
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Q-learning to develop an IoT network
controlled by an agent

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniera en Tecnoloǵıas de la Información

Autora:

Cabascango Anrango Gissel Vanessa

Tutor:

Ph.D. - Armas Arciniega Julio Joaqúın

Urcuqúı, octubre 2022

Autoŕıa

Yo, GISSEL VANESSA CABASCANGO ANRANGO, con cédula de identidad

1716247943, declaro que las ideas, juicios, valoraciones, interpretaciones, consultas bibli-

ográficas, definiciones y conceptualizaciones expuestas en el presente trabajo; aśı cómo,

los procedimientos y herramientas utilizadas en la investigación, son de absoluta respon-

sabilidad de el/la autor/a del trabajo de integración curricular. Aśı mismo, me acojo a

los reglamentos internos de la Universidad de Investigación de Tecnoloǵıa Experimental

Yachay.

Urcuqúı, octubre 2022.

Gissel Vanessa Cabascango Anrango

CI: 1716247943

Autorización de publicación

Yo, GISSEL VANESSA CABASCANGO ANRANGO, con cédula de identidad

1716247943, cedo a la Universidad de Investigación de Tecnoloǵıa Experimental Yachay,

los derechos de publicación de la presente obra, sin que deba haber un reconocimiento

económico por este concepto. Declaro además que el texto del presente trabajo de titulación

no podrá ser cedido a ninguna empresa editorial para su publicación u otros fines, sin contar

previamente con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, octubre 2022.

Gissel Vanessa Cabascango Anrango

CI: 1716247943

Dedication

”Dedicated to my family, especially to Rafael Cabascango and Matilde Anrango, my

parents and the pillars of my life.”

Gissel Vanessa Cabascango Anrango

iii

Acknowledgment

First, I want to make a special acknowledgment to God, who has never left me on this long

road called life. For your blessings and lessons, thank you, God. Second, I thank my family,

whom I love and treasure above all else and who are always there in any circumstance.

I thank my parents, who have given me unconditional support throughout my academic

career and life. Thank you, daddy, for sharing everything you have learned in your whole

life and inspiring us to reach very high. Thank you, mommy, for teaching us to love God

and guiding us along his path. I thank my siblings Jany, Richard, Zuly, Tefy, and Steeven

for sharing many moments with me and accepting me as I am. To my little Avril, thank

you for coming to this home and rejoicing with us every day since March. You have made

us very happy from the moment we knew you were on your way. I want to thank my

friends and colleagues Susy, Liz, Cinthy, Fer, Oso, and Fabian, with whom I shared many

fun and bad moments at the university and who hold a special place in my heart.

I thank Yachay Tech University for giving me the opportunity to learn from excellent

teachers who inspire and motivate me not to give up. Finally, I want to especially thank

my thesis tutor Oscar Chang, who patiently guided me and shared all his knowledge to

develop this project. In addition, I want to thank Professor Julio Armas who was pending

the approval of the pre-professional practice hours and the thesis.

Gissel Vanessa Cabascango Anrango

iv

Resumen

Hoy en d́ıa la interacción entre los sistemas informáticos y las personas es más común y

frecuente a nivel mundial. Como resultado, las técnicas de inteligencia artificial (IA) se han

vuelto cada vez más relevantes y necesarias en la vida cotidiana, ya que sus aplicaciones

permiten la automatización de procesos que comúnmente se realizan de forma manual.

Además, a nivel tecnológico, la IA puede hacer frente a problemas a gran escala, como el

manejo de datos masivos, problemas de seguridad e interacción hombre-máquina.

A medida que avanza la tecnoloǵıa es necesario darle importancia a los problemas pre-

sentes en el d́ıa a d́ıa de los ciudadanos ya que afectan su calidad de vida. Las Smart

Cities vienen a solucionar problemas de interés social, medioambiental, de movilidad, en-

tre muchos otros. Por eso es tan relevante. Como contribución al crecimiento de las Smart

Cities, este proyecto desarrolla un sistema que resuelve un problema común en las ciudades

urbanas, como es la búsqueda de rutas óptimas en casos de congestión de tráfico o emer-

gencias. Utilizamos las tecnoloǵıas de Internet de las cosas (IoT) para crear un sistema

distribuido que nos permite establecer una red global donde es posible el intercambio de

datos entre dispositivos, sensores y humanos. Basándonos en un modelo cliente-servidor,

buscamos conectar nodos ESP8266 que puedan comunicarse a través de un conocido bro-

ker llamado MQTT. A su vez, se desarrolla un agente inteligente capaz de aprender y

actuar racionalmente dentro de un entorno, buscando maximizar una función objetivo.

Los resultados nos permiten obtener agentes inteligentes entrenados capaces de explotar

rutas óptimas dentro de un laberinto usando Q-learning. Además obtenemos un sistema

distribuido capaz de comunicarse a través de MQTT desde cualquier parte del mundo y

en tiempo real.

Palabras Clave:

Agentes inteligentes, Internet de las Cosas, Ciudades Inteligentes,Q-learning, MQTT.

v

Abstract

Today the interaction between computer systems and people is more common and frequent

worldwide. As a result, artificial intelligence (AI) techniques have become increasingly

relevant and necessary in everyday life since their applications allow the automation of

processes commonly done manually. Moreover, at a technological level, AI can deal with

large-scale problems such as handling massive data, security problems, and human-machine

interaction.

As technology advances, it is necessary to give importance to the problems present in

the daily life of citizens since they affect their quality of life. Smart Cities come to solve

problems of social, environmental, and mobility interests, among many others. That is

why it is so relevant. Therefore, as a contribution to the growth of Smart Cities, this

project develops a system that solves a common problem in urban cities, such as searching

for optimal routes in cases of traffic congestion or emergencies. We use the Internet of

Things (IoT) technologies to create a distributed system that allows us to establish a

global network where exchanging data between devices, sensors, and humans is possible.

Based on a client-server model, we seek to connect ESP8266 nodes that can communicate

through a known broker called MQTT. In turn, an intelligent agent is developed capable

of learning and acting rationally within an environment, seeking to maximize an objective

function. The results allow us to obtain trained intelligent agents capable of exploiting

optimal paths within a maze using Q-learning. In addition, we obtain a distributed system

capable of communicating through MQTT from anywhere in the world and in real-time.

Keywords:

Agents, Internet of Things, Smart Cities, Q-learning, MQTT.

vi

Contents

Dedication iii

Acknowledgment iv

Resumen v

Abstract vi

Contents vii

List of Figures x

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 2

1.3 Objectives . 2

1.3.1 General Objective . 2

1.3.2 Specific Objectives . 3

2 Theoretical Framework 4

2.1 Internet of things (IoT) . 4

2.1.1 Technology and Platforms for the Internet of Things 5

2.1.2 Node MCU ESP8266 . 6

2.1.3 Arduino IDE . 7

2.1.4 MQTT . 7

2.1.5 HiveMQ . 8

2.2 Smart Cities . 9

2.3 Alternate emergency routes . 11

vii

School of Mathematical and Computational Sciences Yachay Tech University

2.3.1 Emergency vehicle routing . 11

2.4 Distributed processing system . 12

2.4.1 Client-Server Model . 12

3 State of the Art 14

3.1 Reinforcement learning . 14

3.1.1 Exploration and exploitation . 15

3.2 Markov Decision Processes (MDP) . 15

3.2.1 Reward Models . 17

3.3 Agent . 18

3.3.1 Policy . 19

3.3.2 State-value function . 19

3.3.3 Action-value function . 20

3.4 Bellman equation . 21

3.4.1 Bellman’s equation for state-value function (V) 22

3.4.2 Bellman’s equation for action-value function (Q) 23

3.4.3 Optimal bellman equation . 24

3.5 Q-learning . 25

3.5.1 Maze problem . 26

4 Methodology 27

4.1 Phases of Problem Solving . 27

4.1.1 Description of the Problem . 27

4.1.2 Analysis of the Problem . 28

4.1.3 Implementation . 28

4.1.4 Testing . 32

4.2 Model Proposal . 33

4.2.1 Environment . 33

4.2.2 Q-learning . 34

4.3 Experimental Setup . 36

5 Results and Discussion 38

5.1 MQTT communication . 38

Information Technology Engineer viii Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.2 Agents exploration . 39

5.3 Agent exploitation . 43

5.3.1 Maze solutions . 45

5.3.2 Agents Results . 47

6 Conclusions 48

Bibliography 50

Appendices 55

.1 Appendix 1. 56

.1.1 Server . 56

.1.2 Clients . 58

Information Technology Engineer ix Graduation Project

List of Figures

2.1 A new IoT dimension [1]. 5

2.2 ESP8266 Node MCU Module [2]. 7

2.3 MQTT broker operation [3]. 8

2.4 Smart city dimensions [4]. 10

2.5 Client-server network block diagram [5] . 13

3.1 Reinforcement Learning [6] . 16

3.2 Labyrinth 15x15 size play area. 26

4.1 Implementation Scheme. 30

4.2 R-matrix . 34

4.3 Initial Q-matrix . 35

5.1 Server-Clients communication. 39

5.2 Initial Q-matrix. 40

5.3 Initial R-matrix. 40

5.4 Q-matrix after few subsequent episodes. 41

5.5 Q-matrix after some subsequent episodes. 41

5.6 Q-matrix after many following episodes. 42

5.7 Q-matrix stabilized. 42

5.8 Q-matrix reading. 43

5.9 A possible route to the reward from a random point 1. 44

5.10 A possible route to the reward from a random point 2. 44

5.11 A possible route to the reward from a random point 3. 45

5.12 Client 1 solution to a maze problem. 45

x

School of Mathematical and Computational Sciences Yachay Tech University

5.13 Client 2 solution to a maze problem . 46

5.14 Server serial monitor. 46

5.15 Agents response. 47

Information Technology Engineer xi Graduation Project

Chapter 1

Introduction

1.1 Background

Information and Communication Technologies have revolutionized the digital and techno-

logical era, leaving behind the barriers of time and space to reinvent a new world where

humanity’s quality of life has significantly progressed due to contributions in all areas of

society.

Since the appearance of a new “network” called the Internet of Things (IoT), the

digital interconnection between everyday objects is now possible to improve the quality

of life. Furthermore, the creation of Smart Cities allows environmental and economic

sustainability to be improved, which is why the IoT has become an essential component

within the technology industry.

On the other hand, artificial intelligence (AI) is a useful tool within the technological

world since it can be extended to various areas that register the handling of large volumes

of information, high precision, repetitive tasks, and high complexity in problem-solving,

among others [7]. The current trend shows that different AI methods such as neural

networks, genetic algorithms, hyperheuristics, and in general, machine learning methods

have taken a large scale in the field of the Internet of Things, and have allowed achieving

results in the development of Smart Cities [8][9].

Reinforcement Learning (RL) is a Machine Learning method that has revolutionized

AI applications since it involves an agent that can learn from its environment to make

decisions that benefit its next actions to execute. Furthermore, the RL is managed under

1

School of Mathematical and Computational Sciences Yachay Tech University

a reward and penalty system, allowing it to maximize an objective function [10].

Within the IoT, Reinforcement Learning has become very functional because it can

replace human intervention in systems or applications that require adjusting their behavior

and configuration. In this work, we have implemented a Q-learning agent applied to a

maze solution, which can simulate different urban mobility environments. The agent is

developed through an architecture that involves states, actions, rewards, environment, and

value function. It is also based on the Markov Decision Processes (MDP) and the solution

of the Bellman Equation.

1.2 Problem statement

Learning to solve maze problems is a matter of much research within artificial intelligence

because it offers the possibility of many practical applications in real life, such as optimal

routing for vehicles considering traffic congestion or emergencies in urban cities. This study

has become a big motivation for developing this work because we can even contribute to

solving social conflicts and climate change, among others.

Reinforced Learning is a field of great interest for researchers in the application of

IoT technologies due to its contribution to the development of Smart Cities. IoT systems

require real-time interconnection between devices, sensors, and other devices capable of ex-

changing information through the Internet. Moreover, on the other hand, the development

of Reinforcement Learning requires an environment that allows the agent to evaluate new

strategies to find an optimal policy, using high-level language but low-level algorithms.

1.3 Objectives

1.3.1 General Objective

To apply reinforcement learning agents (RL agents) to develop an IoT distributed process-

ing system where the role of agents allows the planning of optimal routes in emergency

situations in a virtual city.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1.3.2 Specific Objectives

• To build a distributed IoT system with three ESP8266 nodes, where one works as a

server and the others as clients.

• To assure continuous and secure MQTT communication between nodes through un-

predictable network conditions.

• To apply Q-learning to train agents and improve their ability to learn optimal policies,

which allows for finding optimal routes to the target.

Information Technology Engineer 3 Graduation Project

Chapter 2

Theoretical Framework

2.1 Internet of things (IoT)

The internet of Things term was used for the first time in 1999 by the British Kevin Ashton

to refer to a system that connects physical objects to the internet through sensors. Ashton

used the term IoT to show that radio frequency identification (RFID) tags could be used

on corporate supplies to connect them to the internet and thus perform a counting and

tracking system without human intervention [11].

Today the Internet of Things is a term used to refer to the network interconnection

of everyday objects with computing capacity that extends to various devices and sensors

[11][12]. More than 99% of things in the physical world are not connected to the Internet.

With the Internet of Things, we can connect everything we can imagine [13].

With technological advances, we enter a new era of ubiquity where forms of commu-

nication will expand from human-human to human-human, human-thing, and thing-thing

(also called M2M). A new dimension in which information and communication technologies

allow connectivity from anywhere and anytime to anything and anyone [1]. Figure 1 shows

a representation of the new dimension.

4

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.1: A new IoT dimension [1].

2.1.1 Technology and Platforms for the Internet of Things

IoT implementation often requires the combination of various hardware and software com-

ponents to connect a product. Generally, this combination results in a stack of three main

layers: The thing or device layer, the connectivity or communication layer, and the IoT

cloud layer [14].

Device Layer

This layer is the specific IoT hardware, that is, any device such as sensors, actuators, or

additional processors [1]. At an industrial level, IoT can encompass intelligent vehicles,

robots, portable terminals, and meters, among other devices or equipment. These devices

collect a large amount of data through different types of wiring such as Ethernet, fiber

optics, or wireless networks such as WiFi, Bluetooth, RFID, 5G, etc. [15].

Connectivity or Communication Layer

This layer is responsible for processing and forwarding the data flow obtained from the layer

of the thing or device [15]. Communication protocols such as MQTT that provide different

Information Technology Engineer 5 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

services such as perimeter security, privacy protection, perimeter data analysis, intelligent

computing, process optimization, and real-time control are involved here [14][15].

IoT cloud layer

This layer refers to the software that manages the communication of all interconnected

devices. It obtains and shares data through collaboration in the cloud, communicates, pro-

visions, and manages it. At the same time, an application platform allows the development

and execution of IoT applications. In addition, the data generated by connected things are

stored, processed, and analyzed, coordinating the interaction for a specific purpose [14].

Furthermore, using platforms to create IoT applications is very frequent in IoT tech-

nologies. Platforms are usually defined as a group of technologies that are used as a base

to develop other technologies, applications, or processes. Within the IoT, these platforms

are software that offers independent functionalities to create IoT applications. Since the

nature of these platforms can vary depending on different aspects of the IoT technology

stack, there is no standard configuration. However, there exists a variety of IoT platforms

that are tailored to specific needs and application areas [14].

Large corporations and technology companies like Intel, Cisco, Microsoft, and other

hardware developers predicted the rapid growth of IoT, which is why today, there are a

multitude of embedded platforms and operating systems that provide different features for

IoT development. These features include processor performance, amount of RAM, and

other additional features such as WiFi/Ethernet modules, input/output pins, etc. So,

choosing a suitable platform has become a common problem [13].

2.1.2 Node MCU ESP8266

It is a simple but high-performance, low-cost WiFi chip that provides an Internet con-

nection to any microcontroller via SPI/SDIO or I2C/UART communication. This WiFi

module is an SoC (System on Chip) that integrates a stack of TCP/IP protocols and is

programmed using AT-Command commands if it uses serial communication [13][16].

In this case, we use the nodeMCU ESP8266 since it offers a more straightforward

platform, is low cost, and meets the needs that we require, which is WiFi connectivity

between nodes. The device model is shown in Figure 2.2.

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.2: ESP8266 Node MCU Module [2].

2.1.3 Arduino IDE

Arduino is is an integrated development environment software (IDE), which allows pro-

gramming applications in C++ language. This software connects to Arduino hardware to

upload programs and communicate with them. It has a console that displays text output

from the Arduino IDE software, including full errors and other information. There is a

wide variety of boards to which it can be connected, and it is fully configurable because

there are tools that facilitate adaptation for each experiment. In addition, libraries provide

additional functionality to work with different hardware or manipulate data [17].

2.1.4 MQTT

The internet of things uses internet connectivity to collect and share data with other

nodes (physical objects) without human intervention. In order to ensure that data ex-

change between all IoT nodes is secure and reliable, several messaging and communi-

cation protocols have been developed, such as the Advanced Message Queuing Protocol

(AMQP), Restricted Application Protocol (CoAP), and Extensible Messaging Presence

Protocol (XMPP), among many others. However, the Message Queuing Telemetry Trans-

port (MQTT) protocol is widely used for smart homes, industrial applications, agricultural

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

IoT, and other applications [18]. MQTT is a lightweight machine-to-machine publish-

subscribe network protocol. Among the advantages of this protocol is its design, which

supports communication between devices with low bandwidth and memory resources [19].

The main components in an MQTT protocol are the broker (central device), the clients

(IoT nodes), the subject, and the message. MQTT clients communicate through a central

node, also called a broker, which can be local or in the cloud. The function of a remote

broker is to allow IoT nodes to publish or subscribe to topics according to the functionality

of the nodes [18][19]. Figure 4.2 graphically represents the operation of the MQTT protocol.

Figure 2.3: MQTT broker operation [3].

2.1.5 HiveMQ

HiveMQ is a client-based messaging platform and MQTT broker created to transfer data

between various systems, IoT devices, and the cloud efficiently, quickly, and reliably.

HiveMQ uses the MQTT protocol to perform real-time, two-way data transfer between

your device and your company’s systems.

HiveMQ is a platform that solves the technical challenges faced by various organizations

in creating Internet of Things applications. One of the benefits of this platform is that it

has a lower cost of operation by using the network, hardware, and cloud resources. It can

create reliable and scalable applications for different requirements, has a fairly fast data

delivery, and integrates IoT data in other existing systems.

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

HiveMQ broker instances scale with the underlying hardware [20]. It has been proven

that a non-blocking and multi-threaded approach allows a simultaneous connection of up

to 10 million devices [21], an essential aspect of developing IoT technologies. However,

because HiveMQ and MQTT are based on a pub-sub architecture, the overall network

traffic is reduced, and the MQTT message size is significantly smaller than the regular

HTTP protocol, so the data is transferred through the network is reduced [21].

In this work, we will use some of the elements explained above since they are accessible

technologies and have characteristics that facilitate the implementation of this project,

which will be explained further in the following sections.

2.2 Smart Cities

As urbanization grows, new challenges and problems arise with them. Initiatives for smart

cities, which offer opportunities, solve urban issues and provide citizens with a better living

environment, are becoming increasingly frequent. The Telephone Foundation, in its book,

shows that the urban population had surpassed the world’s rural population in 2007 [22].In

the article ”A literature survey on smart cities,” the authors explain that by 2014, the level

of urbanization had reached 54%, and according to the United Nations, they deduce that

in 2050 the urban population will get 66% [23].

Cities significantly impact a nation’s economic and social development since people

work and live there, companies carry out their activities and provide different services.

However, cities are also large consumption centers, spending 75% of global energy and

generating 80% of the gases responsible for the greenhouse effect [22].

Currently, developing countries are urbanizing more rapidly. A clear example is China,

which in the last ten years, has managed to increase its population from 41% to 54%.This

country desperately faces problems of overcrowding, environmental degradation, air and

water pollution, contagious diseases, and crime. Mexico faces an increase in gases that

affects air quality. The US faces high traffic congestion on its streets, causing high fuel

consumption and, therefore, pollution [23].

These scenarios show that population growth magnifies new economic, environmental,

and social demands on large cities. In contrast, citizens and governments demand increased

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

efficiency, sustainable development, resource management, quality of life, and solutions to

reduce urban problems. [22] [23].

Smart Cities encompass several aspects of a city’s proper functioning and management.

The most common domains of a Smart City are governance, economy, management, in-

frastructure, technology, and people. Figure 2.3 summarizes the six main dimensions of a

Smart city and its possible applications [4].

Figure 2.4: Smart city dimensions [4].

Identifying the domain area where wireless technologies are applied is essential since

this may vary depending on the environmental conditions and the different parameters

involved.

This project focuses mainly on the Smart City Management domain, one of the most

developed factors among smart cities, and primarily covers transportation, energy, and

natural resource management. Implementing IoT technologies in this domain solves the

problems of data collection, resource management, and traffic allocation problems. Some

initiatives currently benefiting from IoT solutions are public transport, agriculture, crop

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

management, water flow measurement, municipal and domestic purposes, public lighting,

renewable energy, and city logistics [4].

2.3 Alternate emergency routes

2.3.1 Emergency vehicle routing

Currently, urban traffic congestion is a problem with a significant impact on the quality

of life since it directly or indirectly affects public services. A study by the US Department

of Transportation talks about the impact of urban traffic congestion and the importance

of alternative routes. Traffic congestion is equivalent to economic losses for companies

and decreased performance [24]. The causes of traffic congestion depend on traffic density

and events that occur after disasters, such as traffic accidents, construction sites, fires,

earthquakes, etc. [25]. In general, these events fall into two groups: planned and unplanned

events.

Planned events refer to closures of road sections and construction works. In contrast,

unplanned events occur when there are emergencies, adverse weather, traffic incidents, and

natural disasters [24]. Emergency service vehicles, such as ambulances, firefighters, and

police, are required in these situations. Respond to emergencies on time; for example, an

ambulance must reach the hospital within 60 minutes to guarantee the victim’s survival.

According to the Theory of the Golden Hour, that is the time when there are more chances

of survival [26]. Therefore, the expected result caused by planned and unplanned events is

a high demand to reduce emergency vehicle travel delays to create efficient vehicle routing

in a smart city [24].

Advances in IoT technologies coupled with data fusion techniques hold promise for

handling the problem of road traffic congestion. Sensor networks are useful for real-time

data acquisition in various decision-making applications; in this case, they help optimize

emergency routing by implementing alternative routes.

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.4 Distributed processing system

Distributed computer systems today are becoming more frequent in the technological field

because they allow to carry out processing activities more efficiently, improving perfor-

mance and allowing the distribution of resources. This computer model allows configuring

several central processing units (CPU) to solve computational problems massively, bringing

out distributed processing. This system is based on distributing information through the

Internet to different computers so that, once the problem is solved, they return the result

to the server.

A distributed processing system introduces various models to ensure that the systems

can solve real-world problems, that is, potential threats or challenging circumstances. We

describe the Client-Server architectural model, which we applied in the project.

2.4.1 Client-Server Model

Client-server architecture employs a distributed application model that uses two main

components: information providers called servers and requestors called clients. This system

performs client and server functions to promote the exchange of information between them.

Users have the same accessibility to data simultaneously and very often communicate over

a computer network on different hardware. However, both components can reside in the

same system [27].

Client-server communication begins when the client requests data from the server, and

the server responds by sending requested data to the client in a request-response messaging

pattern [5]. Some of the benefits of this model include that it allows for easier sharing of

client resources to servers, it reduces data replication by storing data on each server rather

than the client, and the server can receive requests from many clients in a short period.

Furthermore, within Cloud computing, the primary importance lies in the scalability of

millions of virtual machines [27]. Figure 2.4 shows the communication model of client and

server network systems.

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.5: Client-server network block diagram [5]

Information Technology Engineer 13 Graduation Project

Chapter 3

State of the Art

3.1 Reinforcement learning

Reinforcement learning (RL) is a sub-areas of Machine Learning that studies systems where

an agent interacts in a dynamic environment to determine which actions can maximize its

reward or prize pool [28]. The agent initially has a specific state belonging to the state

space, a limited set of possible legal states, then chooses an action within the possible

legal actions, also called an action set, to receive a reward that depends on the selected

action and the current state [28][29]. The environment determines the state space and set

of actions. RL systems can be formulated using Markov decision processes, which will be

explained in the next section.

Reinforcement learning is strongly inspired by behavioral psychology, based on a scheme

of ”rewards and punishments,” as the example of the classical conditioning case, where

Pavlov’s dog salivated every time the bell rang since it learned to associate the sound of

the bell with the reception of food [30].

RL has two different approaches: model-based algorithms that use a model to build

the environment and form a control policy based on the learned model, and model-free

algorithms that directly update the function of value, that is, the expected reward from

the current state or policy [31].

The difference from other types of learning is that RL is a systematic assessment that

occurs at the same time as learning. It does not have the ”correct” pairs of inputs or out-

puts. Instead, the agent detects different aspects of the environment and collects valuable

14

School of Mathematical and Computational Sciences Yachay Tech University

experience in states, actions, transitions, and rewards to operate optimally [6].

In general, the reinforcement learning objective is to identify the actions chosen in the

different states to maximize the reward. The agent must find and learn an optimal policy

that tells each state what action to take [32].

We can see many applications of RL in several other areas, such as robotics, auto-

matic cars, health informatics, complex games [28], and other disciplines such as statistics,

genetics, and operations research, among others [33].

3.1.1 Exploration and exploitation

Another important aspect is the balance between exploration and exploitation. To get

a good reward, the agent prefers to follow specific actions but to know which actions to

choose, the agent has to do some exploration first. It generally depends on how long the

agent is expected to interact with the environment.

3.2 Markov Decision Processes (MDP)

Markov decision processes are defined as stochastic sequential decision processes, and they

are based on notions of the current state, which describe the agent’s situation (action or

decision), which affect the dynamics of the process and the reward, which is present for

each agent transition between states [34].

Because action effects are stochastic, and the selected action can result in different

possible states in the subsequent decision stage, the optimal control strategy cannot nec-

essarily be represented as a single sequence of actions [35]. Consequently, the solutions

within an MDP are generally given as universal policies (rules or action strategies) that

indicate what action to take at each step of the decision process and for each possible state

reached by the agent. Due to the uncertainty in the results of the actions, the application

of a given policy may result in different sequences of states/actions [34] [35].

In a standard RL, an agent is connected to an environment through perception and

action (Figure 3.1). In each interaction the agent receives as input an indication of its

current state (s ∈ S) and selects an action (a ∈ A). The action changes the state and the

agent receives a reinforcement or reward signal (r ∈ R) [6].

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 3.1: Reinforcement Learning [6]

Formally, a MDP is a tuple M =< S, A, ϕ, R > . The elements of an MDP are:

• A finite set of states S(1, ..., n).

• A finite set of actions A, which can depend on each state.

• Reward function (R): defines the goal. It maps each state–action to a number

(reward), indicating the desirable status.

• Environment model (optional): mimics the behavior of the environment. It can

be used for planning by considering possible future situations based on the model.

ϕ : A × S → Π(S) is a state transition function given as a probability distribution.

The probability of reaching the state s′ ∈ S by performing the action a ∈ A in the

state s ∈ S, which can be denote as ϕ(a, s, s′).

• Policy (π): defines how the system behaves at a given time. It is a (sometimes

stochastic) mapping of states to actions.

• Value function (V): indicates what is good in the long run. It is the total reward an

agent can expect to accumulate starting in that state (reward predictions). Actions

are sought that give the highest values, not the highest reward. The rewards are given

by the environment, but the values must be to estimate (learn) based on observations.

Reinforcement learning learns value functions while interacting with the environment.

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

There are several ways to apply this learning process. Here we will focus on what is

known as Q-learning, which for any Markov Decision Process can determine an optimal

action-selection norm given infinite exploration time and partial random criteria.

3.2.1 Reward Models

Given a state st ∈ S and an action at ∈ A(st), the agent receives a reward rt+1 and moves

to a new state st+1. The mapping of states to probabilities of selecting a particular action

defines its policy (πt). Reinforcement learning can specify policy changes as a result of its

experience.

As such, this model does not try to maximize the immediate reward but rather the

long-term (cumulative) reward, which is calculated by the environment. If the reward

received after time t is denoted as rt1 , rt2 , rt3 , ..., what we want is to maximize what we

expect to receive as a reward (Rt), which is in the simplest case:

Rt = rt+1 + rt+2 + rt+3 + ... + rT (3.1)

If the tasks have an endpoint, they are called episodes. On the other hand, if the tasks are

infinite, they are called continuous tasks. In this case, equation 3.1 is inappropriate since

the calculation cannot be performed when T has no limit. Therefore, it uses an alternative

equation (3.2) where the contributions of the more distant rewards are reduced [32].

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0
γkrt+k+1 (3.2)

where γ is known as the discount ratio and is between 0 ≤ γ < 1. When γ = 0, the total

reward is maximized only considering the immediate rewards.

Likewise, depending on the objectives, we consider the following models:

1. Finite horizon: the agent tries to optimize its expected reward in the following h

steps without worrying about future consequences.

E(
h∑

t=0
rt) (3.3)

where rt means the reward received t steps in the future.

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

This model is applied in two ways: (i) receding-horizon control, where the next h

steps always are taken, and (ii) non-stationary policy, where the following h steps

are taken in the first step, in the following the h − 1, and so on until finished. The

main problem is that it is not always known how many steps to examine.

2. Infinite horizon: the rewards received by the agent are geometrically reduced accord-

ing to a discount factor γ(0 ≤ γ ≤ 1):

E(
∞∑

t=0
γtrt) (3.4)

3. Average reward: long-term optimization of the average reward:

limh→∞E(1
h

h∑
t=0

rt) (3.5)

The problem with this model is there is not always a way to recognize policies that

are highly rewarded from those that are not.

In general, the agent’s actions not only determine the immediate reward but also define the

next state of the environment (at least probabilistically). Reinforcement learning satisfies

the Markovian property and the transition probabilities, which are given by:

Pa
ss′ = Pr{st+1 = s′|st = s, at = a} (3.6)

Then, the expected reward value is:

Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (3.7)

The objective is to estimate the value functions, that is, to analyze how good it is to be in

a state or perform an action in terms of future rewards and expected rewards.

3.3 Agent

Reinforcement learning seeks that the agent learns to make decisions optimally. The reward

and discount function allows us to generate a measurable benchmark that helps us compare

different decision-making processes and identify the most optimal option. Under these two

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

concepts, we can define the agent’s goal in a reinforcement learning problem as finding a

series of actions that maximize the return.

3.3.1 Policy

The policy π is a mapping of each state s ∈ S and action a ∈ A(s) to the probability

π(s, a) of taking action a while in state s. The value of a state s under policy π, denoted as

V π(s), is the expected reinforcement in state s and following policy π. The agent receives

a state as input, and the policy allows it to determine what is the most appropriate action

to take at a given instant time.

Deterministic politics occurs when there is no random component to the actions within

the Markov decision process. This policy is defined as a = π(s): given a state s, the policy

will tell us what action to execute with absolute certainty (because it is deterministic).

However, the implementation of deterministic policies is not typical because there is often

a random component to the Markov decision-making process in real-life situations.

Furthermore, since we have a completely random environment, the resulting policy will

not indicate the following action the agent should take with absolute certainty. Instead,

it tells us the probability of a particular action. Therefore, the conditional probability

notation is used to represent this policy mathematically:

π(a|s) = P [At = a|St = s] (3.8)

Where the policy π(a|s) is the probability of executing at the instant of time t the action

a being in the state s. This value (the probability) will be in the range from 0 to 1.

The policy does not specify the value of the estate nor the actions taken to assess its

benefits. Therefore, different functions are defined according to the state and the action

that make it possible to perform this task.

3.3.2 State-value function

In reinforcement learning, the policy needs functions that determine the goodness of a

particular state or action. When the policy is stochastic, the probability distribution is

given for each case of possible actions.

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The state value function defines a method of determining the advantages or disadvan-

tages of a particular policy. The reward is the process of measuring how good or bad an

agent’s decisions are. In order to quantify the goodness of a state, we use the sum of the

rewards (total reward) received by the agent for executing a particular trajectory.

To build the state-value function, we need to consider the following aspects:

• Since the environment is stochastic, the paths under a policy are not unique since

actions are taken according to a probability distribution. Therefore, when calculating

the reward, we must consider all possible ways the environment might react to the

policy. That is, the expected reward will give us the result of the average of all the

potential rewards that will be obtained after analyzing all the possible trajectories.

• The agent will not take an arbitrary trajectory; the policy will define the course.

Then, given the definition of the expected reward, the value of a state s is defined as the

expected reward if the agent were to start from state s and follow the path defined by the

policy π. Therefore, When we compute the value of each state for all possible states, we

get precisely the state value function.

The state-value function will give us the expected reward following the policy π,

for each state that is part of our environment. This function allows us to quantify each

state precisely and thus determine how good or bad a particular state may turn out in the

decision-making process. The equation 3.9 expresses this function mathematically:

Vπ(s) = Eπ[
∞∑

k=0
γkRt+k+1|St = s] (3.9)

for all states s in S.

3.3.3 Action-value function

Similarly, as the state-value function, the action-value function, called the ”Q function,”

uses reward as its basis. This function calculates the expected reward that the agent would

receive by taking action a while in state s and following policy π. The following equation

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

expresses this function mathematically:

Qπ(s, a) = Eπ[
∞∑

k=0
γkRt+k+1|St = s, At = a] (3.10)

The Bellman equations allow us to express the state-value and action-value functions in

terms of policies and environment variables, which is necessary to solve using different

algorithms. Here is the importance of these equations.

3.4 Bellman equation

The Bellman equation, named after its discoverer Richard E. Bellman, is a necessary

condition for achieving optimization associated with a mathematical optimization method

known as dynamic programming. Dynamic programming aims to simplify more complex

problems or tasks by breaking them down into smaller problems and recursively solving

them to attack the larger problem.

Generally, the Bellman equation refers to the dynamic programming equation that

allows for solving discrete-time optimization problems. However, in continuous-time op-

timization problems, the analogous equation is the well-known Hamilton-Jacobi-Bellman

equation, a partial differential equation.

The Bellman equation writes, at a given point in time, the value of the decision problem

in terms of the payoff returned by some initial solutions and the value of the remaining

decision problem as a result of the initial solutions. That decomposes the dynamic op-

timization problem into simpler sub-problems, as described in the Bellman optimization

principle.

In discrete time, almost any multistage optimization problem that can be solved using

optimal control theory also may be solved by analyzing the appropriate Bellman equation.

That is achieved by introducing new state variables to the problem (increasing state) [36].

However, if the cost function of the multistage optimization problem satisfies a ”back-

ward separable” structure, then the appropriate Bellman equation can be found without

increasing the state [37].

The Bellman equations are an alternative way to mathematically represent state-value

and action-value functions in terms of policy and environment variables, which serve as a

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

starting point for building reinforcement learning-based algorithms.

3.4.1 Bellman’s equation for state-value function (V)

In section 3.2.1 the discounted return function at time t had been defined as:

Gt =
T∑

k=0
γkrt+k+1 = rt+1 + γrt+1 + γ2rt+3 + ... + γT −1rT (3.11)

Equation 3.11 can also be written recursively:

Gt = rt+1 + γ(rt+2 + γrt+3 + γ2rt+4 + ... + γT −2rT), Gt = rt+1 + γ(Gt+1) (3.12)

The objective of defining the discounted return helps us to also determine the Bellman

equation for the function V, which states that the value of the state can be acquired as the

sum of the immediate reward and the discounted value of the next state. Therefore, this

function is defined as:

V (st) = rt+1 + γ · V (st+1) (3.13)

The above equation can be reformulated in terms of MDPs using the reward function.

Equation 3.14 reflects which action a is performed by the agent to generate the reward

rt+1 and under which policy.

Vπ(s) = R(s, a, s′) + γ · V + π(s′) (3.14)

Under a stochastic environment, when we perform an action a on the state s, it cannot be

guaranteed that the next state s’ will always be the same; the states may vary. Therefore,

we contemplate this stochasticity in the following equation:

Vπ(s) =
∑
s′

P (s′|s, a) · [R(s, a, s′) + γ · Vπ(s′)] (3.15)

Where P (s′, s, a) performs the probability of reaching state s′ by performing action a

in state s, a sum of the estimation is made from each potential next state multiplied by

the probability of transition to this state.

On the other hand, when there is a stochastic policy, instead of always performing the

same action on a state, we select an action based on the probability distribution over the

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

action space. So the Bellman equation for the function V is:

Vπ(s) =
∑

a

π(a|s) ·
∑
s′

P (s′|s, a) · [R(s, a, s′) + γ · Vπ(s′)] (3.16)

or,

Vπ(s) = Ea∼π,s′∼pR(s, a, s′) + γ · Vπ(s′) (3.17)

In this way, we find the solution to the problem by dividing it into simpler recursive sub-

problems.

3.4.2 Bellman’s equation for action-value function (Q)

Similarly, like the Bellman function for the V function, the Bellman function for the Q

function can be obtained as a sum of the immediate reward and the following state V

function:

Qπ(s, a) = R(s, a, s′) + γ · Vπ(s′) (3.18)

In a deterministic environment, the Bellman equation for the function Q is developed

using mathematical expectation to show the transition probability corresponding to the

next state:

Qπ(s, a) =
∑
s′

P (s′|s, a) · [R(s, a, s′) + γ · Vπ(s′)] (3.19)

Nevertheless, we are interested in defining the value Qπ(s, a) as a function of the value Q

of the following state-action pair Qπ(s′, a′) to obtain the Bellman equation equivalent to

the value function of the state. Then, a possible term is added, taking into account the

stochasticity of the policy, which determines the choice of the following action a’:

∑
π(a′|s′) (3.20)

The resulting equation is the Bellman expectation equation of the action value function or

Q function:

Qπ(s, a) =
∑
s′

P (s′|s, a) · [R(s, a, s′) + γ ·
∑
a′

π(a′, s′) · Qπ(s′, a′)] (3.21)

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

3.4.3 Optimal bellman equation

As mentioned before, the goal of the Markov process is to find a policy that defines the

agent’s behavior and maximizes the reward in the long run. An optimal policy π∗ is deduced

when our state-value and action-value functions obtain the highest possible values [38].

We want to find the maximum values for these functions so that for the function V

(equation 3.16), we will obtain a Vπ∗(s) ≤ Vπ(s) for all states s, then we have:

V ∗(s) = max
π

Vπ(s) (3.22)

The optimal bellman equation is calculated by choosing the action that gives the max-

imum value, i.e., we calculate the state value using all possible actions and then select

the maximum value for the state value. Therefore the optimal Bellman equation for the

function V is expressed as:

V∗(s) = max
a

∑
s′

P (s′|s, a) · [R(s, a, s′) + γ · V∗(s′)] (3.23)

On the other hand, the maximum for the function Q is represented as:

Q∗(s, a) = max
π

Qπ(s, a) (3.24)

And, like the Bellman equation for the optimal function V, all possible actions in state

s’ are chosen, and the optimal function for the function Q is calculated (equation 3.21),

which is defined as:

Q∗(s, a) =
∑
s′

P (s′|s, a) · [R(s, a, s′) + γ · max
a′

Q∗(s′, a′)] (3.25)

Finally, it turns out that the optimal value of a state V*(s) is equal to the best action-value

function that we can obtain from this state, that is:

V∗(s) = max
a

Q∗(s, a) (3.26)

Equation 3.26 allows us to find the optimal policy if we know the optimal values of the func-

tion Q. The best association of the action to each state will be the action that maximizes

Information Technology Engineer 24 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the value of this function:

π∗(s) = argmax
a

Q∗(s, a) (3.27)

Therefore, the optimal policy is given by the optimal functions V∗(s) and Q∗(s, a). So, we

can solve the problem by knowing the values of the optimal functions.

3.5 Q-learning

In machine learning, Q-learning is a type of Reinforced Learning without a model. It

can also be defined as the asynchronous dynamic programming (DP) method in the sense

that it updates a single entry each step [39].For any Markovian domain, Q-learning allows

agents to gain the ability to learn to act optimally by experiencing the consequences of

actions without having to build domain maps [40][41].

The Q-learning model finds the best course of action from its current state by creating

its own rules or policy. That is considered out of policy because the q-learning function

learns from actions out of current policy, taking random actions, so no policy is needed.

This value-based model optimizes the value function based on the environment or problem.

Q-learning is an incremental algorithm that builds a function called “Q-function” that

estimates the discounted cumulative reinforcement (Q-value) for each possible state/action

pair. The learning agent executes an action based on these Q-values at each time step.

Then the Q-value of the pair of the current state and the selected action is updated

according to the immediate reward and the evaluation of the next state caused by the

action [42].

The one-step equation Q-update equation expresses this:

Q(st, at) = r(st, at) + γmaxat+1Q(st+1, at+1) (3.28)

Where Q is the value resulting from performing action a in state s; s is the state vector;

a is the action vector; R is the reward, and γ is the discount factor. The discount factor

makes rewards earned earlier more valuable than rewards received later [32].

The advantage of the Q-learning algorithm learns the values of all actions rather than

Information Technology Engineer 25 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

simply finding the optimal policy. Q-learning is not sensitive to discovery, any action can

be carried out at any time, and the information is obtained from this experience [32].

Furthermore, such a feature allows Q-learning to learn from other drivers, providing

valuable data, even if they aim to complete a different task. This way, knowledge of several

Q-learners is obtained and combined to avoid non-optimal actions and find a compromise

action [32].

3.5.1 Maze problem

The maze problem is a widespread application for Reinforcement Learning, generally used

to test the effectiveness of different RL algorithms. The maze problem can be summarized

in a matrix game area of size n ∗ m (where n, m > 0) in which the agent’s goal is to reach

the destination position, starting from a starting point and dodging certain obstacles. The

purpose is to find the shortest path (of the many options) from the starting point to the

objective position [43]. Mazes can keep the locations of the start position, finish position,

and obstacles variable. Figure 3.2 shows an example of a labyrinth with a particular

configuration in the maze problem game area. A smaller cyan square indicates the start

position of the agent, a yellow square indicates the destination position, blue squares

indicate blocks, and red squares indicate the clear path.

Figure 3.2: Labyrinth 15x15 size play area.

Information Technology Engineer 26 Graduation Project

Chapter 4

Methodology

This chapter presents the processes carried out to achieve the objectives defined in this

project. It also describes each implementation step for an agent to learn to find a target

in a maze.

4.1 Phases of Problem Solving

• First, we need to implement continuous communication in a distributed system of

nodes MCU ESP8266 through the MQTT broker, in which one chip acts as a server

and the others as clients. Each client will be an agent.

• Next, it is necessary to implement the environment and the rules based on the solution

of a classic maze.

• The last step is to use Q-learning to train the agents using the exploration and finally

manage to exploit a solution to the maze problem.

4.1.1 Description of the Problem

Recent advances in Artificial Intelligence and Machine Learning techniques have enabled

extracting features with enormous potential to efficiently manage the automated operation

of IoT nodes deployed in smart cities [44]. Supervised learning, reinforcement learning,

and unsupervised learning algorithms have been the most used within IoT applications.

Currently, these methods have a variety of applications to solve a wide range of problems,

such as intelligent traffic monitoring, where the system helps the driver to choose the most

27

School of Mathematical and Computational Sciences Yachay Tech University

efficient route. This system obtains traffic information, including road traffic conditions

and congested locations, by tracking the location information of a large number of vehicles

[45]. This is the type of problem treated in this work, where an intelligent agent has to

learn to search for an efficient route under different conditions that may arise in the real

world, such as traffic congestion or unforeseen disasters.

The first problem is to create an environment that can mimic a miniature real-life traffic

scenario. In a maze, the free paths could simulate the streets of a city; the blocks could

simulate the houses, buildings, and obstacles; and the goal could simulate the direction we

want to go.

The second problem is creating a reinforcement learning agents that uses this informa-

tion and learns an optimal policy to find efficient routes to reach the goal. In order to

create an optimal policy, the agent must recognize the logic of a maze solution and use this

information in its decision-making structure. The agent is trained and gains the ability to

link present states with future states, which is the main objective of reinforcement learning.

The last problem is to create a distributed system of nodes in which a server sends map

information and coordinates to clients so that they can find an optimal route to the target.

4.1.2 Analysis of the Problem

To solve the first and second problems, we use the Arduino IDE platform, an integrated

development environment that supports the C and C++ languages using special code

structuring rules. This free software is used to create applications for Arduino boards or

microcontrollers. Different modules and functions are developed in C++ to implement the

Reinforcement learning agents and their environment. Then, the HiveMQ broker is used

to solve the third problem, which communicates to our agents. These points make up the

main contributions of this thesis and will be explained in detail in section 4.1.4.

4.1.3 Implementation

This section describes the planning and execution of the code of the model proposed in

this work. The implementation is based on C++ programming language, a high-level

programming language with outstanding performance and efficiency when creating appli-

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

cations that involve artificial intelligence. In addition, it provides extensive libraries that

help create intelligent agents in similar projects.

Materials

The materials used, the configuration, and the implementation of the system are explained

below.

Requirement for setup:

1. 3 Node MCU ESP8266 (one server and two clients).

2. Arduino IDE.

3. MQTT.

4. Laptops with internet connection.

5. Wires.

The first step to implement this work is to connect 3 Nodes MCU ESP8266 through

the MQTT broker. One node will be the server, and the other will be the clients. All

these nodes must be connected to a system (computer) with the Arduino IDE integrated

development environment to be programmed.

We will program the nodes to fulfill two different types of tasks:

• Server. Provides a maze with paths, blocks, and objectives.

• Clients/Agents. They use Q-learning to learn to find optimal routes to the target.

They explore the environment for many episodes until they are trained and ready

to exploit solutions in a maze. Once the agents are ready, it notifies the server and

sends the coordinates of the routes in real-time.

With this system, we carry out a simulation of a smart city, where emergencies occur, and

the need arises to find short or faster paths to reach a place.

Figure 4.1 represents the implementation that we want to achieve with this work.

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.1: Implementation Scheme.

Below we detail the modules to use in the implementation.

MQTT communication modules.

• Send data MQTT.h

Module that contains functions on both the server and the client to establish com-

munication through the MQTT broker.

– setup() Module that sets main components to establish MQTT communication,

such as client, MQTT server, port, and callback.

– setup wifi() Initialize the local WiFi connection by setting the WiFi SSID,

WiFi password, and local WiFi IP.

– reconnect() Module that contains functions to achieve the MQTT connection.

Here the different users subscribe to an established intopic, the topic where the

receivers subscribe to receive the message.

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– callback() Module that contains functions responsible for receiving incoming

messages.

– loop() Function that reconnects the client in case of communication interrup-

tion.

Agents modules.

• Agent in maze.h

Main module where the whole program is carried out. The maze and other modules

are initialized.

– loop() Module that loops the Q explore module, and prints the Q and R matrix.

– setup() In Arduino IDE, one task of this module is to set the data rate in bits

per second for serial data transmission and initializes the loop module.

• Q structures lib.h

Module that contains the main functions to carry out Q-learning reinforcement learn-

ing, such as the calculation of the transition rule, the search for the maximum, and

the output of the Q table.

– print Q() is the function that prints the matrix Q to the console for each

episode, equivalent to one training session.

– print R() is the function that prints the matrix R, which represents a maze.

– move left(), move right(), move up(), move down() are functions that

generate the agent’s movement according to the labyrinth.

– Q explore() is the function that will allow our agent to learn through experi-

ence. The agent will explore from state to state until reaching the goal. Each

time the agent arrives at the goal state, the program goes to the next episode.

This function finds the value of the transition rule, where a value assigned to

a specific element of matrix Q is equal to the sum of the corresponding value

matrix R and the learning parameter gamma, multiplied by the maximum value

of Q for all possible actions in the next state.

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

– search for Max() is the function that looks for the maximum value within the

gradient produced in the matrix Q.

– Q player() Function that allows the agent to exploit the knowledge obtained

after the exploration stage. The agent places itself in a random position and

uses the get gradient function to move in the final Q-matrix until it reaches the

maximum reward.

• Manage data().h

Module that handles the data.

– receive data() Function that receive incoming data from the server.

– print route() Function that prints the solution of a maze in the form of “*”

(accessible paths), “-“ (obstacles), and “@” (reward).

– print route mqtt() Function that posts the maze solutions in the MQTT

topic.

• Read Write Q matrix.h

Module that consists of saving and loading the Q-table in the EEPROM memory of

the ESP8266.

– save Q() is a function that uses the EEPROM.h library that allows us to use

the microcontroller memory of the Arduino and Genuino AVR-based board to

save values maintained when the board is turned off. In addition, this library

allows us to read and write those bytes like a small hard drive. In this case, we

use the EEPROM.put function.

– load Q() is a function that allows loading the saved values in the board mem-

ory using the same EEPROM library used for saving, but in this case, the

EEPROM.get function is used.

4.1.4 Testing

For the agent’s tests, it will first be trained by going through the accessible paths ran-

domly, starting from different positions within the maze until the objective is found. After

Information Technology Engineer 32 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

several episodes of his training, the agent passes to the exploitation stage of the obtained

knowledge, where the agent is expected to find the most optimal routes to the objective.

Finally, the agent returns the shortest path from a given coordinate to a target point at

the end of the process.

4.2 Model Proposal

In the present work, we propose to use the Q-learning algorithm as the primary reinforce-

ment learning method to develop our agent. This model consists mainly of looking for the

computer numerical solution of the Bellman equation. This Bellman equation guarantees

a maximal value obtained in controlling a finite sequence of events that occur in a complex

environment with an underlying logic context, with rewards scattered in the space time.

The problem’s numerical solution requires an explorer agent with its own memory elements

that are used to create internal representations (Q-matrix or Q-table) and to remember

the exploration paths that lead toward optimal rewards (policy). This section explains in

detail how the model we propose is established.

4.2.1 Environment

The agent in our model has to learn to find an optimal route to reward. Therefore, the

first step in designing our model is to create an environment that simulates a maze with

its paths, walls, and a goal. In this work, the environment is represented in a 16x16 ma-

trix called the ”R-matrix,” where its structures are randomly represented by 0 (accessible

paths), -1 (walls or obstacles), and 100 (reward). Figure 4.3 shows the matrix used to

represent the maze in this work.

Information Technology Engineer 33 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.2: R-matrix

4.2.2 Q-learning

The Q-Learning algorithm can be summarized in the following pseudocode:
Algorithm 1: Q-learning to solve maze problem

Input: Q-table

Output: Maze solution

1 Initialize the Q-table for every state s, action a pair;

2 while a completion episode has not been reached do

3 Observe the state s.

4 Choose an action a, based on the values of the Q-Table, and execute it in the

environment.

5 Observe the next state s′ and its reward r.

6 Apply the Q-Learning formula updating the value Q(s, a) of the Q-Table,

taking into account the next observed state s′ and the reward obtained r.
7 end

Initialization

To start the Q-learning process, we need to initialize the data table, the Q matrix, also

defined as “Q-table.” The Q-table is initialized depending on which action selection policy

we will use. At startup, the agent has no knowledge. Therefore, we initialize all the values

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

in the Q-table to 0s, as shown in Figure 4.4.

Figure 4.3: Initial Q-matrix

The agent observes its current state and assesses all possible actions from that state.

The agent then selects a specific action and executes it depending on the values stored in

the Q-table. This action modifies the current state, and a reward is obtained based on the

new state.

With the new data obtained from the previous state, action executed, and reward,

the value of the Q-learning formula is calculated. The cell corresponding to the previous

state and the action executed in Q-matrix is updated. The formula of the Q-learning

transition rule increases or decreases the current value in the Q-table according to the

reward obtained, whether positive or negative, creating a gradient.

Once the Q-Table is updated, the agent’s current state is observed again, and a new

action is then selected until a final state is reached.

To safely approximate the value of Q, numerous iterations are performed using only a

sequence of immediate rewards propagating over time. In this way, we achieve that the

agent learns an optimal policy from several executions where there is a trial-error approach.

Exploration or Exploitation

The agent, in this case, needs a policy that allows it to select the actions to execute in a

given state. Since this work is based on reinforcement learning, we must find a balance

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

between exploration and exploitation. Therefore, the agent must try to execute different

actions and progressively favor those that seem to be better. The mechanism used for stock

selection is the greedy policy, which helps us to maximize our Q value. When the agent

has no experience, it is necessary to explore. Once the agent adapts to the environment,

the exploitation is performed, that is, when our “Q-table” becomes stable.

Bellman Equation

When performing a particular search for MAX, we are looking to retrieve the MAX within

a spatial environment. Therefore, the approximation of the Bellman equation used in this

work is expressed as follows:

Q(s, a) = r + γmax
a′

Q(s′, a′) (4.1)

where:

• Q(s, a) : Q-value

• r : reward

• γ : discount factor, which in this case we use 0.8.

• max
a′

Q(s′, a′) : estimate of optimal future value

Equation 4.1 searches for a MAX in the matrix Q to construct a gradient connection from

each exploration episode and openings in memory Q. Furthermore, an important part is

the discount rate, which is the constant that determines the importance of future rewards.

This constant helps balance the effect of upcoming rewards on the new values. A lower

discount factor and increasing it towards its final value accelerates learning, so the discount

factor chosen here is 0.8.

4.3 Experimental Setup

We define a randomly generated maze by placing the target consistently in the same place

but varying the agent’s starting location and the obstacles’ location in the labyrinth. In

each maze, the percentage of available spaces is less than the space occupied by blocks.

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Therefore, the agent is forced to take a different route each time for each added obstacle.

A random maze is considered solvable if the agent finds all target states within 3000 steps

when performing a random walk through the maze [46]. Thus, we use such solvable maze

problems in the experiments of this work.

Information Technology Engineer 37 Graduation Project

Chapter 5

Results and Discussion

This chapter presents the experimental and final results obtained by the system developed

in this project. The process in which the ESP266 chips communicate through the MQTT

broker will be shown so that independent agents (clients) the begins the Q-learning process

from its training phase to the exploitation phase.

5.1 MQTT communication

In real time running situations the control center is capable of distributing route maps to

the gents (clients) by using MQTT channels. The agents use this received route maps and

Q-learning, with C code embedded in each server (ESP8266), to find optimal routes by

themselves in a simulated city disaster. When required. the control center can ask the

clients to help in a concurrent, distributed manner, in finding independent, optimal routes

and transmit this clue information to the control center via MQTT.

Figure 5.1 shows a part of the HiveMQ broker window, where we can see that commu-

nication has been established between the three ESP8266 nodes, one of which is the server,

and the other two are clients.

The server starts by sending the map as a string to the two clients. Clients receive the

map and notify the server. Then, the map is stored to transform them into a matrix of

integers. This resulting matrix will be the R-matrix, which will represent a maze with its

respective reward and will be used in the Q-learning process.

38

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.1: Server-Clients communication.

5.2 Agents exploration

On the other hand, the clients start with the Q-learning development. This process is

reflected in the Arduino IDE consoles for each client.

In Figures (5.2-5.3), we can see the initialization of the Q-matrix and R-matrix matrices

and the reward coordinate, which is located in row 7 and column 14. From this point, the

clients start working and training by selecting an action randomly during 100 episodes.

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.2: Initial Q-matrix.

Figure 5.3: Initial R-matrix.

Figures (5.4-5.6) show gradual episodes of the Q-matrix that reflect the process where

the agent calculates the value of the reward and where the algorithm uses the Bellman

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

equation to update the values in the different states.

Figure 5.4: Q-matrix after few subsequent episodes.

Figure 5.5: Q-matrix after some subsequent episodes.

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.6: Q-matrix after many following episodes.

Finally, Figure 5.7 shows the Q-matrix stabilized after exploring new states and actions

to improve its value function estimates. Once all the training episodes have been completed,

the Q values converge to the optimal value we are looking for. Therefore, the next step to

take is the exploitation stage.

Figure 5.7: Q-matrix stabilized.

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.3 Agent exploitation

In this stage, the agents begin to exploit the information it has about the value functions.

First, clients load from their own memory the Q-matrix, as shown in Figure 5.8, which

stores a gradient that the agents use to search for optimal paths to the reward.

Figure 5.8: Q-matrix reading.

The agents then indicate possible routes to the target point from different locations.

Figures 5.9-5.11 show the coordinates of the paths traveled by an agent and then print the

maze representing the path taken by the agent. The labyrinth shows the accessible paths

with the symbol “*”, the obstacles with “-“, and the path of the agent with “@”.

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.9: A possible route to the reward from a random point 1.

Figure 5.10: A possible route to the reward from a random point 2.

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.11: A possible route to the reward from a random point 3.

5.3.1 Maze solutions

The clients notify the server and send the solutions of the mazes problems in a matrix form

through the MQTT broker, as seen in Figures 5.12-13.

Figure 5.12: Client 1 solution to a maze problem.

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.13: Client 2 solution to a maze problem

On the other hand, in the server serial monitor, we can see that it receives the solutions

sent by the clients (Figure 5.14).

Figure 5.14: Server serial monitor.

Information Technology Engineer 46 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

5.3.2 Agents Results

Figure 5.15 graphically shows typical results obtained from the agents. Of course, each

agent’s behavior may vary to find the best route. Moreover, these results may depend

on the training time taken by the agents; therefore, we will obtain better routes while

the training is greater. Furthermore, since we are talking about a simulation of a real-life

problem, it is necessary to have immediate solutions. In this case since the clients have

already found a Q-matrix that represents an optimal policy, the desired optimal path are

found rapidly and transmitted to the control center (sever) in a short time.

Figure 5.15: Agents response.

As can be seen, the IoT is the maximum representative of Concurrent Programming

and the future of technology that supports Artificial Intelligence to regulate and under-

stand things in a much stronger way. Offering the right mix of IoT hardware and software,

Arduino is an easy-to-use IoT platform. It operates through a series of hardware specifica-

tions that can be given to interactive electronics, such as the search for alternative routes

in this case.

Information Technology Engineer 47 Graduation Project

Chapter 6

Conclusions

A IoT system was built capable of interconnect a control center (server) and two route

finding agents (clients) through MQTT channels. The agents are capable of using Q-

learning to find optimal routes in a simulated city disaster. The agents can help in a

distributed manner to find optimal routes for the control center. The develop system is a

miniature of a real life situation where distributed agents can independently learn efficient

routes for a given maze, mimicking a big random interruption of roads in a city, and then

contribute with this information to a call center. In principle, since the utilized elements

are members of the internet of things IoT, many useful applications can be derived from

the methods established in this thesis.

One of the most relevant characteristics of creating modern distributed systems, such

as IoT, is that they are a way of designing high-tech equipment in all possible human,

network, industrial production, and scientific activities.

Integrated IoT platforms and tools are considered the most crucial component of the

IoT ecosystem. Any IoT device allows us to connect to other IoT devices and applications

to transmit information using standard Internet protocols.

Arduino, in particular, has a large set of easy-to-use, pre-built C routines that commu-

nicate with specialized Arduino modules, which in turn measure real-world variables like

humidity in agriculture or acceleration in robotics.

On the other hand, the MQTT broker is energy efficient and easy to implement. As a

result, data management can be carried out between millions of devices and from anywhere

in the whole world. Furthermore, MQTT in IoT uses QoS levels to ensure guaranteed

48

School of Mathematical and Computational Sciences Yachay Tech University

delivery of messages to receivers, even when connections between devices are unreliable.

Therefore, we agree that the contribution to the development of Smart Cities with the

methods used in this thesis is possible.

Information Technology Engineer 49 Graduation Project

Bibliography

[1] L. Tan and N. Wang, “Future internet: The internet of things,” in 2010 3rd inter-

national conference on advanced computer theory and engineering (ICACTE), vol. 5.

IEEE, 2010, pp. V5–376.

[2] D. A. Aziz, “Webserver based smart monitoring system using esp8266 node mcu mod-

ule,” International Journal of Scientific & Engineering Research, vol. 9, no. 6, pp.

801–808, 2018.

[3] E. Gamess, T. N. Ford, and M. Trifas, “Performance evaluation of a widely used

implementation of the mqtt protocol with large payloads in normal operation and

under a dos attack,” in Proceedings of the 2021 ACM Southeast Conference, 2021, pp.

154–162.

[4] L. Garćıa-Garćıa, J. M. Jiménez, M. T. A. Abdullah, and J. Lloret, “Wireless tech-

nologies for iot in smart cities,” Network Protocols and Algorithms, vol. 10, no. 1, pp.

23–64, 2018.

[5] S. R. Sulistiyanti, F. Setyawan, S. Purwiyanti, H. Fitriawan, and A. R. Adnan, “Moni-

toring and control system with a client-server model based on internet of things (iot),”

IIUM Engineering Journal, vol. 22, no. 1, pp. 93–102, 2021.

[6] E. Morales and J. González, “Reinforcement learning,” Presentacion En Linea

en: https://ccc. inaoep. mx/˜ emorales/Cursos/Aprendizaje2/Acetatos/refuerzo. pdf,

2012.

[7] M. A. Azar, J. L. Garćıa, S. Bernal, L. Aleman, and M. Tolaba, “Artificial intelligence

applied to iot,” in XXII Workshop de Investigadores en Ciencias de la Computación

(WICC 2020, El Calafate, Santa Cruz)., 2020.

50

School of Mathematical and Computational Sciences Yachay Tech University

[8] M. A. Azar, M. Tapia, J. L. Garćıa, and A. J. M. Pérez, “Artificial intelligence of

things,” in XXI Workshop de Investigadores en Ciencias de la Computación (WICC

2019, Universidad Nacional de San Juan)., 2019.

[9] S. Barroso, A. Sánchez, P. Núñez, B. Muriel, M. L. Bonilla, and P. B. G. de Castro,

“Experiences of a smart campus using artificial intelligence and iot to optimize water

consumption,” in Greencities, 11º Foro de Inteligencia y Sostenibilidad Urbana: Actas

del XI International Greencities Congress. Palacio de Ferias y Congresos de Málaga

(FCMA), 2021, pp. 213–231.

[10] E. Escribá Pina, “Reinforcement learning through deep learning for smart cities,”

Ph.D. dissertation, ETSI Informatica, 2021.

[11] A. S. Abdul-Qawy, P. Pramod, E. Magesh, and T. Srinivasulu, “The internet of things

(iot): An overview,” International Journal of Engineering Research and Applications,

vol. 5, no. 12, pp. 71–82, 2015.

[12] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,” The

internet society (ISOC), vol. 80, pp. 1–50, 2015.

[13] A. Polianytsia, O. Starkova, and K. Herasymenko, “Survey of hardware iot platforms,”

in 2016 Third International Scientific-Practical Conference Problems of Infocommu-

nications Science and Technology (PIC S&T). IEEE, 2016, pp. 152–153.

[14] F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems

Engineering, vol. 57, no. 3, pp. 221–224, 2015.

[15] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge comput-

ing in industrial internet of things: Architecture, advances and challenges,” IEEE

Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.

[16] M. Kusriyanto and A. A. Putra, “Weather station design using iot platform based on

arduino mega,” in 2018 International Symposium on Electronics and Smart Devices

(ISESD). IEEE, 2018, pp. 1–4.

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[17] T. A. Team, “Overview of the arduino ide 1: Arduino documentation.” [Online].

Available: https://docs.arduino.cc/software/ide-v1/tutorials/Environment

[18] M. A. Khan, M. A. Khan, S. U. Jan, J. Ahmad, S. S. Jamal, A. A. Shah, N. Pitropakis,

and W. J. Buchanan, “A deep learning-based intrusion detection system for mqtt

enabled iot,” Sensors, vol. 21, no. 21, p. 7016, 2021.

[19] D. Dinculeană and X. Cheng, “Vulnerabilities and limitations of mqtt protocol used

between iot devices,” Applied Sciences, vol. 9, no. 5, p. 848, 2019.

[20] F. Antonielli, “Development and comparison of mqtt distributed algorithms for

hivemq,” 2021.

[21] H. Koziolek, S. Grüner, and J. Rückert, “A comparison of mqtt brokers for distributed

iot edge computing,” in European Conference on Software Architecture. Springer,

2020, pp. 352–368.

[22] F. Telefónica, Smart Cities: a first step towards the internet of things. Fundación

Telefónica, 2011.

[23] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, and B. David, “A literature survey

on smart cities,” Science China Information Sciences, vol. 58, no. 10, pp. 1–18, 2015.

[24] F. A. R. Handbook, “Alternate route handbook,” Federal Highway Administration,

US Department of Transportation, 2006.

[25] R. R. Rout, S. Vemireddy, S. K. Raul, and D. Somayajulu, “Fuzzy logic-based

emergency vehicle routing: An iot system development for smart city applications,”

Computers Electrical Engineering, vol. 88, p. 106839, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0045790620306935

[26] J. Barrachina, P. Garrido, M. Fogue, F. J. Martinez, J.-C. Cano, C. T. Calafate, and

P. Manzoni, “Reducing emergency services arrival time by using vehicular communi-

cations and evolution strategies,” Expert Systems with Applications, vol. 41, no. 4, pp.

1206–1217, 2014.

Information Technology Engineer 52 Graduation Project

https://docs.arduino.cc/software/ide-v1/tutorials/Environment
https://www.sciencedirect.com/science/article/pii/S0045790620306935

School of Mathematical and Computational Sciences Yachay Tech University

[27] H. S. Oluwatosin, “Client-server model,” IOSR Journal of Computer Engineering,

vol. 16, no. 1, pp. 67–71, 2014.

[28] A. Alharin, T.-N. Doan, and M. Sartipi, “Reinforcement learning interpretation meth-

ods: A survey,” IEEE Access, vol. 8, pp. 171 058–171 077, 2020.

[29] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,” Adaptation, learning,

and optimization, vol. 12, no. 3, p. 729, 2012.

[30] M. N. Cansado, A. S. Morillas, and D. M. Sastre, “Pavlov’s principles of classical

conditioning in the creative advertising strategy,” Opción, vol. 31, no. 2, pp. 813–831,

2015.

[31] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is q-learning provably efficient?”

Advances in neural information processing systems, vol. 31, 2018.

[32] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q-learning in continuous state and

action spaces,” in Australasian joint conference on artificial intelligence. Springer,

1999, pp. 417–428.

[33] M. Lee, “Reinforcement learning,” Apr 2005. [Online]. Avail-

able: https://web.archive.org/web/20090806064734/http:/www.cs.ualberta.ca/
∼sutton/book/ebook/node7.html

[34] F. Garcia and E. Rachelson, “Markov decision processes,” Markov Decision Processes

in Artificial Intelligence, pp. 1–38, 2013.

[35] M. L. Puterman, “Markov decision processes,” Handbooks in operations research and

management science, vol. 2, pp. 331–434, 1990.

[36] M. Jones and M. M. Peet, “Extensions of the dynamic programming framework: Bat-

tery scheduling, demand charges, and renewable integration,” IEEE Transactions on

Automatic Control, vol. 66, no. 4, pp. 1602–1617, 2020.

[37] ——, “A generalization of bellman’s equation with application to path planning, ob-

stacle avoidance and invariant set estimation,” Automatica, vol. 127, p. 109510, 2021.

Information Technology Engineer 53 Graduation Project

https://web.archive.org/web/20090806064734/http:/www.cs.ualberta.ca/~sutton/book/ebook/node7.html
https://web.archive.org/web/20090806064734/http:/www.cs.ualberta.ca/~sutton/book/ebook/node7.html

School of Mathematical and Computational Sciences Yachay Tech University

[38] L. L. Lozano, “Aprendizaje por refuerzo elementos básicos y algoritmos.”

[39] E. Even-Dar, Y. Mansour, and P. Bartlett, “Learning rates for q-learning.” Journal of

machine learning Research, vol. 5, no. 1, 2003.

[40] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3, pp. 279–

292, 1992.

[41] D. Pandey and P. Pandey, “Approximate q-learning: An introduction,” in 2010 second

international conference on machine learning and computing. IEEE, 2010, pp. 317–

320.

[42] T. Horiuchi, A. Fujino, O. Katai, and T. Sawaragi, “Fuzzy interpolation-based q-

learning with continuous states and actions,” in Proceedings of IEEE 5th International

Fuzzy Systems, vol. 1. IEEE, 1996, pp. 594–600.

[43] T. Tompa and S. Kovács, “Q-learning vs. friq-learning in the maze problem,” in 2015

6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom).

IEEE, 2015, pp. 545–550.

[44] H. Sharma, A. Haque, and F. Blaabjerg, “Machine learning in wireless sensor networks

for smart cities: a survey,” Electronics, vol. 10, no. 9, p. 1012, 2021.

[45] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot: Applications, challenges,

and opportunities with china perspective,” IEEE Internet of Things Journal, vol. 1,

no. 4, pp. 349–359, 2014.

[46] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing exploration strate-

gies for q-learning in random stochastic mazes,” in 2016 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE, 2016, pp. 1–8.

Information Technology Engineer 54 Graduation Project

Appendices

55

School of Mathematical and Computational Sciences Yachay Tech University

.1 Appendix 1.

.1.1 Server

Send data mqtt server.ino

1 # include <ESP8266WiFi .h>
2 # include <PubSubClient .h>
3

4 // WiFi settings
5 # define wifi_ssid "NETLIFE - OFFLINE " // local router name
6 # define wifi_password " #1003432562. " // router

password
7

8 // MQTT setting
9 # define mqtt_server " broker . mqttdashboard .com"

10 # define mqtt_user "oscar"
11 # define mqtt_password "racso"
12 # define mqtt_port 1883
13 # define files 16
14 # define columns 16
15

16 // MQTT Topic to be suscribe
17 # define intopic " gissel " //
18 using std :: string ;
19 WiFiClient espClient ;
20 PubSubClient client ;
21

22 // Global variables
23 String command ;
24 // Maze matrix
25 String R="0,-1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,
26 0,-1,0,-1,-1,-1,-1,-1,-1,0,-1,-1,0,-1,-1,0,
27 0,-1,0,0,0,0,0,-1,-1,0,0,0,0,-1,-1,0,
28 0,-1,-1,-1,-1,0,-1,-1,-1,0,-1,-1,-1,-1,-1,0,
29 0,0,0,0,0,0,0,0,-1,0,-1,-1,-1,-1,-1,0,
30 -1,-1,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,
31 -1,0,0,0,0,0,-1,-1,0,-1,-1,0,-1,-1,0,0,
32 -1,0,-1,-1,-1,0,0,0,0,0,-1,0,0,0,100,0,
33 -1,0,-1,0,-1,0,-1,-1,-1,0,0,0,-1,0,-1,0,
34 -1,0,-1,0,-1,0,-1,-1,-1,-1,0,-1,-1,0,-1,0,
35 0,0,-1,0,-1,0,0,0,-1,-1,0,0,-1,0,-1,0,
36 -1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,
37 -1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,0,0,
38 -1,-1,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,

Information Technology Engineer 56 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

39 -1,-1,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,
40 0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0";
41

42 // --
43 void setup ()
44 {
45 Serial .begin (115200) ;
46 setup_wifi ();
47 client . setClient (espClient);
48 client . setServer (mqtt_server , mqtt_port);
49 client . setCallback (callback);
50 client . setBufferSize (1024) ;
51 }
52 // --
53 void setup_wifi ()
54 {
55 delay (10);
56 Serial . println ();
57 Serial .print(" Connecting to ");
58 Serial . println (wifi_ssid);
59 WiFi.begin(wifi_ssid , wifi_password);
60

61 while (WiFi. status () != WL_CONNECTED)
62 {
63 delay (500);
64 Serial .print("."); // here a time out could be

necesary
65 }
66 Serial . println ("");
67 Serial . println ("WiFi connected ");
68 Serial . println ("IP address : ");
69 Serial . println (WiFi. localIP ());
70 Serial . println (intopic);
71 }
72 // --
73 void reconnect () { // Loop until reconnection with Broker
74

75 while (! client . connected ()) {
76 Serial .print(" Intentando c o n e x i n Mqtt ...");
77 String clientId = " IOTICOS_H_W_ "; // Create a ID client
78 clientId += String (random (0 xffff), HEX);
79 // Trying to connect
80 if (client . connect (clientId .c_str (),mqtt_user , mqtt_password)) {
81 Serial . println (" Conectado !");

Information Technology Engineer 57 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

82 // Suscribe to broker
83 if(client . subscribe (intopic)){
84 Serial . println (" Suscripcion ok");
85 }else{
86 Serial . println ("fallo S u s c r i p c i i n ");
87 }
88 } else {
89 Serial .print(" f a l l :(con error -> ");
90 Serial .print(client .state ());
91 Serial . println (" Intentamos de nuevo en 5 segundos ");
92 delay (1000) ;
93 }
94 }
95 }
96

97 // ------------------------------------
98 void callback (char* topic , byte* payload , unsigned int length) {
99 Serial .print(" Mensaje recibido [");

100 Serial .print(topic);
101 Serial .print("] ");
102 String (receivedChar) = "";
103 for (int i = 0; i < length ; i++) {
104 receivedChar += (char) payload [i];
105 }
106 Serial . println (receivedChar);
107 }
108 // ------------------------------------
109 void loop ()
110 {
111 if (! client . connected ()) { reconnect ();}
112 int x= random (0 ,5);
113 int y= random (0 ,5);
114 // Publish the maze map in broker
115 String result =" Server : "+ R;
116 client . publish (intopic ,(char *) result .c_str ());
117

118 client .loop ();
119 delay (10000) ;
120 }

.1.2 Clients

Agent in maze.ino

Information Technology Engineer 58 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1 // Client
2

3 # include <ESP8266WiFi .h>
4 # include <PubSubClient .h>
5 #include < EEPROM .h>
6

7 # define relay 2 // pin al que se conecta el r e l o Led , para
este ejemplo (GPIO0)

8 # define wifi_ssid "NETLIFE - OFFLINE " // local router name
9 # define wifi_password " #1003432562. " // router

password
10 # define mqtt_server " broker . mqttdashboard .com"
11 # define mqtt_user " gissel "
12 # define mqtt_password "12345"
13 # define mqtt_port 1883
14 # define files 16
15 # define columns 16
16 # define intopic " gissel " //
17

18 WiFiClient espClient ;
19 PubSubClient client ;
20 String stack [256];
21

22 //Q- learning variables
23 int Q[files][columns];
24 int R[files][columns];
25 int a [256];
26 int i=0;
27 int currentState ;
28 int episode ;
29 int file_agent ; // file
30 int column_agent ; // column
31 int MAX;
32 int sensor [4];
33 int sample [4];
34 int grad_pointer ;
35 int maxQ;
36 char route[files][columns];
37 int peso;
38 int x_agent_pos , y_agent_pos ;
39 const float gamma1 = 0.8;
40 char temp [256];
41 char camino [256];
42 char str2 [256];

Information Technology Engineer 59 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

43 String cad;
44 String cad2;
45 String (receivedChar) = "";
46 String (command) = "";
47 // --
48 void setup ()
49 {
50 pinMode (relay , OUTPUT); // Blue LED in the board
51 digitalWrite (relay , HIGH);
52 Serial .begin (115200) ;
53 setup_wifi ();
54 client . setClient (espClient);
55 client . setServer (mqtt_server , mqtt_port);
56 client . setCallback (callback);
57 client . setBufferSize (1024) ;
58 }
59 // --
60 void setup_wifi ()
61 {
62 delay (10);
63 Serial . println ();
64 Serial .print(" Connecting to ");
65 Serial . println (wifi_ssid);
66

67 WiFi.begin(wifi_ssid , wifi_password);
68

69 while (WiFi. status () != WL_CONNECTED)
70 {
71 delay (500);
72 Serial .print("."); // here a time out could be

necesary
73 }
74 Serial . println ("");
75 Serial . println ("WiFi connected ");
76 Serial . println ("IP address : ");
77 Serial . println (WiFi. localIP ());
78 Serial . println (intopic);
79 }
80 // --
81 void reconnect () { // to connect with Broker
82 // Bucle hasta conseguir la r e c o n e x i n
83 while (! client . connected ()) {
84 Serial .print(" Intentando c o n e x i n Mqtt ...");
85 // Creamos un cliente ID

Information Technology Engineer 60 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

86 String clientId = " IOTICOS_H_W_ ";
87 clientId += String (random (0 xffff), HEX);
88 // Intentamos conectar
89 if (client . connect (clientId .c_str (),mqtt_user , mqtt_password)) {
90 Serial . println (" Conectado !");
91 // Nos suscribimos
92 if(client . subscribe (intopic)){
93 Serial . println (" Suscripcion ok");
94 }else{
95 Serial . println ("fallo S u s c r i p c i i n ");
96 }
97 } else {
98 Serial .print(" f a l l :(con error -> ");
99 Serial .print(client .state ());

100 Serial . println (" Intentamos de nuevo en 5 segundos ");
101 delay (1000) ;
102 }
103 }
104 }
105

106 // ------------------------------------
107 void callback (char* topic , byte* payload , unsigned int length) {
108 Serial .print(" Mensaje recibido [");
109 Serial .print(topic);
110 Serial .print("] ");
111 // String (receivedChar) = "";
112 // String (command) = "";
113 for (int i = 0; i < length ; i++) {
114 receivedChar += (char) payload [i];
115 }
116 // char *ret;
117 // ret = strcasestr (receivedChar , " server ");
118 // if(ret){
119

120

121 for (int i= receivedChar . indexOf (":")+2; i < length ; i++) {
122 command += (char) payload [i];
123 }
124

125 char str [1024];
126 strcpy (str ,(char *) command .c_str ());
127 char* token1 = strtok (str , ",");
128 while (token1 != NULL) {
129 if(i >=0){

Information Technology Engineer 61 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

130 a[i]= atoi(token1);
131 }
132 token1 = strtok (NULL , ",");
133 i++;
134 }
135 Serial .print("\ nSerial : Client 1: Received map! Starting to

train ...\n");
136 client . publish (intopic , " Client 1: Received map! Starting to

train ...");
137 delay (1000) ;
138

139 /* ******************* START ********************************* */
140 receive_data ();
141 delay (1000) ;
142 file_agent =0;
143 column_agent =0;
144 print_Q (); // Print initial Q and R matrix
145 print_R ();
146 client . publish (intopic , " Initialize ...");
147 // client .loop ();
148 delay (500);
149 explore ();
150 exploit ();
151

152 }
153

154 // ===
155 void explore (){ // loop
156

157 Q_explore ();
158 print_R ();
159 print_Q ();
160 Serial .print("\n--Ready to exploit --");
161 client . publish (intopic , " Client 1: Ready to exploit ");
162 delay (4000) ;
163 }
164 void exploit (){
165 load_Q ();
166 print_Q ();
167 max_Q ();
168 while (1){
169 Serial .print("\n--Ready to play --");
170 client . publish (intopic , " Client 1: Ready to play");
171

Information Technology Engineer 62 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

172 Q_player ();
173 delay (5000) ;
174 }
175 }
176

177 void loop (){
178

179 if (! client . connected ()) { reconnect ();}
180 Serial .print(" \ nBegins Q_learning ...");
181 // client . publish (intopic , "Hello ");
182 client .loop ();
183 delay (200);
184 }

Q structures lib.ino

1 void print_Q ()
2 {
3 int i,j;
4

5 Serial .print("\nThis is the Q Matrix :\n");
6 for(i = 0; i < files ; i++)
7 {
8 for(j = 0; j < columns ; j++)
9 {

10 // cout << setw (5) << Q[i][j];
11 Serial .print(Q[i][j]);
12 if(j < files - 1) Serial .print(" "); // separador de de

columnas
13 } // j
14 Serial .print("\n");
15 // cout << "\n";
16 } // i
17 // cout << "\n";
18 Serial .print("\n");
19 }
20 // --
21 void print_R ()
22 {
23 int i,j;
24

25 Serial .print("This is the R Matrix :\n \n");
26 for(i = 0; i < files; i++)
27 {

Information Technology Engineer 63 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

28 for(j = 0; j < columns ; j++)
29 {
30 Serial .print(R[i][j]);
31 // cout << setw (5) << R[i][j];
32 if(j < files - 1) Serial .print(" "); // separador de de

columnas
33 } // j
34 Serial .print("\n");
35 // cout << "\n";
36 } // i
37 // cout << "\n";
38 Serial .print("\n");
39 }
40 // --
41 void move_left (void)
42 {
43 int color ,temp;
44

45 if(column_agent >0) temp= R[file_agent][column_agent -1]; // lee a
izquierda

46 else return ; // goto scape;
47 if(temp >-1)
48 {
49 column_agent --;
50 }
51 // scape:
52 }
53 // --
54 void move_right (void)
55 {
56 int temp;
57 if(column_agent <15) temp= R[file_agent][column_agent +1];
58 else return ; // goto scape;
59 if(temp >-1)
60 {
61 column_agent ++;
62 }
63 // scape:
64 }
65 // ---
66 void move_up (void)
67 {
68 int temp;
69 if(file_agent >0) temp= R[file_agent -1][column_agent];

Information Technology Engineer 64 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

70 else return ;// goto scape;
71 if(temp >-1)
72 {
73 file_agent --;
74 }
75 // scape:
76 }
77 // ---
78 void move_down (void)
79 {
80 int temp;
81 if(file_agent <15) temp= R[file_agent +1][column_agent];
82 else return ;
83 if(temp >-1)
84 {
85 file_agent ++;
86 }
87 // scape:
88 }
89 // --
90 void Q_explore (){
91

92 int temp , explore_state ;
93 int i,j,k,timer;
94 float max1;
95 int initial_state ;
96

97

98 // randomize ();
99 episode =1;

100 do
101 {
102 do
103 {
104 i= random (files);
105 j= random (columns);
106 //i=2+ random (4);
107 //j=7+ random (5);
108 temp=R[i][j];
109 } while(temp == -1); // el agente se ubica en estado inicial

aleatorio con entrada diferente de -1
110

111 file_agent =i; // ubicamos al agente en la matriz
112 column_agent =j;

Information Technology Engineer 65 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

113

114 // file_agent =0; // ubicamos al agente en la matriz
115 // column_agent =0;
116

117 do
118 {
119 i= random (4); // el agente se mueve a un nuevo estado

aleatorio
120

121 if(i==0) move_left ();
122 if(i==1) move_right ();
123 if(i==2) move_up ();
124 if(i==3) move_down ();
125

126 search_for_MAX ();
127 max1=MAX;
128

129 Q[file_agent][column_agent]= R[file_agent][column_agent]+
gamma1 *max1;

130

131 // plot_maze ();
132 // plot_agent (); // sensor captures

color
133 delay (1);
134 timer ++;
135 // Serial .print(timer);
136 // getch ();
137 if(timer >310) break;
138 }while(i!=7 && j!=14); // hasta que capture recompensa

maxima
139

140 delay (200);
141

142 episode ++;
143 // system (" cls ");
144

145 if(timer <320) {
146 // system (" cls ");
147 // delay (500);
148 print_R ();
149 print_Q ();}
150 // Serial .print ("\ nEpisode : ");
151 // Serial .print(episode);
152 Serial .print("\n");

Information Technology Engineer 66 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

153 timer =0;
154 }while(episode <30); // 40
155

156 save_Q ();
157 }
158

159 // --
160 void search_for_MAX (void)
161 {
162 int i,j;
163 sensor [0]= Q[file_agent][column_agent -1]; // lee a izquierda
164 if(column_agent ==0) sensor [0]= -1; // desborde a la

izquierd
165

166 sensor [1]= Q[file_agent][column_agent +1]; // lee a derecha
167 if(column_agent == columns -1) sensor [1]= -1;
168

169 sensor [2]= Q[file_agent -1][column_agent]; // lee arriba
170 if(file_agent ==0) sensor [2]= -1;
171

172 sensor [3] = Q[file_agent +1][column_agent]; // lee abjo
173 if(file_agent == files -1) sensor [3]= -1;
174

175 MAX= sensor [0];
176 for(i=0;i <4;i++) if(sensor [i]>= MAX) {MAX= sensor [i]; grad_pointer =i

;} // grad_pointer apunta al maximo valor
177 // cout <<" MAX: "<< MAX <<endl;
178 }
179 // ------------------exploit --------------------
180 void get_gradient (void)
181 {
182 int i, center ;
183

184 // center = Q[file_agent][column_agent];
185 // cout <<" center "<< center <<endl;
186 //cout <<endl;
187

188 sample [0]= Q[file_agent][column_agent -1]; // lee a izquierda
189 if(column_agent ==0) sample [0]= -1;
190

191 sample [1]= Q[file_agent][column_agent +1]; // lee a derecha
192 if(column_agent == columns -1) sample [1]= -1;
193

194

Information Technology Engineer 67 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

195

196 sample [2]= Q[file_agent -1][column_agent]; // lee arriba
197 if(file_agent ==0) sample [2]= -1;
198

199 sample [3]= Q[file_agent +1][column_agent]; // lee abjo
200

201 if(file_agent == files -1) sample [3]= -1;
202

203 MAX= sample [0];
204 for(i=0;i <4;i++)
205 {
206 if(sample [i]>= MAX) {MAX= sample [i]; grad_pointer =i;}
207 }
208

209 }
210 // ---
211 void max_Q (){
212 int i,j,mayor , temp;
213

214 mayor = Q [0][0];
215 for(i=0;i <files ;i++)
216 {
217

218 for(j=0; j< columns ;j++)
219 {
220 temp=Q[i][j];
221 if(temp > mayor)
222 mayor = temp;
223 }
224

225 }
226 maxQ = mayor;
227 }
228

229 // --
230 void clean_Route (void)
231 {
232 int i,j,k;
233 for (j=0; j<files;j++)
234 for (i=0; i< columns ; i++)
235 {
236 route[j][i]=’*’;
237 }
238

Information Technology Engineer 68 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

239 }
240

241 // --
242 void plot_Route (void){
243 int i,j,sx ,sy ,x,y,color ,scale;
244 int temp , temp2;
245

246 char wall=’-’, floor=’*’, reward =’$’ ,way=’@’;
247

248

249 for(int i = 0; i < files; i++)
250 {
251 for(j = 0; j < columns ; j++)
252 {
253 if (i== x_agent_pos && j== y_agent_pos)
254 R[i][j]= Q[x_agent_pos][y_agent_pos];
255 if(R[i][j]!=0) route[x_agent_pos][y_agent_pos]= way

;
256

257 if(R[i][j]<0) route[i][j]= wall; // WALL
258 if(R[i][j]==0) route[i][j]= floor; //

FLOOR
259 if(R[i][j]==1000) route[i][j]= reward ; //

REWARD
260

261 } // j
262

263 } // i
264

265 // memset (route , 0, sizeof (route));
266 }
267 // ---
268 void print_Route (void){
269

270 int i,j, k;
271

272 k=0;
273 Serial .print("This is the Route Matrix :\n \n");
274 for(i = 0; i < files; i++)
275 {
276 for(j = 0; j < columns ; j++)
277 {
278 temp[k]= route[i][j];
279 k++;

Information Technology Engineer 69 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

280 Serial .print(route[i][j]);
281 // cout << setw (5) << R[i][j];
282 if(j < files - 1) Serial .print(" "); // separador de de

columnas
283 } // j
284 Serial .print("\n");
285 // cout << "\n";
286 } // i
287 // cout << "\n";
288 Serial .print("\n");
289

290

291

292 }
293 // ---
294

295 void Q_player (void)
296 {
297 int i,j,k;
298 int max1 ,temp;
299 int initial_state , next_state ;
300

301

302 // randomize ();
303 do
304 {
305 do
306 {
307 i= random (files);
308 j= random (columns);
309 temp=Q[i][j];
310

311 } while(temp ==0); // buscamos sitios alejados de la
recompensa

312

313

314

315 file_agent =i;
316 column_agent =j;
317 // String result = "\ nClient 1: (" + String (file_agent)+" ,"+

String (column_agent)+") ";
318 // Serial .print(result);
319 // client . publish (intopic ,(char *) result .c_str ());
320

Information Technology Engineer 70 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

321 Serial .print("\npeso: ");
322 Serial .print(Q[file_agent][column_agent]);
323 Serial .print(", File agent: ");
324 Serial .print(file_agent);
325 Serial .print(", Column agent: ");
326 Serial .print(column_agent);
327

328 delay (300);
329

330 do{
331

332 get_gradient ();
333 if(grad_pointer ==0) column_agent = column_agent -1;
334 if(grad_pointer ==1) column_agent = column_agent +1;
335 if(grad_pointer ==2) file_agent =file_agent -1;
336 if(grad_pointer ==3) file_agent = file_agent +1;
337

338 x_agent_pos = file_agent ;
339 y_agent_pos = column_agent ;
340

341 Serial .print("\npeso: ");
342 Serial .print(Q[file_agent][column_agent]);
343 Serial .print(", File agent: ");
344 Serial .print(file_agent);
345 Serial .print(", Column agent: ");
346 Serial .print(column_agent);
347 // result = "\ nClient 1: (" + String (file_agent)+" ,"+ String (

column_agent)+") ";
348 // Serial .print(result);
349 // client . publish (intopic ,(char *) result .c_str ());
350

351 delay (400);
352 plot_Route ();
353

354 }while(Q[file_agent][column_agent]!= maxQ);
355

356 Serial .print("\nOne problem solved !\n");
357

358

359 // system (" cls ");
360 print_Route ();
361 print_route_mqtt ();
362 clean_Route ();
363 // print_Q ();

Information Technology Engineer 71 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

364 break;
365

366 } while (1);
367 }

Manage data.ino

1 void receive_data (){
2

3 int k=0;
4 for (int i=0; i<files; i++){
5 for (int j=0; j< columns ; j++){
6 R[i][j]= a[k];
7 k++;
8 // delay (100);
9 }

10 }
11 }
12

13 void print_route_mqtt (){
14

15 for (i =0;i <256;i++){
16

17 if(temp[i]== ’-’){
18 camino [i]=’-1’;}
19 else if(temp[i]== ’*’){
20 camino [i]=’0’;}
21 else if(temp[i]== ’@’){
22 camino [i]=’5’;}
23 }
24 char temp3 [256];
25 for (i =0;i <256;i++){
26 temp3[i]= camino [i];
27 }
28 cad= String (temp3);
29 cad2= String (temp);
30 String resp="Sol. Client 1:" + cad2;
31 String resp2="Sol2. Client 1:" + cad;
32 // Serial .print ("\n");
33 // Serial .print(cad);
34 // Serial .print ("\n");
35 // Serial .print(cad2);
36 Serial .print("\nDone\n");
37 client . publish (intopic , (char *) resp.c_str ());

Information Technology Engineer 72 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

38 client . publish (intopic , (char *) resp2.c_str ());
39 delay (3000) ;
40 }

read write Q matrix.ino

1 // ------------------------------------
2 // write in prom routine
3 // save weights in prom
4 // ------------------------------------
5 void save_Q ()
6 {
7 int i,k;
8 int eeAddress = 0;
9 float femp =0.0;

10 EEPROM .begin (4096) ; // t a m a o maximo 4096 bytes
11 for (k=0; k<files; k++){
12 for (i=0; i< columns ; i++)
13 {
14 EEPROM .put(eeAddress , Q[k][i]);
15 // EEPROM .put(eeAddress , femp);
16 // femp=femp +0.1;
17 eeAddress += sizeof (float);
18 Serial .print(Q[k][i]);
19 if(i < files - 1) Serial .print(" ");
20 delay (10);
21 }
22 Serial .print("\n");
23 }
24 Serial .print("\n");
25

26 EEPROM . commit ();
27 Serial . println (" escritura de Q matrix lista");
28 }
29 // ---
30 void load_Q ()
31 {
32 int i,k;
33 int eeAddress = 0;
34 EEPROM .begin (4096) ;
35 for (k=0; k<files; k++)
36 for (i=0; i< columns ; i++)
37 {
38 EEPROM .get(eeAddress , Q[k][i]);

Information Technology Engineer 73 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

39 eeAddress += sizeof (float);
40 // Serial . println (Q[k][i]);
41 delay (3);
42 }
43 Serial . println (" lectura de Q matrix lista");
44 }

Information Technology Engineer 74 Graduation Project

	=Dedication
	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Internet of things (IoT)
	Technology and Platforms for the Internet of Things
	Node MCU ESP8266
	Arduino IDE
	MQTT
	HiveMQ

	Smart Cities
	Alternate emergency routes
	Emergency vehicle routing

	Distributed processing system
	Client-Server Model

	State of the Art
	Reinforcement learning
	Exploration and exploitation

	Markov Decision Processes (MDP)
	Reward Models

	Agent
	Policy
	State-value function
	Action-value function

	Bellman equation
	Bellman's equation for state-value function (V)
	Bellman's equation for action-value function (Q)
	Optimal bellman equation

	Q-learning
	Maze problem

	Methodology
	Phases of Problem Solving
	Description of the Problem
	Analysis of the Problem
	Implementation
	Testing

	Model Proposal
	Environment
	Q-learning

	Experimental Setup

	Results and Discussion
	MQTT communication
	Agents exploration
	Agent exploitation
	Maze solutions
	Agents Results

	Conclusions
	Bibliography
	Appendices
	Appendix 1.
	Server
	Clients

		2023-02-09T19:05:53-0500
	GISSEL VANESSA CABASCANGO ANRANGO

		2023-02-09T19:06:54-0500
	GISSEL VANESSA CABASCANGO ANRANGO

