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a los amigos/as de la carrera de matemáticas, especialmente a Guido y Naomi por su
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Resumen

Los procesos Gaussianos profundos (DGPs) se representan jerárquicamente mediante una

composición secuencial de procesos Gaussianos a prior, y son equivalentes a una red neu-

ronal multicapa (NN) de ancho infinito. Los DGPs son modelos estad́ısticos no paramétricos

y se utilizan para caracterizar los patrones de sistema no lineales complejos, por su flexibil-

idad, mayor capacidad de generalización, y porque proporcionan una forma natural para

hacer inferencia sobre los parámetros y estados del sistema. En este art́ıculo se propone

una estructura Bayesiana jerárquica para modelar los pesos y sesgos de la red neuronal

profunda, se deduce una formula general para calcular las integrales de procesos Gaus-

sianos con densidades de transferencias no lineles, y se obtiene un núcleo para estimar

las funciones de covarianzas. Para ilustrar la metodoloǵıa se realiza un estudio emṕırico

analizando una base de datos de electroencefalogramas (EEG) para el diagnóstico de la

enfermedad de Alzheimer. Adicionalmente, se estiman los modelos DGPs, y se comparan

con los modelos de NN para 5, 10, 50, 100, 500 y 1000 neuronas en la capa oculta, con-

siderando dos funciones de transferencia: Unidad Lineal Rectificada (ReLU) y tangenge

hiperbólica (Tanh). Los resultados demuestran buen desempeño en la clasificación de las

señales. Finalmente, utilizó como medida de bondad de ajuste el error cuadrático medio

para validar los modelos propuestos, obteniéndose errores de estimación bajos.

Palabras Clave: Procesos Gausianos Profundos; Enfermedad de Alzheimer;

Electroencefalogramas.

ix



School of Mathematical and Computational Sciences Yachay Tech University

Mathematician x Graduation Project



Abstract

Deep Gaussian Processes (DGPs) are hierarchically represented by a sequential composi-

tion of a prior Gaussian processes and are equivalent to a multi-layer neural network (NN)

of infinite width. DGPs are non-parametric statistical models and are used to characterize

patterns of complex nonlinear systems, due to their flexibility, greater generalization ca-

pacity, and because they provide a natural way to make inferences about the parameters

and states of the system. In this article, a hierarchical Bayesian structure is proposed

to model the weights and biases of a deep neural network, a general formula is deduced

to calculate the integrals of Gaussian processes with non-linear transfer densities, and a

kernel is obtained to estimate the covariance functions. To illustrate the methodology, an

empirical study is carried out analyzing a database of electroencephalograms (EEGs) for

the diagnosis of Alzheimer’s disease. Additionally, the DGPs models are estimated, and

compared with the NN models for 5, 10, 50, 100, 500, and 1000 neurons in the hidden layer,

considering two transfer functions: Rectified Linear Unit (ReLU) and hyperbolic Tangent

(Tanh). The results show good performance in the classification of the signals. Finally, the

mean square error was used as a goodness of fit measure to validate the proposed models,

obtaining low estimation errors.

Keywords: Deep Gaussian Process; Neuronal Networks, Alzheimer Disease;

Electroencephalogram.
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Chapter 1

Introduction

1.1 Background

Supervised learning has received great attention in recent times due to its multiple ap-

plications in science, engineering and industry. Among them, classification tasks using

Gaussian Processes (GP) have become popular because of the ease with which calculations

can be performed in the Gaussian framework, and because of the flexibility with which they

can be used for these tasks. In general, deep machine learning systems are computational

algorithms that provide powerful modern tools that allow the use of mathematical models

including multiple intermediate layers at different levels combined with transfer functions

with non-linear structures [1]. Neural networks are machine learning models that have

received a lot of attention in recent years due to their success in many real-world appli-

cations: they have been used very frequently in filtering content on social networks, in

natural language processing, pattern recognition in Big data, tracking objects in sequence

of images or videos, face and voice recognition, human mobility, mass information dissem-

ination in networks, in electronic commerce and in classification of relevant information,

among many other applications such as in [2], [3] and [4].

A Gaussian process is a generalization of the Gaussian probability distribution. Math-

ematically, these models may appear to be complex. It is precisely within the framework

of the Gaussian process that it unites a sophisticated and consistent view with computa-

tional manageability [5]. The constant search for probabilistic models best fits the data in

1
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terms of accuracy. DGPs result from this search, combining Bayesian inference with ran-

dom processes. In practical terms, DGPs constitute a model used for specific conditions.

Being a deep model, it has structural advantages that can improve learning about complex

or functional data linked to abstract information extraction. The data needed to train the

DGP is directly related to its depth. It is interesting to analyze how this model behaves

in practice when the amount of data used is modified.

1.2 Problem statement

Bayesian inference is an alternative to conventional training for neural networks with ad-

vantages that include the automatic determination of the appropriate degree of ”regulariza-

tion”, the quantification of the uncertainty in predictions, and the possibility of comparison

with other models. Consider a deep fully-connected neural network with i.i.d. random pa-

rameters. Each scalar output of the network, an affine transformation of the final hidden

layer, will be a sum of i.i.d. terms. As we will discuss in detail below, in the limit of infi-

nite width the Central Limit Theorem implies that the function computed by the neural

network (NN) is a function drawn from a (GP). In the case of single hidden-layer networks,

the form of the kernel of this GP is well known. This correspondence implies that if we

choose the hypothesis space to be the class of infinitely wide neural networks, an i.i.d. prior

over weights and biases can be replaced with a corresponding GP prior over functions. As

noted by [6] and [7], this substitution enables exact Bayesian inference for regression using

neural networks. The Deep Gaussian Process (DGP) models can be used for classification

and regressions tasks [8] demonstrated that deep ensembles provide an effective mechanism

for estimating the marginal distributions. They also investigated priors on the considered

functions by defining vague priors on the neural network weights; in addition, they demon-

strate properties, generalize the models from a probabilistic perspective, and obtain results

equivalent to those reproduced using a GP [5].

In this work, a combined technique of Gaussian processes with neural network models

is used, following the approach outlined by: GPs are used to model functional data be-

cause they are flexible, robust to outliers, and provide an estimate of calibrated uncertainty.

Mathematician 2 Graduation Project
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Deep Gaussian Processes are a generalization of a multi layer neural network viewed as a

GP in the limit width. Also, a theoretical proof of the equivalence between GP and NN

in width limit. The pertinent mathematical details of the theorem that states this equiv-

alence will be provided. Later, a public dataset will be used to experimentally validate

this result. Models of both types will be created and their behavior will be analyzed. In

the same way that Roman, et al. (2022) [9] proposed a probabilistic model to classify

EGG signals, in this work we also add the theory support of the DGP model giving the

mathematical fundamentals.

1.3 Objectives

To design and to provide a supervised learning model based on Bayesian training using

Gaussian Process theory. Give the mathematical details about the proposed bayesian hier-

archical model step by step. Also, training this model using a dataset to classify Alzheimer’s

test signals, and measure its performance. In these tasks, two kinds of classification models

are used: Gaussian Process and Artificial Neuronal Networks.

1.3.1 General Objective

Demonstrate the exact equivalence between infinitely wide neural networks and Gaussian

Process over functions and some assumptions. In the computational context, we will prove

the proposed model accuracy with EGG signal classification tasks. In this way, experiments

were made with different kinds of wide neural networks to test the hypothesis.

1.3.2 Specific Objectives

• Review the most important theorems which build the mathematical background be-

hind Bayesian training in Deep Gaussian Process.

• To compute the integrals of Gaussian processes for sigmoid functions with non-linear

structures, and obtain a kernel to update the covariance functions.

• Testing all models accuracy to prove the equivalence between DGP and NN using

different metrics for the goodness of fit.

Mathematician 3 Graduation Project
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• To measure the classification of EGG signals to determine the models performance

for this kind of tasks.

1.4 Justification

The study of probabilistic models for classification tasks is highly interesting to the scien-

tific community. Although the theoretical development was decades ago, modern computa-

tional power allows the training of these models [10]. There are various types of Gaussian

process models and architectures. These vary in the number of random variables, the type

of adjustment of the hyperparameters, and dimension. Each model can be adjusted to

a type of data according to the problem to be solved. One of the great advantages of

GPs over traditional machine learning models is Bayesian inference [11]. Therefore, we

can include prior information as bayesian theory says. The rest of the models are fitted to

the data by identifying patterns in the information held. Some scenarios are consider for

model parameters, such as changing the type of weight distribution, activation function,

and dataset size. This work proposes a further comparison between several machine learn-

ing models and a type of Gaussian Process.

The main contribution of this study is to analyze the DGP performance against the neural

networks. The comparison is measured by the accuracy of the models when performing

the EEG signal classification task. We include the new parameters for bias and weights

of the DGP in order to measure the performance and accuracy. Also, a new formula for

estimation of the kernel DGP, under the proposed assumptions, is given in detail and a

numeric method is suggested. Later, we review a complete mathematical aspects to explain

the exact bayesian equivalence between NN and DGP. In this way, we build an alternative

model that can be used in regression and classification tasks, such as in the detection of

Alzheimer’s diseases.

The results of this research explicitly show the good behavior of the DGP model for

this type of problem. In addition, the comparison of the models for each change made

is explained in detail. Furthermore, an equivalence between neural networks and Gaussian

Mathematician 4 Graduation Project
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processes is detailed in the theoretical part. Mathematical development is given that al-

lows us to see the equivalence of these models under certain conditions. In addition, the

theorem that evidences this relationship is proved. In this way, the practical results should

be similar, which is what is shown later in this work.

Mathematician 5 Graduation Project
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Chapter 2

Theoretical Framework

2.1 Artificial Neural Networks

Mathematically, an artificial neural network can be defined as a directed graph with ver-

tices representing neurons and edges representing connections. The input of each neuron is

a function of a weighted sum of the output of all neurons that are connected by their edges

to the input. There are many variants of neural networks that differ by their architecture.

The simplest of these forms is the forward neural network, which is also known as a is the

percetron neural network [12], [13] and [14].

Deep neural networks compose computations performed by many layers. Denoting the

output of hidden layers by h
(l)
i , where l ∈ {1, . . . , L}, i ∈ {1, . . . , Nl} denote the indices of

the neuron within the layer that receives the information from the neurons of the previous

layer h
(l−1)
j , j ∈ {1, . . . , Nl−1}. The output j represented by the j−th neuron in the output

layer, is connected to the input vector x via a biased weighted sum and an non-linear

activation function ϕ. The j−th component of the network output, h
(l)
j , is computed as:

h
(l)
j (x) = ϕ

(
z

(l−1)
i (x)

)
(2.1)

where:

z
(l)
i (x) = b

(l)
i +

Nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x) (2.2)

For convenience, the parameters of the neural network are combined into a vector of

7
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parameters θ =
(
b(1), W (1), . . . , b(L), W (L)

)
and input data h(0) = x = (1, x1, . . . , xNl

). Deep

neural networks compose computations performed by many layers. The computation for a

network with L hidden layers is:

ŷ = f

h(L)

z(L)

h(L−1)

. . . z(2)

h(2)
(

z(1)
(

h(1)
(
z(0)

)))



 (2.3)

When L is large it is called a deep neural network, and each pre-activation function z(L)(x)

is typically a linear operation with matrix W (L) and bias b(L), which can be combined with

the parameters θ [15], [7] and [16]. An architecture of a feed-forward neural network with

L hidden layers is shown in Figure 1.

Figure 2.1: An architecture of a feed-forward neural network with l hidden layers.

2.2 Gaussian processes

Assume we have access to a training dataset of n input-output observations

D =
{
(xi, yi) : i = 1, . . . , n

}
(2.4)

Mathematician 8 Graduation Project
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yi is assumed to be a noisy realisation of an underlying latent function f = f(x), i.e.

yi = f(xi) + ϵi, ϵi ∼ N(µ, σ2
ϵ ) (2.5)

where xi ∈ Rq and yi ∈ R. The mean of the likelihood is assumed to be input dependent

and given a GP prior µ = fi = f(xi).

The interest consists in estimating the function f , which in general is nonlinear. GPs pro-

vide a natural way to make inferences about these functions as Rasmussen and Williams

explained at [17]. The GP defines a distribution over functions and can be seen as an

extension of the multivariate Gaussian distribution. By definition, a stochastic process is a

set of random variables {f(x) : x ∈ X }, indexed by a set, X . A GP is a stochastic process

such that for any finite set of function evaluations, f(x) =
(
f(x1), . . . , f (xn)

)T , where f

is multivariate Gaussian distributed. [18] wrote that for any finite set of elements drawn

from X , f is a GP described by a mean, m(.), and covariance function, K(., .), which we

write as:

f(x) ∼ GP
(
m(x), K (x, y)

)
(2.6)

where

m(x) = E
[
f(x)

]
, K

(
xi, xj

)
= E

{[
f(xi) − m(xi)

] [
f(xj) − m(xj)

]}
(2.7)

m : X → R, and K(., .) : X × X → R (2.8)

Let Xnew be a matrix with on each row a new input point xnew
i , i = 1, . . . , n. To sample

a function, we first compute the covariances between all inputs in Xnew = (xnew
1 , . . . , xnew

n )

Mathematician 9 Graduation Project
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and collect these in an n × n matrix:

K (Xnew, Xnew) =



k (xnew
1 , xnew

1 ) . . . k (xnew
1 , xnew

n )

k (xnew
2 , xnew

1 ) . . . k
(
xnew

2 , (xnew
n

)
... ... ...

k (xnew
n , xnew

1 ) . . . k (xnew
n , xnew

n )


Choosing the usual prior mean function m(x) = 0 to simplify the matrix, we can then

sample values of f at inputs Xnew from the GP by sampling from a multivariate normal

distribution:

fnew =
(
f (xnew

1 ) , . . . , f (xnew
n )

)T
The joint distributionp(f, fnew) is given by:

 f

fnew

 ∼ N


 m(X)

m(Xnew)

 ,

 K (X, X) K (X, Xnew)

K (Xnew, X) K (Xnew, Xnew)




where K(X, X), represents the kernel evaluated at X, K(Xnew; Xnew) is the covariance

matrix between the new points, K (X, Xnew) is the covariance matrix between the observed

points and the new values, and K(Xnew; X) is the covariance matrix between the new points

and the observed points. The mean function can be any function, but the covariance

function must be positive definite, that is

∑
j

∑
i

viK(xi, xj)vj ≥ 0, for all vi, xi (2.9)

To complete the specification of the prior we need to specify the mean and covariance func-

tions. Any positive definite covariance function can be chosen; for K(., .) are the following,

see Table 1:

The distribution predicted by the GP can be determined by the conditional rules of mul-

Mathematician 10 Graduation Project
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Kernel K (x, y)
Exponential σ2 exp

(
− |x−y|

l

)
Squared Exponential σ2 exp

(
−1

2
|x−y|2

l2

)
Matérn σ2 21−ν

Γ(ν)
(

|x−y|
l

)ν
κν

(
|x−y|

l

)
Brownian Motion min (x, y)

Table 2.1: Covariance functions

tivariate Gaussian distribution:

fnew|f, X, y ∼ N
(
E (fnew) ,Cov (fnew)

)
(2.10)

where

E (fnew) = m (Xnew) + K (Xnew, X) K−1 (X, X)
[
f − m (X)

]
(2.11)

and

Cov (fnew) = K (Xnew, Xnew) − K (Xnew, X) K−1 (X, X) K (X, Xnew)

For a Gaussian likelihood:

yi = f(xi) + ϵi , ϵi ∼ N
(
0, σ2

ϵ

)
, y|f ∼ N

(
f(xi), σ2

ϵ I
)

(2.12)

where I is the identity matrix. The noise can be included in the covariance function, as

follows:

K
(
f(xi), f(xj)

)
= K

(
xi, xj

)
+ δijσ

2
ϵ (2.13)

where δij is the Kronecker delta, and σ2
ϵ is the noise variance between layers.

The uncertainty is now present in the observations, and the joint distribution over the

Mathematician 11 Graduation Project
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unknown data and the known data is augmented in the covariance equation by

 f

fnew

 ∼ N


 m (X)

m(Xnew)

 ;

 K (X, X) + σ2
ϵ I K (X, Xnew)

K (Xnew, X) K (Xnew, Xnew)




The marginal distribution is given by

fnew|Xnew, X, f ∼ N
(
E (ynew) ,Cov (ynew)

)
(2.14)

where

E (ynew) = m (Xnew) + K (Xnew, X)
(
K (X, X) + σ2

ϵ I
)−1 [

y − m (X)
]

and

Cov (ynew) = K (Xnew, Xnew) − K (Xnew, X)
(
K (X, X) + σ2

ϵ I
)−1

K (X, Xnew)

In this case the integrals required to infer a posterior, p
(
fnew|Xnew, X, f

)
, are tractable.

2.3 Deep Neural Networks and Gaussian Processes

In this section, we consider fully-connected ANNs with layers numbered from l = 0 (imput)

to l = L − 1 (output), each containing, N0, . . . , NL−1 neurons, and with a Lipschitz, twice

differentiable nonlinearity activation function ϕ : R → R, with bounded second derivative.

For each x ∈ Rdin denote the imput to the network (x = (x1, . . . , xdin
)), and z(l) ∈ Rdout

denote its output. We use z
(l)
i (x), h

(l)
i (x) to represent the pre- and post-activation functions

at layer l with input x, also, let h
(0)
i = x. The parameters consist of the connection matrices

W
(l)
ij ∈ RNl×Nl+1 and bias vectors b

(l)
i ∈ RNl+1 for l = 0, . . . , L − 1; which are independent

and randomly selected, with zero mean and variances σ2
w

Nl
, and σ2

b , respectively.

Now we are going to establish the relationship between a single-hidden layer neural net-

works, and Gaussian processes. Suppose that z
(l)
j (x) is a Gaussian process with mean and
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covariance functions µ(l)(x), K(l)(x, x′), respectively, i.e.

z
(l)
j (x) =

z
(l)
j (x)

z
(l)
j (x′)

 ∼ GP
(

µ(l)(x), K(l)
(
x, x′

))

where

µ(l)(x) = E
{

z(l)
j (x)

}
=

µ(x)

µ(x′)


and

K = K(l)
(
x, x′

)
= Cov

{
z

(l)
j (x), z

(l)
j (x′)

}
=

K(l−1)(x, x) K(l−1)(x, x′)

K(l−1)(x′, x) K(l−1)(x′, x′)


The i−th component of the network output, z

(1)
i , is computed as:

z
(1)
i (x) = b

(1)
i +

N1∑
j=1

W
(1)
ij h

(1)
j (x), h

(1)
j (x) = ϕ

b
(0)
j +

din∑
k=1

W
(0)
ij xk

 (2.15)

Note that there is a dependency on the input data vector x, and also since the weight and

bias are considered i.i.d., the post-activations h
(1)
j and h

(1)
k are independent for j ̸= k. Also,

z
(1)
i (x) is a sum of i.i.d terms, it follows from the Central Limit Theorem that in the limit

of infinite width N1 → ∞, z
(1)
i (x) will be Gaussian distributed, Lee, et. al (2018).

Suppose that z
(l)
j (x) is a Gaussian processes, i.i.d for every j, and that h

(l)
j (x), also are

independent and identically distributed. Then after l − 1 steps, the recurrence relation for

a feedforward network is defined as

z
(l)
i (x) = b

(l)
i +

Nl∑
j=1

W
(l)
ij h

(l)
j (x), h

(l)
j (x) = ϕ

(
z

(l−1)
j (x)

)
(2.16)

Prior on weights:

b
(l)
j |σ2

b ∼ N
(
0, σ2

b

)
, W

(l)
ij |ΣW ∼ N (0, ΣW ) (2.17)
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Prior on hyperparameters:

σ2
b |α, β ∼ IG (α, β) ΣW |ν, R ∼ IG (ν, R) (2.18)

Note, z
(l)
i (x) is a sum of i.i.d. random terms so that, as Nl → ∞, any finite collection

{z
(l)
i (x), l = 1, . . . , L} will have joint multivariate Gaussian distribution, i.e,

z(l)
i (x) ∼ GP (µ(l)(x), K(l)

(
x, x′

)
), z(l)

i (x) =
(

z
(l)
i (x1), . . . , z

(l)
i (xn)

)
(2.19)

A general equation is now established to approximate the covariance for a bivariate Gaus-

sian process:

K(l)
(
x, x′

)
= E


[
z

(l)
i (x) − E

(
z

(l)
i (x)

)] [
z

(l)
i (x′) − E

(
z

(l)
i (x′)

)]
= E


b

(l)
i +

Nl∑
j=1

W
(l)
ij h

(l)
j (x)

 b
(l)
i +

Nl∑
j=1

W
(l)
ij h

(l)
j (x′)


= σ2

b + ΣW

Nl∑
j=1

E
[
h

(l)
j (x)h(l)

j (x′)
]

= σ2
b + ΣW

Nl∑
j=1

E
[
ϕ
(

z
(l−1)
j (x)

)
ϕ
(

z
(l−1)
j (x′)

)]
(2.20)

where the calculation of the expectation is a two dimensions Gaussian integral:

E
(

ϕ
(

z
(l−1)
j (x)

)
ϕ
(

z
(l−1)
j (x′)

))
=
∫ ∞

−∞

∫ ∞

−∞
ϕ
(

z
(l−1)
j (x)

)
ϕ
(

z
(l−1)
j (x′)

)
× p

(
z

(l−1)
j (x), z

(l−1)
j (x′)

)
× dz

(l−1)
j (x)dz

(l−1)
j (x′) (2.21)

Since:  z
(l)
j (x)

z
(l)
j (x′)

 ∼ GP
(

µ(l)(x), K l
(
x, x′

))
(2.22)

Mathematician 14 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

then

∫ ∞

−∞

∫ ∞

−∞
ϕ
(

z
(l−1)
j (x)

)
ϕ
(

z
(l−1)
j (x′)

) 1
2π|K| 1

2

× exp

−1
2

(
zj(x)(l−1) − µ(x), z

(l−1)
j (x′) − µ(x′)

)
K−1

zj(x)(l−1) − µ(x)

z
(l−1)
j (x′) − µ(x′)




× dz
(l−1)
j (x)dz

(l−1)
j (x′)

Let

K−1 =
(√

K
T
)−1 (√

K
)−1

(2.23)

Consider the following transformation:
ξi1

ξi2

 =
(√

K
)−1

 zj(x) − µ(x)

zj(x′) − µ(x′)

 ⇒
(√

K
)ξi1

ξi2

 =

 zj(x) − µ(x)

zj(x′) − µ(x′)


To simplify the notation, the following variable change is made:

zj(x) = zj(x)(l−1), zj(x′) = zj(x′)(l−1) (2.24)

√
Kξi1 = zj(x) − µ(x) ⇒ zj(x) =

√
Kξi1 + µ(x) ⇐⇒ ξi1 = zj(x) − µ(x)√

K
∼ N(0, 1)

and

√
Kξi2 = zj(x′) − µ(x′) ⇒ zj(x′) =

√
Kv + µ(x′) ⇐⇒ ξi2 = zj(x′) − µ(x′)√

K
∼ N(0, 1)

The Jacobian of the transformation is:

J =


∂zj(x)
∂ξi1

∂zj(x)
∂ξi2

∂zj(x′)
∂ξi2

∂zj(x′)
∂ξi2

 =


√

K 0

0
√

K

 ⇒ |J | = |K|
1
2 (2.25)
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then

1
2π|K| 1

2

∫ ∞

−∞

∫ ∞

−∞
ϕ
(√

Kξi1 + µ(x)
)

ϕ
(√

Kξi2 + µ(x′)
)

× 1
2π

exp
(

−1
2
(
ξ2

i1 + ξ2
i2

))
|J |dξi1dξi2

= 1√
2π

1√
2π

∫ ∞

−∞

∫ ∞

−∞
ϕ
(√

Kξi1 + µ(x)
)

ϕ
(√

Kξi2 + µ(x′)
)

× exp
(

−1
2ξ2

i1

)
exp

(
−1

2ξ2
i2

)
dξi1dξi2

= 1√
2π

∫ ∞

−∞
ϕ
(√

Kξi1 + µ(x)
)

exp
(

−1
2ξ2

i1

)
dξi1

× 1√
2π

∫ ∞

−∞
ϕ
(√

Kξi2 + µ(x′)
)

exp
(

−1
2ξ2

i2

)
dξi2

The approximation of the last integral depends on the choice of the sigmoid function ϕ(.).

In the case of deep neural networks, the transfer function ϕ(z) is a bounded function

where all moments are bounded. Then we can apply Central Limit Theorem to show that

the stochastic process is a Gaussian process, Christopher (1996) [6] and Lee (2018) [7].

Cho and Saul [19] developed a new family of covariance functions which allows computing

the correlation between two vectors x, z ∈ RNl . They define the n−th order arc-cosine

kernel function via the integral representation:

K(l)(x, z) = 2
∫ 1

(2π)
Nl
2

exp
(

−∥w∥2

2

)
Θ(w .x)Θ (w .z) (w .x)l (w .z)l dw, (2.26)

where Θ (t) = 1
2
(
1 + sign(t)

)
denote the Heaviside step function. The integral representa-

tion (2.26) allows the kernel of covariance functions to be positive definite, and that the

dependence between x y z, can be written as:

K(l) (x, z) = 1
π

∥x∥l∥z∥lJl(θ) (2.27)
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where all the angular dependence is captured by Jl(θ). The angular dependence is given

by:

Jl(θ) = (−1)l (sin θ)2l+1
(

1
sin θ

∂

∂θ

)l (
π − θ

sin θ

)
(2.28)

In particular, when l = 0, we have the angle between x and z. When l > 0, the angular

dependence is more complicated. Some terms of Jl(θ), are shown:

J0(0) = θ, J1(θ) = sin θ + (π − θ) cos θ,

J2(θ) = 3 sin θ cos θ + (π − θ)
(
1 + 2 cos2 θ

)

The arc-cosine kernel for l = 0, is represented by:

K(0) = 1 − arccos−1
(

xz

∥x∥∥z∥

)
(2.29)

Neural network models are strongly related to the kernel of functions defined in (2.26),

when considering the inner product between the different outputs of the neural network

as:

ϕ(x)ϕ(z) =
m∑

i=1
Θ(wi .x)Θ (wi .z) (wi .x)l (wi .z)l (2.30)

where wi denote i−th row of the weight matrix W and m is the number of output units.

In the limit, it can be seen that the equation (2.30) is equivalent to (2.26), Cho and Saul

(2009):

lim
m→∞

2
m

ϕ(x)ϕ(z) = K(l)(x, z) (2.31)

Also, Cho and Saul [19] proved that for a vector of inputs x = (1, x1, . . . , xNl
), their

characteristics can be mapped by means of a nonlinear transformation ϕ(x), using kernel

functions:

K(l)(x, z) = ϕ
(
ϕ
(
. . . ϕ(x)

)
.ϕ
(
. . . ϕ(z)

))
(2.32)

Mathematician 17 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

The iterated equation (2.32) mimics a multilayer neural network, for example for a one-

layer neural network, K (x, z) = ϕ(x)ϕ(z). Cho and Saul (2009) define a recursive kernel

through a new mapping of features through compositions such as ϕ
(
ϕ(x)

)
. In the case of a

linear kernel K (x, z) = xz, the composition is ϕ
(
ϕ(x)

)
= ϕ(x) = x, and for homogeneous

polynomial kernels K (x, z) = (xz)Nl ; the composition is:

K(x, z) = ϕ
(
ϕ(x)

)
.ϕ
(
ϕ(z)

)
=
(
ϕ(x)ϕ(z)

)Nl =
(
(x.z)Nl

)Nl = (x.z)N2
l (2.33)

Then we consider the composition of l layers based on the iterate defined in (2.32), applying

a mathematical induction the inductive step is given by:

K(l)(x, z) = 1
π

[
K(l−1)(x, x)K(l−1)(z, z)

] l
2 Jl

(
θ(l)
)

(2.34)

where θ(l) is the angle between x and y in the feature space:

θ(l) = cos−1


K(l)(x, z)[

K(l)(x, x)K(l)(z, z)
] 1

2

 (2.35)

Recently, a linear rectified function ReLU(t) = max(0; t), was successfully used in neural

networks as it carries the neuron signal better. ReLUs have the desirable property that

they do not require input normalization, as Krizhevsky in [20]. To compute the given

integral (2.21), a rectified linear sigmoidal can be used, Hazan in [21], which results in an

analytical kernel given by

KReLU

(
xi, xj

)
= ∥xi∥∥xj∥

π
sin

(
cos−1

(
ρij

))
+
(

π − cos−1
(
ρij

))
ρij

where

ρij = ⟨xi, xj⟩
∥xi∥∥xj∥

, ⟨xi, xj⟩ =
∫ ∫

ϕ(xi)ϕ(xj)p
(
xi, xj

)
dxidxj
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To compute the entries of K(., .), let ϕ(t) = ReLU(t),
z′

1

z′
2

 ∼ N (0, K) , 0 =

0

0

 K =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


then

Ez′
1,z′

2

(
ϕ
(
z′

1

)
ϕ
(
z′

2

))
= h (σ1, σ2, ρ) = σ1σ2

π
sin

(
cos−1(ρ)

)
+ ρ

(
π − cos−1(ρ)

)

and K
(1)
ReLU is given by

 h
(√

1 + α∥xi∥,
√

1 + α∥xi∥, α
1+α

)
h
(√

1 + α∥xi∥,
√

1 + α∥xj∥, α
1+α

⟨xi,xj⟩
∥xi∥∥xj∥

)
h
(√

1 + α∥xi∥,
√

1 + α∥xj∥, α
1+α

⟨xi,xj⟩
∥xi∥∥xj∥

)
h
(√

1 + α∥xj∥,
√

1 + α∥xj∥, α
1+α

)


Iterating successively, we obtain:

K
(2)
ReLU

(
xi, xj

)
= Ez1,z2

(
ϕ (z1) ϕ (z2)

)
,

z1

z2

 ∼ N (0, K)

is a recursive equation of h with the appropriate parameters, see Hazan[21].

On the other hand, using GP prior functions allows Bayesian inference to be made precisely

to obtain predictions and estimate the uncertainty in deep neural network models. The

estimation of the parameters is not required through training based on a gradient-type

algorithm.

Under the Bayesian statistical approach, the weights and biases of the network are gen-

erated following a probability distribution p(W|θ), where (W = (W, b), represents the

weights and bias, and θ = (α, β, ν, R) ∼ p(θ) represents the hyperparameters, which can

be integrated.

p (W) =
∫

p(W|θ)p(θ)dθ (2.36)
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Given a training sample D =
{
(x1, y1), (x2, y2), . . . , (xn, yn)

}
, where x = (x1, . . . , xn)T and

y = (y1, . . . , yn)T denote the input and output of the network, respectively. Suppose now

that we want to make a prediction with a test data xnew using priors over funtions rather

than weights z(x) = (z1, . . . , zn) restricted to input values x. Then

p
(
znew|D, xnew

)
=
∫

p
(
znew|z, x, xnew

)
p
(
z|D

)
dz

= 1
p(y)

∫
p
(
znew, z|xnew, x

)
p
(
y|z

)
dz (2.37)

where y = (y1, . . . , yn)T are the targets on the training set, p(y) is a marginal likelihood,
and p

(
y|z

)
corresponds to observation noise. We will assume a noise consisting of a Gaus-

sian (y|z ∼ N(0, σ2
ϵ )).

The importance of choosing priors over functions implies that z1, . . . , zn, znew are generated
from a Gaussian processes

 z

znew

 ∼ GP


 0

0

 ,

 K (D, D) K (xnew, D)
K (D, xnew) K (xnew, xnew)




Then the integral in (2.37) can be obtained exactly, since the marginal distribution is:

znew|D, xnew ∼ N
(
µpost, Kpost

)
(2.38)

where

µpost = K (xnew, D)
(
K (D, D) + σ2

ϵ In

)−1
y

and

Kpost = K (xnew, xnew) − K (xnew, D)
(
K (D, D) + σ2

ϵ In

)−1
KT (xnew, D)

where In is the n × n identity. The predicted distribution of znew|D, x is clearly deter-

mined.Deep neural network training works using a Bayesian approach. The covariance

function is determined by choosing a prior Gaussian process. In this case, the model de-

pends on the depth, non-linearity of the transfer function, weights and biases.
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Another recently work from [22] gives a new proof for fully connected neural networks

equivalence to a Gaussian process. The author shows that equivalence works well under

random weights and biases, and where input dimension, output dimension, and depth are

kept fixed, while the hidden layer widths tend to infinity.

2.3.1 GP-NN Theorem

Theorem 1: We consider a fully connected network with the form of 2.2 using ReLU

activation functions with the following equation

z
(l)
i (x) = b

(l)
i +

Nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x) (2.39)

where:

h
(l)
j (x) = ϕ

(
z

(l−1)
i (x)

)
(2.40)

a distribution parameters given by:

b
(l)
j |σ2

b ∼ N
(
0, σ2

b

)
, W

(l)
ij |ΣW ∼ N (0, ΣW ) (2.41)

and,

σ2
b |α, β ∼ IG (α, β) ΣW |ν, R ∼ IG (ν, R) (2.42)

For l = 1, ..., D hidden layers

Then there exist strictly increasing width functions kl:N7→N such that K1 =1 (N), . . . , KD =

KD(N), and for any countable input set (x[i])∞
i=1, the distribution of the output of the

network converges in distribution to a Gaussian process as n → ∞ [23].

Proof

We have to prove that z(K+1)(x[i])∞
i=1 converges weakly to a Gaussian process when N → ∞.

Take a arbitrary finite collection of the inputs (x[i])i∈I of the a finite subset I of N.
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In order to continue with the proof, we need the following auxiliary result:

Lemma 1 (Normal recursion). If the activations of a previous layer are normally

distributed with moments:

E
[
z

(l−1)
i (x)

]
= 0

E(l−1)
i (x)z(l−1)

j

(
x′
)

= δi,jK
(
x, x′

)
Then under the recursion 2.3.1 and as N → ∞ the activations of the next layer converge

in distribution to a normal distribution with moments

E
[
z

(l)
i (x)

]
= 0

E
[
z

(l)
i (x)z(l)

j

(
x′
)]

= δi,j

[
ΣwE(ϵ1,ϵ2)∼N (0,K)

[
ϕ (ϵ1) ϕ (ϵ2)

]
+ σ2

b

]
where K is a 2 × 2 matrix containing the input covariances.

Proposition 1 Let ε > 0, and x[1], . . . , x[n] ∈ RM . If Hk = 2H2
k+1 for k = 1, . . . , D − 1,

then for HD sufficiently large, we have

d
(
z(D+1)(x), Z(x)

)
≤ ε,

where Z(x) is a mean-zero multivariate normal random variable.

So, for every x[i], we can build a z(D+1)(x) with a multivariate normal distribution be-

cause each input is multivariate normal distribution by previous lemma. Analogously, for

each layer by Central Limit Theorem and the previous lemma we can set multivariate nor-

mal distribution for all zi. Moreover when N → ∞ we can say that HD sufficiently large

where Nl represents the width for some l−layer. So, for the metric d defined as follows:

d
(
x[i], x[i]′

)
=
∑

2−i min
(

1,
∣∣∣x[i] − x[i]′

∣∣∣) ∀x[i], x[i]′ ∈ RN

and using Proposition 1 we get that there exist strictly increasing functions zi. Then the

output variables for the D-1 layer converges weakly to a multivariate gaussian distribution

which means that (z(D+1)
i (x)) with i ∈ I is a Gaussian Process where the covariance matrix
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associated to the proposed Gaussian Process in 2.20.

2.4 Electrocefalogram at Alzheimer’s diseases

Alzheimer’s diseases are very common in society. One way to detect them is by using

an Electroencephalogram (EGG) test. An Electroencephalogram records brain activity in

electrical signals received by sensors placed in a helmet. The signals are recorded by a ma-

chine and plotted for later analysis. Currently, an EGG represents a diagnostic test with

high precision and an affordable price. However, the complexity and lack of knowledge

about human brain behavior cause uncertainty about this type of disease. For example, an

early diagnosis of Alzheimer’s must be treated correctly. New mechanisms are currently

being used to improve short-term detection [24] and [25].

In the area of machine learning, models have also been developed for the detection of

Alzheimer’s. A classification task can determine whether or not a patient has the disease.

However, the input data is not usually the pure signal since an EEG is a function of time.

Some models, such as recurrent neural networks or classical models, can work with this

type of data. In this work, instead, a transformation of the time series to a frequency

domain is made [26]. There are several methods for data transformation, and here we have

used the following:

Higuchi Fractal Dimension (HFD)

The Higuchi Fractal Dimension (HFD) is the slope value of a real value function or time

series. This approximation is obtained by fitting the function through the least squares

method. To compute the HFD [27] of an N-sample data sequence x(1), x(2), ..., x(N), the

data set is divided into a klength sub-data set as,

xm
k : x(m), x(m + k), x(m + 2k), . . . , x

m +
[

N − m

k

]
· k

 (2.43)
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Where [] is Gauss’ notation, k is constant, and m = 1, 2, . . . , k. The length Lm(k) for each

sub-data set is then computed as,

Lm(k) =




[
N−m

k

]
∑k

i=1 |x(m + ik) − x(m + (i − 1) · k)|

 N − 1[
N−m

k

]
· k

 /k (2.44)

The mean of Lm(k) is computed to find the HFD as,

HFD = 1
K

K∑
M=1

Lm(k) (2.45)

Lempel Ziv Complexity (LZC)

[28] defines LZC a complexity metric related to the number of distinct substrings and the

rate of occurrence in a given string. There are several works where this metric is used to

solve problems in test signs mainly related with EGG signals. Also, this technique has

many method to used it. The same method that [29] provided is used for this work.

The flag to be analyzed is changed into grouping whose components are some images.

The twofold arrangement is basic to build: the information values underneath or break

even with the cruel have the image ”1” and the values over the cruel have the image ”0”.

This algorithm gives the number of distinct patterns contained in the given finite sequence

S = s1, s2, . . ., sn [30] and [31]. The calculation of c(n) (Lempel-Ziv complexity) proceeds

on diagram.

This method uses comparison and accumulation so the computation of c(n) is easy to

calculate.

The Lempel-Ziv of the totally random sequence of length n consisting of two different

symbols with equal probabilities is

b(n) = n

log2(n)

If we divide the complexity of the sequence by the complexity b(n) of the random sequence,

we get the normalized LempelZiv C(n), which does not depend on the length of the sequence
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when n is large

C(n) = c(n)
b(n)

Power Spectral Density (PSD)

Decomposes the signal of the function in terms of the frequencies that make up that sig-

nal. There are some kinds of descompositions depend on the type of signal using Fourier

analysis. When the time of the decomposition domain is finite, it is possible to calculate

the density between the time and the energy of the signal. This decomposition is known

as the energy spectral density [32].

In math notation

Let {y(t); t = 0, ±1, ±2, ..} be a discrete-time data sequence of random variables with:

E{y(t)} = 0 , (2.46)

The covariance function of r(k) is defined as:

r(k) = E{y(t)y ∗ (t − k)}. (2.47)

The PSD is defined as the Discrete-time Fourier Transform of the covariance sequence [33]:

ϕ(w) =
∞∑

k=−∞
r(k)e−iwk. (2.48)

It is the Fourier transform of the biased estimate of the autocorrelation sequence. The

periodogram for a signal xn is defined as:

P̂ (f) = ∆t

N

∣∣∣∣∣∣
N−1∑
n=0

xne−i2πfn

∣∣∣∣∣∣
2

, (2.49)

with −1/2∆t < f ≤ 1/2∆t, where ∆t is the sampling interval, N is the length of the signal

and f is the frequency in Hz [34].
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Relative Power (RP)

The idea is to transform the EEG signals into a power spectrum using Fourier transforms.

The relative power value is a ratio between the selected and full frequency ranges [35].

The relative power of each given band/sum of power from 1 to 45 Hz was calculated

by

RP (f1, f2) = P (f1, f2)
P (1, 45) × 100% (2.50)

where P (·) indicates the power, RP (·) indicates the relative power, and f1, f2 indicate the

low and high frequency, respectively.

The ratios of power for different frequency bands in each electrode was computed for

possible pairs of frequency bands. The relative power for each band and the ratios of

power for different frequency bands were averaged in each region.

Sample Entropy (SE)

It is a logarithmic function that relates two consecutive points in the time sequence [36].

As [37] describes this method, an general definition of Sample Entropy is given here. Let

EEG signal x(n):

- The partial correlation sums is:

Cm
r (i) = 1

N − m − 1 count[{n} | n ̸= i& max
i=1,m

|xn+1 − xi+1| < r

]
(2.51)

where N - size of the calculation window, m - number of space dimension, n - current

number of the element, r-radius of the hypersphere [37].

- Averaging of the correlation sums:

θm(r) = 1
N − m

N−m∑
i=1

Cm
r (i) (2.52)
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- Calculation of the Sample Entropy:

SE(m, r, N) = ln θm(r)
θm+1(r) (2.53)

Mathematician 27 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Mathematician 28 Graduation Project



Chapter 3

State of the Art

GPs are used to model operational data because they are flexible, robust to outliers, and

estimate calibrated uncertainty. The data output will be modeled by a multivariate GP

called Deep Gaussian Processes (DGP), which is a generalization of a multilayer neural

network viewed as a GP in the limit width. Currently, there is several researches about

DGP as a probabilistic model and using bayesian inference for predictive tasks[38] .

Salimbeni and Deisenroth in [39] used an inference algorithm variational doubly stochastic

algorithm that does not force independence between layers. Also, they demonstrated that

a DGP model could be used effectively for many data points. They provide strong empir-

ical evidence of the inference scheme for DGPs and show that they work well in practice

in both classification and regression.

Zhao in [40] used a state-space model for the DGP regression. They constructed a DGP

by placing a GP prior transformed into the length and magnitude scales at each hierarchy

level. They used a posterior maximum estimation procedure based on filtering algorithms

and demonstrated the performance using non-stationary synthetic and gravitational wave

signals. Other work about Deep Gaussian Process was in [41] where they designed a

model to approximate expectation propagation. A new method using backpropagation

algorithm for learning was proposing by the authors in the Bayesian context. In clas-

sification tasks, there is also some important contribution by the use of Deep Gaussian

Process. For instance, Jayashree [42] use a DGP model for Text classification, but they
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fond some limitations of their model such as over-fitting and model architecture complexity.

Gordon and Izmailov [43] showed that deep ensembles effectively estimate the marginal

distributions. They also investigated priors on the considered functions by defining vague

priors on the neural network weights. In addition, they demonstrate properties, gener-

alize the models from a probabilistic perspective, and obtain results equivalent to those

reproduced using a GP. Lee [7] demonstrated an equivalence between infinitely wide deep

networs and GPs, developed computationally efficient methods to compute the covariance

function of GPs, and connected GPs with the theory of signal propagation in random

neural networks. Investigations in the same direction highlights the work of: Yang and

Schoenholz [44], Matthews [23], Novak [45], Garriga-Alonso [46], Agrawal [15], Damianou

and Lawrence [5], Khan [47], Hazan and Jaakkola [21].

On the other hand, there are several investigations and applications focused on the classi-

fication of electroencephalogram signals. In Gao[48], Gupta[49], Acharya[50], Lun[51] and

Zou[52] used convolutional neural network models classify signals previously transformed

into elliptical signals. Using this methodology, machine learning models got an accuracy

about 90% in the data testing. Another interesting methodology is the one used in Demir

[53] where a 2D network input is formed to form a graph and then classified using a machine

learning model. Other techniques have been developed over the years to detect diseases

associated with brain activity. For example, in Kumar [54], Motamedi [55] and [56] where

they investigate the importance of the biological network through various models of neural

networks.

Machine learning models mentioned above are some of the most popular in use today

[57], [58], [59], [60], [61], [62] and [63]. However, there are a variety of other techniques for

classifying EEG signals such as Gupta[64] which used PCA technique for Classification of

Seizure and Seizure-Free EEG Signals. In Kulkarni [65], McBride [66], RuizGmez [67] and

Buscema [68] they used Support Vector Machine (SVM) models which is a artificial intelli-

gence model used to classification tasks. SVM works well for binary classification task like

our current problem. Other model used is K-nearest neighbor mentioned at Bablani [69],
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Nuru [70] and Li [71]. An interest investigation could be compare all these model against

our Gaussian Process model. However, this is off limits of current research.

Probabilistic models are also used in the context of classifying EEG signals [72],[73], [74]

and [75]. In particular, in Faul [76] and Owen [77] they design Gaussian processes for de-

tecting diseases related to brain activity. Advantageously, GPs are parametric models that

allow training models with small data sizes. On the other hand, Sarishvili [78] and Chiappa

[79] they use other probabilistic models to analyze and classify EEG signals. Mainly, these

systems are based on the Gaussian state-space model, where the bayesian analysis plays

a fundamental role in including a priori information of the models. Bayesian models are

inside of probabilistic but some important contributions need to be highlighted, for exam-

ple [80], [81], [82], [83] and [84]. Moreover, in Seixas[85] created bayesian network to the

diagnosis of dementia and alzheimers disease. Also, there are general works for modeling of

imaging, genetics and diagnosis which show the several applications of these models such

as in [86], [87], [88], [89], [90], [91] and [92].
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Chapter 4

Methodology

4.1 Phases of Problem Solving

The main goal is to use the dataset mentioned above to classify the positive and negative

cases of Alzheimer’s disease. In this sense, we use the classification models detailed in

Table (3). Each file was used to train the GP and NN models independently. That is, in

total, results are obtained from 7 classification models (GP, NN = 5, NN = 10, NN = 50,

NN = 100, NN = 500, and NN = 1000). It is proposed to compare the performance of

GPs against neural networks changing some parameters such as network width, data-set

size and activation function. In each model, the size of the training data for the learning

process was changed; that is, n = 75, n = 100, n = 250 and n = 436 observations are taken

to train the model for each of the data-set sizes. Similarly, all models are tested with the

ReLu and Tanh activation functions. Also, in neural networks, the width of the network

is changed to compare its performance against the Gaussian process. In Figure (2) there

is a diagram that explains the experiment for each data-set.

4.1.1 Description of the Problem

Once the equivalence between INN and GP was theoretically demonstrated, an algorithm

was created to verify this equivalence computationally. The first thing was to show that

an infinite neural network (in width) is a Gaussian process. To do this, a data-set of

Alzheimer’s signs was taken to train 7 classification models. Six of them are neural networks

with different width sizes in the hidden layers. The remaining model is a Gaussian process
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that is Bayesian trained as mentioned in the previous section. The metrics used to validate

the experiment are the mean square error and the classification accuracy. We want to

demonstrate that the accuracy of the neural network with the highest number of neurons

in the hidden layers is similar to the accuracy of the GP. Similarly, the mean square error

of both models should be similar. Finally, the third part of the experiment is to repeat the

previous steps varying the amount of input data to avoid over fitting the models.

4.1.2 Data Description

The dataset used corresponds to a previous investigation of Alzheimer’s disease (AD) detec-

tion. AD is a progressive and irreversible brain disorder, which causes memory problems,

slowly destroying it until losing the ability to develop simple tasks. An non-invasive method

to study AD uses Electroencephalograms (EEGs) that register the electrical activity of the

brain. However, the EEG raw signals are difficult to classify directly. Mart́ınez (2021)[29]

proposed to extract five significant features related to the main effects of AD on EEG

signals. Therefore, for this study we only considered the five significant features mentioned

in Table 4.1.

Notation Feature Name
HFD Higuchi Fractal Dimension
LZC Lempel Ziv Complexity
PSD Power Spectral Density
RP Relative Power
SE Sample Entropy

Table 4.1: Features extracted from the EEGs to identify the AD effects.

EEG signal analysis is usually performed using linear methods such as Fast Fourier

Transform. However, alternative nonlinear models have been developed for analyzing EEG

signals using chaos theory in recent years [93]. In this method, the time dimension is

changed to the frequency dimension to explain in the same way the signal behavior. In the

bellow sections, some of both methods used in this work for extract features as motioned

in Table 4.1 are explained in details.
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4.1.3 Analysis of the Problem

The experimental goal is to validate the performance of the proposed method in the diag-

nosis of Alzheimer’s disease. Different experiments were executed, varying the size of the

input set, to view the accuracy difference when the size of the input increase. As reference

point, this section compares the results of the proposed method with multi-layer neuronal

networks.

4.1.4 Algorithm Design

For the development of the algorithm, python 3 was used in Jupyter Notebook. Using pop-

ular machine learning libraries like Pandas, Skylearn and Tensorflow. The specifications

of all the libraries can be found in the .1. Mainly, the algorithm consists of two parts. The

first is where the functions that estimate the kernel under certain parameters established

in this research are defined. On the other hand, the main function where the training of

the models is executed and the results are stored.

Also, in this experiment the data of the significant features was cleaned up by randomly

removing data to leave the same number of labels for each class in the dataset Anexo .1.

In total, 514 observations were considered, of which 85% were for training data and the

rest 15% for testing.

4.1.5 Testing

The predictive performance of Deep Gaussian Process (DGP) and Neural Networks (NN)

models are evaluated using the following metric, Mean Squared Error (MSE), defined by:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (4.1)

where ŷi indicates the predicted value, yi indicates the actual values, and n is the number

of predictions. The metirc range is in [0, ∞) and lower values indicate better performance.

It can be seen in Figure 5.1 for Relative Power that in terms of error the GP with the Relu

activation function is the best whereas the Neural Network with 5-width is better in Tanh.

Also, the error results on the other features are shown in Table 5.1.
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Figure 4.1: Experiment Description Diagram.

The metrics for all features and models were recorded in Table 5.1. In this case only

was considered the results with the highest dataset size that is 436.
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Chapter 5

Results and Discussion

In this section, only part of the results obtained from the performance of all the models

has been included. The following details the accuracy and error of the models, but only

for the Relative power technique and a data volume of 250 observations.

DatasetModel
(ReLU)

Test Accu-
racy Test MSE Model

(tanh)
Test Accu-
racy Test MSE

GP 0.935 0.0564 GP 0.948 0.1092
NN-10 0.935 0.0508 NN-10 0.883 0.0784LZC
NN-1000 0.961 0.0404 NN-1000 0.948 0.0594
GP 0.987 0.0215 GP 0.974 0.0221
NN-10 0.935 0.0414 NN-10 0.961 0.0248RP
NN-1000 0.987 0.0243 NN-1000 0.974 0.0299
GP 1.000 0.0125 GP 0.987 0.0153
NN-10 0.961 0.0243 NN-10 1.000 0.0152HFD
NN-1000 1.000 0.0114 NN-1000 1.000 0.0178
GP 0.974 0.0246 GP 0.987 0.0245
NN-10 0.961 0.0244 NN-10 0.961 0.0215PSD
NN-1000 0.987 0.0157 NN-1000 0.974 0.0207
GP 1.000 0.0125 GP 0.987 0.0153
NN-10 0.961 0.0243 NN-10 1.000 0.0152SE
NN-1000 1.000 0.0114 NN-1000 1.000 0.0178

Table 5.1: A Performance comparison between DGP and Neural Networks for all features.

The results for the Relative Power feature is shown in Figure 5.6. Clearly the model that

use the proposed Gaussian Process has the best test accuracy. This figure shows that the

Neural Network models behave better with Tanh activation function than Relu on this

feature while in the case of the GP there is no significant difference. Additionally, the
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performance results on the other features are shown in Table 5.1.

DatasetModel
(ReLU)

Test Accu-
racy Test MSE Model

(tanh)
Test Accu-
racy Test MSE

NN-50 0.909 0.091 NN-50 0.948 0.052
NN-100 0.935 0.065 NN-100 0.935 0.065LZC
NN-500 0.935 0.060 NN-500 0.961 0.040
NN-50 0.961 0.061 NN-50 0.961 0.050
NN-100 0.948 0.044 NN-100 0.974 0.037RP
NN-500 0.948 0.044 NN-500 0.961 0.033
NN-50 0.982 0.034 NN-50 0.974 0.024
NN-100 0.980 0.025 NN-100 0.987 0.034HFD
NN-500 0.987 0.023 NN-500 0.987 0.023
NN-50 0.974 0.0246 NN-50 0.987 0.0245
NN-100 0.961 0.0244 NN-100 0.961 0.0215PSD
NN-500 0.987 0.0157 NN-500 0.974 0.0207
NN-50 1.000 0.0125 NN-50 0.987 0.0153
NN-100 0.987 0.024 NN-100 0.987 0.015SE
NN-500 0.987 0.011 NN-500 0.987 0.017

Table 5.2: Performance and error results for Neural Networks.

The results for neural network models with 50, 100, and 500 neurons for Relative Power are

similar to those seen in the table. However, it should be noted accuracy for these models is

slightly higher than the 5- and 10-neuron models, but lower than the 1000-neuron model.

This makes sense as depth in theory, indicates greater accuracy. However, models with

more neurons are more computationally complex as they consume more resources and take

more time to train.

On the other hand, in most models, the tanh activation function provides better accu-

racy. In the GP this relationship is not maintained because there is evidence that the

ReLu function fits better.
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5.1 Model Error Results

The metric used to measure the error of the models was the mean square error was 4.1. It

is set as -0.1 for the wrong class (healthy) and 0.9 for the correct class (infected). However,

it was necessary to transform the label classes into a regression problem before measuring

the error.

Figure 5.1: Relative Power Error Results

Figure 5.2: Sample Entropy Error Results
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Figure 5.3: Power Spectral Density Error Results

Figure 5.4: Lempel-Ziv Complexity Error Results
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Figure 5.5: Higuchi Fractal Dimension Error Results

All models behave similarly when the number of training observations is increased,

which indicates that with more observations, there should be less error. As we can see in

the figures 5.1, 5.2, 5.3, 5.4 and 5.5, the model with the least error is the GP when all the

observations are taken. Also, note that the error of the 1000-neuron network is close to

the GP.

5.2 Model Performance Results

In the same way as the model error results, the classification accuracy is measured by

transforming the classes into numerical values. The difference between classifying an in-

fected is measured by comparing how many false positives and false negatives with those

correctly classified. Analogously to what happens in a confusion matrix. In Fig 5.6, 5.9

and 5.10, the DGP fits better than the rest of the models, improving its accuracy as the

size of the training data increases. On the other hand, neural networks maintain close to

95% accuracy on all features. In addition, as in the DGP, the neural networks improve

when training with more data. The 5-neuron model has the worst performance, although

it is close to 90
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Figure 5.6: Relative Power Performance Results

Figure 5.7: PSD Performance Results
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Figure 5.8: HFD Performance Results

Figure 5.9: HFD Performance Results
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Figure 5.10: SE Performance Results

5.3 Interpretation

Both metrics indicate that the best model is the DGP. The classification accuracy is high

because it is a simple binary classification task for these models. Activation functions

do not directly influence the behavior of models. However, taking different dataset sizes

affects the models’ accuracy and error. The model closest to the Gaussian process is the

network of 1000 neurons, as the theory says. This behavior occurs with all features, but

using the full training dataset. Curiously, in Fig 5.1 the 5-neuron network is the model

with the least error.
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Chapter 6

Conclusions

Using a non stochastic gradient-based training we classified EEG Signals for the diagnosis

of Alzheimer’s Diseases to test the behavior of our GP, that uses a hierarchical Bayesian

structure to model the weights and biases of a neural network, and compare it with neural

networks varying their widths. A general formula was derived to evaluate the resulting

integrals of Gaussian processes with non-linear transfer functions, and a kernel was ob-

tained to update the covariance functions. The proposed methodology was applied to the

classification of EEG signals for the diagnosis of Alzheimer’s disease, considering five data

sets and estimating the models varying size of the samples. In this study, it was shown

that DGP can be used in supervised learning and classification tasks. As mentioned in

Lee et al. (2018), we check that the GP behaves as a neural network with infinite number

of neurons in the hidden layers. In general, all test accuracies were very high because the

data-set consist on a limited number of patients and the work done by Mart́ınez-Arias

(2020) of feature extraction and selection.

We gave a mathematical proof in this work that demonstrates the equivalence between

a connected neural network and a Gaussian process. Under certain random conditions, a

new formula was given for the computation of the GP kernel. However, for kernel estima-

tion, we must use a numerical method. In our experiments, we realize that inverse gamma

distribution hyper-parameters fixed well for models learning process. The bias and weight

variances are randomly choice using this hyper-parameters and it contributes to evaluate

the model performance. The results show that GP classify well, and sometimes even better
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than neural networks models.

For future researches, we will expected to prove our GP model to classify other data

types such as crude data or images. Crude ECG signal data could be a interesting scenario

to use GP model in order to classify positive cases of Alzheimer’s disease. Also, analyze

what role play distribution hyper-parameters in the model with other data types. Finally,

the integral Iz compute in section 4 may be used to estimate the kernel using a different

method that we proposed. This could be another research to see which alternative method

works better, and to compare the GP performance results. We also can measure other

model parameters to compare the performance of the two types of models: DGP and NN.

The time it takes for the models to learn from the data. In the same way, add more data

to analyze its behavior. Furthermore, the DGP can be compared with other artificial in-

telligence models such as SVM, K-Nearest Neighbors, or other types of NN. On the other

hand, it also uses other datasets, such as classifying images, data with more classes, or

regression tasks.
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.1 Appendix 1.

• Data preparation:

1 import pandas as pd

2 from sklearn . preprocessing import StandardScaler

3

4

5

6 scaler = StandardScaler ()

7 X_train = scaler . fit_transform ( X_train )

8 X_test = scaler . transform ( X_test )

9 X_train_flat , Y_train_reg = prep_data (X_train , Y_train )

10 X_test_flat , Y_test_reg = prep_data (X_test , Y_test )

11

12 def train_random_sample (X_train ,Y_train ,n_data ,din ,dout):

13 S=tf. concat ([ X_train , Y_train ],1)

14 Random_S =tf.stack( random . sample (list(S),n_data ) ,0)

15 X_train_F =tf.split(Random_S ,[din ,dout ],1) [0]

16 Y_train_F =tf.split(Random_S ,[din ,dout ],1) [1]

17 return X_train_F , Y_train_F

Data Load:

1 #Load dataset

2 dataset = pd. read_csv (’ Sample_Entropy .csv ’)

3 X = dataset .iloc [:, : -1]. values

4 y = dataset .iloc [:, -1]. values

5 X_train , X_test , Y_train , Y_test = train_test_split (X, y,

test_size =0.15 , random_state =0)
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