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Abstract

In the 21st century, mental health has become a significant concern worldwide due to the
modern lifestyle, environment, and global events. It has given rise to people’s awareness
about emotions that can evoke not only psychological problems but also physiological
diseases, such as stress. As a biological response to external agents that change the body’s
stability, stress is a problem that had not been addressed in the last few years, and even
nowadays in communities without easy access to health care systems. However, it has
been proved that long periods of stress exposition can lead to severe diseases regarding
di�erent human systems and mental health. Therefore, detecting and predicting stress is
vital to alert people and take actions to deal with it and avoid related diseases. Previous
research e�orts have focused on exploiting the sympathetic nervous system information in
response to stress, analyzing physiological signals that can serve as biomarkers to detect
stress in daily life activities. Artificial intelligence and its applications in the medical area
have supplied several advances for classifying physiological signals for di�erent purposes,
including stress detection.

This project aims to develop a monitoring protocol that can provide daily healthcare by
detecting stress responses using physiological signals and machine learning techniques,
considering the possible use of this system in real-life ambulatory conditions. This work
focuses on two objectives:

First, we aim to identify the most suitable physiological signals for stress recognition and
carry out a careful preprocessing method that allows the obtention of features that contain
vital information concerning the presence of stress in an interval of time. For this stage,
electrocardiogram signals are processed, and features are obtained based on the peaks
detection. Additionally, galvanic skin response signals are used to determine the body’s
stress response and label the data. Subsequently, feature selection techniques are performed
to eliminate information that does not a�ect the following steps positively.

Second, we aim to perform supervised classification using machine learning algorithms to
detect stress successfully. Once the data is thoroughly processed and normalized, di�erent
classifiers are tested to analyze their performance in detecting stress using the electrocar-
diogram signals. The results of the models are measured using metrics such as accuracy,
precision, recall, and F1 score. Several experiments are performed by varying hyperparam-
eters and datasets to detect the most accurate model for this specific task.

It is concluded that the signals selected, the preprocessing methods, feature extraction,
and feature selection techniques chosen establish an excellent protocol for the obtention of
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a dataset that feeds supervised machine learning classifiers. Moreover, after analyzing and
comparing the algorithms’ performance, it was concluded that the random forest classifier
could serve as a robust machine learning model for the detection of stress using electro-
cardiogram signals that can be monitored in real-life ambulant environments. This work
provides a baseline for personalized stress detection, precision medicine, and personalized
healthcare using non-complex systems for communities with no easy access to a health care
system.

Keywords: Stress, Electrocardiogram, Classification, Machine Learning, Ran-
dom Forest, Support Vector Machine, Artificial Neural Network, Decision Tree,
K-Nearest Neighbor.
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Resumen

En el siglo 21, la salud mental se ha convertido en una preocupación significante mundial-
mente dado el estilo de vida moderno, el medio ambiente, y los eventos globales. Esto
ha provocado conciencia en las personas sobre las emociones que pueden provocar no so-
lamente problemas psicológicos, si no también enfermedades fisiológicas, como el estrés.
El estrés, como una respuesta biológica a agentes externos que generan un cambio en la
estabilidad del cuerpo, es un problema que no hab́ıa sido considerado algunos años atrás,
e incluso hoy en d́ıa en comunidades donde el acceso a los sistemas de salud no es fácil.
Sin embargo, ha sido probado que periodos largos de exposición a estrés pueden conducir a
severas enfermedades que conciernen algunos sistemas del cuerpo y la salud mental. Es por
esto que detectar y predecir el estrés es de vital importancia para alertar a las personas,
tomar acciones, tratar este problema y evitar enfermedades relacionadas. Los estudios
se han enfocado en aprovechar la respuesta del sistema nervioso simpatético mediante
el análisis de señales fisiológicas que puedan servir como biomarcadores para detectar el
estrés en actividades diarias. La inteligencia artificial y sus aplicaciones en el área med-
ica han provéıdo varias ventajas para la clasificación de señales fisiológicas con diferentes
propósitos, incluyendo la detección de estrés.

Este proyecto busca desarrollar un protocolo de monitoreo que provea cuidado de la salud
diario mediante la detección de las respuestas al estrés usando señales fisiológicas y técnicas
de aprendizaje automático, considerando el posible uso de este sistema en condiciones
ambulatorias de la vida real. Este trabajo se enfoca en dos objetivos:

Primero, se aspira identificar las señales fisiológicas mas aptas para el reconocimiento de
estrés y llevar a cabo un cuidadoso método de pre procesamiento, que permita la obtención
de caracteŕısticas que contengan información vital respecto a la presencia de estrés en un
intervalo de tiempo. Para esta etapa se procesan señales electrocardiográficas y se obtienen
las caracteŕısticas en base a la detección de picos de las señales. Adicionalmente, las señales
de respuesta galvánica de la piel son usadas para determinar la respuesta del cuerpo al
estrés, y con esto etiquetar los datos. Posterior a esto, se ejecutan técnicas de selección de
caracteŕısticas para eliminar la información que no afecta de manera positiva los siguientes
pasos.

Segundo, se busca realizar clasificación supervisada usando algoritmos de aprendizaje au-
tomático para detectar exitosamente el estrés. Una vez que los datos son minuciosa-
mente procesados y normalizados, se prueban diferentes clasificadores para analizar su
rendimiento en la detección de estrés usando las señales electrocardiográficas. Los resul-
tados de los modelos son medidos usando métricas como la exactitud, precisión, recuerdo,
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y el puntaje F1. Varios experimentos son llevados a cabo con variaciones en los hiper-
parámetros y conjunto de datos, para detectar el modelo más exacto en esta tarea en
espećıfico.

Se concluye que las señales elegidas, el método de pre procesamiento, las técnicas de
extracción de caracteŕısticas y selección de caracteŕısticas escogidas establecen un exce-
lente protocolo para la obtención de un conjunto de datos que puede satisfacer un clasifi-
cador supervisado de aprendizaje automático. Además, después de analizar y comparar el
rendimiento de los algoritmos, se concluyó que el clasificador de nombre bosque aleatorio
puede funcionar como un modelo de aprendizaje automático que detecte estrés mediante el
uso de señales electrocardiográficas, que puedan ser monitoreadas en ambientes ambulantes
de vida real. Este trabajo provee una base para la detección personalizada de estrés, para
la medicina de precisión y para el cuidado de la salud personalizado usando sistemas no
complejos para comunidades que no tienen acceso fácil al sistema de salud.

Palabras Clave: Estrés, Electrocardiograma, Clasificación, Aprendizaje Au-
tomático, Bosque Aleatorio, Máquina de Vector de Soport, Red Neuronal Ar-
tificial, Árbol de Decisión, K-Vecino más Próximo.
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Nomenclature

ACTH Adreno-Corticotropic Hormone

ADC Analog-to-Digital Conversion

AI Artificial Intelligence

ANN Artificial Neural Network

ANS Autonomic Nervous System

AV Atrio Ventricular

AWGN Additive White Gaussian Noise

BN Bayesian Network

BP Blood Pressure

bpm beats per minute

BW Baseline Wander

CNN Convolutional Neural Network

CV Cross-Validation

CV D Cardiovascular Disease

DAC Digital-to-Analog Conversion

DASS Depression, Anxiety and Stress Scale questionnaire

DL Deep Learning

DNN Deep Neural Network

DSP Digital Signal Processing
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DT Decision Tree

DWT Discrete Wavelet Transform

E ≠ nose Electrical Nose System

ECG Electrocardiogram

EDA Electrodermal Activity

EDL Electrodermal Level

EDR Electrodermal Response

EEG Electroencephalogram

EMG Electromyogram

FCNN Fully Connected Neural Network

FFT Fast Fourier Transform

FIR Finite Impulse Response

FN False Negative

FP False Positive

GAS General Adaptation Syndrome

GSR Galvanic Skin Response

HPA Hypothalamic-Pituitary-Adrenocortical

HRV Heart Rate Variation

IBI Inter-Beat Interval

IIR Infinite Impulse Response

KNN K-Nearest Neighbor

LA Left Atrium

LDA Linear Discriminant Analysis

LMIC Low-and-Middle-Income Country

LR Logistic Regression
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LV Left Ventricle

MA Muscle Artifact

ML Machine Learning

MLP Multlayer Perceptron

NB Naive Bayes

NN Normal to Normal

OSI Occupational Stress Inventory

PC Pearson’s Correlation

PCG Phonocardiogram

PLI Powerline Interference

PPG Photoplethysmogram

PPV Positive Predictive Value

PSD Power Spectral Density

PSS Perceived Stress Scale

RA Right Atrium

RESP Respiration

RF Random Forest

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

RV Right Ventricle

SA Sino Atrial

SAM Sympathetic-Adrenimedullary

SCL Skin Conductance Level

SCR Skin Conductance Response

SGD Stochastic Decent Gradient
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SMO Sequential Minimal Optimization

SNS Sympathetic Nervous System

SP Skin Potential

SPR Skin Potential Response

STAI State-Trait Anxiety Inventory

SV M Support Vector Machine

T Body Temperature

TN True Negative

TP True Positive

TSST Trier Social Stress Test

ZSN Z-Score Normalization
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Chapter 1

Introduction

1.1 Problem statement
In the modern world, due to the current lifestyle, more people are su�ering from stress,
often unaware. Furthermore, since the COVID19 pandemic started, stress level assessments
have increased for millennials, adults, and older adults, while health, money, and decision-
making are the main stressors [1]. Stress is a term mainly associated with high levels of
psychological tension and is often faced over an extended period causing adverse e�ects
on heart rate (HR) and blood pressure (BP) that consequently harm the body and have
serious long-term consequences. If stress can be detected early, people can be warned and
take appropriate policies to cope with it. Some years ago, many people believed stress had
little or no impact on physical or mental health [2]. Nonetheless, stress has proven to be a
precursor of major illnesses such as depression, obesity, and even cardiovascular diseases,
known for being the first cause of morbidity and mortality in America and Europe [3].

On the other side, the relationship between poverty and health care has been addressed.
Stress is a global health problem, especially in developing countries [4]. Health services
are less accessible in low- and middle-income countries (LMICs), such as many countries
in Latin America, Ecuador not being an exception as a middle-income country [5]. This
problem has been tried to approach by many researchers, governments, and commercial
organizations through health equity funds and regulation of health services. However, the
challenge remains since these approaches focus directly on treating diagnosed fatal and
chronic diseases that can increase mortality levels, such as diabetes or hypertension, but
not on preventing by early detection of ’minor’ problems that can lead to these diseases,
such as stress.

Therefore, people have recognized that stress, especially long-term exposure, negatively
impacts health; hence, interest has increased in managing it before it becomes chronic
by accurately recognizing when and where it occurs. Many detection systems have been
developed based on questionnaires, tests, and physiological measures such as hormone
levels or biological signals. Biosignals have taken the lead among the most used stress
detection methodologies. The focus has been placed on studying di�erent physiological
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signals to classify stress levels in people. Many systems proposed in the literature con-
tain a hardware-based system that records relevant features by multi-physiological sensors
and a software-based architecture that predicts a person’s current stress level. Sensors to
measure physiological signals for stress detection are based on electrocardiogram (ECG),
electroencephalogram (EEG), and electromyogram (EMG) signals; still, the medical de-
vices and biosensors used for these purposes are relatively expensive and not easy to access
in some developing countries. Developing multiparameter hardware for stress detection
requires more expenses and time, while physically, a higher number of sensors will result
in more discomfort for the subject provoking bad contact between sensors, non-accurate
measures, or stress induction during experiments. The software becomes computationally
intensive with more parameters to process, noises to eliminate, and details to take into
account, resulting in non-accurate measures.

For stress classification, novel computational techniques, such as Artificial Intelligence, are
being studied. Classification technologies require accurate data, labels, and ground-truth
information as the primary source for the correct stress classification and to avoid false
diagnoses in people who do not su�er stress or for people who su�er it and need to be
treated. The experimental scenario is not the same as an actual situation, so assessing
stress in real-life situations can be challenging, especially in developing countries where
technology and experts can be limited. For this reason, it is indispensable to research and
develop accurate systems using the appropriate tools that can provide reliable data for
detecting and classifying stress in a real-life scenario.

1.2 Contribution
The present work aims to find an optimal set of techniques and methods of medical signal
preprocessing, extraction, and recognition to classify stress using electrocardiograph data.
The process involves using ECG signals for proper cleaning by signal filtration methods,
extracting HR data from the signals, and its time and frequency domain features. Fea-
tures obtained are filtered using features selection techniques to select relevant features
that provide relevant information related to stress and do not compromise the following
classification step. The final stage uses di�erent machine learning techniques for binary
stress classification. All steps performed are based on the literature and experimental re-
sults and compared to find the best sequence of techniques that provide accurate detection.
Based on the literature, this work is done under the hypothesis that physiological signals
provide reliable biomarkers for stress detection.

1.3 Objectives

1.3.1 General Objective
Develop a method to diagnose psychological or physical stress using ECG signals that serve
as input to a machine learning algorithm that predicts if the subject is or is not under stress
to avoid chronic stress episodes and the diseases that follow it.
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1.3.2 Specific Objectives
• Process ECG signals using filters that eliminate their noises and enable the proper

recognition of peaks indispensable for the obtention of HR data.

• Extract features from the HR processed data using time and frequency domain in-
formation.

• Carry out feature selection process to remove data correlated or feature with unpre-
dictive power

• Use galvanic skin response (GSR) signals to label the data as stress or no stress and
serve as a dataset to enable supervised machine learning classification.

• Perform binary supervised classification using di�erent ML models by changing fea-
tures and tuning to select the most accurate classifier with its optimal hyperparam-
eters that can detect the presence of stress in subjects.

1.4 Chapter-by-Chapter Overview
This undergraduate thesis is structured as explained below:

Chapter 2 presents the definition of stress from its beginnings and how it evolved over
the years. It explains this stimulus’s psychological and physiological e�ects on some
human systems. The human body’s response to stress is detailed, and the diseases
or pathologies resulting from a person being exposed to prolonged stress. The con-
ventional methods used to detect stress are briefly described, including examples.
Nowadays, physiological stress indicators used to detect stress, such as physiologi-
cal signals, are exposed, explaining their relationship to stress and their extraction
methods. Further, it introduces di�erent supervised machine learning techniques and
their advantages and disadvantages for this classification task.

Chapter 3 exhibits the current information on stress and its detection during the last
five years. It exposes the existing research regarding the physiological signals used
for stress analysis. The signal processing techniques used to filter ECG signals are
investigated, considering the di�erent noises they can have. Feature extraction meth-
ods for detecting the peaks and intervals essential for the HRV analysis are exhibited
based on past works. Finally, a literature review of the latest stress detection systems
is tabulated, evidencing the di�erent ML models employed, the type of data used as
input, the aim of the study, and the metrics obtained in the results of each work.

Chapter 4 explains the programming language, libraries, and other software tools used
to develop this work. It explains each step of the process for the classification of
stress. The physiological data, signal preprocessing method, feature extraction, fea-
ture selection techniques, and machine learning classification models are detailed with
a strong argumentation of why each process is selected for this stress classification
task. Moreover, it introduces the stress detection models proposed based on the lit-
erature and how these models’ performances are measured using di�erent metrics to
compare and determine the most suitable one.
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Chapter 5 presents the results of each methodology stage described in Chapter 4. It
starts by illustrating the ECG signals to notice the filters’ successful e�ect on the
signals. The features extracted from the signals are listed, and the dataset obtained
from them and the labels acquired from the GSR signals. The set of features selected
with each feature selection technique is displayed. Each classifier tested in this study
is exposed, detailing their ideal hyperparameters after tuning and explaining how the
parameters a�ect each model. The results obtained by each ML classifier are listed
in terms of accuracy, recall, precision, and F1 score. The highest scores obtained
from each model are highlighted and compared to select the one that outperforms
the others. Techniques variations show di�erent experiment results listed.

Chapter 6 analyzes the results obtained and exposed in 5. Each step of the methodology
performed for the stress classification is discussed and compared to previous works
to find similarities, di�erences, and contrast results. Machine learning classifiers are
deeply analyzed, and their performances are compared based on the metrics and
state-of-the-art works, datasets, methodologies, and results.

Chapter 7 presents the conclusions of this thesis work and proposes relevant future work.
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Chapter 2

Theoretical Framework

2.1 Stress Definition
Hans Selye, M.D., Ph.D., D.Sc., F.R.S., often called the “Einstein of the Medical Research,”
authored the short landmark letter published in Nature over 85 years ago about the general
adaptation syndrome (GAS) or as we know it nowadays: biologic stress [6]. The scientific
publication describes his experiments in rats exposed to severe stressors, resulting in the
most stereotypical manifestations of the ‘general alarm reaction of the organism’. Although
the experiments were proven in animal models, he got this idea by observing sick patients
as a medical student. He noticed that besides being sick because of an organ malfunction,
there was a “common look” in all of the patients; they all had “non-specific” common
symptoms such as loss of appetite, decreased muscular strength, elevated BP, and a loss
of ambition [7]. Therefore, stress was first defined as “the non-specific neuroendocrine
response of the body”. However, since almost all other organ systems are involved in
stress, especially cardiovascular, pulmonary and renal systems, the ‘neuroendocrine’ part
was later removed. However, there was always an emphasis on non-specificity as the main
characteristic of these agents that trigger the stress response.

Many years before, in 1676, stress was already defined in physics the Hooke’s law which
described the e�ect of external stresses, or loads, that produced various degrees of “strain,”
or distortion, on di�erent materials. Therefore, confusion began about whether stress is
referred to as a “stimulus” in physics or a “response,” as mentioned by Selye. Finally, the
term stress was used to denote a response; in fact, the stimuli that engender the stress
response was named ‘stressors’ and can be physical, chemical, or psychologic in nature
[8]. These stressors can come in di�erent manners, from a physical insult such as trauma
or injury, or physical exertion, when the body has to operate beyond its capacity, to
other physical stressors like noise, overcrowding, excessive heat or cold, and psychological
experiences as time-pressured tasks, interpersonal conflict, unexpected events, frustration,
isolation, and traumatic life events [9]. However, they di�er in the extent to which they can
be controlled. For example, people have been shown to feel less pain and anxiety during
dentistry procedures when they are told they have the control to stop it whenever they
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provide a characteristically signal, a phenomenon known as cognitive control [10].

This Stress concept was evolving over the years, and it took almost four decades to recognize
that based on each subject’s perception and emotional reaction, not all stress reactions are
equal; there was a distinction between “positive” and “negative” stress [11]. Stress can
often be defined as a ‘threat’ to homeostasis, which is the stability of some physiological
systems that maintain life, such as pH, body temperature (T), glucose levels, and oxygen
tension essential for life. The term “stress” is full of ambiguities; it is used to refer to
an adverse event that causes a response (distress) or to refer to a “good” challenge that
leads to feeling exhilaration. However, considering the organism’s homeostasis, stress can
describe threatening events that elicit behavioral and physiological responses as part of
allostasis, which refers to the process that supports homeostasis by achieving stability
through change [12]. In the same way, it has been defined based on stressors, such as
psychological or physiological. Psychological stress is a reaction to an aversive stimulus in
the external environment, while physiological stress has been defined as the disturbance
of an individual’s internal milieu, leading to the activation of regulatory mechanisms that
restore homeostasis [13].

2.2 Physiological Stress Response
A stress response is a coordinated pattern of changes formed by natural selection to allow
organisms to face specific situations that can cause damage and require action or defense.
Many years before Selye, Walter Cannon highlighted changes in fight or flight situations
that are useful for the body [14]. The changes included increased HR to speed circulation,
increased rate and depth of breathing to speed gas exchange, sweating to cool the body
and make it slippery, increased glucose synthesis to provide energy, shunting of blood from
gut and skin to muscles, increased muscle tension to increase strength, and increased blood
clotting in preparation for possible tissue damage [15]. In general, every type of stressor
may produce behavioral responses, and physiological reactions in the body [9]. Behavioral
responses are designed to get the individual out of risk and lessen the probability of death
by promoting healthy activities (good diet, regular exercise). These responses prepare the
body to survive physical threats by mobilizing stored energy, increasing cardiac output,
and suppressing nonessential digestive, immune, and reproductive functions.

On the other side, the physiological e�ects of stress include alterations in the neuroen-
docrine, autonomic nervous system, and immune function, so these are of great interest
for researchers due to their implications in many diseases [16]. Stress responses primarily
activate two nervous system pathways: the hypothalamic-pituitary-adrenocortical (HPA)
axis and the sympathetic–adrenomedullary (SAM) system. The immediate response medi-
ated by the sympathetic nervous system (SNS) and SAM release catecholamines into the
bloodstream, such as epinephrine and norepinephrine, also known as adrenaline and nora-
drenaline, from the adrenal medulla. It also results in increased cardiovascular arousal, and
the halting of nonessential parasympathetic functions [17]. A more delayed stress response
mediated by the HPA axis, also known as the adrenocortical response: adrenocorticotropic
hormone (ACTH), is characterized mainly by the production and release of glucocorticoids
such as cortisol, corticosterone, and other corticosteroids from the adrenal cortex [18, 19].
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These physiological responses are characterized by having protective and damaging e�ects.
The catecholamines of the SNS and the glucocorticoids from the adrenal cortex initiate
cellular events that promote adaptive changes in cells and tissues throughout the body,
protecting the organism and promoting survival. However, excessive or prolonged exposure
to cortisol is associated with accelerated aging, and increased risk of cognitive impairments,
cardiovascular disease, infectious diseases, and other illnesses [20] and may significantly
impact the progression of chronic illness. E�cient and flexible physiological responses
to stress are adaptive in the short run. However, pronounced or repeated and delayed
stress responses are thought to contribute, over time, to the etiology of hypertension, heart
disease, infectious diseases, and other illnesses [21]. Clinical observations and experiments
have asserted that prolonged exposure to stress results in the overproduction of chemicals
and hormones, causing gastroduodenal ulcers and high BP (diseases of adaptation) [22].
Namely, too much stress or ine�cient operation of the stress acute responses can cause
and exacerbate disease processes.

2.3 Stress and Diseases
Stress plays a vital role in individual survival and the development and aging of people.
Therefore, the intensity and duration of stress are essential factors determining the e�ects
produced on the organism. Nowadays, stress is a daily experience since many aspects or
situations in today’s lifestyles may not qualify as stressors but can adversely a�ect people.
Additionally, the body systems operation that promotes adaptations and homeostasis and
the damage it can cause under extreme circumstances is not fully considered [23].

Stress can also be classified as acute and chronic stress. Acute stress is the transient
exposure to various distressing or challenging tasks and short-duration naturalistic events;
it has been associated with a rapid release of chemical mediators such as catecholamines
that increase HR and BP: “fight or flight” response. The acute stress responses help
the individual cope with the situation and promote adaptation and survival via neural,
cardiovascular, autonomic, immune, and metabolic systems [24]. On the other hand, it
becomes chronic when stress is intense in amplitude. Chronic stress is present in di�erent
forms, from traumatic single-life events to the accumulation of daily hassles. More than
40 years ago, The Surgeon General’s Report declared that when stress reaches excessive
proportions, psychological changes can be so dramatic as to have profound implications
for mental and physical health [25].

A chronic elevation of the mediators, HR, and BP produces regular wear and tear of
the organ systems and results in dysfunctions or target organ diseases that can lead to
physical disorders [26]. Chronic stress has been associated with the accumulation of adi-
pose tissue [27]and insulin resistance [28], which contributes to the development of obesity
[29], diabetes [30] and development and progression of cardiovascular disease (CVD) [31].
Moreover, obesity can be stressful due to the high prevalence of weight stigma, and it
induces a low-grade inflammation mediated by proinflammatory adipokines that activate
the acute phase reaction and act as an additional chronic stimulus to the stress system
activation. Indeed, it results in a vicious cycle whereby chronic activation of the stress
system contributes to obesity-related inflammation and insulin resistance, and vice versa
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[32]. Furthermore, chronic stress results in prolonged HPA axis activation, leading to the
hypersecretion of glucocorticoids that can have detrimental e�ects on neural structure and
function [33].

In the same way, many pathological conditions are associated with altered activity of the
HPA axis, such as severe chronic disease, panic disorder, and malnutrition, among others.
Additionally, stress causes a psychological reaction that impairs neuronal structure and
function and leads to emotional disorders or psychiatric diseases such as anxiety, depression,
somatization, and hostility [34]. Therefore, there is a great interest in researching and
developing methods for stress detection to diagnose extensive episodes of stress that can
lead to chronic responses, thereby avoiding the problems or diseases that can be caused in
the short or long term.

2.4 Methods for Stress Detection
As mentioned before, stress is a common problem since stressors can take di�erent forms,
such as loud noise, extreme temperatures, physical interventions, pathogens, social situa-
tions, and emotional arousal. Since continuous stress can lead to problems and pathologies,
stress responses and reaction symptoms such as anxiety, depression, and physiological prob-
lems have been widely studied for their early and accurate detection. There is a demand
to obtain stress assessments of people in real life to o�er solutions and avoid the problems
related to late detection of stress. Therefore, numerous metrics to measure stress levels
have been studied over the years.

2.4.1 Conventional Stress Evaluation
Self-report questionnaires are the most common measure of stress focused on behaviors
while performing specific tasks. Several questionnaires have been designed to assess an
individual’s degree of chronic stress. Di�erent questionnaires focus on assessments, such
as primary and minor life events, real-time experiences, moods, and environmental self-
reports. During the past decades, many tests for human acute stress detection have been
developed.

The State-Trait Anxiety Inventory (STAI) is a commonly used measure of trait and state
anxiety [35]. STAI is a self-report for adults designed to measure feelings of immediate
anxiety that an individual feels at the current moment (state anxiety) and dispositional
anxiety (trait anxiety). It is commonly used in clinical settings to diagnose anxiety and
distinguish it from depressive syndromes. It also is often used in research as an indicator
of distress. It consists of 40 items total: a 20-item state anxiety scale where participants
report the intensity of their anxious feelings “right now, at this moment”, and a 20-item
trait anxiety scale where they endorse how they generally feel regarding anxious thoughts
and feelings.

The Depression, Anxiety, and Stress Scale questionnaire (DASS 21) is a 21 questions survey
used to screen the symptoms of these mental illnesses. It is a suitable tool for measuring
stress for research and clinical purposes and is a validated tool among various ethnicity and
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population groups. There is an extended version with 42 questions (DASS 42); however,
the short form has been broadly studied and used for stress detection [36]. The DASS 21
has three scales intended to assess depression, anxiety, and stress, each containing seven
questions, and the final scores are obtained through the sum of the question scores. Then
the final score of each subscale must be doubled since this questionnaire is a shortened
major scale form.

The Perceived Stress Scale (PSS) is one of the most widely used tools for measuring psycho-
logical stress in clinical and non-clinical situations. It measures stress by asking participants
to report whether their lives seem unpredictable, uncontrollable, or overloaded [37]. PSS
evaluates the thoughts and feelings of subjects about stressful events that occurred in the
month before the detection. The original English version has 14 items (PSS-14), but PSS
is also available in two shortened versions of 10 items (PSS-10) and four items (PSS-4). It
is considered a brief measure of perceived stress that can be administered in a few minutes.

The Occupational Stress Inventory (OSI) helps assess the same stress-related variables
across di�erent occupational groups [38]. Its revised edition (OSI-R) model is theory-based
and assesses the e�ects on the individual of three factors (occupational roles, psychological
strain, and coping resources). The OSI-R results from one such model of stress that incor-
porates the significant variables impacting stress or the outcomes of stressful situations. It
measures domains of occupational adjustment that include occupational stress and stress
associated with subject’s inability to manage stressors e�ectively in the environment, each
assessed through a comprehensive questionnaire.

Many others focus on detecting other psychological illnesses such as depression, anxiety,
trauma, or thought of death. On the other side, there are also tests to induce stress on sub-
jects, enabling the accurate study of stress in subjects, such as the Trier Social Stress Test.
The Trier Social Stress Test (TSST) is one of the most widely used psychosocial stressor
tasks during the past two decades [39]. It is a robust tool to induce acute psychobiological
stress and a reliable tool for examining the e�ects of acute stress psychologically and phys-
iologically in humans. TSST consists of an anticipation phase followed by a 5-min mock
job interview and a 5-min mental arithmetic task in front of a non-responsive jury of two or
three people. However, there are significant variations in the timing of events, the number
and method of biological sampling, the set-up of equipment and rooms, panel composition,
and panel interaction with participants. It leads to a significantly stronger stress reaction
than other cognitive stressor tasks such as simple arithmetic or Stroop tasks.

The TSST has been shown to a�ect several psychobiological measures, such as psychological
measures ex.: anxiety, negative mood, and perceived stress, and autonomic measures, ex.:
BP, HR, T, and electrodermal activity (EDA) [40].

2.4.2 Physiological Stress Indicators
In contrast to the traditional retrospective questionnaire approach, real-time assessment
involves multiple prospective assessments of the respondent’s current experience. As men-
tioned above, stress activates di�erent physiological systems, such as the HPA or the ANS,
producing a high presence of stress hormones. Therefore, the physiological indicator of
emotion or stress can be measured using physiological parameters such as cortisol. Cor-
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tisol is a well-established hormonal mediator of the stress response, which can act as an
output, meaning levels decrease in relaxation phases or as an input as a cause leading to be-
havioral inhibition in people [41]. This stress indicator is relatively accessible to researchers
and does not require invasive or stressful collection methods such as plasma or urine. The
most common way of measuring cortisol is through blood tests, making it tedious to assess
during experiments to study stress.

Stressful situations can provoke changes in other systems, like autonomic cardiovascular
activity, leading to changes in heart rhythm. For example, high heart activity and low HR
regulation have been associated with high-stress levels, and depression [42]. Stress induces
changes in these physiological signals that can be monitored with technological advances
such as mHealth, which refers to the use of mobile information and communication tech-
nology, such as mobile computers, medical sensors, and wearable devices in healthcare
[43]. Biosensors are tools used to detect the humans’ physiological changes, such as brain
activation, EDA, HR, muscle tension, and respiration rate, often with a particular focus
on the SNS, which, as mentioned before, is in charge of the body’s response to a threat.
Additionally, sensors can record data from subjects performing tasks to provide helpful
information about the body’s condition during the activity, such as working, sleeping, or
driving. Therefore, organs controlled by the SNS are used to monitor this system’s activity
and stress response. However, each physiological sensor has its advantages and limitations,
especially when the signals are measured during experiments where the subjects perform
a specific task. These limitations must be overcome with other mathematical or statistical
techniques dependent on the signal studied.

2.5 Sensors and Physiological Signals

2.5.1 Electrocardiogram
The Electrocardiogram (ECG) measures the electrical activity that passes through the
heart, providing time to voltage information of the heartbeats. It is a meaningful, helpful,
accurate, and non-invasive method to detect normal or abnormal heart rhythms that can
indicate electrical abnormalities and heart problems. Commonly, cardiac biopotentials
originate in the pacemaker cells of the sinoatrial (SA) node, located in the right atrium
(RA). This stimulus is conducted over the RA and left atria (LA) working myocardium
from the SA node, initiating atrial contraction. The excitation is then briefly delayed at
the atrioventricular (AV) node, allowing the atrial blood to enter the ventricles. Next, the
stimulus quickly sweeps into the left and right ventricles (LV and RV), spreading to the
left and right ventricular muscle cells through the Purkinje fibers. Consequently, the atrial
electrical activation and then ventricle activation lead to the contraction of these chambers,
respectively, and the excitation can be observed by measuring the cardiac biopotentials as
electrocardiograms (Figure 2.1) [44].

The electrical activation or stimulation, named above stimulus, is technically known as
depolarization. A term derived since normal resting myocardial cells are polarized, which
means they carry electrical charges on their surface. After depolarization, the return of
the muscle cells to the resting state is called repolarization. The primary cellular processes
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Figure 2.1: Cardiac Electrophysiology.

of depolarization and repolarization are responsible for the ECG waveforms, segments,
and intervals Fig.2.2. The ECG records atrial depolarization as a P wave, ventricular
depolarization as QRS complex, and ventricular repolarization as the ST segment, T wave,
and U wave. Due to their low amplitudes, atrial repolarization segments and waves are
not observed on a routine ECG. Thus, this P/QRS/ST-T/U sequence represents the cycle
of the heart’s electrical activity [45].

Figure 2.2: Electrocardiogram sample.

An electrocardiograph is a digital instrument that allows measuring, displaying, and an-
alyzing these cardiac biopotentials and obtaining the ECG, measured as voltages on the
body’s skin surface through surface sensors called electrodes. Since voltage is the potential
di�erence between two points, these cardiac biopotentials are measured between positive
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and reference electrodes.

2.5.2 Heart Rate and Heart rate variability
Usually, the ECG is a periodic signal where the time interval between two heartbeats is
called inter-beat interval (IBI), and it can be calculated by observing the time interval
between two consecutive R peaks by detecting the QRS complex, which is used to measure
the heart rate (HR) and determine the heart rate variability (HRV). The HR is computed
with the Formula 2.1, with beats per minute (bpm) as the unit.

HR(bpm) = 1
IBI(s) ◊ 60 (2.1)

HR is widely accepted as a noninvasive measure of the ANS regulation of the heart and is a
standard for assessing stress and related psychological processes. Individuals experiencing
stress typically report a rapid, pounding heartbeat and other physiological signs of stress,
such as sweaty palms and rapid and shallow breathing. When a person is under stress,
the time between each heartbeat is irregular, so HRV provides a vital tool to measure this
irregularity for stress recognition [46]. Many di�erent methods can evaluate HR variations;
being time domain measures the simplest one. In time domain analysis of a continuous
ECG record, QRS complex and the normal-to-normal (NN) intervals or the HR can be
determined at any time. Time domain variables can be calculated from a series of instan-
taneous cycle intervals over long periods; however, the total variance of HRV increases with
the length of the analyzed recording. The most commonly derived measures from interval
di�erences are shown in Table 2.1

On the other side, Power spectral density (PSD) analysis provides the basic informa-
tion on how power (variance) distributes as a function of frequency. Independent of the
method used, only an estimate of the actual PSD of the signal can be obtained by proper
mathematical algorithms. PSD calculation methods have advantages like simplicity of the
algorithm used such as Fast Fourier Transform (FTT) in most cases, high processing speed,
smooth spectral components that can be distinguished independently of preselected fre-
quency bands, easy postprocessing with automatic calculation of low and high-frequency
power components, and an accurate estimation of PSD even on a small number of samples
[47]. From the frequency domain, the features that can be derived are shown in Table 2.1

2.5.3 Electrodermal Activity
Since the 1880s, psychological factors have been related to electrodermal phenomena; how-
ever, electrodermal activity (EDA) was first introduced by Johnson and Lubin in 1966 as
a common term for the active and passive electrical phenomena traced back to the skin
and its appendages [48]. Additionally, obtaining a distinct EDA response is relatively easy
since its intensity is closely related to the stimulus intensity; as a result, EDA recordings
have become one of the most frequent biosignals used in neurology and physiology. In the
literature, the terms electrodermal response(EDR), electrodermal level (EDL), skin con-
ductance activity (SCA), skin conductance response (SCR), and a lot more are also used to
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Table 2.1: HRV Features

Symbol Feature Description

Time Domain Features
MeanNN Mean of the RR intervals or mean heart rate
SDNN Standard deviation of the RR intervals
RMSSD Square root of the mean of the sum of successive di�erences between adjacent RR

intervals
SDSD Standard deviation of the successive di�erences between RR intervals
CVNN SDNN divided by the MeanNN
CVSD RMSSD divided by the MeanNN
MedianNN Median of the absolute values of the successive di�erences between RR intervals
MadNN Median absolute deviation of the RR intervals
MCVNN MadNN divided by the MedianNN
IQRNN The interquartile range (IQR) of the RR intervals
pNN50 Proportion of RR intervals greater than 50ms, out of the total number of RR intervals
pNN20 Proportion of RR intervals greater than 20ms, out of the total number of RR intervals
TINN Baseline width of the RR intervals distribution obtained by triangular interpolation.

An approximation of the RR interval distribution
HTI The HRV triangular index, measuring the total number of RR intervals divided by

the height of the RR intervals histogram

Frequency Domain Features
ULF Spectral power density of ultra-low frequency band (0-0.0033Hz)
LF Spectral power density of low frequency band (0.04-0.15Hz)
HF Spectral power density of high frequency band (0.15-0.4Hz)
VHF Variability, or signal power, in very high frequency (0.4-0.5Hz)
LFn Normalized LF, obtained by dividing the low frequency power by the total power
HFn Normalized HF, obtained by dividing the low frequency power by the total power
LnHF The log transformed HF

describe this phenomenon [49]. However, galvanic skin response (GSR) has more than one
property since it can be described in terms of conductance, resistance, and electrophysio-
logical potential. The sweat glands generate this biosignal, and the sweat is probably the
origin of the variation in resistance and conductivity, although vasodilatation and constric-
tion may also play an important role. This study will mention the term GSR to refer to
these electrodermal recordings.

GSR sensors measure the electrical characteristics of the skin (eccrine sweat gland activity)
using methods such as skin conductance response (SCR), skin potential (SP), skin conduc-
tance level (SCL), and skin potential response (SPR) [50]. It can capture the autonomic
nerve responses as a parameter of the sweat gland function. The measurement is relatively
simple and has good repeatability; the biosignal is obtained by attaching two leads to the
skin and acquiring a base measure by passing a small current via electrodes positioned
on a skin surface. As the activity is performed, recordings are made from the leads, and
conductivity is measured between the two points. An example of the GSR signal is shown
in Fig. 2.3. GSR must be measured in a part of the skin having many sweat glands, so
the most common sites for GSR recordings are the fingers and palms, the bottom of the
feet and the forehead, and a part of the skin with less or no sweat glands as the reference.
GSR measures have been associated with physiological changes that accompany psycho-
logical processes underlying attention, emotion, and stress and are frequently used within
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mental stress testing paradigms [51]. Studies have linked GSR to arousal [52], emotions
[53], frustration [54], and especially stress [55]. For that reason, many studies have used
GSR recordings as an accurate method to investigate the stress response during specific
activities [56].

Figure 2.3: Galvanic Skin Response signal sample.

2.6 Machine Learning Classification Models
Medical data is intrinsically complex due to multiple and diverse parameters, including
but not limited to quantitative test results such as HR, T, and respiratory rate, or ana-
log outputs such as medical imaging, handwritten notes from the physician, and other
diagnostics-related information. The growth of biomedical engineering and sciences, along
with the rising medical challenges, has pushed the development of artificial intelligence
(AI) in the medical field.

Machine Learning (ML) is a type of AI that make machines capable of decision making and
actuation without being explicitly designed to do so [57]. As stated by Tom Mitchell in
1997 “A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P, improves with
experience E” [58]. Algorithms employed for a particular task look forward to improving
the performance on similar tasks, gaining experience by repeating such tasks, and fine-
tuning their parameters to improve their performance, improving the accuracy of output
prediction. ML aims to develop programs that help machines access data and use it for
learning a specific task on their own. This learning process is broadly categorized into four
types: supervised, unsupervised, semi-supervised, and reinforcement. It is based on the
training dataset and how it is inferred for the learning process.
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Supervised Learning: when data is presented with labels. It is like giving standard answers
to computers; based on this, computers will reply.

Unsupervised Learning: when the training data is non-classified and not labeled. Com-
puters deduce a function to explain the hidden patterns from the unlabeled data

Semi-Supervised Learning: the combination of supervised and unsupervised learning. It is
applied to data that is partially labeled.

Reinforcement Learning: the system interacts with its surroundings by action, and errors
or rewards will be calculated. Trial and error search and delayed rewards are standard
features. Computers and software programs can identify the ideal behavior in a specific
context to increase the performance [59].

2.6.1 K-Nearest Neighbor
K-Nearest Neighbor (KNN) Algorithm can be used for classification and regression, where
the input can be the same for both, while the output will depend on the task. KNN does
not assume any underlying data distribution, which is called non-parametric. Classification
identifies the class of an unknown instance based on the majority voting of its nearest
neighbors.

Advantages: straightforward technique that is easily implemented. Building the model is
cheap. It is a highly flexible classification scheme and well suited for multi-modal classes.
Records are with multiple class labels. It can sometimes be the best method.

Disadvantages: classifying unknown records is relatively expensive. It requires distance
computation of k-nearest neighbors. If the size of the training set increases, the algorithm
gets computationally intensive. Noisy or irrelevant features will result in degradation of
accuracy. It does not generalize the training data and keeps all of them. It handles large
data sets and hence expensive calculations.

KNN can be used to diagnose multiple diseases with similar symptoms, handwriting de-
tection, financial analysis, video recognition, and image recognition.

2.6.2 Support Vector Machine
Support Vector Machines (SVM) aim to classify objects correctly based on examples in the
training data set. It classifies data by building an n-dimension hyperplane that maximizes
the margin between two classes. SVM is highly correlated to ANNs. Generally, an SVM
model with a sigmoid kernel function is the same as a 2-layer Perceptron NN.

Advantages: it can handle both semi-structured and structured data. It can handle complex
functions if the appropriate kernel function can be derived. Not overly influenced by noisy
data and not very prone to overfitting. It can scale up with high-dimensional data. It does
not get stuck in local optima.

Disadvantages: performance goes down with extensive data set due to the increase in the
training time. Finding the best model requires testing various combinations of kernels and
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model parameters. Does not work well with noisy datasets. Does not provide probability
estimates. Results in a complex black box model di�cult, if not impossible, to interpret.

SVM finds its practical application in cancer diagnosis, credit card fraud detection, hand-
writing recognition, face detection, and text classification. This model has gained popu-
larity due to its high accuracy and high-profile wins in data mining competitions.

2.6.3 Decision Trees and Random Forest
A decision tree (DT) is a Supervised Machine Learning approach that continuously splits
data based on a particular parameter. The decisions are in the leaves, and the data is split
into the nodes. The data space division is performed iteratively until the leaf nodes hold a
particular number of fewer records which can be utilized for classification purposes. In the
Classification Tree, the decision variable is categorical, the outcome in the form of Yes/No.

Advantages: ease in interpretation, ease of handling categorical and quantitative values,
the capability of filling missing values in attributes with the most probable value, and high
performance due to the e�ciency of the tree traversal algorithm.

Disadvantages: it can be unstable. It may not be easy to control the size of the tree. It
may be prone to sampling error and gives a locally optimal solution instead of a globally
optimal solution.

DTs can be used in applications like predicting tumor prognosis problems. However, this
classifier might encounter the problem of over-fitting. Therefore, DTs’ classification perfor-
mance can significantly improve by growing an ensemble of trees and letting them vote for
the most popular class, an ensemble known as Random Forest (RF). Di�erent techniques
can be used to grow the ensemble, including bootstrap aggregating or bagging, where each
tree is built using a random selection of data and features, boosting, similar to bagging
but in a sequential approach where data points that were misclassified in the previous tree
have a higher chance to be selected to build the next tree, ex: AdaBoost, and other DT
models using subsets. It selects a subset of features from an individual tree node, avoiding
correlation in the bootstrapped set. For a classification task, RF is a forest of k trees and
is computed as in Formula 2.2

RF = DTj, where j = 1, k (2.2)

2.6.4 Bayesian Networks and Näıve Bayes
Bayesian Networks (BN) is based on the idea that the estimated likelihood of an event
should be based on the available evidence across multiple trials, so a prior probability
distribution is selected and then updated to obtain a posterior distribution. Later on, with
the availability of new observations, the previous posterior distribution can be used as a
prior. Therefore, the relationship between di�erent dependent variables, ex. Using Bayes’
theorem, stress and HR can be described (Formula 2.3).
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P (A|B) = P (A) ◊ P (B|A)
P (B) (2.3)

This theorem states that the probability of event A to occur given that event B has occurred
equals the proportion of trials in which A occurred together with B out of all trials in which
B occurred. For the stress example, this means that the probability of having stress (A)
while having a high HR (B) equals the proportion of trials in which subjects had high
stress while having a high HR out of all trials in which subjects had a high HR.

Advantages: incomplete datasets can be handled. It can prevent over-fitting of data. There
is no need to remove contradictions from the data.

Disadvantages: selection of prior is di�cult. The posterior distribution can be influenced
by prior to a great extent. If the prior selected is incorrect, it will lead to wrong predictions.
It can be computationally intensive.

The Näıve Bayes (NB) algorithm is simple, based on conditional probability, and the
most common application of the Bayes’ theorem. It uses a probability table updated
through training data. The table is based on its feature values, where it is needed to
look up the class probabilities for predicting a new observation. The basic assumption
is conditional independence and features equally essential, which is not the case in most
real-world problems, so it is called näıve.

Advantages: easy implementation, works with less training data. Handles continuous and
discrete data, can handle binary and multi-class classification problems, and make proba-
bilistic predictions.

Disadvantages: adequately trained and tuned models often outperform NB models as they
are too simple if there is a need to have one feature as “continuous variable” ex. Time, it is
challenging to apply NB directly. There is no true online variant for NB, so all data must be
kept to retrain the model. It will not scale when the number of classes is too high. It takes
more runtime memory compared to SVM or simple logistic regression. Computationally
intensive, especially for models involving many variables.

2.6.5 Artificial Neural Networks
The Artificial Neural Network (ANN) is a computational model inspired by the structure of
the human brain. The human brain is composed of several nerve cells called neurons. ANN
contains numerous neurons, and each neuron is a fundamental unit. ANNs use a divide-
and-conquer strategy to learn a function: each neuron in the network learns a simple
function, and the overall (more complex) function, defined by the network, is created by
combining these more specific functions. Deep learning networks are ANNs that have
many hidden layers of neurons. The minimum number of hidden layers necessary to be
considered deep is two. However, most deep learning networks have many more than two
hidden layers, and the depth of a network is measured in terms of the number of hidden
layers plus the output layer. The DL networks generally comprise three main layers: input
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layer, hidden layer/layers, and output layer (Figure 2.4). As the number of layers increases,
the network becomes more complex or more profound.

Figure 2.4: Illustration of a simple Neural Network architecture.

The depicted network has four layers: one input layer, two hidden layers, and one output
layer. A hidden layer is just a layer that is neither the input nor the output layer. The
squares in the input layer represent locations in memory that are used to present inputs to
the network. These locations can be thought of as sensing neurons. There is no processing
of information in these sensing neurons; each output is simply the value of the data stored
at the memory location.

The circles represent the processing neurons in the network. Each neuron takes numeric
values and maps them to a single output value. Every input to a processing neuron is
either the output of a sensing neuron or the output of another processing neuron. Arrows
illustrate how information flows through the network from the output of one neuron to the
input of another neuron. Each connection in a network connects two neurons, and each
connection is directed, which means that information carried along a connection only flows
in one direction. Each of the connections in a network has a weight associated with it.
A connection weight is simply a number, but these weights are critical. The weight of a
connection a�ects how a neuron processes the information it receives along the connection.
Training an artificial neural network essentially involves searching for the optimal set of
weights [60].

Advantages: among the most accurate modeling approaches. Makes few assumptions about
the data’s underlying relationships

Disadvantages: computationally intensive and slow to train. Easy to overfit or underfit
training data. Results in a complex black-box model.
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Chapter 3

State of the Art

3.1 Stress Recognition Signals
Di�erent physiological signals have been used in the classification of stress, including
galvanic skin response (GSR), electromyogram (EMG), electrocardiogram (ECG), pho-
toplethysmogram (PPG), phonocardiogram (PCG), among others. As shown in Table
3.1 many studies have focused on detecting stress using di�erent measurements, specially
biosignals.

Table 3.1: Physiological Signals used for stress detection

Signal Study Year

[61] ECG Cardiac stress detection using a portable ECG 2020
[62] PPG Detection of five levels of stress using a PPG sensor 2020
[63] PCG Psychological stress detection using time duration of cardiac cycles of PCG 2019
[64] EEG Assessment of dispersion patterns for distress detection 2021
[65] GSR Automatic detection of car drivers’ stress levels 2018
[66] EMG Acute stress detection measuring gastrointestinal activity 2021
[67] HRV Psychological and physical stress detection using a wearable device 2021

However, based on a search through the state-of-the-art studies focused on stress detection,
whether psychological or physical, and physiological signals, it has been noticed that the
most used biosignals for this purpose are ECG, GSR, and EMG. Additionally, many studies
use a multivariable methodology where authors use more than one signal simultaneously
to detect stress in di�erent environments accurately [68, 69]. However, it leads to a more
complex methodology and hardware to obtain all of them simultaneously.

3.2 Signal Processing and Feature Extraction
Digital signal processing (DSP) is an advancing technology that has dramatically impacted
today’s lives with digital audio, video, the internet, medical devices, and instruments.
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Digital ECG has made it possible to provide precise heart diagnoses and powerful tools
for scientists and engineers to analyze and visualize this data. DSP consists of an analog
filter, an analog-to-digital conversion (ADC) unit, a digital signal (DS) processor, a digital-
to-analog conversion (DAC) unit, and a reconstruction (anti-image) filter as shown in
Figure 3.1. While analog signal processing does not require software, algorithm, ADC, and
DAC, DSP systems use software, digital processing, and algorithms. Therefore, the latter
systems present more flexibility, less noise interference, and no signal distortion in various
applications.

Figure 3.1: Digital Signal Processing Scheme.

In the time domain, the representation of digital signals describes the signal amplitude
vs. the sampling time instant or the sample number. However, for some applications,
such as signal filtering, it is required to analyze time domain information and the signal’s
frequency content, known as signal spectrum. ECG signals acquire di�erent kinds of high
and low-frequency noises generated mainly at recording or transmission. Digitized noisy
signals can be enhanced using digital filtering. Since the valuable signal contains low-
frequency components, all high-frequency components above the cut-o� frequency of the
signal are considered noise that can be removed using digital filters. Therefore, one of the
most researched topics in ECG analysis is the elimination of these noises using di�erent
digital filtering techniques. A variety of methods have been proposed in the literature
for biological signal preprocessing, including finite impulse response (FIR) filter, infinite
impulse response (IIR) filter [70], discrete wavelet transform (DWT) [71], among others,
in order to eliminate specific noises that can deteriorate the quality of the signal, such as
baseline wander (BW) [72], powerline interference (PLI) [73], muscle artifact (MA) [74] or
additive white gaussian noise (AWGN) [75].

The importance of this noise elimination relies on its facilitation for accurate diagnosis
of patients when analyzing the ECG signals. For frequency ECG filtering, the FIR filter
is stable, and the signals are not distorted, but it requires substantial computation that
must be taken into account based on the purpose of the study. On the other hand, the
IIR filter has a much smaller order number that is more computationally e�cient than the
FIR filter [76]. However, the IIR filter has a non-linear phase response that may distort
the ECG signal, although it can be avoided using a non-causal forward-backward approach
(bidirectional filter). A min-max normalization is usually applied to the ECG signal to
remove subject-specific physiological signal baseline and lifestyle factors influencing it.
The normalized signals are also passed to a Butterworth band-pass filter (5–15 Hz) to
reduce muscle noise, and baseline wanders [77], a suitable preprocessing method for later
classification.

The Pan-Tompkins peak detection algorithm developed in 1985 marks the characteristic
points of the R peak on the preprocessed ECG signal to obtain the RR interval. It is
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based on digital filtering, and Fourier Transform, which is resistant enough to noise with
a commendable beat-detection accuracy of 99.37% in determining peaks of a highly noisy
ECG signal [78]. This algorithm is considered a pioneer in the field; however, it is still used
for peak localization in ECG studies due to its high accuracy [79]. The accurate detection
of Q, R, S, and T waves is necessary to extract features dependent on them in the time and
frequency domain. Therefore, this algorithm is helpful for accurately extracting statistical
features such as max, min, median, standard deviation, mean of HRV, and frequency
domain features [80].

3.3 Stress Classification Methods
Several stress recognition techniques have been explored in the literature, where classifi-
cation techniques and ML models are widely employed to obtain good results in di�erent
metrics, including accuracy. However, the metrics of stress detection, obtained with vary-
ing classification techniques, may be di�cult to compare since protocols or physiological
signals used might di�er across the literature. Table 3.2 presents an overview of the past
studies; it is based on an online search taking into account the last five years and including
research studies focused on stress detection using ML models. As exposed, di�erent ML
algorithms are employed, including sequential minimal optimization (SMO), Multilayer
perceptron (MLP), stochastic gradient descent (SGD), linear discriminant analysis (LDA)
and logistic regression (LR).
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Table 3.2: ML techniques used for the classfication of stress

ML Model Data Study Best Accuracy

[81] LDA, KNN, SVM E-nose, GSR Academic Stress detection in university
students

SVM with 96%

[82] DT, KNN, SVM T, BP, Pulse Stress in cardiac patients to predict the
severity of the cardiac disease

KNN with 89.06%

[83] LR, NB, RF, SVM PSS Mental stress detection in university
students

SVM with 85.71%

[84] ANN ECG, GSR, T, BP Psychosocial stress in patients with
metabolic syndrome

Average 92%

[85] SVM GSR, T, BVP, HR, ACC Psychological and physical stress using
wristband biosignals

During physical
state: 99.19%

[86] DT, RF, SVM, NB DASS21 Predicting Anxiety, Depression and
Stress in Modern Life

NB 85,5%

[87] KNN, DT, RF, SVM, ANN ECG, EMG, GSR, RESP Stress prediction in automobile drivers
during actual driving

RF with 98.92%

[88] DT, LDA, LR, NB, SVM, KNN ACC, GSR, T, HR Detection of stress in patients during
treatment for substance use disorder

SVM with 81,3%

[89] DT Images Thermal analysis of face and fingers to
detect academic stress

Accuracy 91%

[63] LS-SVM PCG Psychological stress detection method-
ology suitable for telemedicine

93.14%

[90] KNN, GDA, SVM, DT, LR EEG, Cortisol Workers’ stress recognition at construc-
tion sites

SVM with 80.32%

[91] SVM EEG, ECG Early mental-stress detection and pre-
dictions for treatment e�cacy

79.54%

[77] CNN, LSTM ECG Automatic driver stress level classifica-
tion

Average: 92.8%

[92] KNN, RF, SVM, DT, MLP EEG, GSR, PPG Stress classification during public
speaking

SVM with 96.25%

[93] SVM, KNN, RF ECG Assesses the e�ect of psychological
stress on HRV features

SVM with 97%

[94] SMO, SGD, LR, MLP EEG Stress classification in response to mu-
sic tracks

LR with 98.76%

[95] LR, SVM, RF, KNN, MLP EEG Multi-level stress classification with and
without smoothing filter

MLP with 81%

[96] CNN, DNN, SVM, RF HR Stress prediction using functional near-
infrared spectroscopy fNIRS

CNN with 98.69%

[97] KNN, NB, RF, AB HR Stress recognition focused on desk jobs
in its initial stages

RF with 83%

[98] DNN ECG Mental Stress monitoring using ECG
Signals

87.39%

[99] SVM, KNN, RF, ANN EEG Real time stress analysis using wearable
EEG

SVM with 97.5%

[90] KNN, DA, SVM EEG Workers’ stress recognition at construc-
tion sites

SVM with 80.32%

[100] DNN EEG Stress recognition on workers at con-
struction sites

86.62%

[101] KNN, ANN, NB, SVM PPG, GSR Stress monitoring using wearable sen-
sors

KNN with 85.3%

As shown in Table 3.2, the most used signal is ECG, which is present in 6 studies. Some
studies that do not employ ECG may use other signal sources such as PPG, PCG, or
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HR to perform HRV analysis and extract their features for stress detection. However,
other physiological signals such as BP, T, EEG, and GSR are also widely used for this
classification task. Many studies use more than one physiological signal or stress detection
method. For example, the studies [84, 85, 87, 88, 92] use at least three physiological signals,
including motion acceleration in some of them. Data from these studies were obtained using
multi-parameter systems created with di�erent sensors.

Other stress detection methods, such as questionnaires, were employed. The PSS [83]
questionnaire to analyze academic stress, and the [86] study used the DASS21 questionnaire
to predict anxiety, depression, and stress in modern life; both studies made use of the
questionnaires data to feed ML models. The physiological stress indicator cortisol was also
used with an EEG signal to detect stress on workers using di�erent ML models. Other
particular measures have been employed, such as in the pilot study [81], where the authors
measured GSR signals and used an electronic nose system to measure volatile organic
compounds emitted from the skin. Besides being a methodology not extensively used, the
data obtained with the proposed system was successfully used to detect academic stress in
engineering university students using three ML algorithms.

In the same way, Resendiz et al. [89] use another novel system based on infrared thermog-
raphy and thermal analysis of facial skin and fingertips. The images served as input for
a DT to diagnose human stress in undergraduate university students. Moreover, fNIRS
measures have also been used to derive HR and predict stress using various ML models
[96].

Moreover, it is observed that most studies aim to detect stress in healthy people. Usually,
students, workers, or healthy people in their daily lives are the subjects of study for the
obtention of the data. Some experiments have obtained the data in real-life conditions
or subjects’ normal activities such as studying, working, or driving. In contrast, other
investigations have induced stress through images, music, or the mentioned TSST for a
stress measure. Therefore, psychological stress has been addressed in studies focused on
subjects performing analytical tasks like public speaking and physical stress in studies
where people perform physical activities like working.

On the other side, among the most used ML models, we can analyze SVM, KNN, ANN,
RF, and DT are the most used for this stress detection purposes. Figure 3.2 illustrates
the number of times each model was used based on the search described in Table 3.2,
where ANN refers to deep, recurrent, and convolutional networks. Several ML algorithms
are tested in each study, obtaining at least one model outperforming the others with a
high accuracy level. Since di�erent studies conclude that a specific ML technique provides
the best accuracy, it is unclear which one would be the most appropriate for this study’s
stress detection objective, considering the di�erence in data and features. Some studies
use data from public databases, while others get signals from laboratory experiments or
real-life tasks. Therefore, these parameters can be considered for the outcome of the model
classification. On the other side, as mentioned before, techniques such as SVMs and ANNs
are black-box models and do not provide insight into how the link between physiological
signals and stress is established.
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Figure 3.2: ML models used in the literature.

Year Signals ML model Study Results

2018 EEG, Cortisol KNN, GDA, SVM, DT, LR Workers’ stress recognition at construc-
tion sites

SVM with 80.32%

2018 EEG, ECG SVM Early mental-stress detection and pre-
dictions for treatment e�cacy

79.54%

2018 HR KNN, NB, RF, AB Stress recognition focused on desk jobs
in its initial stages

RF with 83%

2019 ECG, EMG, GSR, RESP KNN, DT, RF, SVM, ANN Stress prediction in automobile drivers
during actual driving

RF with 98.92%

2020 ACC, GSR, T, HR DT, LDA, LR, NB, SVM, KNN Detection of stress in patients during
treatment for substance use disorder

SVM with 81,3%

2021 GSR, T, BVP, HR, ACC SVM Psychological and physical stress using
wristband biosignals

During physical
state: 99.19%

2022 ECG DT, KNN, RF, SVM, MLP Stress detection using physiological sig-
nals

RF with 82%
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Chapter 4

Methodology

The programming language used for this study is Python, a high-level, general-purpose pro-
gramming language widely used recently. Python has language constructs and an object-
oriented approach to help programmers write clear, logical code for small- and large-scale
projects. It is a simple programing language with a design philosophy emphasizing code
readability, and its syntax allows programmers to express concepts in fewer lines of code
than would be possible in languages such as C [102]. It has many libraries, such as Numpy,
Pandas, Scipy, Scikilearn, Matplotlib, and Tensorflow, which have di�erent functions and
will be helpful for di�erent techniques and steps in this experiment.

The methodology of this study is summarized in Figure 4.1, where signals preprocessing
and feature extraction have been developed on Spyder IDE (Integrated Development En-
vironment), a free and open-source scientific environment written in Python for Python,
and designed by and for scientists, engineers and data analysts, while the other steps have
been developed in Google Colaboratory (colab), a hosted version of Jupyter Notebooks
with access to Google hardware, where Notebooks are run in Linux-based virtual machines
(VMs) provided and maintained by Google where computation can be performed with cen-
tral processing units (CPUs) or accelerated through specialized graphical processing units
(GPUs), and tensor processing units (TPUs) that allows to run and share modern AI and
ML techniques [103].

Figure 4.1: Block diagram of the proposed stress classification methodology.
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4.1 Physiological Data
The biosignals used for this research are pre-recorded ECG signals. The publicly available
datasets chosen for this study are the “Stress Recognition in Automobile Drivers” (SRAD)
database from the MIT Dept. of Electrical Engineering and Computer Science [104], and
WESAD, a Multimodal Dataset for Wearable Stress and A�ect Detection [105]. Databases’
details are listed in Table 4.1, where acc refers to acceleration in each axis.

Table 4.1: Databases Details

Database
No. of
subjects

No. of
signals

Signals
Recordings
duration

Stress Phases

SRAD 17 6
ECG, EMG, footGSR
handGSR, HR, RESP

65 to 93
minutes

Common driving tracts
Stressful driving tracts

WESAD 15 8
ECG, EDA, EMG
RESP, BT
Xacc, Yacc, Zacc

36 minutes
Neutral
Stress
Amusement

Each database has been studied for the detection of stress using di�erent ML models
[105, 104]. However, in this thesis project, the ECG signals of both databases have been
processed and joined to acquire more data that serves the classification purpose.

4.1.1 “Stress Recognition in Automobile Drivers” Database
The SRAD is a database obtained in the work of Healey JA and Picard RW for detecting
stress during real-world driving tasks [104]. The study collected physiological signals from
healthy subjects during a prescribed driving route, including streets and highways around
Boston, Massachusetts. The original database generated is a large dataset of physiological
signals containing many day-to-day variations covering over 36 hours of driving. However,
a smaller version of this database is publicly available on physionet.org, a repository of
freely-available medical research data managed by the MIT Laboratory for Computational
Physiology and supported by the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB) [106].

The public database employed in this thesis project contains 17 recordings with a duration
of 65 to 93 minutes. The driving protocol and data collection can be found in the original
study. An example of the signals obtained can be seen in Figure 4.2, which includes the
marker to di�erentiate the driving tracks.

The Healey and Picard study indicated that GSR and HR signals were significantly cor-
related to drivers’ stress. Additionally, the literature has closely related GSR signals to
stress at di�erent levels [50]. Therefore, GSR is used to provide the stress labels for the
signals of the SRAD database, as high GSR values have been related to the presence of
stress while low values represent no stress.
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Figure 4.2: Signals obtained from the “Stress Recognition in Automobile Drivers” database

4.1.2 WESAD Dataset
The WESAD is a multimodal, publicly available dataset that includes physiological and
motion modalities (Table 4.1). The authors state that this dataset bridges the gap between
previous lab studies on stress and emotions by containing three di�erent a�ective states
(neutral, stress, amusement) obtained by working with a study protocol, including a base-
line, amusement, and stress condition. Additionally, guided meditations were employed
to de-excite subjects after stress and amusement. Data were collected from 15 graduate
students using a chest-worn device. Figure 4.3 illustrates a sample of the eight signals.

In this case, WESAD ECG signals were labeled based on the timestamp information pro-
vided by the authors, where two stress levels were detected. However, the stress and
amusement phases are set as stress periods for this binary classification.

4.2 Signal Preprocessing
The ECG signals from both databases are raw signals containing noises and corruptions.
Therefore, the first step is to clean them. For reading the signals from the Physionet
databank, the WFDB library for python has been used, allowing reading, annotating,
and performing other signal techniques. Each experiment comes with a ‘fields’ property
where the vital information about each signal is saved, such as signal name, units, and the
sampling frequency. On the other side, the WESAD data come in a .txt format listing the
eight signals sampled at 700Hz. The NeuroKit2 library has been used for signal cleaning, an
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Figure 4.3: Signals obtained from the WESAD dataset

open-source, community-driven, and user-centered Python package for neurophysiological
signal processing. It provides comprehensive processing routines for various physiological
signals such as ECG, PPG, EDA, EMG, and RSP. These processing routines include high-
level functions that enable data processing using validated pipelines in a few lines of code.

ECG signals are checked for missing data points; if any, the missing values are filled
using the forward-filling method. Then the signal is cleaned with two filters. A high-pass
Butterworth filter removes the baseline drift with a cut-o� frequency of 0.5Hz. Conversely,
a notch filter of 50Hz cut-o� frequency is also applied to remove the powerline interference.
Once the signals are cleaned, these can be used to extract features correctly.

4.3 Feature Extraction
Most of the clinically useful information of an ECG is found in the di�erent intervals and
amplitudes of the waves since abnormal variations can be an indicator of heart problems.
Feature extraction reduces the available information but maintains the ECG morphology.
In order to identify the stress level, firstly, many features must be extracted from the
related physiological signals. Therefore, accurate ECG feature extraction is of significant
importance.

ECG signals were segmented using a window sliding technique with a window shift of 1
second. All features were computed using a cleaned ECG signal window of 30 seconds,
considering each frequency sample. For each ECG segment, R-peaks are found using the
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Pan Tompkins algorithm. The HRV features are obtained in the time and the frequency
domain (Figure 4.4).

Figure 4.4: HRV features in the a) Time and b) Frequency domain.

For the SRAD database, GSR signals are segmented similarly to ECG signals, considering
each sampling frequency. The mean value of each GSR signal is compared to the windows
and labeled as stress (1) when the value is higher than the mean and no stress (0) when it
is less than the mean. A schema of this 30s window sliding process is seen in Figure 4.5.
The WESAD database does not require this since labels are obtained from the timestamp.

Figure 4.5: Signals segmentation for obtaining the labeled dataset.

Once the feature extraction is performed, normalization is another critical step before
continuing the proposed methodology. Data normalization is a fundamental approach that
transforms features in a standard range to avoid greater numeric feature values dominating
smaller numeric feature values. ML models’ success depends on the data quality, and
normalization is a critical way to improve this quality and the performance of machine
learning algorithms. Z-score Normalization (ZSN) is a mean and standard deviation-based
normalization method where raw data’s statistical mean and standard deviation are used
to normalize the data. Each instance (x) of the data is transformed into (x’) by the
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Formula 4.1 where µ denotes the mean and ‡ the standard deviation of the ith feature.
This normalization method has proven to be more suitable than other methods [107].

xÕ
i,n = xi,n ≠ µi

‡i
(4.1)

4.4 Feature Selection
We need to obtain specific features that work as predictors to predict an outcome ad-
equately, given the underlying information they provide. However, this set of features
may contain non-informative variables that can impact the model’s performance. Feature
selection methods are intended to reduce the number of input variables by removing non-
informative or redundant predictors from the model and leaving those believed to be most
beneficial for a model to predict the target variable, in this case, stress. These techniques
have become a necessity since the more the features are, the more computation cost should
be expensed, the more amount of system memory, the more sensors users have to wear,
which brings uncomfortably to them, and the performance of some models can be degraded
when including input variables that are not relevant to the target variable. Moreover, fea-
ture selection is essential to avoid overfitting, improve the model performance, provide
faster and more cost-e�ective models, and gain a deeper insight into the underlying pro-
cesses that generated the data. Therefore, the objective of making feature selection in this
study is to reduce and select as least as possible the number of predictors (features) as far
as possible without compromising the predictive performance of stress.

The Recursive Feature Elimination (RFE) is a backward selection of the predictors. It
builds a model on the entire set of predictors and computes an importance score for each
predictor. The least essential predictors are removed, the model is rebuilt, and importance
scores are computed again. The number of predictors to evaluate must be specified, so it is
a tuning parameter for RFE. A chosen ‘estimator’ or chosen ML model must be employed
to define the method to use this technique. RFE can be used with di�erent LR, LDA,
or RF models. The latter is frequently used because it is a model that does not exclude
variables from the prediction equation, and this model has a well-known internal method
for measuring feature importance. This RF-RFE approach has been evaluated with great
results [108]. Therefore, in this study, the essential scores calculated through an RF model
will explain the number of predictors to use in the RFE. Therefore, tests are performed
with di�erent tuning parameters to analyze the number of predictors needed to provide
similar accuracy to the model when employing all of them.

We may also be interested in the correlation between input variables with the output
variable in order to provide insight into which variables may or may not be relevant as
input for developing a model. Therefore, we can use other correlation methods. Pearson’s
Correlation (PC) is a statistical method that calculates the correlation coe�cient between
two variables. In this case, it determines the correlation between each feature and stress.
PC values range between -1 and 1. A correlation can be positive, meaning both variables
move in the same direction, or negative, meaning that when one variable’s value increases,
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the other variables’ values decrease. Correlation can also be neutral or zero, meaning the
variables are unrelated. Therefore, values close to 0 mean a low correlation, close to 1
mean a high positive correlation, and close to -1 mean a high negative correlation. This
study removes features that maintain a correlation higher than 0.9.

PC is performed using SciPy, an open-source scientific computing library for the Python
programming language. In contrast, RFE is performed using Scikit-learn, an open-source
machine learning library that supports supervised and unsupervised learning and provides
various tools for model fitting, data preprocessing, model selection, evaluation, and many
other utilities.

4.5 Stress Classification
Given the literature on ECG signals classification for stress detection, we use the most
used models to perform binary classification. KNN, RF, DT, SVM, and ANN models are
used as classifiers, trained, and tested with the HRV features selected.

The KKN model classifies the data based on the k distinct but closest neighbor type
by exploring them and classifying the majority class of k neighbors. This classifier can
detect linear or non-linear distributed data and performs very well, even with many data
points, since it is automatically non-linear. It has been used for the classification of stress
accomplishing high accuracy levels [82], where the three signals T, BP, and pulse obtained
from cardiac patients were employed to feed a DT, a KNN, and an SVM model. The KNN
outperformed the other two, concluding it is an accurate classifier to detect stress.

The RF model has been evaluated before for stress detection [83], using the results of a PSS
questionnaire as the input data for four ML models: LR, NB, RF, and SVM. Besides the
RF’s acceptable accuracy, the SVM outperformed the other algorithms in this academic
stress analysis. In the study of Sanchez et al. [97], ECG, EMG, GSR, and RESP signals
comprise the dataset. Five ML algorithms were employed for employee stress classification,
and an RF model achieved the highest accuracy compared to other classification models.

The SVM model is instrumental in solving high dimensionality feature space problems. The
classification of the data is based on the hyper-plane. This classifier is suited for both linear
and non-linear data classifications. Based on Table 3.2, It has been the mostly employed
model for di�erent studies [93, 92, 81],and sometimes outperforming other classification
algorithms.

Finally, Artificial Neural Networks (ANN) have been widely studied for di�erent classifi-
cation tasks, including stress classification. ANN [84], DNN [98], CNN [77], and MLP [92]
are examples of networks that have successfully classified stress.

Consequently, it is enough information to choose the mentioned ML algorithms as classifiers
for this stress detection task using HRV features. Each classifier possesses hyperparameters
tuned based on the literature and experiments to obtain an accurate classification. The
python libraries Scikit-learn and Keras are used for the classification model development.
Keras is a deep learning API running on top of TensorFlow’s machine learning platform.
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It was developed to enable fast experimentation, which allows going from idea to result as
fast as possible, the key to doing good research.

4.5.1 Model Performance
Four metrics are implemented to measure the model performance: accuracy, recall, preci-
sion, and F1 Score.

The most widely-used and straightforward measure is classification accuracy, mathemati-
cally defined by the ratio of the total number of correct predictions and the total number
of predictions, as shown in Formula 4.2. True positive (TP) is an outcome where the
model correctly predicts the positive class. True negative (TN) is an outcome where the
model correctly predicts the negative class. On the other side, false positive (FP) is an
outcome where the model incorrectly predicts the positive class, and false negative (FN)
is an outcome where the model incorrectly predicts the negative class.

Accuracy = TP + TN

TP + FP + TN + FN
(4.2)

Accuracy is used to evaluate and fine-tune the objective function of each model. However,
accuracy is sometimes not enough to represent the overall performance because accuracy
can be high while other metrics di�er.

Precision is a metric that quantifies the number of cases the model correctly identified as
positive predictions (TP), out of all the cases classified as positive. It is calculated as the
ratio of correctly predicted positive examples divided by the total number of predicted
positive examples (Formula 4.3). It is also called the Positive Predictive Value (PPV).
High precision is the aim when the objective is to minimize false positives.

Precision = TP

TP + FP
(4.3)

Recall is another performance metric that measures the number of correct positive pre-
dictions (TP) the model correctly identified out of all positive predictions that could have
been made. For binary classification, it is calculated as the number of true positives di-
vided by the total number of true positives and false negatives (Formula 4.4). It is also
called Sensitivity or the True Positive Rate. Unlike precision, which only comments on the
correct positive predictions out of all positive predictions, recall indicates missed positive
predictions. In this way, recall provides some notion of the coverage of the positive class.
A high recall is aimed when the objective is to minimize false negatives.

Recall = TP

TP + FN
(4.4)
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Using accuracy as the defining metric is intuitive, but it is always advisable to use precision
and recall. There can be situations where accuracy is very high, but precision or recall
is low. Avoiding situations where the subject presents stress but the model classifies it as
no stress (FN) is better. On the other hand, when the subject is not su�ering stress and
the model predicts the opposite (FP), the objective is to avoid treating the subject with
no stress. Maximizing precision will minimize the number of FP, whereas maximizing the
recall will minimize the number of FN. Although high precision and high recall values are
aimed, achieving both simultaneously is hard. For example, if the model is tuned to give a
high recall, all the subjects who actually present stress will be detected, but many subjects
who do not su�er from it will treat a nonpresent problem. Similarly, high precision is aimed
to avoid giving any wrong and unrequired treatment, but many subjects who actually have
stress problems end up without any treatment.

Both metrics are important in medical diagnosis because subjects incorrectly classified as
su�ering from stress are equally important since they could indicate some other problems,
so the aim is not only for a high recall but also for high precision. Therefore, we need to
balance these two metrics, conveyed with an F1 Score. F1-score is the harmonic mean of
the precision and recall (Formula 4.5). This metric is easier to work with since the F1 Score
can be improved to indicate a good precision and a good recall value instead of improving
precision or recall.

F1score = 2 ◊ Precision ◊ Recall

Precision + Recall
(4.5)

4.6 Experimental Setup
One aim of this study is to provide a methodology for stress detection that can be replied
in a real-life scenario and outside laboratories in an environment not necessarily strictly
controlled, such as a patient home. Therefore, an experiment was set to obtain raw ECG
signals that can be classified for stress detection by following the proposed protocol.

The Single Lead Heart Rate Monitor AD8232, a cost-e�ective board used to measure the
heart’s electrical activity, is used for signal obtention. Besides, this module can extract,
amplify, and filter small biopotential signals. The Bio Protech ECG electrodes called
“telectrodes” are employed for this test. It uses an Ag/AgCl sensing element and hydro-
gel for adhesion which are excellent components for sensitive monitoring. For the signals
obtained with the module, another preprocessing step was applied to these ECG signals.
The module was powered using an Arduino Uno, a versatile microcontroller equipped with
the well-known ATmega328P and the ATMega 16U2 Processor (Figure 4.6. Signals were
recorded using the open-source Arduino software and saved into .csv files for their posterior
cleaning.

The experiment was performed on a healthy 25-year-old male subject seated in a relaxed
phase focused on deep breathing. No distractions were performed in order to achieve a
non-stress phase.
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Figure 4.6: ECG experimental setup.

In this case, since the raw signals contain noises, di�erent filters such as high pass, low
pass, notch, and combinations of them have been applied to the signal to analyze their
behavior and select the filter that cleans the signals the most, considering 0.4Hz as the
high cuto� frequency, 60Hz as the low cuto�, and placing the powerline at 60Hz. After
successfully cleaning the signals, the following steps of the methodology proposed in Figure
4.1 have been applied to obtain the HRV features and to test the classification protocol
using the selected ML models.

Biomedical Engineer 34 Graduation Project



Chapter 5

Results

5.1 Signals Preprocessing
The ECG signals were cleaned following the process mentioned in chapter 4, with the two
filters. Figure 5.1 illustrates the ECG signal before and after cleaning. A decrease in the
amplitude of the signal can be observed, especially in some noisy peaks after filters are
applied.

Figure 5.1: ECG signal before and after filters applied.

To analyze the filtration performance, Figure 5.2 zooms into the signals to observe their
behaviors. After the filtration, it could be noticed how the baseline wander was almost
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completely removed, the R peaks were more pronounced, and some other corruptions in
the signals were improved significantly.

Figure 5.2: Zoom into raw and clean ECG signals.

5.2 Feature Extraction
After cleaning the signals, these were split into the 30s windows, and a split window of 1s
was applied to each signal to obtain the intervals. Each interval was processed for the ex-
traction of the features in the mentioned domains, providing a total of 14 useful features for
the time domain: ‘MeanNN’, ‘SDNN’, ‘RMSSD’, ‘SDSD’, ‘CVNN’, ‘CVSD’, ‘MedianNN’,
‘MadNN’, ‘MCVNN’, ‘IQRNN’, ‘pNN50’, ‘pNN20’, ‘HTI’, ‘TINN’, while for the frequency
domain there are 4 useful features: ‘HF’, ‘VHF’, ‘HFn’, ‘LnHF’. Therefore, the data con-
sisting of the HRV values and the 18 features were normalized using the Formula 4.1 for
better data quality. The GSR signals were also split, obtaining the same number of values.
GSR data was labeled as proposed, providing the labels for the supervised classification,
while for the second database, the labels were obtained from the timestamp. Hence, the
normalized and labeled dataset forms a data frame with the last column as the labeled one
(No Stress:0, or Stress:1) Figure 5.3.
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Figure 5.3: All columns and first fifteen rows of the original dataset.

5.3 Feature Selection
The feature selection methods were performed to determine the features in the dataset
that most contribute to the classification task. The PC heat map plot obtained is shown
in Figure 5.4, where colors can show how much each feature correlates to the other. Addi-
tionally, each square contains its value of correlation that ranges between -1 and 1. If two
features have a correlation value of 1 or - 1, it implies that one set of the data is redundant,
and we can assume the two features have the same information content. Therefore, based
on the correlation value, we remove features that have a value above 0.9, assuming they
provide redundant information. This process results in the elimination of 4 features.

Figure 5.4: Heat map plot of Pearson’s Correlation Feature Selection.

A two-tailed p-value indicates the likelihood that two uncorrelated objects might produce
a Pearson’s correlation value as extreme as the calculated value. For that reason, we use
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the p-value to eliminate features almost perfectly correlated. For this purpose, we set the
null hypothesis to “The selected combination of dependent variables (features) do not have
any e�ect on the independent variable (Stress)”. As the statistical analysis states: if the p-
value is higher than the threshold, we discard that combination of features. Consequently,
we obtain a new dataset containing nine features shown in Figure 5.5, contributing to an
accurate classification based on the PC methodology.

Figure 5.5: Distribution plot of selected features.

Following the proposed methodology, RFE was performed as another feature selection
method. The estimator is one of the essential hyperparameters; an RF classifier is em-
ployed as the estimator. The other important hyperparameter is the number of features
to select, which must be chosen for the algorithm; however, it is also possible to automati-
cally select the number of features chosen by RFE with a Cross-Validation (RFECV) that
automatically finds the optimal number of features to keep. In RFECV, feature impor-
tance is calculated based on the estimator selected, RF classifiers, and a few features are
dropped in each iteration. A cross-validation generator is used, which splits the dataset
into a sequence of train and test portions. We employ the Repeated Stratified K-Fold
cross validator that repeats Stratified K-Fold (k smaller data sets) n times with di�erent
randomization in each repetition. This process is computationally expensive, but the great
advantage is that it does not waste too much data, which is an important factor given the
amount of data. The cross-validation is scored using accuracy as the metric. The RFECV
performed a mean and standard deviation accuracy of 75.7% and 0.024, respectively. The
RFE used an RF classifier, automatically selected a specific number of features, and fitted
the RF using the selected features. Exploring the model, we can see 16 features shown in
Table 5.1, used for the obtention of the results. Therefore, we obtain two datasets with a
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di�erent number of features selected based on two reliable feature selection techniques.

Table 5.1: Feature Selection Results using two techniques

FS Technique No. of features Features Selected

PC 9 SDNN, CVNN, MadNN, IQRNN, pNN50, pNN20,
HTI, TINN, HFn

RFE 16 MeanNN, SDNN, RMSSD, SDSD, CVNN, CVSD,
MedianNN, IQRNN, pNN50, pNN20, HTI, TINN,
HF, VHF, HFn, LnHF

5.4 Stress Classification
Stress classification with KNN and DT was performed using the two datasets to analyze
metrics scores and determine which features or, in this case, a set of features provide vital
information about stress. Since the number of stress cases does not di�er significantly
from nonstress cases, we can a�rm that the data is balanced. Therefore, both datasets
are ready for classification.

5.4.1 KNN Classifier
The KNN model as a classifier has one hyperparameter: the number of nearest neighbors,
and the choice of k has a crucial e�ect on its classification performance. The optimal choice
of the value k is highly data-dependent: generally, a larger k suppresses the e�ects of noise
but makes the classification boundaries less distinct. Figure 5.6 shows the di�erences in
boundaries as the k number of neighbors changes: a) 3, b) 6, and c) 9 neighbors. Based
on the 3-Class dataset, it is observed how the boundaries for each class change as the k
number increases.

Figure 5.6: K number influence on the model.

This hyperparameter was changed from 3 to 10 k neighbors to analyze the model’s behavior
and see which number provides the best accuracy. Once again, cross-validation is added to
the model to avoid overfitting, data leakage, and reduction of samples. Table 5.2 shows the
accuracy, precision, recall, and F-1 score obtained with the k neighbors. Each metric shows
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its mean value and its standard deviation. Experiment 1 references the dataset obtained
with PC feature selection, while Experiment 2 shows the results using the dataset obtained
with RFECV feature selection.

Table 5.2: KNN stress detection performance

Neighbors Accuracy Recall Precision F-1 Score

Experiment 1 (PC results dataset)
3 0.683 (0.024) 0.609 (0.038) 0.635 (0.031) 0.674 (0.024)
4 0.685 (0.022) 0.487 (0.035) 0.686 (0.041) 0.660 (0.024)
5 0.700 (0.024) 0.637 (0.041) 0.654 (0.033) 0.692 (0.025)
6 0.696 (0.026) 0.536 (0.040) 0.684 (0.041) 0.677 (0.028)
7 0.704 (0.024) 0.642 (0.041) 0.658 (0.032) 0.696 (0.025)
8 0.704 (0.022) 0.572 (0.044) 0.686 (0.033) 0.690 (0.024)
9 0.713 (0.027) 0.653 (0.045) 0.670 (0.035) 0.706 (0.027)
10 0.710 (0.025) 0.590 (0.049) 0.688 (0.035) 0.697 (0.028)

Experiment 2 (RFE results dataset)
3 0.692 (0.032) 0.614 (0.045) 0.648 (0.042) 0.683 (0.032)
4 0.698 (0.022) 0.485 (0.042) 0.717 (0.037) 0.671 (0.026)
5 0.705 (0.024) 0.611 (0.044) 0.671 (0.030) 0.695 (0.025)
6 0.701 (0.022) 0.521 (0.040) 0.704 (0.035) 0.680 (0.025)
7 0.713 (0.026) 0.630 (0.042) 0.678 (0.035) 0.704 (0.027)
8 0.716 (0.022) 0.562 (0.040) 0.714 (0.033) 0.699 (0.024)
9 0.722 (0.020) 0.629 (0.039) 0.693 (0.027) 0.712 (0.021)
10 0.720 (0.021) 0.565 (0.039) 0.720 (0.033) 0.703 (0.023)

5.4.2 DT Classifier
The DT classifier works with a criterion that measures the quality of the split. Since DT
aims to partition the data into homogeneous groups where the split nodes are pure, purity
in this context can be defined as minimizing the misclassification error. It can be measured
with the Gini index or cross-entropy. The algorithm evaluates nearly all split points and
selects the split point value that minimizes the purity criterion. However, many researchers
suggest that the choice of splitting or purity criteria will not significantly a�ect the tree
performance in most cases. The splitting process will be performed using the Gini index,
and the strategy to split each node is random, selecting a set of features and splits that
are less prone to overfitting.

Figure 5.7: DT depth as mss increases.
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Based on [109], the ideal min samples split (mss) values tend to be between 1 to 40 while
min samples leaf (msl) values tend to be between 1 to 20 for the CART algorithm, which
is the algorithm implemented in scikit-learn. Therefore, the model continues increasing
the depth of the tree until the stopping criteria are met, which in this case are the mss
and msl. Figure 5.7 and 5.8 illustrate the tree model’s complexity and depth as the
hyperparameters change. As seen in Figure 5.7, the tree classifier depth increases as the
number of mss increases. On the other side, it can be seen in Figure 5.8 that the tree
decreases in depth and complexity as the msl number increases.

Figure 5.8: DT depth as msl increases.

After hyperparameters tunning, the best minimum number of samples to split an internal
node value was 2, and the minimum number of samples required to be at a leaf node was
13 to obtain good performance for the DT. The data is split into train and test sets for this
classification with a 70% and 30% ratio, respectively. Metrics are measured against the
test or validation set to detect overfitting problems. Results of the di�erent experiments
are shown in Table 5.3, where mss refers to the minimum samples to split and msl to the
minimum samples to be at a leaf node.
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Table 5.3: DT stress detection performance

mss msl Accuracy Precision Recall F-1 Score

Experiment 1 (PC results dataset)

2

4 0.646 0.665 0.758 0.709
8 0.640 0.668 0.732 0.698
12 0.662 0.703 0.701 0.702
13 0.655 0.712 0.661 0.686
16 0.672 0.721 0.692 0.706

3

4 0.632 0.664 0.715 0.689
8 0.647 0.667 0.758 0.709
12 0.652 0.693 0.697 0.695
13 0.692 0.706 0.789 0.745
16 0.682 0.691 0.783 0.734

5

4 0.683 0.688 0.795 0.738
8 0.712 0.735 0.761 0.748
12 0.647 0.653 0.790 0.715
13 0.680 0.687 0.790 0.735
16 0.688 0.696 0.788 0.739

Experiment 2 (RFE results dataset)

2

4 0.703 0.732 0.794 0.762
8 0.695 0.752 0.732 0.742
12 0.683 0.748 0.709 0.728
13 0.730 0.751 0.800 0.775
16 0.727 0.735 0.829 0.779

3

4 0.686 0.708 0.781 0.743
8 0.708 0.743 0.760 0.752
12 0.732 0.746 0.818 0.780
13 0.712 0.758 0.742 0.750
16 0.720 0.743 0.793 0.767

5

4 0.712 0.746 0.765 0.755
8 0.703 0.735 0.765 0.750
12 0.700 0.725 0.779 0.751
13 0.715 0.740 0.786 0.762
16 0.714 0.743 0.774 0.759

5.4.3 RF Classifier
As mentioned, RF is an assembly of random decision tree classifiers, where the prediction
output is made of all the prediction outputs by the individual classifier. The two RF
hyperparameters are the number of decision trees to be generated (Ntree) and the number
of variables to be selected and tested for the best split when growing the trees (Mtry).
RF classification model is characterized as being computationally e�cient. It is a model
that does not overfit because many uncorrelated models (classification trees) operate as
a committee to outperform any individual trees. Therefore, Ntree can be as large as
possible. For this stress classification task, Ntree works as the hyperparameter varying
from 50 to 5000 to analyze the relationship between the number of trees and classification
performance. Results are shown in Table 5.4.
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Table 5.4: RF stress detection performance

Ntree Accuracy Precision Recall F-1 Score

50 0.753 0.781 0.801 0.791
100 0.747 0.778 0.794 0.786
200 0.744 0.781 0.783 0.782
300 0.753 0.789 0.787 0.788
400 0.753 0.786 0.792 0.789
500 0.758 0.792 0.794 0.793
600 0.751 0.786 0.789 0.788
700 0.754 0.792 0.785 0.788
800 0.754 0.786 0.796 0.791
900 0.781 0.799 0.839 0.814
1000 0.763 0.795 0.801 0.798
2000 0.755 0.789 0.794 0.791
3000 0.755 0.787 0.796 0.792
4000 0.758 0.790 0.799 0.794
5000 0.757 0.790 0.794 0.792

5.4.4 SVM Classifier
The SVM classifier is suited for both linear and non-linear data classifications. It aims to
project separable samples onto another higher dimensional space by using di�erent types
of kernel functions. The use of varying kernel methods helps in dealing with computational
complexity issues. Due to the popularity of SVM for classification tasks, there has been a
focus on studying these kernel functions, given their significant role on SVMs. Choosing the
correct kernel is crucial for classification; popular kernels are linear, polynomial, Gaussian,
Radial Basis Function (RBF), Laplace RBF, Sigmoid, and Anove RBF Kernel, among
others. Considering that the features used for this stress classification are linear HRV
indices, a linear kernel is implemented for the SVM model. Another important tuning
parameter is the regularization parameter (C), which tells the SVM model how much to
avoid misclassifying each training example. C is inversely proportional to the strength of
regularization and the number of support vectors.

Figure 5.9: C influence on hyperplane.

As C is higher, the hyperplane will be smaller, and the training data miss classification
rate will be lower. Figure 5.9 shows these changes as C takes di�erent values tested in
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this study: a) 0.01, b) 1, and c) 100. However, increasing C does not always mean better
accuracy since the model can overfit. In this case, tests have been performed with di�erent
C values, and the results are shown in Table 5.5.

Table 5.5: SVM stress detection performance

C Accuracy Precision Recall F-1 Score

0.001 0.634 0.655 0.790 0.716
0.01 0.676 0.739 0.719 0.729
0.1 0.674 0.747 0.697 0.721
1 0.684 0.750 0.692 0.720
10 0.683 0.751 0.687 0.718
100 0.690 0.760 0.687 0.722

The regularization parameter C set to 100 has achieved the highest accuracy. However,
cross-validation has been performed to compare the accuracy to ensure the SVM model
is not overfitting. It has shown that SVM models with C equal to or greater than 1 are
overfitting. Therefore, it can be determined that the SVM classifier with C = 0.01 scores
the highest accuracy with 67.6% and an F1 score of 0.729.

5.4.5 MLP Classifier
The MLP is a supervised learning algorithm that learns a function by training on a dataset.
It can learn a non-linear function approximator for either classification or regression. It is
di�erent from logistic regression in that between the input and the output layer, there can
be one or more non-linear layers, called hidden layers. MLP as a classifier comprises dif-
ferent hyperparameters to be tuned. Therefore, a cross-validation and grid search (CVGS)
has been performed for this model to find the hyperparameters most suitable for this clas-
sification. For the CVGS technique, the parameters to vary are hidden layer sizes that
specifies the number of hidden layers and hidden units, activation which is the function for
the hidden layer, solver for weight optimization, max iter which is the maximum number
of iterations, and alpha which is an important parameter used for regularization that helps
to avoid overfitting by penalizing weights with large magnitudes.

After CVGS, the technique determined the best hyperparameters as followed: hidden layer sizes
= (100,), activation = logistic, solver = adam, max iter = 300 and alpha = 0.1. There-
fore, the dataset tested the MLP classifier using the mentioned hyperparameters. However,
more experiments were performed, varying the regularization parameter, and the results
are shown in Table 5.6.

Table 5.6: MLP stress detection performance

alpha Accuracy Precision Recall F-1 Score

0.001 0.732 0.752 0.791 0.771
0.01 0.735 0.751 0.800 0.775
0.1 0.724 0.746 0.781 0.763
1 0.670 0.683 0.784 0.730
10 0.571 0.570 0.995 0.725
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Once the best hyperparameters of each ML model have been determined, we can perform
other experiments changing the window size used for the signals. For the experiments per-
formed, the window intervals have a size of 30 seconds. By splitting the signals into 20 and
40 seconds intervals and using the hyperparameters that acquired the highest accuracies
on each model, we can see the performance scores in Table 5.7.

Table 5.7: ML performance with data split on di�erent windows

Window size Metric KNN DT RF SVM MLP

20s

Accuracy 0.704 0.680 0.751 0.674 0.714
Precision 0.726 0.693 0.751 0.711 0.722
Recall 0.754 0.756 0.819 0.731 0.795
F1 score 0.719 0.723 0.784 0.721 0.757

30s

Accuracy 0.722 0.732 0.781 0.676 0.735
Precision 0.693 0.746 0.799 0.739 0.751
Recall 0.629 0.818 0.839 0.719 0.800
F1 score 0.712 0.780 0.814 0.729 0.775

40s

Accuracy 0.725 0.707 0.754 0.664 0.734
Precision 0.767 0.739 0.778 0.712 0.753
Recall 0.758 0.770 0.807 0.712 0.775
F1 score 0.763 0.754 0.792 0.712 0.764

Finally, once obtained the best hyperparameters were found for each model, in order to
increase the metrics scores, cross-validation (CV) was performed to evaluate the models.
A k-fold-cross-validation generally results in a less biased estimate of the model skill than
simple train-test split methods. A value of k=10 is widespread in applied ML; therefore, a
10-fold-cross-validation is performed in this case, and results are shown in Table 6.1 with
their accuracy and F1 scores.

Table 5.8: ML models’ results after CV

Model Accuracy F-1 Score

KNN 74.9% 78.8%
DT 73.2% 78.0%
RF 82.4% 87.8%
SVM 67.6% 72.9%
MLP 73.5% 77.5%

5.5 Experimental Setup
Domestic signals were successfully obtained, presenting noise that made it challenging to
analyze the di�erent peaks of a standard ECG signal, as seen in Figure 5.11.

After the filters were applied, the signals’ results are shown in Figure 5.11, where the
conditioned signal refers to the combination of the three filters mentioned. It can be seen
how each filter changes the signal amplitude, and the noises are reduced with most of them.
However, the signal resulting from the combination of the high and low pass filters looks
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Figure 5.10: Raw ECG signal obtained with the AD8232 module.

cleaner and with fewer corruptions. Therefore, these results are used to obtain the HRV
features.

Figure 5.11: Raw ECG and ECG cleaned with di�erent filters.

An interval with the 16 features was obtained the same way as those from the chosen
databases, and classification was performed once the best classifier was determined to test
this stress prediction protocol. The obtained interval was successfully predicted using the
RF model, which was a nonstress phase, while the other models could not accurately
predict it. However, domestically obtained signals are not long enough compared to the
signals used to train and test the models, which can lead to errors in the frequency features
that depend on the length of the signals. Consequently, more signal recordings are needed
to test the developed protocol.
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Chapter 6

Discussion

This work proposed two feature selection methods, as seen in Table 5.1; the PC method
provided 9 HRV features while RFE eliminated more elements by selecting 16 for the classi-
fication of stress. Each set of features formed a dataset for stress classification experiments
using two ML models: KNN and DT classifiers.

For the classification with KNN, both experiments were tested using the same hyperpa-
rameters to determine which dataset of features performs better for the model. Besides
obtaining high results in the two experiments, the dataset consisting of features selected
by the RFE method outperformed the dataset made by the PC feature selection. The
accuracy and f1 scores in the second experiment were higher no matter the number of
neighbors used in the model. In the same way, experiment 2 in the DT stress classification
outperformed each test for the di�erent number of samples at the node and the number of
samples to split. It was enough information to determine the 16 features selected with the
RFE technique, provided relevant information that most contributes to this stress detec-
tion task, and can be used to feed an ML model. Therefore, the other ML models tested in
this study were fed with these 16 features as the dataset to analyze their performance after
hyperparameter tunning and determine which model and hyperparameter can provide the
highest accuracy for stress classification.

For the classification using the KNN classifier, as shown in Table 5.2, the No. of k neighbors
= 9 o�ers the highest accuracy for each experiment. Analyzing the other metrics of the
KNN model with 9 k neighbors, precision’s performance is more outstanding than recall in
both cases, which can be good since we want to detect as many subjects who su�er from
stress as possible. Regarding the F1 score, both models with 9 k neighbors have the best
balance between recall and precision. Therefore, we can suggest that the KNN classifier
with nine neighbors is a good approach for stress detection using HRV features.

The DT classifier had two hyperparameters to be tuned. Experiments performed with
three minimum samples to split an internal node showed higher performance scores than
the other two experiments, Table 5.3. Additionally, 12 minimum samples at a leaf node are
needed to outperform other models. Again, the performance was better for accuracy and
the f1 score, which is essential for this medical task, by determining an excellent detection of
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subjects su�ering from stress and a balance between precision and recall. DT performance
results show a practical approach for stress detection since another study that tested this
algorithm for detecting anxiety, depression, and stress [86] achieved an accuracy of 62.8%
and an F1 score of 59.2% for stress classification.

When employing the RF classifier, all the tested models perform with a great accuracy
greater than 70% besides the number of trees, showing no significant di�erence between
their performance (Table 5.4. However, the classification using 900 and 1000 Ntress out-
performs the other models, positioning the 900 Ntress model as the most accurate among
the RF classifications with an accuracy of 78,1%. The RF has performed a reliable stress
classification since other studies concluding that RF is the best model for stress detection
tasks have achieved less accuracy than these results, such as in [110] where the maximum
accuracy was 60%. This RF model with 900 trees also provides the highest F1 score of
0,814, showing an outstanding performance in balancing recall and precision.

The regularization parameter C was the hyperparameter tunned to analyze the misclas-
sification rate for the SVM model. Since this hyperparameter is prone to overfitting,
cross-validation showed that higher C values tended to overfit the data. Therefore, it was
observed that SVM is a model that tends to overfit this task, and C is an essential hy-
perparameter to take into account for analyzing the performance. On the other side, C =
0.01 is a value that did not overfit and performed better than di�erent values (Table 5.5.
However, the accuracy of 67.6% as obtained with this model is not high enough compared
to the previously discussed models. As seen in Table 3.2, many studies obtained a high
performance when using an SVM model, and this algorithm outperformed other ML algo-
rithms. In this case, the SVM classifier has been able to classify but has not outperformed
models as the KNN and DT studied here.

In the MLP classifier, a previous step of CVGS was performed due to the number of
hyperparameters. However, the alpha values, a critical hyperparameter, were also tuned
after determining the best choices for the other hyperparameters. Besides the CVGS
technique selected alpha = 0.001 as the best regularization value, additional experiments
showed that with alpha = 0.01, the MLP achieved an accuracy, recall, and F1 score a little
higher. On the other side, it can be observed in Table 5.6 that as the alpha value increases,
the model performance decreases. Therefore, alpha remains at 0.01 for other experiments.
The accuracy obtained is 73.5% which seems valid since [95] performed a stress detection
with di�erent levels where MLP achieved an accuracy of 67%. When performing a binary
classification with non-filtered signals, the accuracy increased significantly; however, the
authors focus on other metrics, such as the F1 score and the area under the curve.

By looking at the di�erent machine learning models’ performance, it is possible to suggest
that the ECG preprocessing methods, features extraction, and selection has been success-
fully performed to obtain accurate stress classifications (Figure 6.1). Therefore, we can
assume the RFE technique with cross-validation is a reliable methodology for selecting
HRV features, as in [111], where RFE was employed to select the HRV top features that
fed an ML algorithm.
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Figure 6.1: Bar chart of models’ accuracies

Comparing the machine learning models used for classification, it is observed that besides
every model performing an accurate classification by a correct hyperparameter tunning
based on literature search and experimenting, the RF model obtained the highest one.
Table 6.1 shows the highest accuracy of each model, its F1 score, and the tunned hyperpa-
rameters each model used for obtaining the mentioned performance scores. These results
indicate that the stress classification methodology proposed using HRV features and an
RF classifier with 900 the number of trees for classification can successfully detect stress
in real-time.

Table 6.1: ML models with highest accuracy

ML model Accuracy F-1 Score Hyperparameters

KNN 74.9% 78.8% 9 K-nearest neighbors
DT 73.2% 78.0% 3 mss and 12 msl
RF 82.4% 87.8% 900 numbers of trees
SVM 67.6% 72.9% C = 0.01
MLP 73.5% 77.5% alpha = 0.01

Since the objective of this study is to develop an accurate stress detection model with the
potential to be applied to real-time applications, the evaluation of ML models was evaluated
on di�erent and small sliding window sizes of the ECG signal to determine which size could
provide the best accuracy. Table 5.7 exposes the ML models’ performance with their best
hyperparameters in windows of 20, 30, and 40 seconds. Besides being the KNN model
with a 40s window size, a model with better performance than the 30s window size, the
30s window size shows a generally more outstanding performance than the other window
sizes in terms of accuracy. Regarding the F1 score, there are slight di�erences between
some models and window sizes; however, generally speaking, the 30s window size has a
higher F1 performance. As a result, it is correct to assume that the segmentation method
for the ECG signals into a fixed window of 30s which coincides with the study of Rastgoo
et al. [77] where the sliding window size was a parameter studied for the performance of a
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DL model for stress classification, showing the 30s scored the best accuracy compared to
10 and 5 seconds.

Consequently, analyzing the ML models’ performance with the dataset obtained by seg-
menting ECG signals into 30s window size and the 16 features determined after an RFE
technique is correct. That being the case, RF is the most accurate model (Table 5.7).

RF algorithms have already been used for stress classification problems, as shown in Table
3.2. However, in most cases, other models have outperformed the RF technique. For ex-
ample, a study classifying stress compared di�erent ML models, including an RF classifier;
however, the highest score was achieved with a Boosting model that performed 75,13%
[112]. In the same way, Priya et al. [86] studied the prediction of anxiety, depression,
and stress using di�erent ML algorithms, where the results showed 74.2% as the highest
accuracy for stress classification using an NB algorithm; however, the F1 score performed
with the model was 55.8%, which as mentioned before, suggests poor precision and poor
recall meaning the number of FP and FN are not as low as expected. On the other side, a
study in 2017 that classified stress with some models, including RF and NB, concluded that
RF got the highest prediction accuracy, matching these results. Other studies described
in Table 3.2 did not get the highest accuracy with RF as the classifier. It can be due to
the di�erent techniques used for classification, such as filtering or feature selection. This
study explains that many parameters, from the data to the model selection, can vary the
final performance.

One aim of this study is to provide a methodology for stress detection that can be replied
in a real-life scenario and outside laboratories in an environment not necessarily strictly
controlled, such as a patient home, so that with simple ECG sensors, a stressed person
can be detected based on this ML classification methodology. Therefore, the results in this
study perform remarkably considering the number of features used, especially the number
of signals, which is 1: ECG. Additionally, experimentation using an AD8232 module and
an Arduino was performed to obtain nonstressed ECG signals, proving the whole protocol
can classify and detect stress or the lack of it. Most studies use two or more signals for
stress classification tasks. For example, [87] used four physiological signals such as ECG,
EMG, GSR, and RESP, achieving an accuracy higher than 90%. Many previous works
have used this multi signals methodology (Table 3.2). Nevertheless, although obtaining a
high accuracy, multiparameter techniques include more sensors, more computational cost,
and significantly more discomfort for the subject to whom the experiment can be replied,
which can induce stress and lead to the accurate detection of temporal stress that does not
need to be treated.

Limitations
This thesis is trying to develop a system to detect stress using physiological signals, focusing
on using a supervised ML model to classify ECGs since these signals can be easily monitored
in an ambulant environment. The main limitation of this classification is the lack of data
from the database. The “Stress Recognition in Automobile Drivers” database lacks signals
for some participants, or the signal data are incomplete, which reduces the amount of
data. It reduces the dimensions of the dataset, which connotes less data for training and
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testing the model. As mentioned in 4, the complete data from the original experimental
acquisition study is not publicly available, consisting of hours or signal recordings.

Additionally, stress markers are not present in all the experiments, so the GSR signals have
been employed to determine the presence of stress and label the data. Consequently, the
classification models have been unable to improve their performance by changing hyperpa-
rameters or using cross-validation techniques. However, the algorithms used have obtained
acceptable results considering the data dimensions and the number of signals used.

The room for improvement is significant. More ECG recordings from stress experiments
can yield a considerable amount of data and add up an improvement in the dataset. In this
case, the classification models have more information for training and testing, suggesting
an improvement in the metrics.
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Chapter 7

Conclusions

This project discussed three main topics: stress definition, the physiological stress response,
and machine learning techniques for stress classification. Stress has been defined as focused
on the homeostasis changes induced in the body and how these alterations lead to severe
health problems. Therefore, the stress definition from Hans Selye has been chosen for this
study, which addresses stress as psychological or physiological agents (stressors) that elicit
a behavioral and physiological stress response.

The most common physiological signals and machine learning techniques for stress detec-
tion in the past five years were discussed. However, important information is lacking in the
literature. For example, the features extracted and selected from physiological signals and
their combinations for use in ML classification are not explicitly stated. Although authors
have addressed the obtention of the data in the methodology, it is inconclusive due to
di�erences in protocols, stressors, and analysis techniques, so it is not clear the processed
dataset or set of features that provide the accuracies the studies obtain as results. On the
other side, most studies or the signals for their datasets have been executed in laboratories
or under controlled environment conditions. Thus, whether insights based on these studies
can be extended to the ambulant environment in real-life events should be investigated.

Furthermore, the literature review shows which ML techniques are most suitable for stress
detection using physiological signals is unclear. Each study used specific biosignals or sets
to obtain features that are not always detailed. The di�erences in data, methodologies,
and results presume that a one-model-fits-all solution is not feasible for this task. Each
model should be personalized based on the dataset input, methods, and purpose.

The optimal physiological signals for stress detection were identified based on the funda-
mentals of stress, its e�ects on the body, and the di�erent systems used to measure it. ECG
was selected, which provides HR data and HRV features in time and frequency domains.
This signal was chosen considering the environment of the experiments for their obtention,
which is a real-life task, and considering that ECGs can be obtained both in controlled and
not controlled settings, which is crucial for the objective of this project and future research.
Additionally, essential factors for this signal choice are the computational cost that signals
carry and their feasibility in the acquisition, which implies it does not produces discomfort
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to the subjects or induces psychological or physical stress that leads to misclassification.

Experiments without the cleaning or prepossessing step led to an error in the peaks detec-
tion, which did not permit the feature extraction of the signals. Therefore, ECG signals
were cleaned using two filters to eliminate the most common noises. Then a window slid-
ing technique was applied to segment the signals into intervals of 30 seconds before HRV
analysis. Afterward, eighteen features from the ECG segments were extracted, and the
most relevant ones were identified as essential data for the classification task using two
feature selection techniques. In the same way, GSR signals were segmented and used for
labeling the data to obtain an appropriate dataset for supervised classification. The fea-
tures selected with each technique, PC and RFE, formed a dataset that was tested for
stress classification using two models: KNN and DT. After experiments were performed,
based on the results, it was concluded that the RFE technique with a CV provides the set
of features that primarily contribute to this stress classification task.

Five supervised machine learning algorithms were employed for stress classification once the
features were selected and the data was normalized. KNN, DT, RF, SVM, and ANN were
used for di�erent experiments. Besides considering the hyperparameters set on previous
works for each classification model, it was necessary to perform hyperparameter tuning
to determine the values that can obtain high performance of the classifier. Therefore,
experiments were carried out with varying hyperparameter values, and the success of each
model was measured using four di�erent metrics: accuracy, precision, recall, and F1 score.
Accuracy and F1 scores were mainly considered since they provide information about
the correct and incorrect predictions of the model and yield a general overview of the
balance between precision and recall, which are essential information for health-related
classifications.

The segmentation of the signals performed in the preprocessing step was another parameter
analyzed and tested using the models with their best hyperparameters. It was concluded
that segmenting the signals in window sizes of 30s preserves enough data for the peaks
detection and features extraction and their posterior use as data input for classification.
The algorithms’ performance showed that all five could classify stress with more than 65%
accuracy. However, it is concluded that the RF classifier outperformed the other models
with an accuracy of 82.4% and an F1 score of 87.8% when setting the number of trees to
900 and performing a binary stress classification based on 16 HRV features obtained from
the time and frequency domain.

On the other side, the classifier that performed the worst is the SVM with an accuracy of
67.6%, an F1 score of 72.9%, and setting its regularization parameter to 0.01; metrics ob-
tained after a cross-validation technique to avoid overfitting of the model when increasing
its regularization parameter. The analysis showed that some of these results agree with
previous studies where the RF classifier has outperformed other models when detecting
stress. However, the SVM is the model mainly used for this task based on the review,
and besides performing less than other complex models in some studies, it has been char-
acterized as the most accurate model in others. After examining the di�erence in data
and signals used, the features extracted, and the methodology proposed, it is proper to
suggest these factors create a significant di�erence in each model’s performance resulting
in di�erences in some models’ e�ciency compared to previous works.
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The current work aims to provide a methodology to solve the problem of stress detection out
of laboratories and controlled environments, which is fundamental to the goal of continuous,
physiological stress detection in daily life. One physiological signal that can be easily
acquired and monitored in ambulant environments has been chosen to keep the complexity
of this system and computational cost low, so the proposed protocol can be implemented
in daily-live activities to detect stress in modern life. Therefore, considering the amount
of data, the methodology, and the classifiers used, it can be concluded that these results
provide a baseline for ambulatory population monitoring to detect physiological responses
to stress and provide early personalized treatment to avoid future diseases. Other devices
can also be used to determine stress by applying the same protocol described, such as
smartwatches, which can acquire ECG signals, making it easier for some people to monitor
their stress levels in daily life continuously and track their daily levels of stress, whether
it is for personal purposes such as being aware of the activities that can lead to stress or
for medical purposes when a person has been detected with problems where stress and
cortisol levels must stay low. However, further research is needed to investigate if these
conclusions generalize to multiple clinical diagnoses. These results highlight the potential
of using electrocardiogram signals to detect stress by measuring the body’s responses.
Further longitudinal research using wearable technology to investigate stress development
could better understand the development of stress-related disorders.

Future Work
The application of this thesis can result in a real-time personalized stress detection model.
Controlled experiments for data collection can be performed in daily-life activities that can
induce physiological or psychological stress, using wearable devices that collect this data.
The signals obtained can feed and train the proposed classification models, improving
the performance. This stress classification protocol can be used in hospital and clinical
environments; however, it would have a better impact outside these settings, like in-house
environments for regular analysis of stress in people so they can analyze their stress records
at the end of each day to recognize their emotions and be alerted in the early stage of chronic
stress.
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Appendix

GitHub Repository
All the codes and work carried out for the present research project can be found at the
following GitHub repository:

https://github.com/paolavasquez98/Stress_Detection

Biomedical Engineer 69 Graduation Project

https://github.com/paolavasquez98/Stress_Detection
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