile faces like

image 5.8c. We can use Gradient-weighted Class Activation Mapping (Grad-CAM)

to visualize the most representative parts of these images for the classification model.

With Grad-CAMs we can find two principal problems here: the first one is related

to the location of the most representative part of the image for the model because

it is not around the nose tip as should be (images 5.9a, 5.9b, 5.9c, and, 5.9d). The
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Compliant images classified as non-compliant analyzed with Grad-CAMs.

second is that although the position of the most representative area of the image is

correct, the model cannot make a good classification (images 5.9e and 5.9f).

(a) (b) (c) (d)

Figure 5.10: Compliant images classified as non-compliant.

• Non-compliant images classified as compliant

In Figure 5.10, there are wrong images predicted except the last one because it was

wrong labeled. The principal cause for the bad performance of the model over these

images can be the presence of different objects around the noses, and probably, the

model takes these objects as a COVID-19 mask. Grad-CAMs presented in Figure

5.11 are helpful to prove this fact.

For images 5.11a and 5.11b, we can notice that we classification model is unable to

distinguish between a COVID-19 mask and an object covering the nose. For the last

two images (images 5.11c and 5.11d), the activation zone is wrong, therefore there

are bad predictions.

In addition, we can see the results of the training for this model in the graph presented
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(a) (b)

(c) (d)

Figure 5.11: Non-compliant images classified as compliant analyzed with Grad-CAMs.

in Figure 5.12. The first plot represents the accuracy vs. the number of epochs in the train

and validation dataset. Here, we can see that the accuracy on the training dataset increase

on each epoch but in the validation dataset, the best accuracy is in the second epoch, then

it decreases and finally, it remains constant. The second plot represents the loss vs. the

number of epochs. Here we can notice that the loss only decreases in the training dataset

but not in the validation dataset. Next, the operation of the model with three classes will

be explained.

Figure 5.12: ResNet-18 accuracy and loss on train dataset for 2 classes model.

Information Technology Engineer / Mathematician70 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Extension to three classes

The accuracy obtained for the three classes model was 99.2% with a ResNet-18. Additional

metrics are presented in Table 5.6 and a confusion matrix is given in Figure 5.13.

Table 5.6: Additional evaluation metrics for COVID-19 mask wearing classification model
on New Test dataset for 3 classes.

Precision Recall F1-score Images
Compliant 1.00 0.99 0.99 2463
Incorrect 0.86 0.90 0.88 109
Non-Compliant 0.99 1.00 0.99 2463

Figure 5.13: Confusion matrix about the testing of ResNet-18 COVID-19 mask wearing
classification model on the new test dataset for three classes.

According to the confusion matrix in Figure 5.13, there are a few wrong predictions for

each class. It is important to remember that there are only 109 images for the incorrect

class; six were predicted as compliant, and five were predicted as noncompliant. Eight

images were predicted as incorrect for the compliant class, and nine were predicted as

compliant. Finally, four were predicted as compliant for the noncompliant class, and eight

were predicted as incorrect. Therefore, we can conclude that the imbalance of the dataset

in this particular case does not affect the accuracy of the model. However, the F1-score

metric, which considers how many errors the model has per class and its influence on the

final performance, shows that the imbalance of the dataset affects the performance for the

incorrect class (see Table 5.6).
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The matrix confusion shows us summarized information about the model’s results, but

it would be helpful to know the images where the prediction was wrong. For this reason,

we plot the wrong predicted images per class according to as they have been classified in

the labeling process.

• Compliant images wrong predicted

(a) Incorrect (b) Incorrect (c) Non-compliant (d) Incorrect

(e) Non-compliant (f) Incorrect (g) Non-compliant (h) Non-compliant

(i) Non-compliant (j) Incorrect (k) Incorrect (l) Non-compliant

(m) Non-compliant (n) Incorrect (o) Non-compliant (p) Incorrect

Figure 5.14: Compliant images wrong classified. Each one has the predicted label assigned
by Resnet18 classification model.
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In Figure 5.14, at most wrong predictions in this class are related to mistakes in

the labeling of the data (images 5.14a, 5.14b, 5.14c, 5.14d, 5.14f, 5.14h, 5.14j, 5.14k,

5.14l, 5.14n, 5.14p), so, the prediction is correct but the true label is wrong. Also,

we can notice that the model has problems with face profile images (5.14h) and with

faces that are so close (5.14e, 5.14i).

There is a way to understand better the reason for wrong predictions using Grad-

CAM. It enables us to visualize which parts of an image were more significant for

a model to make a prediction. The Grad-CAM was computed for wrong predicted

images.

(a) (b) (c)

(d) (e) (f)

Figure 5.15: Compliant images wrong predicted analyzed with Grad-CAMs.

The Grad-CAMs show a common factor: the most significant part of the image for

the model to make the prediction is not the tip of the nose as it should be. In the

case of image 5.15b, there is a clear problem related to profile faces. This can be

related to the lack of profile images in the training dataset because the proposed

model is focused on frontal faces. The subjects of images 5.15a - 5.15c wear nose

protection but it is not a COVID-19 mask face, therefore a bad prediction came up.

Finally, images 5.15e - 5.15f are so close to the face, this may cause the failure in the

predicted label.

• Non-compliant images wrong predicted

One more time there are problems related to wrong true labels in images 5.16e, 5.16f,
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(a) Compliant (b) Incorrect (c) Compliant (d) Incorrect

(e) Incorrect (f) Incorrect (g) Incorrect (h) Incorrect

Figure 5.16: Non-compliant images wrong classified. Each one has the predicted label
assigned by Resnet18 classification model.

5.16g, and, 5.16h. Also, there are wrong predictions especially based on the confusion

of COVID-19 face masks with other objects (images 5.16a, 5.16b, 5.16c, 5.16d). This

fact can be seen with the use of Grad-CAMs.

(a) (b)

(c) (d)

Figure 5.17: Non-compliant images wrong predicted analyzed with Grad-CAMs.

According to the Grad-CAM, the more significant parts of the image are located
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around the nose. Here, we can see objects covering noses different from COVID-

19 face masks. Therefore, it is probably that the model sometimes can become

confused when a nose is covered with some object distinct from a mask. To solve this

problem, it can be helpful to put in the training datasets images with noses covered

by no COVID-19 faces masks and labeled as “non-compliant” to let the model learn

this new feature.

(a) Non-compliant (b) Compliant (c) Non-compliant (d) Non-compliant

(e) Non-compliant (f) Compliant (g) Compliant

Figure 5.18: Incorrect images wrong classified. Each one has the predicted label assigned
by Resnet18 classification model.

• Incorrect images wrong predicted

The class “incorrect” is a particular case because it can be relative according to the

position of the COVID-19 face mask concerning the nose. For example, some people

consider that incorrect use of the mask is present if it only covers the nasal base.

Other people consider an incorrect use of the COVID-19 mask face if it does not

cover the ridge of the nose entirely. Finally, since many people prefer to put the

COVID-19 face mask under the chin to avoid taking it out completely when they

want to do not wear it for a short period of time, the position of the COVID-19 face

mask under the chin can be considered as “incorrect”. As we can see, we can have
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Incorrect images wrong predicted analyzed with Grad-CAMs.

different concepts for the incorrect class, and for this reason, some wrong predictions

(see Figure 5.18) are related to this fact, and Grad-CAMs can help us to describe it.

According to Grad-CAMs, the classification model focuses on two principal parts of

the image. The first one is around the nasal base like in images 5.19a, 5.19c, and

5.19e. The second one is about the identification of the COVID-19 face mask (images

5.19b and 5.19f). For the first case, it may be impossible to classify the image as

incorrect because the model does not focus on the COVID-19 mask due it is under

the chin. As the model identifies the absence of the COVID-19 mask around the

nose, the predicted label is Non-compliant. For the second case, the model only pays

attention to the presence of the COVID-19 mask. For this reason, the model can not

identify that the mask is only covering the nasal base, i.e., the use of the mask is

incorrect, but the model predicts it as compliant.

In addition, we can see the results of the training for this model in Figure 5.20.

Similar to the previous subsection of the two models, we will see the training results.

In the first plot, we can see that the accuracy of the training dataset increases. In the final

epochs, it converges, but in the validation dataset, the accuracy increases, and decreases,

and in epoch number 14, it reaches the maximum value. On the other hand, the second

plot shows that in the training dataset, the loss decrease in the first four epochs to 0.0001,

and then it keeps constant until the final. In contrast, the loss decreases along the epochs

in the validation dataset, being a lower loss of 0.004.
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Figure 5.20: Resnet-18 accuracy and loss on train dataset for 3 classes model.

5.3 Visualizing some feature maps and filters

Next, the features maps are shown. As we said before, the feature maps are images/outputs

of a layer after applying a group of filters, and then the output will be the new input for

the next layer until it reaches the final layer. Features maps are helpful to understanding

deep neural networks in a better way because we can see the features the model puts

attention to and what filters are applied. Then, the features maps of each of the seventeen

convolutional layers, after applying its filters, look as in Figure 5.21.

Figure 5.21: Features maps corresponding to each convolutional layers of Resnet-18.
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5.3.1 ResNet-18 filters

Figure 5.22: 64 Filters corresponding to the first convolutional layer of Resnet-18.

The values used to make the filter plots are the weights of the kernels. For example,

the kernel size for the first convolutional layer is 7 × 7 (64 filters in total), and the filter

looks as is present in Figure 5.22. As the image passes through the filters, it undergoes

transformations. Next, in Figure 5.23, we have five images going through seven filters.

The filters determine which parts of the image the model will focus on. Plotting the

feature maps and filters in grayscale will make it easy to understand what is happening

in a convolution. Therefore, we will plot all the 64 filters of the first convolutional layer

together with the feature maps they produce. This result is plotted in Figure 5.24.

If we see one of the feature maps, we can see that some parts of it are dark and others are

bright. This is due to the dark and the bright parts of the filters. The reason behind a part

of the filter being dark or bright is the numerical value of the pixel. We know that a pixel

is composed of three values on RGB images from 0 to 255 (values near zero to black color

and values near 255 to white color). The values for the pixels are the weights. Low weights

mean dark pixels, and high values mean bright pixels. Finally, the model will pay more

attention to the parts of the image where the elementwise product between the weights

and the pixel values are high. This means that the bright parts of the image are in charge

of activating a particular layer’s neurons depending on the values of its weights. This can
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Figure 5.23: 5 images together after their features maps after applying seven different
filters in the first convolutional layer.

Figure 5.24: All 64 filters of the first convolutional layer with the feature maps they
produce.

be interpreted as what a neural network sees. In the particular case to classify the position

of the COVID-19 face mask, we can see that some filters focus on the background of the
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image while others focus on the person wearing the mask. In some cases, the background

is dark, and the person becomes bright or vice versa. In addition, some filters produce an

outline of the mask.

Finally, we will see the evolution of an image at first 64 filters of the convolutional

layers 1, 5, 10, 15, and 17 with their respective feature maps in Figure 5.25. An important

fact to consider is that the number of kernels of a convolutional layer can be greater than

64, but plotting all the kernels can be space-consuming. Therefore, we will plot the 64

filters of each convolutional layer for demonstrative purposes.

It is clear to see that, as going deep into the convolutional layers, the patterns on

the features maps became more challenging to see for the human eye because the details

of the image disappear, surely the neural network can identify the pattern to make the

classification. The last feature maps look noisy, but they are the most important for the

fully connected neurons (classification layer).

5.4 Grad-CAMs through the layers

Also, it is possible to see the Grad-CAMs’ evolution through each layer. As we remember,

ResNet-18 has 18 layers. However, the term layer has an additional meaning: a compound

of two basic blocks. Therefore, taking this last meaning, ResNet-18 has four layers, each one

composed of two basic blocks. In the same way, a basic block is formed by two operations,

and an operation is formed by a convolution, a batch normalization, and a ReLU activation

except for the last operation of a basic block. Therefore, we can appreciate the activations

of each basic block after applying the operations over an image of each class. In this way,

we can appreciate the beginning layer identifying general features, and then, as go deeper,

the activations are focused on the COVID-19 mask face and around the nose (see Figure

5.26).

5.4.1 COVID-19 mask classification model with ResNet-18 against
other approaches

In work [65], the authors use two different neural network combinations. First, they use

MobileNetV2 as a feature extractor, and support vector machine (SVM) to make the clas-
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(a) Convolutional layer 1 (b) Convolutional layer 5

(c) Convolutional layer 10 (d) Convolutional layer 15

(e) Convolutional layer 17

Figure 5.25: Filters with their respective featuremaps of convolutional layers 1, 5, 10, 15
and 17.
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(a) Compliant (b) Non-compliant

(c) Incorrect

Figure 5.26: Grad-CAMs per convolutional layer for an image of each class.

sification. On the other hand, the second experiment uses VGG-19 as a feature extractor,

and k-nearest neighbours (KNN) for the classification stage. The confusion matrix for both

approaches is shown in Figure 5.27.

Table 5.7: ResNet-18 in comparisson with other approaches.

Models Recall Precision
MobileNetV2 - SVM 94.84% 95.08%
VGG19 - K-NN 90.09% 91.3%
ResNet-18 98% 98%

To enable a fair comparison, we used the same dataset with the same number of images

to test the model (139 images for the compliant class, and 136 images for non-compliant

class). After performing the classification with our model, the confusion matrix presented

in Figure 5.28 was gotten. If we compare the three confusion matrices, it is clear that

our model performs better classification, especially for the Non-compliant class, where our

model reduces the wrong predictions from 11 (MobileNetV2 + SVM, Figure 5.27a) and 19
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(a) MobileNetV2 - SVM (b) VGG19 - K-NN

Figure 5.27: Confusion matrix corresponding to MobileNetV2 + SVM and VGG19 + KNN

Figure 5.28: ResNet-18 results after be applied in the other dataset.
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(VGG19 + KNN, Figure 5.27b) to only 3. In addition, we can use other metrics to see the

results.

As we can see in Table 5.7, our Resnet18 has a recall and precision of 98%, an improve-

ment of around 3% in relation to the better model presented in work [65], which is the

MobileNetV2 with SVM.
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Chapter 6

Conclusions

6.1 General conclusions

In this work, we present a CNN capable of classifying face masks wearing for use during

the COVID-19 pandemic. Our proposal classifies the use of face masks in three different

classes: compliant when people are wearing the mask well, incorrect when the person is not

wearing the mask following the WHO guidelines (i.e., the mask should completely cover

the mouth and nose), and non-compliant when people are not wearing any COVID-19 face

mask. We start reviewing bibliographic material about different approaches to face the

problem related to the classification of covid face mask-wearing from basic methods to the

ones considered state of the art. Finally, we achieved our solid two-stage pipeline capable

of performing the task assigned to this project. The metrics results showed our pipeline’s

excellent performance, encouraging its use in applications that requires a face detection,

followed by a face mask classification stage.

Firstly, we testest DL models, especially ResNet family, using different optimizers in

order to determine the performance of each one in the task of classifying the COVID-19

masks wearing into two classes: Compliant and Non-compliant. As a result of this pre-

liminary study, our data showed that all models have an accuracy of over 94% (except

ResNeSt-200 with RMSProp, 92%). ResNet-34 with Adagrad has been selected as the

best classification model since the accuracy was 97.24% and it takes less time to train as

it only has 34 layers compared with deeper models like Resnet-50 or Resnet-101.
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Resnet-34 model and its accuracy of 97.24% were taken as the starting point of the

work’s second part. In this part, we improved the general performance and accuracy by

applying different computer vision techniques both in the pre-process of the dataset and

in the training of the classification model. Among the most important techniques, we have

a cleanup, a relabeled, and a balance of the dataset; and the use of Torchvision transforms

to perform data augmentation on each training batch guaranteeing the variability of the

dataset. All these improvements lead to better results in the COVID-19 mask-wearing

classification model in terms of accuracy, time to train, and the model’s size up to even ex-

tend the number of classes from two (Compliant and Non-compliant) to three (Compliant,

Incorrect, and, Non-compliant). The best model was a ResNet-18 for both cases: 99.6%

accuracy for two classes and 99.2% accuracy for three classes, using Adagrad as an opti-

mizer similar to the preliminary study. In addition, Hyperparameters setup is described in

chapter 5 for both two and three classes models.

Furthermore, as a great model was obtained and to try to decipher what many people

call a black box, we use Grad-CAMs to know which features or parts of the image the

model pays attention to give a prediction for a specific class. Consequently, we discovered

the model focused on the zone around the nose, especially the tip of the nose, to see the

presence or absence of the COVID-19 mask and give a prediction. Additionally, we present

many feature maps and the filters, i.e., the kernels which produce them across the model

layers, to see the evolution of an image from the shallow layers until the last convolutional

layer, the one before the fully connected layer, i.e., the classification layer.

6.2 Future work

Future work can be grounded on the deployment of our model in embedded systems. It can

be helpful to transform our Pytorch COVID-19 mask-wearing classification model using

NVIDIA TensorRT to make the deployment to production using NVIDIA DeepStream

SDK. TensorRT lets us optimize our Pytorch model through techniques such as punning,

layer/tensor fusion, kernel auto-tuning, etc., while NVIDIA DeepStream SDK provides us
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with a multi-platform to deploy Vision AI applications and services to the real world. An

important task that needs to be addressed is to increase the number of images available for

the incorrect class dataset to extend the identification of the position of the mask if people

are not protecting their nose or the chin. Finally, in terms of datasets, it would be helpful

to try to do training with less number of images by class to probe if we can get higher or

similar accuracy to the presented ResNet-18 model, with a dataset of less size given that,

on this work, we show that with only 1100 images the model was capable of identifying

incorrect class accurately.
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