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Resumen

La conducción autónoma (AD) es un campo de estudio candente ya que los investigadores

de diversos campos de estudio están trabajando para contribuir en este campo y avanzar

hacia nuevos modelos, métodos y herramientas de última generación, y hacia veh́ıculos

autónomos (AV) con automatización completa de nivel cinco. Una forma de categorizar las

tareas de AD necesarias para la conducción es definiendo tareas de localización, percepción,

planificación y control, cada una de las cuales se compone de subtareas aún más pequeñas

y espećıficas. Para cada tipo de tarea que necesita ser resuelta por un sistema AD, existen

múltiples enfoques para manejarla. Debido a este amplio espectro de tareas cubiertas

por AD, los campos de investigación que se superponen con AD incluyen, entre otros,

visión artificial, teoŕıa de control, aprendizaje profundo y computación de alto rendimiento

(HPC).

Un método de aprendizaje comúnmente implementado en trabajos recientes es el apren-

dizaje por imitación (IL). En el caso de AD, este método de aprendizaje consiste en apren-

der a imitar una poĺıtica de conducción experta que se puede representar a través de un

conjunto de datos de conducción. Estos conjuntos de datos suelen consistir en información

sensorial secuencial percibida a través de sensores desde la perspectiva de un veh́ıculo.

Los tipos de datos más comunes que se utilizan en los conjuntos de datos son imagenes

percibidas a través de cámaras RGB y nubes de puntos 3D percibidos a través de sensores

de detección y alcance de luz (LiDAR).

Otro aspecto importante de AD es el concepto de simulación. Más recientemente, el

simulador CARLA se ha convertido en uno de los simuladores de código abierto más pop-

ulares creados espećıficamente para el desarrollo de sistemas AD. Ademas de simular, el

proyecto CARLA proporciona herramientas suficientes y accesibles para una variedad de

investigaciones relacionadas con la AD. Una de las caracteŕısticas clave de CARLA que
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ayudan a democratizar la investigación de AD es que se puede utilizar para generar datos

de conducción simulados. Esto es crucial para el desarrollo de sistemas AV, ya que general-

mente requieren cantidades significativas de datos para entrenar. Esto es especialmente

cierto para el desarrollo de sistemas AV de nivel cinco capaces de conducir de manera segura

en cualquier tipo de entorno, ya que deberán poder manejar cualquier tipo de situación y

escenario que pueda surgir de manera segura y confiable.

Aparte de que la conducción es una tarea compleja (incluso para los humanos), otra de

las principales dificultades de la AD que suele acompañarla es que requiere cálculos costosos

que no siempre son posibles de implementar en una computadora personal (PC) de uso gen-

eral. Una solución a esto es hacer uso de sistemas informáticos de alto rendimiento (HPC),

como clústeres, que están diseñados para manejar tareas computacionalmente costosas,

como las que involucran big data, aprendizaje profundo y optimización de hiperparámetros

(HPO) a gran escala.

Teniendo en cuenta el panorama en el que se encuentran actualmente las investigaciones

y capacidades de AD, este trabajo se centra en la optimización de un novedoso modelo

de última generación llamado TransFuser. El modelo TransFuser tiene componentes de

sistema que permiten AD de extremo a extremo, incluyendo entradas sensoriales, un cod-

ificador de fusión multimodal, una red basada en GRU para predecir puntos de ruta y un

controlador PID para traducir esos puntos de ruta a movimientos de veh́ıculos. La parte

novedosa de este modelo se encuentra dentro del codificador de fusión multimodal, ya que

utiliza una arquitectura llamada transformador que usa mecanismos de auto-atención para

combinar las modalidades de entrada de cámara RGB y LiDAR. Para ello, trabajamos

con el marco de simulación CARLA y un sistema HPC para realizar tres experimentos de

barrido de HPO destinados a optimizar el modelo TransFuser y comprender la relación en-

tre el rendimiento de conducción y cuatro hiper-parámetros haciendo uso del optimizador

AdamW. Los hiper-parámetros de enfoque son la cantidad de capas y cabezas de atención

utilizadas por los bloques de transformadores, la tasa de aprendizaje y los tamaños batch.

Además, utilizamos el CARLA Leaderboard benchmark para evaluar nuestros modelos en-

trenados en escenarios de conducción urbanos complejos.
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Abstract

Autonomous driving (AD) is a hot field of study as researchers from varying fields of study

are working towards contributing in this field and pushing towards new state-of-the-art

models, methods, and tools, and towards autonomous vehicles (AVs) with full level five

automation. A way of categorizing the AD tasks necessary for driving are by defining

localization, perception, planning, and control tasks, each of which are made up of even

smaller, more specific, sub-tasks. For each type of task that needs to be solved by an

AD system, there exists multiple approaches for handling it. Due to this ample spectrum

of tasks covered by AD, the fields of research that overlap with AD include, but are not

limited to, computer vision, control theory, deep learning, and high-performance computing

(HPC).

One popular learning approach commonly implemented in recent works is imitation

learning (IL). In the case of AD, this learning method involves learning to imitate an

expert driving policy that can be represented through a driving dataset. These datasets

typically consist of sequential sensorial information perceived through sensors from the

perspective of a vehicle. The most common types of data used in driving datasets are

image frames perceived through RGB cameras and 3D cloud-point data perceived through

light detection and ranging (LiDAR) sensors.

Another important aspect of AD is the concept of simulation. Most recently, the

CARLA simulator has become one of the most popular open-source simulation frameworks

specifically made for developing AD systems. It is a versatile framework that provides

sufficient and accessible tools for a variety of research related to AD. One of the key

features of CARLA that help democratize AD research is that it can be used to generate

simulated driving data. This is crucial for developing AV systems since they usually require

significant amounts of data to train. This is especially true for developing level five AV

xiii
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systems capable of safely driving in any type of unseen environment as they will need to

be able to handle any type of situation and scenario that may arise in a safe and reliable

manner.

Aside from driving being a complex task (even for humans), another of the main diffi-

culties behind AD that usually accompanies it is that they require expensive computations

that are not always possible to implement on a general-use personal computer (PC). One

solution to this is to make use of HPC systems, such as clusters, that are build to han-

dle computationally expensive tasks such as those involving big data, deep learning, and

large-scale hyper-parameter optimization (HPO).

Taking into consideration the panorama in which current AD research and capabilities

fall in, this work focuses on optimizing a novel state-of-the-art AD model called TransFuser.

The TransFuser model has system components that allow for end-to-end AD including sen-

sorial inputs, a multi-modal fusion encoder, a GRU-based network for predicting waypoints,

and a PID controller for translating those waypoints into vehicle motions. The novel por-

tion of this model lies within the multi-modal fusion encoder as it uses an architecture

called a transformer that uses self-attention mechanisms for combining RGB camera and

LiDAR input modalities. For this, we work with the CARLA simulation framework and

an HPC system to perform three HPO sweep experiments aimed at optimizing the Trans-

Fuser model and understanding the relationship between driving performance and four

hyper-parameters, namely the number of attention layers and attention heads used by the

transformer blocks, and the learning rate and batch sizes that determine the optimization

process with the AdamW optimizer. Furthermore, we use the CARLA Leaderboard bench-

mark to evaluate our trained models in complex urban driving scenarios.

Keywords:

CARLA simulator, Autonomous driving, Transformers, Hyper-parameter optimization,

Multi-modal fusion.
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Chapter 1

Introduction

The idea of partial or fully autonomous vehicles (AV) capable of analyzing the environ-

ment through sensors and assisting human drivers in the decision-making process involved

in driving has become of greater interest in recent decades to industrial, robotics, and

academic research communities. A more specific line of AV research studies end-to-end

autonomous driving (AD) models that input data from multiple sensor modalities and

output driving controls through a neural network (NN).

In this chapter, we introduce a general background to the field of AD and the motivation

behind this work. We also describe the specific problems this work focuses on, some ongoing

challenges, and a justification for the need for high-performance computing (HPC) systems

for model optimization.

1.1 Background

Hussain and Zeadally [6] define AVs as computer-controlled vehicles capable of perceiving

essential features in the surrounding environment and making driving decisions without

the need for any human interaction. Despite state-of-the-art advances in AV technology,

traffic congestion in urban environments continues to be a problem as thousands of vehicle

accidents continue to occur each day throughout the world, resulting in the direct and

indirect reduction of quality of life for many people worldwide. Rather than any specific

cause of the accidents that occur, studies have shown that 94% of fatal accidents are a

consequence of human errors described as poor decision making by human drivers [7].

In other words, the driving forces for AD research come from the need for modes of
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transportation that are safer than human drivers and that optimize time and resources

more efficiently [6]. These needs have partly led to a race for mass-producing the first

commercial vehicle with full automation. However, current demonstrations from academia

and industry have shown that we have yet to reach this level of automation and that further

research over an array of AD sub-tasks is required.

In this section, we provide background information on the field of AD, describing mo-

tivations pushing toward creating and implementing full AVs as commercial vehicles or

public modes of transportation. This information includes crash statistics, the human

error aspect of driving, and a roadmap to full AD with levels of automation.

1.1.1 Crash Statistics

A study from the U.S. Department of Transportation Fatality Analysis Reporting System

[1] shows that in 2019 there were more than 33,000 police-reported fatal crashes in the

U.S. which led to more than 36,000 deaths, including vehicle passengers, motorcyclists,

bicyclists, and pedestrians. This report showed that the most common events to take

place previous to fatal crashes were collisions with other vehicles and collisions with static

objects. The 5.2 trillion kilometers driven in the U.S. in 2019 have resulted in approximately

11 deaths per 100,000 people and 0.69 deaths per 100 million kilometers traveled, which

averages to 99 deaths per day. These statistics are far more surprising when realizing that

in the past 25 years, the annual number of fatal crashes has continuously fluctuated and

has only managed to decrease from about 36,000 to 33,000, as can be seen in Figure 1.1.

The number of fatal crashes in 2016 reached a recent apex of almost 35,000 fatal crashes,

showing that despite efforts made within this 25-year time frame to improve road safety,

there is still a relatively high rate of accidents taking place every day.

The World Health Organization reported in 2021 [8] that approximately 1.3 million

people in the world die per year from traffic accidents. Road crash injuries are the leading

cause of death for children and young adults between five and 29 years. Furthermore,

between 20 and 50 million more people suffer from non-fatal injuries caused by road crashes,

directly and indirectly leading to economic losses, disabilities, and loss of productivity, all

of which ultimately reduce the quality of life for many people.
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Figure 1.1: Fatal crashes in the U.S., 1994-2019. Source: [1].

1.1.2 Human Error

Human errors can be a person falling asleep behind the wheel, failing to see an oncoming

obstacle, not understanding a street sign, or driving while intoxicated from alcohol. In

environments with multiple driving agents, these errors are an additional factor of uncer-

tainty that leads to more human errors resulting from poor reactions to these unpredictable

events. Understandably, neither humans nor machines can make the best decisions 100%

of the time in uncertain and continuously evolving driving environments. Still, we can

apply improvements to both the human and machine aspects of driving.

At a sociopolitical level, laws and road regulations concerning the human aspect of

driving are high-level solutions for creating safer road environments. Still, not all humans

abide by said laws and regulations. The precautions taken at an industrial level have done

little to none to remove the human error factor involved in driving. On the other hand,

AD is a solution that seeks to mitigate, or better yet remove, the human error from the
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task of driving.

1.1.3 Autonomous Driving Roadmap

Figure 1.2: Common taxonomy for levels of driving automation.

Although the AV idea did not necessarily arise from a need to reduce the dangers

and risks accompanying human drivers, it serves as a low-level solution to minimize most

road dangers and accidents deriving from poor human decision-making. This low-level

solution can be divided and categorized into the levels of automation seen in Figure 1.2.

This taxonomy standardized by the Society of Automotive Engineers (SAE) [9] serves as

a roadmap for AVs to follow before fully autonomous systems capable of safely driving in

any environment and scenario without any human interaction enter the world.

From an industrial standpoint, automotive tech giants such as Tesla and Waymo are

leading the race for creating level five AVs, having developed commercial vehicles with

level two automation and taxi-service vehicles with level four automation. Even though

both companies implement some level of automation in their vehicle designs, there are still

many barriers to overcome before reaching an era where full AVs prove themselves to be

a far safer alternative to human drivers. Some studies forecast that vehicles with level

five automation systems will not arrive until at least 2030 [10]. However, forecasts on the

arrival of AVs have proven to be wrong in the past, so it is plausible to believe that they

will not arrive until years after the predicted date. In the meantime, research in the field
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will continue to push forward advances that will eventually make vehicles with level five

automation a reality.

1.1.4 Motivation

Intelligent cities apply innovative technologies to tackle the economic, social, and ecological

challenges of future cities. Recent studies have planned for the development of smart cities

[11], whose main objectives are to improve the quality of urban services and the overall

quality of life. These studies also suggest that one of the cornerstones needed to create

a sustainable smart city is the concept of smart mobility, which constitutes a range of

alternative modes of transportation, including AVs. As cities continue to grow in density, so

will the number of traffic congestions caused by current inefficient transportation networks.

Thus, smart mobility and AD will become essential components for managing these swelling

urban populations by reducing the human error factor involved in driving.

Further proof of the growing spotlight around AD research is seen in recent competitions

and benchmarks centered on developing and ranking the top-performing AD models, such

as the CARLA Challenge [2]. Naturally, public interest in AD will grow while AV systems

improve and expand to new limits, eventually revolutionizing modes of transportation.

With both academia and industry especially interested in improvements being made in

AD research, it is only a matter of time before large-scale plans to implement level five

AVs on public roads come to fruition.

With this background in mind, the primary motivations for this research work are

summarized as creating efficient and safer modes of transportation with less fatalities, and

motivating for further AD research to be carried out. There are numerous AD topics and

regions which require further study, and this work may also serve as a stepping stone for

future studies. By focusing on specific driving sub-tasks and driving environments and

implementing the right set of tools, we can work towards pushing current level four or five

AD capabilities.
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1.2 Problem Statement

The emergence of full AVs appears to be a sure thing while it remains an active line of

research. However, AD technology is typically made to operate in select regions prepared

for handling that technology. In the case of less developed regions where AD research

is close to non-existent, such as South America, it will likely take more time for that

technology to catch up. Part of this drawback stems from AD models being dependent on

their training data. Since it is difficult to represent the entire complexity of driving in every

region of the world in a single driving dataset, level four AV systems are generally made

considering the climate and driving norms of hand-picked regions where they will function.

Therefore, level four AVs will remain limited to thriving in regions whose driving data

was collected for training. This is especially true if the goal is to someday implement AV

technology in less-studied driving regions, such as in South America, that are not amongst

the principal actors in AV research and would require a greater deal of work to implement

in local streets and cities.

AD systems constitutes of multiple tasks with different types of methods that can be

applied to solve each task. Training a system to drive autonomously involves enabling

a system to handle tasks stemming from computer vision, planning, and control theory

problems. Due to this complexity, full level five AD is a difficult task to teach to a machine

system for a number of reasons. In this section, we describe the problems related to

training AVs with a special focus on multi-modal perception, computational costs, and

hyper-parameter optimization (HPO).

First, there is a high degree of uncertainty in real-world driving environments due to the

high level of scene variability and unpredictability. Outcomes of early AD challenges [12, 13]

showed that participating vehicles faced multiple sources of errors stemming from sensor

noise, environment complexity, and system failures, all of which add to the overall level

of uncertainty that each vehicle handles. The uncertain dynamics of driving environments

has endured as an AD challenge as dynamic road scenarios are commonly associated with

lower performance accuracy than their less dynamic counterparts [14].

The ego-vehicle, the vehicle of primary interest during development, must be capable

of maneuvering safely in countless driving environments, scenarios, and uncertainties that
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could present themselves at any instance during a drive in order to classify for level five

automation. However, despite the advances that large companies such as Tesla and Waymo

have applied to some of their most advanced AV models, state-of-the-art AVs still require

human interaction during a real-world driving episode or are limited to driving in specific

environments. Therefore, they do not classify for level 5 automation neither.

Testing for full level five automation is a task additional to the training of AD systems

that adds a level of complexity to the development process. Naturally, the computational

cost required for evaluation increases as more driving scenarios are tested. However, since

there is no efficient or standardized way for testing an AD system in every possible driving

scenario, an alternative is to evaluate an AD system in a fixed number of settings and

conditions. Ideally, the more scenarios used for development the better. Nevertheless, time

and computational resources are two key factors that limit the amount of models that can

be trained and evaluated. The convergence between HPC and artificial intelligence then

becomes more crucial as they can be used in unison for developing intelligent AD agents

[15]. The challenge then becomes in making use of HPC systems and methods to solve

expensive optimization problems related to AD.

Considering this computational limitation, the main problem that this work focuses

on is the HPO of an imitation learning (IL) AD model for a sub-task known as multi-

modal fusion. This sub-task is a perception task that applies to AVs with the peculiarity

of using different types of sensors. The most commonly studied sensor types for AD

are RGB cameras that produce images in R2 and light detection and ranging (LiDAR)

sensors that produce cloud-point data in R3. Multi-modal fusion deals with combining

the information from different sensor modality representations by implementing one of

three paradigms of fusion commonly referred to as early fusion, deep fusion, late fusion, or

combinations of those paradigms [16]. Regarding HPO, we are especially interested in the

problem of how the number of attention layers, attention heads, batch size, and learning

rate hyper-parameters relate to the problem of multi-modal fusion and perception in terms

of compared benchmarked performance.

Real-world deployment of full AVs has taken longer than expected, especially when

considering the importance of operational safety to general driving standards. Despite

advances, multi-modal fusion models still tend to experience performance degradation when
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in the presence of challenging driving scenarios which can sometimes be brought by simple

changes in scenery [17, 18]. In other words, there is a need to improve the software-learning

aspect of current AV models so that they can drive further distances while committing fewer

road infractions.

In 2021, a multi-modal fusion model called TransFuser was presented as a novel ap-

proach for using transformers to encode the global context of a 3D scene perceived through

multiple sensor modalities [3]. It also introduces attention-based hyper-parameters tun-

able through HPO for the task of multi-modal fusion in AD. Since then, TransFuser im-

plementations have shown improving results in recent submissions to the official CARLA

Leaderboard platform [2]. However, literature outlining how the tuning of certain hyper-

parameters affects the capacity of driving models to handle challenging driving scenarios

is still relatively limited.

This lack of research hampers the driving potential of this state-of-the-art model and is

partly attributed to AVs commonly requiring data-intensive computations to train. Most

personal computer (PC) systems are not made for efficiently handling the strain of data-

intensive computations that usually accompany AD models, limiting the amount of testing

that can be done on a PC. Considering the data-intensive nature of AD models, this

limitation makes HPC systems and methods necessary for large-scale AD development

and HPO.

Against this backdrop, this thesis project aims to highlight the relationships between

novel attention model components and the AD task of fusing sensor modalities to drive

in complex urban scenarios. We are also concerned with the overall model performance

and training efficiency of the tested models and variations. Performance can be measured

through benchmarks, while training efficiency can be measured through system metrics

provided by the HPC system.

1.3 Objectives

1.3.1 General Objective

• Optimize the hyper-parameters of the state-of-the-art TransFuser model using a

CARLA simulation framework running on an HPC system.
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1.3.2 Specific Objectives

• Perform large-scale HPO experiments on AD models by implementing the CARLA

simulation framework on an HPC system.

• Train three instances of four AV baseline models and the TransFuser model with

default configurations.

• Perform three grid-searches to hyper-tune the transformer architecture of the Trans-

Fuser model resulting in nine trained model variations for each grid-search.

• Perform three grid-searches to hyper-tune the learning rates and batch sizes of the

three best-performing transformer variations resulting in 54 trained variations of the

TransFuser model for each grid-search.

• Monitor the hyper-parameters and system metrics of the second grid-search through

a machine learning tool called WandB.

• Obtain performance metrics for all trained models using the CARLA Leaderboard

benchmark.
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Chapter 2

Theoretical Framework

As significant developments have been made in the past decades regarding computer vi-

sion, machine learning, and simulations, researchers have commonly begun integrating

newer machine learning methods into other computer vision-related tasks such as AD.

Convolutional NNs (CNNs) are an example of this as they are components frequently im-

plemented in AD models and learning approaches due to their revolutionary impact in

pattern recognition [19]. Now, thanks to open-source simulation frameworks, experiment-

ing with AD models and agents is more straightforward and more accessible than it was

less than a decade ago. For example, the CARLA framework allows the development of

autonomous agents, generation of driving data, and evaluation of driving performances.

This chapter describes the theoretical baselines needed to understand better how we

train and evaluate AV models using the CARLA simulation framework. We first provide a

historical context of AD, leading up to AD tasks, and common learning approaches to end-

to-end AD. Then, we describe the CARLA simulation framework consisting of a driving

simulator [20], an open-source dataset of simulated driving in 14 weather conditions [3, 21],

and a benchmark for evaluating driving performance [2]. Chapter 3 then complements this

chapter by describing the AD models studied in this work.

2.1 Autonomous Driving History

With both industry and academia focused on developing reliable full AVs, we can imagine

reaching a point where steering wheels are no longer a necessary part of a car. Whether or

not this happens, any possible future with AVs will only be thanks to the historical progress
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and milestones that have paved the way for current AV capabilities and innovation. Since

the emergence of the first AV systems, models have gone from using NNs in AV systems to

implementing the latest technologies and system models such as HPC and transformers.

For a better context of how AD has evolved, this section presents a general panorama of

AD development in the past 70 years. We highlight historical challenges and benchmarks

and justify the need for simulations in AD research.

2.1.1 Historical Context

1930s - 1990s Science fiction literature of the early 20th century gave birth to the idea

of a vehicle capable of driving itself. It was not until the 1930s that Norman Bel Geddes

materialized this idea by depicting an autonomous car at the 1939 World’s Fair in New

York. This exhibit outlined his vision of a world where humans are removed from the

driving process. In the 1950s, a joint initiative by General Motors and RCA Laboratory

became the first of many to begin a phase of AV research and development.

In the years to follow, numerous technological research and development programs

throughout the U.S., Europe, and Asia took place under governmental and academic in-

stitutions to work on smart vehicle systems, and driving scene recognition through image

processing [22]. In an essay from 1969 [23], John McCarthy described the concept of an

AV as a vehicle capable of navigating itself based on two inputs, the same visual input

that is available to a human driver and the destination input of the user. This definition

of AV would become a standard for future research and development.

The rest of the 20th century was filled with pioneering AD research resulting in key

milestones such as the cruise control feature, the use of LiDAR technology for distance

control, and prototypes that made use of NNs to input raw road images and output steering

controls in real-time [24]. Here, the introduction of artificial intelligence to AV systems

would come to be a crucial factor that revolutionized the field of AD and further propelled

autonomous capabilities to parking, maneuvering a moving vehicle, and rationalization of

a driving scenario [25].

2000s - 2022 (Present day) From 2004 to 2007, the Defense Advanced Research

Projects Agency (DARPA) held three AV Challenge Programs in the U.S. that helped
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to motivate and accelerate research in AVs, increasing interest in academic and industrial

environments. It was in this decade that large automobile and tech companies such as

Volvo and Google began to undertake their journeys into the race for developing full AVs

[22]. Since then, many other car companies have joined in the race by developing their own

AV technologies and releasing car models with advanced driver support systems ranging at

a level one automation for tasks such as collision avoidance through advisory and warning

features, parking, and lane-keeping [26].

In 2016, after the SAE taxonomy for autonomous levels of driving (Figure 1.2) became

widely accepted, the world saw its first fatal accident involving an AV, followed by the first

pedestrian fatality in 2018. Naturally, concerns regarding the legal status of AVs continued

to grow, meaning that cities had to adapt to this rapidly evolving technology, both on a

technical and a legal scale. An inventory of cities around the world shows that as of 2019,

56 cities have been hosting AV tests or have committed to doing so in the near future,

while 40 cities have been undertaking extensive surveys to regulate, govern, and plan for

issues raised by AVs [27].

By this point, cars with level two automation have already reached the market. Some

Tesla vehicle models include an autopilot mode capable of adaptive cruise control, accel-

eration control, and emergency braking. An enhanced version of the Tesla autopilot mode

also supports lane changing and autonomous parking. In 2021, some car companies be-

gan leasing car models in certain areas with government-approved level three automation

technology. Legally, the drivers of these vehicles are allowed to take their eyes off the road

but must be ready to take manual control if needed. Examples of this are the Honda Traf-

fic Jam Pilot driving technology in Japan and Mercedes-Benz Automated Lane-Keeping

System in Germany.

2.1.2 Challenges and Benchmarks

Challenges and benchmarks are methods for measuring the performance of a machine

learning system. In the case of AD, they measure the driving capabilities of an AV system

given a specific task and driving scenarios. Here we present some of the most historically

relevant AV challenges and benchmarks in the past two decades to demonstrate the evolving

tendencies of AD research and development.
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• DARPA Grand Challenge (2004) The task was to construct a vehicle that could

autonomously drive 241 km across the Nevada desert where no team completed the

task. Only five vehicles traveled more than 1.6 km, with the farthest-traveling ve-

hicle traveling just over 11 km. Since no winner was declared, the challenge was

rescheduled for the following year [12].

• DARPA Grand Challenge (2005) This task was to complete a 212 km driving

course. Five out of 23 finalists completed the course with a mean mileage between

occurrences of significant errors or failures equal to 193 km [12].

• DARPA Urban Challenge Event (2007) Six out of 11 finalists successfully fin-

ished the 97 km urban course with a mean mileage between occurrences of significant

errors or failures equal to 161 km [13]. Despite this being a significant event at the

time, the course lacked real-world urban scenes such as pedestrians and cyclists.

• VisLab Intercontinental Autonomous Challenge (2010) A challenge based on

GPS waypoints tested four AVs in real traffic conditions on a 13,000 km interconti-

nental trip over three months. The goal was to check and improve the performance

of AVs developed by VisLabs and recollect driving data for future research (about 50

TB was recollected) [28].

• The KITTI Vision Benchmark Suite (2012) A benchmark suite that used an

AD platform to develop benchmarks for computer vision perception tasks such as

object detection [29]. It was the first time that deep learning was used to solve an

AD task.

• CARLA Challenge (2019) An online driving challenge based on the CARLA sim-

ulator that evaluates AD models under the same set of simulated driving scenarios

and tasks [2]. This challenge is held yearly and has seen improvements in the perfor-

mance of AVs as well as growing interest amongst the research community.

2.1.3 The Need for Simulation in Autonomous Driving

Driving environments are a must-have for developing and testing AD systems where safety

is crucial. However, some have argued that hundreds of millions of driven test miles are
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needed in order for an AV to be statistically more reliable than a human driver at handling

complex traffic situations [30]. This requirement becomes challenging and expensive with

real-world driving when replicating traffic situations over a long period of time. Considering

the vast number of situations that may arise when driving, the development of reliable

level five AV systems depending solely on real-world settings is slowed by the expensive

and time-consuming task of physically collecting driving data [31].

Driving simulations are alternative solutions that have become popular research tools

in recent years. They also serve as a sandbox for developing, training, and testing AD sys-

tems. In doing so, they bring the benefit of improving upon the development, quality, and

confidence of AD models [32]. They are synthetic virtual environments typically generated

by computer graphics, physics-based modeling, and robot motion planning techniques. The

simulation process helps separate the algorithmic aspect of AD from the hardware, allow-

ing researchers to focus solely on improving the AD system models that will eventually

make AVs a safer mode of transportation than human drivers. The use of simulated envi-

ronments for AD serves two primary purposes. First, to test and validate the capability

of AD vehicle systems in the context of perception, navigation, and control. Second, to

generate large amounts of labeled driving data valid for training machine learning models

[33].

Waymo, the company owning a fleet of some of the most advanced AV systems glob-

ally, has admitted to having driven more than 32 million kilometers since the origins of the

company [34]. With half of that total distance driven in just over a year since the company

started providing autonomous taxi services to the public, they have also driven approx-

imately 32 billion kilometers through simulations. In this manner, Waymo has obtained

sufficient driving data to test and implement their fleet of autonomous taxis. This example

indicates a clear benefit for accelerating AD research through simulations. This way, the

pursuit of developing systems capable of driving further distances while committing fewer

road infractions is also accelerated.

Even though the hardware related to AVs has become cheaper and more accessible

over the years, the software aspect still needs improvement to make safe and reliable

AVs. This challenge is directly related to making a practical AV programmed to handle

multiple scenarios and challenges that can arise while driving. Simulations provide an
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alternative and more scalable method for designing complex environments for AVs to drive

in. Depending on the necessities of the user, the simulated environments can be made to

include complex social interactions, traffic congestion, crashes, infrastructure conditions,

poorly marked roads, and rough surfaces, among other elements that make up countless

possible driving scenarios. Therefore, simulations are necessary tools for the large-scale

implementation of AVs and for making AD research more accessible to people.

2.2 Driving Tasks and Learning Approaches

AD is a complex task consisting of various smaller sub-tasks that need to be solved for end-

to-end driving. AD systems are capable of handling a wide range of sub-tasks, including

but not limited to motion planning, vehicle localization, pedestrian, traffic sign and road-

marking detection, automated parking, vehicle cybersecurity, and system fault diagnosis

[35]. When considering the role of AVs in the concept of smart mobility, these sub-tasks

extend to fuel efficiency, adaptive cruise control with queue assist, platooning, and safe

maneuvering through lanes and intersections [36]. The list of sub-tasks becomes even more

extensive when considering connected AVs that need to manage communication with any

entities that can affect or be affected by the vehicle. This communication is known as

vehicle-to-everything, where communication may extend to other vehicles, infrastructures,

networks, pedestrians, and devices [36, 11].

We generalize the complex task of driving into four main sub-tasks: localization, per-

ception, planning, and control. This section provides a comprehensive overview of these

main tasks and the algorithms and approaches for handling most AD tasks and learning

desired driving behaviors. Specifically, the model architectures implemented in this work

focus on solving the perception task of multi-modal sensor fusion for end-to-end AD.

2.2.1 Main Driving Tasks

For the scope of this work, we consider the essential operational functions that an inde-

pendent AV must be able to perform to navigate through a given scenario. With this in

mind, this subsection classifies AD capabilities into four main task categories: localization,

perception, planning, and control. We also present examples of algorithms and methods
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used for each of these four tasks.

Localization Localization is the task of a vehicle recognizing itself and approximating its

location and position in an environment. Usually, this information is presented through x-y

coordinates and obtained through global navigation satellite system (GNSS) and inertial

measurement unit (IMU) sensors. However, since these measurements can be prone to

inaccuracies due to nearby structures, localization approximations can be improved by

using additional sensors and map-matching. One technique is the Adaptive Monte-Carlo

Localization algorithm that uses a dynamically-adjusted particle filter to track the position

of a vehicle with respect to a map [35]. There also exists a family of algorithms commonly

used for environment mapping and vehicle localization known as simultaneous localization

and mapping (SLAM) algorithms [37].

Perception Perception is the task of perceiving the environment surrounding a vehicle

and deriving some understanding from it. Sensors are indispensable for this task as they

allow vehicles to obtain different data types from their environments, such as 2D RGB

images and 3D point clouds. Being one of the more complex AD tasks to solve, perception

can be split into a series of computer vision sub-tasks, including traffic lane recognition,

semantic image segmentation, object detection, and sensor fusion.

The perception algorithms that can be applied can vary depending on the specific

sub-task that needs solving. However, these are typically classified into three groups of

algorithms. There are general machine learning algorithms such as AdaBoost and SVM

methods combined with feature extraction algorithms, artificial NNs (ANNs), and deep

learning methods including CNNs. SLAM algorithms can also help gain perception about

an environment, especially when combined with another family of algorithms called the

detection and tracking of moving objects (DATMO) algorithms [37].

Planning Planning is the task of deciding how a vehicle should react, given a perceived

scenario or a current state. Planning involves deciding all the low-level actions that the

vehicle would need to take, such as steering, braking, and accelerating, and higher-level

decisions, including route planning and lane-changing. The methods for planning and

making decisions can be classified into four groups. There are route planning algorithms
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that can be used assuming a map layout is known a priori, methods for planning the

movement and control of vehicles such as the holistic end-to-end planning approach, and

decision-making mechanisms based on deep reinforcement learning, decision trees, and

Markov decision processes [35]. Of these methods, the holistic end-to-end method is among

the most commonly used approach as it simplifies the number of algorithms needed by

combining the tasks of perception, planning, and control into one, helping to reduce the

average execution time of the planner [37, 35].

Control Control is a control theory task of implementing the necessary low-level vehicle

motion controls to carry out the decision results from the planning task. Here the low-

level controls depend on the output from the previous planning phase. If, for example,

a sequence of waypoints were output, then a method for converting those waypoints into

actions would be needed. If, on the other hand, vehicle controls were output, then the task

would consist of applying those controls to the vehicle.

Several algorithms can carry out the control task depending on the desired motions and

the driving goals. For example, some algorithms prioritize safety while others may prioritize

low computational cost and fuel efficiency. One approach is to divide the vehicle controls

into different controllers for different tasks, such as lateral and longitudinal controls and

steering controls. Then, for each control, different algorithms can be applied, such as a

tunable proportional-integral-derivative (PID) controller for carrying the necessary motions

for each control of the ego-vehicle [35].

2.2.2 Multi-Modal Sensor Fusion

One sub-task for AD perception is the fusion of data from different sensor modality rep-

resentations. The three paradigms for fusion are early fusion, deep fusion, and late fusion

[16]. Here early fusion can refer to fusion methods that combine LiDAR data at the raw

data level and camera data at the data or feature level. Late fusion methods fuse the

output results from different modalities. Meanwhile, deep fusion fuses cross-modal LiDAR

data at the feature level and camera data at the data and feature level. In this context,

finding optimal fusion methodologies become a research challenge for AD.

The first models to implement fusion methods on multi-sensor vehicles included end-to-
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end architectures that exploit continuous convolutional blocks to fuse image and LiDAR

representations for the AD tasks of 3D object detection, ground estimation, and depth

completion [38, 39]. This fusion process commonly involves encoding continuous streams

of geometric information and applying some fusion method. Since driving data is sequential

information, other early approaches used recurrent NN (RNN) architectures such as long

short-term memory that allowed for modeling the input and output sequences of data

[40]. Furthermore, ever since the integration of attention mechanisms and CNNs grew

in computer vision tasks such as image classification [41] and object localization [42], the

use of attention-based methods has spread to AD tasks such as object detection [43, 44],

motion prediction [44, 45], lane changing [46], and sensor fusion [3].

2.2.3 Learning Approaches

For a system to have learned some aspect of driving, it must be capable of receiving

sensory inputs and outputting a driving action or decision. Studies show that computer

vision is an essential part of improving sensorimotor systems since models that use explicit

intermediate representations train faster, achieve better performance, and generalize better

to new environments [47]. However, the learning methods they use to learn from inputs

can differ. There are two main approaches used to create complete AD systems, the

modular pipeline approach and the end-to-end learning approach. This subsection provides

examples for both.

Modular Pipelines Modular pipeline systems [48, 49] are the traditional approaches

for creating AD systems. Also known as the mediated perception approach by some works

[50], modular systems divide the general task of driving into various sub-tasks. These

sub-tasks generally involve localization, perception, planning, and control, each of which

links sensory inputs to motion outputs and can be further divided into more specific tasks

such as object detection and road planning [51].

This modular way of designing systems is advantageous as reliable architectures can

be built by placing specific algorithms for handling each sub-task problem that requires

solving. Since there is more accumulated research on the specific sub-tasks related to AD

than on the general task of AD, it is also beneficial to use modular components that have
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been researched and tested more extensively. However, the major flaws of modular systems

are that they are prone to error-propagation and over-complexity [51], causing researchers

to look for more optimal systems capable of performing just as well as, if not better than,

modular systems.

End-to-end Learning End-to-end driving, also known as the behavior reflex approach

by some works [50] combines the general task of driving into a single learnable system

architecture by directly mapping input sensory data to motion outputs. While end-to-

end models essentially handle the same sub-tasks as modular pipelines, they differ in how

interconnected an end-to-end learning pipeline is versus a modular pipeline. End-to-end

models date back to the ALVINN [24] vehicle in 1988 and have become more feasible

solutions since then, thanks to advances in ANNs and deep learning [51].

In practice, end-to-end architectures are developed mainly with three approaches for

end-to-end learning. These approaches include direct supervised learning that requires

ground-truth knowledge [52, 53], reinforcement learning that learns the optimum way of

driving by maximizing future rewards [54, 55], and neuroevolution that uses evolutionary

algorithms to train ANNs without the need of backpropagation [56].

Each approach represents three fundamentally distinct forms of learning and is capable

of performing AD tasks. Naturally, each approach functions distinctly and has some ad-

vantages and disadvantages. For example, while the direct supervised learning approach

can imitate an expert driver with off-line training, these methods tend to have trouble

with environment generalization. Furthermore, while deep reinforcement learning and

neuroevolution offer novel solutions to AD, they both require training in an online envi-

ronment through repeated trial and error until obtaining the desired behavior. Also, urban

driving and real-world driving are still in the early stages of development with the deep

reinforcement learning and neuroevolution approaches, respectively [51].

2.2.4 Imitation Learning

IL is an area of machine learning where an agent attempts to learn an optimal policy that

best imitates the desired behavior from a set of demonstrations provided by an expert.

In the context of end-to-end AD, IL has served for mapping perceptual inputs to control
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commands in lane following [57] and obstacle avoidance [58] tasks. Considering that AD

handles perceptually sequential data, it is common for IL system models to implement a

CNN, an RNN, or a multi-layer perceptron (MLP) in their system designs.

Behavioral Cloning Behavioral cloning is one approach to end-to-end IL based on

supervised learning. Given a set of training trajectories obtained off-line by an expert

driving policy where each trajectory consists of a sequence of observations and expert

actions, the goal of this method is to train a target policy to mimic the actions of the

expert driving policy based on the collected observations [59].

Limitations Limitations that made it challenging to apply behavioral cloning to the

general task of AD were noted in early studies of IL applied to AD. For example, when the

ALVINN vehicle [24] reached a forked road, the network outputted two discrepant travel

directions. This output indicated that the optimal action cannot always be inferred from

perceptual input alone when driving, meaning that an AV will always have trouble deciding

which direction to take at an intersection. Also, if the capabilities of an AV are limited to

lane following, it is unable to turn from one road to another without the interaction of a

human driver [57].

Another one of the main known limitations to this approach is the distributional shift

between training and testing distributions resulting from a vehicle handling unseen complex

driving scenarios. Other problems beyond AD that limit the generalization capabilities of

an AD model are high variances, dataset biases, and causal confusion. In IL models, there

tend to be high variances in performance resulting from sensitivity to random network

initialization methods, and data sampling order [17]. They have also shown to be sensi-

tive to dataset biases as the learned policies tend to be dominated by the training datasets

[60]. Causal confusion is another problem related to dataset bias sensitivity where spurious

correlations are not distinguishable from real causes in observed training demonstration

patterns [61]. These models have also shown to suffer from a sensitivity to network initial-

ization, and sampling order [62].

Conditional IL Due to the limitations of not being able to control trained policies

during test time, conditional IL (CIL) models were proposed as improvements to IL models
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[63]. Unlike typical IL methods, CIL methods resulted in models capable of responding

to navigational commands during test time. During training, models are conditioned on

high-level navigational commands such as ”turn right” or ”follow lane.” Given an expert

driving policy π∗ and a dataset D = {⟨oi, ci, ai⟩}N
i=1 of size N where oi are the sensory data

observations, ci the high-level navigational commands, and ai the resulting vehicle actions,

the goal of CIL is to learn a policy π parametrized by θ to mimic the behavior of π∗ based

on oi and ci. In order to achieve this, the best parameters θ∗ can be found by minimizing

a loss function L. This IL process is generalized in the following equation,

θ∗ = argmin
θ

∑
i

L(π(oi, ci, ; θ), ai) (2.1)

Initial studies have shown that CIL combined with deeper residual networks can improve

over other state-of-the-art architectures in terms of the generalization capabilities of a

trained model. They have also shown that learning can be scaled to large demonstration

datasets. However, dataset bias is still a problem as causal confusion can hinder the

performance of a model, especially with large-scale datasets. Also, these models are still

prone to high variances and require multiple runs to find the best possible policies. Finally,

as with all policy learning methods, environments with more multi-agent dynamics can

negatively affect CIL models as they are not capable of capturing and generalizing these

types of dynamics [17].

2.3 CARLA Simulation Framework

Although several AD frameworks have been proposed [64, 65] and compared [51, 66] in

other works, amongst the most popular and state-of-the-art include the CARLA driving

simulator [20]. CARLA (Car Learning to Act) is a high-fidelity open-source driving simu-

lation framework built to support the training, prototyping, and evaluation of AD systems

in urban environments. The free and open-source nature of CARLA makes it a flexible and

accessible framework that helps democratize AD research and development, allowing for

a great deal of customization and control over environmental factors such as the weather

and time of day.

Another benefit of CARLA is that it supports detailed benchmarking of driving poli-
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cies by providing feedback through detailed descriptions of committed infractions such as

collisions and other traffic violations. Furthermore, it provides flexible support for setting

up experimental suites that can be configured and used to train any modular pipeline, IL,

or reinforcement learning approach and generate large amounts of labeled driving data.

This section describes the CARLA simulation framework used in this work, following

the ideas stated in the original CARLA paper [20] and in the respective online documen-

tation of the simulator. This includes descriptions of the client-server architecture imple-

mented by the CARLA simulator, the eight simulated town environments available for

training and testing, including the actors populating those worlds, and the available sensor

suite for the ego-vehicle. Other aspects of this framework that require more definition for

evaluating purposes are further explored in Section 2.4.

2.3.1 Client-Server Architecture

Figure 2.1: CARLA simulator client-server architecture.

CARLA is built using Unreal Engine 4, a tool for creating high-quality 3D environments

with realistic vehicle physics and various plugins. Also, CARLA uses Python and C++

APIs to grant control over the simulation. The CARLA simulator counts with two driving
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modes: standalone and server modes. The standalone mode is a video-game-style mode

where a vehicle can be controlled manually and driven freely. This mode serves to explore

the layout of the available town maps, weather conditions, vehicles, and sensors. On the

other hand, the server mode implements the client-server architecture seen in Figure 2.1

which essentially allows the simulation world to be run by a CARLA server and controlled

by a client application. This architecture allows for multiple clients to be created in the

same or different nodes depending on how communication is set up through transmission

control ports (TCP) [67]. In doing so, CARLA serves as an interface through which the

simulated world and the agent can interact.

The modules that make up the client-side control the interaction between the AD agents

and the server by managing the logical aspect of the agents as it drives through different

routes and scenarios. This task includes spawning actors, getting the current state of the

world, and changing the environment weather. It does this by sending commands to the

server that dictate the steering, braking, and accelerating actions that it should take. It

also sends meta-commands to the server, which controls the sensor suite utilized by the

ego-vehicle, environmental aspects of the simulation such as the weather and illumination

conditions, and the population density of non-player characters (NPC) to spawn, which

includes vehicles and pedestrians. In conjunction with the client, the server-side is respon-

sible for running the simulated world and rendering the pre-defined scenarios. In response

to incoming commands from the client, the server sends data and meta-data concerning

the sensors of the ego-vehicle. In this mode, the client application is essentially collect-

ing data and sending instructions to the server running the simulation. An essential idea

behind this architecture is that it adds a scalability factor to the simulation process, a

valuable trait for research and development as multiple scenarios and agents may be tested

simultaneously.

2.3.2 Town Environment Characteristics

CARLA simulations offer great flexibility through highly customizable driving environ-

ments and actors. In the context of CARLA, actors are considered to be anything that

plays a role within the simulated world, including vehicles, pedestrians, sensors, traffic

signs, and traffic lights, all of which have physical attributes and action states. When
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running a CARLA server, certain aspects of the simulated world, such as the weather

type and world-port, can be specified through environment variables. In contrast, other

aspects, such as vehicle sensor configurations, defined routes, and scenarios, require defin-

ing Python, XML, and JSON scripts. It is also possible to build custom-made maps and

vehicles. However, the process becomes more complex as it requires additional tools such

as Unreal Engine Blueprint. A more straightforward way of working is to use the CARLA

Blueprint library containing pre-made actor layouts in the form of Blueprints necessary for

spawning actors.

Table 2.1: CARLA town descriptions.

Town ID Description
Town01 A town with three-way junctions.
Town02 A town similar to Town01 but smaller.
Town03 Includes a five-lane junction, a roundabout, unevenness, and a tunnel.
Town04 Includes an infinity loop and a highway that connects to a small town.
Town05 A grid-like town with cross junctions, a bridge, and multi-lane streets.
Town06 Includes long highways with multiple entrances and exits.
Town07 A rural environment with narrower roads, barns, and few traffic lights.
Town10 Includes different city environments such as an avenue or promenade,

and more realistic textures.

The simulation framework that this work focuses on consists of the eight urban-like

towns described in Table 2.1. Each of these town environments is made up of digital

assets, which are categorized into two groups: static objects such as vegetation, traffic

signs, buildings, and other basic infrastructure, and dynamic objects such as pedestrians

and other vehicles.

All assets are combined via a layered approach to build the eight CARLA towns. This

layered approach consists of three parts: (1) designing the town roads and sidewalks, (2)

placing static object assets down on the town terrain, and (3) defining the locations where

the dynamic object assets will appear. Following a similar process, further maps can also

be created by the user using the OpenDRIVE standard to describe the roads. Also, with a

given map, environmental factors such as the time of day and weather conditions can vary

to one of the 14 available kinds of weather options seen in Figure 2.2.
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(a) Clear noon (b) Clear sunset

(c) Cloudy noon (d) Cloudy sunset

(e) Wet noon (f) Wet sunset

(g) Wet cloudy noon (h) Wet cloudy sunset
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(i) Mid rainy noon (j) Mid rain sunset

(k) Hard rain noon (l) Hard rain sunset

(m) Soft rain noon (n) Soft rain sunset

Figure 2.2: 14 weather variations in CARLA simulator.

2.3.3 Sensor Suite

As mentioned in the previous subsection, the definition of an actor in the context of CARLA

extends to sensors as well. These sensors are connected to a parent vehicle and follow it

throughout its drive, recollecting sensory data throughout the process. The number, type,

and placement of each sensor on the vehicle, as well as the way they recollect data depend

on how the sensors are configured within the Python scripts on the client-side of the
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simulation. By default, the sensors which must continuously provide some output (such

as RGB cameras or LiDAR) do so at every simulation step unless configured otherwise.

Meanwhile, the sensors which do not meet this criterion obtain data each time a specific

event occurs (such as collisions or lane invasions). The sensor suite provided by CARLA

includes five camera types, three range sensors, three detector types, three sensors that help

abstract the current state of the parent vehicle, and a sensor that provides integration with

RSS (Responsible-Sensitive Safety). The complete suite of sensors is listed and described

below:

• RGB camera: a regular camera that captures images from the scene. This sensor

includes a set of post-process effects that help give a better sense of realism by

allowing the intensity of light to affect the captured images, adding noise or blurs to

the images, and simulating the reflection of bright objects, among other effects.

• Depth camera: a camera that provides raw data from a scene and creates a depth

map by codifying the distance of each pixel in an image using the three RGB channels.

These codified distances stored in RGB channels can then be transformed into a

grayscale depth map with milimetric precision.

• Semantic segmentation camera: classifies every object in sight and displays it in

a different color according to its tag. Every element spawned in the world is created

with a unique tag depending on what type of object it is. This sensor provides access

to 12 semantic classes, namely buildings, fences, pedestrians, piles, road lines, roads,

sidewalks, vegetation, vehicles, walls, traffic signs, and another for any object that

does not fall in any of these categories.

• DVS camera: also known as an event camera, it measures and captures changes

of pixel intensities and brightness between consecutive frames, outputting a stream

of asynchronous events instead of intensity frames like a typical camera does. In

other words, the camera will not return an image where there are no pixel differences

between consecutive frames. Because of this, they possess properties that give them

the advantage of producing high-quality visual information with no motion blur even

in challenging high-speed scenarios and high dynamic range environments.
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• Optical Flow camera: measures and captures the motion flow perceived from the

point of view of the camera, where every pixel recorded by the sensor encodes the

velocity of that point projected to the image plane.

• Radar sensor: creates a 2D point map of the elements in the parent vehicles field

of view and their relative speed regarding the sensor. Radar helps evaluate the

movement and the direction of elements, determining whether the objects are static,

moving towards or away from the parent vehicle.

• LiDAR sensor: a rotating LiDAR sensor that casts laser rays to compute a cloud of

points that represent a static picture of the current scene. The output is a list of 4D

LiDAR measurement points where each point includes information concerning their

xyz coordinates and the intensity loss during the travel. This sensor also includes a

drop-off attribute and a noise attribute to simulate the loss of cloud points due to

external perturbations and unexpected deviations, giving the sensors a better sense

of realism.

• Semantic LiDAR sensor: a rotating LiDAR sensor that casts laser rays to compute

a cloud of points that represent a static picture of the current scene. It is similar

to the regular LiDAR sensor with two exceptions: (1) this sensor does not include

intensity, drop-off or noise attributes, (2) in addition to the coordinates of each cloud

point, it also includes the cosine between the angle of incidence and the normal of

the surface hit, and the index and semantic tag of the object hit by the ray.

• Collision detector: registers an event each time its parent actor collides against

any kind of object (static or dynamic) in the simulated world. Several collisions may

be detected during one simulation step. The registered information includes the type

of object, an ID, and the collision coordinates.

• Lane invasion detector: registers an event each time the parent actor crosses a

lane marking by considering the space between wheels and road data provided by the

OpenDRIVE description of the map. The registered information consists of a list of

crossed lane markings.
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• Obstacle detector: registers an event each time the parent actor has an obstacle

ahead by creating a capsular shape ahead of the parent actor that anticipates obsta-

cles. This sensor helps check for collisions by ensuring that collisions with any kind

of objects are detected.

• GNSS sensor: calculates and reports the current position of its parent actor in the

simulated world through x, y, and z coordinates.

• IMU sensor: extracts the accelerometer, gyroscope and compass readings of the

parent actors current state which measure the linear acceleration, angular velocity,

and orientation in radians.

• Speedometer: a pseudo-sensor that approximates the linear velocity of the ego-

vehicle.

• RSS sensor: RSS is a model that defines the notion of safe driving. CARLA provides

integration with a C++ library for RSS to modify the trajectory of a vehicle using

safety checks when necessary. It does this by using RSS sensors to calculate the RSS

state of a parent vehicle and to output the current RSS response as sensor data.

2.3.4 Additional Key Features

Aside from the layout of the simulation environments, its actors, and the sensors that help

these actors interact with the environment, other key features allow for more scenarios

and AD approaches to be explored. One of those features is the Traffic Manager module

that is built on the client-side of the simulator on top of the C++ API, as seen in Figure

2.1. This module aims to populate the urban environment with realistic traffic flows by

controlling all NPC vehicles set to autopilot mode. The dynamic traffic flow of NPCs

roaming throughout the simulation can be controlled through kinematic parameters which

allow, force, or encourage some traffic behaviors such as sudden lane changes or cars that

exceed the speed limit.

Another key feature is the Scenario Runner module that makes use of the CARLA API.

A scenario is a complex choreography of actors that results in a specific traffic situation.

Their purpose is to force the ego-vehicle being controlled to react to a specific situation.
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Scenarios are generally divided into four categories: (1) vehicle control loss, (2) dealing

with lane changes, (3) detecting obstacles in the road, and (4) handling intersections.

Therefore, the Scenario Runner is the module used for defining scenarios for the ego-

vehicle to drive in. One way of generating multiple scenarios in a single simulation is by

defining a route file that uses waypoints to specify the path that the ego-vehicle agent

must follow. The scenario events can then be activated once the ego-vehicle passes near

defined trigger positions. This feature is important since defining traffic scenarios allows

AV systems to be trained and evaluated under specific circumstances.

Although CARLA includes a wider range of features that, for the most part, go beyond

the scope of this work, three features are worth mentioning as they are helpful for research

and development. First, there is a Recorder feature, which logs snapshots of all simulation

and actor states, allowing for a precise reenactment of all simulation events. In addition

to this, a similar function allows for recording the sensory data of a driving episode. This

feature helps recollect simulated driving data and visualizes the environment through the

perspective of the ego-vehicle. Second, one can configure the elapsed simulation time be-

tween two simulation steps. This feature is known as Time-step and is measured in frames

per second (fps). The minimum value is 10 fps, but it is recommended to use a higher

time-step as this allows for more extended periods to be simulated in less time. Finally,

there are various rendering options for running a simulation. Depending on the version of

CARLA, either OpenGL or Vulkan graphic APIs can be used for rendering either high or

low-quality graphics. Also, there is a no-rendering mode and an off-screen rendering mode,

aside from the normal graphics-rendering mode. In the no-rendering mode, Unreal Engine

skips all computations related to graphics. It returns empty data on graphics processing

unit (GPU)-based sensors, preventing rendering overheads and facilitating traffic simula-

tions and road behaviors at high frequencies. Meanwhile, in the off-screen rendering mode,

all rendering and sensory data is computed as usual, except for there being no display

available, making it useful when working on systems that do not count with GUI displays.
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2.4 Dataset

For this work, we use the minimal version of an open-source dataset [3, 21] generated by

an expert driving policy that made use of the 16 sensors seen in Table 2.2 to drive within

the eight urban-like CARLA towns described in Table 2.1. The complete version of the

dataset that results from running the expert agent through a series of routes and scenarios

weighs approximately 432 GB and is divided into two datasets, a clear weather dataset

(229 GB) that only contains clear noon weather (Figure 2.2a) and a 14 weathers dataset

(203 GB) that contains data spanning all 14 preset weather conditions (Figure 2.2). In

both cases, the recollected data is structured in the following manner:

TownX {tiny, short, long}: corresponding to different towns and routes files

• routesX : contains data for an individual route

– rgb {front, left, right, rear}: multi-view RGB camera images

– seg {front, left, right, rear}: corresponding segmentation images

– depth {front, left, right, rear}: corresponding depth images

– topdown: segmentation images from a birds eye view (BEV) perspective

– 2d bbs {front, left, right, rear}: 2D bounding boxes for different agents in

the corresponding camera view in a numpy array format

– 3d bbs: 3D bounding boxes for different agents in a numpy array format

– lidar: 3D point clouds in a numpy array format

– affordances: different types of affordances in a numpy array format

– measurements: contains position, velocity and other metadata of the ego-

vehicle in a JSON format

With the necessary elements defined, an expert driving policy generated the driving

data of this dataset through simulation. This section provides descriptions and character-

istics of the 14 weathers minimal dataset used for training and testing, including dataset

size, structure, examples, and content. We also describe other aspects relevant to this
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Table 2.2: Type and amount of sensors used for generating datasets.

Sensor Types Complete Dataset Minimal Dataset
RGB Camera 4 1
Semantic Segmentation Camera 4 0
Depth Camera 4 0
LiDAR Sensor 1 1
GNSS Sensor 1 1
IMU Sensor 1 1
Speedometer 1 1

dataset, such as the configurations of the sensors on the ego-vehicle, the expert driving

policy, the travel routes, and the driving scenarios.

2.4.1 14 Weathers Minimal Dataset

In addition to the complete large-scale dataset, the authors provide a minimal version of

the 14 weathers dataset that weighs about 65 GB. This is the dataset utilized for training

all the AD models presented in this work. It is essentially the same as the complete 14

weathers version, with the only difference being that it has been trimmed down to hold

only the information needed to train the models.

Each of the eight towns used to recollect data contain between 100 and 200 dynamic

agents and 14 weather conditions that sequentially varied for each frame recollected, as

can be seen in Figure 2.2. In other words, the weather condition is varied after every 0.5

seconds (in-game time) to provide a uniform distribution of all weathers within the dataset.

Also, data is generated at a rate of 2 FPS. More details on the amount of data on each town

can be seen in Table 2.3. This data consists of three components: RGB images, LiDAR

point cloud data, and vehicle driving measurements such as vehicle position, driving speed,

steering angle, brake, and throttle values.

In total, this dataset contains about 144,000 driving frames, of which about 121,000

frames representing seven towns are reserved for training and 23,000 frames representing

Town05 for validation. Figure 2.3 shows an example of the resulting RGB image (Figure

2.3a) and LiDAR BEV data (Figure 2.3b) that correspond to a single driving frame. In

this example, the RGB image remains unprocessed while the 3D LiDAR cloud data (Figure

2.3b) is presented in BEV representation. The recollected data within the minimal dataset
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(a) RGB image sample (b) LiDAR point cloud

Figure 2.3: RGB and LiDAR data samples corresponding to one driving frame.

is structured in the following manner:

TownX {tiny, short, long}: corresponding to different towns and routes files

• routesX: contains data for an individual route

– rgb: front-view RGB camera images

– lidar: 3D point clouds in a numpy array format

– measurements: contains position, velocity and other metadata of the ego-

agent in a JSON format

Table 2.3: 14 weathers minimal dataset size per town.

Town ID Size (GB)
Town01 8.6
Town02 6.1
Town03 11.5
Town04 12.4
Town05 10.8
Town06 8.7
Town07 3.7
Town10 3.4
Total 65.2
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2.4.2 Sensor Configuration

In Table 2.2 we can see that the minimal dataset relies only on a GNSS sensor for local-

ization, an IMU sensor for orientation, a speedometer for measuring speed (all of which do

not require much configuration but are readily easily accessible through the Python API),

a front-view RGB camera, a LiDAR sensor (both of which require configuration to use).

The RGB camera has a field of view (FOV) of 100◦ and is mounted 2.3m from the ground

level and 1.3m in front of the centroid of the ego-vehicle to not include the hood itself in

the rendered images. Also, this camera is set to have a resolution of 400×300 pixels which

is eventually processed to a resolution of 256×256 pixels for training. The LiDAR sensor

is set to have an upper FOV of 10◦ and a lower FOV of −30◦. It is mounted 0.2m above

the RGB camera, has a range of 85m, and has a rotation frequency of 10 FPS.

2.4.3 Expert Policy

An expert policy is an auto-pilot agent that takes advantage of privileged information

from the CARLA simulator, such as the global position of other actors, in order to avoid

collisions, traffic violations and drive with exceptional overall performance. The primary

purpose of this agent is to generate driving data that other models without privileged

information can use for training. The expert policy in this framework consists of a path

planner and two PID controllers, one for lateral control and one for longitudinal control.

Given a route as a sequence of sparse waypoints, the path planner interpolates the route as

a sequence of dense waypoints 1m apart. It then uses the nearest waypoints after 4m and

7m of its current position to calculate the aim direction of the ego-vehicle. This direction

is input into the lateral PID controller, which outputs the necessary steering controls for

reaching said waypoints.

The longitudinal PID control focuses on matching the speed of the ego-vehicle to a

target speed from a discrete set of speed values, {0, 4, 7} m/s, depending on the cir-

cumstance. If the ego-vehicle is approaching a stop sign, the target speed is set to 0

m/s. If the ego-vehicle is approaching a turn, the target speed is set to 4 m/s. Un-

der a clear straight road, the target speed is set to 7 m/s. In addition to these heuris-

tics, the performance of the expert policy also depends on three hyper-parameters that
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tune each PID controller. For the later PID controller, these hyper-parameters are set

to Kp = 1.25, Ki = 0.75, Kd = 0.3. For the longitudinal PID controller, these hyper-

parameters are set to Kp = 5.0, Ki = 0.5, Kd = 1.0. In this manner, the expert policy is

designed to drive cautiously, producing datasets that reflect safe driving behaviors.

2.4.4 Routes

The CARLA Leaderboard repository provides a set of 76 routes throughout six towns, each

route being defined by a sequence of waypoints that the ego-vehicle should ideally follow

to complete a route and be considered on-road. In order to incorporate more turnings

and intersections into the training dataset, different routes spanning a total of eight towns

are defined by sampling the existing routes. The resulting routes can be divided into

three categories, long routes where each route represents 1000-2000m of road, short routes

of 100-500m that represent three intersections, and tiny routes of 25-50m that represent

single intersections. Data is generated for training and validation using only the short and

tiny routes, using Town05 routes for generating the validation dataset, and all other town

routes for generating the training dataset. The long routes defined for Town05 are left for

the evaluation process since they have a greater driving diversity than the routes in the

other towns. Also, only short and tiny routes are used for training since training models on

datasets generated by long routes would cause the ego-vehicle to primarily learn to follow

a straightforward path rather than the driving skills needed to handle more complex traffic

scenarios seen at intersections.

2.4.5 Scenarios

Along with a set of routes, the CARLA Leaderboard repository also provides a set of

three scenarios for each town. For this implementation, more scenarios are defined for

training through the Scenario Runner feature by defining two things, trigger transforms

that indicate the spawn location and orientation scenarios, and information on additional

actors present in that scenario. Through this method, additional adversarial scenarios that

focus on safety-critical situations are included in the dataset. Specifically, the seven types

of scenarios depicted in Figure 2.4 are included in this dataset. They are defined by the
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official CARLA Leaderboard platform [2] that considers the following 10 types of scenarios

for evaluation,

Scenario 1: Control loss without previous action The ego-vehicle loses control

due to bad road conditions and must recover, coming back to its original lane.

Scenario 2: Longitudinal control after leading vehicle’s brake The leading vehi-

cle decelerates suddenly due to an obstacle, and the ego-vehicle must perform an emergency

brake or an avoidance maneuver.

Scenario 3: Obstacle avoidance without prior action The ego-vehicle encounters

an obstacle/unexpected entity on the road and must perform an emergency brake or an

avoidance maneuver.

Scenario 4: Obstacle avoidance with prior action The ego-vehicle finds an obsta-

cle on the road while performing a maneuver and must perform an emergency brake or an

avoidance maneuver.

Scenario 5: Lane changing to evade slow leading vehicle The ego-vehicle per-

forms a lane changing to evade a leading vehicle, which is moving too slowly.

Scenario 6: Vehicle passing dealing with oncoming traffic The ego-vehicle must

go around a blocking object using the opposite lane, yielding to oncoming traffic.

Scenario 7: Crossing traffic running a red light at an intersection The ego-

vehicle is going straight at an intersection, but a crossing vehicle runs a red light, forcing

the ego-vehicle to avoid the collision.

Scenario 8: Unprotected left turn at intersection with oncoming traffic The

ego-vehicle is performing an unprotected left turn at an intersection, yielding to oncoming

traffic.

Information Technology Engineer 37 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Scenario 9: Right turn at an intersection with crossing traffic The ego-vehicle

is performing a right turn at an intersection, yielding to crossing traffic.

Scenario 10: Crossing negotiation at an non-signalized intersection The ego-

vehicle needs to negotiate with other vehicles to cross a non-signalized intersection. In this

situation, it is assumed that the first to enter the intersection has priority.

2.5 CARLA Leaderboard Benchmark

The Leaderboard benchmark [2] is the benchmark developed by CARLA for evaluating

AD systems in numerous traffic scenarios through the CARLA simulator. Thus, it is

an essential framework for obtaining driving agent performance metrics. The benchmark

works by inputting an experiment suite that consists of a set of sensors, pre-defined routes,

and driving environments through which an autonomous agent must drive, along with

the files on the autonomous agent itself. The experiment suite used in this work is the

one implemented by Prakash et al. [3, 21]. The Leaderboard benchmark then runs the

CARLA simulation [20] using all of these elements to output a set of 12 performance

metrics that quantify the overall performance of the evaluated agent through a series of

scores and infraction rates along with an optional recording of the evaluation using the

Recorder feature. This description is the general structure of the Leaderboard benchmark

and is visualized in Figure 2.5.

In order to run the Leaderboard benchmark with the CARLA simulation, five key

parameters must be set: the routes file containing all of the routes the agent is to follow, the

scenario file containing all the trigger transforms that, when reached by ego-vehicle, triggers

a specific scenario to occur, the number of times the ego-vehicle should traverse each

route, the Python agent file and weights of the autonomous agent to be evaluated. With

these conditions met, agents can be evaluated and compared under the same conditions.

Table 2.4 shows examples of the benchmark results of the top-performing agents that were

submitted to the SENSORS track of the CARLA AD Leaderboard platform in 2020.

Despite the CARLA framework including many towns and sensors, only a limited num-

ber of sensors are available for a select few evaluation towns. Given a superficial view of the
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(a) Scenario 1: Control loss (b) Scenario 3: Object crossing

(c) Scenario 4: Object crossing during turn (d) Scenario 7: Vehicle running a red light

(e) Scenario 8: Unprotected left turn (f) Scenario 9: Right turn with crossing traffic

(g) Scenario 10: Non-signalized intersection

Figure 2.4: Scenarios being simulated in the dataset. Source: [2].
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Figure 2.5: General structure of the CARLA Leaderboard benchmark.

Table 2.4: Winning teams of the SENSORS track in the CARLA AD Challenge 2020.

Submission DS RC IP
MaRLn [54] 24.98 46.97 0.52
Anonymous 13.49 23.2 n/a
LBC [68] 8.94 17.54 0.73
Cadre v1 2.77 65.66 0.07

Leaderboard benchmark, the rest of this section further describes three important aspects

of a driving benchmark. First, we describe the driving environment chosen for evaluation,

the group of sensors available to the ego-vehicle, and finally, the resulting performance

metrics.

2.5.1 Evaluation Environment

Each route consists of a starting point, a destination point, and a series of sparse waypoints

through which the agent must travel through. However, the exact routes and conditions

used by the official CARLA Leaderboard platform are maintained a secret for providing

fair and consistent evaluations of all submitted autonomous agents. The only thing known

is that multiple instances of 10 types of scenarios occur throughout routes spanning free-

ways, urban scenes, and residential districts in multiple weather conditions. Although the

official CARLA Leaderboard encourages research and development of level five AD systems

capable of safely driving in any unseen condition, it does not allow for a deeper analysis of

the evaluation methods or criteria used.

An alternative to the official CARLA Leaderboard benchmark is to use a local imple-
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mentation of the benchmark based on the examples provided in their open github repos-

itory, and other similar works [69]. The implementation in study includes a set of 10

pre-defined long routes belonging to Town05, which are used strictly for benchmark evalu-

ation (see Section 2.4.4 for more information on how routes are defined and categorized in

this implementation). These long routes contain between 16 and 57 sparse waypoints and

represent about 1000-2000m of simulated driving road. In addition, this implementation

evaluates the ego-vehicle through scenarios that deal with control loss (scenario 01), object

crossing (scenarios 03 and 04), signalized intersection negotiation (scenarios 07, 08, and

09), and non-signalized intersection negotiation (scenario 10). Examples of these scenarios

can be better visualized in Figure 2.4.

As described in Table 2.1, the Town05 environment through which these routes and

scenarios take place is a grid-like town that contains cross junctions, a bridge, and multi-

lane streets, all of which can be seen in the examples provided in Figure 2.6. Since seven

of the eight towns provided by CARLA are used for generating training data, Town05 is

set aside as the environment in which the trained models have not had exposure during

training. Furthermore, the environmental weather conditions for all benchmark evaluations

are set to clear noon weather (Figure 2.2a).

(a) An agent turning at a cross junction (b) An agent driving across a bridge

Figure 2.6: Examples of a trained autonomous agent being evaluated in Town05 routes.

2.5.2 Sensor Availability

According to the norms established by the Leaderboard benchmark [2], sensor availability

depends on the type of track the autonomous agent is evaluated in. The SENSORS track
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consists of the following: GNSS, IMU, LiDAR, radar, RGB camera, and speedometer.

There is a second evaluation modality called the MAP track that consists of the same

type of sensors with the addition of an HD BEV OpenDRIVE map. However, the models

trained in this work only depend on the sensirs included in the first modality excluding

radar which is not utilized. Therefore, the sensors used in this implementation of the

CARLA Leaderboard include LiDAR and RGB camera for perception, and GNSS, IMU,

and speedometer for obtaining vehicle measurements. In other words, these are the sensors

that the autonomous agent has access to and uses to input environment data and output

vehicle controls.

During an evaluation, there are other sensors being utilized by the benchmark that

help calculate the performance metrics of the driving agent. These sensors are the collision

detector, the lane invasion detector, and the obstacle detector. Through these sensors,

along with the ground-truth information that the benchmark has access to, the benchmark

can keep track of all of the infractions committed by the agent as well as specify the exact

location of the infractions along with any other actor that might have taken part in that

infraction.

2.5.3 Score and Infraction Performance Metrics

The CARLA Leaderboard site [2] defines the benchmark outputs as 12 performance metrics

that help understand different driving aspects of an autonomous agent being evaluated.

These performance metrics are categorized into scores and infraction metrics. For each

route that the autonomous agent is evaluated against, all of the infractions committed are

tallied and used to calculate the score metrics. After the benchmark has gone through the

entire set of routes defined in the experiment suite, a set of global performance metrics are

calculated and output. For this work, the global driving scores are presented as averages

of all individual route scores, and the global infraction metrics are presented as infraction

rates per kilometer driven.

Driving Score The three performance metrics that summarize the driving performance

of an autonomous agent through scores are the driving score (DS), the route completion

score (RC), and the infraction penalty score (IP). Of these three scores, the DS is the

Information Technology Engineer 42 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

primary metric since it encompasses the other two scores in its calculation and is the main

metric used for comparison with other autonomous agents. It is a percentage metric that

begins as zero and ranges from [0−100] whose value is calculated after obtaining the IP and

RC of each route. In other words, a score of zero means that the agent did not complete

any percentage of any of the routes while a score of 100 means that the agent completed

every single route without committing any infractions. The DS of a single route and the

global DS are calculated through the following two equations,

DSi = RCi · IP i, (2.2)

DS = 1
n

n∑
i=1

(DSi) (2.3)

where n = the total number of routes, RCi = the RC of a single route, and IP i = the

IP of a single route. In order to calculate the remaining two scores, the remaining nine

infraction metrics shown in Table 2.5 must first be introduced. These performance metrics

can be further categorized into three types depending on how they affect the simulation

and the score metrics.

Table 2.5: Infraction metrics accounted for during each route driven.

Type Infraction Penalty
Coefficient Description

1

Pedestrian Collision (PC) 0.50 The agent collides with a pedes-
trian.

Vehicle Collision (VC) 0.60 The agent collides with a vehicle.
Layout Collision (LC) 0.65 The agent collides with any other

object.
Red Light Violation (RL) 0.70 The agent runs a red light.
Stop Sign Violation (SS) 0.80 The agent runs a stop sign.

2 Outside Route Lanes (OR) - If an agent drives off-road.

3

Route Deviation (RD) - If an agent deviates more than 30m
from the assigned route.

Agent Blocked (AB) - If an agent does not take any ac-
tions for 180 in-game seconds.

Route Timeout (RT) - If the simulation of a route takes
too long to finish.
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Infraction Penalty Score Type one infractions consists of collisions and stopping vio-

lations. These infractions are organized from most severe to least severe and all count with

a penalty coefficient that is applied to the IP every time that infraction occurs. With this

in mind, the IP is a metric ranging from (0, 1] that starts off as one and is decreased with

every occurrence of a type one infraction. The penalty coefficient comes into play through

the following equations that calculate the IP score of a single route and the global IP score,

IPi =
∏
j∈F

(pj)vj
i (2.4)

IP = 1
n

n∑
i=1

(IPi) (2.5)

where n = the total number of routes, F represents the set of type one infractions, pj =

the penalty coefficient for infraction of type j, and vj
i = the number of infractions of type

j committed in route i.

Route Completion Score Type two infraction consists of a single infraction metric

that keeps track of all the instances and distances that the agent went outside the route

lanes it is supposed to follow. This metric has no penalty coefficient since rather than

affecting the IP score, it directly affects the RC score. By keeping track of all of the

distances that the agent correctly traveled and the distances that the agent goes off-road,

the benchmark can calculate the percentage of the route traversed on-road and off-road.

Thus, RC represents the route completion percentage of an agent before it either completes

the route or is unable to continue. The RC score of a single route and the global RC score

can be calculated through the following equations,

RCi = DON(1−DOF F ) (2.6)

RC = 1
n

n∑
i=1

(RCi) (2.7)

where n = the total number of routes, DON = the percentage of a route traveled on-road,

and DOF F = the percentage of a route traveled off-road.
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Simulation Infractions Type three infractions consist of infractions that affect the

simulation process rather than affecting any of the score metrics. These infractions are

events that, when detected, prevent the agent from continuing their route and cause the

simulation of that route to be shut down, thus, forcing the agent to move on to the next

route. If any of these infractions take place, the status of the evaluated route is set as

failed. Otherwise, the status is set as completed. In both cases, score metrics for that route

are still computed and considered when calculating the global score metrics.

In addition to the three type three infractions listed in Table 2.5, there is one more event

that is not listed because it is not related to the driving behavior of an agent. However,

it does affect the simulation process. This event is known as the Simulation timeout and

occurs if no client-server communication can be established in 60 seconds. Like the other

type three infractions, this event also causes the benchmark to shut down the current

simulated drive and move on to the next road. However, if this event takes place, no route

will likely be evaluated since a lack of client-server communication can indicate a problem

with how the client-server modules of the simulation were set up.
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Chapter 3

State of the Art

This chapter describes the five IL models used for training and testing AD vehicles in

this work. This description consists of the CILRS, AIM, late fusion, and geometric fusion

baseline models, as well as the state-of-the-art TransFuser model proposed by Prakash et al.

[3, 21] which is the main model of focus for this work. All of the information that follows is

based mainly on this original TransFuser research which includes code repositories, model

configurations, and supplementary details, unless otherwise specified. In addition to the

model architectures, this chapter introduces the notion of self-attention, which is a critical

component of the TransFuser model, the PID controller used for navigation control, the

model hyper-parameters, HPO, and HPC.

The models are presented chronologically since the later models can be viewed as an

evolution of the previous models through improvements. In other words, some of the

models share certain aspects which are re-utilized in later models, such as the input sensor

modalities, the ResNet encoders for feature extraction, the multi-scale sensor fusion, the

waypoint prediction network, and the PID controller. For this reason, it is necessary to

understand the baseline models to understand the totality of the TransFuser model.

More specifically, the CILRS model contributes by introducing the use of ResNet en-

coders [70] that serve as the perception backbones of all models. The AIM model provides

a GRU-based network for conditioning the model on sparse goal locations rather than

navigational commands. The late fusion model introduces a LiDAR sensor modality in ad-

dition to the RGB image modality along with a novel sensor-fusion method. The geometric

fusion model increases the complexity of the sensor-fusion process by adding four instances
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of geometric feature projections throughout the feature extraction process. Finally, the

TransFuser model replaces the geometric feature projection modules with transformers

that use self-attention mechanisms for fusing the two sensor modalities.

3.1 Baseline Training Models

3.1.1 CILRS

Figure 3.1: CILRS model architecture. Source: [3].

The CILRS (conditional IL ResNet) model seen in Figure 3.1 is an implementation

of a CIL architecture [17]. This model takes as inputs images from a single RGB front-

view camera, processes them in a ResNet-34 encoder, and outputs a 512-dimension feature

vector. At the same time, the model also inputs measured speeds from a speedometer

and processes them in an MLP with one hidden layer that outputs a feature vector with

a dimension of 512, thus adding velocity information to the encoding. Afterward, the

output of the ResNet module is passed to an MLP with two hidden layers that projects

the image features to a predicted speed. The outputs of the MLP and ResNet module are

also combined via element-wise summation and passed to a conditional module which is

essentially a list of six MLPs with two hidden layers that represents the six conditional

command branches that this CIL method uses to condition the model on the following six
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discrete high-level navigational commands: follow lane, turn left, turn right, go straight at

intersection, left lane change, and right lane change.

The conditional module works by selecting one of six conditional command branches

depending on the input command and directly outputting the control values for steer,

throttle, and brake in a prediction variable tensor. Furthermore, all hidden layers of

the MLPs used in this model are of size 256. The CILRS model uses only RGB images

and measured speed to predict vehicle controls while being conditioned on navigational

commands.

This model has outperformed previous state-of-the-art mediated perception models

such as CAL [71], MT [72], and CIRL [73] in empty, regular, and dense traffic conditions

[17]. Unlike these other models, CILRS does not need additional supervision through

extra information such as affordances or segmented images. This is mainly due to the use

of deep residual networks and extra focus on speed prediction. Instead, it only requires a

large-scale demonstration dataset.

Nevertheless, this model still has limitations that prohibit it from handling the driving

complexities of urban environments. One of the problems that CILRS presents is perfor-

mance degradation when in the presence of dynamic objects, showing limited generalization

capabilities as the model fails to capture the complexities of environments with increased

multi-agent dynamics. This issue reflects one of the things that subsequent models de-

scribed in this section aim to improve.

3.1.2 AIM

Figure 3.2: AIM model architecture. Source: [3].

The AIM (auto-regressive image-based waypoint prediction) model seen in Figure 3.2

is an improvement upon the CILRS model, with the main differences being that AIM is
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conditioned on sparse goal locations rather than navigational commands and, consequently,

AIM predicts waypoints indicating the future path of the agent rather than navigational

commands. Like CILRS, AIM also inputs images taken from an RGB camera, processes

them in a ResNet-34 encoder, and outputs a 512-dimension feature vector. This feature

vector is passed to an MLP with two hidden layers of size 256 and 128, reduced to a 64-

dimension feature vector, and passed to the auto-regressive waypoint network implemented

with four sequentially-aligned gated recurrent unit (GRU) cells.

The GRU-based auto-regressive waypoint is based on an RNN encoder-decoder model

architecture that uses an input sequence to maximize the conditional probability of a target

sequence applied to machine translation [74]. This method aims to learn a conditional dis-

tribution over a variable-length sequence conditioned on another variable-length sequence.

The GRU network represents the decoder component in the AIM model that inputs a

feature vector from the ResNet encoder and goal locations provided as GPS coordinates

for waypoint prediction. The goal locations are input to the decoder since being in BEV

space correlates the waypoints more with the GRU network than the image encoder that

processes images from a front-view perspective. In other words, when applied to AD, the

GRU network conditions the model on sparse goal locations to predict a sequence of four

dense future 2D waypoints represented as {wt = (xt, yt)}T
t=1 where T = 4.

The four GRU cells represent a single GRU layer that consists of a hidden gate that

is initialized in the first GRU cell by the input feature vector. It also consists of an up-

date gate that controls the information flow encoded in the hidden gate by inputting the

current position of the ego-vehicle along with the goal location as GPS coordinates and

updating the encoded information so that the network focuses on the context relevant for

predicting the next waypoint. Finally, a linear layer is used to input the predicted waypoint

information encoded in a 64-dimensional feature vector and output the predicted waypoint

coordinates through a linear transformation. This process is repeated four times through-

out the GRU network for each GRU cell, inputting the previously predicted waypoint and

outputting the next predicted waypoint. The following linear transformation is used to

calculate future waypoints:

{wt = wt−1 + δwt}T
t=1 (3.1)
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where T = the future time-steps in the current coordinate frame of the ego-vehicle, wt =

the predicted waypoint, wt−1 = the previous predicted waypoint, and δwt = the calculated

change in coordinates. Keep in mind that w0 = (0, 0) since the ego-vehicle is always

centered from a BEV space.

Experiments with AIM show an improvement of up to 22.82% on the driving score

of this model when evaluated in long Town05 CARLA routes and compared to CILRS

[3]. These results show that AIM is a stronger image-based baseline than CILRS. It also

shows that representing predicted waypoints and goal locations in the same BEV space is

better than representing them in different spaces, such as is the case with LBC (learning by

cheating) [69], a previous state-of-the-art model that represents goal locations as heatmaps

in a front-view perspective and BEV semantic maps for waypoint prediction. Furthermore,

previous results of the AIM model suggest that processing goal locations at the near end of

the network could help the learning of behaviors needed to follow goal locations and help

the image encoder prioritize the higher-level semantics of a driving scene such as traffic

light states and multi-agent dynamics over lower-level features.

Despite improvements, the GRU network applied in AIM is still prone to collisions

and other road infractions penalized by the Leaderboard benchmark. One problem is

that it is limited to generalizing the environment by only using 2D RGB images and goal

locations. Thus, the lack of 3D context prevents it from better navigating through 3D

urban environments. Still, this network is essential for all subsequent models since it is

used for waypoint prediction by taking in a feature vector and goal locations. Therefore,

for all subsequent models, only the modules of the feature extractors will be described

since they only differ in the fusion techniques implemented in the encoder for processing

the two streams of data.

3.1.3 Late Fusion

Studies have shown that AD models that incorporate computer vision-related tasks such

as semantic segmentation and depth estimation into their models experience higher per-

formances in sensorimotor tasks than models that are only image-based [47]. Therefore, to

improve image-based AD models, many works have experimented with sensor fusion tech-

niques to create multi-modal AD models. These models utilize information from different
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Figure 3.3: Late fusion model architecture. Source: [3].

sensors to complement one another, providing the resulting models with a greater global

context of the environment. Prior studies have applied early, mid, and late fusion tech-

niques to camera and depth modalities [75], shown the effectiveness of segmentation-based

abstractions in models [76], and combined camera and LiDAR modalities in late fusion

architectures. Thus, demonstrating that sensor fusion is essential for the deployment of

AD systems in complex urban areas [52].

Mainly inspired by the latter of these examples, the late fusion model seen in Figure

3.3 is one of three multi-modal fusion architectures studied in this work that process both

RGB images and LiDAR BEV images in independent streams of ResNet encoders. All

three sensor-fusion models pre-process RGB images in the same way described in previous

models. LiDAR point cloud data is also pre-processed into a two-bin histogram over a 2D

grid with a resolution of 256 × 256 pixels. Here, the grid space represents a 32m×32m

space corresponding to the cloud points 32m in front of the ego-vehicle and 16m to each

side. The two-bin histogram results from dividing the height dimension of the LiDAR

point cloud data into two bins. One bin contains the points above the sensor plane and

the other on/below the sensor plane.

Like the AIM model, the image stream data is processed through a ResNet-34 encoder,

while the LiDAR stream data is processed through a ResNet-18 encoder. Both streams
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output a 512-dimensional feature vector representing the encoding of each stream individ-

ually. The late fusion comes into play here by combining both feature vectors at the end

of the ResNet modules via an element-wise summation, thus, fusing the two sensor modal-

ities into one. The resulting output is processed through an MLP and a GRU network

decoder in the same way that it is processed in the AIM model to output a sequence of

four waypoint coordinates.

Despite late fusion being a one-step fusion method, prior results show an improvement

in performance with late fusion of up to 44.09% when compared to the DS of the CILRS

model and up to 4.80% when compared to the DS of the AIM model [3]. This improvement

suggests that even through an element-wise summation, the fusion of LiDAR cloud data

and RGB image data provides the model with additional 3D context that it lacks in image-

only models, helping it better navigate 3D urban environments. The late fusion method

of this implementation was developed to serve as a baseline for the geometric fusion and

TransFuser models. Evaluations of these models show that more profound fusion methods

can be means for further improvements in sensor-fusion techniques to provide models with

even better global contexts of their environments.

3.1.4 Geometric Fusion

Figure 3.4: Geometric fusion model architecture. Source: [3].

Another sensor-fusion technique implemented in AD research is based on a geometric

fusion approach. For example, studies have designed end-to-end architectures that exploit

continuous convolutional blocks to model geometric relationships by fusing image and

LiDAR data for the AD tasks of 3D object detection [38, 39].
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The architecture that most closely resembles the TransFuser model is the ContFuse

model [38]. This model architecture creates a multi-modal 3D object detector that uses

continuous convolutional blocks to fuse camera image features with point cloud data fea-

tures by projecting the camera into BEV space. Inspired by the ContFuse architecture,

the geometric fusion model seen in Figure 3.4 is the second multi-modal fusion architecture

that utilizes both RGB image and LiDAR data. Sensor fusion is done both during and

after the encoding modules. Late fusion is performed after the feature extraction process

via an element-wise summation of the 512-dimensional output feature vectors from both

encoder streams, followed by an MLP block and a GRU network for waypoint prediction.

Meanwhile, deep fusion is performed throughout the encoder streams.

The methods for pre-processing data are equivalent to those used in the late fu-

sion model with the addition of dividing the 32m×32m LiDAR BEV grid into blocks

of 0.125m×0.125m that are represented by one pixel. As with previous models, RGB and

LiDAR BEV images are passed through a ResNet-34 encoder and a ResNet-18 encoder for

extracting image and LiDAR features into 3D tensors of dimensions H ×W × C where

H = height, W = width, and C = channels. Four convolutional blocks containing 2D

convolutions and average pooling layers are first set up in both encoder streams. These

convolutional blocks produce intermediate feature maps throughout the encoder of dimen-

sions 64×64×64, 32×32×128, 16×16×256, and 8×8×512, which are then downsampled

through pooling to produce feature maps of a fixed resolution of 8× 8, resulting in feature

maps of dimensions 8 × 8 × 64, 8 × 8 × 128, 8 × 8 × 256, and 8 × 8 × 512. Then, 1 × 1

convolutions with a stride of one are used to match the embedding dimension of the feature

maps to the set value of 512. With these dimensional configurations, the feature maps are

ready to enter the geometric feature projection modules with a dimension of 8× 8× 512.

After inputting the feature maps, the geometric feature projection module begins work-

ing in both directions, from image-to-LiDAR and LiDAR-to-image. For LiDAR-to-image

projection, the model unprojects each 0.125m×0.125m space in LiDAR BEV into a 3D

space, randomly selects five LiDAR cloud points, and projects them into the image space.

The corresponding image features of these five points are added via element-wise summa-

tion and are passed to an MLP with three layers of 512 units each. This output is then

combined with the LiDAR BEV features corresponding to the 0.125m×0.125m block.
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Projection works similarly for image-to-LiDAR fusion. Five LiDAR cloud points that

project to that pixel are randomly selected and projected into the LiDAR BEV space for

each pixel in the image space. The corresponding LiDAR BEV features are added via

element-wise summation and are passed to an MLP with three layers of 512 units each.

This output is then combined with the image features corresponding to that pixel.

After LiDAR and image features are combined, the fusion module outputs a feature

map of dimension 8× 8× 512 that is upsampled with bilinear interpolation to match the

original resolution and then processed through a 1 × 1 convolution to match the original

embedding dimension of the feature map. With the H ×W ×C dimensions of this output

now matching those of the pre-downsampled feature maps, the output is fed back into

the original modality branch from where it came from and is combined with the pre-

downsampled feature map via element-wise summation. The geometric feature projection

process described up until now constitutes that of one projection module. This process

is repeated throughout the feature extractor at four different resolutions of 64 × 64, 32 ×

32, 16× 16, and 8× 8, in that order. After completing the four stages of geometric feature

projection, average pooling is performed on the feature maps of both streams, followed by

a flattening function. The resulting feature vectors are ready to pass through late fusion,

the MLP, and the GRU decoder network for waypoint prediction.

Results on geometric fusion show that the approach outperforms all the image-based

baseline models and outperforms the late fusion approach by 2.76% on the DS of short

routes [3]. It also has the highest RC score of all the models compared in that work,

meaning that it correctly drove farther than all other models. However, these results

also show that the infractions rates of geometric fusion are nearly equivalent to those of

the previous models, indicating that the geometric fusion approach causes the model to

prioritize navigating to a goal destination over avoiding obstacles that lead to infractions

such as collisions. For this reason, the DS of this model tends to decrease when evaluating

longer routes, causing this approach to obtain a DS 1.20% lower than the AIM approach

and 6% lower than the late fusion approach when evaluated on long routes.
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3.2 Attention and Transformer Architectures

RNNs or CNNs with encoder-decoder architectures have been the primary basis for most

deep machine learning model systems. More recently, studies have demonstrated the ad-

vantages of attention mechanisms through a state-of-the-art machine learning architecture

called the transformer. Transformers rely solely on attention mechanisms and offer an effec-

tive way of mapping input-output dependencies on par with other state-of-the-art models

[4]. The concept of attention has been applied to natural language processing tasks such

as reading comprehension [77] as well as computer vision-related tasks such classification

[78], semantic segmentation [79], and multi-task end-to-end learning for AD models [80].

In all cases, transformers have managed to show improved results over other methods.

Attention Attention has been an influential concept in the area of deep learning intro-

duced in 2015 [77] that allows for the modeling of spatial dependencies independently of

their distance in input and output sequences. The key idea behind attention is to allow

a decoder to pay attention to specific parts of a data sequence, relieving the encoder of

the burden of encoding all of the input information while allowing it to focus more on the

information relevant for generating the next sequence of data. For this, it maps inputs to

tokens and outputs to the dimensions of the original input data.

3.2.1 Self-attention

Self-attention is an attention mechanism that introduces the notion of relating different

positions of a single sequence in order to produce an output representation of the sequence

[81]. Inspired by this idea, Google introduced the first transduction model, known as the

transformer, that relies solely on self-attention for computing input and output attention

token representations without the use of RNNs or CNNs [4]. In this work, an attention

function is defined as the process of computing a set of queries, keys, and values (Q, K,

and V) which are initialized randomly and mapped to a vector output. Also, the weight

assigned to each value is calculated with a compatibility function of the query with the

corresponding key. One method proposed by Vaswani et al. [4] implements a scaled-dot
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product function as seen in Figure 3.5a and summarized in the following equation,

Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V (3.2)

(a) Scaled dot-product attention. (b) Multi-head attention.

Figure 3.5: Attention function. Source: [4].

Meanwhile, Figure 3.5b depicts the notion of multi-head attention where h attention

layers run in parallel computing scaled-dot products before being combined as a weighted

sum of the values. This is the multi-head attention mechanism applied in the proposed

transformer architecture seen in Figure 3.6 that follows an encoder-decoder style architec-

ture.

GPT Another class of transformer architectures are known as language models. Ex-

amples of these models are generative pre-trained (GPT) models. These models apply

generative pre-training on a language model using the transformer architecture seen in

Figure 3.7 [5]. This multi-head approach defines 12 attention layers through which tokens

are processed with self-attention mechanisms and normalization layers.

3.2.2 Attention in Autonomous Driving

Attention mechanisms are commonly applied in conjunction with RNNs in more complex

transformer-based model architectures [3, 80, 79]. One application of self-attention in
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Figure 3.6: Tranformer architecture. Source: [4].

computer vision is for the task of full AD [80]. In AD, transformers can also be used to

combine data from RGB image and LiDAR sensor modalities. Figure 3.8 shows examples

of the top-five attended tokens (green), queries (yellow), and the presence of vehicles in

LiDAR images (red) through attention map visualizations. The visualized tokens are

evidence of an AD model using self-attention to successfully map dependencies between

traffic lights and passing vehicles at an intersection using data of different modalities.

3.3 TransFuser Model

The TransFuser model can be viewed as the equivalent of replacing the geometric feature

projection modules from the geometric fusion model with transformer modules, as seen in

Figure 3.9. The main difference lies within the four transformer modules of the feature
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Figure 3.7: GPT model architecture. Source: [5].

Figure 3.8: Attention maps in AD. Source: [3].

extractor that fuses RGB image and LiDAR features by using self-attention mechanisms.

Through these modules, the model handles the issue of integrating the global environment
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Figure 3.9: TransFuser model architecture. Source: [3].

context from complementary modalities at different resolutions.

In order to fully understand the scope of this model in the panorama of AD, Tables

2.4, 3.1 and 3.2 show examples of state-of-the-art AD models that have been submitted to

the CARLA Leaderboard platform in 2020, 2021, and 2022, respectively. The rest of this

section focuses on describing the transformer aspects essential for the functionality of this

multi-modal model. This description includes the notion of self-attention, the transformer

modules, and the ablation studies that have been done so far over the TransFuser system

model.

3.3.1 Performances on the CARLA Leaderboard

The performance metrics shown on Tables 2.4, 3.1 and 3.2 are placed in order of DS ranking

with respect to their submission year and are based on the information publically available

on the CARLA Leaderboard platform [2] at the time of this writing. The submission of

the original TransFuser model is found in sixth place in the 2021 submissions in Table 3.1

with a DS of 16.93. Here, two things can be appreciated about the TransFuser model.

First, this model represents an improvement over all winning submissions of the previous

year. Although the first place submission of 2021, MaRLn [54], obtained a higher DS of

24.98, their reinforcement learning approach required 20 days for training a model in a

single CARLA town. In contrast, TransFuser required 20 hours for training a model on a

dataset containing information on all CARLA towns. Second, despite the original model

only reaching sixth place in the 2021 submissions, it has also been the inspiration for other

TransFuser-based models that have managed to outperform the original submission. An
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example of these alternative versions is TransFuser+ which applied the TransFuser model

architecture with a different expert driving policy [82], reaching second place in the 2021

submissions with a DS of 34.58, twice as much as the original model. The authors that

submitted the original model have also submitted two new TransFuser implementations

in the 2022 submissions. Although, as of date, only three submissions constitute this list,

the two new TransFuser implementations outperform all previous submissions with a DS

of 42.36 and 50.57, as seen in Table 3.2. However, the changes in the methodology used in

these new implementations remain unknown.

Table 3.1: Top public submissions to the CARLA AD Leaderboard platform in 2021.

Submission DS RC IP
GRIAD 36.79 61.86 0.60
TransFuser+ [82] 34.58 69.84 0.56
World on Rails [83] 31.37 57.65 0.56
NEAT [84] 21.83 41.71 0.65
AIM-MT [84] 19.38 67.02 0.39
TransFuser [3] 16.93 51.82 0.42

Table 3.2: Top public submissions to the CARLA AD Leaderboard platform in 2022.

Submission DS RC IP
LAV 61.85 94.46 0.64
TransFuser 50.57 73.84 0.68
Latent TransFuser 42.36 86.67 0.51

The publically available submissions in the CARLA AD Leaderboard platform are

evidence of the growing popularity and research centered around the TransFuser model.

In less than a year, the performance score of the model has seen a threefold increase,

managing to surpass all but one model in the official Leaderboard ranking. This enhanced

performance is likely due to the introduction of attention-based mechanisms for fusing

sensor modalities in end-to-end AD models.

3.3.2 Transformer Module

As with the previous baseline models, TransFuser also considers a single RGB front-view

camera and LiDAR BEV point cloud data as inputs to output a feature vector that passes

through an MLP and a GRU decoder network, resulting in a sequence of four predicted
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2D waypoints. It also uses a ResNet-34 encoder and a ResNet-18 encoder for encoding the

image and LiDAR data, along with the convolutional blocks, to downsample the feature

maps and match their embedding dimensions to the set value of 512. In this manner,

data is fused four times throughout the ResNet encoders. After exiting each respective

transformer module, the output feature maps are upsampled through bilinear interpolation

and are processed to match the embedding dimension of the original feature map. This

process is equivalent to the one described in more detail in the geometric fusion model.

Figure 3.10: Transformer module architecture. Source: [3].

Figure 3.10 focuses on the architecture of a single transformer module that fuses sensor

features. Here, the module first stacks the two feature maps of dimension 8× 8× 512 into

a single tensor of dimension (2× 8× 8)× 512 representing an entire sequence of 64 image

feature tokens and 64 LiDAR feature tokens. Seeing how these dimensions represent the

original 256 × 256 image and LiDAR BEV images, each token corresponds to a 32 × 32

patch of its respective input modality. The dimension of the input token sequence can be

denoted as N×Df where N is the number of tokens in a sequence, and Df is the dimension

of the feature vector that represents each token.

In addition to these feature tokens, positional embedding and velocity embedding are

also added via element-wise summation, although these inputs are not visualized in Figure
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3.10. The positional embedding is a trainable parameter of the same dimension as the

feature tokens that essentially provides the model with a sense of order about the position

of the ego-vehicle in a driving scenario. This embedding allows the trained network to

infer spatial dependencies between different tokens. Meanwhile, the velocity embedding

added is a projection of the current velocity of the ego-vehicle through a linear layer into a

512-dimensional vector. Together, these elements make up the entirety of the tokens being

input into the self-attention module.

Once the stack of tokens is passed through the self-attention module, a sequence of

tokens of the same dimensions is then output. This sequence is then reshaped into two

feature maps of dimension 8× 8× 512, which are then upsampled and processed through

1 × 1 convolutions. Then, the feature maps are fed back into their ResNet streams via

element-wise summation of the feature maps prior to entering the transformer module.

3.3.3 Self-Attention Module

Figure 3.11: Self-attention mechanism of a TransFuser transformer.

The implementation of self-attention mechanisms in the TransFuser model is based on

the GPT model. The TransFuser attention mechanism originally consists of eight attention

layers and four attention heads, as seen in Figure 3.11. This multi-layered approach allows
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for encoding different aspects of a scene in different attention layers by operating on in-

termediate grid-structured feature maps throughout the transformer blocks and including

positional and velocity embeddings. Each multi-head attention layer generates four sets

of Q, K and V values in parallel using Equation 3.2 to compute the attention weights and

add the value for each query. These results are later concatenated with the initial output

features with the following equation,

F out = MLP (Attention(Q, K, V )) + F in (3.3)

Here, the calculated attention weights are passed through an MLP, a non-linear trans-

formation, and combined via element-wise summation. This equation is applied for each

attention layer in each transformer block.

3.3.4 Ablation Study

In most cases, it is not completely understood how NNs process information at the neuron

level and how different parts of a NN affect the weights of the resulting trained models

[85]. Since the weight values of a model are directly related to the performance capacity

over a specific task, studying how different components of a NN affect the overall system

performance becomes an indispensable part of tuning NN architectures. Ablation stud-

ies are techniques used for gaining insight into the contributions of specific NN system

components by modifying them and evaluating the performance of the resulting system.

Current works provide ablation studies on seven TransFuser model components. Some

of these components are involved in the feature extraction process and performing sensor

fusion at multiple resolutions with multiple transformer blocks, multiple attention lay-

ers, positional embedding, and the ResNet encoders for image and LiDAR features [3].

Meanwhile, other components consist of the expert driving policy used for data generation

and the controller used for outputting actions based on the predicted waypoints [82]. We

summarize the results and conclusions derived from these studies as follows,

Sensor Fusion Scale Fusion was tested on scales ranging from one to four different

resolutions. Results show an overall degradation in performance when reducing the number

of scales.
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Transformer Blocks A version was tested that used shared parameters for all trans-

former blocks and resulted in a significant drop in DS. This performance drop was expected

since different convolutional layers in the ResNet encoders extract different features, mean-

ing that multiple transformers should be used to fuse different types of features at each

resolution.

Attention Layers Results were reported for two versions of the model, one for a model

with one attention layer and another with four. Even though the one-layer variant obtained

a higher RC, the DS was significantly lower than the four-layer variant. It was also men-

tioned that increasing the number of attention layers to eight leads to an increase in DS,

indicating that multiple attention layers could cause the agent to drive more cautiously.

Positional Embedding When tested without including positional embedding into the

feature tokens, although the RC increased by 25%, the DS dropped significantly. This

performance drop is expected since modeling spatial dependencies is crucial for an agent

to drive safely in an environment with multi-agent dynamics.

Sensor Encoders Different perception encoders were tested for the two sensor modalities

in the late fusion model. Performance degradations were observed when applying ResNet-

34 for Lidar, Inception v3 for image only, and Inception v3 for image and LiDAR. These

results indicate that deeper perception backbone networks may hinder performance through

overfitting.

Expert Policy This study implemented a new expert driving policy called SEED that

mainly differs from the original implementation in the way that it handles traffic rules and

collision avoidance. Although this change decreased the RC by 16.97%, it also increased

the IP by 30% and the DS by 3.12%. This new policy showed a slight overall improvement

but also caused the driving agent to unnecessarily stop on many occasions and get stuck.

PID Controller This study focused on making modifications to the original PID con-

troller and fixing the problem of an agent getting stuck because of the SEED expert. This

change significantly improved the DS by 10.75% and the RC by 28.86%.
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3.4 PID Controller

Figure 3.12: Complete end-to-end TransFuser AD model. Source: [3].

So far, five models have only partially been described in previous sections with a par-

ticular focus on the components relevant to perception. The only exception is the CILRS

method which automatically outputs vehicle controls without the use of a GRU network.

For full end-to-end automation in all other models, a control component is needed for

translating predicted waypoints to vehicle actions. This component is the PID controller

seen in at the end of the complete TransFuser architecture in Figure 3.12.

The PID controller is responsible for deriving vehicle controls from sensory inputs.

This module applies to all described architectures that end with waypoint prediction. This

section describes the PID controller used for performing all low-level vehicle controls based

on the predicted waypoint inputs. For further information on the PID controller used for

the expert driving policy, see Section 2.4.3.

The PID controllers implemented are based on an inverse dynamics model that provides

joint torques and forces in terms of joint positions, velocities, and accelerations [86]. The

control components for these AD models are composed of two controllers: a longitudinal

controller and a lateral controller. In this manner, the PID controller can generate steer,

throttle, and brake values based on input waypoints, controlling the motion of an ego-

vehicle by applying the process indicated in Algorithm 1 to generate actions.
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Algorithm 1: Generating actions from predicted waypoints
input : v, {wt}T

t=1
output: steer ∈ [−1, 1], throttle ∈ [0, 1], brake ∈ {0, 1}

1 γ = 0;
2 for t← 1 to T − 1 do
3 γ+ = λt||wt+1 − wt||;
4 ω = w1+w2

2 ;
5 α = tan−1(ω[1]

ω[0]);
6 steer=LatPID(α);
7 if γ ≤ βmin or γ ≤ vβratio then
8 throttle=0;
9 brake=1;

10 else
11 throttle=LonPID(γ − v);
12 brake=0;

Keeping in mind that this implementation uses a time-step of T = 4, the first step is

to compute the desired velocity γ by computing the weighted average of the T − 1 vectors

between consecutive waypoints. Then, the longitudinal controller (LonPID in Algorithm

1) outputs a throttle value as it tries to match the vehicle velocity v to the desired velocity

γ. For this, it uses weights λ = {1, 0, 0} to prioritize the closest pair of waypoints, as this

has shown to provide better empirical results. Finally, the lateral controller (LatPID in

Algorithm 1) computes the aim direction α as the midpoint between w1 and w2 in order to

output a steering angle that will orient the vehicle along that aim direction. Meanwhile,

the brake value is set to one whenever the desired velocity γ is less than the brake threshold

speed βmin or the brake speed ratio βratio which are set to 0.4 and 1.1, respectively.

Each controller also contains three gain parameters tuned alongside the two brake

parameters. These parameters are set to Kp = 1.25, Ki = 0.75, Kd = 0.3 for the lateral

controller and Kp = 5.0, Ki = 0.5, Kd = 1.0 for the longitudinal controller. Furthermore,

both controllers also have a buffer size parameter that is set to 40. The buffer size is used

to approximate the integral term as a running average.
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3.5 Model Hyper-Parameters

In the previous sections, we have described the main components of end-to-end AD models.

In addition, we have described three types of hyper-parameters involved with the training

and evaluating of these models on the CARLA simulation framework. These are the hyper-

parameters that model the system design of a transformer (see Section 3.2.1) and the three

gain parameters for each PID controller (see Section 3.4).

In this section, we describe the principal hyper-parameters that have not yet been

mentioned and are relevant to the optimization of the baseline and TransFuser models.

The hyper-parameters considered here are the ones used to control the learning process

and are set before training initiates, including the loss function, the optimizer, and other

relevant hyper-parameters. Furthermore, we describe the concept of grid-searches as it is

the method utilized in this work for carrying out HPO.

Loss Function Following other works [68], all models use an L1 loss function to train a

network and learn a policy π and imitate an expert policy π∗. In the case of CILRS, the

loss function is the weighted sum of an imitation loss and a velocity loss, as seen in the

following equation,

LCILRS = ∥a − â∥1 + ζ∥v− v̂∥1 (3.4)

where a = predicted control, a∗ = ground-truth expert control, v = predicted speed, v̂ =

actual vehicle speed, and ζ = 0.05 for best empirical performance. The CIL optimization

objective generalized in Equation 2.1 then makes use of this loss function.

For all other models that predict waypoints instead of direct vehicle controls, the loss

function is the sum of the L1 distance between predicted waypoints, wt, and ground-truth

expert waypoints, ŵt, for T = 4 time-steps, as seen in the following equation,

LW =
T∑

t=1
∥wt − ŵt∥1 (3.5)

In order to implement this loss function, assume a given expert driving policy π∗ and a

dataset D = {(X i, W i)}Z
i=1 of size Z. Here, X = high-dimensional observations of the

environment, including image and LiDAR input from a single time-step, and W = {wt =

(xt, yt)}T
t=1, a sequence of 2D waypoints in BEV space for T = 4 time-steps. Using this
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dataset, and based on Equation 2.1, the optimization objective of the waypoint prediction

models is generalized in the following equation,

θ∗ = argmin
θ

∑
i

LW(π(X), W ) (3.6)

Optimizer A significant amount of optimization problems are solved using stochastic

gradient descent methods (SGD) or SGD with momentum. Another significant amount

of problems are solved using adaptive gradient methods, such as Adam [87] or RMSprop,

that scale the gradient entry according to a running average of its magnitude. This study

focuses on the AdamW [88] optimizer since it is the adaptive gradient method implemented

for training all previously described models with the weight decay coefficient set to 0.01,

the learning rate set to 0.0001, and Adam beta values set to default values of 0.9 and 0.999

by PyTorch.

Like Adam, AdamW uses momentum and adaptive learning rates for faster convergence.

However, Adam itself still has some disadvantages such as the method not always converg-

ing and a weight decay problem resulting from L2 regularization not being as effective for

Adam as it is for SGD. AdamW improves the regularization aspect of Adam by decoupling

the weight decay from the gradient-based update, resulting in improved performance for

computer vision tasks [88] as well as AD tasks [89]. This study also demonstrates that the

decoupled weight decay eases HPO by rendering the optimal settings of the learning rate

and the weight decay factor in a more independent way.

Other Main Hyper-Parameters In addition to the loss function, the optimizer, weight

decay, and learning rate, there are two other hyper-parameters that are involved in the

optimization process, namely the number of epochs and the batch size. In the original

TransFuser study [3], all models are trained for up to 100 epochs since the best checkpoint

would always be found within that range. Also, the batch size for each model is set to the

maximum batch size that could fit on a single 1080 Ti GPU.
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3.5.1 Hyper-Parameter Optimization

NNs use a wide range of hyper-parameters to define things such as system model archi-

tectures, regularization, and optimization. Recent interests in modeling computationally

expensive machine learning methods have lead to researchers focusing on ways of optimiz-

ing these models through their hyper-parameters [90]. Several methods can be used for

HPO, one of those is the grid-search method. Considering a set of m hyper-parameters

ν = (ν1, ν2 , . . . νm), a simple way to set up a grid-search consists in defining a vector of

lower bounds a = (a1, a2, . . . , am) and a vector of upper bounds b = (b1, b2, . . . , bm) for each

component of ν. Grid-search involves taking n points in each interval of the form [ai, bi]

including ai and bi. This creates a total of nm possible grid points to check. Finally, once

each pair of points is calculated, the ones that lead to maximum performance are chosen

as the values for model optimization. The problem with this type of method is that the

number of evaluations increases exponentially as n and m increase. Since we cannot really

reduce m, decreasing n is the only possible way of assuring that the method stops in a

reasonable time, but this decreases the validity of the solution [91].

3.6 High Performance Computing

HPC is defined as a multidisciplinary field that combines hardware, architecture, operating

systems, programming tools, software, and algorithms to solve end-user problems [92].

HPC is also synonymous with supercomputing since the problems that require HPC to

solve tend to be too computationally expensive to solve on a common general-purpose PC

system.

An application is the combination of a problem that needs to be solved and the algo-

rithmic methods that are the means of solving that method. In this context, depending on

the nature of a problem and the proposed solution, an application may benefit from being

computed on a system with greater computing capabilities. By applying parallelization

techniques with HPC systems designed to optimize large-scale computing efficiency, one

can take advantage of said systems to go beyond the peak computing performance that

common PCs can reach, making certain applications more feasible to implement on an

HPC system with faster computations and increased overall throughput.
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The field of research that has dominated HPC usage is heavy-duty plasma simulations.

Interest in machine learning applications has also increased mainly due to deep learning

models that could benefit from using the accelerated hardware of HPC infrastructures, such

as GPUs, which allows for scaling up application performance [93]. In order to measure

computational performance and efficiency of HPC systems for solving any given problem,

performance metrics can be obtained through benchmarks and system monitors. These are

vital for HPC since the metrics obtained allow for a comparison of how a computational

problem can be solved on one HPC system versus another.

One type of HPC machine learning application is one designed for the task of AD. This

combines aspects of computer vision, simulations, and deep learning into one application.

In this section we describe HPC clusters, performance metrics, and the fusion between

HPC, simulations, and deep learning in the context of AD.

3.6.1 Clusters

There are four main classes of supercomputing systems that are used for handling HPC ap-

plications to solve computationally expensive problems, these are supercomputers, clusters,

cloud-computing, and grid-computing. Their components, the way they are structured and

organized, along with the rules they follow are the main reasons why these systems are

capable of accelerating the calculations of results. They are also the main ways in which

each class of systems differ from one another.

Of these four classes of parallel computing the one we will describe is the cluster system

as it is the most relevant for this work since, alongside supercomputers, clusters are among

the most commonly used HPC systems for academic purposes. In fact, according to a late

2021 ranking by TOP500 [94] of the top 500 supercomputers in the world, 495 out of 500 of

those use a cluster-based HPC system while 100% of these machines use some Linux-based

operating system.

A computer cluster, also known as a Beowulf cluster, is a collection of regular com-

puters with commodity hardware and specific software installed. If provided a proper

network infrastructure, the computing devices of this collection, referred to as computing

nodes, can communicate with one another to handle incoming jobs using their available

resources. The available resources can include computing nodes, processing cores, inter-
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connection, permanent storage, I/O options, and accelerators. These characteristics make

clusters a scalable and accessible form of computation that allow users to get the greatest

amount of computation at a lower cost. This is usually a cheaper alternative to the use of

supercomputers due the relatively high cost of buying and maintaining them.

Clusters are commonly used by multiple users who interact with it by submitting jobs to

a resource manager through a command-line interface. Resource managers are an inherent

part of HPC systems that perform three principal functions: (1) resource allocation, (2)

workload scheduling, and (3) support for executing and monitoring distributed workloads.

Once a job is submitted, the resource manager takes the job to a queue where, if the job is

accepted, it will be allocated access to resources and the job will be scheduled for running

the specified application. Depending on the requirements specified by the user and the

available computational resources, among a number of other affecting factors, a job may be

allowed to continue down the computational pipeline where it will either continue executing

until completion or be canceled prematurely by the user through resource manager-specific

commands.

An example of an HPC cluster is the system owned by CEDIA, an Ecuadorian Net-

work Corporation for Research and Education. Although currently it only consists of one

computing node, it is set up with high-performance hardware capable of processing infor-

mation more efficiently and will in fact soon obtain a second computing node with similar

capabilities as the first. This cluster allows for the executing simulations that require in-

tensive processing with large volumes of data for topics such as DNA analysis, artificial

intelligence, chemical modeling, and climate analysis, among others. More practical details

related to working on this cluster are given in Section 4.3.

3.6.2 Simulations and Deep Learning in HPC

The latest technological advances such as block chain, deep learning, artificial intelligence

and HPC, have played a major role during the latest Covid-19 pandemic. These tech-

nological advances helped predict contaminated areas and patients, as well as predicted

future tendencies from the spread of the disease. The use of HPC and machine learning

have shown effectiveness in controlling the spread of COVID-19. Studies providing insights

on the applications of machine learning and HPC have shown that HPC is advantageous
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when processing large scale data of all citizens and machine learning techniques assist in

the extraction of knowledge [95]. These techniques can be used to identify patients carrying

the COVID-19 disease from those without it. It can divide citizens into categories based

on their hygiene practices, living location, and areas visited. Using HPC the information

compiled can be loaded, processed, and deliver immediate results to citizens.

A study done by Alfianato et al. uses HPC to solve complex parallel computing prob-

lems which students are not able to practice solving on general-use PC systems [96]. Results

generated showed that tree problems could be solved directly using more than four AMD

Ryzen 7 processors. Parallel computer lectures discuss the use of multiple processors si-

multaneously to generate results on highly complex problems. As mathematical problems

become more complex to solve, increased production is necessary from the processor. Using

clusters, students were able to find the root of the Gauss elimination method and backward

method using a 100x100 matrices with a random number generated in under 3 seconds.

Another study written by Labib discusses the use of machine learning algorithms with

a relatively small sample of a simulation to predict the optimal daylight and energy per-

formance of buildings [97]. Machine learning is known to be precise and accurate, but

computations are time-consuming processes. These processes must execute a set of sim-

ulations used as training for data validation. In some cases, there is only a small sample

utilized, which produces inaccurate results. This work utilizes HPC to save crucial time

to execute all simulations necessary for the machine learning. Using HPC they are able to

execute thousands of tasks simultaneously and time-efficiently which increases the subset

size of the simulation. To calculate the daylight performance, a NN model was designed

from 506 simulations. This NN consisted of 404 training samples and 102 tests samples

which validated the NN model. To develop the NN model, a small NN was first created

with two intermediate layers consisting of 64 units each, and one layer with only one out-

put unit. Results showed the used of the proposed NN model produced the best results

using a point-on-time illuminance simulation with 130 epochs. The NN reduced the time

necessary to examine 5000+ rooms configurations, from hours to minutes with an error

margin of 0.94%. The model was applied to nine different room configurations to examine

accuracy and predicted results.

Information Technology Engineer 73 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 74 Graduation Project



Chapter 4

Methodology

In this work, we experiment with various configurations of a transformer-based sensor-

fusion architecture to determine the optimal set of parameters to use for further develop-

ment of transformer-based AV models. This procedure consists of four main components:

(1) setting up an environment for training and testing AD models, (2) replicating results of

previous TransFuser studies [3], (3) HPO of the TransFuser model through hyper-parameter

sweeps, and (4) evaluating the performance of the resulting trained models. This chapter

describes the methodology used in order to define and carry out the necessary experimen-

tation process. This includes describing the problem, the proposed solutions and model

designs, the experimental setup for establishing the computing environment for testing

AVs, and how we go about implementing the methodology.

4.1 Phases of Problem Solving

This section describes the methods proposed for solving the problems stated in Section

1.2. For this, we revisit the stated problems and include a deeper analysis of the problems,

deeming necessary the use of HPC. Furthermore, we describe the experimental design

aimed at solving these problems. In essence, the proposed methodology revolves around

training the baseline and TransFuser AD models and evaluating them using the CARLA

Leaderboard benchmark. For this, we perform HPO sweeps by varying a chosen set of

hyper-parameters that affect the proposed system model and the optimization process. We

also propose the use of a visualization tool called WandB to monitor all training processes,

sweeps, and the HPC system metrics.
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4.1.1 Description of the Problem

The creation of full AVs capable of safely driving through any unseen environment where

the only human inputs are the destination goals is an ongoing challenge for AD researchers.

This challenge envelopes many sub-tasks related to AD as well as multiple solutions pro-

posed over time. On top of these challenges, regions falling behind in AD research, such

as those in South America, have a longer road for developing and implementing full AVs.

In end-to-end driving, vehicles can be equipped with sensors for perceiving the envi-

ronment through multiple modalities. This, however, brings a new challenge of what is the

best way to fuse these input modalities. This problem becomes more complicated when

considering that ANNs are complex structures with many components that must usually

go through ablation studies in order to understand how those components affect the overall

performance of the ANN.

TransFuser is a state-of-the-art end-to-end AD model that proposes a novel way of

fusing these modalities through self-attention mechanisms whose driving performance is

on par with other state-of-the-art models. However, being a relatively new model, it

has not been through sufficient investigations to understand the relationship between the

different models components and the driving capabilities of the trained model. Even though

some researchers have managed to duplicate the driving performance scores of the original

model when tested against the official CARLA Leaderboard platform, the methods that

were applied in order to achieve these performance gains are not of public knowledge. In

other words, the full potential of the proposed TransFuser model has yet to be explored

by HPO of specific model components in order to maximize driving performance.

One challenge that limits the extent to which most model components can be tuned is

the computational complexity that usually accompanies the training of AD models. Firstly,

a TransFuser model takes about 24 hours to fully train on an above-average GPU. However,

due to the problem of high variance commonly suffered by IL models, it is important to

keep in mind that in order for the resulting performance metrics of this model to be

statistically accurate, at least three models should be trained from scratch, evaluated, and

averaged. This means that acquiring accurate performance results of a single TransFuser

model requires about 72 hours of training. Therefore, each variation of the model that
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could be tested would require about 72 additional hours of training, representing a costly

challenge for HPO.

In this work, training AVs entails the problems described thus far, including lack of

studies on novel multi-modal fusion models and high computational costs. To design an

HPO experiment to handle these tasks, it is first necessary to further analyze the problem

and explore possible solutions.

4.1.2 Analysis of the Problem

After reviewing the only publically available investigations done with the TransFuser model,

a total of seven model components can be related with performance gains, of which only five

have to do with the central sensor-fusion process. These five relationships are that sensor

fusion done at multiple resolution scales, with the use of multiple transformer blocks, each

of which utilize multiple attention layers, all lead to performance gains when compared to

their single-scaled implementations. The use of positional embedding also seems to improve

performances along with the use of ResNet encoders as perception backbones over other

encoders tested in previous works. More significant improvements can also be achieved

outside of the sensor-fusion process by improving upon the expert driving policy that the

model imitates and the PID controller that translates predicted waypoints into vehicle

actions.

As far as these studies show, the biggest improvements in driving performances have

been thanks to modifications done over the expert driving policy and the PID controller.

Meanwhile the studies done over other model components mainly serve to give some justi-

fication to the current sensor-fusion architecture of the TransFuser model, leaving the rel-

evance of many other components unknown. More specifically, there are two types of com-

ponents that make up the TransFuser architecture. These are transformer components and

non-transformer components, each of which consist of their own set of hyper-parameters

that can be tuned. The non-transformer components consist of more well-known hyper-

parameters such as the learning rate, number of training epochs, and batch size, while the

transformer components consists of lesser-known hyper-parameters such as the number of

attention layers, attention heads, and attention dropout.

In order to contribute to the existing research over the TransFuser model, one of the
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goals of this work is to perform HPO over a select few of the TransFuser hyper-parameters,

namely the number of attention layers, attention heads, the learning rate, and the batch

size. Therefore, one way of exploring the impact of these hyper-parameters on the driving

performance of the TransFuser model is to perform hyper-parameter sweeps over a fixed set

of values. Also, HPC through clusters is a viable option for overcoming the computational

limitation of the TransFuser model. By taking advantage of parallel computing techniques,

a greater amount of models can be trained and evaluated in the same given time as opposed

to a sequential approach on a typical desktop computer.

4.1.3 Experimental Design

In this work, we are going to test how four independent variables of the TransFuser model

affect the overall training and driving performance of said model. These four variables

are the attention layer, attention head, learning rate, and batch size hyper-parameters.

Of these variables, the attention variables are more closely related to the inner-structure

of the transformer blocks that fuse the data from different sensor modalities while the

learning rate and batch size variables are more closely related to the rate of convergence

during training. In other words, the dependant variables we are considering are the driv-

ing performance metrics and the HPC system metrics. Considering these variables, we

hypothesize that by modifying these four hyper-parameter variables we can determine an

optimal set of hyper-parameters that optimize the driving performance of the TransFuser

model without sacrificing a significant amount of training time and computing resources.

Baseline Experiment First we train three instances of the CILRS, AIM, late fusion,

and geometric fusion baseline models followed by the TransFuser model using the default

configurations obtained from the TransFuser project repository [3] with the dataset de-

scribed in Section 2.4, resulting in a total of 15 trained models that will be evaluated and

averaged into five sets of performance metrics. These configurations consists of a default

value of 0.0001 for the learning rate, 101 for the training epochs, and batch sizes of 256, 192,

128, 56 and 56 for the CILRS, AIM, late fusion, geometric fusion, and TransFuser models,

respectively. This baseline experiment is so that we can obtain performance metrics of the

original baseline and TransFuser implementations and compare our driving performances
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to that of the original work taking into consideration that the only difference is that while

the original work trained their models using only clear weather data, the models in this

work are trained using data that spans 14 different weather conditions.

Afterwards, we begin treating our independent variables by defining two experiments

that will be carried out sequentially and are aimed at determining the best HPO con-

figurations through hyper-parameter sweeps. Each sweep is a grid-search that trains a

single model for each possible combination of hyper-parameters taken from a fixed set of

values that we define beforehand. Considering the high variance in performance results

common in IL models, each tested configuration requires training three separate models

from scratch, evaluating the performance of all three models, and average the resulting

performance metrics for statistical accuracy. Therefore, both of the proposed experiments

consist of three sweeps where the only things changing between the three models with

identical hyper-parameters are the randomly set training seeds and the batch sampling

order.

Experiment #1 The first experiment sweeps consists of a grid-search that trains nine

transformer configurations of the original TransFuser model by sampling the number of

attention heads and attention layers from the values {4, 8, 16}. Each transformer con-

figuration is assigned an ID according to Table 4.1 where Config-4 represents the original

transformer configuration. Once all three sweeps have been carried out, a total of 27 trained

models will need to be evaluated and averaged into nine sets of performance metrics, one

for each transformer configuration.

Table 4.1: IDs for the transformer configurations of the first sweep.

Attention Heads
4 8 16

Attention
Layers

4 Config-1 Config-2 Config-3
8 Config-4 Config-5 Config-6
16 Config-7 Config-8 Config-9

Experiment #2 Based off the performance results from the models of the first exper-

iment sweeps, we will determine the average top three performing transformer configura-

tions. The second experiment sweeps will then consist of three grid-searches, one for each
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of the top transformer configurations. Each grid-search will train 18 TransFuser model

configurations by sampling the batch sizes from {64, 32} and by sampling the learning

rates from {0.00001, 0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.005, 0.01, 0.05}.

Each of these model configurations is assigned an ID according to Table 4.2 where X

represents a Config ID taken from Table 4.1 and where Config-X13 and Config-X23 pertain

to the original learning rate values. For example, Config-123 refers to a model trained with

four attention layers, four attention heads, a batch size of 32, and the original learning rate

of 0.0001. As with the first experiment, the three experiment sweeps of this experiment

will be carried out three times, resulting in a total of 162 trained models that will need

to be evaluated and averaged into 54 sets of performance metrics, one for each unique

TransFuser configuration.

Table 4.2: IDs for the TransFuser configurations of the second set of sweeps.

Batch Sizes
64 32

Learning
Rates

0.00001 Config-X11 Config-X21
0.00005 Config-X12 Config-X22
0.0001 Config-X13 Config-X23
0.0003 Config-X14 Config-X24
0.0005 Config-X15 Config-X25
0.001 Config-X16 Config-X26
0.005 Config-X17 Config-X27
0.01 Config-X18 Config-X28
0.05 Config-X19 Config-X29

Monitoring Sweeps Carrying out the sweeps described in experiments #1 and #2

requires training a total of 189 TransFuser models of which 63 models contain similar

hyper-parameters. In order to simplify the processes of training and documenting we

will implement a visualization tool called WandB that can connect directly from training

scripts to an online platform for the monitoring of the training process. This tool allow

us to implement each grid-search systematically. The online central dashboard allows for

the visualization and management of HPO sweeps in real-time by monitoring training and

system metrics. The training metrics consist of hyper-parameter values as well as other

parameters including epochs, training losses and validation losses. The system metrics
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consist of training times, training losses, validation losses, best validation epochs, and

GPU usage.

4.2 Model Proposal

Figure 4.1: Transformer systems model of the TransFuser model.

The four hyper-parameters being tested in this work can be categorized by those that

affect the TransFuser model design and the optimization process. In Figure 4.1 we can see

the complete TransFuser model architecture with more emphasis on two of the components

being modified, namely the number of attention layers and attention heads. Even though
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only one transformer block is being dissected, we should keep in mind that the modification

of attention hyper-parameters equally affect all transformer blocks.

4.2.1 Self-Attention System Design

First, we take a closer look at the inner-workings of the self-attention mechanism of the

transformer module seen in Figure 3.11. Here we can see that a self-attention module

is composed of multiple attention layers through which the input token embeddings are

processed once combined. The tokens embeddings only depict the stacking of RGB and

LiDAR token embeddings. However, these are also combined with positional and velocity

embeddings via element-wise summation. Next, by further digging into a transformer

block we can see that each attention layer contains a masked multi-head self-attention

mechanism that calculates attention through Equation 3.2 and while the original GPT

model architecture includes a normalization layer after the respective self-attention and

MLP modules, the TransFuser model includes these layers beforehand.

Tuning the attention layer hyper-parameter creates system models with attention layers

varying from the set {4, 8, 16}. The proposed model configurations also vary the number

of attention heads that work in parallel throughout each attention layer from the set

{4, 8, 16}. These modifications to the TransFuser model create model variations with the

configurations stated in Table 4.1. In other words, the proposed transformer configurations

include models with less, the same, and more attention layers as well as models with the

same and more attention heads. For each proposed model configuration, the batch size

and learning rate hyper-parameters are also tuned, affecting the number of RGB image

and LiDAR BEV dataset samples processed before the model is updated and the step-size

taken at each iteration of the optimization process.

4.3 Experimental Setup

For our work we use the CARLA AD simulation framework which includes a driving

simulation (Section 2.3), an open-source dataset (Section 2.4), a benchmark (Section 2.5),

and scripts for training and evaluating our models. In order to implement this framework

on an HPC system, it was also necessary to set up a working environment on a local system
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with a Linux operating system, compatible Nvidia drivers, and access to port 22 through

which the secure-shell (SSH) protocol allows for an SSH client to connect with an SSH

server. This communication enables remote login to an HPC system and command-line

execution from a local system.

For initial testing purposes all of the software described in Table 4.3 was set up on

both systems unless specified otherwise. However, since the objective of this work was to

carry out the proposed experimental design on an HPC system (Section 4.1.3), this section

mainly describes the setup process needed for training and evaluating models on an HPC

system that works in conjunction with a local system. Still, the process for setting up the

framework on an HPC system can also apply for setting it up on a local system.

Table 4.3: Software used for running the CARLA simulator.

Software Version
Linux (Local) Ubuntu 18.04.6 LTS
Linux (HPC) Ubuntu 20.04.2 LTS
Nvidia Driver (Local) v470
Nvidia Driver (HPC) v450
Miniconda Environment Python v3.7.11
Torch v1.9.0+cu111
Torch Vision v0.10.0+cu111
WandB v0.12.9
CARLA Simulator v0.9.10.1

4.3.1 Setting Up the Simulation Environment

CARLA supports the Ubuntu 18.04 and 20.04 Linux platforms, however, the one chosen

for this work is Ubuntu 18.04 since it is the officially supported Linux platform for running

CARLA. With a connection successfully established to an HPC system through a remote

SSH login, a miniconda virtual environment can be setup with the Python version detailed

in Table 4.3. Then, the pip package installer for Python can be used to install a list of

package requirements. Of these packages, the most important are torch and torch vision

libraries that provide the building blocks for our system models such as linear layers,

convolutional layers, pooling, activation functions, and other architectural components.

To avoid compatibility issues, we recommend installing the ”+cu111” versions of these

libraries that include support for CUDA tensors and operations on a CUDA-capable GPU
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device. We also recommend installing the latest version of the WandB library which at the

time of this writing is 0.12.9. This virtual environment must be activated before running

any training or evaluation scripts.

With these requirements met, we proceed with setting up the CARLA simulator. Specif-

ically, we use CARLA 0.9.10 for training and testing, however, newer versions of the sim-

ulator should also be compatible for this implementation. We download and install a

packaged version of CARLA that weighs about 9.8 GB and includes all of the binaries,

engine, maps, and API tools needed for working with the CARLA framework. Also, an

optional package that includes an additional set of assets and maps is added and imported

for the simulation to use, giving us access to all of the towns described in Table 2.1. More

advanced customization and development options can be found through the Unreal Engine

editor, however, for the purpose of this work, this editor is not built or used. In order to

install all of these dependencies and use the CARLA simulator, our system must meet the

following requirements:

• A Windows or Linux system.

• An adequate GPU with at least 6 GB for running the CARLA server.

• About 20 GB of disk space (30 GB with the Unreal Engine build).

• Python 3 for Windows and Python 2.7 or 3 for Linux.

• Pip package installer.

• Access to TCP ports 2000 and 2001.

• Pygame and numpy dependencies.

With the simulation environment set up, a CARLA server can be started with the OpenGL

graphics API by running the following command on a terminal window,

./carla/CarlaUE4.sh -opengl
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4.3.2 Parallel Computing Environment

The computing environment on which the CARLA simulation will be run is the CEDIA

HPC cluster. This system consists of eight A100-SXM4-40GB GPUs with the hardware

specifications described in Table 4.4.

Table 4.4: Hardware specifications of an A100-SXM4-40GB GPU.

Feature Performance values
Double precision (FP64) peak performance 9.7 TFLOPS
Single precision (FP32) peak performance 19.5 TFLOPS
Half precision (FP16) peak performance 78 TFLOPS
Host-to-GPU transfer bandwidth 64 GB/s
GPU-to-GPU transfer bandwidth 600 GB/s
Memory bandwidth 1,555 GB/s
GPU base clock 1095 MHz
GPU boost clock 1410 MHz
Compute capability 8.0
Max wattage 400W

Each model that we train is trained on a single GPU at a time for consistency. Mean-

while, we run between 1-4 CARLA servers on different GPUs simultaneously when evalu-

ating our models. To achieve this multi-client-server parallelization, we define two jobs for

the SLURM workload manager, one for running a server and one for running a client, and

define their environment variables through Bash script. The GPUs chosen for computation

depends on their availability at the moment that they are needed.

In order to run multiple instances of the simulator server in parallel, we define four

additional environment variables when running a server to enable the off-screen rendering

mode, choose a GPU device for computation, and a world port through which the server

will communicate to the CARLA client. This multi-client scheme requires running multiple

servers on a GPU device with a command similar to the following but varying the GPU

device from {0− 7} and the world port for each pair of client-server pair,

SDL_VIDEODRIVER=offscreen SDL_HINT_CUDA_DEVICE=7 ./carla/CarlaUE4.sh
--world-port=2300 -opengl

On the client-side, for each client to communicate with a corresponding server, the following

environment variables must also be set to match,

Information Technology Engineer 85 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

export PORT=2300 # same as the carla server port
export TM_PORT=8300 # port for traffic manager

The traffic manager port defined in the server-side Bash script must be unique for

each of the 15 client-server job pairs so that traffic and the simulation itself is managed

independently for each evaluation. Also, jobs can be submitted to SLURM through Bash

scripts that define all the necessary environment variables needed for evaluation. These

Bash scripts are submitted with scheduler directives to run a server while logging the

command-line output rather than displaying it.

4.3.3 Evaluation Environment

In order to evaluate the driving performance of a trained agent, the client-side environment

must also be set up with additional environment variables and connected to a corresponding

server. For this, we set up a Bash script indicating static and dynamic variables. Static

variables remain the same through each evaluation and include paths used for running

the simulation, the track modality, the number of times the vehicle should be evaluated

through all routes, and because we want to evaluate all models on the same set of routes

with the same set of scenarios we include the directory of the routes file and the scenario

file, along with the correct port entries.

Meanwhile, the dynamic variables set paths to the specific agent Python script, the

model to be evaluated, the name of the results file, and the path where images of each

driving episode should be stored. Below is an example of a Bash script that defines both

static and dynamic environment variables,

Client Bash Script Example

# static variables
export CHALLENGE_TRACK_CODENAME=SENSORS
export PORT=2300
export TM_PORT=8300
export REPETITIONS=3
export ROUTES=evaluation_routes/routes_town05_long.xml
export SCENARIOS=scenarios/town05_all_scenarios.json
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# dynamic variables
export TEAM_AGENT=transfuser_agent.py
export TEAM_CONFIG=myModels/transfuser/myModel
export CHECKPOINT_ENDPOINT=results/myResults.json
export SAVE_PATH=data/mySavedEpisodes

The CARLA client-server architecture allows us to set up our evaluation environments

with Bash scripts similar to the two previous server and client examples. In order to facil-

itate the running of multiple corresponding servers and clients for evaluating our trained

models with the CARLA framework, we implement 15 pairs of client-server evaluation

scripts. These scripts are used for the process of running multiple servers and logging the

output of each terminal in an organized manner while setting up the desired evaluation

environments in the CARLA simulator.

4.4 Implementation

The implementation of this work consists of four main tasks, initial testing, training,

evaluating, and monitoring. In this section, we describe how the proposed methodology

was carried out to accomplish these four tasks using a simulation framework running on

an HPC system. This section is complemented by Section 4.2 that provides a more visual

representation of the system model modifications proposed for this implementation and

Section 4.1.3 that designs the process for experimentation with the chosen independent

variables.

4.4.1 Testing

After setting up the experimental environment, but before HPO sweeps can be performed,

initial testing of said experimental environments is required, both locally and on an HPC

system. Training AVs is not a straight-forward task, and considering that some models take

more than a day to train it becomes quite helpful to perform smaller-scaled training and

evaluating sessions to ensure that everything is working properly and that we understand

how to train and evaluate AV models on an HPC system while monitoring the process.

Initial training tests consisted of training the CILRS model for 20 epochs locally and
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on an HPC system. Once that training was completed, each model would be evaluated

on the machine that it was trained on and the performance metrics would be compared.

After this, we eventually tested the WandB tool by modifying the training scrips to include

and configure its parameters so that the training process can be monitored via a central

dashboard.

4.4.2 Training Autonomous Vehicles

For our implementation, training an AV requires defining the training parameters, picking

a GPU to train on, and sending a job to the HPC system to run a script that will train

a specific type of model. GPU selection for training is based on their availability at that

moment and on the task at hand. Since eight GPUs are available for multiple users on the

CEDIA HPC system, their usage varies from time to time. Even though we cannot isolate

the HPC resources from other users for our computing needs, we always picked the least

occupied GPU for training.

Complementary to the training process itself is the monitoring of the training process.

With WandB correctly integrated into the training scripts, running the model sweeps for

HPO requires additional steps. First, we define the specifications to our model sweep in a

yaml file. This file includes information regarding the training script, the type of sweep,

the training metric, and the hyper-parameter values. For our implementation, we define a

grid-search sweep and minimizing the validation loss as the main training goal. Then, we

initialize the sweep with a WandB command and place the resulting sweep ID into a Bash

script where, rather than running a job to directly train a model, we run a job to create

a WandB agent that will begin performing the grid-search with the values defined in the

yaml file.

4.4.3 Evaluating Autonomous Vehicles

From the perspective of the HPC resource manager, two jobs need to be sent in order for

a model to be evaluated, one job for running a server and one job for running a client. In

order to evaluate, with some level of parallelism, the models generated by hyper-parameter

sweeps, Table 4.5 defines a fixed set of ports through which any server and client jobs can
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communicate at any given time during an evaluation. We can now make use of this table

to create 14 Bash scripts, each with their own set of ports for client-server communication

and other environment variables. In this manner, multiple evaluations can take place by

running one of 14 pairs of Bash scripts. This is to facilitate the process of evaluation since

the ports will never cross and multiple evaluations can be run at any time independently of

each other. This also limits the maximum amount of evaluations that can be simultaneously

run to 14.

Table 4.5: Fixed ports used for running CARLA servers/clients in parallel.

Evaluation
ID

World
Port

Traffic Manager
Port

0 2000 8000
1 2100 8100
2 2200 8200
3 2300 8300
4 2400 8400
5 2500 8500
6 2600 8600
7 2700 8700
8 2800 8800
9 2900 8900
10 3000 9000
11 3100 9100
12 3200 9200
13 3300 9300
14 3400 9400

Furthermore, we use the environment and scenarios described in detail in Section 2.5.1

for evaluating our trained models on the CARLA Leaderboard benchmark. This evaluation

process is the same as the one used by Prakash et al. in the original TransFuser study

[3]. Once all of the evaluation routes have been completed, the global set of performance

metrics described in Section 2.5.3 are calculated and presented in a JSON file. Since each

model configuration consists of three trained instances of that model, then the three sets of

driving scores and infraction rates pertaining to each configuration will be averaged after

the completion of each respective experiment. Statistical dispersion of these sets calculated

through standard deviation will be added to the driving scores. Meanwhile, the infraction

rates will be presented per kilometer driven.
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Chapter 5

Results and Discussion

In this chapter, we present the results of implementing the methodology described in Chap-

ter 4. For this, a total of 204 models are trained for carrying out the baseline experiment

and the transformer and TransFuser HPO sweep experiments. After evaluating each model,

we present tables detailing the performance metric values of the resulting evaluations. For

analyzing performance, we consider the three driving scores (DS, RC, IP) and the type

one infraction metrics associated with a penalty coefficient (PC, VC, LC, RL, SS). These

benchmark results presented in tables are rates of infractions per kilometer driven and are

placed in order of descending severity, from left to right, according to CARLA standards.

Of the score metrics, the DS is the most important base for comparison between models

since it reflects overall driving capabilities. With the RC metric already representing the

percentage of driving completed, it is unnecessary to include the type two infraction that

only represents a portion of the route driven off-road.

5.1 Baseline Experiment

After completing the baseline experiment, we analyze the DS and infraction metrics ob-

tained from all evaluated baseline and TransFuser models as shown in Table 5.1 and in

Table 5.2. In these tables, we highlight the best result of each respective column with

boldface text. As expected, the CILRS model has the worst performance with respect to

DS and RC. Even though it has the highest IP average of all the models tested, this value

is ignored for all other comparisons since the main reason the CILRS agent commits less

infraction penalties is that it only completes 13% to 21% of the total routes completed by
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the other models. With less driven distances, there are less opportunities for infractions to

be committed by the driving model. This analysis holds true for other evaluated models

who obtain a low DS despite having an IP close to one. Therefore, even though the IP

score is a representative of the overall infractions committed, it can be misleading if the

RC score of two evaluations are relatively far apart.

Table 5.1: Driving scores of baseline models.

Model Max DS DS RC IP
CILRS 6.69 5.79±0.97 9.85±1.12 0.63±0.08
AIM 17.62 15.44±2.94 51.10±16.90 0.44±0.12
Late Fusion 28.78 21.49±8.64 48.15±27.16 0.64±0.21
Geometric Fusion 26.29 23.27±2.83 64.76±22.56 0.50±0.19
TransFuser 29.16 26.15±2.62 70.08±7.09 0.45±0.05

When looking at the average number of infractions committed on Table 5.2, we see that

the CILRS method has the highest PC, VC, LC, and RL rates per kilometer driven, showing

that the image-based model has the worst overall performance in terms of infractions. The

AIM model shows a significant improvement as it outperforms CILRS on the DS, RC score,

and the average number of infractions committed. AIM even obtains the best PC and SS

infraction rates if we ignore the lower SS rate of CILRS due to the difference of more than

40% in RC scores. This significant improvement in performance shows that conditioning an

AV agent on sparse goal locations with the use of an auto-regressive image-based waypoint

prediction encoder can be better than conditioning an agent on navigational commands.

Table 5.2: Infraction rates of baseline models per kilometer driven.

Model PC VC LC RL SS
CILRS 0.556 0.857 3.338 1.684 0
AIM 0.035 0.344 0.503 0.977 0.050
Latefusion 0.085 0.193 0.024 0.605 0.052
Geometric Fusion 0.047 0.387 0.013 0.367 0.081
TransFuser 0.085 0.281 0 0.649 0.106

The performance results of the two fusion baseline models show an improvement over

the two image-based baseline models with respect to their DS (Table 5.1), and most notably

the LC and RL infraction rates (Table 5.2). Also, between late and geometric fusion,

geometric fusion provides the best results, achieving an average DS of 23.27. Also, even
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though late fusion models perform almost as well as the other fusion models on average,

the standard deviation of these show that there is a higher level of variance in these models

than in any of the other models tested. Finally, out of all models compared in the baseline

experiment, the TransFuser model comes out on top with an average DS of 26.15. When

compared to geometric fusion, a general trade-off can be witnessed between safety and

distance traveled as an IP about 5% lower and an RC about 5% higher lead to a DS score

almost 3% higher. These improvements show that multi-modal fusion techniques are useful

for improving AD models and that even simple element-wise summation techniques, can

result in performance gains.

The results presented in this section are comparable to those obtained by Prakash et al.

[3] in the original TransFuser work. Although not all performance metrics are provided, a

similar growing trend in performance can be appreciated amongst the tested baseline and

fusion models, as well as an overall improved capacity for global contextual reasoning in

3D environments. One thing that stands out from these results is that all of the waypoint-

prediction models evaluated in long routes obtain a higher DS than the scores presented

in this work. These scores range from 25.30 to 33.15 compared to our scores ranging from

15.44 to 26.15 (Table 5.1). Besides the high variance typical in IL models, this difference can

be attributed to two things: the datasets used for training and the evaluation environment.

Prakash et al. use a clear weather dataset for IL and evaluated in environments with only

clear weather. Meanwhile, this work considers a 14 weather dataset while also evaluating

in environments with only clear weather. It is reasonable to think that an agent trained

on clear weather data would perform better in clear weather than an agent trained on

different data.

5.2 Transformer HPO Sweeps (Experiment #1)

At the conclusion of the three transformer HPO sweeps are the performance metrics for

the nine configurations of the TransFuser models identified in Table 4.1. After taking a

closer look at the summarized performance results in Table 5.3, the first thing to notice

is that the average DS of Configs 1, 2, 5, 7, 8, and 9 are below the fusion baseline model

scores seen in Table 5.1. In other words, the only configurations that achieved a higher
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average DS score are Configs 3, 4, and 6. Therefore, these are considered the top-three

performing models of this experiment.

Table 5.3: Driving scores of transformer configurations.

Model Max DS DS RC IP
Config-1 15.53 13.06±2.29 37.89±15.01 0.57±0.09
Config-2 29.32 20.73±7.98 56.09±22.11 0.47±0.08
Config-3 27.65 24.00±3.80 68.69±5.64 0.46±0.12
Config-4 22.71 21.55±1.53 66.86±5.11 0.41±0.04
Config-5 22.00 21.27±0.84 66.53±3.73 0.40±0.07
Config-6 22.65 21.77±1.08 54.18±24.34 0.54±0.20
Config-7 24.65 18.25±5.55 62.88±3.98 0.43±0.09
Config-8 22.52 17.88±4.12 60.83±19.82 0.43±0.15
Config-9 20.10 18.80±2.24 53.77±6.62 0.47±0.07

Here, we use boldface text to highlight the top two results of each performance metric

analyzed. With these highlighted values, we can see that the highest DS belongs to Config-

3 and Config-6, the highest RC scores belong to Config-3 and Config-4, and the highest

IP score belongs to Config-1 and Config-6. Also, the highest obtained DS in individual

evaluations belong to Config-2 and Config-3. We discard Config-1 due to the relatively

low DS and Config-2 since, even though a Config-2 model obtained the highest DS score

thus far, it has the highest standard deviation in its average DS score, indicating Config-2

models are less likely to perform at the level that we expect them to.

Another thing to notice is the fact that the configurations with 16 attention heads have

a higher DS than their counterparts with less attention heads. There is also a reduction

in overall performance when it comes to configurations with 16 attention layers and with

Config-1, giving a strong indication that more attention heads can be beneficial for per-

formance independently of the number of layers. In these four cases, the DS did not even

reach a value of 20, falling below all baseline fusion methods.

In the infraction rates of the transformer configurations presented in Table 5.4, we

see that the top two results tend to present themselves on the configurations with more

attention layers and attention heads. However, the values for each metric remain within

a relatively close range, especially when compared to the infraction rates of the baseline

models. We can also see that the infractions most commonly occurred are RL violations

with the number of overall committed infractions ranging from 0.902 to 1.213, indicating
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that collisions were less of a problem for the evaluated models than RL violations. More

specifically, collisions with the environment layout are about 10 times less likely to occur

than other collisions types and SS violation, and about 200 times less likely to occur than

RL violation.

Table 5.4: Infraction rates of transformer configurations per kilometer driven.

Model PC VC LC RL SS
Config-1 0.11 0.34 0.007 1.111 0.068
Config-2 0.193 0.318 0.005 1.125 0.116
Config-3 0.054 0.229 0.019 0.902 0.076
Config-4 0.088 0.288 0.05 1.05 0.076
Config-5 0.109 0.244 0.005 1.024 0.102
Config-6 0.119 0.228 0.007 1.002 0.055
Config-7 0.07 0.237 0.017 0.983 0.091
Config-8 0.053 0.291 0.004 1.133 0.089
Config-9 0.059 0.184 0.004 1.213 0.079

Table 5.5: Performance averages for each attention layer value tested.

Performance
metric

4 attention
layers

8 attention
layers

16 attention
layers

Scores
DS 21.53 ± 5.62 24.13 ± 4.24 18.91 ± 3.28
IP 0.43 ± 0.10 0.52 ± 0.15 0.41 ± 0.11
RC 65.05 ± 14.67 60.21 ± 12.41 60.47 ± 10.84

Infractions

CP 1.25 ± 0.51 0.88 ± 0.24 0.47 ± 0.32
CV 2.48 ± 0.26 2.81 ± 0.98 1.92 ± 1.31
CL 0.09 ± 0.02 0 0.08 ± 0.15
RV 9.79 ± 1.02 6.84 ± 0.55 12.41 ± 1.21

For better analyzing the effects of varying the number of attention layers and attention

heads on the performance scores and number of infractions, the performance metrics are

averaged according to their attention parameters and are presented in Tables 5.5 and 5.6.

Here, we see that on average, the models trained and tested with eight attention layers

obtain a better DS and lower number of collisions with the static environment and RL

violations. Also, the models trained with four attention layers obtain a higher RC but

at the cost of committing more infractions, leading to a lower DS. On the other hand,

while the models trained with 16 attention layers commit less collisions with pedestrians

and vehicles, which are the most important type of infractions to consider, they commit

a significantly greater amount of the less severe infractions, leading to a lower IP and
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Table 5.6: Performance averages for each attention head value tested.

Performance
metric

4 attention
heads

8 attention
heads

16 attention
heads

Scores
DS 19.54 ± 5.08 22.82 ± 4.07 21.78 ± 5.42
IP 0.41 ± 0.12 0.44 ± 0.06 0.50 ± 0.17
RC 64.07 ± 13.85 64.82 ± 7.57 56.85 ± 14.44

Infractions

CP 1.02 ± 0.47 0.92 ± 0.74 0.66 ± 0.01
CV 2.48 ± 0.33 2.81 ± 0.78 1.92 ± 1.02
CL 0.12 ± 0.13 0.02 ± 0.04 0.03 ± 0.06
RV 9.39 ± 2.52 9.47 ± 3.39 10.18 ± 2.77

consequently, a lower DS. With respect to the number of attention heads implemented in

different models, we can see in Table 5.6 that the use of four attention heads tend to lead

to a lower DS and more road infractions. The use of eight or 16 attention heads appear

to be the ideal choice as they lead to somewhat similar results. This also leads to believe

that the ideal number of attention heads could be in between eight and 16. However, these

ideal values can also vary depending on the number of attention layers since it was also

proven that the best score was obtained in Config-4 with eight attention layers and four

attention heads. Thus, the ideal number of attention heads also depends on the number

of attention layers being used in the transformer block.

5.3 TransFuser HPO Sweeps (Experiment #2)

This section presents and analyzes the results obtained from the TransFuser HPO sweeps

done for each transformer configuration. We compare the best performing TransFuser

models to each other and to the baseline models. Finally, we present results obtained from

the WandB central dashboard platform for monitoring the training processes and the use

of resources.

One of the things we conclude from the transformer sweeps is that the top three per-

forming models are Config-3, Config-4, and Config-6. Thus, the TransFuser HPO sweeps

produce models with IDs resembling the following format, Configs 3XX, 4XX, 6XX. The

performance results for the Config-3 models are shown in Tables 5.7 and 5.8, the per-

formance results for the Config-4 models are shown in Tables 5.9 and 5.10, and the per-

formance results for the Config-6 models are shown in Tables 5.11 and 5.12. For tables
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containing driving scores, we highlight the top three DS and RC scores in boldface text.

Also, for all tables containing both driving scores and infraction rates, we highlight the

models who obtained an average DS greater than the average DS (21.49) of the baseline

late fusion model in boldface text.

Table 5.7: Driving scores of Config-3.

Model Max DS DS RC IP
Config-311 22.21 18.64±3.57 60.71±16.34 0.45±0.17
Config-312 25.58 18.09±6.59 60.52±13.74 0.42±0.12
Config-313 27.65 24.00±3.80 68.69±5.64 0.46±0.12
Config-314 16.33 12.66±3.26 29.30±9.70 0.67±0.14
Config-315 11.08 5.54±7.84 20.43±28.89 0.75±0.35
Config-316 0.39 0.19±0.27 0.19±0.27 1
Config-317 4.75 5.20±0.63 7.29±2.92 0.83±0.08
Config-318 1.71 0.86±1.21 0.97±1.38 0.95±0.07
Config-319 2.53 2.38±0.21 8.78±6.94 0.56±0.33
Config-321 17.75 16.63±1.19 52.45±27.21 0.50±0.29
Config-322 27.30 20.76±7.04 64.46±17.71 0.46±0.22
Config-323 21.41 17.25±5.37 50.79±15.73 0.50±0.00
Config-324 11.38 9.67±1.51 21.29±4.50 0.76±0.04
Config-325 7.84 3.92±5.54 4.20±5.94 0.97±0.04
Config-326 5.20 3.82±1.95 9.04±8.93 0.81±0.19
Config-327 4.67 3.66±1.44 5.48±2.84 0.85±0.06
Config-328 1.54 1.31±0.33 3.27±2.44 0.91±0.13
Config-329 1.58 0.91±0.95 2.81±0.54 0.85±0.01

From Tables 5.7, 5.9, and 5.11, we notice a significant decrease in performance when

the learning rate is equal to or greater than 0.0003 (Config-XX4) since the DS ranges from

0.19 to 12.66 for Config-3, from 0 to 10.05 for Config-4, and from 0 to 14.80 for Config-

6. A similar trend is seen for RC as no model with these learning rates surpassed an RC

score of 36.98, falling below the worst performance of the transformer configurations tested

and presented in Table 5.3. In some cases, all driving capabilities were lost as a DS of 0

indicates that there was no movement whatsoever by the ego-vehicle. Again, here we don’t

analyze the IP score. Also, as described in previous examples, while a high IP score could

be an indication of safe driving, it can also be an indication of minimal driving, meaning

that until we separate the poorly performing models from the rest, it is difficult to analyze

performance based off of the IP. The same logic applies for the infraction rates seen on

Tables 5.8, 5.10, 5.12.
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Table 5.8: Infraction rates of Config-3.

Model PC VC LC RL SS
Config-311 0.052 0.289 0.022 0.865 0.093
Config-312 0.136 0.193 0.012 1.298 0.084
Config-313 0.054 0.229 0.019 0.902 0.076
Config-314 0.176 0.14 0.858 0.534 0.027
Config-315 0.184 0.146 0.005 0.461 0.064
Config-316 0 0 0 0 0
Config-317 0.024 0.6 1.455 0.566 0.014
Config-318 0.4 0 0.27 0.05 0
Config-319 0.061 3.316 1.599 0.539 0
Config-321 0.128 0.167 0 0.946 0.05
Config-322 0.081 0.221 0 0.901 0.07
Config-323 0.052 0.394 0.046 0.879 0.139
Config-324 0 0.183 0.223 0.525 0.006
Config-325 0 0 0 0.188 0
Config-326 0 0.722 1.5305 0.457 0
Config-327 0 0.1285 1.545 0.352 0
Config-328 0.1875 0.4285 0.02 0.277 0.099
Config-329 0.078 1.661 0.689 0.535 0

In order to simply the analysis of infractions and better understand how the tested

hyper-parameters affect driving performances of different TransFuser configurations, we

summarize the best performing TransFuser models in Table 5.13. This table consists of

models who either performed better than the late fusion baseline or whose DS or RC

score were amongst the top three for their respective transformer configuration. We also

highlight the top three values of each driving score in boldface text, including the maximum

DS values. Unlike previous tables, this one has excluded the poorly performing models,

making the analyzis of infractions more fair. The following discussions are with respect to

this table unless specified otherwise.

Here, it is clearer to see that models whose learning rates hit past 0.0003 are prone to

reduced driving capabilities as none of those models are included. Meanwhile, reducing the

originally set learning rate value of 0.0001 to 0.00005 lead to performance gains in all three

transformer configurations. This is seen in the max DS values obtained for each model

since the Config-XX2 models all surpass the Config-XX3 models in max DS values with

the exception of Config-312 and Config-313. Further evidence of this is that the best DS

average, 24.21, the best max DS, 29.56, and the two best RC scores, 73.97 and 75.05, were
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Table 5.9: Driving scores of Config-4.

Model Max DS DS RC IP
Config-411 27.76 21.27±6.08 69.56±7.58 0.42±0.13
Config-412 29.56 24.21±5.43 73.97±9.10 0.42±0.10
Config-413 22.71 21.55±1.53 66.86±5.11 0.41±0.04
Config-414 7.22 4.07±3.70 17.15±19.90 0.73±0.27
Config-415 0.74 0.37±0.52 0.52±0.74 0.98±0.03
Config-416 0 0 0 1
Config-417 3.86 1.93±2.73 2.40±3.39 0.91±0.13
Config-418 0 0 0 1
Config-419 3.17 2.47±0.99 21.64±17.97 0.28±0.15
Config-421 24.56 23.17±1.30 64.65±1.76 0.47±0.02
Config-422 26.22 21.82±3.91 59.68±9.16 0.48±0.03
Config-423 23.69 20.86±4.81 65.78±5.18 0.42±0.04
Config-424 13.49 10.05±3.05 19.64±3.05 0.74±0.15
Config-425 0.04 0.02±0.03 0.10±0.15 0.99±0.02
Config-426 5.85 3.09±3.90 4.80±6.31 0.94±0.09
Config-427 0.51 0.25±0.36 0.30±0.42 0.98±0.03
Config-428 0 0 0 1
Config-429 1.78 1.66±0.16 1.96±0.15 0.88±0.00

all obtained with a learning rate of 0.00005.

Despite the Config-XX1 models being included among the best performing models

for all transformer configurations, their average DS scores are all below the other top-

performing models of their respective transformer configurations. This suggests that a

minimum learning rate for decent performance is 0.00001 as smaller values could potentially

lead to more significant performance losses. However, this would require further testing to

confirm.

For the most part, the IP scores range from 0.41 to 0.54. The only exceptions are the

Config-622 models who obtained an IP score of 0.33. Once again, we notice a trade-off

between the distance traveled and the infractions committed as this model also has the

highest RC score of 75.05. However, the payoff of this trade-off is not very beneficial as

the average DS is the second lowest of the top-performing Config-6 models. This specific

trade-off stands out since all of the other Config-6 models follow a trend of sacrificing a

higher RC score for obtaining a higher IP score. This is seen because the majority of

the Config-6 RC scores are in the 50s while most of the Config-3 and Config-4 RC scores

lie in the 60s. Also, Config-6 models obtained the highest average IP scores and were
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Table 5.10: Infraction rates of Config-4.

Model PC VC LC RL SS
Config-411 0.047 0.139 0.002 0.998 0.075
Config-412 0.108 0.249 0.003 0.838 0.064
Config-413 0.088 0.288 0.05 1.05 0.076
Config-414 0.003 0.285 1.269 0.528 0.024
Config-415 0 0 0 0.304 0
Config-416 0 0 0 0 0
Config-417 0.278 0.565 0.848 0.094 0
Config-418 0 0 0 0 0
Config-419 0.107 4.172 3.985 0.691 0.11
Config-421 0.054 0.217 0.014 0.764 0.056
Config-422 0.074 0.414 0.04 0.964 0.098
Config-423 0.065 0.374 0.022 0.831 0.097
Config-424 0.017 0.261 1.463 0.431 0.012
Config-425 0.109 0 0 0.054 0
Config-426 0 0.067 0 0.157 0
Config-427 0.101 0 0 0.101 0
Config-428 0 0 0 0 0
Config-429 0 0.723 2.658 0 0

the only transformer configuration to obtain average IP scores above 0.50, meaning that

the combination of models with eight attention layers and 16 attention heads cause the

system to prioritize safety slightly more than the other transformer configurations. Even

though this difference is slight, the standard deviations that accompany these models with

IP scores above 0.50 indicate that the distance-safety trade-off leans towards prioritizing

safety more than RC.

When analyzing the infraction metrics corresponding to the best performing TransFuser

models, we come to see that the rate of each infraction committed by the three transformer

configurations are relatively similar. By averaging the five infraction rates of the best per-

forming TransFuser models, we obtain the infraction rate averages and standard deviations

presented in Table 5.14. Here, we get a general idea of how well the top-performing models

handle the five penalty infractions considered for this analysis. Organized in descending or-

der, the most commonly occurring infractions over any TransFuser model are RL, VC, SS,

PC, and LC. The fact that the same order holds true for any TransFuser model, and that

the values are relatively within the same range, means that the hyper-parameters tuned in

this work did not significantly affect the rate at which the main penalty infractions occur.
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Table 5.11: Driving scores of Config-6.

Model Max DS DS RC IP
Config-611 24.12 19.21±4.47 58.68±8.70 0.44±0.12
Config-612 24.75 21.09±3.68 56.25±12.28 0.51±0.16
Config-613 22.65 21.77±1.08 54.18±24.34 0.54±0.20
Config-614 12.61 9.89±3.84 36.98±28.53 0.60±0.28
Config-615 7.53 3.77±5.32 16.05±22.70 0.75±0.36
Config-616 2.73 1.36±1.93 1.62±2.29 0.97±0.05
Config-617 0.11 0.05±0.08 0.06±0.09 0.99±0.01
Config-618 0 0 0 1
Config-619 3.69 2.91±1.10 8.31±8.47 0.64±0.44
Config-621 29.22 22.53±5.80 57.02±6.12 0.53±0.13
Config-622 26.89 20.90±5.51 75.05±9.85 0.33±0.10
Config-623 24.35 21.55±3.31 64.17±7.47 0.45±0.07
Config-624 17.78 14.80±3.44 35.52±3.29 0.65±0.07
Config-625 0 0 0 1
Config-626 0 0 0 1
Config-627 8.43 6.34±2.96 9.71±6.18 0.81±0.14
Config-628 2.48 1.95±0.75 2.78±0.78 0.92±0.08
Config-629 2.23 2.04±0.27 3.44±2.06 0.83±0.17

5.4 Sweep Metrics

As of now we have focused solely on analyzing the driving performances resulting from the

applied TransFuser HPO sweeps. In this section, we present charts and a table containing

metrics relevant to the actual sweep training sessions performed on an HPC system. This

data was recollected with the WandB tool and includes the following metrics: training

time, training loss, validation loss, best validation epoch, best validation loss, and GPU

usage. The information in this section is taken directly from the WandB dashboard as we

look at the Config-3, Config-4, and Config-6 training sessions.

5.4.1 Training and Validation Losses

In Figure 5.1, we present a parallel coordinates chart containing information regarding

how the optimization hyper-parameters and the training loss relate to the best validation

loss obtained during training for a Config-4 model. Here, the values in the learning rate

and training loss axes are displayed in logarithmic scale for visual clarity, the hot (yellow)

lines represent lower validation losses, and the cold (blue) lines represent higher validation
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Table 5.12: Infraction rates of Config-6.

Model PC VC LC RL SS
Config-611 0.038 0.237 0.023 1.089 0.138
Config-612 0.064 0.223 0.02 0.853 0.035
Config-613 0.119 0.228 0.007 1.002 0.055
Config-614 0.025 0.271 0.949 0.738 0.062
Config-615 0.012 0.2 1.147 0.387 0.006
Config-616 0 0.035 0.283 0.089 0
Config-617 0 0 0 0 0
Config-618 0 0 0 0 0
Config-619 0.028 1.546 1.195 0.346 0.051
Config-621 0.043 0.16 0.032 0.769 0.087
Config-622 0.097 0.325 0.007 1.307 0.089
Config-623 0.059 0.438 0.079 0.719 0.088
Config-624 0.064 0.234 0.176 0.58 0.038
Config-625 0 0 0 0 0
Config-626 0 0 0 0 0
Config-627 0 0.579 0.333 0.924 0
Config-628 0 0.076 1.413 0.076 0
Config-629 0 1.289 1.123 0.487 0

losses. We have also excluded the outlier values whose best validation losses were on the

other side of the heat-map spectrum as they make analyzing the chart more difficult.

First, we notice that the batch size has no noticeable effect on the resulting model

performances as both values tested lead to similar results. On the other hand, a cluster

of hot lines can be seen gathering at the center of the learning rate axis. This confirms

the existence of a sweep spot where values outside of that range lead to significantly worse

performances. We also see that training losses generally tend to zero as the learning rate

decreases within its sweep spot. Complementary to this, we see a general trend in Figure

5.2 as most models with a decent learning rate tend to zero while others converge to a

sub-optimal solution.

In the case of the validation losses checked during training, they typically range from

about 0.27 to 0.45. Unlike Figure 5.2 that excludes extreme training losses, Figure 5.3

shows how models trained with extreme learning rates jump to values at around 1.5 before

reaching epoch 40. Also, in Figure 5.4, we compare multiple instances of transformer con-

figurations with instances of the waypoint-prediction baseline models. Here, the different in

loss is much more discernible since the three baseline models lie above all transformer-based
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Table 5.13: Summary of the best performing models from the TransFuser HPO sweeps.

Model Max DS DS RC IP
Config-311 22.21 18.64±3.57 60.71±16.34 0.45±0.17
Config-313 27.65 24.00±3.80 68.69±5.64 0.46±0.12
Config-322 27.3 20.76±7.04 64.46±17.71 0.46±0.22
Config-411 27.76 21.27±6.08 69.56±7.58 0.42±0.13
Config-412 29.56 24.21±5.43 73.97±9.10 0.42±0.10
Config-413 22.71 21.55±1.53 66.86±5.11 0.41±0.04
Config-421 24.56 23.17±1.30 64.65±1.76 0.47±0.02
Config-422 26.22 21.82±3.91 59.68±9.16 0.48±0.03
Config-611 24.12 19.21±4.47 58.68±8.70 0.44±0.12
Config-612 24.75 21.09±3.68 56.25±12.28 0.51±0.16
Config-613 22.65 21.77±1.08 54.18±24.34 0.54±0.20
Config-621 29.22 22.53±5.80 57.02±6.12 0.53±0.13
Config-622 26.89 20.90±5.51 75.05±9.85 0.33±0.10
Config-623 24.35 21.55±3.31 64.17±7.47 0.45±0.07

Table 5.14: Average infraction rates for the best performing TransFuser models.

Config
IDs PC VC LC RL SS

3 0.062±0.016 0.243±0.037 0.014±0.012 0.889±0.021 0.080±0.012
4 0.074±0.025 0.261±0.101 0.022±0.022 0.923±0.118 0.074±0.016
6 0.070±0.032 0.269±0.098 0.028±0.027 0.957±0.221 0.082±0.035

3, 4, 6 0.070±0.025 0.261±0.085 0.023±0.022 0.930±0.155 0.079±0.024

models.

5.4.2 HPC Usage

The WandB platform provides access to various system metrics including training times,

GPU usage, power usage, time spent accessing memory, among others. However, the

problem with visualizing most of these metrics when applied to an HPC system is that, as

regular users, we don’t have complete isolation of HPC resources. This means that when

tracking HPC system metrics with WandB, the recorded values represent the usage of all

users, not just a single one. For example, in Figure 5.5, we filter the chart information

to show the average usage percentage of only the three GPUs that were used for carrying

out a set of three HPO sweeps with the hyper-parameters mentioned in Table 4.2. In

this case, GPU 0 was used for performing an HPO sweep on the Config-6 model, GPU

1 for performing an HPO sweep on the Config-4 model, and GPU 3 for performing an
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Figure 5.1: Config-4 Parallel Coordinates Chart.

Figure 5.2: Training Losses vs. Epochs in TransFuser HPO Experiment.

HPO sweep on the Config-3 model. Since at the time of running sweeps the least occupied

GPUs were chosen, we can trust that Figure 5.5 more accurately depicts the overall GPU

computing power used for every sweep performed to be at about 70% to 80%.

Complementary to the GPU usage is the amount of time that each GPU dedicated

for training. For this, we state the average training times in hours and minutes of the

baseline and transformer configurations in Table 5.15, and the average training times of

all TransFuser configurations in Table 5.16. From Table 5.15, we see that training most of

the baseline models required less than half the time than training any of the TransFuser

models. The only exception to this is the geometric fusion model that takes about twice
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Figure 5.3: Validation Losses vs Epochs in TransFuser HPO Experiment.

Figure 5.4: Validation Losses vs Epochs in Baseline and Transformer HPO Experiments.
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Figure 5.5: GPU Usage Percentage vs. Training Hours.

as long to train. Despite geometric fusion being the overall second best approach studied

in this work in terms of performance, this shows a big flaw in this approach as this method

requires more computation time for obtaining performance results equal to or barely below

the TransFuser models.

Another notable pattern in Table 5.15 is that increasing the number of layers also

increases the training time while increasing the number of attention heads does not have

the same effect. From this, we can deduct that training models with four, eight, and 16

attention layers, requires approximately 19.6 hours, 22.1 hours, and 28.2 hours, respectively.

This outcome is expected because additional attention heads can be computed in parallel

while attention layers can not, and thus, would require additional training time.

In the training times shown in Table 5.16, we notice a pattern additional to the ones

resulting from modifying attention hyper-parameters. The performance metric results have

already shown no indication of a causal relationship between the batch size and driving

performance. However, when it comes to training times, the batch size is the hyper-

parameter that has the greatest impact. Even though halving the batch size makes each

training iteration faster, it also doubles the total number training iterations needed, making

the overall training time longer.
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Table 5.15: Average training times for baseline and transformer sweep models.

Models Average Training Times
CILRS 4h 5m
AIM 6h 42m
Late Fusion 7h 10m
Geometric Fusion 54h 14m
Config-1 19h 41m
Config-2 19h 50m
Config-3 19h 21m
Config-4 22h 25m
Config-5 22h 47m
Config-6 20h 59m
Config-7 26h 19m
Config-8 28h 43m
Config-9 29h 31m

Table 5.16: Average training times for TransFuser configurations.

Model IDs Config-3XX Config-4XX Config-6XX
Config-X11 14h 9m 17h 12m 19h 20m
Config-X12 14h 56m 17h 10m 19h 30m
Config-X13 19h 21m 22h 25m 20h 59m
Config-X14 15h 28m 18h 29m 20h
Config-X15 18h 19h 57m 19h 44m
Config-X16 17h 27m 18h 15m 18h 58m
Config-X17 16h 17m 18h 10m 20h 27m
Config-X18 19h 8m 19h 6m 20h 15m
Config-X19 15h 49m 20h 43m 24h 11m
Config-X21 22h 15m 29h 44m 27h 43m
Config-X22 22h 42m 29h 44m 30h 13m
Config-X23 21h 15m 26h 45m 26h 43m
Config-X24 23h 52m 29h 10m 30h 11m
Config-X25 26h 21m 30h 24m 32h 31m
Config-X26 25h 48m 28h 31m 31h 1m
Config-X27 24h 6m 27h 24m 27h 10m
Config-X28 24h 6m 28h 54m 26h 12m
Config-X29 24h 4m 28h 2m 25h 54m
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Chapter 6

Conclusions

The use of attention-based models applied to AD tasks is a relatively new field of research

which requires further investigation in order to evaluate, optimize and evolve existing

models and extrapolate the full potential of attention mechanisms. These types of models

have shown significant improvements in the field of AD when compared to other state-

of-the-art models. TransFuser is one of these models which makes use of transformer

architectures to focus on fusing multiple sensor modalities in order to learn a driving

policy with a greater global context which is often needed to handle challenging traffic

scenarios.

This work implements HPO through grid-search sweeps in order to test various con-

figurations of the TransFuser model and compare them to each other and to four baseline

models. For training, we used an open-source dataset along with the CARLA simula-

tion framework and evaluated the impact of the two hyper-parameters pertaining to the

transformers and the two pertaining to the optimization process, namely the number of

attention layers, attention heads, the learning rate, and the batch size.

After conducting three HPO experiments, all of which require the use of HPC, we

analyze the performance of multiple transformer and TransFuser variations on the CARLA

Leaderboard benchmark and conclude four main things regarding the hyper-parameters

used to optimize this AD model. First, regarding the attention hyper-parameters, the

optimal number of attention layers appears to be in between four and 16, more likely closer

to eight, since the performances of models trained with eight layers have resulted in the

overall best performance while those trained with 16 layers tend to under-perform. This,
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however, is true when considering the main performance metric (DS) of the Leaderboard

benchmark. When considering other metrics such as RC, four attention layers led to higher

scores at the costing of getting more points deducted from the IP score. Meanwhile, even

though the number of attention heads has a less overall affect on driving performance,

general averages of performance metrics show that more attention heads can lead to some

performance gains independently of the number of attention layers. This is beneficial

when considering that attention heads are used in a parallelized manner without adding

significant time to the training process.

Second, regarding the optimization hyper-parameters, the optimal learning rate value

tested in this work is 0.00005 as most of the top-performing results are centered around

this value. However, values within the range of 0.00001 to 0.0001 also appear to work

approximately the same in terms of driving performance. Also, while the batch size does

not affect driving performances, it does significantly affect the time needed for training as

smaller batch sizes involve more iterations to compute. Considering this, the best thing

to do regarding this hyper-parameter is to use the maximum batch size that can fit on a

single GPU so as to take the most advantage of the available hardware.

From our first baseline experiment, we confirmed that TransFuser is a state-of-the-

art improvement on other AD models. From the second experiment focused on performing

HPO on the system model design, we determined that the best attention hyper-parameters

taken from {4,8,16} are those that we labeled as Config-3, Config-4, and Config-6. Of these

three model configurations, we also found that the Config-6 model prioritizes safety more

than the other top-performing models. Finally, from the third experiment focused on the

optimization of non-transformer hyper-parameters, we can say that while these parameters

have a less affect on driving performance, they should still be chosen with caution so as to

make the most of the available hardware and avoid needless performance losses.

After completing our experimentation process of training and evaluating AD mod-

els through HPO sweeps, there are two notable models that stand out above the rest.

Even though no DS averages were higher than the ones obtained during for the original

TransFuser model in the initial baseline experiment, both the Config-621 model and the

Config-412 models obtained higher maximum DS values of 29.22 and 29.56, surpassing the

original maximum value of 29.16. With respect to the average RC scores, both the Config-
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412 and the Config-622 managed to obtain higher averages of 73.97 and 75.05, surpassing

the original value of 70.08. With respect to the average IP scores, seven of our models

managed to obtain higher IP values than the original value of 0.45 while still obtaining

sufficient DS points to be on a par with the other top-performing models summarized in

this work. Of these seven, the three that stand out are the Config-612, Config-621, and

Config-613 models who obtained average IP values of 0.51, 0.53, and 0.54.

6.1 Future Works

This work provides an analysis on the resulting performances caused by variating the

number of attention layers and attention heads within a transformer architecture. However,

there a number of other hyper-parameters and system components that require further

investigation and tuning in order to determine their effect on AD performance and optimize

state-of-the-art models such as TransFuser. With respect to the self-attention module

implemented by TransFuser, these hyper-parameters could include the attention, residual

and embedding dropout, the scale resolution at which fusion occurs, and the size of the

embedding layer.

Regarding the other model components of TransFuser, past studies have shown state-

of-the-art improvements by modifying the expert driving policy and the PID controller.

Therefore, one approach for future works to take is to combine HPO with modifications

made to the driving dataset and to the controller output. The main options with respect

to the driving policy are to generate driving data from zero through simulation, using other

driving datasets for IL, and improving upon the quantity or quality of existing datasets

This combined implementing could result in a more optimized version of the TransFuser

AD model and, consequently, lead to an overall improved driving performance.

At the simulation level, it would also be interesting to implement a similar work on the

latest version of the CARLA simulator or on other driving simulators. Recent versions of

CARLA have improved integration with tools such as ROS and SUMO that can be used to

go beyond the aspect of autonomous learning and delve into the area of robotics or urban

simulation. In doing so, it would also be interesting to implement the TransFuser model

to these different tools and see how it adapts.
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[47] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer vision matter for action?”

Science Robotics, 2019.

[48] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Dug-

gins, T. Galatali, C. Geyer et al., “Autonomous driving in urban environments: Boss

and the urban challenge,” Journal of field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[49] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,

D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous driving: Systems and

algorithms,” in 2011 IEEE intelligent vehicles symposium (IV). IEEE, 2011, pp.

163–168.

[50] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for

direct perception in autonomous driving,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 2722–2730.

[51] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driv-

ing: Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58 443–

58 469, 2020.

[52] I. Sobh, L. Amin, S. Abdelkarim, K. Elmadawy, M. Saeed, O. Abdeltawab, M. Gamal,

and A. El Sallab, “End-to-end multi-modal sensors fusion system for urban automated

driving,” Advances in neural information processing systems workshops, 2018.

[53] J. Heylen, S. Iven, B. De Brabandere, J. Oramas, L. Van Gool, and T. Tuytelaars,

“From pixels to actions: Learning to drive a car with deep neural networks,” in 2018

IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018,

pp. 606–615.

[54] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-end model-free reinforcement

learning for urban driving using implicit affordances,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 2020, pp. 7153–7162.

Information Technology Engineer 118 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[55] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
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