
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Optimization Problems Using the Particle
Swarm Optimization Algorithm

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor:

Chancay Moreira Stalyn Javier

Tutor:

Ph.D. Rigoberto Fonseca

Co-Tutor:

Ph.D. Israel Pineda

Urcuqúı, noviembre 2022

Autoŕıa

Yo, Stalyn Javier Chancay Moreira, con cédula de identidad 180514577, declaro que las

ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y concep-

tualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas

utilizadas en la investigación, son de absoluta responsabilidad de el autor del trabajo de

integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad

de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, noviembre 2022.

Stalyn Javier Chancay Moreira

CI: 1805145677

Autorización de publicación

Yo, Stalyn Javier Chancay Moreira, con cédula de identidad 1805145677, cedo a la

Universidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de pub-

licación de la presente obra, sin que deba haber un reconocimiento económico por este

concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser ce-

dido a ninguna empresa editorial para su publicación u otros fines, sin contar previamente

con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, noviembre 2022.

Stalyn Javier Chancay Moreira

CI: 1805145677

Dedication

”To my family, my friends, and co-tutor because their motivation and support helped me

to reach this point in my life.”

Stalyn Javier Chancay Moreira

v

Acknowledgment

Firstly, I would like to acknowledge Rigoberto Fonseca, Ph.D., who collaborated in the

final stages of my project. His comments and guidance supported me in my work. His

support was undoubtedly appreciated, particularly in the drafting and structure of the

present document.

Furthermore, I want to convey my profound thanks to my co-adviser, Israel Pineda,

Ph.D., for his unwavering support of my studies and research and his perseverance, re-

sponsibility, inspiration, and enthusiasm. Moreover, I completed this thesis thanks to his

advice, which I used throughout my research and writing. Besides, I want to thank Md

Sakibul Islam, University of New Mexico, who accompanied me in developing this project.

I want to express a special thanks to my friends, Luis Murillo, Evelyn Callataxi, Valeria

Lucero, Matéo Oleas, Liseth Encarnación, Carlos Mendoza, and Belén Maldonado, with

whom I shared the most significant moments of my university life.

Lastly, I want to thank my mom (Nieve Moreira) and brothers (Jonathan Chancay,

Bryan Chancay, Jair Chancay, Josue Chancay, and Nicolás Chancay) for always inspiring

and helping me through college. I would not have finished this phase of my life without

their advice. Further, I thank my darling Fernanda Caiza, who, together with my family,

has always been a source of strength and inspiration during good and bad times.

Stalyn Javier Chancay Moreira

vii

Resumen

En la actualidad existen diversas técnicas y modelos para el entrenamiento de redes neu-

ronales artificiales, como la arquitectura del perceptrón multicapa. El perceptrón multicapa

tiene un mapeo no lineal entre entradas y salidas de NN. Además, Backpropagation es el

algoritmo tradicional para entrenar una red neuronal. Por otro lado, en los últimos años se

han implementado algoritmos metaheuŕısticos inspirados en la naturaleza para optimizar

los parámetros de ANN. Un algoritmo popular para esta tarea es PSO, que tiene una

emocionante versión cuántica (QDPSO). Por lo tanto, esta tesis propone la integración

de QDPSO en un perceptrón multicapa para problemas de clasificación y lo compara con

PSO, PSO-bound, L-BFGS, Adam y SGD. Las contribuciones de este trabajo son la ar-

quitectura e integración del QDPSO, la validación del modelo propuesto comparándolo

con optimizadores basados en metaheuŕısticas y gradiente utilizando conjuntos de datos

benchmark, y el análisis del comportamiento de entrenamiento aumentando el número de

clases y muestras del conjunto de datos circular. Además, proponemos una técnica de clasi-

ficación de imágenes usando Isomp como algoritmo de reducción. Isomap reduce seis veces

las caracteŕısticas de la imagen para la capa de entrada. Además, se compara con MSD,

TSNE y PCA utilizando los conjuntos de datos de cáncer de mama e iris. Finalmente,

los resultados de validación y comparación demostraron que la arquitectura y la técnica

propuesta en esta tesis tienen una excelente clasificación de los conjuntos de datos bench-

mark y MCW. Además, el optimizador QDPSO tiene una convergencia más rápida y un

comportamiento admirable durante el entrenamiento para conjuntos de datos balanceados.

Palabras Clave:

Red Neuronal Artificial, Retropropagación, Optimización de Enjambre de Part́ıculas Delta

de Comportamiento Cuántico, Datos Benchmark y Meteorológicos Multiclase.

ix

Abstract

Several techniques and models for training artificial neural networks exist, such as the

architecture of the multi-layer perceptron. Multi-layer perceptron has a non-linear map-

ping between inputs and outputs of the neural network. Furthermore, Backpropagation

is the traditional algorithm for training a neural network. On the other hand, in recent

years, nature-inspired metaheuristic algorithms have been implemented to optimize the pa-

rameters of ANN. A popular algorithm for this task is PSO, which has a quantum version

(QDPSO). Thus, this thesis proposes the integration of QDPSO in a multi-layer perceptron

for classification problems and compares it with PSO, PSO-bound, L-BFGS, Adam, and

SGD. The contributions of this work are the architecture and integration of the QDPSO,

validation of the model proposed comparing with optimizers based on metaheuristics and

gradient using benchmark datasets, and analysis of the training behavior increasing the

classes and samples number of the circle dataset. Besides, we propose a technique for image

classification using Isomap as a reduction algorithm. Isomap reduces six times the image

features for the input layer. Also, it is compared with MSD, TSNE, and PCA using the iris

and breast cancer datasets. Finally, the validation and comparison results demonstrated

that the architecture and technique proposed in this thesis have an excellent classification

of the benchmark and MCW datasets. Moreover, the QDPSO optimizer has faster conver-

gence and adequate behavior during the training for balanced datasets.

Keywords:

Artificial Neural Network, Backpropagation, Quantum-Behaved Delta Particle Swarm Op-

timization.

xi

Contents

Dedication v

Acknowledgment vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 2

1.3 Objectives . 3

1.3.1 General Objective . 3

1.3.2 Specific Objectives . 3

2 Theoretical Framework 5

2.1 Artificial Neural Network . 5

2.1.1 Functionality . 7

2.1.2 Activation Functions . 8

2.1.3 Regularization . 10

2.2 Backpropagation . 11

2.2.1 Loss Function . 13

xiii

2.3 Optimizers . 14

2.3.1 Gradient-based Optimizers . 15

2.3.2 Metaheuristic-based Optimizers . 17

3 State of the Art 23

3.1 Gradient-based Optimizers . 23

3.1.1 Stochastic Gradient Descent . 23

3.1.2 Adaptive Moment Estimation . 25

3.1.3 Limite-memory BFGS . 26

3.2 Metaheuristic-based Optimizers . 27

3.2.1 Particle Swarm Optimization . 27

3.2.2 Quantum-behaved Delta Particle Swarm Optimization 28

4 Methodology 33

4.1 Phases of Problem Solving . 33

4.1.1 Description of the Problem . 33

4.1.2 Analysis of the Problem . 34

4.1.3 Algorithm Design . 34

4.1.4 Implementation . 34

4.1.5 Testing . 34

4.2 Model Proposal . 35

4.2.1 Multi-Layer Perceptron . 35

4.2.2 Fitness Function . 35

4.2.3 Optimizer . 35

4.3 Experimental Setup . 36

4.3.1 Benchmark Datasets . 36

4.3.2 Image Classification Dataset . 37

4.3.3 Environment Setup . 38

5 Results and Discussion 41

5.1 Performance of Benchmark Dataset . 41

5.1.1 The result of the metaheuristic-based optimizers 42

5.1.2 The result of the gradient-based optimizers 44

Information Technology Engineer xiv Graduation Project

5.1.3 The result of the metaheuristic-based and gradient-based optimizers 45

5.1.4 The metrics of the metaheuristic-based optimizers 47

5.1.5 The metrics of the gradient-based optimizers 47

5.1.6 The metrics of the metaheuristic-based and gradient-based optimizers 48

5.1.7 Confusion Matrix and Loss Cost Curve 50

5.1.8 Discussion of Benchmark Performance 54

5.2 Performance of Dimensions Reduction . 55

5.2.1 Iris Dataset . 56

5.2.2 Breast Cancer Dataset . 59

5.2.3 Discussion of Dimension Reduction 60

5.3 Performance of Classes and Samples . 60

5.3.1 The loss curves of classes and samples 62

5.3.2 Discussion of Increasing Classes and Samples 65

5.4 Performance of Image Classification . 65

5.4.1 The result of the metaheuristic-based optimizers 65

5.4.2 The result of the gradient-based optimizers 66

5.4.3 The result of the metaheuristic-based and gradient-based optimizers 67

5.4.4 The metrics of the metaheuristic-based optimizers 67

5.4.5 The metrics of the gradient-based optimizers 68

5.4.6 The metrics of the metaheuristic-based and gradient-based optimizers 68

5.4.7 Confusion Matrix and Loss Cost Curve 69

5.4.8 Discussion of Image Classification 76

6 Conclusions 79

6.1 Conclusions . 79

6.2 Recommendations . 80

6.3 Future Works . 81

Bibliography 85

Information Technology Engineer xv Graduation Project

List of Tables

4.1 The description of the berchmark dataset. 37

4.2 The distribution of training and testing dataset. 37

4.3 The description of the Multi-class Weather Dataset. 37

4.4 The environment setup for QDPSO, PSO, PSO bound, Adam, L-BFGS, and

SGD optimizers. 39

5.1 The best, worst, average, and standard deviation of the loss cost during the

10 training with 1000 iterations and normalization for the metaheuristic-

based and gradient-based optimizers. 48

5.2 The precision, recall, and f1 score of benchmark datasets with 1000 iterations

and normalization for the metaheuristic-based and gradient-based optimizers. 50

5.3 The dimension reduction results use the iris dataset and metaheuristic-based

optimizers with MDS, TSNE, Isomap, and PCA as reducing algorithms. . . 56

5.4 The dimension reduction results use the iris dataset and gradient-based op-

timizers with MDS, TSNE, Isomap, and PCA as reducing algorithms. . . . 57

5.5 The dimension reduction results use the breast cancer dataset and metaheuristic-

based optimizers with MDS, TSNE, Isomap, and PCA as reducing algorithms. 58

5.6 The dimension reduction results use the breast cancer dataset and gradient-

based optimizers with MDS, TSNE, Isomap, and PCA as reducing algorithms. 59

5.7 The classes increasing results use the circle dataset and metaheuristic-based

optimizers with 500, 2000, and 10000 random samples. 61

5.8 The classes increasing results use the circle dataset and gradient-based op-

timizers with 500, 2000, and 10000 random samples. 61

xvii

5.9 The best, worst, average, and standard deviation of the loss cost of the

MCW dataset for the metaheuristic-based and gradient-based optimizers. . 67

5.10 The precision, recall, and f1 score of the MCW dataset for the metaheuristic-

based and gradient-based optimizers. 69

Information Technology Engineer xviii Graduation Project

List of Figures

2.1 The main parts of the artificial neural network. 6

2.2 The unit basic of artificial neural network, a neuron. 7

2.3 A Multi-Layer Perceptron. 7

2.4 Some of the common activation functions that are used in deep neural net-

works, retrieved from [1] . 8

2.5 Droupout graphic representation. 12

2.6 The backpropagation algorithm [2]. 13

2.7 Concept of changing a particle of position in PSO [3]. 19

3.1 Generalized schematic of PSO-NN and PSO-ERNN [4]. 29

3.2 The ERNN architecture [4]. 29

3.3 Flowchart of prediction model using QPSO-DELM as an optimizer [5]. . . 30

4.1 Flowchart of the problem-solving. 33

4.2 Flowchart of the artificial neural network training using the QDPSO optimizer. 36

4.3 Flowchart of the artificial neural network training for image classification

using the QDPSO optimizer. 38

5.1 Heatmaps depicting the performance of each optimizer with benchmark

datasets using 100 iterations. Where (a) shows the accuracy of training

in percent, (b) illustrates the mean squared error during the training, (c)

sees the testing accuracy in percent, and (d) represents the mean squared

error during the testing. 42

xix

5.2 Heatmaps depicting the performance of each optimizer with benchmark

datasets using 1000 iterations. Where (a) shows the accuracy of training

in percent, (b) illustrates the mean squared error during the training, (c)

sees the testing accuracy in percent, and (d) represents the mean squared

error during the testing. 43

5.3 The confusion matrix of the circle dataset uses metaheuristic-based (a, b,

and c) and gradient-based (d, e, and f) optimizers with normalization and

1000 iterations. 51

5.4 The confusion matrix of the iris dataset uses metaheuristic-based (a, b, and

c) and gradient-based (d, e, and f) optimizers with normalization and 1000

iterations. 51

5.5 The confusion matrix of the wine dataset uses metaheuristic-based (a, b,

and c) and gradient-based (d, e, and f) optimizers with normalization and

1000 iterations. 52

5.6 The confusion matrix of the breast dataset uses metaheuristic-based (a, b,

and c) and gradient-based (d, e, and f) optimizers with normalization and

1000 iterations. 52

5.7 The loss curve of the benchmark datasets uses metaheuristic-based and

gradient-based optimizers with normalization and 1000 iterations. 54

5.8 The loss curve of the circle dataset uses metaheuristic-based and gradient-

based optimizers with normalization, 2 classes, and 1000 iterations. Further-

more, (a) shows the loss curves with 500 samples, (b) with 2000 samples,

and (c) with 10000 samples. 62

5.9 The loss curve of the circle dataset uses metaheuristic-based and gradient-

based optimizers with normalization, 3 classes, and 1000 iterations. Further-

more, (a) shows the loss curves with 500 samples, (b) with 2000 samples,

and (c) with 10000 samples. 63

5.10 The loss curve of the circle dataset uses metaheuristic-based and gradient-

based optimizers with normalization, 4 classes, and 1000 iterations. Further-

more, (a) shows the loss curves with 500 samples, (b) with 2000 samples,

and (c) with 10000 samples. 64

Information Technology Engineer xx Graduation Project

5.11 Heatmaps depicting the performance of each optimizer with 84, 42, and

14 features using 1000 iterations and MCW dataset. Where (a) shows the

accuracy of training in percent, (b) illustrates the mean squared error during

the training, (c) sees the testing accuracy in percent, and (d) represents the

mean squared error during the testing. 66

5.12 The confusion matrix of the MCW dataset uses metaheuristic-based (a, b,

and c) and gradient-based (d, e, and f) optimizers with normalization, 84

features, and 1000 iterations. 70

5.13 The confusion matrix of the MCW dataset uses metaheuristic-based (a, b,

and c) and gradient-based (d, e, and f) optimizers with normalization, 42

features, and 1000 iterations. 72

5.14 The confusion matrix of the MCW dataset uses metaheuristic-based (a, b,

and c) and gradient-based (d, e, and f) optimizers with normalization, 14

features, and 1000 iterations. 74

5.15 The loss curve of the MCW dataset uses metaheuristic-based and gradient-

based optimizers with normalization, different characteristics, and 1000 it-

erations. 76

Information Technology Engineer xxi Graduation Project

Chapter 1

Introduction

1.1 Background

In the last decade, neural networks (NN), also known as artificial neural networks (ANNs),

have become the most popular family of machine learning algorithms. Artificial Neural

Networks (ANN) as a computational model have existed since the middle of the last century

but have gained momentum thanks to improvements in techniques and technology. The

name of ANN and structure is inspired by the human brain, imitating how biological

neurons signal to one another [6] [7]. As a result, the artificial neural networks have

expanded in many fields of scientific research, such as biology [8] [9], chemistry [10] [11],

physic [12] [13], ecology [14] [15], and others. Their advances are so overwhelming that they

can currently do character recognition [16] [17], image recognition [18], voice recognition

[19], text generation [20], language translation [21] [22], autonomous driving [23], disease

prognosis [24] [25], and so on. ANNs are also well suited to assisting individuals in real-

world scenarios with complex difficulties. For example, they can learn and model the

relationships between inputs and outputs that are nonlinear and complex and reveal hidden

relationships, patterns, and predictions, among others.

Hilton et al. in 1986 proposed the first method for training an artificial neural network:

backpropagation (BP) [26]. BP is a technique for adjusting the weights of ANN depending

on the error rate recorded in the previous epoch, i.e., iteration. Appropriately tweaking

the weights may lower error rates and improve the reliability of the model by broadening

its applicability. Several methods perform this task called optimization. The optimizer al-

1

gorithm optimizes the objective function that requires minimizing its parameters. In other

words, it changes the attributes of the artificial neural network, such as weights, to reduce

the losses by optimizing a minimization problem. There are many optimization algorithms,

such as gradient methods, evolutionary algorithms, and metaheuristics. However, the most

common optimizer for training a neural network is the gradient descent with its variants

[27] [28].

On the other hand, recently, it has been proposed to train an artificial network with

metaheuristic algorithms such as Particle Swarm Optimization (PSO) [3] [4]. PSO was pro-

posed in 1995 by Kennedy and Eberhart [29]. It is a heuristic optimization method aimed

at finding global minimums or maximums. The behavior of bird flocks inspired PSO, where

the movement of each individual is the result of each decision individual with the behavior

of the rest. Otherwise, PSO has several variations, such as guaranteed convergence PSO

[30], Non-dominated Sorting PSO [31], improved PSO [32], and so on. However, an exciting

implementation, QDPSO, was proposed by Sun et al. in 2004 [33]. QDPSO is a quantum

version of PSO, which uses a Contraction-Expansion parameter called Delta. Thus, the

project proposal integrates QDPSO for training ANNs, using benchmark datasets, classi-

fication metrics, and different optimizers for validation and comparison. Furthermore, it

proposes a technical for image classification using a features-reducing algorithm and anal-

yses the behavior of QDPSO during the training, increasing the number of samples and

classes.

1.2 Problem statement

Training ANNs is complex because the error surface is non-convex, comprises local minima

and flat patches, and is highly multi-dimensional. Moreover, the weights of a neural net-

work with hidden layers are highly interdependent. In this sense, many researchers improve

the training method using different techniques such as parameter initialization, loss and

activation functions, data preprocessing, optimizers, and so forth. For these reasons, this

project presents an integration of QDPSO for training ANNs.

Information Technology Engineer 2 Graduation Project

1.3 Objectives

1.3.1 General Objective

Train an artificial neural network with Particle Swarm Optimization using particles based

on quantum behavior.

1.3.2 Specific Objectives

• Implement an artificial neural network training using QDPSO.

• Benchmark the proposed optimizer with other optimizers found in the literature

review using different datasets, classes, and dimensions.

• Tune the parameters of the algorithm to improve the training result.

Information Technology Engineer 3 Graduation Project

Chapter 2

Theoretical Framework

This chapter introduces the fundamental ideas required to comprehend the current work.

So, it starts with the bases of artificial neural networks and their current status. After

that, it describes and explains the mathematical background of the optimizers used in this

work with their principal features.

2.1 Artificial Neural Network

In 1958, it was made known as a hardware system that learns from data with a perceptron

program [34]. Then, in 1959 Hubel et al. did some experiments with cat neurons. The idea

was to see how the activity in neural network responds when changing a slide manually

[35]. This paper won the Nobel prize in psychology and vision. After that, in 1969, Minsky

showed that the perceptron does not learn from the XOR function [26]. Then, Fukushima

proposed a complex architecture with pooling and convolutions that is not a practical

training algorithm [36]. However, in 1986, Hilton et al. proposed the backpropagation,

a differentiation function that allows us to train a perceptron with multiple layers [26].

After that, LeCun et al. combined the Fukushima architecture with BP and proposed

the Convolutional Neural Network (CNN) [37]. It is important to remark that Hilton

is the father of BP, and LeCun is the father of CNN. Finally, in 2012, AlexNet [38], a

deep learning (DL) architecture that used multiple layers convolutions, and the ImageNet

Challenge. Also, AlexNet accepted it at CVPR, a conference for computer vision. From

there, the DL suffered an explosion, and the people used artificial neural network in image

classification [39], object detection [40], pose recognition [41], and image segmentation [42].

5

ANN is based on the operation of a biological neural network [7]. Biological neural

networks are made up of dendrites, cell bodies, and axons: the dendrites are responsible

for capturing the nerve impulses emitted by other neurons. These impulses are processed

in the soma and transmitted through the axon, which sends a nerve impulse to neighboring

neurons.

In the case of artificial neurons, the sum of the inputs multiplied by the associated

weights determines the neural input that the neuron receives. This value is processed

within the neuron by an activation function that returns the value sent as its output. Like

our brain, which consists of interconnected neurons, an ANN consists of interconnected

artificial neurons, also known as nodes, grouped at different levels called layers. Three

main parts of ANNs are the following

• An input layer that represents the inputs field.

• One or more hidden layers.

• An output layer that represents the target variables.

The input data is presented in the first layer. Then, the values are propagated from

each neuron to each neuron in the next layer. Finally, the result from the output layer, see

Figure 2.1.

Figure 2.1: The main parts of the artificial neural network.

Information Technology Engineer 6 Graduation Project

2.1.1 Functionality

Firstly, the basic unit of ANNs is a neuron. A neuron receives inputs, performs mathemat-

ical operations, and outputs one result, see Figure 2.2. Then, the combination of neurons

forms an ANN, a system capable of learning.

Figure 2.2: The unit basic of artificial neural network, a neuron.

Figure 2.3 sees an artificial neural network (multi-layer perceptron), which shows how

the neurons have multiple input connections (input data). Inside, the neuron makes a

weighted sum of input data. Each input weighting is given by each of the weights assigned

to each input connection. In short words, each input is multiplied by a weight. Afterward,

all the weighted inputs are added together with a bias b. Finally, the sum result is passed

through an activation function.

Figure 2.3: A Multi-Layer Perceptron.

Information Technology Engineer 7 Graduation Project

2.1.2 Activation Functions

The activation functions allow an ANN to learn nonlinear mappings. Generally, it is

between 0 to 1 or -1 to 1. Moreover, it can decide whether a neuron will fire or not,

given all of its inputs. Several activation functions exist, such as sigmoid, hyperbolic tang,

algebraic sigmoid, rectifier linear unit (ReLU), and so forth. Finally, it is presented the

most common activation functions are described below [1].

Figure 2.4: Some of the common activation functions that are used in deep neural networks,
retrieved from [1]

Sigmoid Function

It catches an actual number as input and gives an output in the range of between 0 to 1.

It is defined as

fsigm (x) = 1
1 + e−x

(2.1)

Algebraic Sigmoid

It maps the input within the range [-1, 1]. It is given by

fa−sig(x) = x√
1 + x2

(2.2)

Information Technology Engineer 8 Graduation Project

Rectifier Linear Unit

Rectifier Linear Unit (ReLU) is a simple activation function of particular practical im-

portance because of its quick computation. If the input is harmful, the ReLU function

transfers it to a 0; otherwise, it leaves the value untouched. ReLU can be represented as

follow

frelu (x) = max(0, x) (2.3)

Noisy ReLU

It adds a sample drawn from a Gaussian distribution with a mean zero and a variance that

depends on the input value (σ(x)) in the positive input. It can be represented as follows

fn−rel(x) = max(0, x+ ϵ), ϵ ∼ N (0, σ(x)) (2.4)

Leaky ReLU

It does not reduce the output to a zero value; instead, it outputs a down-scaled version of

the negative input. It usually takes c as a small value (ex: 0.01) or a (parametric) that

learns during the training. This function is represented as

fl−rel(x) =


x if x > 0

cx if x ≤ 0

fp−rel(x) =


x if x > 0

ax if x ≤ 0

(2.5)

Randomized Leaky ReLU

It selects the leak factor in the leaky ReLU function from a uniform distribution.

fr−rel(x) =


x if x > 0

ax if x ≤ 0
(2.6)

Information Technology Engineer 9 Graduation Project

The factor a is randomly chosen during training. Furthermore, set to a mean value

during the test phase to get the contribution of all samples.

a ∼ U(I, u) during training

a = I + u

2 during testing.
(2.7)

Hyperbolic Tangent

It squashes the input values within the range of [-1, 1]. Moreover, it is represented as

follows

ftanh(x) = ex − e−x

ex + e−x
(2.8)

Exponential Linear Unit

It has positive and negative values, and they try to push the mean activations toward

zero (similar to batch normalization). The training process is speeding up while achieving

better performance.

felu(x) =


x if x > 0

a (ex − 1) if x ≤ 0
(2.9)

2.1.3 Regularization

Any adjustment to a learning algorithm that we make, known as regularization, aims to

lower both its generalization error and training error, but not always both [43] [44]. In

short, regularization reduces generalization errors or training errors. Moreover, it helps

to prevent the model from overfitting and improves the training optimization. Several

regularizations exist, such as weight decay (L1 and L2), noisy inputs (Gaussian noise),

data augmentation, and so forth. Nevertheless, we discuss L1 and L2 regularization and

dropout in this work.

Information Technology Engineer 10 Graduation Project

L1 and L2 Regularization

L1 and L2 regularization add a penalization term at the end of the loss function, which helps

to prevent the model from overfitting. Equation 2.10 shows an example of regularization

for the Cross-Entropy function.

L(W) = −
n∑

i=1
Yi log (pi) + γR(W) (2.10)

where, pi is the Softmax probability, Y is the truth label, and γ is the parameter control

for the regularization term R(W).

Dropout

Dropout prevents overfitting by randomly shutting down some output units. You can

think of dropout as adding an extra layer to the forward process. Equation 2.11 shows a

mathematical representation of the dropout, and Figure 2.5 is its graphic presentation.

Without Dropout

Z l = W lAl−1 + bl

Al = gl
(
Z l
)

With Dropout

Z l = W lAl−1 + bl

Al = gl
(
Z l
)

Al = Dl
(
Al
)

(2.11)

where, W is the weight matrix, Z is the weighted sum, A is the activation function, b is

the bias, and D is a dropout regularization.

2.2 Backpropagation

The popularity of ANNs skyrocketed in 1986 when Hilton et al. proposed BP. This work

experimentally shows how a learning algorithm can readjust the parameters of an ANN,

making it learn an internal representation of the information it is processing. Further-

Information Technology Engineer 11 Graduation Project

Figure 2.5: Droupout graphic representation.

more, the backward propagation algorithm calculates the partial derivatives of the cost

concerning each network parameter. In short, it computes the cost derivative concerning

the parameters and the cost derivative concerning the bias see equations 2.12 and 2.13.

∂C

∂W
= δ · ∂z

∂W
(2.12)

∂C

∂b
= δ · ∂z

∂b
(2.13)

δ = ∂C

∂a
· ∂a
∂z

(2.14)

where δ is the error attributed to the neuron, it is computing for Equation 2.14. Then, C

and A are the cost and activation functions, respectively. Also, W is the parameter, and

Z is the weighted sum.

The backpropagation algorithm is computed in three essential stages; computing the

error in the last layer, backward the error in the previous layer, and computing the deriva-

tive of the layer using the error see equations 2.15, 2.16, and 2.17, respectively. And so on,

going through all the network layers until the final one, the input layer. Otherwise, Figure

2.6 shows a graphic representation of the backpropagation algorithm.

Information Technology Engineer 12 Graduation Project

Figure 2.6: The backpropagation algorithm [2].

δL = ∂C

∂aL
· ∂a

L

∂zL
(2.15)

δl−1 = W lδl · ∂a
l−1

∂zl−1 (2.16)

∂C

∂bl−1 = δl−1 ∂C

∂wl−1 = δl−1al−2 (2.17)

2.2.1 Loss Function

The loss function computes the predicted error of the artificial neural network across the

training. This error reveals the difference between the current prediction and the truth.

Moreover, this error helps the optimizers update the parameters during the training. Nowa-

days, there are several loss functions. However, in this subsection, we discuss the cross-

entropy, mean square, and mean absolute error [45].

Cross-Entropy

Cross-Entropy (LCE) is also called the log loss function. Further, it works well with the

softmax activations (the output class probability) in the output layer for classification.

Information Technology Engineer 13 Graduation Project

Moreover, the mathematical representation of LCE is defined by Equation 2.18.

LCE(p, y) = −
∑

i

yi log (pi) where, i ∈ [1, N] (2.18)

where, y is the desired outputs, p is the outputs class probability, and N is the number of

neurons in the output layer.

Mean Square Error

Mean Square Error (LMSE) is also called Euclidean Loss Function. This loss function is so

used for regression problems. Then, LMSE is represented by:

LMSE(p, y) = 1
2N

N∑
i=1

(pi − yi)2 (2.19)

where, p is the predicted labels, y is the ground truth labels, and N is the number of

neurons in the output layer.

Hinge

Hinge (LH) is commonly used in the problem of maximum-margin-based classification

(supported vector machines) and binary classification. Moreover, LH is described by:

LH(p, y) =
N∑

i=1
max

(
0,m− (2yi − 1) pi

)
where, m is the margin. (2.20)

And where, p is the predicted outputs, y is the desired outputs, and N is the number of

neurons in the output layer

2.3 Optimizers

Optimizers are algorithms that change the ANN weights to reduce losses. There are several

optimizers available now for ANN training. However, this work uses metaheuristic-based

optimizers (i.e., PSO, PSO bound, and QDPSO) and gradient-based optimizers (i.e., SGD,

Adam, and L-BFGS).

Information Technology Engineer 14 Graduation Project

2.3.1 Gradient-based Optimizers

The gradient descent was suggested in 1847 by Augustin-Louis Cauchy and proposed by

Jacques Hadamard in 1907 [46]. The principle of gradient descent repeatedly moves in

the opposite direction of the gradient function (or approximative gradient) at the current

location since this is where the steepest drop occurs. Gradient descent has several versions.

This subsection reviews Stochastic Gradient Descent, Adaptive Moment Estimation, and

Limited-memory BFGS.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a version of Gradient Descent. It aims to do more

frequent parameter updates for the model. In this, the model parameters are changed

following the computation of the loss of each training session [47]. In short, the examples

chosen randomly during each iteration determine the stochastic process. SGD is defined

by

wt+1 = wt −
Backpropagation︷ ︸︸ ︷
αt∇wJ (zt, wt) (2.21)

where,

• w is the parameter.

• α is the learning rate.

• ∇ is the gradient.

• J is the objective function.

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) uses first and second-order momentums [48]. The

idea behind Adam is that we should slow down a little bit for a thorough search rather

than rolling so quickly merely to be able to jump over the minimum. Like AdaDelta, Adam

additionally stores an exponentially decaying average of previously squared gradients in

addition to an exponentially decaying average of past gradients. The Adam method is

defined by

Information Technology Engineer 15 Graduation Project

wt+1 = wt −
α · m̂t√
v̂t + ϵ

where,

m̂t = mt

1− βt
1

v̂t = vt

1− βt
2

mt = (1− β1)∇wJ (zt, wt) + β1mt−1

vt = (1− β2)∇wJ (zt, wt)2 + β2vt−1

(2.22)

and where,

• w is the parameter.

• α is the learning rate.

• m̂ and v̂ are the first and second momentum, respectively.

• ϵ is the term preventing division by zero.

• β1 and β2 are the first and second momentum term, respectively.

• ∇ is the gradient.

• J is the objective function.

Limited-memory BFGS

Limited-memory BFGS (L-BFGS) is an optimization algorithm that finds a minimum of

an objective function using the values and gradient of the objective function. Furthermore,

it is the family of quasi-Newton methods. And it is an extension of the Broyden Fletcher-

Goldfarb Shanno algorithm (BFGS). Moreover, the main idea of L-BFGS is to build the

Hessian approximation using the curvature information from the most recent iterations

[49]. In short, it discards the earlier curvature information that is not relevant to the

actual behavior of the Hessian. The L-BFGS is defined by

wk+1 = wk −
Backpropagation︷ ︸︸ ︷
αkHk∇fk

(2.23)

where,

Information Technology Engineer 16 Graduation Project

• w is the parameter.

• α is the the step length.

• H is the inverse Hessian approximation.

• ∇ is the gradient.

• f is the function being minimized.

2.3.2 Metaheuristic-based Optimizers

For a few decades, there has been an increase in the study of metaheuristics, which are

generic algorithmic frameworks frequently inspired by nature to address challenging opti-

mization issues. Metaheuristics are proving to be effective alternatives to more traditional

methods of addressing optimization problems, even those whose mathematical formula-

tions contain uncertain, stochastic, and dynamic information. However, Metaheuristic

algorithms can generate only a feasible solution, but it does not guarantee an optimal

solution [50] [51]. There are many algorithms with this technic. This subsection reviews

PSO, PSO bound, and QDPSO.

Particle Swarm Optimization

In 1995, Kennedy and Eberhart proposed PSO [29], a heuristic optimization method to find

global minimums or maximums. This algorithm is inspired by bird flocking behavior. Each

particle in PSO indicates a possible solution. So, while one particle may be considered the

ultimate answer, extracting the solution from the swarm is possible too. There are several

variations of this algorithm. However, these always follow the following steps:

Creating Swarm: Create an initial swarm of n random particles. Each particle

consists of 4 elements: a position that represents a specific combination of variable values,

the value of the objective function at the place where the particle is located, a velocity that

indicates how and where the particle moves, and a record of the best position in which the

particle has been so far.

Evaluating Particles: Compute the value of the objective function in the position

the particle occupies at that moment. Each particle also stores the position with its best

Information Technology Engineer 17 Graduation Project

value to identify if a new position is better than the previous one. For that, it is necessary

to know if it is a minimization or maximization problem.

Moving Particle: The algorithm optimizes the objective function, moving the particle

in this part. Thus, it updated the position and speed of each particle. Hence, the algorithm

uses the flight 2.24 and position 2.25 equations.

The Flight Equation is responsible for the speed of the particles in each iteration and

is defined by

vt+1
i = wvt

i + c1rp(P t
best,i − xi) + c2rg(Gbest − xi) (2.24)

where,

• vt+1
i : The particle velocity i at the time t+ 1, i.e., the new speed.

• vt
i : The particle velocity i at the time t, i.e., the current speed.

• w: The inertia coefficient reduces or increases the particle speed. It is usually between

0.8 and 1.2. If w < 1, the particle slows down as the iterations progress; this results

in less exploration but a convergence towards the fastest optimum. If w > 1, the

particle accelerates, allowing to explore more areas of the function space but making

convergence difficult.

• c1: The cognitive coefficient. It usually bounded between 0 to 2.

• rp: The uniform random numbers between 0 and 1.

• P t
best,i: The best position in which the particle has been i until now.

• xi: The particle position i at the time t.

• c2: The social coefficient. It usually bounded between 0 to 2.

• rg: The uniform random numbers between 0 and 1.

• Gbest: The best position of the entire swarm at the moment t, the global best value.

The flight function 2.24 has three crucial components: inertial, cognitive, and social

component. The wvt
i defines the inertial component responsible for keeping the particle

Information Technology Engineer 18 Graduation Project

moving. The c1rp(P t
best,i−xi) is the cognitive component responsible for the particle moving

towards the position where it has obtained better results individually. Furthermore, The

c2rg(Gbest−xi) is the social component responsible for the particle tending to move toward

the best position the swarm found. It can be interpreted as collective knowledge.

The Position Equation updates the position of the particle at each iteration and is

defined by equation 2.25 and the graphic representation shows in Figure 2.7.

Figure 2.7: Concept of changing a particle of position in PSO [3].

xt+1
i = xt

i + vt+1
i (2.25)

where,

• xt+1
i : The particle position i at the time t+ 1, i.e., the new position.

• xt
i: The particle position i at the time t, i.e., the current position.

• vt+1
i : The particle’s velocity in the time t+ 1.

Checking Criterion: If a stop criterion is not met, return to Evaluating Particles.

Usually, the stop criterion is the error between prediction and target or the maximum

iteration.

PSO has two implementation versions; local and global. However, the second version

is the most used; see Algorithm 6. Here, it is shown from position and velocity initialize

passing for flight function in each particle of the swarm until to update their position.

Thus, each particle in PSO is a potential solution. On the other hand, the particles of

Information Technology Engineer 19 Graduation Project

PSO tend to get stuck in local minima, causing that considerable research to be focused

on solving it. In addition, the computational cost depends on the number of particles

generated in the swarm and their dimensions.

Quantum-behaved Delta Particle Swarm Optimization

In 2004, Sun et al. proposed individual quantum-behaved particles for PSO [33]. Then, the

wave function ψ(x⃗, t) interprets the quantum-behaved particles, whose squared value indi-

cates the likelihood of the existence of the particle at the position x⃗. Thus, a Delta potential

well model is presented in the quantum world with the center on point p. Moreover, the

probability density and distribution function are solved using the Monte Carlo technique

to solve the Schrödinger equation. On the other hand, in terms of classical mechanics,

a particle is depicted by its position vector x⃗ and velocity vector v⃗, which determine the

trajectory of the particle. In Newtonian mechanics, the particle follows a predetermined

path, but this is not the case in quantum mechanics. Therefore, the concept of trajectory

has no relevance in the quantum realm; it is meaningless [52]. Because v⃗ and x⃗ of a particle

can not be determined simultaneously according to the uncertainty principle, finally, the

position of the ith particle can be computed by Equation 2.26

x = p± L

2 ln
(

1
u

)
(2.26)

where,

pt
i = ut

iP
t
best,i +

(
1− ut

i

)
Gt

best + ∆t
i (2.27)

∆t
i =

P t
best,a − P t

best,c

2 (2.28)

Li,j = 2β · ∥ mbest j − xi,j∥ (2.29)

β = (1.0− 0.5)(MAXITER− t)
MAXITER− 0.5 (2.30)

Information Technology Engineer 20 Graduation Project

mbest = 1
N

N∑
i=1

Pbest,i (2.31)

Equation 2.27 is the particle motion center, also called the attractor. Then, the charac-

teristic length of the potential well delta, whose value is directly related to the convergence

speed and searching ability, is defined by Equation 2.29. Finally, inside Equation 2.29, the

Contraction-Expansion (CE) factor allows the convergence speed of algorithms. Moreover,

the Mean Best Position is defined as the mean value of all particles in the swarm. Both are

defined by the equations 2.30 y 2.31, respectively. Otherwise, u is a uniformly distributed

random number between 0 and 1. P t
best,i is the best position in which the particle has been

ith until now. Gt
best is the best position of the entire swarm at the moment t, the global

best value. Finally, xi,j is the particle position ith at time t.

The QDPSO implementation has four essential parts, which are very similar to PSO

implementation

• Creating the swarm

• Evaluating the particle

• Moving the particle

• Checking criteria

Nevertheless, the main differences are in the first and third stages of the algorithm. In

the first stage, the QDPSO only initializes the position of each particle swarm and eval-

uates the objective function to find a global best of the swarm. In the third stage, the

QDPSO uses Equation 2.26 to move the particles. Algorithm 7 shows the four stages of the

QDPSO implementation. Besides, similar to PSO, the computational cost of the QDPSO

depends on the number and dimension of the particle. However, the QDPSO has a faster

convergence compared with PSO [33].

Information Technology Engineer 21 Graduation Project

Chapter 3

State of the Art

This chapter discusses a few techniques for solving training neural networks using various

optimizers. Optimizers are techniques that modify the weights of the neural networks

to minimize losses. Nowadays, there are several optimizers for training neural networks.

However, this project uses gradient-based optimizers and metaheuristic-based described in

the previous chapter.

3.1 Gradient-based Optimizers

3.1.1 Stochastic Gradient Descent

In the recent decade, many researchers have improved gradient descent-based algorithms.

For instance, Xinyu and Fei-Yue proposed an accelerating minibatch for SGD [53]. This

method solves the slow convergence problem due to the considerable noise of the gradient

approximations. Thus, the main idea is that not all training samples are equally crucial

in gradient estimation. On each iteration, only parts of the training set are needed to

roughly guide the correct direction of the parameters update. In addition, the authors

give an experimental and mathematical explanation. Conversely, Algorithm 1 shows an

implementation of the typical batch using SGD, and Algorithm 2 of the typical batch

embedding using SGD and t-distributed stochastic neighbor (t-SNE) embedding.

Algorithm 1 build the subset H directly from the training set X and add it to the

other samples in the subset L. While Algorithm 2 computes 2-dimensional X ′ using t-SNE

and the density D of each sample from X ′. Then, it builds the subset H by selecting the

23

Algorithm 1: Typical Batch SGD [53].
1 Require: Global learning rate η;
2 Require: Batch size m;
3 Require: Training set X = {x1, x2, xn};
4 Require: Initial model parameter θ0;
5 Require: Batch selection rate γ ∈ (0, 0.5);
6 Build subset: demarcate subset H from training set X and put the other samples

in subset L;
7 while θk not converged do
8 Update iteration: k ← k + 1;
9 Select sub-batch Hk of size n1 from subset H by SRS;

10 Select sub-batch Lk of size n2 from subset L by SRS;
11 Get batch: B ← Hk + Lk;
12 Compute gradient: ∇JB (θk) = ∑

i∈B∇Ji(θ)/m ;
13 Apply update: θk+1 = θk − η ∗ ∇JB (θk);
14 end

Algorithm 2: Typical Batch SGD: t-SNE Embedding [53].
1 Require: Global learning rate η;
2 Require: Batch size m;
3 Require: Training set X = {x1, x2, xn};
4 Require: Initial model parameter θ0;
5 Require: Batch selection rate γ ∈ (0, 0.5);
6 Compute 2-dimensional data representation by t-SNE: X ′ = {x′

1, x
′
2, x

′
n};

7 Compute the density of each sample in X ′ : D =
{
dx′

1
, dx′

2
, dx′

n

}
;

8 Build subset H : select the top n ∗ γ samples from D;
9 Build subset L : select the remaining samples in D;

10 while θk not converged do
11 Update iteration: k ← k + 1;
12 Select sub-batch Hk of size n1 from subset H by SRS;
13 Select sub-batch Lk of size n2 from subset L by SRS;
14 Get batch: B ← Hk + Lk;
15 Compute gradient: ∇JB (θk) = ∑

i∈B∇Ji(θ)/m ;
16 Apply update: θk+1 = θk − η ∗ ∇JB (θk);
17 end

top samples from D and building the subset L by selecting the remaining samples in D,

which is the main difference between algorithm 1. Finally, in some way, this technic is

implemented by Adam optimizer.

Information Technology Engineer 24 Graduation Project

3.1.2 Adaptive Moment Estimation

Adam is a first-order gradient-based optimization technique for stochastic objective func-

tions that Kingma and Lei Ba introduced in 2017 [48]. It is based on adaptive estimations

of lower-order moments. Adam is simple to use, computationally effective, requires min-

imal memory, invariant to diagonal rescaling of the gradients, and works well for issues

with many parameters or data. Thus, this method has a mathematical and experimental

explanation. On the other way, the Adam implementation is described in Algorithm 3.

Algorithm 3: Adam optimizer [48].
1 Require: α: Stepsize;
2 Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates ;
3 Require: f(θ) : Stochastic objective function with parameters θ;
4 Require: θ0 : Initial parameter vector;
5 m0 ← 0 (Initialize 1st moment vector);
6 v0 ← 0 (Initialize 2nd moment vector);
7 t← 0 (Initialize timestep);
8 while θt not converged do
9 t← t+ 1;

10 gt ← ∇θft (θt−1) (Get gradients w.r.t. stochastic objective at timestep t);
11 mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate);
12 vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate);
13 m̂t ← mt/

(
1− βt

1) (Compute bias-corrected first moment estimate);
14 v̂t ← vt/

(
1− βt

2

)
(Compute bias-corrected second raw moment estimate);

15 θt ← θt−1 − α · m̂t/
(√

v̂t + ϵ
)

(Update parameters);
16 end
17 Return θt (Resulting parameters);

The authors made the logistic regression, multi-layer neural network, and convolutional

neural network experiments using Adam as an optimizer. Then, They compare it with other

optimizers such as AdaGrad, RMSProp, SGDNesterov, and AdaDelta. Also, Kingma and

Lei Ba propose proposes an extension for Adam based on the infinity norm, called AdaMAX

[48]. Then, the implementation of the Adamax is described in Algorithm 4, where the

exponentially weighted infinity norm updates the second momentum.

Information Technology Engineer 25 Graduation Project

Algorithm 4: AdaMAX optimizer [48].
1 Require: α: Stepsize;
2 Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates ;
3 Require: f(θ) : Stochastic objective function with parameters θ;
4 Require: θ0 : Initial parameter vector;
5 m0 ← 0 (Initialize 1st moment vector);
6 u0 ← 0 (Initialize the exponentially weighted infinity norm);
7 t← 0 (Initialize timestep);
8 while θt not converged do
9 t← t+ 1;

10 gt ← ∇θft (θt−1) (Get gradients w.r.t. stochastic objective at timestep t);
11 mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate);
12 ut ← max

(
β2 · ut−1, gt |

)
(Update the exponentially weighted infinity norm);

13 θt ← θt−1 −
(
α/
(
1− βt

1

))
·mt/ut (Update parameters);

14 end
15 Return θt (Resulting parameters);

3.1.3 Limite-memory BFGS

In 2019 Chang et al. proposed an accelerated linearly convergent stochastic L-BFGS

(AccsL-BFGS) Algorithm for training neural networks [54]. This technic has a mathemat-

ical and experimental explanation. Moreover, It is based on the conventional L-BFGS up-

date rule and is described in Algorithm 5. On the other hand, the AccsL-BFGS algorithm

uses six datasets and six optimizers to compare and prove that AccsL-BFGS converges

faster in some cases.

Finally, several papers briefly overview the gradient-based optimizers for training a

neural network in recent years. For example, Alzubaidi et al. reviewed deep learning,

focusing on concepts, CNN architectures, challenges, and applications [45]. In the same

way, Tian et al. overviewed deep learning for image denoising [55]. Moreover, Balaha

et al. use deep learning and genetic algorithm for hybrid COVID-19 segmentation and

recognition framework [56]. On the other hand, Borhani uses the L-BFGS algorithm for

document categorization [57]. Also, Jacob and Roummel propose an improving L-BFGS

initialization for trust-region methods [58]. Then, Kennedy et al. proposed a parallelization

and distribution stochastic gradient descent implementation using commodity clusters [59].

And so on.

Information Technology Engineer 26 Graduation Project

Algorithm 5: Accelerated Stochastic L-BFGS optimizer [54].
1 Require: mini-batch size b, bH , step size η, inner iterations m, memory length M ,

constant K, sampling distribution P , initialize w0, r = 0, ȳ0 = w0.;
2 for t = 0, 1, 2 ... T-1 do
3 Compute µt = ∇f (wt);
4 Let x0 = wt, y0 = wt;
5 for k = 0, 1, 2 ... m-1 do
6 Select b indices Ik ⊂ {1, 2, . . . n} with distribution P ;
7 Compute vk = 1

b

∑
i∈Ik

1
Npi

(
∇fi (yk)−∇fi (wt) + µt

)
;

8 Compute Hrvk with {si, ui}r
i=r−M+1 (All the r pairs of {si, ui} are used if

r < M);
9 Update xk+1 = yk − ηHrvk;

10 Update yk+1 = xk+1 + 1−
√

γµ̄η
1+

√
γµ̄η

(xk+1 − xk) + η
1+

√
γµ̄η

(Hr − γI) vk;
11 if mt+ k > 0 and mod(mt+ k,K) ≡ 0 then
12 Let r = r + 1;
13 Compute ȳr = 1

K

(∑k
i=max{0,k−K+1} yi +∑m

i=min{m+1,k−K+m+2} ỹi

)
;

14 Compute sr = ȳr − ȳr−1;
15 Select bH indices uniformly and compute ur = ∇2fbH

(ȳr) sr;
16 end
17 end
18 end
19 Ensure: wt;

3.2 Metaheuristic-based Optimizers

3.2.1 Particle Swarm Optimization

In recent years, PSO has gained momentum in neural network training, drawing the at-

tention of many researchers in this field. An example of this is the PSO used in recurrent

neural networks, which was proposed by Aziz et al. in 2021 [4]. The authors use a bench-

mark dataset for classification, such as lung cancer, breast cancer, Pima Indian diabetes,

yeast, etc. The proposed method is described in Figure 3.1, where the main difference is the

structure optimizer for training neural networks. Furthermore, the traditional optimizer

of PSO is described in Algorithm 6.

The main contribution is the equation to compute the dimensions for the PSO algorithm

(see Equation 3.1) and the model architecture. On the other hand, Aziz et al. based its

architecture on the primary Elman Recurrent Neural Network (ERNN) proposed by Cheng

and Shen in 2010 [60]. Thus, the ERNN architecture is described in Figure 3.2, which shows

Information Technology Engineer 27 Graduation Project

Algorithm 6: Global Best Particle Swarm Optimization.
1 initialization;
2 for each particle i=1, ..., s do
3 xi ← Uniform randomly within permissible range;
4 pi ← xi;
5 if f(pi) < f(g) then
6 g ← pi;
7 end
8 vi ← Uniform randomly within permissible range;
9 end

10 while termination criterion is not met do
11 for each particle i=1, ..., s do
12 for each dimension d = 1, ..., n do
13 rp, rg ← Uniform randomly within (0, 1);
14 vi,d ← Flight Equation 2.24;
15 end
16 xi ← Position Equation 2.25;
17 if f(xi) < f(pi) then
18 pi ← xi;
19 if f(pi) < f(g) then
20 g ← pi;
21 end
22 end
23 end
24 end

the three layers: the input layer with the context unit, the hidden layer with the hidden

unit, and the output layer.

D =
n∑

i,j,k=1

((
Xi1 ×Hj1

)
+
(
Hj1 ×Ok1

)
+Hj1 +Ok1

)
+

((
Xi2 ×Hj2

)
+
(
Hj2 ×Ok2

)
+Hj2 +Ok2

)
+ · · ·+((

Xin ×Hjn

)
+
(
Hjn ×Okn

)
+Hjn +Okn

)
(3.1)

3.2.2 Quantum-behaved Delta Particle Swarm Optimization

In 2021, Liu et al. proposed the coal and gas outbursts prediction with hybrid feature

extraction using a QPSO as an optimizer [5]. In addition, the authors use a multi-layer

Information Technology Engineer 28 Graduation Project

Figure 3.1: Generalized schematic of PSO-NN and PSO-ERNN [4].

Figure 3.2: The ERNN architecture [4].

neural network called DELM, which is highly efficient in learning time and has good gen-

eralization ability. Thus, the flowchart is described in Figure 3.3, which shows that the

QPSO optimizes the parameter for classification.

Algorithm 7 is shown the QPSO implementation using a Delta potential well model.

Conversely, the contribution of the authors is the feature preprocessing of coal and gas

outbursts using the wavelet transform algorithm and DELM initialization for the QPSO

Information Technology Engineer 29 Graduation Project

Figure 3.3: Flowchart of prediction model using QPSO-DELM as an optimizer [5].

optimizer.

Some papers have recently used PSO and QPSO for training neural networks. For ex-

ample, Ly et al. used PSO to predict foamed concrete compressive strength [61]. Further,

Green II et al. use Central Fores Optimization and PSO to classify the iris dataset and

compare them [62]. Moreover, Chanda and Biswas proposed PSO to identify plant dis-

eases [63]. In 2019, Fernandes Junior and Yen proposed a deep neural network for image

classification using PSO and CNN [64]. Then, in 2021, Abdolrasol et al. used PSO for

microgrid optimal energy scheduling [65].

On the other hand, Ma et al. proposed network anomaly detection as QPSO as an

optimizer for training RBF neural networks [66]. Moreover, Fu-Guang and Xian-Xin use

an improved QDPSO for training the hypersphere [67]. Besides, Li et al. proposed a

binary encoding for image classification using the QDPSO algorithm [68]. In 2020, Feng

et al. used QDPSO for monthly runoff prediction [69]. Then, in 2021, Concepcion II et al.

presented QDPSO and recurrent neural network for diseased surface assessment of maize

Cercospora leaf [70].

Information Technology Engineer 30 Graduation Project

Algorithm 7: Quantum Delta Potential well based PSO Algorithm [33].
1 initialization;
2 for each particle i=1, ..., s do
3 xi ← Uniform randomly within permissible range;
4 pi ← xi;
5 if f(pi) < f(g) then
6 g ← pi;
7 end
8 end
9 while termination criterion is not met do

10 for each particle i=1, ..., s do
11 for each dimension d = 1, ..., n do
12 rp, rg, u← Uniform randomly within (0, 1);
13 p← Attractor equation 2.27;
14 L← Characteristic Length equation 2.29;
15 end
16 if rand(0, 1) > 0.5 then
17 xid ← Delta Potential well Equation with symbol minus 2.26;
18 end
19 else
20 xid ← Delta Potential well Equation with symbol plus 2.26;
21 end
22 if f(xi) < f(pi) then
23 pi ← xi;
24 if f(pi) < f(g) then
25 g ← pi;
26 end
27 end
28 end
29 end

Information Technology Engineer 31 Graduation Project

Chapter 4

Methodology

This chapter describes the processes used to achieve the goals and the rationale for their

usage. As a result, this chapter begins by explaining the problem resolution of the chrono-

logical steps. Then, the model is shown with its respective configurations. Finally, we

describe the benchmark dataset used and the method for the result analysis.

4.1 Phases of Problem Solving

Figure 4.1: Flowchart of the problem-solving.

4.1.1 Description of the Problem

This phase is the foundation for project development since it covers the core issue, poten-

tial challenges, and solutions. In this way, in the early steps, we establish the fundamental

meaning of artificial neural networks and their general characteristics. Then, we identified

several potential issues and selected which ones to fix. Later, we developed a small model

33

approach to address this issue. Finally, we created a methodology for designing and devel-

oping the model proposal, see Figure 4.1. The steps outlined in this phase are consolidated

in Chapters 1 and 4.

4.1.2 Analysis of the Problem

This phase comprises background and foundational knowledge to comprehend the current

project better. Thus, in Chapter 2, we develop a solid understanding of the training of

artificial neural network and their properties. In this sense, we focused on metaheuristic-

based optimizers.

4.1.3 Algorithm Design

This phase consists of the algorithmic design of the neural network training using gradient-

based and metaheuristic optimizers. These optimizers are explained in Chapters 2 and 3.

Moreover, we designed the artificial neural network model for the classification problem

because in the literature review, in more cases, used for a regression problem. Finally, the

same model design is used for the image classification process.

4.1.4 Implementation

This phase involves programming the algorithms based on the preliminary design. Thus,

the implementation consists of a prototype using python 3.9.7 with scikit-learn 1.0.2, qpso

0.0.1, and pyswarm 1.3.0 frameworks. On the other hand, we use python because it is a

language that helps us to spot mistakes fast. Finally, the first runs of the algorithm did

make it in the cluster of Cedia because the first stages consumed many resources. And the

code is available in the GitHub repository https://github.com/stalyn21/nn_qdpso.git.

4.1.5 Testing

The performance of the suggested algorithm is measured and analyzed in this phase. For

this purpose, we evaluate the iteration numbers, the error, recall, precision, and accuracy.

Moreover, we analyze the algorithm behavior, increasing classes in the circle dataset and

Information Technology Engineer 34 Graduation Project

https://github.com/stalyn21/nn_qdpso.git

reducing dimensions in the iris and breast cancer datasets. On the other hand, we compare

the metaheuristic-based and gradient-based optimizers with the same environment setup.

4.2 Model Proposal

This section describes the proposed model to train an artificial neural network using

QDPSO as an optimizer. In this sense, we start to build a perceptron for classification and

define the fitness function. Then, we minimize the objective function using the QDPSO

algorithm and get the parameters of ANN.

4.2.1 Multi-Layer Perceptron

The most straightforward unit of a neural network is a single-layer perceptron. Thus, the

input values, weights and a bias, a weighted sum, and an activation function comprise a

muti-layer perceptron. Consequently, a multi-layer perceptron has three layers: the input,

hidden, and output, as described in Section 2.1.1 and Figure 2.3.

4.2.2 Fitness Function

The objective or fitness function is defined by feed-forward, as seen in Equation 4.1. There-

fore, the objective function comprises an input, weights, bias, weighted sum, activation

function, and output value.

Fitness Function = L(a(Z)) (4.1)

where, L() is the cost function, a() is the activation function, and Z is the weighted sum.

4.2.3 Optimizer

The QDPSO optimizer is described in more detail in Sections 2.3.2 and 3.2.2, and its

pseudocode is in Algorithm 7. Then, the optimizer minimizes the loss function together

feed-forward. Furthermore, the illustrated implementation of the operation of the QDPSO

optimizer is shown in Figure 4.2.

Information Technology Engineer 35 Graduation Project

Figure 4.2: Flowchart of the artificial neural network training using the QDPSO optimizer.

4.3 Experimental Setup

In this section, we define the benchmark dataset, the environment setup for optimizers,

and a brief justification of its use.

4.3.1 Benchmark Datasets

The performances of the QDPSO optimizer are assessed by experimenting with four bench-

mark datasets from the scikit-learn framework. Thus, the datasets selected are circle, iris,

wine, and breast cancer, which are used for classification testing. Then, a brief description

of these datasets is detailed in Table 4.1. On the other hand, each dataset is divided into

80% training and 20% testing. Then, we normalize the dataset in the range of 0 to 1.

Furthermore, 10 runs on each dataset are performed to obtain reliable findings and the

average accuracy results. Table 4.2 depicts the distribution of the datasets.

Information Technology Engineer 36 Graduation Project

No Dataset Short Name Samples Features Classes Features/Classes
1 circle circle 500 2 2 250
2 iris iris 150 4 3 50
3 wine wine 178 13 3 59, 71, 48
4 breast cancer breast 569 30 2 212,357

Table 4.1: The description of the berchmark dataset.

No Short Name Samples Training Testing
1 circle 500 400 100
2 iris 150 120 30
3 wine 178 142 36
4 breast 569 455 114

Table 4.2: The distribution of training and testing dataset.

4.3.2 Image Classification Dataset

In the image classification problem, there are several datasets. Nevertheless, we check the

performance of the QDPSO optimizer using the Multi-class Weather (MCW) Dataset [71].

Moreover, the MCW dataset has 1125 images divided into four categories based on sunrise,

cloudy, rainy, and sunshine. Besides, we split the dataset into 30% for testing and 70% for

training, and Table 4.3 describes the MCW dataset in detail. On the other hand, we use 3

technics to extract the global features of each image. Thus, we utilize the Color Histogram

[72], Hu Moments [73], and Haralick Texture [74] to extract the quantified color, shape,

and texture. Moreover, we reduce six times the global features with a reducing algorithm.

The image classification flowchart is described in Figure 4.3.

Short Name MCW
Samples 1125
Training 787
Testing 338
Features 150 x 150

Features Extracted 84
Features Reduced 14

Classes 4
Features/Classes 300, 215, 253, 357

Table 4.3: The description of the Multi-class Weather Dataset.

Information Technology Engineer 37 Graduation Project

Figure 4.3: Flowchart of the artificial neural network training for image classification using
the QDPSO optimizer.

4.3.3 Environment Setup

The same global environment configuration is used to compare the metaheuristic-based and

gradient-based optimizers. Then, the numbers of the hidden nodes are calculated, which

is three times the number of the input node (the value mentioned is obtained after many

experiments). Besides, the hyperbolic tangent and softmax functions are used as activation

functions in the hidden and output layer, respectively. Furthermore, the loss function is

the cross-entropy with L2 penalization, and we execute with 100 and 1000 iterations for

the benchmark dataset and 1000 for the MCW dataset. L2 is equal to 0.0005 over the

number of samples. Thus, Table 4.4 describes the environment setup for each dataset in

more detail. On the other hand, we use the F1 score, recall, precision, accuracy score, and

Information Technology Engineer 38 Graduation Project

mean squared (MSE) error from scikit learn as metrics for multiclass classification.

Hyperparameters circle iris wine breast MCW MCW*
Sample 500 150 178 569 1125 1125

Node
Input 2 4 13 30 84 14

Hidden 3∗ 3∗ 3∗ 3∗ 3∗ 3∗

Ouput 2 3 3 2 4 4
Parameters 32 99 666 2972 22432 802

a() Hidden tanh tanh tanh tanh tanh tanh
Ouput softmax softmax softmax softmax softmax softmax

L() LCE LCE LCE LCE LCE LCE

Regularization L2 L2 L2 L2 L2 L2
Max iter 100,1000 100,1000 100,1000 100,1000 1000 1000

N training 10 10 10 10 10 10

Table 4.4: The environment setup for QDPSO, PSO, PSO bound, Adam, L-BFGS, and
SGD optimizers.

Metaheuristic-Environment Setup

We use 0.5, 0.3, and 0.9 for cognitive, social, and inertial coefficients in the configuration

of the PSO and PSO bound environments. Furthermore, by PSO bound, we add up and

lower limits to -1 and 1. Conversely, for QDPSO, the Contraction-Expansion factor equals

1.13, and the upper and lower bounds are between -1 and 1.

Gradient-Environment Setup

We use the default parameters defined in the MLPClassifier module of scikit-learn for the

gradient-based optimizers environments setup.

Information Technology Engineer 39 Graduation Project

Chapter 5

Results and Discussion

This chapter describes the essential findings from the QDPSO optimizer in artificial neural

networks. Firstly, we figure out the performances of the optimizer using the benchmark

datasets. Then, we assess the dimension reduction using Multi-dimensional Scaling (MDS),

t-distributed Stochastic Neighbor Embedding (TSNE), Isomap, and Principal Component

Analysis (PCA) algorithms. Furthermore, we check the behavior of the QDPSO optimizer

using the circle dataset with a different number of classes and the number of samples.

Besides, we evaluate the results in image classification. Finally, we write a discussion

related to the obtained results.

5.1 Performance of Benchmark Dataset

Figures 5.1 and 5.2 show the performance of the benchmark dataset using different opti-

mizers. The classifiers can be divided into 2 groups; the optimizers based on metaheuristic

(rows 1-3) and gradient (rows 4-6). The datasets are split into not normalized (columns

1-4) and normalized (columns 5-8). Furthermore, Figures a and b depict the accuracy and

error results during the training phase, while c and d are of the testing stage. On the

other hand, we describe the results of the training and testing stages for optimizers based

on metaheuristics and gradients. In addition, we depict the matrix confusion and the loss

graphic of the circle, iris, wine, and breast datasets. Finally, we analyze the results of the

benchmark datasets.

41

(a) Training Accuracy (b) Training Error

(c) Testing Accuracy (d) Testing Error

Figure 5.1: Heatmaps depicting the performance of each optimizer with benchmark
datasets using 100 iterations. Where (a) shows the accuracy of training in percent, (b)
illustrates the mean squared error during the training, (c) sees the testing accuracy in
percent, and (d) represents the mean squared error during the testing.

5.1.1 The result of the metaheuristic-based optimizers

In the training phase of the metaheuristic-based optimizers with 100 iterations and with-

out normalization, QDPSO (100 and 97.50) and PSO (100 and 97.50) are better than

PSO bound (85.50 and 94.17) in the circle and iris dataset, see Figures 5.1a and 5.1b. Fur-

thermore, QDPSO is better than PSO and PSO bound in the wine dataset; 90.14, 70.42,

and 68.31, respectively. PSO is better than QDPSO and PSO bound in the breast dataset;

correspondingly, 92.31, 91.21, and 91.87. However, with normalization, QDPSO (99.17

and 97.89) is better than PSO (98.33 and 95.07) and PSO bound (95 and 90.14) in the iris

and wine dataset. QDPSO and PSO are better than PSO bound in the circle dataset; 100,

100, and 82.25, appropriately. PSO is better than QDPSO and PSO bound in the breast

dataset; 98.68, 94.51, and 93.41, respectively. Besides, with 1000 iterations and without

Information Technology Engineer 42 Graduation Project

(a) Training Accuracy (b) Training Error

(c) Testing Accuracy (d) Testing Error

Figure 5.2: Heatmaps depicting the performance of each optimizer with benchmark
datasets using 1000 iterations. Where (a) shows the accuracy of training in percent, (b)
illustrates the mean squared error during the training, (c) sees the testing accuracy in
percent, and (d) represents the mean squared error during the testing.

normalization, QDPSO (100, 100, and 96.04) is better than PSO (99.17, 94.37, and 94.73)

and PSO bound (97.50, 84.51, and 91.65) in the iris, wine, and breast datasets, see Fig-

ures 5.2a and 5.2b. Moreover, QDPSO and PSO are better than PSO bound in the circle

dataset; correspondingly, 100, 100, and 93.25. Nevertheless, with normalization, QDPSO

(100, 100, 100, and 100) and PSO (100, 100, 100, and 100) are better than PSO bound

(83.25, 94.17, and 92.25, 96.26) in the circle, iris, wine, and breast datasets.

In the test phase of the metaheuristic-based optimizers without normalization and

100 iterations, QDPSO (100, 100, and 95.61) and PSO (100, 100, and 95.61) are better

than PSO bound (89, 96.67, and 93.86) in the circle, iris, and breast datasets. Moreover,

QDPSO is better than PSO and PSO bound in the wine dataset; 86.11, 72.22, and 61.11,

appropriately, see Figures 5.1c and 5.1d. Nonetheless, QDPSO (100, 100, and 100) and

Information Technology Engineer 43 Graduation Project

PSO (100, 100, and 100) are better than PSO bound (70, 96.67, and 97.22) in the circle,

iris, and wine datasets with normalization. Besides, PSO is better than QDPSO and

PSO bound in the breast dataset; 97.37, 95.61, and 95.61, respectively. On the other

hand, without normalization and 1000 iterations, QDPSO (97.22 and 96.49) is better than

PSO (94.44 and 94.74) and PSO bound (83.33 and 94.74) in the wine and breast datasets,

see Figures 5.2c and 5.2d. Likewise, QDPSO and PSO are better than PSO bound in the

circle dataset; correspondingly, 100, 100, and 94. However, with normalization, QDPSO

(100 and 100) and PSO (100 and 100) are better than PSO bound (72 and 94.44) in

the circle and wine dataset. Moreover, the metaheuristic-based optimizers have the same

results (100 and 98.25) in the iris and breast datasets.

5.1.2 The result of the gradient-based optimizers

In the training phase of the gradient-based optimizers with 100 iterations and without

normalization, L-BFGS (100, 99.17, 88.03, and 93.41) is better than Adam (72, 93.33, 81.69,

and 92.31) and SGD (87.75, 94.17, 64.79, and 89.01) in the circle, iris, wine, and breast

datasets, see Figures 5.1a and 5.1b. Moreover, the same happened with the normalized

dataset. On the other hand, with 1000 iterations and without normalization, L-BFGS

(99.17 and 97.36) is better than Adam (98.33 and 93.85) and SGD (97.50 and 89.89) in

the iris and breast datasets, see Figures 5.2a and 5.2b. Furthermore, Adam is better than

L-BFGS and SGD in the wine dataset; 98.59, 97.18, and 60.56, appropriately. Further, L-

BFGS and Adam are better than SGD in the circle dataset; 100, 100, and 83, respectively.

However, with normalization, L-BFGS (100 and 100) is better than Adam (98.33 and 99.34)

and SGD (94.17 and 95.82) in the iris and breast datasets. Moreover, L-BFGS (100 and

100) and Adam (100 and 100) are better than SGD (69 and 97.18) in the circle and wine

datasets.

In the test phase of the gradient-based optimizers without normalization and 100 it-

erations, L-BFGS (100, 100, and 77.78) is better than Adam (78, 93.33, and 69.44) and

SGD (78, 96.67, and 61.11) in the circle, iris, and wine datasets see Figures 5.1c and 5.1d.

Furthermore, Adam is better than L-BFGS and SGD in the breast dataset; correspond-

ingly, 95.61, 94.74, and 94.74. However, with normalization, L-BFGS (100, 96.67, and

100) is better than Adam (73, 93.33, and 94.44) and SGD (75, 80, and 63.89) in the circle,

Information Technology Engineer 44 Graduation Project

iris, and wine datasets. Besides, Adam and L-BFGS are better than SGD in the breast

dataset; 98.25, 98.25, and 90.35, appropriately. On the other hand, without normalization

and 1000 iterations, L-BFGS (100 and 96.49) is better than Adam (97.22 and 95.61) and

SGD (58.33 and 92.11) in the wine and breast datasets, see Figures 5.2c and 5.2d. In

addition, Adam and L-BFGS are better than SGD in the circle dataset; 100, 100, and 73,

respectively. In the iris dataset, the gradient based-optimizers have the same results, 100.

Nonetheless, with normalization, Adam and L-BFGS are better than SGD in the circle

dataset; correspondingly, 100, 100, and 71. Moreover, L-BFGS (100 and 98.25) and SGD

(100 and 97.37) are better than Adam (97.22 and 96.49) in the wine and breast datasets.

In addition, the same results, 96.67, have the gradient-based optimizers in the iris dataset.

5.1.3 The result of the metaheuristic-based and gradient-based
optimizers

In the circle dataset and training stage, without normalization and 100 iterations, QDPSO,

PSO, and L-BFGS are better than PSO bound, Adam, and SGD; correspondingly, 100,

100, 100, 85.50, 72, and 87.75, see Figures 5.1a and 5.1b. Furthermore, in the iris and

breast dataset, L-BFGS (99.17 and 93.41) is better than QDPSO (97.5 and 91.21), PSO

(97.5 and 92.31), PSO bound (95.17 and 91.87), Adam (93.33 and 92.31), and SGD (94.17

and 89.01). Besides, QDPSO is better than PSO, PSO bound, Adam, L-BFGS, and SGD

in the wine dataset; 90.14, 70.42, 68.31, 81.69, 88.03, and 64.79, appropriately. However,

with normalization, QDPSO, PSO, and L-BFGS are better than PSO bound, Adam, and

SGD in the circle dataset; 100, 100, 100, 82.25, 68.50, and 68.75, respectively. In addition,

L-BFGS (100, 100, and 100) is better than QDPSO (99.17, 97.89, and 64.51), PSO (98.33,

95.07, and 98.68), PSO bound (95, 90.14, and 93.41), Adam (90.83, 95.07, and 96.92), and

SGD (63.33, 59.86, and 87.25) in the iris, wine, and breast datasets. Conversely, without

normalization and 1000 iterations, QDPSO, PSO, Adam, and L-BFGS are better than

PSO bound and SGD in the circle dataset; correspondingly, 100, 100, 100, 100, 93.25, and

83, see Figures 5.2a and 5.2b. L-BFGS is better than QDPSO, PSO, PSO bound, Adam,

and SGD in the breast dataset; 97.36, 96.04, 94.73, 91.65, 93.85, and 89.89, appropriately.

Besides, QDPSO (100 and 100) is better than LBFGS (99.17 and 97.18), PSO (99.17

and 94.37), PSO bound (97.50 and 84.51), Adam (98.33 and 98.59), and SGD (97.50 and

Information Technology Engineer 45 Graduation Project

60.56) in the iris and wine dataset. Nonetheless, with normalization, QDPSO (100 and

100), PSO (100 and 100), Adam (100 and 100), and L-BFGS (100 and 100) are better

than PSO bound (83.25 and 92.25) and SGD (69 and 97.18) in the circle and wine dataset.

Moreover, QDPSO (100 and 100), PSO (100 and 100), and L-BFGS (100 and 100) are

better than Adam (98.33 and 99.34), PSO bound (94.17 and 96.26), and SGD (94.17 and

95.82) in the iris and breast datasets.

In the testing phase, the circle and iris datasets without normalization and 100 itera-

tions, QDPSO (100 and 100), PSO (100 and 100), and L-BFGS (100 and 100) are better

than PSO bound (89 and 96.67), Adam (78 and 93.33), and SGD (78 and 96.67), see Figures

5.1c and 5.1d. Furthermore, QDPSO is better than PSO, PSO bound, Adam, L-BFGS,

and SGD in the wine dataset; 86.61, 72.22, 61.11, 69.44, 77.78, and 61.11, respectively.

In addition, in the breast dataset, QDPSO, PSO, and Adam are better than PSO bound,

L-BFGS, and SGD; correspondingly, 95.61, 95.61, 95.61, 93.86, 94.74, and 94.74. However,

with normalization, QDPSO (100 and 100), PSO (100 and 100), and L-BFGS (100 and

100) are better than PSO bound (70 and 97.22), Adam (73 and 94.44), and SGD (75 and

63.89) in the circle and wine datasets. Moreover, in the iris dataset, QDPSO and PSO are

better than PSO bound, Adam, L-BFGS, and SGD; 100, 100, 96.67, 93.33, 96.67, and 80,

appropriately. In addition, L-BFGS and Adam are better than QDPSO, PSO, PSO bound,

and SGD in the breast dataset; 98.25, 98.25, 95.61, 97.37, 95.61, and 90.35, respectively.

Conversely, without normalization and 1000 iterations, QDPSO, PSO, Adam, and L-BFGS

are better than PSO bound and SGD in the circle dataset; correspondingly, 100, 100, 100,

100, 94, and 73, see Figures 5.2c and 5.2d. Furthermore, in the breast dataset, QDPSO

and L-BFGS are better than PSO, PSO bound, Adam, and SGD; 96.49, 96.49, 94.74,

94.74, 95.61, and 92.11, appropriately. In addition, in the wine dataset, L-BFGS is better

than QDPSO, PSO, PSO bound, Adam, and SGD; 100, 97.22, 94.44, 83.33, 97.22, and

58.33, respectively. The metaheuristic-based and gradient-based optimizers have the same

results, 100, in the iris dataset. Nonetheless, QDPSO, PSO, Adam, and L-BFGS are bet-

ter than PSO bound and SGD in the circle dataset with normalization; correspondingly,

100, 100, 100, 100, 72, and 71. Furthermore, the metaheuristic-based optimizers, 100, are

better than gradient-based optimizers, 96.67, in the iris dataset. In addition, in the wine

dataset, QDPSO, PSO, L-BFGS, and SGD are better than Adam and PSO bound; 100,

Information Technology Engineer 46 Graduation Project

100, 100, 100, 97.22, and 94.44, appropriately. Besides, in the breast dataset, QDPSO,

PSO, PSO bound, and L-BFGS are better than SGD and Adam; 98.25, 98.25, 98.25, 98.25,

97.37, 96.49, respectively.

5.1.4 The metrics of the metaheuristic-based optimizers

eee Table 5.1 describes the best, worst, average, and standard deviation of the loss cost

using the metaheuristic-based and gradient-based optimizers for the benchmark datasets.

Furthermore, we use 10 training with 1000 iterations and normalization. In the metaheuristic-

based optimizers and the best cost, QDPSO (1.25E-06 and 3.27E-06) and PSO (1.25E-06

and 3.27E-06) are better than PSO bound (6.56E-01 and 3.35E-01) in the circle and wine

datasets. Moreover, in the iris dataset, QDPSO is better than PSO and PSO bound; cor-

respondingly, 4.16E-06, 4.37E-06, and 5.258E-01. Besides, PSO is better than QDPSO

and PSO bound in the breast dataset; 3.45E-04, 6.57E-03, and 1.40E-01, appropriately.

However, at the worst cost, PSO bound is worse than QDPSO and PSO in all benchmark

datasets; see Table 5.1.

The average cost of QDPSO (1.25E-06 and 2.61E-03) is better than PSO (4.66E-02

and 2.77E-03) and PSO bound (6.64E-01 and 5.81E-01) in the circle and iris datasets.

Moreover, in the wine and breast datasets, PSO (3.54E-06 and 1.19E-02) is better than

QDPSO (3.66E-06 and 1.71E-02) and PSO bound (4.30E-01 and 1.69E-01). On the other

hand, in the standard deviation cost, PSO (2.61E-03, 3.66E-08, and 6.46E-03) is better

than QDPSO (6.06E-03, 2.98E-07, and 8.81E-03) and PSO bound (3.67E-02, 4.01E-02,

and 2.24E-02) in the iris, wine, and breast datasets. However, QDPSO is better than PSO

and PSO bound in the circle dataset; 5.06E-16, 7.13E-02, and 4.58E-03, respectively.

5.1.5 The metrics of the gradient-based optimizers

L-BFGS is better than Adam and SGD in all benchmark datasets for the gradient-based

optimizers and at the best and average cost, see Table 5.1. Moreover, SGD is worse than

L-BFGS and Adam at the worst cost in all benchmark datasets. On the other hand,

the standard deviation cost of L-BFGS (3.88E-04, 1.16E-04, and 1.14E-04) is better than

Adam (3.14E-02, 2.84E-03, and 4.82E-04) and SGD (2.60E-02, 1.70E-02, and 1.79E-03) in

Information Technology Engineer 47 Graduation Project

Optimizers Datasets Worst Avg Best Std

QDPSO

circle 1.25E-06 1.25E-06 1.25E-06 5.06E-16
iris 2.01E-02 2.61E-03 4.16E-06 6.06E-03

wine 4.48E-06 3.66E-06 3.52E-06 2.98E-07
breast 3.42E-02 1.71E-02 6.57E-03 8.81E-03

PSO

circle 1.64E-01 4.66E-02 1.25E-06 7.13E-02
iris 7.59E-03 2.77E-03 4.37E-06 2.61E-03

wine 3.61E-06 3.54E-06 3.52E-06 3.66E-08
breast 2.12E-02 1.19E-02 3.45E-04 6.46E-03

PSO bound

circle 6.72E-01 6.64E-01 6.56E-01 4.58E-03
iris 6.63E-01 5.81E-01 5.25E-01 3.67E-02

wine 4.99E-01 4.30E-01 3.35E-01 4.01E-02
breast 2.10E-01 1.69E-01 1.40E-01 2.24E-02

Adam

circle 6.46E-01 4.93E-01 3.37E-01 9.83E-02
iris 2.58E-01 2.01E-01 1.65E-01 3.14E-02

wine 2.41E-02 1.89E-02 1.55E-02 2.84E-03
breast 4.07E-02 3.98E-02 3.91E-02 4.82E-04

L-BFGS

circle 1.45E-01 1.54E-02 6.85E-04 4.33E-02
iris 4.65E-03 3.85E-03 3.51E-03 3.88E-04

wine 1.13E-03 9.83E-04 7.41E-04 1.16E-04
breast 1.83E-03 1.69E-03 1.53E-03 1.14E-04

SGD

circle 6.89E-01 6.85E-01 6.80E-01 3.20E-03
iris 5.62E-01 5.01E-01 4.62E-01 2.60E-02

wine 2.96E-01 2.70E-01 2.45E-01 1.70E-02
breast 1.47E-01 1.45E-01 1.42E-01 1.79E-03

Table 5.1: The best, worst, average, and standard deviation of the loss cost during the 10
training with 1000 iterations and normalization for the metaheuristic-based and gradient-
based optimizers.

the iris, wine, and breast datasets. Furthermore, SGD is better than L-BFGS and Adam

in the circle dataset; correspondingly, 3.20E-03, 4,33E-02, and 9,83E-02.

5.1.6 The metrics of the metaheuristic-based and gradient-based
optimizers

In the metaheuristic-based and gradient-based optimizers, QDPSO (1.25E-06 and 3.52E-

06) and PSO (1.25E-06 and 3.52E-06) are better than L-BFGS (6.85E-04 and 7.41E-04),

Adam (3.37E-01 and 1.552E-02), PSO bound (6.56E-01 and 3.35E-01), and SGD (6.80E-01

and 2.45E-01) in the best cost for the circle and wine datasets. Furthermore, in the iris

dataset, QDPSO is better than PSO, L-BFGS, Adam, SGD, and PSO bound; 4.16E-06,

Information Technology Engineer 48 Graduation Project

4.37E-06, 3.51E-03, 1.65E-01, 4.62E-01, and 5.25E-01, appropriately. In addition, in the

breast dataset, PSO is better than L-BFGS, QDPSO, Adam, PSO bound, and SGD; 3.45E-

04, 1.53E-03, 6.57E-03, 3.91E-02, 1.40E-01, and 1.42E-01, respectively. Nonetheless, in the

average cost, QDPSO (1.25E-06 and 2.61E-03) is better than L-BFGS (1.54E-02 and 3.85E-

03), PSO (4.66E-02 and 2.77E-03), Adam (4.93E-01 and 2.01E-01), PSO bound (6.64E-01

and 5.81E-01), and SGD (6.85E-01 and 5.01E-01) in the circle and iris dataset. Moreover,

in the wine dataset, PSO is better than QDPSO, L-BFGS, Adam, SGD, and PSO bound;

correspondingly, 3.54E-06, 3.66E-06, 9.83E-04, 1.89E-02, 2.70E-01, and 4.30E-01. Further,

L-BFGS is better than PSO, QDPSO, Adam, SGD, and PSO bound; 1.69E-03, 1.19E-02,

1.71E-02, 3.98E-02, 1.45E-01, and 1.69E-01, appropriately. Conversely, in the worst cost,

PSO bound is worse than SGD, Adam, L-BFGS, QDPSO, and PSO in the iris, wine, and

breast datasets; see Table 5.1. Besides, SGD is worse than PSO bound, Adam, PSO,

L-BFGS, and QDPSO in the circle dataset.

The standard deviation of the L-BFGS (3.88E-04 and 1.14E-04) is better than PSO

(2.61E-03 and 6.46E-03), QDPSO (6.06E-03 and 8.81E-03), Adam (3.14E-02 and 4.82E-

04), SGD (2.60E-02 and 1.79E-03), and PSO bound (3.67E-02 and 2.24E-02) in the iris

and breast datasets. Furthermore, in the wine dataset, PSO is better than QDPSO, L-

BFGS, Adam, SGD, and PSO bound; 3.66E-08, 2.98E-07, 1.16E-04, 2.84E-03, 1.16E-04,

and 4.01E-02, respectively. In addition, in the circle dataset, QDPSO is better than SGD,

PSO bound, L-BFGS, PSO, and Adam; correspondingly, 5.06E-16, 3.20E-03, 4.58E-03,

4.33E-02, 7.13E-02, 9.83E-02.

Table 5.2 shows the precision, recall, and f1 score of the circle, iris, and wine datasets

with metaheuristic-based and gradient-based optimizers. Furthermore, we use the best

training with 1000 iterations and a normalization dataset. On the other hand, 1.00 is the

precision, recall, and f1 score of the metaheuristic-based optimizers in the circle, iris, and

wine datasets. Nevertheless, in the breast dataset, the precision, recall, and f1 score are

9.82E-01. Conversely, the precision, recall, and f1 score are 1.00 for the L-BFGS and Adam

optimizers in the circle dataset. In SGD, 8.28E-01, 7.10E-01, and 6.99E-01 correlate with

the precision, recall, and f1 score. Furthermore, in the iris dataset, 9.69E-01, 9.67E-01, and

9.66E-01 correspond to the precision, recall, and f1 score, respectively, for the L-BFGS and

Adam. In addition, in the wine dataset, L-BFGS and SGD have the same precision, recall,

Information Technology Engineer 49 Graduation Project

Optimizers Datasets Precision Recall F1 score

QDPSO

circle 1.00 1.00 1.00
iris 1.00 1.00 1.00

wine 1.00 1.00 1.00
breast 9.82E-01 9.82E-01 9.82E-01

PSO

circle 1.00 1.00 1.00
iris 1.00 1.00 1.00

wine 1.00 1.00 1.00
breast 9.82E-01 9.82E-01 9.82E-01

PSO bound

circle 1.00 1.00 1.00
iris 1.00 1.00 1.00

wine 1.00 1.00 1.00
breast 9.82E-01 9.82E-01 9.82E-01

Adam

circle 1.00 1.00 1.00
iris 9.69E-01 9.67E-01 9.66E-01

wine 9.74E-01 9.72E-01 9.72E-01
breast 9.65E-01 9.65E-01 9.65E-01

L-BFGS

circle 1.00 1.00 1.00
iris 9.69E-01 9.67E-01 9.66E-01

wine 1.00 1.00 1.00
breast 9.83E-01 9.82E-01 9.82E-01

SGD

circle 8.28E-01 7.10E-01 6.99E-01
iris 9.69E-01 9.67E-01 9.66E-01

wine 1.00 1.00 1.00
breast 9.75E-01 9.74E-01 9.74E-01

Table 5.2: The precision, recall, and f1 score of benchmark datasets with 1000 iterations
and normalization for the metaheuristic-based and gradient-based optimizers.

and f1 scores of 1.00. However, in Adam, the precision, recall, and f1 score are 9.74E-01,

9.72E-01, and 9.72E-01. Finally, in the breast dataset, 9.83E-01, 9.82E-01, and 9.82E-01

are the precision, recall, and f1 score of L-BFGS. However, in Adam, 9.65E-01 corresponds

to the precision, recall, and f1 score. Besides, the precision, recall, and f1 score of SGD are

9.75E-01, 9.74E-01, and 9.74E-01, respectively.

5.1.7 Confusion Matrix and Loss Cost Curve

Figures 5.3, 5.4, 5.5, and 5.6 describe the confusion matrix of the circle, iris, wine, and

breast datasets, respectively. Furthermore, Figures a, b, and c illustrate the metaheuristic-

based optimizers, while Figures d, e, and f are the gradient-based optimizers. In addition,

the confusion matrix uses the best training, dataset normalized, and 1000 iterations.

Information Technology Engineer 50 Graduation Project

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.3: The confusion matrix of the circle dataset uses metaheuristic-based (a, b, and
c) and gradient-based (d, e, and f) optimizers with normalization and 1000 iterations.

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.4: The confusion matrix of the iris dataset uses metaheuristic-based (a, b, and c)
and gradient-based (d, e, and f) optimizers with normalization and 1000 iterations.

The sum main diagonal of Figure 5.3a shows the precision of the QDPSO classifier with

the circle dataset, which is 100% divides into 58% to class 0 and 42% to class 1. Moreover,

the same precision is for PSO, PSO bound, L-BFGS, and adam; see Figures 5.3b, 5.3c,

Information Technology Engineer 51 Graduation Project

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.5: The confusion matrix of the wine dataset uses metaheuristic-based (a, b, and
c) and gradient-based (d, e, and f) optimizers with normalization and 1000 iterations.

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.6: The confusion matrix of the breast dataset uses metaheuristic-based (a, b, and
c) and gradient-based (d, e, and f) optimizers with normalization and 1000 iterations.

5.3d, and 5.3e. Nevertheless, SGD has 71% of the precision divided into 29% for class 0

and 42% for class 1, see Figure 5.3f. Furthermore, 29% predict that class 0 is class 1.

In Figure 5.4a, the QDPSO classifier in the iris dataset has 100% precision, divided into

Information Technology Engineer 52 Graduation Project

36.67% for setosa, 20% for versicolor, and 43.33% for virginica. The same precision results

have PSO and PSO bound in Figures 5.4b and 5.4c. On the other hand, 96.67% of the

precision for L-BFGS, Adam, and SGD; see Figures 5.4d, 5.4e, and 5.4f. This precision is

divided into 36.67% to setosa, 16.67% to versicolor, and 43.33% to virginica. Furthermore,

Figures 5.4d, 5.4e, and 5.4f show that the error of classification of the gradient-based

optimizers is 3.33%. This error predicts that versicolor is a virginica.

The precision of the QDPSO classifier is 100% in the wine dataset, which is distributed

in 22% for class 0, 41.67% for class 1, and 36.11% for class 2; see Figure 5.5a. This

precision result is the same for the PSO, PSO bound, L-BFGS, and SGD, as shown in

Figures 5.5b, 5.5c, 5.5d, and 5.5f. Nonetheless, in Figure 5.5e, the Adam classifier has

97.22% of the precision divided into 22.22% for class 0, 41.67% for class 1, and 33.33% for

class 2. Furthermore, the 2.78% corresponds to the error classification, which predicts that

class 2 is class 1.

Figure 5.6a shows in the main diagonal that 98.25% corresponds to the precision of

the QDPSO in the breast dataset. This precision is distributed in 42.11% for the malig-

nant class and 56.14% for the benign class. Furthermore, 1.76% corresponds to the error

classification, where 0.88% predicts that the malignant class is the benign class, and an-

other 0.88% forecasts that the benign class is the malignant class. In addition, PSO and

PSO bound have the same results; see Figures 5.6b and 5.6c. However, the L-BFGS clas-

sifier has 98.25% precision, divided into 41.23% for the malignant class and 57.02% for the

benign class; see Figure 5.6d. Besides, 1.75% corresponds to the error classification, which

forecasts that the malignant class is the benign class. The Adam classifier of the main

diagonal has 96.49% precision distributed in 40.35% for the malignant class and 56.14%

for the benign class, see Figure 5.6e. In addition, 3.51% correlates with the error classi-

fication, of which 2.63% predicts that the malignant class is the benign class and 0.88%

forecasts that the benign class is the malignant class. Finally, the precision of the SGD is

97.37%, divided into 40.35% for the malignant class and 57.02% for the benign class; see

Figure 5.6f. The error classification is 2.63%, which thinks the malignant class is benign.

Figure 5.7 describes the convergence of the loss cost for the optimizers proposed in

this work. Furthermore, we use the best training, 1000 iterations, and normalization of

the datasets. Unfortunately, L-BFGS could not plot because the MLPClassifier framework

Information Technology Engineer 53 Graduation Project

(a) Circle (b) Iris

(c) Wine (d) Breast

Figure 5.7: The loss curve of the benchmark datasets uses metaheuristic-based and
gradient-based optimizers with normalization and 1000 iterations.

does not allow it. In metaheuristic-based optimizers, Figures 5.7a and 5.7b depict that

the QDPSO curve is better than the PSO and PSO bound curves in the circle and iris

datasets. However, in the wine and breast datasets, the PSO curve is better than the

QDPSO and PSO bound curves, as shown in Figures 5.7c and 5.7d. In addition, the

Adam curve is better than the SGD curve in the circle, iris, wine, and breast datasets for

the gradient-based optimizers; see Figure 5.7. Conversely, in the metaheuristic-based and

gradient-based optimizers, the QDPSO curve is better than the PSO, Adam, PSO bound,

and SGD curves. Nonetheless, in the wine and breast datasets, the PSO curve is better

than QDPSO, Adam, SGD, and PSO bound curves.

5.1.8 Discussion of Benchmark Performance

The metaheuristic-based and gradient-based optimizers handle the benchmark datasets

according to the f1 score and deviation standard of Tables 5.2 and 5.1, appropriately.

Information Technology Engineer 54 Graduation Project

Except, SDG has a problem with the circle dataset. On the other hand, the results of

Figures 5.1 and 5.2 show that the metaheuristic-based classifier has better results than

the gradient-based classifier with 100 and 1000 iterations. Furthermore, QDPSO, PSO,

and L-BFGS have similar results in the training and testing phases in all benchmarks with

1000 iterations and normalization; see Figure 5.2. Besides, the results of the PSO bound

like to the results of the SGD.

QDPSO has the best training and testing phases without normalization and 100 it-

erations in the wine dataset. While with normalization, L-BFGS has the best training

stage, in the testing phase, QDPSO and L-BFGS are the best than other classifiers. Fur-

thermore, the results of the iris dataset without normalization are similar. However, in

the circle dataset, QDPSO, PSO, and L-BFGS have the same results with and without

normalization in the training and testing stages. In the breast dataset¡, the LBFGS is bet-

ter than other optimizers. Then, with 1000 iterations, QDPSO, PSO, and L-BFGS have

similar results with and without normalization in the circle, iris, and breast datasets. In

the wine dataset, QDPSO has the best training phase. Nevertheless, in the testing stage,

L-BFGS is the best; see Figures 5.1 and 5.2.

The PSO curve of the wine and breast datasets is better than other metaheuristic-based

classifiers, as shown in Figure 5.7. However, the QDPSO is better than other metaheuristic-

based optimizers in the circle and iris datasets because the datasets are balanced, contrary

to the first case (see Table 4.1). Conversely, in the benchmark datasets, the behavior of

the QDPSO and PSO curves have faster convergence than all optimizers proposed in this

work. Thus, QDPSO has faster behavior and convergence than PSO bound because the

PSO bound tends to get stuck during training. Finally, the PSO bound curve has similar

behavior to SGD.

5.2 Performance of Dimensions Reduction

This section describes the dimension reduction results for input nodes of the artificial neural

network. Moreover, we use a small features dataset (Iris) and a virtually extensive fea-

tures dataset (Breast Cancer) with 1000 iterations and the normalization of the datasets.

Finally, we use reducing algorithms to check and analyze the dimension reduction results.

Information Technology Engineer 55 Graduation Project

On the other hand, the selection criterion is given by the best result in the smallest pos-

sible dimension considering the original dimension in the testing phase and the maximum

number of optimizers.

Alg. D Dataset QDPSO PSO PSO bound
MSE ACC MSE ACC MSE ACC

NA 4
test 0.00 100.00 0.00 100.00 3.33E-02 96.67
train 0.00 100.00 0.00 100.00 9.17E-02 90.83

MDS

3
test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 0.00 100.00 0.00 100.00 4.17E-02 95.83

2 test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 0.00 100.00 0.00 100.00 1.08E-01 89.17

1
test 1.67E-01 93.33 3.33E-02 96.67 3.33E-02 96.67
train 5.00E-02 95.00 9.17E-02 93.33 5.83E-02 94.17

TSNE

3
test 1.67E-01 83.33 3.33E-02 96.67 0.00 100.00
train 0.00 100.00 3.33E-02 96.67 4.17E-02 95.83

2 test 0.00 100.00 0.00 100.00 0.00 100.00
train 2.50E-02 97.50 3.33E-02 96.67 4.17E-02 95.83

1
test 0.00 100.00 1.33E-01 96.67 0.00 100.00
train 5.00E-02 95.00 3.33E-02 96.67 4.17E-02 95.83

Isomap

3
test 3.33E-02 96.67 0.00 100.00 3.33E-02 96.67
train 0.00 100.00 0.00 100.00 7.50E-02 92.50

2 test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 0.00 100.00 0.00 100.00 8.33E-02 91.67

1
test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 4.17E-02 95.83 4.17E-02 95.83 1.08E-01 89.17

PCA

3
test 3.33E-02 96.67 3.33E-02 96.67 0.00 100.00
train 0.00 100.00 8.33E-03 99.17 5.00E-02 95.00

2 test 3.33E-02 96.67 3.33E-02 96.67 6.67E-02 93.33
train 5.00E-02 95.00 5.83E-02 94.17 1.58E-01 84.17

1
test 6.67E-02 93.33 6.67E-02 93.33 3.33E-02 96.67
train 7.50E-02 92.50 7.50E-02 92.50 9.17E-02 90.83

Table 5.3: The dimension reduction results use the iris dataset and metaheuristic-based
optimizers with MDS, TSNE, Isomap, and PCA as reducing algorithms.

5.2.1 Iris Dataset

Table 5.3 shows the results of the metaheuristic-based optimizers using the reducing al-

gorithm. Moreover, in MDS and TSNE, all metaheuristic-based optimizers have the best

result (96.67 for QDPSO, PSO, and PSO bound) in 2 dimensions and Isomap and PCA

in 3 dimensions (100 and 96.67 for PSO, 96.67 and 96.67 for QDPSO, and 96.67 and 100

PSO bound). On the other hand, TSNE has the best result (100 for the metaheuristic-

Information Technology Engineer 56 Graduation Project

Alg. D Dataset Adam SGD L-BFGS
MSE ACC MSE ACC MSE ACC

NA 4
test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 4.17E-02 95.83 4.17E-02 95.83 0.00 100.00

MDS

3
test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 2.50E-02 97.50 1.33E-01 86.67 0.00 100.00

2 test 3.33E-02 96.67 0.00 100.00 3.33E-02 96.67
train 1.08E-01 89.17 5.00E-02 95.00 8.33E-03 99.17

1
test 3.33E-02 96.67 3.33E-02 96.67 1.67E-01 93.33
train 9.17E-02 90.83 1.17E-01 88.33 8.33E-02 94.17

TSNE

3
test 3.33E-02 96.67 0.00 100.00 0.00 100.00
train 2.50E-02 97.50 9.17E-02 95.83 0.00 100.00

2 test 0.00 100.00 3.33E-02 96.67 0.00 100.00
train 4.17E-02 95.83 5.00E-02 95.00 3.33E-02 96.67

1
test 0.00 100.00 0.00 100.00 0.00 100.00
train 5.00E-02 95.00 5.00E-02 95.00 3.33E-02 96.67

Isomap

3
test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 5.83E-02 94.17 5.00E-02 95.00 0.00 100.00

2 test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 5.83E-02 94.17 5.00E-02 95.00 0.00 100.00

1
test 3.33E-02 96.67 3.33E-02 96.67 3.33E-02 96.67
train 8.33E-02 91.67 9.17E-02 90.83 4.17E-02 95.83

PCA

3
test 3.33E-02 96.67 3.33E-02 96.67 0.00 100.00
train 2.50E-02 97.50 5.83E-02 94.17 0.00 100.00

2 test 6.67E-02 93.33 6.67E-02 93.33 3.33E-02 96.67
train 7.50E-02 92.50 1.50E-01 85.00 3.33E-02 96.67

1
test 3.33E-02 96.67 3.33E-02 96.67 6.67E-02 93.33
train 9.17E-02 90.83 9.17E-02 90.83 1.00E-01 90.00

Table 5.4: The dimension reduction results use the iris dataset and gradient-based opti-
mizers with MDS, TSNE, Isomap, and PCA as reducing algorithms.

based optimizers) and reduction dimensions (2), and PSO bound with 2 dimensions has

better results (100) than the original dimensions (96.67).

The results of gradient-based optimizers with reducing algorithms are shown in Table

5.4. The best result in MDS (100 for PSO, 96.67 for QDPSO, and 96.67 for PSO bound)

is in 2 dimensions, TSNE (100 for the metaheuristic-based optimizers) is in 1 dimension,

PCA (96.67 for QDPSO and PSO, and 100 for PSO bound) is in 3 dimensions, and Isomap

(96.67) is in all dimensions. However, the best reduction dimensions and result in TSNE

and all gradient-based optimizers with 1 dimension have a better result than the original

dimensions. Thus, Tables 5.3 and 5.4 show that TSNE is a better reducing algorithm than

other Isomap, MDS, and PCA with 2 dimensions.

Information Technology Engineer 57 Graduation Project

Alg. D Dataset QDPSO PSO PSO bound
MSE ACC MSE ACC MSE ACC

NA 30
test 1.75E-02 98.25 8.77E-03 99.12 2.63E-02 97.37
train 0.00 100.00 0.00 100.00 3.52E-02 96.48

MDS

25
test 3.51E-02 96.49 1.75E-02 98.25 2.63E-02 97.37
train 0.00 100.00 4.40E-03 99.56 2.64E-02 97.36

20 test 4.39E-02 95.61 3.51E-02 96.49 2.63E-02 97.37
train 0.00 100.00 0.00 100.00 3.52E-02 96.48

15 test 8.77E-03 99.12 2.63E-02 97.37 2.63E-02 97.37
train 0.00 100.00 0.00 100.00 2.64E-02 97.36

10 test 1.75E-02 98.25 1.75E-02 98.25 3.51E-02 96.49
train 0.00 100.00 8.79E-03 99.12 3.30E-02 96.70

5
test 2.63E-02 97.37 2.63E-02 97.37 2.63E-02 97.37
train 0.00 100.00 1.32E-02 98.68 4.18E-02 95.82

TSNE

3
test 3.51E-02 96.49 2.63E-02 97.37 2.63E-02 97.37
train 0.00 100.00 1.76E-02 98.24 2.20E-02 97.80

2 test 2.63E-02 97.37 1.75E-02 98.25 4.39E-02 95.61
train 2.86E-02 97.14 5.93E-02 94.07 4.18E-02 95.82

1
test 3.51E-02 96.49 3.51E-02 96.49 7.02E-02 92.98
train 2.86E-02 97.14 3.08E-02 96.92 5.71E-02 94.29

Isomap

25
test 1.75E-02 98.25 2.63E-02 97.37 2.63E-02 97.37
train 0.00 100.00 4.40E-03 99.56 2.64E-02 97.36

20 test 8.77E-03 99.12 1.75E-02 98.25 1.75E-02 98.25
train 0.00 100.00 0.00 100.00 2.86E-02 97.14

15 test 1.75E-02 98.25 8.77E-03 99.12 3.51E-02 96.49
train 0.00 100.00 6.59E-03 99.34 3.08E-02 96.92

10 test 2.63E-02 97.37 2.63E-02 97.37 2.63E-02 97.37
train 0.00 100.00 2.20E-03 99.78 2.86E-02 97.14

5
test 2.63E-02 97.37 8.77E-03 99.12 3.51E-02 96.49
train 0.00 100.00 4.40E-03 99.56 2.64E-02 97.36

PCA

25
test 1.75E-02 98.25 1.75E-02 98.25 2.63E-02 97.37
train 0.00 100.00 0.00 100.00 1.54E-02 98.46

20 test 2.63E-02 97.37 2.63E-02 97.37 1.75E-02 98.25
train 0.00 100.00 0.00 100.00 1.76E-02 98.24

15 test 2.63E-02 97.37 8.77E-03 99.12 1.75E-02 98.25
train 0.00 100.00 0.00 100.00 1.32E-02 98.68

10 test 1.75E-02 98.25 1.75E-02 98.25 1.75E-02 98.25
train 0.00 100.00 0.00 100.00 1.76E-02 98.24

5
test 1.75E-02 98.25 2.63E-02 97.37 2.63E-02 97.37
train 0.00 100.00 4.40E-03 99.56 2.64E-02 97.36

Table 5.5: The dimension reduction results use the breast cancer dataset and metaheuristic-
based optimizers with MDS, TSNE, Isomap, and PCA as reducing algorithms.

Information Technology Engineer 58 Graduation Project

Alg. D Dataset Adam SGD L-BFGS
MSE ACC MSE ACC MSE ACC

NA 30
test 2.63E-02 97.37 3.51E-02 96.49 1.75E-02 98.25
train 8.79E-03 99.12 3.96E-02 96.04 0.00 100.00

MDS

25
test 1.75E-02 98.25 4.39E-02 95.61 3.51E-02 96.49
train 4.40E-03 99.56 3.96E-02 96.04 0.00 100.00

20 test 3.51E-02 96.49 3.51E-02 96.49 1.75E-02 98.25
train 0.00 100.00 3.74E-02 96.26 0.00 100.00

15 test 2.63E-02 97.37 4.39E-02 95.61 8.77E-03 99.12
train 0.00 100.00 4.18E-02 95.82 0.00 100.00

10 test 1.75E-02 98.25 4.39E-02 95.61 1.75E-02 98.25
train 8.79E-03 99.12 4.18E-02 95.82 0.00 100.00

5
test 2.63E-02 97.37 3.51E-02 96.49 1.75E-02 98.25
train 1.32E-02 98.68 3.96E-02 96.04 0.00 100.00

TSNE

3
test 2.63E-02 97.37 1.75E-02 98.25 2.63E-02 97.37
train 3.08E-02 96.92 3.08E-02 96.92 6.59E-03 99.34

2 test 2.63E-02 97.37 1.75E-02 98.25 1.75E-02 98.25
train 3.52E-02 96.48 5.49E-02 94.51 2.42E-02 97.58

1
test 8.77E-02 91.23 6.14E-02 93.86 3.51E-02 96.49
train 8.57E-02 91.43 6.37E-02 93.63 2.64E-02 97.36

Isomap

25
test 4.39E-02 95.61 4.39E-02 95.61 1.75E-02 98.25
train 1.54E-02 98.46 3.96E-02 96.04 0.00 100.00

20 test 3.51E-02 96.49 4.39E-02 95.61 2.63E-02 97.37
train 1.98E-02 98.02 3.52E-02 96.48 0.00 100.00

15 test 3.51E-02 96.49 3.51E-02 96.49 2.63E-02 97.37
train 1.76E-02 98.24 3.74E-02 96.26 0.00 100.00

10 test 4.39E-02 95.61 3.51E-02 96.49 8.77E-03 99.12
train 1.76E-02 98.24 4.18E-02 95.82 0.00 100.00

5
test 3.51E-02 96.49 2.63E-02 97.37 1.75E-02 98.25
train 1.98E-02 98.02 3.74E-02 96.26 0.00 100.00

PCA

25
test 2.63E-02 97.37 2.63E-02 97.37 8.77E-03 99.12
train 6.59E-03 99.34 1.54E-02 98.46 0.00 100.00

20 test 1.75E-02 98.25 1.75E-02 98.25 1.75E-02 98.25
train 6.59E-03 99.34 1.76E-02 98.24 0.00 100.00

15 test 2.63E-02 97.37 1.75E-02 98.25 8.77E-03 99.12
train 6.59E-03 99.34 1.98E-02 98.02 0.00 100.00

10 test 2.63E-02 97.37 1.75E-02 98.25 2.63E-02 97.37
train 1.10E-02 98.90 2.20E-02 97.80 0.00 100.00

5
test 2.63E-02 97.37 2.63E-02 97.37 0.00 100.00
train 1.98E-02 98.02 2.64E-02 97.36 0.00 100.00

Table 5.6: The dimension reduction results use the breast cancer dataset and gradient-
based optimizers with MDS, TSNE, Isomap, and PCA as reducing algorithms.

5.2.2 Breast Cancer Dataset

The results of metaheuristic-based optimizers with reducing algorithms are shown in Table

5.5. Furthermore, the best results of MDS (99.12 for QDPSO, 97.37 for PSO, and 97.37

Information Technology Engineer 59 Graduation Project

for PSO bound), TSNE (98.25 for PSO, 97.37 for QDPSO, and 95.61 for PSO bound),

Isomap (99.12 for QDPSO, 98.25 for PSO, and 98.25 for PSO bound), and PCA (98.25 for

the metaheuristic-based optimizers) are in 15, 2, 20, and 10 dimensions, respectively.

Table 5.6 shows the result of gradient-based optimizers using the reducing algorithms.

Furthermore, Isomap (98.25 for L-BFGS, 97.37 for SGD, and 96.49 for Adam), TSNE

(98.25 for SGD and L-BFGS, and 97.37 for Adam), and PCA (98.25 for the gradient-based

optimizers) have the best result in 5, 2, and 20 dimensions, respectively. In addition, it is

not clear for MDS. Thus, Isomap has the best result and dimensions (with 5 dimensions)

for PSO (99.12), SGD (97.37), and Adam (96.49); see tables 5.5 and 5.6.

5.2.3 Discussion of Dimension Reduction

Tables 5.3 and 5.4 describe TSNE as the best option to reduce dimensions for datasets with

small characteristics, such as the iris dataset. Furthermore, in the metaheuristic-based and

gradient-based classifiers, TSNE has the best result in the test phase compared with the

other reducing algorithms proposed in this work. In addition, with 1 and 2 dimensions in

the test stage, the PSO bound, Adam, SGD, and L-BFGS have better results than their

original features. On the other hand, in Tables 5.5 and 5.6, Isomap is better for reducing

algorithms than MDS, TSNE, and PCA to datasets with significant characteristics, such

as the breast dataset. Moreover, in the gradient-based optimizers, PCA has the best result

with 5 dimensions. Nonetheless, Isomap is better for metaheuristic-based optimizers. Thus,

in this work, we choose the Isomap reduction algorithm because it works well with the

metaheuristic-based classifiers, but PCA is a good option too.

5.3 Performance of Classes and Samples

Table 5.7 illustrates the results of the classes and samples increasing with metaheuristic-

based optimizers. Moreover, QDPSO is better than PSO and PSO bound in 500 and 2000

samples with 4 classes. Further, QDPSO and PSO are better than PSO bound in 2 and 3

classes with 500, 2000, and 10000 samples.

The results of the gradient-based optimizers with different classes and samples are

described in Table 5.8. Besides, L-BFGS is better than Adam and SGD with 4 classes

Information Technology Engineer 60 Graduation Project

Sample C Dataset QDPSO PSO PSO bound
MSE ACC MSE ACC MSE ACC

500

2
test 0.00 100.00 0.00 100.00 1.60E-01 84.00
train 0.00 100.00 0.00 100.00 1.85E-01 81.50

3 test 0.00 100.00 0.00 100.00 5.20E-01 48.00
train 0.00 100.00 0.00 100.00 4.43E-01 55.75

4
test 0.00 100.00 2.00E-02 98.00 2.41E+00 36.00
train 5.00E-03 99.50 1.00E-02 99.00 2.45E+00 34.00

2000

2
test 0.00 100.00 0.00 100.00 4.75E-02 95.25
train 0.00 100.00 0.00 100.00 5.56E-02 94.44

3 test 0.00 100.00 0.00 100.00 4.73E-01 52.75
train 0.00 100.00 0.00 100.00 4.45E-01 55.50

4
test 0.00 100.00 3.70E-01 95.00 2.67E+00 36.75
train 1.25E-03 99.88 2.79E-01 95.56 2.47E+00 38.94

10000

2
test 0.00 100.00 0.00 100.00 6.50E-02 93.50
train 0.00 100.00 0.00 100.00 6.00E-02 94.00

3 test 0.00 100.00 0.00 100.00 5.55E-01 65.65
train 0.00 100.00 0.00 100.00 5.76E-01 64.81

4
test 7.50E-03 99.65 4.35E-02 99.25 2.52E+00 36.20
train 3.88E-03 99.71 5.53E-02 98.98 2.55E+00 35.95

Table 5.7: The classes increasing results use the circle dataset and metaheuristic-based
optimizers with 500, 2000, and 10000 random samples.

Sample C Dataset Adam SGD L-BFGS
MSE ACC MSE ACC MSE ACC

500

2
test 0.00 100.00 1.60E-01 84.00 0.00 100.00
train 0.00 100.00 1.53E-01 84.75 0.00 100.00

3 test 1.00E-02 99.00 4.60E-01 69.00 0.00 100.00
train 1.00E-02 99.00 6.45E-01 64.00 0.00 100.00

4
test 7.90E-01 69.00 1.95 44.00 0.00 100.00
train 1.01 71.50 2.74 38.25 0.00 100.00

2000

2
test 0.00 100.00 0.00 100.00 0.00 100.00
train 0.00 100.00 0.00 100.00 0.00 100.00

3 test 0.00 100.00 9.50E-02 90.50 0.00 100.00
train 6.25E-04 99.94 9.25E-02 90.75 0.00 100.00

4
test 6.08E-01 91.25 1.08 66.50 0.00 100.00
train 8.51E-01 89.38 1.10 69.25 0.00 100.00

10000

2
test 0.00 100.00 0.00 100.00 0.00 100.00
train 0.00 100.00 0.00 100.00 0.00 100.00

3 test 0.00 100.00 0.00 100.00 0.00 100.00
train 0.00 100.00 0.00 100.00 0.00 100.00

4
test 0.00 100.00 3.94E-01 95.45 0.00 100.00
train 1.25E-04 99.99 3.83E-01 95.56 0.00 100.00

Table 5.8: The classes increasing results use the circle dataset and gradient-based optimiz-
ers with 500, 2000, and 10000 random samples.

Information Technology Engineer 61 Graduation Project

and 500 and 2000 samples. Moreover, L-BFGS and Adam are better than SGD in 2 and 3

classes with 500 samples, 3 classes with 2000 samples, and 4 classes with 10000 samples. On

the other hand, Tables 5.7 and 5.8 show that L-BFGS and QDPSO are better than PSO,

PSO bound, Adam, and SGD with 500 and 2000 samples and 4 classes. Furthermore, L-

BFGS and Adam are better than QDPSO, PSO, PSO bound, and SGD with 10000 samples

and 4 classes.

5.3.1 The loss curves of classes and samples

(a) 500 Samples (b) 2000 Samples

(c) 10000 Samples

Figure 5.8: The loss curve of the circle dataset uses metaheuristic-based and gradient-based
optimizers with normalization, 2 classes, and 1000 iterations. Furthermore, (a) shows the
loss curves with 500 samples, (b) with 2000 samples, and (c) with 10000 samples.

Figures 5.8, 5.9, and 5.10 illustrate the convergence and behavior of the loss cost during

the best training. Moreover, they use normalization and 1000 iterations for metaheuristic-

based and gradient-based optimizers with 2, 3, and 4 classes. Where sub-figure (a) uses

500 samples. Sub-figure (b) utilizes 2000 samples, and sub-figure (c) uses of 10000 samples.

Information Technology Engineer 62 Graduation Project

(a) 500 Samples (b) 2000 Samples

(c) 10000 Samples

Figure 5.9: The loss curve of the circle dataset uses metaheuristic-based and gradient-based
optimizers with normalization, 3 classes, and 1000 iterations. Furthermore, (a) shows the
loss curves with 500 samples, (b) with 2000 samples, and (c) with 10000 samples.

Finally, L-BFGS could not make a graph because the MLPClassifier framework does not

allow it.

In 2 classes, the PSO curve has a faster convergence than QDPSO, Adam, SGD, and

PSO bound curves with 500, 2000, and 1000 samples; see Figure 5.8. However, the QDPSO

curve has a better smoothness than Adam, PSO, SGD, and PSO bound curves, as shown

in Figures 5.8a, 5.8b, and 5.8c. On the other hand, the PSO bound curve is worse in

convergence and behavior than the classifiers proposed in this work. Furthermore, it stalls

out in search during the training in the 3 cases. In the same way, the QDPSO and PSO

curves stall in the last iterations for all cases.

Figure 5.9 shows that the PSO curve converges better than QDPSO, Adam, SGD, and

PSO bound curves with 3 classes and 500, 2000, and 10000 samples. Furthermore, the

QDPSO and PSO curves are smoothness than Adam, SGD, and PSO bound curves during

Information Technology Engineer 63 Graduation Project

(a) 500 Samples (b) 2000 Samples

(c) 10000 Samples

Figure 5.10: The loss curve of the circle dataset uses metaheuristic-based and gradient-
based optimizers with normalization, 4 classes, and 1000 iterations. Furthermore, (a) shows
the loss curves with 500 samples, (b) with 2000 samples, and (c) with 10000 samples.

the training. Thus, QDPSO and PSO curves have the best behavior; see Figures 5.9a, 5.9b,

and 5.9c. On the other hand, the PSO bound curves is worse behavior and convergence

than all classifiers proposed in this work. In addition, with 2000 samples, the PSO curve

tends to stagnate in the last iterations, as shown in Figure 5.9b.

With 4 classes, the QDPSO curve converges better than PSO, Adam, SGD, and

PSO bound curves during the training using 500 and 2000 samples; see Figures 5.10a

and 5.10b. Moreover, the Adam curve converges better than QDPSO, PSO, SGD, and

PSO bound curves with 1000 samples, as shown in figure 5.10c. In addition, Figure 5.10

depicts that the QDPSO curve has the best behavior in the 3 cases. Conversely, the

PSO bound curve is worse in convergence and behavior than all classifiers described in

this project for all cases. Besides, the PSO curve stalled in the last iterations; see Figure

5.10.

Information Technology Engineer 64 Graduation Project

5.3.2 Discussion of Increasing Classes and Samples

The results illustrated in Tables 5.7 and 5.8 are coherent with the loss cost graphics de-

scribed in Figures 5.8, 5.9, and 5.10. Furthermore, The QDPSO classifier is the best for

the metaheuristics-based optimizers, while L-BFGS is for the gradient-based optimizers in

all cases, as shown in Tables 5.7 and 5.8. On the other hand, the QDPSO curve has the

best smoothness in the 3 cases with different samples; see Figures 5.8, 5.9, and 5.10. Then,

with 3 classes, Figure 5.9 depicts that the PSO curve has a smooth curve using 500, 2000,

and 300 samples. Finally, with 2 and 4 classes, QDPSO has a faster convergence using

500, 2000, and 10000. Besides, with different classes, PSO convergences quickly. However,

it was stagnant in the last iterations; see Figures 5.8, 5.9b, and 5.10. Similarly, Figure 5.8

shows QDPSO stalls with different samples and 2 classes. In addition, Adam has the best

convergence with 4 classes and 10000 samples, as shown in Figure 5.10c. Then, PSO bound

was the worse classifier in all cases and optimizers.

5.4 Performance of Image Classification

This section describes the image classification problem with the proposed model. Figure

5.11 shows the experimental results of the MCW dataset using different features (we use

Isomap to reduce the characteristics of the MCW dataset and data normalization) and

optimizers. Furthermore, it shows the mean square error and accuracy of the experiments.

Finally, we analyze the image classification results.

5.4.1 The result of the metaheuristic-based optimizers

In the training phases with 84 and 42 features, QDPSO (96.31 and 98.22) is better than

PSO (88.28 and 92.99) and PSO bound (86.62 and 86.24); see Figures 5.11a and 5.11b.

However, with 14 features, QDPSO and PSO are better than PSO bound; 92.10, 92.10,

and 85.10, respectively. Moreover, with 14 features in the testing stage, QDPSO and PSO

are better than PSO bound; correspondingly, 87.83, 87.83, and 86.65, see Figures 5.11c and

5.11d. Nonetheless, with 84 and 42 characteristics, QDPSO (91.69 and 87.24) is better

than PSO (85.16 and 86.94) and PSO bound (87.24 and 82.49).

Information Technology Engineer 65 Graduation Project

(a) Training Accuracy (b) Training Error

(c) Testing Accuracy (d) Testing Error

Figure 5.11: Heatmaps depicting the performance of each optimizer with 84, 42, and 14
features using 1000 iterations and MCW dataset. Where (a) shows the accuracy of training
in percent, (b) illustrates the mean squared error during the training, (c) sees the testing
accuracy in percent, and (d) represents the mean squared error during the testing.

5.4.2 The result of the gradient-based optimizers

In the training phase, with 84, 42, and 14 characteristics, L-BFGS (100, 100, and 100)

is better than Adam (99.24, 99.62, and 95.41) and SGD (91.08, 91.21, and 88.15); see

Figures 5.11a and 5.11b. Furthermore, in the testing stage with 84 features, L-BFGS is

better than Adam and SGD; correspondingly, 91.69, 89.91, and 89.32, see Figures 5.11c

and 5.11d. However, SGD is better than L-BFGS and Adam, with 42 characteristics; 89.61,

87,83, and 87.54, appropriately. Then, with 14 features, Adam is better than L-BFGS and

SGD; 89.32, 86.94, and 86.94, respectively.

Information Technology Engineer 66 Graduation Project

5.4.3 The result of the metaheuristic-based and gradient-based
optimizers

In the training phase, with 84, 42, and 14 features, L-BFGS (100, 100, and 100) is better

than Adam (99.24, 99.62, and 95.41), QDPSO (96.31, 98.22, and 92.10), PSO (88.28, 92.99,

and 92.10), SGD (91.08, 91.21, and 88.15), and PSO bound (86.62, 86.24, and 85.10); see

Figure 5.11. Furthermore, QDPSO (91.69, 87.24, and 87.83) and L-BFGS (91.69, 87.83,

and 86.94) are better than Adam (89.91, 87.54, and 89.32), SGD (89.32, 89.61, and 86.94),

PSO (85.16, 86.94, and 87.83), and PSO bound (87.24, 82.49, and 86.65) in the testing

stage with 84, 42, and 14 characteristics, respectively.

5.4.4 The metrics of the metaheuristic-based optimizers

Table 5.9 describes the best, average, worst, and deviation standards of the loss costs of

the MCW dataset. Moreover, we use normalization, 10 training, and 1000 iterations with

different characteristics and optimizers.

Optimizers Features Worst Avg Best Std

QDPSO
84 5.49E-01 2.64E-01 9.91E-02 1.49E-01
42 1.30E-01 6.56E-02 4.78E-02 2.24E-02
14 1.41E-01 1.28E-01 1.15E-01 7.76E-03

PSO
84 1.37 1.11 3.27E-01 2.89E-01
42 2.49E-01 2.14E-01 1.73E-01 2.19E-02
14 2.70E-01 2.54E-01 2.23E-01 1.32E-02

PSO bound
84 6.13E-01 5.29E-01 4.17E-01 6.07E-02
42 4.80E-01 4.14E-01 3.86E-01 2.54E-02
14 6.99E-01 5.00E-01 4.30E-01 8.13E-02

Adam
84 3.97E-02 3.86E-02 3.72E-02 6.97E-04
42 1.79E-02 1.66E-02 1.56E-02 6.99E-04
14 1.51E-01 1.40E-01 1.32E-01 6.94E-03

L-BFGS
84 3.94E-03 2.88E-03 2.46E-03 4.31E-04
42 1.77E-03 1.55E-03 1.34E-03 1.26E-04
14 2.87E-03 2.29E-03 1.95E-03 2.54E-04

SGD
84 2.84E-01 2.81E-01 2.78E-01 1.85E-03
42 2.67E-01 2.64E-01 2.60E-01 2.18E-03
14 3.25E-01 3.23E-01 3.21E-01 1.41E-03

Table 5.9: The best, worst, average, and standard deviation of the loss cost of the MCW
dataset for the metaheuristic-based and gradient-based optimizers.

Table 5.9 shows that QDPSO is better than PSO and PSO bound in the best and

Information Technology Engineer 67 Graduation Project

average loss costs with 84, 42, and 14 features. Furthermore, in the deviation standard of

the loss cost, QDPSO (2.24E-02 and 7.76E-03) is better than PSO (2.19E-02 and 1.32E-02)

and PSO bound (2.54E-02 and 8.13E-02) with 42 and 14 characteristics. However, with

84 features, the PSO bound is better than QDPSO and PSO; correspondingly, 6.07E-02,

1.49E-01, and 2.89E-01. On the other hand, in the worst loss cost, PSO is worse than

PSO bound and QDPSO, with 84 features; 1.37, 6.13E-01, and 5,49E-01, appropriately.

Besides, with 42 and 14 characteristics, PSO bound (4.80E-01 and 6.99E-01) is worse than

PSO (2.49E-01 and 2.70E-01) and QDPSO (1.30E-01 and 1.41E-01).

5.4.5 The metrics of the gradient-based optimizers

L-BFGS is better than Adam and SGD in the best and average loss costs with 84, 42, and

14 features; see Table 5.9. Moreover, L-BFGS (4.31E-04, 1.26E-04, and 2.54E-04) has the

best deviation standard of loss cost. Further, the worst loss cost, SGD (2.84E-01, 2.67E-

01, and 3.25E-01) is worse than Adam (3.97E-02, 1.79E-02, and 1.51E-01) and L-BFGS

(3.94E-03, 1.77E-03, and 2.87E-03) with 84, 42, and 14 characteristics.

5.4.6 The metrics of the metaheuristic-based and gradient-based
optimizers

L-BFGS is better than Adam, SGD, QDPSO, PSO, and PSO bound in the best and average

loss costs with 84, 42, and 14 features; see Table 5.9. Moreover, L-BFGS (4.31E-04, 1.26E-

04, and 2.54E-04) carries the best deviation standard of loss cost. Conversely, in the worst

loss cost, PSO is worse than PSO bound, QDPSO, SGD, Adam, and L-BFGS with 84

characteristics; 1.37, 6.13E-01, 5.49E-01, 2.84E-01, 3.97E-02, and 3.94E-03, respectively.

Besides, with 42 and 14 features, PSO bound (4.80E-01 and 6.99E-01) is worse than PSO

(2.49E-01 and 2.70E-01), SGD (2.67E-01 and 3.25E-01), QDPSO (1.30E-01 and 1.41E-01),

Adam (1.79E-02 and 1.51E-01), and L-BFGS (1.77E-03 and 2.87E-03).

Table 5.10 describes the precision, recall, and f1 score of the MCW dataset for the

metaheuristic-based and gradient-based optimizers. Furthermore, we use the best training,

1000 iterations, and dataset normalization. On the other hand, the precision score with 84,

42, and 14 features are 9.19E-01, 8.74E-01, and 8.97E-01 for QDPSO, 8.56E-01, 8.73E-01,

Information Technology Engineer 68 Graduation Project

Optimizers Features Presicion Recall F1 score

QDPSO
84 9.19E-01 9.17E-01 9.17E-01
42 8.74E-01 8.72E-01 8.73E-01
14 8.97E-01 8.93E-01 8.94E-01

PSO
84 8.56E-01 8.52E-01 8.51E-01
42 8.73E-01 8.69E-01 8.70E-01
14 8.84E-01 8.78E-01 8.79E-01

PSO bound
84 8.56E-01 8.52E-01 8.51E-01
42 8.73E-01 8.69E-01 8.70E-01
14 8.84E-01 8.78E-01 8.79E-01

Adam
84 9.02E-01 8.99E-01 9.00E-01
42 8.79E-01 8.75E-01 8.76E-01
14 8.96E-01 8.93E-01 8.93E-01

L-BFGS
84 9.18E-01 9.17E-01 9.17E-01
42 8.81E-01 8.78E-01 8.79E-01
14 8.75E-01 8.69E-01 8.71E-01

SGD
84 8.96E-01 8.93E-01 8.94E-01
42 9.00E-01 8.96E-01 8.97E-01
14 8.73E-01 8.69E-01 8.70E-01

Table 5.10: The precision, recall, and f1 score of the MCW dataset for the metaheuristic-
based and gradient-based optimizers.

and 8.84E-01 for PSO, 8.56E-01, 8.73E-01, and 8.84E-01 for PSO bound, 9.02E-01, 8.79E-

01, and 8.96E-01 for Adam, 9.18E-01, 8.81E-01, and 8.75E-01 for L-BFGS, and 8.96E-01,

9.00E-01, and 8.73E-01 for the SGD. Besides, the recall score is 9.17E-01, 8.72E-01, and

8.93E-01 for QDPSO, 8.52E-01, 8.69E-01, and 8.78E-01 for PSO, 8.52E-01, 8.69E-01, and

8.78E-01 PSO bound, 8.99E-01, 8.75E-01, and 8.93E-01 for Adam, 9.17E-01, 8.78E-01,

and 8.69E-01 for L-BFGS, and 8.93E-01, 8.96E-01, and 8.69E-01 for SGD. Finally, the f1

score is 9.17E-01, 8.73E-01, and 8.94E-01 for QDPSO, 8.51E-01, 8.70E-01, and 8.79E-01

for PSO, 8.51E-01, 8.70E-01, and 8.79E-01 for PSO bound, 9.00E-01, 8.76E-01, and 8.93E-

01 for Adam, 9.17E-01, 8.79E-01, and 8.71E-01 for L-BFGS, and 8.94E-01, 8.97E-01, and

8.70E-01 for SGD.

5.4.7 Confusion Matrix and Loss Cost Curve

Figures 5.12, 5.13, and 5.14 describe the confusion matrix of the MCW dataset with 84, 42,

and 14 features, respectively. Moreover, Figures a, b, and c illustrate the metaheuristic-

based optimizers, while Figures d, e, and f are the gradient-based optimizers. Further, the

Information Technology Engineer 69 Graduation Project

confusion matrix uses the best training, dataset normalized, and 1000 iterations.

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.12: The confusion matrix of the MCW dataset uses metaheuristic-based (a, b,
and c) and gradient-based (d, e, and f) optimizers with normalization, 84 features, and
1000 iterations.

The precision of the QDPSO classifier with 84 features is 91.7%, divided into 27.60%

for the cloudy class, 14.54% for the rain class, 20.18% for the shine class, and 29.38% for

the sunrise class, as shown in Figure 5.12a. Thus, 8.3% corresponds to the classification

errors, where 1.78% think the cloudy class is the rain class and 1.48% is the shine class. In

addition, 2.37% say the rain class is the cloudy class. Besides, 0.89% assume the shine class

is the cloudy class, and 0.30% is the rain class. Then, 0.59% believe that the sunrise class is

the cloudy class, and 0.89% is the shine class. On the other hand, with 42 characteristics,

the precision is 87.25%, distributed in 26.71% for the cloudy class, 13.06% for the rain

class, 19.29% for the shine class, and 28.19% for the sunrise class, see Figure 5.13a. Thus,

12.75% corresponds to the classification error, where 2.08% assumes the cloudy class is the

rain class, 1.78% is the shine class, and 0.30% is the sunrise class. Then, 3.86% think the

rain class is the cloudy class. Furthermore, 0.89% say the shine class is the cloudy class,

0.30% is the rain class, and 0.89% is the sunrise class. Besides, 0.59% believe that the

sunrise class is the cloudy class, and 2.08% is the shine class. Finally, with 14 features,

the precision is 89.32%, divided into 25.82% for the cloudy class, 13.95% for the rain class,

Information Technology Engineer 70 Graduation Project

20.47% for the shine class, and 29.08% for the sunrise class, as shown in Figure 5.14a.

Thus, 10.68% is the classification error, where 2.97% assumes the cloudy class is the rain

class, and 2.08% is the shine class. Further, 2.37% say the rain class is the cloudy class,

and 0.59% is the shine class. Then, 0.59% believe that the shine class is the cloudy class,

and 0.30% is the rain class. In addition, 0.30% think the sunrise class is the cloudy class,

0.30% is the rain class, and 1.19% is the shine class.

The main diagonal of Figure 5.12b shows the precision of the PSO (85.16%) classifier

with 84 characteristics, which is distributed into 23.44% for the cloudy class, 13.35% for

the rain class, 20.18% for the shine class, and 28.19% for the sunrise class. Thus, 14.84%

is the classification error, where 2.37% determines that the cloudy class is the rain class,

3.86% is the shine class, and 1.19% is the sunrise class. Moreover, 3.26% assume the rain

class is the cloudy class, and 0.30% is the shine class. So then, 0.89% think the shine class

is the cloudy class, and 0.30% is the rain class. Besides, 0.59% believe that the sunrise

class is the cloudy class, 0.59% is the rain class, and 1.48% is the shine class. Conversely,

with 42 features, the precision is 86.94%, divided into 26.11% for the cloudy class, 13.06%

for the rain class, 19.58% for the shine class, and 28.19% for the sunrise class, see Figure

5.13b. Thus, 13.06% corresponds to the classification errors, where 2.67% think the cloudy

class is the rain class, 1.78% is the shine class, and 0.30% is the sunrise class. Besides,

2.97% say the rain class is the cloudy class, and 0.89% is the shine class. So then, 0.89%

consider the shine class the cloudy class, 0.30% for the rain class, and 0.59% for the sunrise

class. Further, 0.30% believe that the sunrise class is the cloudy class, and 2.37% is the

shine class. Finally, with 14 characteristics, the precision is 87.84%, split into 25.82% for

the cloudy class, 13.95% for the rain class, 20.18% for the shine class, and 27.89% for the

sunrise class, as shown in Figure 5.14b. Thus, 12.16% is the classification error, 2.97%

think the cloudy class is the rain class, 1.78% is the shine class, and 0.30% is the sunrise

class. Moreover, 2.67% believe that the rain class is the cloudy class, and 0.30% is the

shine class. So then, 0.59% say the shine class is the cloudy class, and 0.59% is the rain

class. In addition, 0.30% assume that the sunrise class is the cloudy class, 0.30% is the

rain class, and 2.37% is the shine class.

With 84 features, the PSO bound precision is 85.16%, divided into 23.44% for the

cloudy class, 13.35% for the rain class, 20.18% for the shine class, and 28.19% for the

Information Technology Engineer 71 Graduation Project

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.13: The confusion matrix of the MCW dataset uses metaheuristic-based (a, b,
and c) and gradient-based (d, e, and f) optimizers with normalization, 42 features, and
1000 iterations.

sunrise class, as shown in Figure 5.12c. Thus, 14.84% corresponds to the classification

error, where 2.37% consider the cloudy class as the rain class, 3.86% is the shine class, and

1.19% is the sunrise class. In addition, 3.26% think the rain class is the cloudy class, and

0.30% is the shine class. So then, 0.89% say the shine class is the cloudy class, and 0.30%

is the rain class. Besides, 0.59% believe that the sunrise class is the cloudy class, 0.59%

is the rain class, and 1.48% is the shine class. On the other hand, with 42 characteristics,

the precision is 86.94%, divided into 26.11% for the cloudy class, 13.06% for the rain

class, 19.58% for the shine class, and 28.19% for the sunrise class, see Figure 5.13c. Thus,

13.06% corresponds to the classification errors, where 2.67% believe that the cloudy class

is the rain class, 1.78% is the shine class, and 0.30% is the sunrise class. Further, 2.97%

assume the rain class is cloudy, and 0.89% is shiny. So then, 0.89% consider the shine

class the cloudy class, 0.30% for the rain class, and 0.59% for the sunrise class. Besides,

0.30% say the sunrise class is the cloudy class, and 2.37% is the shine class. Finally, with

14 characteristics, the precision is 87.84%, distributed into 25.82% for the cloudy class,

13.95% for the rain class, 20.18% for the shine class, and 27.89% for the sunrise class, as

shown in Figure 5.14c. Thus, 12.16% is the classification error, 2.97% think the cloudy

Information Technology Engineer 72 Graduation Project

class is the rain class, 1.78% is the shine class, and 0.30% is the sunrise class. In addition,

2.67% consider the rain class as the cloudy class and 0.30% as the shine class. So then,

0.59% think the shine class is the cloudy class, and 0.59% is the rain class. Moreover,

0.30% believe that the sunrise class is the cloudy class, 0.30% is the rain class, and 2.37%

is the shine class.

The precision of the L-BFGS classifier with 84 features is 91.69%, split into 28.19%

for the cloudy class, 14.84% for the rain class, 19.58% for the shine class, and 29.08% for

the sunrise class; see Figure 5.12d. Thus the classification error is 8.31%, where 2.08% say

the cloudy class is the rain class, and 0.59% is the shine class. Besides, 1.78% think the

rain class is the cloudy class, and 0.30% is the shine class. Furthermore, 1.48% assume

the shine class is the cloudy class, and 0.30% is the sunrise class. So then, 0.59% believe

that the sunrise class is cloudy, and 1.19% is shining. Conversely, with 42 characteristics,

the precision is 87.83%, divided into 25.52% for the cloudy class, 14.24% for the rain class,

19.29% for the shine class, and 28.78% for the sunrise class; as shown in Figure 5.13d.

Thus, 12.17% correlates with the classification error, where 3.56% estimate the cloudy

class is the rain class, 1.48% is the chine class, and 0.30% is the sunrise class. Moreover,

2.37% infer that the rain class is the cloudy class, and 0.30% is the shine class. So then,

0.89% say the shine class is the cloudy class, 0.30% is the rain class, and 0.89% is the

sunrise class. Further, 2.08% think the sunrise class is the shine class. Finally, with 14

features, the precision is 86.95%, distributed in 26.71% for the cloudy class, 13.95% for the

rain class, 18.69% for the shine class, and 27.60% for the sunrise class; see Figure 5.14d.

Thus, the classification error is 13.05%, where 2.97% assumes the cloudy class is the rain

class, and 1.19% is the shine class. Furthermore, 2.97% infer that the rain class is the

cloudy class. In addition, 1.78% say the shine class is the cloudy class, 0.59% is the rain

class, and 0.30% is the sunrise class. Moreover, 0.89% believe that the sunrise class is the

cloudy class, 0.30% is the rain class, and 2.08% is the shine class.

With the 84 characteristics, the Adam precision is 89.91%, divided into 27.30% for the

cloudy class, 14.84% for the rain class, 19.58% for the shine class, and 28.19% for the

sunrise class, as shown in Figure 5.12e. Thus, 10.09% corresponds to the classification

error, where 2.37% infer that the cloudy class is the rain class, and 1.19% is the shine

class. In addition, 2.08% say the rain class is the cloudy class. Furthermore, 1.19% assume

Information Technology Engineer 73 Graduation Project

(a) QDPSO (b) PSO (c) PSO bound

(d) L-BFGS (e) Adam (f) SGD

Figure 5.14: The confusion matrix of the MCW dataset uses metaheuristic-based (a, b,
and c) and gradient-based (d, e, and f) optimizers with normalization, 14 features, and
1000 iterations.

the shine class is the cloudy class, 0.30% is the rain class, and 0.30% is the sunrise class.

So then, 0.89% think the sunrise class is the cloudy class, 0.30% is the rain class, and

1.48% is the shine class. On the other hand, with 42 features, the precision is 87.54%,

split into 25.82% for the cloudy class, 14.24% for the rain class, 19.29% for the shine class,

and 28.19% for the sunrise class; see Figure 5.13e. Thus, the classification error is 12.46%,

where 3.56% say the cloudy class is the rain class, and 1.48% is the shine class. Moreover,

2.37% assume that the rain class is the cloudy class, and 0.30% is the shine class. Besides,

0.89% believe that the shine class is the cloudy class, 0.30% is the rain class, and 0.89% is

the sunrise class. So then, 0.59% think the sunrise class is the cloudy class, 0.30% is the

rain class, and 1.78% is the shine class. Finally, with 14 characteristics, the precision is

89.31%, distributed into 26.71% for the cloudy class, 13.35% for the rain class, 20.47% for

the shine class, and 28.78% for the sunrise class, as shown in Figure 5.14e. Thus, 10.69% is

the classification error, where 2.08% infer that the cloudy class is the rain class, and 2.08%

is the shine class. Further, 3.56% say the rain class is the cloudy class. Besides, 0.30%

think the shine class is the cloudy class, 0.30% is the rain class, and 0.30% is the sunrise

class. In addition, 0.30% believe that the sunrise class is the cloudy class, and 1.78% is

Information Technology Engineer 74 Graduation Project

the shine class.

In Figure 16, the SGD classifier has 89.32% precision with 84 features, split into 26.71%

for the cloudy class, 14.54% for the rain class, 19.58% for the shine class, and 28.49% for the

sunrise class; see Figure 5.12f. Thus, 10.68% correlates to the error classification, where

2.37% think the cloudy class is the rain class, and 1.78% is the shine class. Moreover,

2.08% say the rain class is the cloudy class. In addition, 1.19% believe that the shine class

is the cloudy class, 0.30% is the rain class, and 0.30% is the sunrise class. So then, 0.30%

assume the sunrise class is the cloudy class, 30% is the rain class, and 1.78% is the shine

class. Conversely, with 42 characteristics, the precision is 89.62%, divided into 26.71%

for the cloudy class, 14.54% for the rain class, 20.18% for the shine class, and 28.19% for

the sunrise class; as shown in Figure 5.13f. Thus, the classification error is 10.38%, where

2.37% say the cloudy class is the rain class, and 1.78% is the shine class. Besides, 2.37%

think the rain class is the cloudy class. Furthermore, 0.89% assume the shine class is the

cloudy class, and 0.30% is the rain class. In addition, 0.59% believe that the sunrise class

is the cloudy class, 0.30% is the rain class, and 1.78% is the shine class. Finally, with 14

features, the precision is 86.94%, decided into 24.33% for the cloudy class, 14.54% for the

rain class, 19.58% for the shine class, and 28.49% for the sunrise class; see Figure 5.14f.

Thus, 13.06 corresponds to the classification error, where 3.26% assumes the cloudy class

is the rain class, 2.37% is the shine class, and 0.89% is the sunrise class. Further, 2.08%

say the rain class is the cloudy class, and 0.30% is the shine class. So then, 1.48% think

the shine class is the cloudy class, and 0.30% is the rain class. Moreover, 0.30% believe

that the sunrise class is the cloudy class, 0.30% is the rain class, and 1.78% is the shine

class.

Figure 5.15 describes the convergence of the loss cost for the optimizers proposed in

this work. Furthermore, we use the best training, 1000 iterations, and normalization

of the MCW dataset with 84, 42, and 14 characteristics. Unfortunately, L-BFGS could

not plot because the MLPClassifier framework does not allow it. In metaheuristic-based

optimizers, Figures 5.15a, 5.15b, and 5.15c show that the QDPSO curve is better than the

PSO and PSO bound curves. Furthermore, the Adam curve is better than the SGD curve

in the gradient-based optimizers. Conversely, in the metaheuristic-based and gradient-

based optimizers with 84 and 42 features, the Adam curve is better than QDPSO, PSO,

Information Technology Engineer 75 Graduation Project

(a) 84 Features (b) 42 Features

(c) 14 Features

Figure 5.15: The loss curve of the MCW dataset uses metaheuristic-based and gradient-
based optimizers with normalization, different characteristics, and 1000 iterations.

SGD, and PSO bound curves. However, with 14 features, the QDPSO curve is better than

Adam, PSO, SGD, and PSO bound.

5.4.8 Discussion of Image Classification

The f1 score and deviation standard in Tables 5.10 and 5.9 show that the metaheuristic-

based and gradient-based classifiers handle the MCW dataset. Thus, Figure 5.11 shows

that QDPSO and L-BFGS are better results than PSO, PSO bound, Adam, and SGD with

84 features. Moreover, Adam has the best results in the test phase with 14 characteristics

(features proposed). Nevertheless, QDPSO and PSO have results virtually close to the best.

Besides, the deviation standard reduces considerably with the characteristic proposed in

this work, as shown in Table 5.9. Conversely, L-BFGS has the best results in the training

phases. However, QDPSO has the best results in testing, see Figure 5.11.

In Figure 5.15, the Adam curve has the best behavior and convergence than the opti-

Information Technology Engineer 76 Graduation Project

mizers proposed in this work with 84 and 42 characteristics. Nevertheless, with 14 features,

the QDPSO curve is the best in convergence and behavior, see Figure 5.15c. Furthermore,

the curve of the QDPSO is the best in metaheuristic-based optimizers and all cases. On

the other hand, the PSO bond curve is worse in 84, 42, and 14 features. Finally, the ex-

ecution time reduces considerably with our technic for image classification. For example,

executing the algorithm with the global features (84 characteristics) takes around 1 week,

while with features reduced (14 characteristics) takes 1 day. The reason is the computing

of parameters number, which are equal to particle dimensions. Thus, with 84 features, each

particle in the swarm has 22432 dimensions, while with 14 features, it has 802 dimensions;

see Table 4.4.

Information Technology Engineer 77 Graduation Project

Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we proposed training artificial neural networks using particle swarm opti-

mization with quantum delta particle behavior. Thus, we implemented a multi-layer per-

ceptron using QDPSO and analyzed the performance with several benchmark classification

datasets and the MCW dataset. Furthermore, we evaluated the behavior by reducing the

features and increasing the classes and samples. Finally, we compared several metrics of

the classification problem with different optimizers based on gradient and metaheuristics.

The tests evaluated the performance of the gradient-based and metaheuristic-based

classifiers according to 4 well-known classification datasets and the MCW dataset. Thus,

the tests begin with collecting the required datasets, preprocessing their data, and then

running the model. After that, the fitness function is evaluated inside the model proposed.

In addition, the QDPSO optimizes the neural network training before obtaining the clas-

sification results. Finally, each classifier is evaluated for accuracy, precision, recall, and f1

score in the training and testing phases.

The results show that QDPSO handles the benchmark datasets and the MCW dataset.

For example, QDPSO, PSO, and L-BFGS have the best results in the training and testing

phases with 100 and 1000 iterations using normalization. Moreover, it has better behavior

and convergence with the balanced dataset, such as the circle and iris datasets. In the same

way, QDPSO converges faster in MCW dataset with our technic proposed, and the behavior

is the best of all classifiers. For instance, in the test phase and using the QDPSO classifier,

79

the accuracy of the MCW dataset was 91.69%, with 84 global extracted characteristics in

an execution time of 1 week. In comparison, 14 reduced characteristics were 87.83% in a

running time of 1 day.

TSNE is the best reducing algorithm to benchmark datasets with small features and

Isomap with extensive characteristics. Conversely, the execution time for image classi-

fication reduces considerably because of the computing of the parameter numbers (the

dimensions of each particle in the swarm) during the training in the artificial neural net-

works. For example, the parameter number for global characteristics is 22432, while the

characteristics reduced is 802. Furthermore, the reliability of the QDPSO optimizer in-

creased with 14 features (sixth part of global features) in the MCW dataset using Isomap

as a reducing algorithm.

In the increasing samples and classes, the QDPSO and PSO curves of the loss cost

converge faster with 2 and 3 classes using different samples. Moreover, they stagnate in

the last iterations with 2 classes and the PSO curve with 3 classes using 2000 samples.

With 4 classes, the QDPSO converges faster with 500 and 2000 samples. Nonetheless, the

Adam curve is the best with 10000 samples. On the other hand, the QDPSO curve is very

smooth during the training with 2, 3, and 4 classes using different samples.

Finally, the model and optimizer proposed in this thesis for training artificial neural

networks have excellent results in the testing and training phases with the benchmark and

MCW datasets. Furthermore, the behavior and convergence of the QDPSO are remarkable

during the training for the datasets used in this thesis. In addition, the exploration and

exploration stay balanced in the proposed optimizer, making the QDPSO classifier finds

the best parameters of the multi-layer perceptron with the fewest resources.

6.2 Recommendations

This section provides some recommendations based on the issues and constraints identified

in our model proposal.

• In the literature review, we saw that the output of activation functions is between 0

and 1 or -1 to 1, which allowed us to use this range as a limit for swarm initialization.

However, this thesis uses a PSO with (PSO) and without (PSO bound) limit where

Information Technology Engineer 80 Graduation Project

the PSO has a better result than PSO bound. Thus, we recommend not using bound

in the QDPSO optimizer.

• The benchmark datasets were divided into 80% for training and 20% for testing, as

shown in Table 4.2. This distribution allows us to obtain excellent results in the

training and testing stages. However, we recommend a robust distribution with a

validation phase. Thus, the split of the benchmark datasets could be 70% for training,

20% for testing, and 10% for validation.

• The MCW dataset has 1125 images divided into four categories: sunrise with 300

images, cloudy with 215 images, rainy with 253 images, and sunshine with 357 images,

as described in Table 4.3. Thus, we recommend using a technic to balance the dataset,

such as the correct evaluation metrics, resampling the training set, K-folder cross-

validation, clustering the abundant class, or using data augmentation for imbalanced

datasets.

• In the algorithm implementation, we use MLPClassifier from sklearn, which has

Adam, SGD, and L-BFGS as classifiers. MLPClassifier allowed faster and easy im-

plementation. However, this framework doe not permit the extraction of the loss

cost value of the L-BFGS optimizer during the training. Thus we recommend using

another framework that allows us to take out the loss cost value of all classifiers.

• In the proposed model, the execution time and computation cost depend on the

number and dimensions of the swarm particles, as described in Equation 3.1. Thus,

we recommend using technic to extract features, decrease features using a reducing

algorithm, or use another artificial neural network architecture.

6.3 Future Works

This section suggests more studies and applications that might be considered in future

works.

• The current project proposed a multi-layer perceptron as an artificial neural network

model for classification problems. This model works well with benchmark datasets

Information Technology Engineer 81 Graduation Project

with small features. However, without features reduced, it has some problems with

significant characteristics, such as the MCW dataset. For this reason, we suggest

a convolutional neural network implementation. CNN is an artificial network fo-

cused on classification problems. Furthermore, the architecture of CNN could be an

excellent solution for datasets with significant characteristics.

• To extract the global features of the dataset, we used the Color Histogram, Hu Mo-

ments, and Haralick Texture, which extract the quantified color, shape, and texture.

These technics reduce the computation cost in the classifiers based on metaheuris-

tics. Moreover, they increase their accuracy and reduce classification errors. Thus,

we suggest researching more technics to extract the global characteristics and make a

comparison between them. Besides, we suggest using batch size and cross-validation

to generate a faster and more robust model.

• The subsection of increasing sample and classes shows that the Adam optimizer

has better behavior than other optimizers with an expensive sample; see Figure

5.10c. Furthermore, it was better with 84 and 42 features in the image classification

subsection, as shown in Figures 5.15a and 5.15b. The Adam classifier performs better

in these cases because it makes a stochastic sampling during the training. Thus, we

suggest an implementation using this technic.

• The model proposed in this thesis was implemented with the scikit learn. This frame-

work has admirable documentation and tools that allow excellent implementation of

ANN. However, it has some limitations, such as taking out the loss cost value of the

L-BFGS classifier during the training in the MLPClassifier module. For this reason,

we suggest using PyTorch because it allows us the use the tensors and faster imple-

mentation with more tools than scikit learn. Furthermore, Tensorflow could be a

good option too.

• The parameters in the model proposed are equal to the dimension of each particle in

the swarm. Thus the computational cost depends on the number of parameters. In

other words, if the number of parameters in the model increases, the computational

cost also increases. On the other hand, QDPSO parallelization is possible because of

Information Technology Engineer 82 Graduation Project

several implementations in the standard PSO [75]. Moreover, the model proposed in

this work only used CPUs. For these reasons, we suggest an implementation using

GPUs, parallelization, and different swarms for each layer in the network.

Information Technology Engineer 83 Graduation Project

Bibliography

[1] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to convolutional

neural networks for computer vision,” Synthesis lectures on computer vision, vol. 8,

no. 1, pp. 1–207, 2018.

[2] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, “Backprop-

agation and the brain,” Nature Reviews Neuroscience, vol. 21, no. 6, pp. 335–346,

2020.

[3] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm optimiza-

tion and backpropagation as training algorithms for neural networks,” in Proceedings

of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706). IEEE,

2003, pp. 110–117.

[4] M. F. Ab Aziz, S. A. Mostafa, C. F. M. Foozy, M. A. Mohammed, M. Elhoseny,

and A. Z. Abualkishik, “Integrating elman recurrent neural network with particle

swarm optimization algorithms for an improved hybrid training of multidisciplinary

datasets,” Expert Systems with Applications, vol. 183, p. 115441, 2021.

[5] X. Liu, Z. Li, Z. Zhang, and G. Zhang, “Coal and gas outbursts prediction based

on combination of hybrid feature extraction dwt+ fica–lda and optimized qpso-delm

classifier,” The Journal of Supercomputing, vol. 78, no. 2, pp. 2909–2936, 2022.

[6] J. J. Hopfield, “Neural networks and physical systems with emergent collective com-

putational abilities.” Proceedings of the national academy of sciences, vol. 79, no. 8,

pp. 2554–2558, 1982.

[7] F. Crick, “The recent excitement about neural networks.” Nature, vol. 337, no. 6203,

pp. 129–132, 1989.

85

[8] Y. Quintero, D. Ardila, E. Camargo, F. Rivas, and J. Aguilar, “Machine learning

models for the prediction of the seird variables for the covid-19 pandemic based on a

deep dependence analysis of variables,” Computers in Biology and Medicine, vol. 134,

p. 104500, 2021.

[9] D. J. Livingstone, Artificial neural networks: methods and applications. Springer,

2008.

[10] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph neural networks

count substructures?” in Advances in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran

Associates, Inc., 2020, pp. 10 383–10 395. [Online]. Available: https://proceedings.

neurips.cc/paper/2020/file/75877cb75154206c4e65e76b88a12712-Paper.pdf

[11] A. C. Mater and M. L. Coote, “Deep learning in chemistry,” Journal of chemical

information and modeling, vol. 59, no. 6, pp. 2545–2559, 2019.

[12] R. Iten, T. Metger, H. Wilming, L. Del Rio, and R. Renner, “Discovering physical

concepts with neural networks,” Physical review letters, vol. 124, no. 1, p. 010508,

2020.

[13] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, “Enforcing analytic

constraints in neural networks emulating physical systems,” Physical Review Letters,

vol. 126, no. 9, p. 098302, 2021.

[14] P. G. Brodrick, A. B. Davies, and G. P. Asner, “Uncovering ecological patterns with

convolutional neural networks,” Trends in ecology & evolution, vol. 34, no. 8, pp.

734–745, 2019.

[15] S. Christin, É. Hervet, and N. Lecomte, “Applications for deep learning in ecology,”

Methods in Ecology and Evolution, vol. 10, no. 10, pp. 1632–1644, 2019.

[16] R. Ptucha, F. P. Such, S. Pillai, F. Brockler, V. Singh, and P. Hutkowski, “Intelligent

character recognition using fully convolutional neural networks,” Pattern recognition,

vol. 88, pp. 604–613, 2019.

Information Technology Engineer 86 Graduation Project

https://proceedings.neurips.cc/paper/2020/file/75877cb75154206c4e65e76b88a12712-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/75877cb75154206c4e65e76b88a12712-Paper.pdf

[17] B. R. Kavitha and C. Srimathi, “Benchmarking on offline handwritten tamil character

recognition using convolutional neural networks,” Journal of King Saud University-

Computer and Information Sciences, 2019.

[18] G. Yao, T. Lei, and J. Zhong, “A review of convolutional-neural-network-based action

recognition,” Pattern Recognition Letters, vol. 118, pp. 14–22, 2019.

[19] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recognition using

deep neural networks: A systematic review,” IEEE access, vol. 7, pp. 19 143–19 165,

2019.

[20] A. Celikyilmaz, E. Clark, and J. Gao, “Evaluation of text generation: A survey,”

arXiv preprint arXiv:2006.14799, 2020.

[21] B. Alshemali and J. Kalita, “Improving the reliability of deep neural networks in nlp:

A review,” Knowledge-Based Systems, vol. 191, p. 105210, 2020.

[22] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,

“Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp.

57–81, 2020.

[23] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis, “Deep

learning-based vehicle behavior prediction for autonomous driving applications: A

review,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp.

33–47, 2020.

[24] C. L. Srinidhi, O. Ciga, and A. L. Martel, “Deep neural network models for com-

putational histopathology: A survey,” Medical Image Analysis, vol. 67, p. 101813,

2021.

[25] S. Sivaranjini and C. Sujatha, “Deep learning based diagnosis of parkinson’s disease

using convolutional neural network,” Multimedia tools and applications, vol. 79, no. 21,

pp. 15 467–15 479, 2020.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

Information Technology Engineer 87 Graduation Project

[27] K. S. Chahal, M. S. Grover, K. Dey, and R. R. Shah, “A hitchhiker’s guide on dis-

tributed training of deep neural networks,” Journal of Parallel and Distributed Com-

puting, vol. 137, pp. 65–76, 2020.

[28] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural networks

through neuroevolution,” Nature Machine Intelligence, vol. 1, no. 1, pp. 24–35, 2019.

[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95-international conference on neural networks, vol. 4. IEEE, 1995, pp. 1942–

1948.

[30] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht, “Using neighbourhoods with the

guaranteed convergence pso,” in Proceedings of the 2003 IEEE Swarm Intelligence

Symposium. SIS’03 (Cat. No. 03EX706). IEEE, 2003, pp. 235–242.

[31] X. Li, “A non-dominated sorting particle swarm optimizer for multiobjective opti-

mization,” in Genetic and evolutionary computation conference. Springer, 2003, pp.

37–48.

[32] H. Fang, L. Chen, and Z. Shen, “Application of an improved pso algorithm to optimal

tuning of pid gains for water turbine governor,” Energy Conversion and Management,

vol. 52, no. 4, pp. 1763–1770, 2011.

[33] J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with particles having

quantum behavior,” in Proceedings of the 2004 congress on evolutionary computation

(IEEE Cat. No. 04TH8753), vol. 1. IEEE, 2004, pp. 325–331.

[34] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[35] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate

cortex,” The Journal of physiology, vol. 148, no. 3, p. 574, 1959.

[36] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual pattern

recognition,” Neural networks, vol. 1, no. 2, pp. 119–130, 1988.

Information Technology Engineer 88 Graduation Project

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[38] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C.

Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from alexnet: A

comprehensive survey on deep learning approaches,” arXiv preprint arXiv:1803.01164,

2018.

[39] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep learn-

ing for hyperspectral image classification: An overview,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 57, no. 9, pp. 6690–6709, 2019.

[40] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep

learning for generic object detection: A survey,” International journal of computer

vision, vol. 128, no. 2, pp. 261–318, 2020.

[41] G. Guo and N. Zhang, “A survey on deep learning based face recognition,” Computer

vision and image understanding, vol. 189, p. 102805, 2019.

[42] K. Anilkumar, V. Manoj, and T. Sagi, “A survey on image segmentation of blood

and bone marrow smear images with emphasis to automated detection of leukemia,”

Biocybernetics and Biomedical Engineering, vol. 40, no. 4, pp. 1406–1420, 2020.

[43] R. Moradi, R. Berangi, and B. Minaei, “A survey of regularization strategies for deep

models,” Artificial Intelligence Review, vol. 53, no. 6, pp. 3947–3986, 2020.

[44] G. Pandey and U. Ghanekar, “Classification of priors and regularization techniques

appurtenant to single image super-resolution,” The Visual Computer, vol. 36, no. 6,

pp. 1291–1304, 2020.

[45] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. San-

tamaŕıa, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning: Con-

cepts, cnn architectures, challenges, applications, future directions,” Journal of big

Data, vol. 8, no. 1, pp. 1–74, 2021.

Information Technology Engineer 89 Graduation Project

[46] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[47] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the

trade. Springer, 2012, pp. 421–436.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[49] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale opti-

mization,” Mathematical programming, vol. 45, no. 1, pp. 503–528, 1989.

[50] R. Balamurugan, A. Natarajan, and K. Premalatha, “Stellar-mass black hole optimiza-

tion for biclustering microarray gene expression data,” Applied Artificial Intelligence,

vol. 29, no. 4, pp. 353–381, 2015.

[51] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on meta-

heuristics for stochastic combinatorial optimization,” Natural Computing, vol. 8, no. 2,

pp. 239–287, 2009.

[52] J. Zhao, J. Sun, and W. Xu, “A binary quantum-behaved particle swarm optimization

algorithm with cooperative approach,” International Journal of Computer Science

Issues (IJCSI), vol. 10, no. 1, p. 112, 2013.

[53] X. Peng, L. Li, and F.-Y. Wang, “Accelerating minibatch stochastic gradient descent

using typicality sampling,” IEEE transactions on neural networks and learning sys-

tems, vol. 31, no. 11, pp. 4649–4659, 2019.

[54] D. Chang, S. Sun, and C. Zhang, “An accelerated linearly convergent stochastic l-

bfgs algorithm,” IEEE transactions on neural networks and learning systems, vol. 30,

no. 11, pp. 3338–3346, 2019.

[55] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, “Deep learning on image

denoising: An overview,” Neural Networks, vol. 131, pp. 251–275, 2020.

Information Technology Engineer 90 Graduation Project

[56] H. M. Balaha, M. H. Balaha, and H. A. Ali, “Hybrid covid-19 segmentation and

recognition framework (hmb-hcf) using deep learning and genetic algorithms,” Artifi-

cial Intelligence in Medicine, vol. 119, p. 102156, 2021.

[57] M. Borhani, “Multi-label log-loss function using l-bfgs for document categorization,”

Engineering Applications of Artificial Intelligence, vol. 91, p. 103623, 2020.

[58] J. Rafati and R. F. Marcia, “Improving l-bfgs initialization for trust-region methods

in deep learning,” in 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA). IEEE, 2018, pp. 501–508.

[59] R. K. Kennedy, T. M. Khoshgoftaar, F. Villanustre, and T. Humphrey, “A parallel and

distributed stochastic gradient descent implementation using commodity clusters,”

Journal of Big Data, vol. 6, no. 1, pp. 1–23, 2019.

[60] F. Cheng and H. Shen, “An improved recurrent neural network for radio propaga-

tion loss prediction,” in 2010 International Conference on Intelligent Computation

Technology and Automation, vol. 1. IEEE, 2010, pp. 579–582.

[61] H.-B. Ly, M. H. Nguyen, and B. T. Pham, “Metaheuristic optimization of levenberg–

marquardt-based artificial neural network using particle swarm optimization for pre-

diction of foamed concrete compressive strength,” Neural Computing and Applications,

vol. 33, no. 24, pp. 17 331–17 351, 2021.

[62] R. C. Green II, L. Wang, and M. Alam, “Training neural networks using central

force optimization and particle swarm optimization: insights and comparisons,” Expert

Systems with Applications, vol. 39, no. 1, pp. 555–563, 2012.

[63] M. Chanda and M. Biswas, “Plant disease identification and classification using back-

propagation neural network with particle swarm optimization,” in 2019 3rd Interna-

tional Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2019,

pp. 1029–1036.

[64] F. E. F. Junior and G. G. Yen, “Particle swarm optimization of deep neural networks

architectures for image classification,” Swarm and Evolutionary Computation, vol. 49,

pp. 62–74, 2019.

Information Technology Engineer 91 Graduation Project

[65] M. G. Abdolrasol, R. Mohamed, M. A. Hannan, A. Q. Al-Shetwi, M. Mansor, and

F. Blaabjerg, “Artificial neural network based particle swarm optimization for micro-

grid optimal energy scheduling,” IEEE Transactions on Power Electronics, vol. 36,

no. 11, pp. 12 151–12 157, 2021.

[66] R. Ma, Y. Liu, X. Lin, and Z. Wang, “Network anomaly detection using rbf neural

network with hybrid qpso,” in 2008 IEEE International Conference on Networking,

Sensing and Control. IEEE, 2008, pp. 1284–1287.

[67] Y. Fu-guang and Z. Xian-xin, “An improved qdpso training hypersphere one class sup-

port vector machine,” in 2011 6th IEEE Joint International Information Technology

and Artificial Intelligence Conference, vol. 1. IEEE, 2011, pp. 396–400.

[68] Y. Li, J. Xiao, Y. Chen, and L. Jiao, “Evolving deep convolutional neural networks

by quantum behaved particle swarm optimization with binary encoding for image

classification,” Neurocomputing, vol. 362, pp. 156–165, 2019.

[69] Z.-k. Feng, W.-j. Niu, Z.-y. Tang, Z.-q. Jiang, Y. Xu, Y. Liu, and H.-r. Zhang,

“Monthly runoff time series prediction by variational mode decomposition and support

vector machine based on quantum-behaved particle swarm optimization,” Journal of

Hydrology, vol. 583, p. 124627, 2020.

[70] R. Concepcion, E. Dadios, J. Alejandrino, C. H. Mendigoria, H. Aquino, and O. J. Ala-

jas, “Diseased surface assessment of maize cercospora leaf spot using hybrid gaussian

quantum-behaved particle swarm and recurrent neural network,” in 2021 IEEE In-

ternational IOT, Electronics and Mechatronics Conference (IEMTRONICS). IEEE,

2021, pp. 1–6.

[71] A. Gbeminiyi, “Multi-class weather dataset for image classification,” Mendeley Data,

2018.

[72] D. Ping Tian et al., “A review on image feature extraction and representation tech-

niques,” International Journal of Multimedia and Ubiquitous Engineering, vol. 8, no. 4,

pp. 385–396, 2013.

Information Technology Engineer 92 Graduation Project

[73] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE transactions on

information theory, vol. 8, no. 2, pp. 179–187, 1962.

[74] R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings of the

IEEE, vol. 67, no. 5, pp. 786–804, 1979.

[75] S. Lalwani, H. Sharma, S. C. Satapathy, K. Deep, and J. C. Bansal, “A survey on

parallel particle swarm optimization algorithms,” Arabian Journal for Science and

Engineering, vol. 44, no. 4, pp. 2899–2923, 2019.

Information Technology Engineer 93 Graduation Project

	=Dedication
	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Artificial Neural Network
	Functionality
	Activation Functions
	Regularization

	Backpropagation
	Loss Function

	Optimizers
	Gradient-based Optimizers
	Metaheuristic-based Optimizers

	State of the Art
	Gradient-based Optimizers
	Stochastic Gradient Descent
	Adaptive Moment Estimation
	Limite-memory BFGS

	Metaheuristic-based Optimizers
	Particle Swarm Optimization
	Quantum-behaved Delta Particle Swarm Optimization

	Methodology
	Phases of Problem Solving
	Description of the Problem
	Analysis of the Problem
	Algorithm Design
	Implementation
	Testing

	Model Proposal
	Multi-Layer Perceptron
	Fitness Function
	Optimizer

	Experimental Setup
	Benchmark Datasets
	Image Classification Dataset
	Environment Setup

	Results and Discussion
	Performance of Benchmark Dataset
	The result of the metaheuristic-based optimizers
	The result of the gradient-based optimizers
	The result of the metaheuristic-based and gradient-based optimizers
	The metrics of the metaheuristic-based optimizers
	The metrics of the gradient-based optimizers
	The metrics of the metaheuristic-based and gradient-based optimizers
	Confusion Matrix and Loss Cost Curve
	Discussion of Benchmark Performance

	Performance of Dimensions Reduction
	Iris Dataset
	Breast Cancer Dataset
	Discussion of Dimension Reduction

	Performance of Classes and Samples
	The loss curves of classes and samples
	Discussion of Increasing Classes and Samples

	Performance of Image Classification
	The result of the metaheuristic-based optimizers
	The result of the gradient-based optimizers
	The result of the metaheuristic-based and gradient-based optimizers
	The metrics of the metaheuristic-based optimizers
	The metrics of the gradient-based optimizers
	The metrics of the metaheuristic-based and gradient-based optimizers
	Confusion Matrix and Loss Cost Curve
	Discussion of Image Classification

	Conclusions
	Conclusions
	Recommendations
	Future Works

	Bibliography

		2023-01-29T13:22:59-0500

		2023-01-29T13:24:40-0500

