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Abstract
The theory of cosmological inflation arises in order to solve the problems and inconsistencies that the classical
theory of the Big Bang presented. This theory states that there was a period of exponential growth of the Universe
for a very short period of time. Cosmic inflation models are of great importance to solve the problems of the initial
conditions that describe the evolution of the Universe. Despite a large number of proposed models, some of these,
such as the chaotic or tachyon potential, are often ignored due to the poor approximation they have to cosmological
quantities, such as the spectral indices ns and r. The introduction of a step potential within these potentials generates
oscillations in the scalar power spectrum that improves the fits to the observational data obtained by space telescopes,
at angular momentum l = 22 and l = 40 of the angular power spectrum. The numerical analysis made on each
of the components that make up the chaotic potential with a step shows the different behaviors that these variables
have. The spectral indices calculated for the best fit model studied, show a good approximation to those obtained
observationally.
Keywords: Cosmological inflation, chaotic potential, scalar power spectrum, angular power spectrum
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Resumen
La teoría de la inflación cósmica surge con el fin de solucionar los problemas e inconsistencias que presentaba
la teoría clásica del Big Bang. Esta teoría afirma que hubo un periodo de crecimiento exponencial del Universo
durante un periodo de tiempo muy corto. Los modelos de inflación cósmica son de gran importancia para resolver
los problemas de las condiciones iniciales que describen la evolución del Universo. A pesar de la gran cantidad de
modelos propuestos, algunos de estos, como el potencial caótico o de taquiones, suelen ser ignorados debido a la mala
aproximación que pueden tener en las cantidades cosmológicas como los índices espectrales ns y r. La introducción
de un potencial escalón dentro de estos potenciales genera oscilaciones en el espectro de potencia escalar que mejora
los ajustes de los datos observacionales obtenidos por los telescopios espaciales, en los momentos angulares l = 22
y l = 40 del espectro de potencias angulares. El análisis numérico hecho sobre cada uno de los componentes que
conforman el potencial caótico con un escalón, muestra los distintos comportamientos que tienen estas variables.
Los índices espectrales calculados para el modelo de mejor ajuste, muestran una buena aproximación a los obtenidos
observacionalmente.
Palabras Clave: Inflación cosmológica, potencial caótico, espectro de potencia escalar, espectro de potencia angular.
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Chapter 1

Introduction

1.1 General Overview
How our Universe came about and how it has evolved are two of the great questions that humans have asked
themselves throughout history. Although there have been many theories that seem to give an answer to these two
questions, the one that has convinced scientists most, due to the observational evidence found, is the so-called Big
Bang theory.
In 1915, Albert Einstein published his famous theory of General Relativity in which he provides a new tool for
understanding the dynamics of the Universe. The first person to use the equations that Einstein had proposed was the
Russian scientist Alexander Friedman in 1920, whose objective was to show that the Universe could not be static; it
either expanded or compressed. Later, in 1927, the Belgian priest George Lemaitre would use the mathematics of
General Relativity to propose a Universe in constant expansion, which he called the Big Bang. The Big Bang theory
was born with the aim of giving an explanation to the origin and expansion of the Universe from a hot spot, called
a singularity, where all matter and the space in which it moves were formed. Currently, the observations made by
Edwin Hubble in 1927 discovered that galaxies are moving away from each other, and the discovery of the microwave
background radiation (CMB) in 1965, support Lemaitre’s theory of birth and subsequent expansion of the universe.
Although the acceptance of the Big Bang, as a solution to the problem of the origin of the Universe, has been widely
accepted by the scientific community, it presents issues such as the problem of the horizon and flatness, which have
only been resolved through cosmological inflation. The cosmological inflation was proposed by the physicist Alan
Guth in 1981. The main objective of this approach is to give an explanation to the anisotropies observed in the CMB
and the large-scale planar structure of the Universe. Many different inflationary models have been proposed, each
with different underlying physics and motivation. Currently, testing the validity of each model is an active area of
investigation within inflation.
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2 1.2. GENERAL AND SPECIFIC OBJECTIVES

1.2 General and Specific Objectives
• The main objective of this paper is to numerically analyze the scalar perturbation equations of the chaotic

inflationary model with a step, in order to understand the behavior of the height, c, location/coordinate, ϕstep,
and width, d, parameters that characterize this step potential. The specific objectives of this work are to:

– Determine the influence of the step potential on the chaotic potential.

– Establish new upper and lower limits of the parameters c, ϕ and d, of the spectral index ns and of the
scalar-to-tensor ratio r.

– Analyze the different oscillatory behaviors that the chaotic potential with a step presents with different
variations in the values of its parameters.

– Find the best combination of values in the parameters of the chaotic potential whose results in the spectral
index and scalar-to-tensor ratio are the closest to the results obtained experimentally by the Planck space
telescope.

The analysis begins in Chapter 2, where the theoretical background necessary for a correct understanding of this
work is detailed. Then, Chapter 3 shows the methodology used, where the calculations performed to obtain the
equations of the scalar and tensor perturbations are shown, as well as the spectral indices and the tensor-to-scalar
ratio. Finally, Chapter 4 shows the scalar power spectrum obtained for all the cases analyzed, each one with its
respective values of spectral index ns and tensor-to-scalar ratio r.



Chapter 2

Theoretical Background

2.1 The Big Bang Theory
The idea of a large-scale homogeneous and isotropic Universe, that is, a similar Universe in all parts and directions,
arises from different measurements that have been made with different telescopes. This postulate states that there was
a great explosion about 13.8 billion years ago, when the amount of matter was zero and the density and temperature
were infinite. Table (2.1) shows the evolution of the Universe from the Big Bang to the present. An expanding or
contracting homogeneous and isotropic Universe can be described by the Friedmann-Lamaître Robertson-Walker
(FLRW) metric, which is an exact solution to the Einstein field equations. Under certain circumstances the initial
metric can be written as:

ds2 = c2 dt2 − hi j dxi dx j, (i, j = 1, 2, 3) (2.1)

Time [s] Temperature [◦C] Density [kg/m3] Features
0 ∞ ∞ The size of the Universe is zero

0.01 1 × 1011 —- Energy dominates over radiation
2 1 × 1010 1 × 108 Particles and antiparticles begin to form

180 1 × 109 —- Hydrogen and helium begin to form
12000 —- —- 1/4 of the Universe is Helium

3.15 × 1011 1 × 104 1 × 10−17 Matter dominates over radiation
Now −270 1 × 10−27 Temperature we currently measure

Table 2.1: Temperature and density of the Universe from the singularity to the present.

3



4 2.1. THE BIG BANG THEORY

where hi j are the space-time coordinates (t, r, θ, ϕ). From Eq. (2.1) the standard form of the FLRW metric can be
obtained, which has the following form:

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2 dθ2 + r2 sin2 θ dϕ2
)
. (2.2)

This equation is formulated in polar coordinates, where a(t) is the cosmic time-dependent scale factor that describes
the expansion of the Universe. The spatial curvature is represented by the letter k, which is a constant that can only
take 3 values: k = 1, k = −1, and k = 0. When k = 1 the Universe describes a positive spatial curvature, if k = −1
the Universe curvature is negative, and for k = 0 the spatial curvature is flat; Measurements currently taken show
that our Universe has a value of k very close to 0, in other words our universe has a flat spatial geometry (Euclidean
geometry). For this reason, it is convenient to normalize a(t) to get a value equal to 1 at current times.
A comoving point can be defined as one that moves together with the expansion of the Universe. The measured
distance from our place of location to a random comoving point can be represented by the formulation:

r(t) = x a(t), (2.3)

where x is known as the comoving distance. The conformal time is another useful quantity that is used very often in
cosmology, whose physical expression is given as:

dτ =
dt

a(t)
. (2.4)

In the area of cosmology, a conventional notation is considered where the speed of light (c) has a value equal to 1,
so all speeds will be measured around this c value2; in this work we consider all equations with this value. Other
quantities such as the Planck mass (Mpl), Plack time (Tpl), and the Plack length (Lpl) have the values of 4.342× 10−6

g, 2.70 × 10−43 s, and 8.10 × 10−33 cm respectively. In General Relativity, the evolution and space-time properties
of the Universe are described by Einstein’s field equations∗ 4, which are mathematically described as:

Rµν −
1
2

gµνR − gµνΛ =
8π
M2

pl

Tµν, (2.5)

where Ruv and R are the Ricci tensor and scalar respectively, G is Newton’s universal gravitation constant, Guv is the
curvature tensor, and Λ is Einstein’s gravitational cosmological constant. The metric tensor (guv), that describes the
entire geometric structure of space-time, and the energy-momentum tensor (Tuv), that describes the configuration of

∗The Einstein field equations are a set of 10 equations proposed by the German scientist Albert Einstein, which describe gravity as a
deformation of space-time produced by its interaction with matter and energy.
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matter and energy of the Universe5, are represented by:

gµv =


−1 0 0 0
0 a2(t)

1−kr2 0 0
0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ

 , (2.6)

T µ
v =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 , (2.7)

For simplicity, we can write Eq. (2.5) in another way, multiplying the entire expression by the inverse of the metric
tensor, so we will only have an equation with scalar terms with the form:

R + 4Λ = −
8π
M2

pl

T, (2.8)

It can be seen that within the equation we have a T that would represent an energy-momentum scalar. If we solve for
R from Eq. (2.8) and replace it in Eq. (2.5) we will obtain:

Rµν + gµνΛ =
8π
M2

pl

(
Tµν −

1
2

gµνT
)
. (2.9)

Writing this equation this way, with the dependence on the tensor and the energy-momentum scalar on the right hand
side of Eq. (2.9), makes calculations easier. Due to the homogeneity and isotropy of the Universe, Tuv can be written
as an expression of a perfect fluid as follows:

T µν = (ρ + p) UµUν − gµνp. (2.10)

where ρ represents the energy density, p is the internal pressure, and U is the four-speed vector. In a universe that
follows established cosmological principles, the vector U will only have the time component:

Uµ = (1, 0, 0, 0). (2.11)

The energy-momentum scalar will also have dependence on ρ and p:

T = ρ − 3p, (2.12)

Substituting Eqs. (2.6), (2.7) and (2.12) in Eq. (2.9), we obtain a spatial and temporal solution to the Ricci tensor
that depends on the scale factor. The spatial part of Einstein’s field equations will be the expression:

ä
a
+ 2

ȧ2

a2 + 2
K
a2 =

4π
M2

pl

(ρ − p) + Λ, (2.13)
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While the temporary part will be:
ä
a
= −

4π
3M2

pl

(ρ + 3p), (2.14)

If we substitute Eq. (2.14) into Eq. (2.13), we will obtain a single equation:

H2 =

( ȧ
a

)2
=

8π
3M2

pl

ρ −
k
a2 . (2.15)

This last formulation is known as the Friedmann equation, which represents a solution to the dynamic evolution of
the Universe. As mentioned above, the value of k is very close to zero for our current Universe, so Eq. (2.15) would
be: ( ȧ

a

)2
= H2 =

8π
3M2

pl

ρ. (2.16)

where H = ȧ/a is the Hubble parameter. The continuity (or fluid) equation can be obtained by conserving the
energy-momentum tensor:

ρ̇ + 3H(ρ + p) = 0, (2.17)

The Eq. (2.17) can also be written as:
a

dρ
da
= −3(ρ + p). (2.18)

The Friedmann equation (2.16) can also be represented terms of the density parameter Ω

Ω(t) − 1 =
k

a2H2 , (2.19)

where Ω(t) = ρ/ρc. Furthermore, the critical density (ρc) is defined by the Hubble parameter and the Planck mass:

ρc =
3H2M2

pl

8π
. (2.20)

For a spatially flat geometry, k = 0, Eq. (2.19) will show thatΩmust be equal to 1. If Eq. (2.18) is solved, we obtain:

ρ ∝ a−3(1+p). (2.21)

where it can be analyzed that the evolution of the Universe is going to occur in terms of the scale factor, in addition
to the relationship of the domain of matter, radiation and vacuum at different epochs of the Universe.

2.2 Fine-Tuning Problems
Despite the fact that the Big Bang theory describes in an acceptable way the evolution and dynamics of the Universe
on a large scale, it presents some errors that cannot be solved by themselves, in this work we only mention the two
most popular problems of the theory of the Big Bang.
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2.2.1 Flatness Problem

The flatness problem is also considered to be the biggest drawback in the classical Big Bang theory6. Considering
Eq. (2.19), the term a2H2(= ȧ) always decreases4 with respect to time. Current cosmological observations, based
on the standard model, suggest that the present value of Ω is:

Ω0 ∼ 1.0007 ± 0.0037. (2.22)

The subscript 0 represents the quantities measured at the current time and for the case of the density parameter, Eq.
(2.22), it has a value very close to unity. A small variation on this value results in a radical change in the curvature
of space. The tuning problem arises because in early times Ω must be set to 1. However, this is not completely
convincing because all standard cosmology models start with Ω = 17. The present age of the Universe is estimated
to be t0 ≈ 13.787 Gyrs1. If we want to know the correct spatial geometry for an arbitrary time (t), we can use the
expression:

|Ω − 1| = |Ω0 − 1|
t
t0
. (2.23)

Using the values t0 and Ω0 expressed above we will obtain for:

• t ≈ 10−43 seconds

|Ω − 1| ≤ 10−64, (2.24)

• t ≈ 1 second

|Ω − 1| ≤ 10−16, (2.25)

• t ≈ 1013 seconds

|Ω − 1| ≤ 10−3. (2.26)

The values obtained in Eqs. (2.24), (2.25) and (2.26) show us that for early times |Ω − 1| has to be fine-tuned
extremely close to zero1 to reach the value shown in Eq. (2.22).

2.2.2 Horizon Problem

This issue is one of the important details that the CMB presents and the classical Big Bang theory cannot explain.
The CMB appeared as an extremely uniform radiation, however it is not explained how two regions that are too far
apart from each other, with independent evolutions, present exactly the same temperature. The photons present in
an early Universe could not travel freely through space due to the interaction they had with the other components
present. Later, with a universe with a lower density and temperature, the protons and electrons began to then connect
to hydrogens atoms with a neutral charge, which is known as recombination, where the photons finally began to move
freely across the Universe. This event on photons is known as the decoupling time and it occurred at an approximate
temperature of Tdec ≈ 0.3 eV at red-shift zrec ≈ 11001. The spherical surface seen in Fig. (2.1) is also known as the
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Figure 2.1: Temperature fluctuations measured in the CMB radiation using COBE in 1992, WMAP in 2003 and
Planck in 20131

surface of the last scattering. This scattering is thought to have occurred about 380,000 years after the Big Bang.
The approximate angular diameter distance of the Universe for Ω = 1 is represented by:

dA(z) =
r(z)

1 + z
, (2.27)

where r(z) is the proper distance, for an observer located in a redshift, and is given by:

r(z) =
∫ t0

tem

dt
a(t)
=

∫ 1

aem

da
a2 H(a) =

∫ z

0

dz
H(z)

. (2.28)

For an adequate analysis of this problem, the quantity Ω = Ωm would represent the value taken by the density
parameter during the era of matter domination. Taking this into account, we can approximate the H(z) of Eq. (2.28)
as:

H(z) ≈
√
ΩmH2

0(1 + z)3, (2.29)

Inserting Eq. (2.29) into Eq. (2.28)

r(z) =
∫ z

0

dz
H(z)

=
1

√
ΩmH0

∫ z

0

dz
(1 + z)3/2 =

2
√
ΩmH0

(
1 −

1
√

1 + z

)
, (2.30)

We know the condition zrec ≫ 1, so the last expression will approximate:

r(z) ≈
2

√
ΩmH0

, (2.31)

With r(z) obtained, the size of the observable Universe for z = zrec will be:

dA(z) ≈
2

√
ΩmH0

1
(1 + z)

,

dA(1100) ≈ 14Mpc.
(2.32)
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The particle horizon is the distance light has traveled from t = 0 to a given time t 8. The comoving distance to the
event horizon is:

dhor,rec (z) =
∫ t(z)

0

1
a(t)

dt =
∫ ∞

z

1
H(z)

dz ≈
2

√
ΩmH0

[
1

√
1 + z

]∞
z
≈

2
√
ΩmH0

1
√

1 + z
, (2.33)

Then, the size of the particle horizon (D) will be:

D(z) = a(z)dhor , rec =
dhor , rec (z)

(1 + z)
,

D(1100) ≈ 0.03 ≈ 2 degrees .
(2.34)

This tells us that the regions separated by approximately 2 degrees are causally disconnected but the isotropy observed
in the CMB implies that the radiation was homogeneous and isotropic within regions located on the last scattering
surface1 (see Fig. 2.1), then the question that arises is how this thermal equilibrium originates at the moment of
decoupling. Currently, the CMB has the same temperature throughout the sky, this is approximately 2.726 ± 0.001
K 9.

2.3 Inflation Theory
The theory of inflation is based on the accelerated exponential expansion of the Universe during a very short fraction
of a second2 (ä > 0). This works as a complement and solution to the different problems that the Big Bang theory
presents during the early Universe. If we consider the matter part, the inflationary condition10 is established:

p = −
ρ

3
, (2.35)

This condition can also be expressed as:
d
dt

H−1

a
< 0. (2.36)

where H−1

a , which is the comoving Hubble Length, is decreasing with respect to time11. If we consider Eq. (2.14)
and the expansion condition of the Universe ä > 0 we obtain:

ä > 0⇐⇒ (ρ + 3p) < 0. (2.37)

Since in standard physics the density (ρ) is a positive quantity, from Eq. (2.37) we can find the condition:

p < −
ρ

3
. (2.38)

which tells us that there should be a special type of material in which its pressure is negative, but there is no type of
radiation or component that fulfills this characteristic1. The Hubble time H−1 and the Hubble distance cH−1 are two
quantities of great importance, together with the Hubble parameter H = ȧ/a that help describe the rate of expansion
of the Universe at any time12.
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2.4 Amount of Inflation
The amount of inflation, also known as the number of e-foldings, is a value that can be quantified using the natural
logarithm of the scale factor at the end of inflation and its value at some initial point in time.

N ≡ ln
(a f

a

)
=

∫ t

t f

Hdt. (2.39)

From this last expression, the value taken by N decreases as time passes, becoming zero at the end of the inflationary
period. In sections 2.4.1 and 2.4.2 we will see how, to solve the horizon and flatness problems, the minimum amount
of inflation is approximately 60 e-foldings. This value is not fixed and it varies depending on the cosmological model
under study.13 14

2.4.1 Inflation as a solution to Flatness Problem

The typical solution to this problem is to consider a cosmological constant Λ, with an equation of state p = ρ,
which can be considered as a perfect fluid. A period of the universe during which p = ρ is called de Sitter stage15.
Analyzing this stage within the fluid equation (2.17):

ρ̇ + 3H(ρ + p) = 0,

dρ/dt + 3H(ρ − ρ) = 0,

dρ/dt = 0,

ρ = constant .

(2.40)

This in turn tells us that the Universe is exponentially expanded:

a(t) ∝ exp

√Λ3 t

 . (2.41)

With this, the condition of Eq. (2.36) is fulfilled. Let us consider a general solution where the accelerated expansion
occurred, that is to say that the Hubble length decreases as time passes, so in Eq. (2.19) the value of Ω tends to the
value of unity instead of moving away from it. Let ti at the beginning of the inflation period, t f as the end of it and
N as the number of electronic folds1, then:

N = ln
[
HI

(
t f − ti

)]
. (2.42)

|Ω − 1|t=t f ∼ 10−60, (2.43)

and
|Ω − 1|t=t f

|Ω − 1|t=ti
= e−2N , (2.44)

∣∣∣∣Ω (
t f

)
− 1

∣∣∣∣ = e−2N |Ω (ti) − 1| . (2.45)
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Suppose that before to inflation, the Universe was actually fairly strongly curved with:

|1 −Ω (ti)| ∼ 1. (2.46)

After a hundred e-foldings of inflation, the derivation of Ω from one would be:∣∣∣∣1 −Ω (
t f

)∣∣∣∣ ∼ e−2N ∼ e−120 ∼ 10−87. (2.47)

From this last equation it can be seen that e-folding must be N ≈ 60 so that the quantity Ω0 adapts to the value
currently measured, so that Ω reaches a value very close to unity. Taking this, the problem of the large-scale flatness
of the Universe seems to be solved1 16 15.

2.4.2 Inflation as a solution to Horizon Problem

Inflation greatly increases the size of a region of the Universe, while keeping its characteristic scale constant, the
Hubble scale (H−1). Physical scales can be reduced exponentially if the expansion period lasts long enough. This
would allow these scales, which have left the horizon, to re-enter the past. The problem of the horizon can be solved
if we analyze how long inflation should have lasted. For this, the horizon we observe today (H−1

0 ) was reduced during
inflation to a value λH0 (ti) smaller than the value of the length of the horizon (H−1

I ) during inflation15. This is:

λH0 (ti) = H−1
0

(
at f

at0

) (
ati

at f

)
= H−1

0

(
T0

T f

)
e−N ≲ H−1

I , (2.48)

where T0 is the current temperature of the Universe and T f the temperature at the end of inflation. Developing Eq.
(2.48) to obtain the inequality with respect to N:

e−N ≤
H0

HI

(
T f

T0

)
(2.49)

Applying natural logarithm:

N ≥ ln
(

H0

T0

)
− ln

(
Tf

HI

)
(2.50)

Then, we get for N:

N ≈ 67 + ln
(

Tf

HI

)
(2.51)

With which we obtain a quantity N ≥ 60 that would solve the horizon problem11

2.5 Scalar Field in Cosmology
As we saw in previous sections, for inflation to take place we need a candidate term whose main characteristic is that
of having negative pressure. There is a large number of cosmological models whose objective is to give a theoretical
approximation to the observed quantities1. The simple scalar field responsible for inflation is also called the inflaton,
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ϕ. Despite the fact that scalar fields were introduced by particle physicists long before it became a field of study of
great interest, they have not been discovered experimentally until now13. Let’s analyze our candidate (ϕ) minimally
coupled to gravity with a random potential (V(ϕ)) and a Lagrangian density, L.

S =
∫

d4x
√
−gL =

∫
d4x
√
−g

[
1
2
∂µϕ∂

µϕ + V(ϕ)
]
, (2.52)

where √−g = a3 from Eq. (2.2). From the Euler-Lagrange equations

∂µ
δ(
√
−gL)

δ∂µϕ
−
δ(
√
−gL)
δϕ

= 0. (2.53)

So we obtain:
ϕ̈ + 3Hϕ̇ −

∇2ϕ

a2 + V ′(ϕ) = 0, (2.54)

where V̇(ϕ) = dV(ϕ)
dϕ and 3Hϕ̇ represents the friction term. The energy-momentum tensor corresponding to the

inflaton is given by:
Tµν = ∂µϕ∂νϕ − gµνL. (2.55)

The expressions for the energy density ρϕ and the pressure pϕ, treated as a perfect fluid, are:

T00 = ρϕ =
1
2
ϕ̇2 + V(ϕ) +

1
2
∇ϕ2. (2.56)

Tii = pϕ =
1
2
ϕ̇2 − V(ϕ) −

1
6
∇ϕ2. (2.57)

From Eqs. (2.56) and (2.57) we can notice that if the terms with the gradients are dominant over the rest of
expressions1, we obtain:

ρ∅ =
1
2
∇ϕ2, (2.58)

−3pϕ =
1
2
∇ϕ2, (2.59)

If we equate Eqs. (2.58) and (2.59) we will obtain that pϕ = −ρϕ/3 which would not lead us towards a period of
inflation15. On the other hand, if we consider a homogeneous field where ∇ϕ = 0, we obtain an equation of state:

w =
pϕ
ρϕ
=

1
2 ϕ̇

2 − V(ϕ)
1
2 ϕ̇

2 + V(ϕ)
. (2.60)

With this in mind, we can separate the inflation field into:

ϕ(t) = ϕ0(t) + δϕ(x, t). (2.61)

where ϕ0(t) is the classical inflaton field on the initial isotropic and homogeneous state, while δϕ(x, t) describes the
quantum fluctuations ∇ϕ = 0 around ϕ0

1 12. The separation made in Eq. (2.61) is done because the value of the
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classical inflaton is much larger than the value of the quantum fluctuations. Then, the energy-momentum tensor with
this last condition (∇ϕ = 0) is:

T00 = ρϕ =
ϕ̇2

2
+ V(ϕ), (2.62)

Tii = pϕ =
ϕ̇2

2
− V(ϕ), (2.63)

The kinetic energy of field is represented by ϕ̇2. If we consider that our potential V(ϕ) ≫ ϕ̇2 the first term of Eqs.
(2.62) and (2.63) can be neglected and we obtain the following condition13:

pϕ ≃ −ρϕ. (2.64)

From this last result obtained in Eq. (2.64) we can interpret that we have inflation if the potential energy of the scalar
field dominates in a large proportion over the kinetic quantity15.

2.6 Equations of motion
We can obtain the equations of motion if we plug Eq. (2.62) and Eq. (2.63) into the Friedmann equation (2.16) and
fluid equations (2.17).

H2 =
1

3M2
Pl

(
V(ϕ) +

1
2
ϕ̇2

)
, (2.65)

or
H2 = l2

(
V (ϕ) +

1
2
ϕ̇2

)
. (2.66)

and
ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0 (2.67)

This last system is known as the Klein-Gordon equation, where V ′(ϕ) = ∂V/∂ϕ. In Eq. (2.65) the term that
describes the curvature is ignored because the system is not affected by including or ignoring said quantity. This
is because that during inflation Λ becomes subdominant13. In the inflation period, the condition V(ϕ) > ϕ̇2 must
be fulfilled in a simple way if one has the adequate potential1. In Eq. (2.67) we can show that the evolution of
the scalar field is contained with an second-order ordinary differential equation whose solution will vary depending
on the initial conditions that are given to it. The attractor behavior within these different solutions will be of great
importance in the different inflationary models, since with this we can ensure that the variations present in the
different results are quickly canceled out, and therefore that these models are predictive13.



Chapter 3

Methodology

3.1 Slow-Roll Approximation
So far we have seen how the cosmological constant Λ can create an exaggeratedly accelerated period of expansion,
which solves the problems left by the Big Bang theory. A short time after inflation has started, it must end and the
energy that dominates the Universe turns into matter; This process is known as reheating. In this reheating process,
the cosmological constant, which dominates the Universe, breaks down into elementary particles1 17. One of the
characteristics of scalar fields is that they can behave like a dynamic cosmological constant. With this in mind, it
is convenient to look for a simple model for the equations of Friedman (2.65) and Klein-Gordon (2.67), where the
kinetic energy of the scalar field is much less than its potential energy and the acceleration can be neglected, that
is say V(ϕ) ≫ ϕ̇2 and V ′(ϕ) ≫ ϕ̈11 13. Then, the equations of motion, with these conditions, for slow-roll inflation
becomes:

3Hϕ̇ ≃ −V(ϕ), (3.1)

H2 ≃
8π

3M2
pl

V(ϕ). (3.2)

In Fig. (3.1) we can see how when the kinetic part of the inflaton field is comparable to the potential field, the
inflationary process ends up giving rise to overheating1. For this Slow-roll approach to be valid, two conditions must
be satisfied:

ϵ(ϕ) ≪ 1, (3.3)

|η(ϕ)| ≪ 1. (3.4)

where ϵ and η are the slow-roll parameters whose definitions with respect to the potential V(ϕ) are:

ϵ(ϕ) =
M2

pl

2

(
V ′

V

)2

, (3.5)

15
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Figure 3.1: Representation of an inflation potential. The accelerated expansion of the Universe occurs when the
potential energy of the field, Vϕ, is vastly greater than its kinetic energy ( ϕ̇

2

2 ). Inflation ends when Vϕ ≈
ϕ̇2

2 . CMB
fluctuations are created by quantum fluctuations, δϕ, about 60 e-folds before the end of inflation2

η(ϕ) = M2
pl

V ′′

V
. (3.6)

By definition we note that it is positive and its physical meaning can be derived from combining Eqs. (2.65) and
(2.67) to obtain ä:

ä
a
= H2(1 − ϵ). (3.7)

Therefore, to fulfill the condition of having an accelerated expansion ä > 0, from Eqs. (3.3) and (3.4) we will obtain
that ϵ < 1. The slow-roll approximations equations (3.1) and (3.2) reduce the equations of motion of the inflation
period by one degree, which makes ϕ̇ stop being a free parameter, as was the case in equation (2.67), so that its value
initial depends on the slow-roll equations13. Given a potential, the slow-roll parameters make it easier to determine
where inflation will occur.

3.1.1 Relation Between Slow-Roll and Inflation

In the previous section we saw how slow-roll conditions and parameters are sufficient requirements for the existence
of the inflation period. We can affirm this by rewriting:

ä
a
= Ḣ + H2 > 0, (3.8)
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Since H2 will always be positive, the condition is satisfied if H2 > H, if H is also positive, or in turn if:

−
Ḣ
H2 < 1, (3.9)

So we can see how Eq. (3.5), for ϵ < 1, becomes:

−
Ḣ
H2 ≃

M2
pl

2

(
V ′

V

)2

= ϵ. (3.10)

Since inflation can continue even when slow-roll conditions are violated, these impositions turn out to be sufficient
but not necessary. If it is desired to put an end to the inflation period in the cosmological models, these conditions
must be broken in such a way that their potential energy tends to zero or its quantity can be insignificant11.

3.2 Cosmological Perturbations in the Geometry of the Universe
As has been seen so far, the Universe in its early beginnings was extremely homogeneous and isotropic, so it was
necessary to introduce small perturbations to explain the construction of the large-scale structure of the Universe,
from the inhomogeneities created by these primordial disturbances. Currently these inhomogeneities are evident on
small scales and will grow due to the attractive force of gravity18 19.
Most evolution of the inhomogeneities can be treated as linear disturbances, which are no longer valid in the recent
past. That said, we can write a new system that includes such disturbances, δgµν, and the FLRW background metric
gµν.

ḡµν = δgµν + gµν. (3.11)

Equation (3.11) must satisfy the condition δgµν < gµν obviously.
The cosmological models of inflation, applied within General Relativity, are of great importance for the approach
of the theory of perturbations. These inflationary models generate density perturbations, also known as scalar
perturbations, or gravitational waves. Scalar and tensor perturbations evolve independently, so they can be analyzed
autonomously. The increasing inhomogeneities that give rise to the large-scale structure of the Universe and the
anisotropies observed in the CMB, have scalar perturbations in the leading role, due to the fact that they present
instabilities. On the other hand, for the stability within the tensor disturbances, these could not contribute to the
formation of matter, but they represent a small percentage of anisotropies in the CMB13 20.
Dodelson21 was one of the people who studied the perturbed Einstein tensor:

δGµ
ν = 8πGδT µ

ν , (3.12)

where Tµν corresponds to the perturbed energy-momentum tensor. If we add the unperturbed linearized Einstein
tensor to Eq. (3.12), we will obtain:

G(0)
µν + δGµν = 8πG[T (0)

µν + δTµν], (3.13)

We can represent the FLRW metric with respect to linear perturbations as follows:

ds2 = a2[−(1 + 2A)dη2 + 2Bidxidη + (δi j + hi j)dxidx j], (3.14)
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where Bi and S i j represent the vector and the spatial metric, respectively. Furthermore, A appears as a scalar and hi j

takes the name of symmetric tensor, whose matrix is:

hi j = a2


1 + h+ h× 0

h× 1 − h+ 0
0 0 1

 , (3.15)

where h+ and h× are two functions whose quantities are small. Furthermore, the spatial elements can be represented
by the disturbance tensor as:

Hi j =


h+ h× 0
h× −h+ 0
0 0 0

 . (3.16)

In the same way as in Eq. (3.15), h+ and hx are two components of a divergenless, traceless, and symmetric tensor
in which ki, jHi j = 0. From this, we can start by calculating the Cristoffel symbols:

Γ
µ
αβ =

1
2

gµv
(
gµv,β + gµv,α − gαβ,µ

)
,

Γ0
00 = 0,

Γ0
i0 = Γ

0
0i = 0,

Γi
00 = 0,

Γ0
i j = Hgi j +

a2Hi j,0

2
,

Γi
0 j = Γ

i
j0 = Hδi j +

1
2
Hi j,0,

Γi
jk =

i
2

[
kkHi j + k jHik + kiH jk

]
.

(3.17)

Once these calculations have been made, we can find the Ricci tensor and then its scalar:

Rµv = Γ
α
µv,α − Γ

α
µα,v + Γ

α
βαΓ

β
µv − Γ

α
βvΓ

β
µα,

R00 = −3
ä
a
,

R0i = 0,

Ri j = gi j

( ä
a
+ 2H2

)
+

3
2

a2HHi j,0 + a2Hi j,00

2
+

k2

2
Hi j.

(3.18)

with the Ricci scalar:
R = g00R00 + gi jRi j, (3.19)

which give us:
R = 0. (3.20)
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The value obtained for R expresses the little relevance that perturbations have in the Ricci scalar. All this process
carried out helps us to find the Einstein tensor:

Gµ
ν = Rµ

ν −
1
2

gµνR, (3.21)

Considering the value of the Ricci scalar Eq. (3.20), within the Eq. (3.21), we obtain that:

δG0
0 = 0,

δGi
0 = 0,

δGi
j = δ

ik
[
3
2

HHk j,0 +
Hk j,00

2
+

k2

2a2Hk j

]
.

(3.22)

It is important to mention that the conformal time (η) can be written in terms of the comoving time (t) as follows:

η =

∫
dt

a(t)
. (3.23)

3.2.1 Quantum Perturbations

As we have seen previously, during the inflation period the early Universe was governed by the components of a
uniform scalar field and an uniform background metric. For this reason, it is convenient to work with the quantum
perturbations of the field against the background, in the same way as was done with the classical equations of motion
in general relativity21.
From Einstein’s perturbed equation, we can obtain the equations of motion for the perturbations. For this, we must
replace the time-time, time-space and space-space components in the perturbed Einstein equation obtained in Eq.
(3.24), which will only result in space-space components, so we can analyze how the quantities h+ and hx evolve.
Let us analyze the h+ component, remembering the proportionality that Hi j presents in equation (3.24), where
H11 = hx = −H22. Realizing a spatial difference between δG1

1 and δG2
2, we obtain the solution:

δG1
1 − δG

2
2 = 3Hh+,0 + h+,00 +

k2h+
a2 . (3.24)

As we already know, we only have space-space components, that is, we have δGi
j = 0. Considering this situation,

we can rewrite Eq. (3.24) as:

3Hh+,0 + h+,00 +
k2h+
a2 = 0, (3.25)

Doing the same analysis for hx and expressing it in a general way together with h+, we will obtain an equation
with the shape of a wave:

ḧ+,x + 3Hḣ+,X +
k2

a2 h+,x = 0, (3.26)

Furthermore, we can represent this function in terms of the conformal time, so we make the change ḣ+,x = h′+,x/a to
which will give us:

h′′+,x + 2Hh′+,x + k2h+,x = 0. (3.27)
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The last Eqs. (3.26) and (3.27) are known as gravity waves. With all the analysis carried out so far to find a solution
to Eq. (3.27), we proceed to quantify said function, thereby defining a possible solution with the structure of a
harmonic oscillator:

h̃ ≡
ah
√

16πG
. (3.28)

In Eq. (3.28) we can see a possible solution, to check this we can analyze this equation with respect to h, that is, we
need to clear this quantity and derive it twice with respect to η,

h′ =
√

16πG
(

h̃′

a
−

a′

a2 h̃
)
, (3.29)

h′′ =
√

16πG
(

h̃′′

a
− 2

a′

a2 h̃′ −
a′′

a2 h̃ + 2
(a′)2

a3 h̃
)
. (3.30)

Replacing these last expressions in Eq. (3.28) and separating the common factor
√

16πG:

√
16πG

[(
h̃′′

a
− 2

a′

a2 h̃′ −
a′′

a2 h̃ + 2
(a′)2

a3 h̃
)
+ 2

a′

a

(
h̃′

a
−

a′

a2 h̃
)
+ k2

(
h′

a

)]
= 0. (3.31)

In order to simplify this equation, we divide the last equation by its common factor and suppress the repeated
quantities with opposite sign, we have:

1
a

[
h̃′′ +

(
k2 −

a′′

a

)
h̃
]
= 0, (3.32)

It can be seen that Eq. (3.32) keeps the structure of a harmonic oscillator, which implies that h acts as a quantum
operator whose expression would be given by:

ˆ̃h(⃗k, η) = v(k, η)âk⃗ + v∗(k, η)a†
k⃗
, (3.33)

where a†
k⃗

and âk⃗ are the coefficient of creation and destruction respectively, which satisfy the equation for gravitational
waves:

v′′k +
(
k2 −

a′′

a

)
vk = 0. (3.34)

In the last expression vk = aψk, been ψ the representation of tensor perturbations. In slow-roll inflation a′′/a ≈ 2a2H2

and the behavior of vk is characterized by whether the mode is inside or outside the horizon22:

vk →
1
√

2k
e−ikτ as aH/k → 0, (3.35)

vk ∝ a f or aH/k ≫ 1. (3.36)

Equation (3.34) is a second order ODE, so it is convenient to use a slow-roll approach in order to reduce its
degree of difficulty and find a solution to the equality. Considering the transformation a′ = −a/η, we can find the
Mukhanov-Sasaki equation:

v′′k +
(
k2 −

2
η2

)
vk = 0. (3.37)
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3.2.2 Scalar perturbations equation

The detailed calculations of the results that will be shown in this section, were calculated by Tapia18 in his article
"Scalar Cosmological Perturbations".
As in the previous section, let us start by rewriting the FLRW perturbed metric, but this time in terms of the gauge
invariant variables Φ and Ψ.

ds2 = −[1 + 2Φ(t, x)]dt2 + a2[1 − 2Ψ(t, x)]δi j dxi dx j, (3.38)

The covariant gµν and contravariant gµν matrices considered in metric (3.38) are given by:

gµν =


−1 − 2Φ(t, x) 0 0 0

0 a2[1 − 2Ψ(t, x)] 0 0
0 0 a2[1 − 2Ψ(t, x)] 0
0 0 0 a2[1 − 2Ψ(t, x)]

 , (3.39)

and

gµν =


− 1

1+2Φ(t,x) 0 0 0
0 1

a2[1−2Ψ(t,x)] 0 0
0 0 1

a2[1−2Ψ(t,x)] 0
0 0 0 1

a2[1−2Ψ(t,x)]

 . (3.40)

In the same way, let’s star calculating the Christoffel symbols keeping the terms up to first order:

Γ0
00 =

1
2

(−1 + 2Φ)
(
−2Φ,0

)
,

Γ0
0i =

1
2

(−1 + 2Φ)
(
−2Φ,i

)
,

Γ0
i j = −

1
2
δi j(−1 + 2Φ)

[
a2(1 − 2Ψ)

]
,0
,

Γi
00 =

1
2
δi ja−2(1 + 2Ψ)

(
2Φ,i

)
,

Γi
j0 =

1
2
δi ja−2(1 + 2Ψ)

[
a2(1 − 2Ψ)

]
,0
,

Γi
jk =

1
2

a−2(1 + 2Ψ)
[
δi ja2(1 − 2Ψ),k + δika2(1 − 2Ψ), j − δ jka2(1 − 2Ψ),i

]
,

= (1 + 2Ψ)
(
−δi jΨ,k − δikΨ, j + δ jkΨ,i

)
.

(3.41)
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Now, we can find the Ricci tensor for time-time, time-space, and space-space components:

R00 = a−2Φ,ii − 3
( ä
a
− H2 − Ψ,00

)
+ 3HΦ,0 − 3

(
H2 − 2HΨ,0

)
,

δR00 = a−2
[
∇2Φ + 3Ψ′′ + 3H

(
Φ′ + Ψ′

)]
,

R0i = Φ̇,i − Φ̇,i + δi j(H − Ψ̇),i − δi j(H − Ψ̇),i + δi j(H − Ψ̇)Φ,i,

− δi j(H − Ψ̇)Φ, j + δikΦk(H − Ψ̇) − δki[H − 2H(Φ + Ψ) − Ψ̇]Φ,k,

+
(
−δ jkΨ, j − δi jΨ,i + δi jΨ, j

)
(H − Ψ̇) −

(
−δkkΨ,i − δkiΨ,k + δkiΨ,k

)
(H − Ψ̇),

δR0i =
2
a

(
Ψ′,i +HΦ,i

)
,

Ri j = δi j

{
∇2Ψ − Ψ′′ + [1 − 2(Φ + Ψ)]

(
H ′ + 2H2

)
−H

(
Φ′ + 5Ψ′

)}
− (Φ − Ψ),i j.

(3.42)

and the first-order Ricci scalar:

R = −
2
a2

[
3Ψ′′ + ∇2(Φ − 2Ψ) + 3H

(
Φ′ + 3Ψ′

)
− 3

(
H ′ +H2

)
+ 6Φ

(
H ′ +H2

)]
. (3.43)

The components presented in the Ricci tensor are:

H =
a′

a
; H =

H

a
. (3.44)

As before we can calculate the time-time, time-space, and space-space components for the Einstein tensor:

G00 =
1
a2

[
−6HΨ′ + 2∇2Ψ + 3H2

]
,

G0i = 2a−1
(
Ψ′,i +HΦ,i

)
,

= δR0i.

Gi j = δi j

[
−

(
2H ′ +H2

)
+ 2Ψ′′ + ∇2(Φ − Ψ) + 2

(
2H ′ +H2

)
(Ψ + Φ) + 2H

(
Φ′ + 2Ψ′

)]
+ (Ψ − Φ),i j.

(3.45)

Converting tensors G00, G0i, Gi j to mixed tensors and linearizing them with respect to the background. For the
time-time component:

G0
0 = gµ0Gµ0 = g00G00,

= (−1 + 2Φ)a−2
[
−6HΨ′ + 2∇2Ψ + 3H2

]
,

= a−2
[
−3H2 + 6HΨ′ − 2∇2Ψ + 6H2Φ

]
,

δG0
0 = a−2

[
6HΨ′ − 2∇2Ψ + 6H2Φ

]
.

(3.46)

In the time-space component, the tensor is perturbation, then:

δG0
i = gµ0Gµi,

= g00G0i,

= (−1 + 2Φ)2a−1
(
Ψ′,i +HΦ,i

)
,

= −2a−1 (
Ψ′ +HΦ

)
,i .

(3.47)
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and the space-space component:

Gi
j = gµiGµ j,

= a−2(1 + 2Ψ)
{
δi j

[
−

(
2H ′ +H2

)
+ 2Ψ′′ + ∇2(Φ − Ψ) + 2

(
2H ′ +H2

)
(Ψ + Φ)

+2H
(
Φ′ + 2Ψ′

)]
+ (Ψ − Φ),i j

}
,

= a−2
{
δi j

[
−

(
2H ′ +H2

)
+ ∇2(Φ − Ψ) + 2Ψ′′ + 2

(
2H ′ +H2

)
Φ + 2H

(
Φ′ + 2Ψ′

)]
+(Ψ − Φ),i j

}
,

δGi
j = a−2

{
δi j

[
∇2(Φ − Ψ) + 2Ψ′′ + 2

(
2H ′ +H2

)
Φ + 2H

(
Φ′ + 2Ψ′

)]
+ (Ψ − Φ),i j

}
.

(3.48)

For the energy-momentum tensor, we can rewrite the definition given in Eq. (2.55).

T µ
ν = ∂

µϕ∂νϕ −

[
1
2
∂αϕ∂αϕ + V

]
δ
µ
ν . (3.49)

If a linear perturbation is added to the inflaton field, we obtain:

ϕ(t, x) = ϕ0(t) + δϕ(t, x). (3.50)

The quantities ϕ0 and δϕ represent the background field and the linear perturbation, respectively. As with the
gνµ metric, this perturbed field must satisfy the condition ϕ0 ≥ δϕ. Calculating the time-time, time-space, and
space-space components:

T 0
0 = a−2

[
−
ϕ′2

2
− a2V (ϕ0) + Φϕ′20 − ϕ

′
0δϕ

′ − a2δϕV,ϕ

]
,

T 0
i = −a−1ϕ′0δϕ,i,

= δT 0
i ,

T i
j = δi ja−2


(
ϕ′0

)2

2
− a2V (ϕ0) − Φ

(
ϕ′0

)2
+ ϕ′0δϕ

′ − a2δϕV(ϕ),ϕ

 .
(3.51)

Once again, linearizing T 0
0 , T 0

i and T j
i with respect to the background:

δT 0
0 = a−2

(
Φϕ′20 − ϕ

′
0δϕ

′ − a2δϕV,ϕ

)
,

δT 0
i = T 0

i ,

δT i
j =

δi j

a2

[
−Φ

(
ϕ′0

)2
+ ϕ′0δϕ

′ − a2δϕV(ϕ),ϕ
]
.

(3.52)

If we compare the linearized equations of the space-space components of the energy-momentum tensor (3.52) and
Einstein tensor (3.48), we can notice that Φ = Ψ when i , j. We just have 3 resulting equations:

∇2Φ − 3HΦ′ −
(
H ′ + 2H2

)
Φ =

3
2

l2
(
ϕ′0δϕ

′ + V,ϕa2δϕ
)
. (3.53)
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Φ′ +HΦ =
3
2

l2ϕ′0δϕ, (3.54)

Φ′′ + 3HΦ′ +
(
H ′ + 2H2

)
Φ =

3
2

l2
(
ϕ′0δϕ

′ − V,ϕa2δϕ
)
. (3.55)

Equation (2.66) can be rewritten with respect to conformal time as follows:

V,ϕ0

ϕ′0
= −

1
a2

[
ϕ′′0
ϕ′0
+ 2H

]
. (3.56)

If we subtract equations (3.53) and (3.55) and plug δϕ into equation (3.54) we get a single second order differential
equation:

Φ′′ − ∇2Φ + Φ

[
2H − 2

ϕ′′0
ϕ′0

]
+ Φ

[
2H ′ −

2Hϕ′′0
ϕ′0

]
= 0. (3.57)

Taking the changes of variable u =
(
a/ϕ′0

)
Φ and z =

(
aϕ′0

)
/H the Eq. (3.57) takes the form:

u′′ − ∇2u − z
(

1
z

)′′
u = 0. (3.58)

To study the perturbation inside the horizon, we can use Eq. (3.58) to arrive at the equation that describes these
perturbations18.To find these perturbation equations, Deruelle23 considers the gauge invariant variable:

v = a
[
δϕ +

ϕ0Φ

H

]
. (3.59)

The equation (3.59) can be described in terms of u by:

v =
2

3l2

(
u′ +

z′

z
u
)
, (3.60)

Differentiating twice this last expression with respect to conformal time, it can be replaced in ODE (3.58) to satisfy
that equation. So we get:

∇2u =
3
2

l2z
(v

z

)′
, (3.61)

Multiplying the expression ∇2 in Eq. (3.58):

∇2(u)′′ − ∇2
(
∇2u

)
− z

(
1
z

)′′
∇2u = 0, (3.62)

This allows us to replace Eq. (3.61) in Eq. (3.62):[(
v′ −

z′

z
v
)]′′
− ∇2

[
z
(v

z

)′]
−

(
2z′

z2 −
z′′

z

) (
v′ −

z′

z
v
)
= 0, (3.63)

From this last equality we obtain the solution:

z

v′′ − ∇2v − z′′
z v

z

′ = 0, (3.64)
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Finally, the equation of motion in the Fourier space is obtained:

u′′k +
(
k2 −

z′′

z

)
uk = 0. (3.65)

Considering the limit k2 ≫ z′′/z, the factor uk tends to:

uk →
1
√

2k
e−ikτ. (3.66)

3.2.3 Power Spectrum for Perturbations

The power spectrum is a tool that helps to statistically characterize the properties of fluctuations in inflation models,
and is defined by:

Pχ(k) =
k3

2π2 |χk | , (3.67)

where χk represents a random quantity of the power spectrum Pχ(k). If we want to represent this last expression
as a power function, we will obtain:

Pχ(k) = A (k)
(

k
k0

)nχ−1

, (3.68)

where k represents a chosen pivot that is usually represented by k0. The function nχ that fulfills the spectral index
function in Eq. (3.68) is defined as:

nχ − 1 =
ln Pχ

d ln k
, (3.69)

The function on the right, dependent on the logarithm, can be expanded as follows:

ln Pχ

d ln k
=

(
d ln Pχ

dt

) (
dt

d ln a

) (
d ln a
d ln k

)
. (3.70)

3.2.4 The Power law case

When the tensor perturbations are taken into account, we can use equation (3.68) to write scalar and tensor power
spectra3 as:

PS(k) = AS

(
k
k0

)nS−1

, (3.71)

and
PT(k) = AT

(
k
k0

)nT

, (3.72)

where As, ns and AT , nT represents the amplitude and the spectral indices of the scalar and tensor power spectra.
From Eqs. (3.71) and (3.72) we can define the tensor-to-scalar ratio:

r(k) =
PT(k)
PS(k)

. (3.73)
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Figure 3.2: The CMB angular power spectrum corresponding to the best fit values of the inflationary models for the
WMAP seven-year. The dark dots with its respective error represent the data obtained by WMAP seven-year. The
blue line and the dashed green line corresponds corresponds to the chaotic potential without and with a step data3.
The red ellipses show the fit that occurs near the multipolar moments l = 22 and l = 40, due to the step in the chaotic
potential.

3.3 Cosmological Inflation Models
Inflation models are of great importance to solve the problems of the initial conditions of the standard cosmological
model that describe the evolution of the Universe from the first second to what we currently observe11. Several models
have been proposed that satisfactorily do this, among these we can highlight the Starobinsky, small field, tachyon,
and chaotic models, among others. These last 3 present certain deficiencies when describing the characteristics of
the CMB, as the scalar power spectrum and the angular power spectrum measured by telescopes. Faced with this
drawback, the need arises to introduce a small step, in a particular location that generates a burst of oscillations. The
presence of oscillations in the scalar power spectrum with particular values in the dimensionless parameters c, d and
ϕstep of the chaotic inflationary model with a step, seems to provide a better fit to the angular power spectrum near
the multipolar moments l = 22 and l = 403, as we can see in the Fig. (3.2). This fit helps this inflationary model to
show a better approximation with respect to the observational data.
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Figure 3.3: The scalar field potential for the chaotic model for m = 7.5× 10−6Mpl. Left: without a step. Right: with
a step with c = 0.200, d = 0.0311 and ϕstep = 14.670.

3.3.1 Chaotic Inflationary Model with a Step

For this work we use the chaotic model which is described by the potential:

V(ϕ) =
1
2

m2ϕ2, (3.74)

where m represents the mass of the inflaton. As mentioned above, this is one of the potentials that does not couple
correctly to the observations of the CMB, so it is necessary to introduce a small additional step that generates the
observed oscillations.

Vstep (ϕ) =
[
1 + c tanh

(
ϕ − ϕstep

d

)]
, (3.75)

Evidently, c denotes the height of the step, ϕstep its location in the spectrum, and d its inclination3. If we multiply
Eqs. (3.74) and (3.75) we will obtain the potential with a step:

V(ϕ) =
1
2

m2ϕ2
[
1 + c tanh

(
ϕ − ϕstep

d

)]
. (3.76)

The potential with a step is the one that we are going to use for the numerical analysis and from which we will
determine the contribution that Eq. (3.75) adds to Eq. (3.74) to improve the similarity to observational data.

The potential shown on the left side of Fig. (3.3) is also known as the quadratic potential because its behavior
closely resembles that obtained with squared powers. On the right side of the same graph, a small jump is shown
that occurs due to the introduction of the step in the potential. It is this small jump that produces oscillations in the
scalar power spectrum that will be shown in the results section.
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Results and Discussion

4.1 Numerical Analysis of the Chaotic Potential without a step
For the numerical analysis of the chaotic potential with and without a step, the Mathematica code shown in Appendix
A was used. According to the observational data, for an inflationary model to be considered partially valid, one of
the conditions it must meet is that the final value that its scalar power spectrum follows should be about 2.2 × 10−9.
To compute the values for the power law case, we use k = 0.002 and all values taken from the mass of the inflaton m
will be in units of Mpl.
Let us start this numerical analysis by examining the shape of the chaotic potential without the step for two different
values of the mass of the inflaton field (m), as can be seen in Fig. (4.1). For the generation of these graphs, the
parameters shown in Table (4.1) were used.

In Fig. (4.1) it can be seen how the final value that the chaotic model takes for m = 7.5 × 10−6Mpl (blue graph),
has a good approximation towards a final value of 2.2 × 10−9 (red line) while the graph of the chaotic potential
for m = 6.5 × 10−6Mpl (green graph) has a bad approximation to the value that it needs to be considered as a

Model Parameter Blue Graph Green Graph

Chaotic Model without a step

m 7.5 × 10−6 6.5 × 10−6

ϕ0 15.45000 15.45000
c 0.00000 0.00000

ϕstep 0.00000 0.00000
d 0.00000 0.00000

Power law case
ns 0.95819 0.96093
r 0.14216 0.14163

Table 4.1: Parameters used for the graphic representation of Fig. (4.1). The cosmological values ns and r are
obtained for this case.

29
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Figure 4.1: Scalar power spectrum for the chaotic potential without the step. The red horizontal line represents
the approximate value that the potential must approach for it to be considered a valid model. The parameters used
for both the blue color potential and the green color potential are exactly the same except for the value of m; see
Table (4.1). The difference presented by m = 6.5 × 10−6Mpl and m = 7.5 × 10−6Mpl seems to result in a vertical
displacement of the potential.
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Models Parameter Lower limit Upper limit

Power law case
ns 0.500 1.500
r 0.000 1.000

Chaotic model with a step
c 1.3 × 10−2 1.7 × 10−2

ϕstep 13.000 15.000
d 0.010 0.040

Table 4.2: Range of values that can be considered for the different parameters present in the power law case and
the chaotic potential. These limits taken from Dhiraj’s3 article were modified considering that there are more
combinations of values that the variables of the chaotic potential with a step can have.

good potential. However, the latest observations made by the Planck telescopes, in 201824, and the WMAP-9 in its
ninth year of operation25 record different values in the cosmological parameters, of those calculated numerically, so
analytically this model can be neglected. Hence, the idea of introducing a small step in the field of the inflaton that
generates oscillations as this helps the values obtained numerically to more accurately resemble those observed by
space telescopes.

4.2 Numerical Analysis of the Chaotic Potential with a step
An important point to consider for the analysis of the potential with one step is that the parameters of this potential,
specifically ϕstep, c and d, cannot be negative numbers nor can they take excessively high values. Dhiraj et al.,3 in
their paper, perform Markov chain Monte-Carlo sampling of the parameter space. This method was used to obtain
the parameter constraints in the equations of the chaotic potential and power law case with one step. During the
elaboration of this work, the values of the limits considered by Dhiraj were modified, expanding the range of possible
values that the parameters of the potential step can take, as shown in the Table (4.2). This new limit table was
obtained through a large number of numerical evaluations performed on the chaotic potential with a step where the
presence of oscillations in the scalar power spectrum was considered as an acceptance criterion.

These constraints provide a range of values that the parameters that make up the step potential can take, for
which the behavior of the scalar spectrum shows oscillations and an approximate final value of 2.2 × 10−9. The
subsequent section shows the numerical analysis performed with different values for c, ϕstep and d that are outside of
the established range, to see the importance to considered values inside the limits showed in Table (4.2)

4.2.1 Numerical analysis of the chaotic potential with values outside the limits

Previously, the behavior of the chaotic potential without the step potential was analyzed. In this section we review
the trend followed by the graphs for values that are above and below the limits of Table (4.2). If we compare the
blue plot in Fig. (4.1) with those obtained in this section, we notice how they are close to being identical, that is,
this combination of chosen values is still a poor approximation to the observational data. It is important to clarify
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Model Parameter Blue Graph (Above the limit) Purple Graph (Below the limit)

Chaotic Model with a step

m[Mpl] 7.5 × 10−6 7.5 × 10−6

ϕ0 15.4500 15.4500
c 0.01900 0.00120

ϕstep 17.0000 12.0000
d 0.07000 0.00900

Power law case
ns 0.95792 0.95859
r 0.14124 0.14122

Table 4.3: Values used in the parameters of the potentials shown in Fig. (4.2)

that not all the chosen values, which are outside the restrictions, will give a trend like the one shown in this part.
There will be combinations of values in the parameters for which the behavior obtained has a bad approximation
towards the red line. In addition to this, it was possible to determine that in some cases, small variations in the
chosen parameters can generate meaningless spectra, with chaotic behaviors.

4.2.2 Numerical analysis of the chaotic potential with a step with a combination between
values that are outside and inside the limits

An interesting case that can be studied are the scalar spectra that can be presented if combinations of values that are
inside and outside the limits are chosen.

Figure (4.3) uses the parameters shown in Table (4.4). From this illustration we can already determine that an
m = 7.5x10−6Mpl shifts the spectrum in the vertical direction and better fits the trend towards the red line. On the
other hand, it is evident that the wave number and the number of oscillations are different in both cases; this case
will be analyzed later. Then, there can be combinations of potential parameter values, inside and outside of the
established restrictions, for which the potential oscillates and has a good approximation towards the red line.

4.2.3 Numerical analysis of the chaotic potential with the lower and upper limit values

From these spectra we can only emphasize what was mentioned above regarding m, which helps to obtain a better
adjustment towards the red line by displacing it vertically (see Fig. (4.4)). This is a good moment to mention that the
ranges shown in Table (4.2) do not guarantee that all the possible parameter combinations generate oscillations and
good approximations to the red line, but rather that within these limitations, the best fit to the temperature spectrum
at small angular momentum, obtained observationally, will be found.

4.2.4 Numerical analysis of the potential with values within the limits

It is important to be able to understand the behavior of all parameters that conform the step potential when they take
different values. Thus, in this section we analyze the changes made to c, ϕstep and d when their values vary smoothly.
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Figure 4.2: Scalar power spectrum for values of c, ϕstep and d that are outside the limits established in Table (4.2).
The values considered for the blue color spectrum are above the limits, while for the purple color spectrum the values
of the parameters are below the restrictions.

Figure 4.3: Scalar power spectrum for combinations of values that are inside and outside the limits. Left: where c
is the only parameter whose value is outside the limits. Right: choosing c and d with values outside the restrictions.
In both cases the oscillations with blue color have a value of m = 7.5× 10−6Mpl while for the oscillations with green
color a value m = 6.5 × 10−6Mpl was used. The red line shows the final trend that a model must follow in order to
be considered valid.
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Model Parameter Blue Graph Green Graph

Chaotic Model with a step (Left)

m[Mpl] 7.5 × 10−6 6.5 × 10−6

ϕ0 15.4500 15.4500
c 0.00200 0.00200

ϕstep 14.0900 14.0900
d 0.01000 0.01000

Power law case
ns 0.96069 0.96293
r 0.14102 0.14142

Chaotic Model with a step (Right)

m[Mpl] 7.5 × 10−6 6.5 × 10−6

ϕ0 15.4500 15.4500
c 0.01000 0.01000

ϕstep 14.0900 14.0900
d 0.05000 0.05000

Power law case
ns 0.96128 0.96345
r 0.14097 0.14135

Table 4.4: Parameters used to obtain the figure of the power spectrum in Fig. (4.3), with m being the only one
quantity that varies in the graph on the left and right. The numbers in bold represent the chosen quantities that are
outside the limits.

Model Parameter Blue Graph Purple Graph

Chaotic Model with a step (Lower Limit)

m[Mpl] 7.5 × 10−6 6.5 × 10−6

ϕ0 15.45000 15.45000
c 0.01300 0.01300

ϕstep 13.0000 13.0000
d 0.01000 0.01000

Power law case
ns 0.95945 0.96099
r 0.14119 0.14160

Chaotic Model with a step (Upper Limit)

m[Mpl] 7.5 × 10−6 6.5 × 10−6

ϕ0 15.4500 15.4500
c 0.01700 0.01700

ϕstep 15.0000 15.0000
d 0.04000 0.04000

Power law case
ns 4.59749 31.35950
r 1.46745 1.95785

Table 4.5: Upper and lower limit of the potential parameters calculated with the Markov Chain Monte-Carlo method.
The values of ns and r were obtained for both limits
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Figure 4.4: Scalar spectrum for the chaotic potential with the parameters defined in Table (4.5). Left: lower
limit. Right: upper limit. In both cases, m is the only parameter varied in the blue (m = 7.5 × 10−6) and purple
(m = 6.5 × 10−6) graphs. As in the previous cases, the red line represents the trend that the studied potential should
follow.

Model Parameter Green Graph Purple Graph Blue Graph

Chaotic Model with a step

m[Mpl] 7.5 × 10−6 7.5 × 10−6 7.5 × 10−6

ϕ0 15.4500 15.4500 15.4500
c 0.01400 0.01500 0.01600

ϕstep 14.0000 14.0000 14.0000
d 0.03000 0.03000 0.03000

Power law case
ns 0.96185 0.96213 0.96178
r 0.142156 0.14099 0.14099

Table 4.6: Values considered for the parameters of the step potential. The variation occurs over the value c, while
the rest of the quantities remain constant. The power law cases (ns and r) were calculated

Varying the parameter c

If we consider different values of c, keeping the rest of the parameters constant (see Table 4.6). In Figure (4.5) we
can observe how the peaks of the oscillations produced in the spectrum increase in magnitude when c takes larger
values. The number of oscillations produced does not change and at the end they will all converge onto a single line
whose approximation is good with respect to the red line. This was to be expected, since the values considered are
within the limits, in all cases.

Varying the parameter ϕstep

For this case, we vary ϕstep with the values shown in Table (4.7). The wavenumber for these spectra ranges from
k = 0 to k = 10.
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Figure 4.5: Scalar power spectrum for different values of c. The oscillatory behavior in this case shows an increase
in the amplitude of the wave as c increases as well.

Model Parameter Green Graph Purple Graph Blue Graph

Chaotic Model with a step

m[Mpl] 7.5 × 10−6 7.5 × 10−6 7.5 × 10−6

ϕ0 15.4500 15.4500 15.4500
c 0.01500 0.01500 0.01500

ϕstep 13.5000 14.2000 14.5000
d 0.02000 0.02000 0.02000

Power law case
ns 0.95971 0.96153 0.96111
r 0.14118 0.14104 0.14102

Table 4.7: Values considered for the step potential parameters. The variation of ϕstep between the second and third
value is smaller in relation to the first.
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Figure 4.6: Scalar power spectrum for different values of ϕstep. The oscillatory frequency of the blue color spectrum
is greater than purple and green color spectra.

The wavelengths observed in the spectra decrease when the ϕstep variable increases its value. The values
considered for the purple and blue color spectra only differ in 0.3. However, the oscillations they produce are
completely different, since the frequency of the blue color spectrum observed in Figure (4.6), is much higher than the
frequency of the purple color spectrum. For the green color spectrum no type of oscillation is observed, its behavior
is very similar to that obtained for the chaotic potential without the step in this range of k.

Varying the parameter d

For the last case that we studied on data variation in the parameters, the quantities shown in Table (4.8) were used.
In the spectra for this case, shown in Fig. (4.7), it can be observed how the behavior of the oscillations is contrary

to the cases analyzed previously. That is, we can see how an increase in the value of the parameter d decreases both
the amplitude and the frequency of each oscillation.

Best fit in potential parameters

Finally, after having made a large number of combinations between the parameters c, ϕstep and d, it was possible
to find a combination, see Table (4.9), whose scalar power spectrum fits with good precision for the data obtained
from space telescopes with respect to the temperature spectrum. In the section 3.3 we saw what this fit looks like
for angular momentum near to l = 22 and l = 40. That is, the values of the parameters used for this fit show a
good approximation at these small angular momentum in the temperature spectrum. This occurs because our scalar
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Model Parameter Green Graph Purple Graph Blue Graph

Chaotic Model with a step

m[Mpl] 7.5 × 10−6 7.5 × 10−6 7.5 × 10−6

ϕ0 15.4500 15.4500 15.4500
c 0.01200 0.01200 0.01200

ϕstep 14.0900 14.0900 14.0900
d 0.02000 0.02500 0.03500

Power law case
ns 0.96110 0.96131 0.96164
r 0.14104 0.14104 0.14100

Table 4.8: Different values considered for parameter d. The quantities ns and r obtained for this case are shown

Figure 4.7: Spectrum of scalar powers for different values of d. The behavior of these oscillations looks contrary to
those obtained by the previous spectra.
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Model Parameter Value

Chaotic Model with a step

m[Mpl] 7.5 × 10−6

ϕ0 15.4500
c 0.01600

ϕstep 14.6700
d 0.03110

Power law case
ns 0.98523
r 0.13959

Table 4.9: Values of the parameters that best fit the observational data from space telescopes.The quantities ns and r
obtained for this fit are shown.

Parameter Symbol Theoretically Observationally Error (%)
Scalar spectral index ns 0.98523 0.9649 2.10695
Tensor-to-scalar ratio r 0.13959 0.11000 26.9000

Table 4.10: Experimental and theoretical values obtained for ns and r.

power spectrum, as you can see in the Fig. (4.8), meets the requirements that have been mentioned throughout this
work. In addition, the good approximation obtained can be sustained because the values obtained for ns and r are
very close to those obtained observationally. This did not occur for most of the cases analyzed previously, where the
results obtained for the power law case were even far from the limits established in Table (4.2).

With all these calculations obtained, we can compare the values of the power law case obtained theoretically
with the best fit, to the experimental values of the Planck telescope that are shown in the Table (4.10). The errors
obtained in ns and r for this fit are small. The cases analyzed at the beginning of this section show considerably high
errors, far from the observational values obtained by space telescopes.
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Figure 4.8: The scalar power spectrum of the best fit found for the chaotic potential with a step.The graph shows
oscillations and its final value tends to have a value of 2.2×10−9. The range of the wavenumber is smaller in relation
to the previous cases.



Chapter 5

Conclusions & Outlook

In this work the chaotic potential with a step was analyzed numerically. We first present the theoretical background by
mentioning the horizon and flatness problems whose solutions gave rise to the theory of cosmic inflation. From the
study of cosmological disturbances, which give rise to the structure of the Universe, the Mukhanov-Sasaki equation
is obtained. The chaotic potential and the step potential were examined. The product of these two potentials gave us
as a result a new potential whose objective is to obtain the scalar power spectrum with oscillations, in order to obtain
a temperature spectrum with a good approximation with respect to the data collected by telescopes such as the Planck
or the WMAP-9. For the numerical analysis of this potential with a step, Table (4.2) was used, which shows the range
of values that the height (c), location (ϕstep), and width (d) can have so that the scalar spectrum shows oscillations.
Once the analysis on the parameters was carried out, considering combinations of values that are outside, inside
and in the limits, it was possible to determine the behavior that each of the variables has when their values vary. It
was observed how all the spectra obtained have a better approximation for an inflaton mass m = 7.5 × 10−6Mpl. As
expected, the approximations and oscillatory behaviors obtained for the combinations made between the variables
that are outside the range shown above, do not fit the experimental data correctly. This also happens for the potential
quantities ns and r that were obtained. All the cases studied within the established limits, present oscillations and a
good approximation towards the value 2.2× 10−9. However, there will only be a combination of values, within limits
shown in Table (4.2), that best fit the data from space telescopes, this for small multipole moments.
The analysis done on each of the variables shows how the amplitude of the oscillations increases when c takes larger
values. In the case of the ϕstep parameter, the frequencies that the oscillations present are greater as the value of the
variable increases. On the other hand, the variable d presents a behavior opposite to that shown by c and ϕstep. Fig.
(4.8) shows the scalar power spectrum that best fits these data. Unlike the oscillations obtained for the other cases
studied, we can notice how these are produced at lower wavenumbers.
For future studies with this potential, this work will be helpful to understand the values that the variables c, ϕstep, and
d must have, so that the spectrum of scalar powers has a good fit with respect to the new observational data that are
obtained.
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Appendix A

Mathematica code to compute the scalar
power spectrum and the values for ns and r

ClearAll["Global‘*"]

\[Phi]s := 14.8

\[Phi]0 := 16.5

m := 6.7375 10^(-6)

c := 0.0018

d := 0.022

\[Phi]end := 1.41421

V[t_] := 1/2 m^2 \[Phi][t]^2 (1 + c Tanh[(\[Phi][t] - \[Phi]S)/d])

Vp[t_] := D[V[t], {\[Phi][t], 1}]

(*\[Phi]sr,asr*)

solsr = NDSolve[{3 a’[t]/a[t] \[Phi]’[t] + Vp[t] == 0,

a’[t] == a[t] Sqrt[1/3 V[t]], \[Phi][0] == \[Phi]0,

a[0] == 1}, {\[Phi], a}, {t, -42000, 2.99 10^6},

MaxSteps -> 100000, AccuracyGoal -> 10];

asr[t_] := (a /. First[solsr])[t]

\[Phi]sr[t_] := (\[Phi] /. First[solsr])[t]

\[Phi]srp[t_] = D[\[Phi]sr[t], {t, 1}];

(*\[Phi],a*)

solex = NDSolve[{\[Phi]t’’[t] + 3 at’[t]/at[t] \[Phi]t’[t] +

m^2 (1 + c Tanh[(-\[Phi]S + \[Phi]t[t])/d]) \[Phi]t[t] + (

c m^2 Sech[(-\[Phi]S + \[Phi]t[t])/d]^2 \[Phi]t[t]^2)/(2 d) ==
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0, at’[t] ==

at[t] Sqrt[

1/3 (1/2 \[Phi]t’[t]^2 +

1/2 m^2 \[Phi]t[t]^2 (1 +

c Tanh[(\[Phi]t[t] - \[Phi]S)/d]))], \[Phi]t[

0] == \[Phi]0, \[Phi]t’[0] == \[Phi]srp[0],

at[0] == 1}, {\[Phi]t , at}, {t, -42000, 2.99 10^6},

MaxSteps -> 10000000, AccuracyGoal -> 10];

a[t_] := (at /. First[solex])[t]

pa[t_] := (at’ /. First[solex])[t];

ppa[t_] := (at’’ /. First[solex])[t];

pppa[t_] := (at’’’ /. First[solex])[t];

\[Phi][t_] := (\[Phi]t /. First[solex])[t];

p\[Phi][t_] := (\[Phi]t’ /. First[solex])[t];

pp\[Phi][t_] := (\[Phi]t’’ /. First[solex])[t];

ppp\[Phi][t_] := (\[Phi]t’’’ /. First[solex])[t];

H[t_] := pa[t]/a[t]

z[t_] := (a[t] p\[Phi][t])/H[t]

tend = t /. FindRoot[\[Phi][t] == \[Phi]end, {t, 2.4 10^6}];

Efolds = Log[a[tend]/a[0]];

pH[t_] = D[H[t], t];

z[t_] := ((a[t])^2 p\[Phi][t])/pa[t];

pz[t_] :=

a[t] (p\[Phi][t] (2 - (a[t] ppa[t])/pa[t]^2) + (a[t] pp\[Phi][t])/

pa[t])

ppz[t_] :=

2 pa[t] p\[Phi][t] + (2 a[t]^2 p\[Phi][t] ppa[t]^2)/pa[t]^3 +

4 a[t] pp\[Phi][t] - (

a[t]^2 (2 ppa[t] pp\[Phi][t] + p\[Phi][t] pppa[t]))/pa[t]^2 + (

a[t] (-2 p\[Phi][t] ppa[t] + a[t] ppp\[Phi][t]))/pa[t]

Plot[\[Phi][t] - \[Phi]end, {t, 0, 3 10^6}, PlotRange -> All]

tend

prere[k_] :=

NDSolve[{l’’[t] + l’[t] H[t] + l[t] (k/a[t])^2 == 0,

l[tbuch[k]] == Re[uini[k, tbuch[k]]],

l’[tbuch[k]] == Re[diffuini[k, tbuch[k]]]}, {l, l’}, {t, tbuch[k],

tini[k]}, MaxSteps -> Infinity, StartingStepSize -> .0001,
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MaxStepSize -> 10, InterpolationOrder -> All];

re[k_] :=

NDSolve[{u’’[t] + u’[t] H[t] + u[t] rhsScalar[k, t] == 0,

u[tini[k]] == Rationalize[(l /. First[prere[k]])[tini[k]], 0],

u’[tini[k]] == Rationalize[(l’ /. First[prere[k]])[tini[k]], 0]},

u, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity,

StartingStepSize -> .001, MaxStepSize -> 10,

InterpolationOrder -> All];

preim[k_] :=

NDSolve[{g’’[t] + g’[t] H[t] + g[t] (k/a[t])^2 == 0,

g[tbuch[k]] == Im[uini[k, tbuch[k]]],

g’[tbuch[k]] == Im[diffuini[k, tbuch[k]]]}, {g, g’}, {t, tbuch[k],

tini[k]}, MaxSteps -> Infinity, StartingStepSize -> .0001,

MaxStepSize -> 10, InterpolationOrder -> All];

im[k_] :=

NDSolve[{v’’[t] + v’[t] H[t] + v[t] rhsScalar[k, t] == 0,

v[tini[k]] == Rationalize[(g /. First[preim[k]])[tini[k]], 0],

v’[tini[k]] == Rationalize[(g’ /. First[preim[k]])[tini[k]], 0]},

v, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity,

StartingStepSize -> .001, MaxStepSize -> 10,

InterpolationOrder -> All];

x[k_] := u /. First[re[k]]

y[k_] := v /. First[im[k]]

(*Tensor*)

prere2[k_] :=

NDSolve[{l2’’[t] + l2’[t] H[t] + l2[t] (k/a[t])^2 == 0,

l2[tbuch[k]] == Re[uini[k, tbuch[k]]],

l2’[tbuch[k]] == Re[diffuini[k, tbuch[k]]]}, {l2, l2’}, {t,

tbuch[k], tini[k]}, MaxSteps -> Infinity,

StartingStepSize -> .0001, MaxStepSize -> 10,

InterpolationOrder -> All];

re2[k_] :=

NDSolve[{u2’’[t] + u2’[t] H[t] + u2[t] rhsTensor[k, t] == 0,

u2[tini[k]] == Rationalize[(l2 /. First[prere2[k]])[tini[k]], 0],

u2’[tini[k]] ==

Rationalize[(l2’ /. First[prere2[k]])[tini[k]], 0]},

u2, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity,

StartingStepSize -> .001, MaxStepSize -> 10,
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InterpolationOrder -> All];

preim2[k_] :=

NDSolve[{g2’’[t] + g2’[t] H[t] + g2[t] (k/a[t])^2 == 0,

g2[tbuch[k]] == Im[uini[k, tbuch[k]]],

g2’[tbuch[k]] == Im[diffuini[k, tbuch[k]]]}, {g2, g2’}, {t,

tbuch[k], tini[k]}, MaxSteps -> Infinity,

StartingStepSize -> .0001, MaxStepSize -> 10,

InterpolationOrder -> All];

im2[k_] :=

NDSolve[{v2’’[t] + v2’[t] H[t] + v2[t] rhsTensor[k, t] == 0,

v2[tini[k]] == Rationalize[(g2 /. First[preim2[k]])[tini[k]], 0],

v2’[tini[k]] ==

Rationalize[(g2’ /. First[preim2[k]])[tini[k]], 0]},

v2, {t, tini[k], 3 hc[k]}, MaxSteps -> Infinity,

StartingStepSize -> .001, MaxStepSize -> 10,

InterpolationOrder -> All];

x2[k_] := u2 /. First[re2[k]]

y2[k_] := v2 /. First[im2[k]]

PS[k_] :=

k^3/(2 Pi^2 (z[3 hc[k]])^2) Abs[(x[k])[3 hc[k]] + I (y[k])[3 hc[k]]]^2

PT[k_] :=

k^3/(2 Pi^2 (a[3 hc[k]])^2)

Abs[(x2[k])[3 hc[k]] + I (y2[k])[3 hc[k]]]^2

nS[k_] := 1 + k/PS[k] (PS[k + h2] - PS[k - h2])/(2 h2)

r[k_] := 8 PT[k]/PS[k]

data1 = OpenWrite[

"G:\\My Drive\\TRABAJO DE TITULACIÓN\\Titulación \

I\\Mathematica\\Séptimos Valores C= 0.012 d= 0.004\\Data C=0.012 \

d=0.004 - Progation k+0.01 from 0.0001-10.0000.txt",

FormatType -> OutputForm]; For[k = 7.9891, k < 10, k = k + 0.01,

Write[data1, k, " ", CForm[PS[k]]]]

Close[data1];
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