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Resumen

Hoy la tecnología se ha convertido en un factor esencial en diferentes
campos de la ciencia. El proceso de automatización requiere un alto nivel
de precisión para que sus resultados sean sobresalientes en comparación
con el control manual. Dispositivos como Arduino han despertado el
interés de muchos investigadores, ya que facilitan tareas que van desde las
más complejas a las específicas, como detectores de sonido, sensores de
movimiento, hasta transformar una casa inteligente. Por otro lado, la
inteligencia artificial se ha convertido en un potencial importante en la
investigación ya que imita la capacidad del ser humano. Este proyecto se
centra en combinar la inteligencia artificial y el microcontrolador Arduino
construyendo un sistema de control remoto para un brazo robótico que
opere en procesos críticos como el manejo seguro de maquinaria a gran
escala. Para la comunicación de estos dispositivos se utilizó módulos como
Wi-Fi 2.5GHz debido a su bajo costo. El aprendizaje por refuerzo (RL)
establece al brazo robótico como un agente para explorar sus posibles
movimientos y replicarlos para que su movimiento sea suave mientras se
mantiene el equilibrio. El propósito de este proyecto es mejorar la
seguridad operativa ya que se ven afectados por interferencias y ruidos.
Finalmente, se compararon los resultados al ejecutar dichas tareas con
trabajo manual y así determinar su eficiencia.

Palabras Clave: Inteligencia artificial, Aprendizaje por Refuerzo, Arduino,
Conexión Inalámbrica.



Abstract

Today technology has become an essential factor in different fields of
science. The automation process requires a high level of precision, so its
results are outstanding compared to manual control. Devices like Arduino
have piqued the interest of many researchers, as they facilitate tasks
ranging from complex to specific ones, such as sound detectors, and motion
sensors, to transforming an intelligent house. On the other hand, artificial
intelligence has become an essential potential in research since it imitates
the capacity of human beings. This project focuses on combining artificial
intelligence and Arduino microcontroller to build a remote control system
for a robotic arm that operates in potential critical pro- cesses such as
large-scale machinery that has to be handled safely. 2.5GHz Wi-Fi modules
were used to communicate these devices due to their low cost.
Reinforcement Learning (RL) establishes the robotic arm as an agent for
exploring their possible movements and replicating them to smooth their
movement while maintaining a complex trajectory. This project aims to
improve the operational safety of devices with several degrees of freedom
that are affected by interference and noise. Finally, the results will be
compared when executing such tasks with manual work and thus determine
their efficiency.

Key Words: Artificial intelligence, Reinforcement Learning, Arduino,
Wireless connection.
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Chapter 1

Introduction

1.1 Background
There exists a great interest in the industry to improve handling of remote objects. There
are fields such as medicine, electronics, robotics, etc, that needs a precise handling. For
example, in medicine the using of a scalpel requires a crucial handling for any medical op-
eration. In robotics, simulating an arm or a hand in a robot drastically depends on correct
handling for best results. Therefore using Artificial Intelligence (AI) plays a big role in
modern robotics, especially the biological oriented models, based upon Artificial Neural
Networks (ANN) and self-taught agents [3] robots can perform tasks autonomously, but
not only in terms of the action itself, but also to be able to make decisions about what
to do in a given work environment under pre-established parameters. AI can accelerate
processes to achieve perfection in production, since they are much more than just machines
that perform the most arduous, boring or dangerous tasks.

This project aims to develop a device able to handle distant objects using radio com-
munication integrated with AI making its decisions for accurate results. The combination
of these fields creates a tremendous interest for scientists. Since the learning of a robotic
and the interaction with the real world depends on past events, it helps to predict future
movements. Nowadays, many games use AI because an AI player represents the human
response, which has accumulated knowledge based on past events. Games such as Chess,
Go, or Tic-Tac-Toe has been highly studied for creating learning algorithms [4]. Since
these games have many possibilities, a perfect method must be crucial to optimize all the
possible movements to get a victory.

Tic-Tac-Toe is a game played on three-in-a-row boards that can be traced back to an-
cient Egypt [5]. It consists of two players, X and O, who mark the spaces in a 3×3 grid.
The winner is who places his/her marks in a horizontal, vertical, or diagonal row. Game
playing agent could be used for a general learning strategy; this agent is an explorer to
search for a possible sequence of moves that lead toward capturing rewards. These rewards
depend if the agent winning the game. When a process depends on a sequence of moves dis-
tributed in discrete-time n, wherein each move a partial reward r(n) is captured, its overall

1
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optimization is defined by the Bellman equation, which establishes the mathematical foun-
dation of Reinforcement learning and Q-learning [6]. Reinforcement learning is based on
an agent repeatedly interacting with the environment and learning rewards resulting from
a good and poor decisions. It takes on a problem defined by the Markov decision process [7].

In the real world, humans discover by themselves apertures or movements to obtain
a better result which implies better reward. For example, in chess, players can predict
movements to obtain a win. They develop the capacity to look to the future. Therefore,
the Bellman equation establishes that the optimization of control to obtain a maximal re-
ward in a sequential chain of state-decision is solved by a summation of immediate events
and events in the future. This process involves a self-taught, reinforcement learning neural
agent to develop a player that can explore all the possible movements for winning and get-
ting the process to get the maximal reward in the sequence states. As mentioned, creating
a device that can manipulate or handle objects implies a perfect reaction. Implement a
joystick module that can control itself is the principal objective of this project.

The joystick modules are mentioned in the project’s topic but need to be fully covered.
Since the project progressed, it focused on reinforcement learning and constructing the
reward and Q matrix. First, it is essential to clarify that the joystick module work. The
joysticks control the robot wirelessly, which is explained later in the methodology. The idea
was to drive the robot and create a noisy environment so that the connectivity between the
radio frequency modules loses communication data and not be able to control the joystick
modules. That is when the robot can continue the complex sequence until reaching its
destination objective. But for time reasons, the results achieved were obtaining the Q
matrix and auto-filling the R matrix.

1.2 Problem statement
Lately, the development of automated systems capable of performing rigorous operations
has benefited many work areas. Many of these jobs required personnel maintaining con-
stant control of the machinery to avoid possible failures. An automated system can reduce
human intervention to specific jobs; hardware and software work together to replicate a
person’s work in the most similar or even better way [8].

Kinesthetic teaching manually moves a robot as a person intervenes to record future
movements. This type of learning is generally effective in small robots due to various
factors such as weight, balance, etcetera. However, with large-scale robots, the result is
inadequate [7]. Although many autonomous systems can multi-tasking, they may still need
to replace human tasks. Because there are certain circumstances, such as the environment
in which said machinery is exposed. These can disable proper function and give unexpected
results. That is why reinforcement learning is a method that is based on trying to replicate
a particular task through failure and error. Since it is managed by agents who can learn
the sequence of steps through negative and positive rewards, once trained, it will be able
to find the right path with efficient results [6].

Information Technology Engineer 2 Graduation Project
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This project features a robotic arm driven by a reinforcement learning agent. The arm
comprises five servomotors, four of which are related to the robot’s degrees of freedom.
The goal is to remotely move the arm in a complex way, from one point to another, by
using a simple joystick. During training, the agent explores possible positions or states and
uses its sensor to capture rewards and punishment. The agent must learn by exploration
and rewards capturing how to move along a complex trajectory that represents a straight
line along a rigid wire. Though accomplish this trajectory, the 6DOF has to be changed
simultaneously and coordinately, which is the task that the agent must learn. By using
its physical sensors and exploration, the robot can fill the reward matrix R and then use
this information and the Bellman equation to find a matrix Q that represents an optimal
policy in terms of state-decision.

The idea of a robot learning to perform a specific task without explicitly telling it
what to do is a hot topic in contemporary robotics [9]. Mapping the steps or replicating
sequences from sensors to actuators can be highly computationally costly since the pro-
grammers must create the robot’s operation step by step. Debugging these programs can
be a tedious task for programmers. Then creating an agent learns intuitively to obtain
suitable results [10].

To solve robotic´s problems is essential to talk about sensors. These can receive oper-
ational and functional data to transmit all collected information to a control unit such as
a microcontroller. Combining these two tools makes it possible to create a complex device
capable of performing rigorous tasks based on the environment. In some cases, AI can
perform better than human behavior.

1.3 Objectives

1.3.1 General Objective
• Create a robot arm capable of learning automatically through reinforcement learning.

1.3.2 Specific Objectives
• Design a robotic arm with servomotors.

• Implement an algorithm capable of moving the arm with joysticks and a wireless
connection in Arduino Uno.

• Study the Q-learning technique and its adaptability to real world environments.

• Demonstrate that the arm can learn by itself to move in a complex trajectory and
then move in this trajectory following an external command.

• Create a system of rewards and punishment based on external Arduino sensors so
that the robot learns to move by itself using a RL agent.

Information Technology Engineer 3 Graduation Project
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1.4 Contributions
This research aims to develop an AI in an microcontroller that senses its surroundings
through sensors and responds to natural changes. Some problems will be tackled in the
development of the project, and the essential contributions will be solved, as defined in the
following paragraph: the implementation of AI through the application and adaptation of
learning techniques to produce an optimal solution to the problem. Performance is often
achieved with the aid of standard libraries and the use of existing functions, reducing the
complexity of the code, helping to concentrate on the primary purpose, and reducing the
complexity for interested developers and researchers to understand and evaluate the steps
of the software.

The contributions of this project are to develop a relatively complex environment for a
robot. Furthermore, agent scanning facilitates filling the reward matrix since this matrix
is filled dynamically in many cases. As a result, the agent can find rewards corresponding
to his actions. Another contribution is an efficient algorithm for reinforcement learning in
state action. This project opens the door to self-learning in robots.
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Chapter 2

Technical Framework

2.1 Microcontroller
A microcontroller is a small computer made up of a single chip whose primary function is
to control integrated computers. Many of those have integrated circuits that are necessary
to perform their task [11]. A microcontroller is equipped with a CPU, a memory system, an
input/output system, a clock or timing system, and a bus system to interconnect systems.
They are commonly used on Arduino boards and have three types of memory. Static
Random Access Memory (SRAM) is usually used for local variables. The Electrically
Erasable Programmable Read-Only Memory (EEPROM) is the memory space to save
values after the board is turned off. The program or sketch is stored in the Flash memory,
which is a non-volatile memory [1].

Figure 2.1: Microcontroller block diagram [1]
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2.2 Arduino
The Arduino boards are electronic boards based on microcontrollers. It is an open-source
code that can be easily programmed, erased, and reprogrammed at any time. It is similar
to a mini-computer. The board allows the development of a wide range of projects due
to electronics devices[12]. Based on the Atmega328 microcontroller (datasheet), Arduino
Uno provides specific characteristics such as fourteen input and output pins. Six of these
pins are used for performance, and the other six for simple information. It has a 16 MHz
clay resonator, a power connector, and a reset button. Its storage is 32kb in flash memory,
2kb in RAM, and 1kb in EEPROM. Its programming language is high-level, like C++ or
C [13].

2.3 HC-SR04 Ultrasonic Distance Sensor
The HC-SR04 sensor is a low-cost distance sensor that uses ultrasound to determine the
distance of an object in a range of 2 to 450 cm. The HC-SR04 sensor has two transducers: a
piezoelectric transmitter and a receiver, as well as the electronics necessary for its operation.
The operation of the sensor is as follows: the piezoelectric emitter emits 8 ultrasound pulses
(40KHz) after receiving the command on the TRIG pin, the sound waves travel in the air
and bounce when encountering an object, the piezoelectric receiver detects the bouncing
sound, then the ECHO pin changes to High (5V) for a time equal to the time it took for
the wave since it was emitted until it was detected. The microcontroller measures the time
of the ECO pulse, and the distance can be calculated to the object [14].

Figure 2.2: Ultrasonic Distance Sensor

2.4 Servomotor
A servomotor is an electronic motor designed for the movement of gears. It comprises three
pins: power supply, ground (GND), and signal. It has metal gears for better performance
and more strength than other classic servomotors such as Sg90. It produces a rotation shift
from 0 degrees to 180 degrees. The MG90S servomotor has a torque of 2.20 Kg and a speed
of 0.1 seconds at 60 degrees at 4.8V of power supply [15]. These servos are very important
for handling small-scale robotics due to their incredible ease of operation. Among some
advantages, they can work at high speeds if the appropriate weight is placed and constantly
work at the same pace.
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2.5 nrF24L01 Transceiver
This device allows wirelessly establishing connections that send sensor data, controlling
robot data, home automation, and various projects in real time. Its radio frequency works
in the 2.4 GHz worldwide ISM frequency band and uses GFSK modulation for data trans-
mission. The data transfer rate can be one of 250kbps, 1Mbps, and 2Mbps.

The module operates at 3.3 V as a power supply. The range of addresses that can work
is 125. An advantage is that it can connect to up to six other modules, making it possible
to have multiple wireless units communicating with each other in a particular area. Some
modules work with duck antennas, and RFX2401C chip, which improve the communication
range up to 1000m [16].

Figure 2.3: nrF24L01 Transceiver

2.6 Joystick Module
A joystick module is an electronic device that allows you to control 2 x axis y axis directions
because it has 2 independent potentiometers. This module has 5 pins which are voltage pin
(Vcc), ground pin (GND), x axis pin (VRX), y axis pin (VRY) and a push button (SW).
Some characteristics of this module is its self-central positioning, its light weight and it is
compatible with many microcontrollers and various Arduino models[17]

Technical Specifications:

• Operating Voltage: 5V

• Internal Potentiometer value: 10k

• 2.54mm pin interface leads

• Dimensions: 1.57 in x 1.02 in x 1.26 in (4.0 cm x 2.6 cm x 3.2 cm)

• Operating temperature: 0 to 70 °C
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2.7 Electrical Power Supply
Arduino boards need electric power to work like batteries, USB cable, AC adapter, or
power supplies. USB port provides 5V DC, it can be a source from PC. AC sockets are
used for Arduino which need 7 to 12V [18]. Battery sockets for batteries that supply 3.7 V.
VIN is another way to supply, it has to be connected to VIN pin correctly. In this project,
2 types or power supplies are used, one is USB port for Arduino functionality, joystick,
modules radio frequency and the second is a switching power supply for all servo motors.
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Chapter 3

Theoretical Framework

3.1 Reinforcement Learning (RL)
Reinforcement learning is a machine learning technique that uses an agent capable of in-
teracting with the environment. It performs its task through actions and observations to
obtain a better result. It uses a feedback of its errors[19].

This algorithm does not need labeled data or monitoring as it is characterized by trial
and error machine learning. Rewards give their primary function in response to their
actions [20]. Reinforcement learning has been successfully applied to solving the reaching
task with robotic arms. Reinforcement learning has shown great promise in robotics thanks
to its ability to develop efficient robotic control procedures through self-training.

Figure 3.1: Generalized Reinforcement Learning scheme

3.1.1 Agent
An agent is an autonomous program capable of interacting with the environment. It
determines the current state and analyzes the next move based on an action. The agent’s
main objective is to make the best decision through repetitive learning from its mistakes.
The observed data is based on sensors excluding external problems that cannot be captured
by signals [21]. The agent will increase its rewards based on several episodes of evading
states not desired.

9
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3.1.2 Reward
The agent’s goal is to move so that it chooses the best path without making a mistake.
Every decision it makes will be rewarded. These rewards (Rt) could be negative or penalty
if the new state is not the desired one, positive if its movement approaches the determined
goal. Agent’s mission is to maximize a real-valued reward signal [22]. Accordingly, the
reward is the main factor for updating the policy, defining an event’s good or bad.

Figure 3.2: Reward based on its action [2]

3.1.3 Environment
The environment is the world where the agent is involved. An agent can explore its
environment through movements determined by actions [23]. When the agent acts, it will
receive a new state of the environment. One example to represent this idea is Mario, a
Nintendo game, where Mario is the agent and the environment is the world. Every action
he takes will involve rendering new frames as the new state.

3.1.4 State
The state (S) describes the current situation. For a robot, it could be the exact position
of its two legs. For a vehicle to learn the best way, its state would be the exact position
where it is located. Each state is within the state space, which is responsible for storing
all the possible situations the agent can do. That is why the state must contain relevant
information for the agent to choose the best move [24].

St = f(Ht)

Where S is obtained by a function of H. H is defined by the whole process.
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3.1.5 Policy
A policy defines the action the agent should choose when in a given situation. A policy is
what an agent can do in each state. RL tries to determine the optimal control policy that
can be used as a strategy to optimize a criterion in specific processes [22].
The policies can be deterministic

a = π(s)
or stochastic

π(a|s) = P [A = a|S = s]
In real or virtual world scenarios, to avoid predictable and linear results, the policy

provides based on the probability of possible actions since the decisions are the purpose
of working with probabilities. Encouraging the agent to start a random exploration will
improve the behavior and give rewards.

3.1.6 Value Function
vπ(s) = Et[Rt + γRt+1 + γ2Rt+2 + ...|St = s]

3.1.7 Model
Although a model is not the same as the environment, it can estimate or forecast what the
environment will do next. The model aids in the development of a strategy for achieving
a mission. P predicts the next state in the model, while R predicts the next reward [23].

P a
ss′ = P [St+1 = s′|St = s, At = a

Ra
s = E[Rt+1|St = s, At = a

3.2 Model-based
A Model-Based(MB) is a convenient option for maximizing functionality in various prob-
lems, such as complex control systems, to solve a complex task through abstraction, as
Kramer said [25].

3.3 Model-free
In contrast to MB, a Model-Free(MF) approach avoids constructing a model and instead
learns directly from experiences with the environment [26], without prior guidance or
knowledge about the problem.
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3.4 Exploration Exploitation
The learning process is more complex than it seems in the real world. RL process is based
on trial and error; exploring the environment could be carried out in detail. However, it
will not learn or explore new possibilities, interfering with discovering an optimal policy. A
random scan can carry out the problem. To select an action, the agent chooses a random
option. This random exploration method allows us to discover its environment to obtain
the best reward. The goal is for the agent to be confident in his movements due to his
repetitions. The exploration involves finding more information about the environment; the
exploitation exploits the known information maximizing the reward.

3.5 Markov Process
Most of the problems related to the exploration of the environments using a robot can
be solved by Markov Decision Process (MDP). Markov establishes that a current state
State (S) contains all useful information from history. This equation implicates that the
future is independent of the past given the present actions [27]. The probability of the
following state is conditioned by the current state, which contains all relevant information
from history.

P [St+1|St] = P [St+1|S1, ..., St]

3.5.1 State Transition
The state transition probability is defined by where s is the current state and s’ is the
successor

Pss′ = P [St+1 = s′|St = s]
Meanwhile Matrix P is the transition probabilities from every state to every successor
states.

P = from

P11 ... P1n
... ... ...
Pn1 ... Pnn


3.5.2 Bellman Equation
The Bellman equation is an equation used for many Reinforcement Learning algorithms.
The value function is decomposed into two pieces by the Bellman equation: immediate
reward and discounted future values [28].

Q(s, a) = r + γmaxa′Q(s′, a′)

3.6 R-Matrix
The R-matrix is a table that contains the rewards for all possible states and all possible
actions. This information is the combination of possible movements in the environment.
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Every decision an agent makes will have a reward; it could be a punishment or a positive
reward. The following problem describes the R-matrix in a simple way [29].

Suppose there are five rooms in a building; each room is connected by a door to another
room, as we can observe in the graph. There is an agent in any room, and its goal is to
move to room five (outside room). Some rooms only have one door to enter another room.
Rewards will be assigned based on your decisions, and these values will be put on the
matrix. If there is no connection between the two rooms, the reward will be -1. If the
rooms are connected, the reward will be 0; finally, the rooms connected to room five will
be assigned 100 as a reward.

Figure 3.3: Reward Matrix and Graph Problem

3.7 Q-learning
It is off-policy learning of action values Q(s, a). It selects the next action, which is chosen
using behavior policy. However, it is considered an alternative successor. Then Q(St, At)
is updated towards the value of alternative action. Where γ and α are hyperparameters.

Q(S,A)← Q(S,A) + α(R + γmaxQ(S ′, a′)−Q(StA))
The Q-Learning algorithm is described in Algorithm 1

3.7.1 Q-Matrix
The Q-matrix is a look-up table that helps to store and calculate the maximum expected
future reward an agent will get given the pair Action and State. Columns are the possible
actions, and rows are the possible states for Q-table [30]. The table will be updated.
Its values will increase or decrease iterative during the Q-learning process. Figure 3.4
summarizes the information flow in the Q-table during the Q-learning. The inputs are
States and Actions to produce a Q-value to continue updating the table.
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Algorithm 1: Fill R matrix
1 Set the gamma parameter, and environment rewards in matrix R;
2 Initialize matrix Q to zero;
3 for each episode: do
4 Select a random initial state;
5 while the goal state hasn’t been reached do
6 Select one among all possible actions for the current state.
7 Using this possible action, consider going to the next state
8 Get maximum Q value for this next state based on all possible actions
9 Compute: Q(state, action) = R(state, action) + Gamma * Max[Q(next

state, all actions)]
10 Set the next state as the current state

11 End

Figure 3.4: Q-table representation
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Chapter 4

State of the Art

This section will evaluate and review the related work to this project. There is an overview
of a robotic arm that is digitally simulated for the training process with Unity and Ten-
sorflow.

The work in ”A robot arm digital twin utilising reinforcement learning” [31] provides
a simulation of a robot arm that will learn in a virtual environment. The authors use the
previous training, and they will replicate it in a physical environment. The simulation is
made in Unity. The primary purpose of this paper is to create a method that teaches a
digital twin to learn in a virtual environment with the necessary architecture and learning
protocols.

The authors use the game engine Unity to simulate their robotic arm since Unity al-
lows them to use a machine learning toolkit to create a training agent that interacts with
the virtual environment called agents [32]. Unity does not compute or run the neural
network training. All the data is sent to Tensorflow, which controls the training process.
The authors use a Python API which handles the robot’s action decisions and collects all
observations from its environment.

For the design of the robot, its components are printed on a 3D machine. In this case,
the authors use three stepper motors; these are NEMA23, NEMA17, and NEMA14 which
are supplied to 24V. Arduino boards with an external driver handle the movements of
each one. It has a camera as a sensor. Creating an agent involves reinforcement learning;
the agent’s interaction with the virtual environment is based on movements. The set of
states and actions are required to create the Q-table [33]. Markov reward procedures and
a discount factor obtain the results. For each state at a given step, the value to be updated
will be the sum of its future rewards given to policy. Once the agent collects the rewards,
his last process will be to collect the maximum rewards in the fewest steps.

For the experimental setup, the authors pose the virtual robot with six platforms around
it. Unity ml-agent helps to detect objects for the training phase. The agent’s task is to move
a piece of a specific color to the open position. The new position is limited by the number
of angles each servo can move. For simulating the camera, a virtual ray is used to perceive
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the objects within their environment. All of these features serve as input parameters for
training. The results obtained during training suggest that each step is treated in an
extolled way. It helps in the intuition process. The combination of virtual simulation
with the real environment was necessary for the robot arm to learn a specific task. For
future implementation, the authors suggest creating a system that allows carrying out
complex tasks, increasing the number of objects in the environment. In addition, handling
hyperparameters more rigorously would bring better results.
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Chapter 5

Methodology

This project proposes a system based on a robotic arm, which learns by Q-learning the
sequence of movement from an initial point to another desired point, following a complex
trajectory that resembles a straight line. To achieve this goal, the robot has to learn to
move its four degrees of freedom in a coordinated way, just as a human learns to coordinate
their hand muscle to write words.

This prototype is based on three essential points: a detailed description of the trans-
mitting device that involves the joystick, a description of the receiving device that involves
the robotic arm with its environment, and a description of the training process.

Figure 5.1: A full view of prototype

5.1 Phases of Problem Solving

5.1.1 Description of the Problem
The structure of the arm is designed by the servomotors, which control its movements
or device A. Two joysticks control the servomotors’ movements, which are constructed in
device B. The management of the arm could be abrupt since the joysticks modules send
a position based on their analog reading. Therefore, moving from the initial position to
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another could be challenging to operate. Using a Q-learning method could solve the route
for a complex situation.

The arm route has to be previously trained for a method involving rewards and punish-
ments. All this information is obtained by interacting with the arm and its environment.
This environment consists of the movement of a metal ring that surrounds a metal wire.
An ultrasonic sensor measures the distance to the right corner. The figure below shows the
environment for the training process. First, the agent has to obtain a reward or punish-
ment based on its movements. The arm holds the metal ring and moves it from one point
to another. If the metallic ring touches the metal wire, a closed circuit is produced, and
the agent will be punished for its action. Meanwhile, if the distance to the sonic sensor is
reduced and sensed, the agent obtains a positive reward for its good action. The process
repeats until Q-matrix is filled with a near-optimal policy. One of the big problems is
filling the reward matrix. In many cases, the reward matrix is filled manually. However,
this process becomes problematic when the number of states and actions increases immea-
surably. This project proposes an algorithm that automatically explores the environment
and obtains the rewards values.

Figure 5.2: Simplified environment design

5.1.2 Analysis of the Problem
One of the big problems in the prototype is the unexpected movements generated by
connecting the radio frequency modules. Because the code establishes a connection between
them, it continuously reads the data sent by the other module. Another problem in the
prototype is the unexpected cases that can cause the real environment surrounding them.
Since the training process requires repetitions, there may be failures in the movement of
the arm, such as cable disconnect, interference between modules, or an unexpected move
of a servomotor.

5.1.3 Implementation
The development of this prototype was divided into several stages: the design of the robotic
arm and assembling, the circuit for the connection between two modules and controlling

Information Technology Engineer 18 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

the robot by joystick modules using Arduino, and finally implementation of the learning
code by reinforcement.

Design of Robot Arm

The arm’s design was based on a general model of six degrees of freedom representing the
servomotors’ movements and one extra for the gripper. A 3D printer created each part of
the arm. The material is made of filament PLA, polylactic acid, which is a thermoplastic.
Once all the pieces are printed, the following step is assembling the arm. Four servomotors
were used for the movements. Three of them were MG95 servomotors because this servo-
motor model has more strength and torque. And two of the rest were sg90 servomotor.
Each servomotor is powered by a power supply that provides 5v, able to move everything
without a problem. Once the servomotors are assembled with the printed parts, the arm
is ready to be connected to Arduino.

Figure 5.3: Robot Arm

Connection and Controlling

Two joystick modules are used to control the arm. Each one handles two servomotors be-
cause the joystick handles the X and Y axes. For the gripper handling, one button opens
the gripper, and the other button closes it. This control is managed by wireless communi-
cation between the two Arduino boards, for which two NRF24L01 transfer modules were
used shown in Figure 5.4. The values read by the joystick were captured and sent to the
other module for their respective movement.
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Figure 5.4: Connection for 2 nrf24l01 modules

Learning process in Arduino

This section describes the development of the algorithm that controls agent learning. The
arm is considered an agent. The agent is initialized in a starting position or position 0.
Filling the R-matrix, the possible number of decisions is analyzed, and each servomotor
can take three actions: to move left, right, or not. The states are the combination of four
servos, which results in the length of rows in the R matrix. This calculation is explained
below. Servo.h library controls the movements of all servos. For the reward matrix, the
states are explored. A negative reward is obtained if it touches the wire, and a positive
reward if it approaches the goal distance. Figure 5.5 shows the learning process flowchart
in a brief way. The creation of the reward matrix depends on its rows representing the
states, and the columns are the actions. The values are updated based on the sensors
which assign the rewards. The states are calculated by combining the four servomotors
representing S1 for the base, S2 for the shoulder, S3 for the elbow, and S4 for the wrist.

• S1 has positions from 0 to 180, where each value corresponds to a degree. The
minimum step is 1; S1 can assume 180 different states.

• S2 has positions between 40 to 100; the minimum step is 1; therefore, it can assume
60 different states.

• S3 has positions between 40 to 100, with 60 usable states.

• Finally, the S4 has limited positions between 50 to 80, with 30 possible states.

The combination of 180x60x60x30 results in a total of 19440000 possible states that are
the rows in the R matrix. This number is huge to be processed. The proposed solution
is to reduce the states to demonstrate the self-learning agent’s exploration principle. The
new states are represented as follows:

To construct decisions, the agent must take several actions to move to the next state.
There are many ways to implement this,each servomotor can explore its environment by
changing its axis values. In a current state, it can make three decisions: -1 if its movement
is to the left or down, 0 if there is no movement, and +1 if it is to the right or up. For the
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movement of the four servomotors, the total of possible decisions is 12. Therefore our R-
matrix dimensions are 1250 rows and 12 columns. A principal contribution of this project
is to develop an algorithm so that the robot is capable of filling the R matrix by itself using
exploration and the feedback obtained from its sensors (feedback oriented learning).

The objective of the robotic arm is to learn to move in a straight line that presents a
complex trajectory. Once we have R-matrix proceed to fill Q-matrix using the Bellman
equation, this process must use a Q-learning algorithm and sensors to control its steps in
the environment. The agent must find an optimal trajectory in real situations.
The Q matrix has the same dimension as the reward matrix. This training is evaluated in
a K number of episodes until the Q-matrix obtains confident results. The γ parameter has
a range of 0 to 1. When γ is closer to zero, the agent considers immediate rewards. If γ
is closer to one, the agent will consider future rewards with greater weight. The Q-matrix
will explore the actions without negative rewards (-1), avoiding the short circuit.

Figure 5.5: Learning process flowchart

5.2 System description
Figure 5.6 shows the whole system designed in a block diagram. It is represented by
Devices A, and Device B. Device A is controlled by an Arduino board. It is connected
to two joystick modules and one nRF24L01 module. Another Arduino controls device B.
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Figure 5.6: Block diagram prototype

It is connected to one nRF24L01 module, five servomotors representing a robotic arm, an
HC-SR04 ultrasonic sensor, a metal wire representing a close circuit, and finally, a power
supply of 5V for servomotors.

5.2.1 Task of Device A
Device A,shown in the appendix section, is responsible for collecting the information ob-
tained by reading the analog values of the joystick modules. For this, analog pins 0-3 are
used. The values obtained are between 0-1023. These values will serve to move each servo-
motor in device B. To send the values, a wireless connection must be established through
pipes with the RF24.h library. This process is in the setup function. The loop function
constantly analyzes if the connection exists. When the connection is established, it will
write the joystick data packed in a structure, and it will be sent to the other module.

5.2.2 Task of Device B
Device B,shown in the appendix section, unpacks the data previously sent from the trans-
mitter module. The process is divided into the setup function and the loop function.
SETUP function initializes the corresponding variables and opens a pipe for the wireless
connection.

In the LOOP function, there is a menu that is sent by the console to perform specific
tasks. One drives the robot through the joystick modules, so it constantly reads the data
transmitted from the other Arduino board. There is the option of training to explore the
environment and its possible states. Each action performed obtains a reward that is saved
in the reward matrix. This process involves the ultrasonic module, which captures the
distance between the module and the metal circle. It is also constantly reading the closed
circuit used for punishment in case the metal circle touches the wire. Finally, the matrix Q
is updated using the Bellman equation. These values will be saved in the EPROM memory
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Figure 5.7: Flow process of the Device A in Arduino UNO

of the Arduino.

5.3 Code Structure
The learning process is presented in the following pseudocode. The agent will be exploring
all possible states based on its action. The reward R matrix is initialized with -1 values
and the Q-matrix with zero values. Generally, a -1 value means an invalid place where
the robot should not move. These values are going to be updated by exploration in both
matrices in n episodes.

R matrix is crucial for this project because it is quite time and energy-consuming to
fill all the values of this matrix by hand by a human. The first contribution of this project
is to develop an environment and an agent by which the robot explores the environment,
uses its sensors, and fills the R matrix by itself. This opens the door for self-learning in
robots.

Since the dimension of the R matrix is relatively short, it has to explore the movement
and its action to set the rewards values and change the original -1 values, improving its
knowledge about moving into its allowed space. Here the ultrasonic sensor and the metal
wire sensor are the keys to accomplishing this learning stage. Initialize the variables, these
are initialDistance, currentDistance,goalDistance. The agent starts in a position
in the middle of the trajectory. Then the agent must make a random decision for his next
move. The sensors are constantly reading their values. If the currentDistance is greater
than the initialDistance, it will not obtain a reward, therefore 0 will be assigned to the
entry in the R matrix. If the currentDistance is less than the initialDistance, it will
obtain a reward of 1 and its initialDistance will be updated. If the agent touches the
wire it will produce a short circuit and receive a punishment or negative reward of -1.
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Figure 5.8: Flow process of the Device B in Arduino UNO

Once R matrix is filled the Q-learning begins the currentDistance, agent is set to work
by using the Bellman equation where the maximal reward of 100 is located in R position
where the arm moves close to the ultrasonic sensor, below a prefixed threshold distance-
Goal the agent obtains a reward of 100. Doing for all rows with no continuous short circuit.

Then the training randomly selects x and y positions, representing states and actions
in Q-matrix [x][y]. In the following loop process, the number of iterations is limited by the
possible steps that the agent can move. StepSelection selects the neighborhood value in the
Rm and action as an input. After this sequence, the agent has to be updated depending on
the previous move. The state variable saves the current environment, then Qm is updated
using the reward function where action and state are input parameters.

Finally, the function ReachGoalDistance is called to evaluate if the metal circle arrives
at the established distance goal. This process iterates until K episodes are done. The
output is a Q-table matrix that will be safe in EPROM memory.
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Algorithm 2: Fill R matrix
1 Initialize Rm to zero values;
2 Initialize state0,row0 position;
3 Initialize initialDistance,currentDistance,goalDistance;
4 for i = 0 to ROWS do
5 TakeRandomDecision();
6 ReadSensors();
7 if currentDistance > initialDistance then
8 Rm[i][action] = 0;

9 if currentDistance < initialDistance then
10 Rm[i][action] = 1;
11 initialDistance = currentDistance;

12 if currentDistance <= goalDistance then
13 Rm[i][action] = 100;

14 if shortCircuit() == TRUE then
15 Rm[i][action] = -1;

16 Ouput: R-table matrix
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Algorithm 3: Training Agent
1 State = Environment variables;
2 Initialize Q to zeros values;
3 RewardMatrixFill();
4 K,moves number of episodes and movements respectively;
5 for i = 0 to K do
6 x,y = Random();
7 Agent = Rm[x][y];
8 for j = 0 to moves do
9 action = takeAction();

10 stepx,stepy = StepSelection(action);
11 Agent = Rm[x+stepx][y+stepy];
12 State’ = CurrentEnviroment();
13 Q[x][y] = Reward(action,state);
14 if ReachGoalDistance() == TRUE then
15 Break;
16 else
17 Continue

18 Output: Q-table matrix
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Chapter 6

Results and Discussion

In order to obtain the best experience and results, it is important to identify the number
of iterations so that the agent can move intelligently. As an expected result, the agent can
fill the reward matrix (R-matrix) that will fill the Q-matrix. The filling R matrix takes an
average of 1250 trials. It should be noted that the number of possible states is reduced by
the wire inside the ring system, making it possible for Arduino to process the environment
and the resulting R matrix.

To fill the Q-matrix, the estimated number of episodes is around 6000. Although their
displacements are relatively short, the servos support the movements to carry out their
task. Figure 6.1 shows a small portion of the R-matrix. As we can see, there is a large
number of negative rewards (-1). The three upper servos can explain this. It depends on
a vertical movement, generating more possibility of a short circuit.

Due to the low resolution generated by sensors and local noise generated by the positions
of servos, the resultant Q-matrix is noisy. However, this matrix allows the robotic arm to
follow a good straight trajectory under simple joystick control.

Figure 6.1: R matrix reduced, rows represent states and columns are decisions

It is possible to create an environment with Arduino components such as joystick mod-
ules, radio frequency modules, modules to detect distance, and the defined short circuit.
All these components together were of great help to the 6DOF arm agent to explore a
complex environment and learn to move the robot tip following a complex trajectory that
resembles a straight line.
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The robot can fill the R matrix by itself through exploration and receiving punishment
and rewards from the environment using the appropriate algorithm.

Figure 6.2: Reduced view of Q-matrix result

After using the Bellman equation for Q-learning, the robot learns a policy that allows it
to follow a quasi-optimal path under the command of a remote joystick. Figure 6.3 shows
the behavior of the self-taught robot arm interacting with the environment. The robot
initializes its positions and moves by following the commands of one joystick, moving it in
a proper straight-line sequence.

Figure 6.3: Real-world behavior of the robot moving in a straight line

This result demonstrates that the agent can learn by itself to drive the robot so that it
follows a complex trajectory controlled by a single joystick. It is the same principle used
in self-driven cars. As future work refining the sensors and making the Q matrix bigger,
the agent can learn more complex tasks, like handling a surgical scalpel. Create the phase
training on another device, and the data captured by Arduino will be sent from the serial
port. This possibility provides excellent scope for the current project. For example, inte-
grate a camera so the robot can identify objects.
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In Figure 6.4, the cumulative reward x-axis represents the number of episodes trained,
while the y-values represent the total absolute value of each variable corresponding to the
Q table. The graph demonstrates that the agent is learning, gaining experience after each
iteration from the first to episode one hundred. Figure 6.4 plots a summary of all the
learning work. This curve shows decent overall growth, and for the last seventy iterations,
the agent has had no noticeable increase compared to previous episodes. This behavior
comes from the random aspect of the learning process.

Figure 6.4: Cumulative reward as a function of the number of episodes
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Chapter 7

Conclusions

The proposed method shows that it is possible to create an intelligent device to automate
robot tasks using artificial intelligence, especially RL. Since the reward system helps hugely
in learning.

Within this project’s scope, the results are promising even when the computation was
carried out in microcontrollers (Arduino Uno). However, in a real environment, there are
a large number of variables that can alter the expected result. Therefore, more sensors
capable of receiving information would be needed so that the agent would act based on
these variables and thus can obtain a better result.

During the progress of this project, there are several points that can be included:

• The Arduino Uno’s microcontroller can operate learning methods. However, if the
number of variables was to increase significantly, it would open up complications. A
possible solution would be to send the data from the sensors through the serial port
so that a PC can process the processing.

• The wireless connection between the Arduino allows us to send and receive data
almost in real time, demonstrating that communication in open spaces is possible.

• Reinforcement learning is an effective method for robots because agents must interact
with the environment and learn from their decisions.

• The development of an algorithm so that the robot can fill the matrix R by itself
using the exploration and the feedback obtained from its sensors. For this reason, this
method provides an optimal solution if the number of states and actions increases.

• Arduino has become a handy tool for reading signals emitted by components inte-
grated into the Arduino. When connecting with the internet, some components give
a great field of research with IoT.
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Figure 1: Device A wiring diagram
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Figure 2: Device A circuit diagram
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Figure 3: Device B wiring diagram
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Figure 4: Device B circuit diagram
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