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Resumen

En este trabajo de titulación se estudian los problemas directos e inversos de las ecuaciones

de Euler-Lagrange, ecuaciones discretas de Euler-Lagrange, ecuaciones de Euler-Poincaré

y las ecuaciones discretas de Euler-Poincaré.

Primero, se estudia el problema inverso de las muy conocidas ecuaciones de Euler-Lagrange,

el cual se puede estudiar de diferentes formas. Una de ellas, es la llamada nueva formulación

geométrica, que se puede resumir en el siguiente diagrama.

TTQ TT ∗Q T ∗TQ

TQ T ∗Q,

Γ

TF

F

αQ

µΓ,F

Esta formulación dice que una Ecuación Diferencial de Segundo Orden, SODE (por sus

siglas en inglés) Γ, de una variedad continua Q, es variacional (i.e., tiene solución) si y solo

si existe un difeomorfismo local de modo que Im(µΓ,F ) sea una subvariedad Lagrangiana

de (T ∗TQ, ωT Q).

Los objetivos principales de este trabajo son encontrar una versión discreta de este dia-

grama y condiciones (si es posible) para que una ecuación diferencial de segundo orden en

el tangente de una variedad discreta tenga solución.

Palabras Clave:

Ecuaciones de Euler-Lagrange, Ecuaciones de Euler-Poincaré, Ecuaciones Discretas de

Euler-Lagrange, Ecuaciones Discretas de Euler-Poincaré, Grupo de Lie, Álgebra de Lie,

Invarianza a Izquierda.
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Abstract

In this bachelor thesis, we study the direct and inverse problems for the Euler-Lagrange,

discrete Euler-Lagrange, Euler-Poincaré, and discrete Euler-Poincaré equations.

First, we study the inverse problem for the widely known Euler-Lagrange equations, which

can be approached in different ways. The most important approach for this work is the so

called new geometrical formulation, which can be summarized in the following diagram.

TTQ TT ∗Q T ∗TQ

TQ T ∗Q,

Γ

TF

F

αQ

µΓ,F

It states that a Second Order Differential Equation Γ in the tangent bundle of a continuous

manifold Q is variational (i.e., it has a solution) if and only if there is a local diffeomor-

phism F such that Im(µΓ,F ) is a Lagrangian submanifold of (T ∗TQ, ωT Q).

The main objectives are to find a trivialized version of this theorem and conditions (if

possible) such that a second order differential equation on the tangent bundle of a discrete

manifold G is variational.

Keywords:

Euler-Lagrange Equations, Euler-Poincaré Equations, Discrete Euler-Lagrange Equations,

Discrete Euler-Poincaré Equations, Lie Group, Lie Algebra, Left Invariance.
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3.2.2 Discrete Euler-Poincaré Equations . . . . . . . . . . . . . . . . . . . 60

3.2.3 Inverse Problem for the Discrete Euler-Poincaré Equations . . . . . 61
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Chapter 1

Introduction

In classical mechanics the Euler-Lagrange equations (EL) are of great significance. These

equations are be derived from a simple but interesting problem. Imagine we want to move

a a toy car from the start to the finish line and we are given a track. We could easily find

out how much energy it takes us to move this car, but what if we could find another track,

which can minimize the energy we are spending? We now take this example to a more

general space.

Given a smooth manifold Q, a smooth function L : TQ → R and a path γ : [0, 1] → Q

from q0 to q1 in Q. How much energy does it take go through this path? The answer lies

in the following formula

A(γ) :=
∫ 1

0
L(γi(t), γ̇i(t))dt.

Out of all the paths from q0 to q1, which path let us spend the less energy? We shall min-

imize A. After minimizing A we get the equations well-known Euler-Lagrange equations

∂L

∂qi
− d
dt

(
∂L

∂vi

)
= 0.

Up till now we have only considered continuous spaces. If we let Q be a discrete space,

and consider a discrete Lagrangian Ld : Q×Q→ R, and a discrete path {qk}k=0,...,n−1 we

will have to minimize

ALd
({qk}k=0,...,n−1) :=

n−1∑
k=0

Ld(qk, qk+1).

1
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Then, we will get the discrete Euler-Lagrange equations (DEL)

D1Ld(q0, qk+1) +D2Ld(qk−1, qk) = 0,

where D1 is the derivative of Ld respect to the first component and D2 is the derivative of

Ld respect to the second component, which are discrete versions of the normal derivative.

If we then consider another continuous abstract space, the Lie algebra of a Lie group and

a Lagrangian function on that space, we can derive Euler-Poincaré equations (EP):

L∗
g(∂gl) + d

dt

∂l

∂ξ
+ ad∗[∂ξl] = 0.

And yet again, when we let the Lie algebra be discrete, and minimize a function, we get

the discrete Euler-Poincaré equations (DEP):

D1Lq(qk, qk+1) +D2Lq(qk−1, qk) = 0. (1.1)

These four equations and spaces are connected by symmetries and isomorphisms. So,

solving the problem in one space is similar to solving it in the other three spaces (see the

next diagram).

EL

DEL EP

DEP

The inverse problem of the calculus of variations can be stated as follows. If we are given

a set of differential equations, is it possible to find a set of multipliers such that the system

admits a regular solution (a Lagrangian L).

The inverse problem of the calculus of variations has also been studied and it is well

known. For instance, [1] gives a detailed solution for this problem, its discrete version and

the inverse problem for Euler-Poincaré equations.

We aim to understand the four equation mentioned before hand and their inverse prob-

lems. Moreover, we want to find how those spaces are connected to each other.

Mathematician 2 Graduation Project
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Our main goal is to solve the inverse problem for the discrete Euler-Poincaré equations

using similar methods to those used in the other three inverse problems.

This document is organized as follows: In Chapter 2, we provide the mathematical

framework. We fist review some concepts on algebra that include the definitions of groups,

algebras and isomorphisms. Then, we present some concepts on topology. Those are vital

to understand the topological properties of manifolds and how they resemble Euclidean

spaces. Finally, we introduce our main mathematical object: manifolds, smooth structures,

tangent bundles, Lie groups and Lie algebras.

In Chapter 3, we present our results. We start with the Euler-Poincaré equation and

point out a small mistake found in [2]. Then, we introduce our main result: the solution

of the inverse problem for Euler-Poincaré equations.

In Chapter 4, we include some conclusions and give recommendations.

Mathematician 3 Graduation Project
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Chapter 2

Theoretical Framework

In this chapter we provide a brief overview on relevant topics for our work and it is struc-

tured as follows. First, we give a short review on definitions related to metric spaces,

Euclidean spaces and algebras. Then, we cover definitions and theorems on manifolds and

Lie groups. Finally, we introduce the Lagrangian formulation and the inverse problem of

calculus of variation.

2.1 Some Topics on Topology and Algebra

In this section we review the most fundamental concepts that will help us understand

subsequent definitions. We used [3], [4], [5], [6] and [7] as a reference. We begin this

section with a quick review on algebra.

Definition 2.1.1 (Equivalence Relation). Consider two non-empty sets A and B.

i ) We say that r is a relation of A in B if r ⊆ A×B. By definition, a ∈ A is related
to b ∈ B (denoted a ∼ b) if and only if (a, b) ∈ r.

ii ) A relation r of A in A is said to be an equivalence relation if the following holds

• ∀a ∈ A : a ∼ a,

• ∀a1, a2, a3 ∈ A : a1 ∼ a2, a2 ∼ a3 =⇒ a1 ∼ a3,

• ∀a1, a2 ∈ A : a1 ∼ a2 =⇒ a2 ∼ a1.

iii The equivalence class of a ∈ A is defined as the set [a] = {b ∈ A : b ∼ a}.

5
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Elements of an equivalent class share the same properties and are said to be equivalent.

Choosing a representative element of a class and proving that some property holds is

enough to prove it in the whole class.

Definition 2.1.2 (Group). Given a non-void set G and a binary operation (·, ·) : G×G 7→
G, we say that G is a group if and only if the following properties hold.

∀g, h, k ∈ G : g · (h · k) = (g · h) · k;

∃e ∈ G,∀g ∈ G : g · e = g · e = g;

∀g ∈ G,∃h ∈ G : g · h = h · g = e.

The element e is referred to as the unit or neutral element of G. Moreover, in the third
property h is called the inverse of g. From now on We denote the inverse of g as g−1.
Additionally, if the group is commutative; i.e.,

∀g, h ∈ G : g · h = h · g,

we say that it is an Abelian group.
Whenever we write (G, ·, e) we a referring to the group G endowed with the binary operation
(·, ·) and the unit element e.

Definition 2.1.3 (Isomorphism). Let (G, ·, e) and (H, ⋆, ê) be two groups and a bijective
function f : G 7→ H. We say that f is an isomorphism if and only if

f(e) = ê;

∀g, h ∈ G : f(g · h) = f(g) ⋆ f(h).

If f is not bijective it is called a homomorphism.

In other words, an isomorphism is a function that preserves the structure of a group.

One can also say that two isomorphic groups have the same properties.

If there is an isomorphism between two groups G and H, we say that they are isomorphic

and it is denoted G ∼= H. We will say that an isomorphism is canonical when the iso-

morphism is unique or it is the most natural and simple function between G and H. It is

important to mention that since f is bijective, the isomorphism has an inverse.

Definition 2.1.4 (Ring). Let (G,⊕) be an Abelian group and · : G × G 7→ G be another
binary operation on G. We say that (G,⊕, ·) is a ring if and only if

Mathematician 6 Graduation Project
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• The binary operation · is associative; i.e.,

∀g, h, k ∈ G : (g · h) · k = g · (h · k).

• The binary operation · is distributive with respect to ⊕; i.e.,

∀g, h, k ∈ G : g · (h⊕ k) = (g · h)⊕ (g · k);

∀g, h, k ∈ G : (h⊕ k) · g = (h · g)⊕ (k · g).

Depending on the properties a ring has, it can be classified into the following types.

• Ring with unity if and only if

∃e ∈ G,∀g ∈ G : g · e = e · g = g; (2.1)

• Commutative ring if and only if

∀g, h ∈ G : g · h = h · g; (2.2)

• An integral domain if and only if conditions (2.1), (2.2) hold, and

∀g ∈ G\{0}, ∀h, k ∈ G : (g · h = g · k ∨ h · g = k · g) =⇒ h = k; (2.3)

• A field if and only if conditions (2.1), (2.2) hold and

∀g ∈ G\{0},∃k ∈ G : g · k = k · g = e. (2.4)

Definition 2.1.5 (Linear Space). Given an Abelian group (G,⊙), a field K and an external
operation · : K ×G 7→ G, we say that (G,⊙, ·) is a linear (or vector) space over K if and
only if

∃e ∈ K,∀g ∈ G : e · g = g;

∀g ∈ G,∀α, β ∈ K : (αβ) · g = α · (β · g),

∀g ∈ G,∀α, β ∈ K : (α⊙ β) · g = (α · g)⊙ (β · g),

∀α ∈ K,∀g, k ∈ G : α · (g ⊙ k) = (α · g)⊙ (α · k).

Mathematician 7 Graduation Project
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Given two linear spaces (G,⊙, ·) and (H,⊕,+)we say that T : G → H is a linear

operator if and only if

∀α ∈ R,∀g1g2 ∈ G : T (αg1 ⊙ g2) = αT (g1)⊕ T (g2).

We denote the set of linear operators from G to H as L(G,H). Whenever H = R, an

element of L(G,R) is known as a real-valued linear functional or a covector of G. Moreover,

we denote G∗ = L(G,R), which is referred to as the dual space of G. Furthermore, for any

T : G→ H there is a canonical function T ∗ such that T ∗ : H∗ → G∗. Given two covectors

T1 and T2, we have that (T1 ◦ T2)∗ = T ∗
2 ◦ T ∗

1 , and (T−1
1 )∗ = (T ∗

1 )−1.

Definition 2.1.6 (Inner Product). Consider a vector space X. An inner product is a
function ⟨·, ·⟩ : X ×X 7→ R that satisfies the following properties

∀x, y, z ∈ X : ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩;

∀x, y ∈ X, ∀a ∈ R : ⟨ax, y⟩ = a⟨x, y⟩;

∀x, y ∈ X : ⟨x, y⟩ = ⟨y, x⟩;

∀x ∈ X : ⟨x, x⟩ ≥ 0.

Definition 2.1.7 (Euclidean Space). A Euclidean space is a vector space that is equipped
with an inner product.

In particular, we have that R is a Euclidean space whose inner product is

⟨·, ·⟩ : Rn × Rn −→ R

(x, y) 7−→ ⟨x, y⟩ = x · y.

When n = 1, the inner product is the (scalar) multiplication.

Definition 2.1.8 (Algebra). Given a linear space (A,⊙,⊕) over a field K and an internal
bilinear operation · : A×A → A, we say that A is a non-associative algebra if

∀a, b, c ∈ A : a · (b⊙ c) = (a⊙ b) · (a⊙ c).

∀a, b, c ∈ A : (a⊙ b) · c = (a⊙ c) · (b⊙ c).

∀a, b ∈ A,∀λ ∈ R : λ(a · b) = (λa) · b = a · (λb).

Mathematician 8 Graduation Project
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In addition, we call A an associative algebra if

∀a, b, c ∈ A : a · (b · c) = (a · b) · c;

an algebra with unity if

∃e ∈ A,∀a ∈ A : a · e = e · a = a;

and a commutative algebra if

∀a, b ∈ A : a · b = b · a;

The set of all n × n matrices endowed with the ordinary matrix multiplication as its

internal operation is an associative algebra with unity. On the other hand, R3 endowed

with the cross-product is a non-associative algebra with unity.

Definition 2.1.9 (Group of transformations). Given a set A, and let the composition of
functions (◦) be an internal bilinear operation, we define the set

Sym(A) = {η : A→ A : η is bijective.}

When endowed with ◦, (Sym(A), ◦) is a group known as the symmetry group.
A group of transformations is any subgroup of Sym(A).

Next we will introduce the definition of topology and review important topological

properties.

Definition 2.1.10 (Metric). Let X be a non empty set. A metric is a function d : X×X 7→
R such that the following conditions hold.

∀x, y ∈ X : d(x, y) = d(y, x);

∀x, y ∈ X : d(x, y) = 0 ⇐⇒ x = y;

∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.1.11 (Metric Space). Let X be a non-void set and d a metric on that set.
We say that the pair (X, d) is a metric space.

Given a metric space , x0 ∈ X and r > 0 we define an open ball with radius r centered

at x0 as the set

Mathematician 9 Graduation Project
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B(x0, r) = {x ∈ X : d(x, x0) < r}.

The sphere and closed ball with radius r centered at x0 are given by

S(x0, r) = {x ∈ X : d(x, x0) = r},

B(x0, r) = {x ∈ X : d(x, x0) ≤ r},

respectively. In the particular case where X = Rn, n ∈ N is endowed with the Euclidean

metric dn, we denote Bn := B(0, 1), Bn := B(0, 1), with 0 ∈ Rn, and the sphere as

Sn := S(0, 1) = {x ∈ Rn+1 : d(x,0) = 1}, where 0 ∈ Rn+1.

Definition 2.1.12 (d-open). Let (X, d) be a metric space and A ⊆ X. We say A is d-open
if

∀x ∈ A, ∃r > 0 : B(x, r) ⊆ A.

Before we introduce the definition of topology, it is important to recall that given a set

X, we denote by P(X) the set of all subsets of X. This set will be of use in subsequent

definitions.

Definition 2.1.13 (Topology). Given X be a non-void space, P(X) a partition of X and
T ⊂ P(X). T is said to be a topology on X if and only if

∅ ∈ T ∧X ∈ T ; (T1)

A,B ∈ T =⇒ A ∩B ∈ T ; (T2)

(Aλ∈Λ) ⊂ T =⇒
⋃

λ∈Λ
Aλ ∈ T . (T3)

The elements of T are known as open sets and the pair (X, T ) is known as a topological
space. (Aλ)λ∈Λ denotes a family of sets of T . The second condition strictly calls for a
finite number of open sets while the third still holds for an infinite number of sets.

Proposition 2.1.1 (Metric Spaces Induce a Topology). A metric space (X, d) is a topo-
logical space with the topology

Td = {A ⊆ X : A is d-open}.

Mathematician 10 Graduation Project
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Td is known as the induced topology on X. The space (X, Td) is also known as a metrizable
space.

Proof. In order to prove T1, note that ∅ is d-open because there are no elements of this
set that could be outside of a ball. On the other hand, given an arbitrary x0 ∈ X we know
there is r > 0 such that B(x0, r) = {x ∈ X : d(x, x0) < r}. In addition, B(x0, r) ⊆ X.
Thus, X is d-open.
To prove T2 let A,B ⊆ X be d-open; i.e.,

∀x ∈ A∃r1 > 0 : B(x, r1) ⊆ A,

∀x ∈ B∃r2 > 0 : B(x, r2) ⊆ B.

If we let x ∈ A ∩B and choose r = min(r1, r2), we can see that

B(x, r) = B(x, r1) ∩B(x, r2) ⊆ A ∩B.

It remains to prove T3. Let (Aλ)λ∈Λ be a family of d-open sets and denote A = ⋃
λ∈Λ Aλ.

Given a generic x ∈ A, we choose λ ∈ Λ such that

B(x, rλ) ⊆ Aλ.

Then, we have

x ∈ B(x, rλ) ⊆ Aλ ⊆
⋃

λ∈Λ
Aλ = A.

Since x was chosen arbitrarily, we conclude that A is d-open.

Definition 2.1.14 (Neighbourhood). Let (X, T ) be a topological space, x ∈ X and V ⊆ X.
V is a neighbourhood of x if and only if

∃U ∈ T : x ∈ U ⊂ V.

The set of all neighbourhoods of x is denoted N (x).

Next, we will see some characterizations of open and closed sets.

Definition 2.1.15 (Interior. Adherence. Boundary.). Consider a topological space (X, T )
a set A ⊆ X, and x ∈ X. We say that x is

• an interior point of A if and only if A ∈ N (x);i.e., ∃V ∈ T : x ∈ V ⊆ A;
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• an adherent point of A if and only if ∀B ∈ N (x) : A ∩B = ∅;

• a boundary point of A if and only if ∀B ∈ N (x) : A ∩B = ∅ ∧ Ac ∩B = ∅.

The sets of all interior, adherent and boundary points are denoted int(A), ad(A) and bd(A),
respectively.

Remark 2.1.1. From Definition 2.1.15, it follows that for all A ⊂ X

int(A) ⊆ A,
A ⊆ ad(A),

bd(A) = ad(A) ∩ ad(Ac).

Theorem 2.1.1. Let (X, T ) be a topological space and A ⊆ X. Then,

• A ∈ T ⇐⇒ int(A) = A,

• ad(A) is closed,

• bd(A) is closed.

A proof for this theorem can be found in [6] and [8].

Definition 2.1.16 (Hausdorff space). Given a topological space (X, T ), we say that it is
a Hausdorff space if and only if

∀x, y ∈ X, x ̸= y,∃U ∈ N (x),∃V ∈ N (y) : U ∩ V = ∅.

The following theorem shows there is a relationship between metric and Hausdorff

spaces.

Theorem 2.1.2. Consider a metric space (X, d). Then, (X, Td) is a Hausdorff space.

Proof. Let A,B ⊆ (X, Td). It is enough to prove that

∀x, y, x ̸= y,∃r1, r2 > 0 : B(x, r1) ∩B(x, r2) = ∅.

Let x, y ∈ X, x ̸= y, generic and choose r1, r2 ∈ (0, d(x, y)/3). Let’s assume by the sake of
contradiction that

B(x, r1) ∩B(x, r2) ̸= ∅; i.e.,

∃z ∈ B(x, r1) ∩B(x, r2) : d(x, z) < r1 ∧ d(x, y) < r2.
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Using the triangle inequality we have that

d(x, y) ≤ d(x, z) + d(y, z) < r1 + r2 <
2
3d(x, y),

which is a contradiction. Since x and y were chosen arbitrarily, we have proved (X, Td) is
a Hausdorff space.

Definition 2.1.17 (Topological Base). Let (X, T ) be a topological space and B ⊆ T . We
say that B is a base of T if and only if

∀U ∈ T ,∃(Bλ)λ∈Λ ⊆ B : U =
⋃

λ∈Λ
Bλ.

That is, every open set can be written as the union of elements of B.

Definition 2.1.18 (Topological Subspace). Given a topological space (X, T ), a set Y ⊂ T ,
the subspace topology (also known as induced topology) TY on Y is given by

TY = {Y ∩ U : U ∈ T }.

From definition 2.1.13 we can see that Y ∩ U,U ∈ T is an open set. It follows that TY

is a topology itself. We denote NY (y), y ∈ Y the set of neighbourhoods of y in Y , and it is

not to be confused with N (y) as defined in 2.1.14. We will see that the Hausdorff property

is hereditary. In order to prove that we need the following proposition.

Proposition 2.1.2. Let (X, T ) be a topological space, Y ⊂ X a non-empty subset and TY

its topology. Then,

y ∈ Y : Û ∈ NY (y) ⇐⇒ ∃U ∈ N (y) : Û = U ∩ Y.

Proof. First, let’s prove that

Û ∈ NY (y) =⇒ ∃U ∈ N (y) : Û = U ∩ Y.

Assume that Û ∈ NY (y), i.e.,

∃Â ∈ TY : y ∈ Â ⊂ Û .

Then, by definition 2.1.18, we know that

∃A ∈ T : Â = A ∩ Y.
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Note that A ∪ Û ∈ T . If we take U = A ∪ Û , then U ∩H = (A ∪ Û) ∩H = Â ∪ Û = Û .
Now, we will prove that

∃U ∈ N (y) : Û = U ∩ Y =⇒ Û ∈ NY (y).

Suppose there is a neighbourhood U ∈ N (y) and Û = U ∩ Y . Then, by definition 2.1.14,
there is an open set A ∈ T such that y ∈ A ⊂ U . Therefore.

y ∈ A ∩ Y ⊂ U ∩ Y = Û .

Hence, Û ∈ NY (y).

Theorem 2.1.3. If X is a topological Hausdorff space and Y is a topological subspace of
X, then Y is also a Hausdorff space.

Proof. Assume (X, T ) is a Hausdorff space and Y is a subspace of X. We have to prove
that

∀x, y ∈ Y, x ̸= y,∃Û ∈ NY (x),∃V̂ ∈ NY (y) : Û ∩ V̂ = ∅.

Let x, y ∈ Y, x ̸= y be arbitrary. Since X is Hausdorff, we know there exist U ∈ N (x) and
V ∈ N (y) such that U ∩ V ̸= ∅. By proposition 2.1.2 we take

Û = U ∩ Y,

V̂ = V ∩ Y.

Then,

Û ∩ V̂ = (U ∩ Y ) ∩ (V ∩ Y ) = (U ∩ V ) ∩ Y = ∅.

We have proved that (Y, TY ) is a Hausdorff space.

Definition 2.1.19 (Second Countable Space). A topological space (X, T ) is a second
countable space if and only if T has a countable base.

Theorem 2.1.4. A subspace of a second-countable space is also second countable.

Proof. Let (X, T ) be a topological space and (Y, TY ) a topological subspace. Assume
B ⊆ T is countable base of T . Then BY = {B ∩ Y : B ∈ B} is a countable base for
(Y, TY ).

Remark 2.1.2. We claim that for every n ∈ N, (Rn, Tdn) is a second countable space.
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We will now present some concepts on compact sets. First, recall that given a topolog-

ical space (X, T ) and a subset A ⊆ X, a family (Aλ)λ∈Λ is a cover of A if A ⊆ ⋃
λ∈Λ Aλ.

That is, a cover of a given set is a family whose union contains all the elements of that set.

A cover is said to be open provided that for every λ ∈ Λ, Aλ ∈ T .

Definition 2.1.20 (Compact Set). Let (X, T ) be a topological space. A subset A ⊆ X is
said to be compact if and only if for every open cover (Aλ)λ∈Λ of A, there is an finite set
I ⊆ Λ such that (Aι)ι∈I is also an open cover of A. The family (Aι)ι∈I is called an finite
open subcover of A.
The union or intersection of compact sets is also compact.

Definition 2.1.21 (Precompact Set). A set is precompact if and only if its adherence is
compact. Precompact sets can also be called relatively compact.

Remark 2.1.3. A ball B(x, r) ∈ Rn, x ∈ Rn, r > 0 is precompact.

Proposition 2.1.3. Let (X, T ) be a topological second countable space and A an open
cover for X. Then, A has a countable subcover.

Proof. Assume that B is a countable base of X and let

B̃ = {B ∈ B : ∃A ∈ A, B ⊆ A}.

Since B̃ ⊆ B and B is a countable base of X, so is B̃. If we take a generic x ∈ X, we can
see that

∃A ∈ A : x ∈ A.

On the account of the fact that B is a base and A is a cover we have that

∃B ∈ B : x ∈ B ⊂ A.

Note that B ∈ B̃. Since x was arbitrary, it follows that ⋃
B∈B̃

B = X. Let

Ã = {Ã ∈ A : B ∈ B̃ ∧B ⊆ A}. (2.5)

From 2.5, it is clear that X ⊆ ⋃̃
A∈Ã

Ã. Thus, Ã set is an open countable cover for X.

The following statements will help us understand the relationship between closed sets,

compactness and continuity.
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Proposition 2.1.4. Let (X, T ) be a topological space. If A ⊆ X is compact, then A is a
closed set.

Proposition 2.1.5. If (X, T ) is a Hausdorff space and A ⊆ X is compact, then A is
closed.

Theorem 2.1.5. Given two topological spaces (X1, T1), (X2, T2) and a continuous function
f : X1 → X2, if A ⊆ X1 is compact, so is f(A).

This theorem is of great interest because it shows that continuous functions can transfer

properties (compactness in this case).

Definition 2.1.22 (Homeomorphism). Given two topological spaces X, Y and a bijective
function f : X 7→ Y . We say that f is a homeomorphism if and only if both f and f−1 are
continuous functions.

Corollary 2.1.1. Let (X, T1) and (Y, T2) be two homeomorphic topological spaces. Then,
X is compact if and only if Y is compact.

Definition 2.1.23 (Locally Compact Set). A topological space (X, T ) is locally compact
if and only if for every x ∈ X, x has a compact neighbourhood.

Definition 2.1.24 (Refinement). Let (X, T ) be a topological space, A and B two covers
of X. Cover B is called a refinement of A if and only if

∀B ∈ B,∃A ∈ A : B ⊆ A.

Remark 2.1.4. Note that each subcover is a refinement of a cover.

Definition 2.1.25 (Locally Finite Set). Let (X, T ) be topological space. A collection of
sets C ⊆ P(X) is said to be locally finite if and only if for each element of X there is a
neighbourhood that intersects at most finitely many sets of C.

Definition 2.1.26 (Paracompact Set). A topological space (X, T ) is paracompact if and
only if every open cover of X admits an open locally finite refinement.

Proposition 2.1.6. If (X, T ) is a compact topological space, then it is a paracompact
space.

Proof. SupposeX is a compact space and let A be an arbitrary open cover of X. Then,
A has a finite subcover B. Since B is a locally finite refinement of A and A was taken
arbitrarily, X is a paracompact space.
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Definition 2.1.27 (Partition). Let (X, T ) be a topological space. We say that P ⊆ P(X)
is a partition of X if and only if

• ∅ /∈ P,

• P is a cover of X,

• ∀P,Q ∈ P : P ∩Q = ∅ (P is pairwise disjoint).

If P = X we say the partition is trivial. If all the elements of a partition are open, it is
called an open partition.

Definition 2.1.28 (Connected Set). A topological space (X, T ) is said to be disconnected
if and only if there is a non trivial open partition P ⊆ P(X). If no such partition exists,
the space is referred to as connected.

A more intuitive way to see if a space is disconnected is the following.

Proposition 2.1.7. A topological space (X, T ) is said to be disconnected if and only if
there is a binary open partition P = {A,B}.

Proof. Assume (X, T ) is disconnected and let P = {Pi}i∈I be a non trivial partition of X.
Fix i0 ∈ I.

{Pi0

⋃
i∈I,i ̸=i0

Pi}

is an open binary partition of X.
The converse is trivial.

Remark 2.1.5. The space (Rn, Tdn) is a connected space. The interval [0, 1] is also con-
nected.

Theorem 2.1.6. Let (X1, T1), (X2, T2) be two topological spaces and f : X1 → X2 a
continuous function. If X1 is connected, then f(X) is connected.

Connection is also a topological property.

Corollary 2.1.2. Let (X1, T1) and (X2, T2) be two homeomorphic topological spaces. Then,
X is connected if and only if Y is connected.

Definition 2.1.29 (Convex Set). A set S ⊆ Rn is convex if and only if

∀x, y ∈ S : {(1− t)x+ ty : t : [0, 1]} ⊆ S
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Proposition 2.1.8. If S ⊆ Rn is a convex set, then it is path-connected.

Definition 2.1.30 (Path-connected Set). Let (X, T ) and x, y ∈ X. An path from x to y

in X is a continuous function σ : [0, 1]→ X such that σ(0) = x and σ(1) = y.
A space is said to be path-connected if and only if for all x, y ∈ X there is a path from x

to y.

The empty set is not path-connected since there are no two points that can be connected

by a path.

Proposition 2.1.9. If (X, T ) is path-connected, then it is connected.

Proof. By means of contradiction, assume (X, T ) is path-connected and disconnected.
Then, there is an open partition {A,B} of X. Since this space is path-connected, there
are x ∈ A, y ∈ B and a path σ : [0, 1]→ X from x to y.
Since [0, 1] is connected and σ is continuous, by 2.1.6, we have that σ[0, 1] is connected.
Let P = {A ∩ σ[0, 1], B ∩ σ[0, 1]}. Since x ∈ A ∩ σ[0, 1] and y ∈ B ∩ σ[0, 1], these sets
are non-empty and P is a partition of σ[0, 1]. Hence σ[0, 1] is disconnected, which is a
contradiction. Therefore, X should be connected.

Proposition 2.1.10. Let (X1, T1), (X2, T2) be two topological spaces and f : X1 → X2 a
continuous function. If A ⊆ X1 is path-connected, then f(A) is path-connected.

Definition 2.1.31 (Locally Path-connected Set). A topological space (X, T ) is said to be
locally connected if and only if it has a base of path connected subsets.

Proposition 2.1.11. Let (X, T ) be a locally connected topological space. X is connected
if and only if it is path-connected.

We have made a quick review on topology. Now we will introduce homotopy and the

fundamental group. The latter will be of great importance in the next section. The main

reference for these concepts is [9].

Homotopy comes from the Greek words ”homo” and ”topos”, which mean similar place.

Two spaces are homotopic if one can transform (deform) into another via a continuous

function. Typical examples of homotopies include i) the mug that can be deformed into a

torus and ii) two 2-dimensional curves that have the same endpoints. The following figure

illustrates the latter example. The doted line represents a curve that can be continuously

deformed into the non-dotted line.
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Figure 2.1: Two curves that can be continuously deformed into one another

Definition 2.1.32 (Homotopy). Consider two topological spaces X and Y and continuous
functions F1 and F2 from X to Y . An homotopy from F1 to F2 is a continuous map
H : X × I 7→ Y , where I ⊂ R, such that

∀x ∈ X : H(x, 0) = F1(x),

∀x ∈ X : H(x, 1) = F2(x).

F1 and F2 are referred to as homotopic and it is denoted F1 ≃ F2. If, in addition,

∀t ∈ R,∀x ∈ A ⊆ X : H(x, t) = F1(x) = F2(x),

F1 and F2 are called homotopic relative to A.
These homotopies are equivalence relations on the set of all continuous functions.

Definition 2.1.33 (Path-Homotopy). Let X be a topological space and f1, f2 two paths
on X. We say that f1 and f2 are path-homotopic if and only if they are homotopic relative
to the set {0, 1}.
Path homotopy is an equivalence relation on the set of all paths and it is known a path-class.

Definition 2.1.34 (Loop). Consider a topological space X and q ∈ X. We say that a loop
with base on q is path from q to q.
Loop is an equivalence relation. The set of all classes of loops based at q is denoted π1(X, q).
This set is known as the fundamental group of X with base on q.

Definition 2.1.35 (Path Product). Consider a topological space X and two paths f1, f2 :
I 7→ X such that f1(1) = f2(0). We define the path product as the function f1 ∗ f2 : I 7→ X

such that

f1 ∗ f2 =


f1(2t), 0 ≤ t ≤ 1/2

f2(2t− 1), 1/2 ≤ t ≤ 1.

Proposition 2.1.12. Let [f1] and [f2] be path-classes. Then, their product [f1] · [f2] is the
class of the path product [f1 ∗ f2].
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The fundamental group is indeed a group equipped with the product defined above.

The identity of this group is the path-class of the constant path (denoted cq) and the

inverse of a path-class [f ] is the class of the reverse path f(1− s). Note that the identity

loop cq is simply a loop that can be contracted to a single point.

Definition 2.1.36 (Simply Connected). Let X be a topological path-connected space and
take an arbitrary q ∈ X. We say that X is simply connected if and only if the fundamental
group π1(X, q) = {[cq]}.

Simply connected spaces can be pictured as spaces that have no holes. For instance,

the sphere S2 is simply connected, while the torus is not simply connected.

In the next chapter, we will study the inverse problem of the Euler-Poincaré equations

on Lie groups and Lie algebras (which are non-associative). Before we take a look at them,

we have to provide some concepts on manifolds.

2.2 Manifolds

A manifold can be seen as a generalization of a surface that is not embedded in a Euclidean

space although it locally resembles one. In fact, a manifold exists as an object in its own

right [10]. Take a ball, for example. We can study the properties of this ball without

considering the space it is in, where or how it is placed; all that matters is the object.

Moreover, if we look at neighbourhood of any point in the ball, we will notice that it looks

like the Euclidean space R3. In this section we will cover a few concepts on manifolds and

it will be based on [11] and [12].

2.2.1 Smooth Manifolds

Definition 2.2.1 (Topological Manifold). Consider a topological space M of dimension n
(also known as an n-manifold). We say that M is a manifold if and only if the following
holds.

• M is a Hausdorff space,

• M is a second countable space; i.e., T (the topology in M) has a countable base,
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• For each p ∈M there is a neighbourhood homeomorphic to an open set in Rn; i.e.,

∀p ∈M, ∃U ∈ T : p ∈ U,

∀p ∈M, ∃Û ⊆ Rn, and

there is an homeomorphism φ : U → Û .

The last statement states that every point on the manifold has a neighbourhood that

is homeomorphic to an open set on Rn. That is what we mean when we say a manifold

resembles a Euclidean space. In order to illustrate what a manifold is, we will see a quick

example.

Example 2.2.1 (The unit circle). First we need to prove the unit circle S1 is a Hausdorff
space. We know that (R2, d2) is a metric space. Thus, by proposition 2.1.1, (R2, Td2) is
a topological space. Moreover, by theorem 2.1.2, we know the Hausdorff condition holds.
We now consider the subspace topology (S1, TS1). From theorem 2.1.3, it follows that the
former space is also Hausdorff.

Using theorem 2.1.4 and the fact that (R2, Td2) is a second countable space, we can see
that the subspace (S1, TS1) is also second countable.

It only remains to prove the third property. Let’s denote the following sets

Hu =
{
(x, y) ∈ R2 : y > 0

}
, Hb =

{
(x, y) ∈ R2 : y < 0

}
,

Hr =
{
(x, y) ∈ R2 : x > 0

}
, Hl =

{
(x, y) ∈ R2 : x < 0

}
,

where u, b, r, l stand for up, bottom, right and left, respectively. On one hand, we choose
Uu = Hu ∩ S1, Ub = Hb ∩ S1, Ur = Hr ∩ S1 and Ul = Hl ∩ S1. Notice that we need four
sets to cover the entire circle. Notice that if we only used Uu and Ub, two points would be
missing; (-1,0) and (1,0). Therefore, we also need the left and right halves to cover the
entire circle. On the other hand, we take Û = B1 = (−1, 1). Now, consider the following
function.

f : Û −→ R

x 7−→
√

1− x2.

Note that the graph of f gives us Uu and Ur while Ub and Ul are the graph of −f . Finally,
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we define the homeomorphism

φu : Uu −→ Û

(x, y) 7−→ φ(x, y) = y.

Similarly, we can define φb, φr and φl. This proves that the third condition holds.
We conclude that S1 is a smooth manifold of dimension one.

Example 2.2.2. Another example is the space Rn, n ∈ N, itself since it is a second count-
able Hausdorff space and we can take the homeomorphism φ to be the identity function.

Definition 2.2.2 (Coordinate Charts). Given a topological manifold M of dimension n,
let U ⊆ M , Û ⊆ Rn be open sets, and φ : U → Û a homeomorphism. A coordinate chart
on M is the pair (U,φ).

Moreover,

• if p ∈ U and φ(p) = 0, we say the chart φ is centered at p,

• if φ(U) is an open ball, then U is referred to as a coordinate ball,

• the map φ is referred to as a local coordinate map and the component function

(x1, x2, . . . , xn) of φ;i.e., φ(p) = (x1(p), x2(p), . . . , xn(p)) is called a local coordinate

on U .

In example 2.2.1 (Uu, φu), (Ub, φb), (Ur, φr) and (Ul, φl) are coordinate charts.

Since topological manifolds have such a strong connection with Euclidean spaces, they

also have topological properties.

Lemma 2.2.1. Consider a topological manifold M of dimension n. M has a base of
precompact coordinate balls.

Proof. We will prove this lemma in two steps. First, in the case where M has only one
chart. Then, when M has more than one chart.

• Assume M has a single chart (M,φ) such that φ : M −→ Û ⊆ Rn. As a consequence
of the Archimedean property, we can define the set

B = {B(x, r) ⊂ Rn : r ∈ Q ∧ x ∈ Qn},
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and take B(x, r′) ⊆ Û for some r′ > r, which is a precompact ball. We can clearly
see that B is a countable base for the topology of Û . Since φ is a homeomorphism
(and thus a continuous function), we can see that each element of the set

φ−1(B) = {φ−1(B(x, r)) : r ∈ Q ∧ x ∈ Qn}

is a precompact coordinate ball. Therefore, φ−1(B) is a countable basis for U of
precompact coordinate balls.

• From proposition 2.1.3 and since M is a second countable space, we know that M
can be covered by a countable set of charts. Note that by definition each point in
M is contained in a chart. Thus, their union is a countable base for the topology of
M . Let (U,φ) be any of those charts. We already know that U has a countable base
of precompact coordinate balls in U , but we still need a set of precompact balls in
the manifold. Take a coordinate ball V ⊆ U . We know that ad(V ) is compact. By
proposition 2.1.5 we have that V is closed in M . Therefore, ad(V ) is the same in U

and M . This means that V is in fact precompact in M . Since V was arbitrary, we
have proved that M has a base of precompact coordinate balls.

Proposition 2.2.1. Topological manifolds are locally compact.

This proposition is a consequence of lemma 2.2.1.

Theorem 2.2.1. Topological manifolds are paracompact spaces.

A proof for this theorem can be found in [11]. As we have already seen, second count-

ability plays an important role in the topological properties of a manifold. The latter

theorem might be the main consequence because paracompact manifolds are metrizable

(the inverse is also true) and having a metric will allow us to do calculus on the manifold.

Proposition 2.2.2. Let M be an n-manifold. The following propositions are true.

i ) M is locally path-connected.

ii ) M is connected if and only if it is path-connected.

Proof. This proposition is an immediate consequence of the theorems on connected sets.

i ) Recall that M has a base of precompact coordinate balls (2.2.1). Since balls in Rn

are path-connected, by proposition 2.1.10 we can see that coordinate balls are also
path-connected. Hence, M has a base of path-connected sets.
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ii ) By definition M is a topological manifold. This proof follows directly from propo-
sition 2.1.11.

Now that we know what a manifold is, we would like to apply some ideas of calculus

on manifolds. In order to do this, we will introduce smooth (or differentiable) structures.

Definition 2.2.3 (Diffeomorphism). Let M, N be n-manifolds and f : M → N a bijective
function. We say that f is a diffeomorphism if and only if f and f−1 are differentiable in
the Euclidean sense.

Diffeomorphisms are an important part of this work because they allow us to transfer

ideas and properties from one manifold to another without altering those properties.

Definition 2.2.4 (Transition Map). Let M be a topological n-manifold and (U,φ), (V, ψ)
two charts. The composite function φ◦ψ−1 : φ(U ∩V )→ ψ(U ∩V ) is called the transition
map from φ to ψ.
Two charts are said to be smoothly compatible if either U ∩ V = ∅ or their transition map
is a diffeomorphism.

Definition 2.2.5 (Atlas). An atlas is a collection of charts that covers an n-dimensional
manifold M. An atlas is said to be maximal if and only if it is not properly contained in
any other atlas. An atlas is called smooth if and only if any two charts of the collection
are smoothly compatible.
A smooth structure on M is called a smooth maximal atlas.

Definition 2.2.6 (Smooth Manifold). Let M be a topological n-manifold and A a maximal
smooth atlas. A smooth manifold is defined as the pair (M,A).

Definition 2.2.7 (Open Submanifold). Consider a manifold M and an open subset U ⊆
M . Let’s denote A the set of all smooth charts of M and define the set

A = {(V, φ) ∈ A : V ⊆ U}.

Note that A is an atlas for U . Thus, U is an open submanifold of M .

In the next section we will work with smooth manifolds; unless otherwise stated.

Definition 2.2.8 (Smooth Function). Given an n-manifold M and a function f : M → R,
we say that f is a smooth function if and only for each p ∈M there is a chart (U,φ : U →
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Û) such that p ∈ U and the composite function f ◦ φ−1 : Û → R is smooth; i.e., infinitely
differentiable. This composite function is known as the coordinate representation of f .
The set of all smooth real-valued functions is denoted C∞(M) and it is a vector space over
R endowed with the sum and multiplication of functions.

Even though map and function are used as synonyms, to avoid misunderstandings we

will use the word map exclusively for functions from one manifold into another.

Definition 2.2.9 (Smooth Map). Let M and N be smooth manifolds and consider the
map F : M → N . F is said to be a smooth map if and only if

i ) ∀p ∈M,∃(U,φ), p ∈ U,∃(V, ψ), F (p) ∈ V : F (U) ⊆ V , and

ii ) F̂ := ψ ◦ F ◦ φ−1 : φ(U) → ψ(V ) is smooth. F̂ is known as the coordinate
representation of F .

The last function is called the coordinate representation of F .

Proposition 2.2.3. Let M and N be smooth manifolds. If the map F : M → N is smooth,
then it is continuous.

Proof. Assume that F is a smooth map. Then, condition i) and ii) from 2.2.9 hold. Let
p ∈ M be arbitrary. Recall that ψ ◦ F ◦ φ−1 is differentiable and thus continuous. Since
φ and ψ are homeomorphism, their inverse functions exist and are continuous. Therefore,
we have that

F |U = ψ−1 ◦ (ψ ◦ F ◦ φ−1) ◦ φ : U → V

is a composition of continuous functions. Hence, it is continuous. Since p was generic, we
have proved that F is continuous in M.

Proposition 2.2.4. Consider smooth topological manifolds M , N and P . Then

i ) the identity map Id : M →M is a smooth map;

ii ) every constant map C : M → N is smooth;

iii ) if U ⊆ M is an open submanifold of M , then the inclusion map id : U → M is
smooth;

iv ) if F : M → N and G : N → P are smooth maps, then so is G ◦ F : M → P .

The study of manifolds is extensive. However, we have recall only those definitions and

theorems that are relevant for our work. Further concepts can be found in [11] and [10].
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2.2.2 Tangent Bundle

In this section we will see a generalization of total derivative and derivative in the direction

of a vector based at some point.

Definition 2.2.10 (Geometric Tangent Vector). Given a vector a ∈ Rn, we say that the
geometric tangent space to Rn at a is the set

Rn
a = {a} × Rn = {(a, v) : v ∈ Rn}.

This can be understood as the set of arrows attached to a.
From now on, we will denote va = (a, v). An element of Rn

a is called a geometric tangent
vector and it is a real vector space whose basis are the unit vectors ei|a, i = 1, . . . , n.

Definition 2.2.11 (Directional Derivative). Let a ∈ Rn and va ∈ Rn
a be a geometric

tangent vector. The map Dv|a : C∞(Rn)→ R defined by

Dv|af := Dv|af(a) = d

dt

∣∣∣∣∣
t=0
f(a+ tv) (2.6)

provides the derivative of f in the direction of v at a.

Remark 2.2.1. This function satisfies the product rule

Dv|a(fg) = f(a)Dv|ag + g(a)Dv|af. (2.7)

Moreover, if we let va = viei|a and use the chain rule, we get

Dv|af = vi ∂f

∂xi
(a). (2.8)

Note that we have used the Einstein summation convention.

Definition 2.2.12 (Derivation). Let a ∈ Rn and ω : C∞(Rn)toR. Function ω is said to
be a derivation at a provided it is linear over the real numbers and it satisfies the product
rule

ω(fg) = f(a)ωg + g(a)ωf. (2.9)

The set of all derivation of at a is denoted TaRn and it is a vector space under the sum of
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derivations and scalar multiplication; i.e., for all ω1, ω2 ∈ TaRn, f ∈ C∞(Rn) and c ∈ R

(ω1 + ω2)f = ω1f + ω2f and

(cω1)f = c(ω1f).

TaRn is also known as the tangent space of Rn at a.

Proposition 2.2.5. Let a ∈ Rn. The map Rn
a ∋ va 7→ Dv|a ∈ TaRn is an isomorphism

and thus Rn
a
∼= TaRn.

The proof of proposition 2.2.5 can be found in [11].

Corollary 2.2.1. Given a ∈ Rn the derivatives

De1|a = ∂

∂x1

∣∣∣∣∣
a

, . . . , Den|a = ∂

∂xn

∣∣∣∣∣
a

(2.10)

form a basis for TaRn.

Note that derivations are not actually vectors at some point, but linear functions.

However, thinking of them as vectors helps us understand their meaning. Moreover, we

will see that properties of derivatives are similar to those of derivatives in the Euclidean

space Rn.

Since we will be working on manifolds, we would like to find a generalization of derivation

and the set TaRn. The definition of a derivation on a manifold is analogue to definition

2.2.12. What changes is the space where the derivation is defined.

Definition 2.2.13 (Tangent Vector on Manifolds). Given a manifold M and an element
p ∈M , we say that a function v : C∞(M)→ R is a derivation at p provided that

∀f ∈ C∞(M) : v(fg) = f(p)vg + g(p)vf. (2.11)

Similarly, TpM is a vector space known as the tangent space to M at p.

Lemma 2.2.2. Let M be a manifold, p ∈ M , v ∈ TpM and f, g ∈ C∞(M). Then, the
following properties hold.

i ) If f is a constant linear map, then vf = 0.

ii ) If f(p) = g(p), then v(fg) = 0.
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We can see that 2.2.2 also holds when M = Rn. Recall that the total derivative of a

map between Euclidean spaces is a linear map that is represented by its Jacobian matrix.

In the more abstract setting of manifolds, this concept (total derivative) can be generalized

as a linear map between tangent spaces.

Definition 2.2.14 (Differential). Consider two smooth n-manifolds M and N , p ∈ M

arbitrary, and a smooth map F : M → N . The linear map

dFp : TpM → TF (p)N

is said to be the differential of F at p. Moreover, for each f ∈ C∞(N) and v ∈ TpM , we
have

dFp(v)(f) = v(f ◦ F ).

Notice that dFp(v) is defined from C∞(N) to R is a linear operator.

Remark 2.2.2. Given f, g ∈ C∞(N) we have that

dFp(v)(fg) = v((fg) ◦ F )

= v((f ◦ F )(g ◦ F ))

= (f ◦ F )(p)v(g ◦ F ) + (g ◦ F )(p)v(f ◦ F )

= f(F (p))dFp(v)(g) + g(F (p))dFp(v)(f).

The following properties are essential and will be used frequently in the next chapter.

Proposition 2.2.6. Given smooth manifolds M , N and P , p ∈M , and two smooth maps
F : M → N , G : N → P , the following statements hold

1. dFp : TpM → TF (p)N is a linear map.

2. d(G ◦ F )p : TpM → TG◦F (p)P and d(G ◦ F )p = dGF (p) ◦ dFp.

3. d(IdM)p = IdTpM : TpM → TpM (the differential of the identity in M is the identity
map in the tangent space TpM).

4. If F is a diffeomorphism, then dFp is an isomorphism and (dFp)−1 = d(F−1)F (p).

Another important result is that tangent spaces preserve the dimension of the manifold.

Proposition 2.2.7. If M is a smooth n-manifold and p ∈ M , then TpM has the same
dimension as M .
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An analog result for 2.2.1 is the following.

Proposition 2.2.8. Let M be a topological space, p ∈ M . Then, for each chart (U, (xi))
that contains p the coordinate vectors

∂

∂x1

∣∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣∣
p

form a basis of TpM .

Using the coordinate vector we can rewrite the differential and do computations easily.

Let U ⊂ Rn, V ⊂ Rm be open subsets, p ∈ U . We let (x1, . . . , xn) be the coordinates

in Uand (y1, . . . , ym) the coordinates in V . Consider the smooth map F : U → V , the

differential dFp : TpM → TF (p)N and f : C∞(Rn). Then

dFp

(
∂

∂xi

∣∣∣∣∣
p

)
f = ∂

∂xi

∣∣∣∣∣
p

(f ◦ F )

= ∂f

∂yj
(F (p))∂F

j

∂xi
(p)

=
(
∂F j

∂xi
(p) ∂

∂yj

∣∣∣∣∣
F (p)

)
f.

Therefore, we have that

dFp

(
∂

∂xi

∣∣∣∣∣
p

)
= ∂F j

∂xi
(p) ∂

∂yj

∣∣∣∣∣
F (p)

. (2.12)

Recall that we are using the summation notation and 2.12 is actually the Jacobian matrix

of F at p; i.e., 
∂F 1

∂x1 (p) · · · ∂F 1

∂xn (p)
... . . . ...

∂F m

∂x1 (p) · · · ∂F m

∂xn (p)

 . (2.13)

In a similar way, consider two smooth manifolds M , N , a smooth map F : M → N , a

chart (U,φ) that contains p and a chart (V, ψ) that contains p. Recall that the coordinate

representation (which was given in definition 2.2.9) is

F̂ : ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V ))→ ψ(V ).

Thus, dF̂ is represented by the Jacobian matrix above. Now, for the sake of simplicity, we
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let p̂ := φ(p) and then compute dFp and get

dFp

(
∂

∂xi

∣∣∣∣∣
p

)
= ∂F̂ j

∂xi
(p̂) ∂

∂yj

∣∣∣∣∣
F (p)

.

The differential dFp can also be denoted F∗ and throughout this work we will work with

both notations. Moreover, F∗ will be referred to as the pushforward of F .

Definition 2.2.15 (Tangent Bundle). Let Q be an n-dimensional smooth manifold. The
tangent bundle of Q is defined as the disjoint union of all the tangent spaces; i.e.,

TQ =
∐
p∈Q

TpQ = {(p, v) : p ∈ Q and v ∈ TpQ}, (2.14)

where TpQ is the tangent space of Q at point p.

Now, we consider the natural projection π : TQ→ Q such that (p, v) 7→ p. Using this

map we can define a natural topology and smooth structure on TQ by using charts (U,φ)

of Q. We consider (π−1(U), φ̃), where φ̃ : π−1(U)→ R2n and

φ̃

vi ∂

∂xi

∣∣∣∣∣
p

 :=
(
x1(p), . . . , xn(p), v1, . . . , vn

)
= (xi, vi), (2.15)

with φ(p) = (x1(p), . . . , xn(p)), which are called natural coordinates on TQ. This

structure makes TQ a 2n-dimensional manifold.

Coordinates (xi, vi) are called the natural coordinates on TQ. Let M and N be smooth

manifolds and F a smooth map. The differential dF : TM → TN is called the global

differential and is given by

dF (x1, . . . , xn) =
(
F 1(x), . . . , F n(x), ∂F

1

∂xi
(x)vi, . . . ,

∂F n

∂xi
(x)vi

)
.

The properties of this map are a generalization of properties 2, 3 and 4 in 2.2.6. However,

there is a slight difference from 4. In fact, if F is a diffeomorphism, then so is it differential.

Definition 2.2.16 (Vector Field). A smooth vector field on Q is a smooth map X : Q→
TQ such that for all p ∈ Q we have Xp = X(p) ∈ TpQ

The set of smooth vector fields is denoted by X(M). If (U, (xi)) are local coordinates

of Q, for any p ∈ U we can write Xp ∈ TpM in terms of the coordinate base:
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Xp = X i(p) ∂

∂xi

∣∣∣∣∣
p

, (2.16)

where each X i : U → R is C∞(R) and called the component functions of X. Since each

X i is smooth, we can write (2.16) as an equation between vector fields.

X = X i ∂

∂xi
(2.17)

Definition 2.2.17 (Integral Curves). Let V be a vector field on Q and γ : J → M be a
differentiable curve. Then γ is called an integral curve of V if

∀t ∈ J : γ′(t) = Vγ(t) (2.18)

Definition 2.2.18 (Flow Domain). A open subset D of R×Q is a flow domain if

∀p ∈ Q : D(p) = {t ∈ R : (t, p) ∈ D}

contains the zero and is an open interval.

Definition 2.2.19 (Smooth Flow). A smooth flow is a smooth map θ : D → Q, with D
being a flow domain with the following properties

• ∀s ∈ D(p), ∀t ∈ D(θ(s,p)), s+ t ∈ D(P ) : θ(t, θ(s, p)) = θ(t+ s, p),

• ∀p ∈ Q : θ(0, p) = p.

For a smooth flow we define the infinitesimal generator of θ as the vector field V such

that

∀p ∈ Q : Vp = θ(p)′(0),

where θ(p) : R→ Q is such that θ(p)(t) = θ(t, p).

The Fundamental Theorem on Flows (see [11]) states that for any V ∈ X there

exits a unique smooth maximal flow θ : D → Q such that its infinitesimal generator is V .

This flow is called the flow of V .

2.2.3 Lie Group

We consider a new kind of manifolds, called Lie groups. These manifolds are the group of

symmetries of another manifolds.
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Definition 2.2.20 (Lie Group). A Lie group G is an n-dimensional smooth manifold which
has a group structure where the multiplication and inverse operations are both smooth.

For any element g of a Lie group G we define the map Lg : G→ G as follows,

Lg(h) = gh. (2.19)

This map is called left translation. It can easily be shown that Lg is a diffeomorphism on

G.

As an example of a Lie group we consider the general linear group GL(n,R), which

is the set of n × n matrices with real entries, with the usual matrix multiplication as the

multiplication operation. The smoothness of this operation comes from the fact that entries

of matrix product is given by polynomial functions. The same apply for the inverse.

Since Lie groups are in particular groups, we can define homomorphisms between them.

Definition 2.2.21 (Lie Group Homomorphism). Let G, H be Lie groups. A Lie group
homomorphism is a map F : G→ H that is smooth and a homomorphism in the algebraic
sense.

Lie groups act on other manifolds. Let M a smooth manifold and G a Lie group. The

left action of G on M is a map

θ : G×M →M

(g, p) 7→ gp

If this map is smooth, we called it a smooth action. We will see that left actions arise

naturally in the next chapter.

By fixing g ∈ G we define θg : M → M given by θg(p) = gp. Hence, for any g1, g2 ∈ G we

have the following properties

θg1 ◦ θg2 = θg1g2 ,

θe = IdM

Since θg−1 is the inverse of θg and it is smooth, θg is a diffeomorphism.

From the algebraic point of view we know that an orbit of p ∈ M is given by the set

G · p := {g · p : g ∈ G} and a stabilizer is Gp := {g ∈ G : g · p = p}.
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The action is transitive if the only orbit is the whole M, while it is called free if the stabilizer

is trivial; i.e., Gp = {e}.

Let G be a Lie group. Let us consider the left action g1 7→ g2g
−1
1 . When we consider

a Lie group acting on itself we get some particular properties. If g1 and g2 are generic

elements of G, we take g = g2g
−1
1 ∈ G. Then since gg1 = g2 we get that G acts transitively

on itself. Also, it can be proved that the action is free.

Definition 2.2.22 (F-related). Let X ∈ X(M), M,N smooth manifolds, and F : M → N

a smooth map. Let us assume that there exists a smooth vector field Y on N such that

∀p ∈M : dFp(Xp) = YF (p)

Then we say that X and Y are F-related.

Let Q be a manifold, X ∈ X(Q) and f ∈ C∞(Q). We define Xf : Q → R such that

p 7→ Xpf . Moreover, we have that for all f, g ∈ C∞(Q))

X(fg) = fXg + gXf.

2.2.4 Lie Algebra

Definition 2.2.23 (Lie Brackets). Let X and Y be two smooth vector fields on Q. The
Lie bracket of X and Y is a new smooth vector field defined by

[X, Y ] = XY f − Y Xf, ∀f ∈ C∞(Q), (2.20)

where (XY f) = X(Y f).

By writing X = X i∂/∂xi and Y = Y j∂/∂xj respect to some smooth local coordinates

(xi) for Q, we can write the coordinate expression of Lie bracket

[X, Y ] =
(
X i∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
. (2.21)

The Lie bracket has the following properties.
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1. Bilinearity: For all a, b ∈ R

[aX + bY, Z] = a[X,Z] + b[Y, Z], (2.22)

[Z, aX + bY ] = a[Z,X] + b[Z, Y ]. (2.23)

2. Antisymmetry:

[X, Y ] = −[Y,X].

3. Jacobi Identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

4. For f, g ∈ C∞(Q)

[fX, gY ] = fg[X, Y ] + (fXg)Y − (gY f)X.

Now we consider a definition that describes a way to calculate directional derivatives of

vector fields.

Definition 2.2.24 (Lie Derivative). Let p be a element of Q, V,W ∈ X(Q), and θ the flow
of V . We define the Lie derivative of W with respect to V by

(LVW )p = lim
t→0

d(θ−t)θt(p)(Wθt(p))−Wp

t
, (2.24)

which is well defined since both vectors in the numerator belong to TpQ.

The Lie derivative can be expressed independently of the flow. In fact, we have that

LVW = [V,W ]. (2.25)

Definition 2.2.25 (Lie Algebra). A Lie algebra is a real vector space (g, [ ]) where the
internal operation called bracket satisfies the bilinearity, anti-symmetry and Jacobi identity
properties for any X, Y.Z ∈ g.

The set X(Q) endowed with the Lie bracket operation is a Lie algebra. Now suppose

we have a Lie group G. A vector space X is called left-invariant if

d
(
Lg

)
g′

(
Xg′

)
= Xgg′ , for all g, g′ ∈ G.
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For any X, Y smooth left-invariant vector fields on G, [X, Y ] is also left-invariant. Thus

we define the Lie algebra of G as the set of smooth left-invariant vector fields and denote

it Lie(G).

In addition, it can be shown that the map ε : Lie(G) → TeG defined by ε(X) = Xe is an

isomorphism, i.e. Lie(G) ∼= TeG. Thanks to this relation, we can identify unambiguously

a left-invariant vector field on G with a vector in TeG. Thus, G, TeG and Lie(G) have the

same dimension.

For Lie algebras g and h a map K : g→ h is called a Lie algebra homomorphism if

∀X, Y ∈ g : K[A, Y ] = [K(A), K(Y )] (2.26)

If a map K satisfies (2.26) we say that it preserves brackets.

From a Lie group homomorphism we can get a Lie algebra homomorphism. For Lie

groups G and H and their respective Lie algebras g and h, consider a Lie group homomor-

phism F : G→ H. Then we have that,

∀X ∈ g,∃!Y ∈ h : X and Y are F -related.

Usually the unique vector field Y is denoted as F∗X. One can show that the map

F∗ : g→ h (2.27)

defines a Lie algebra homomorphism.

Definition 2.2.26 (One parameter Subgroup). A one-parameter subgroup is a Lie group
homomorphism γ : R→ G, with R the additive group.

The following statement gives us an important tool to do computations on Lie algebras.

Corollary 2.2.2. Given smooth manifolds, a diffeomorphism F : M → N and two vector
fields X, Y ∈ X(M), we have that the pushforward of the Lie bracket is the Lie bracket of
the pushforward; i.e.,

F∗[X, Y ] = [F∗X,F∗Y ].
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2.2.5 Cotangent Bundle

We will give a brief review on tangent covectors. We have seen that covectors are elements

of a dual space. Let V be a finite vector space. The dimension of of V is the same as the

dimension of V ∗. In order to avoid misunderstandings, we will use upper indices when it

comes to a basis of the V ∗ and lower indices for the basis of V .

Tangent covectors are a generalization of covectors.

Definition 2.2.27 (Cotangent Space). Let M be a smooth manifold and p ∈ M . We
denote T ∗

pM := (TpM)∗ the cotangent space of M at p.
The coordinate representation of a covector ω is

ωi = ω

(
∂

∂xi

∣∣∣∣∣
p

)
.

Definition 2.2.28 (Cotangent Bundle). Let M be an n-dimensional smooth manifold. The
tangent bundle of M is defined as the disjoint union of all the cotangent spaces; i.e.,

T ∗M =
∐
p∈Q

T ∗
pM. (2.28)

A section of the dual space T ∗M is called a covector field. The component functions of

a covector field ω are characterized by

ωi(p) = ωp

(
∂

∂xi

∣∣∣∣∣
p

)
.

Given two smooth manifolds M , N , p ∈ M , a smooth map F between them, we can see

that the differential dFp : TpM → TF (p)N has a dual function given by

(dFp)∗ := dF ∗
p : T ∗

F (p)N → T ∗
pM.

This function is known as the pullback by F at p. If, in addition, we are given a covector

field ω, then the pullback of ω by F is defined by

(F ∗ω)p = dF ∗
p (ωF (p))

and for every vector v ∈ TpM we have that (F ∗ω)p(v) = ωF (p)(dFp(v)).
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2.2.6 The exponential Map

Definition 2.2.29 (Exponential Map). Let G be a Lie group. The exponential map exp
from its Lie algebra Lie(G) to G is defined as,

exp(X) = γ(1) (2.29)

where γ is the one parameter subgroup generated by X, which coincides with the integral
curve γ of X such that γ(0) = e.

For any X ∈ Lie(G) its integral curve can be expressed as

γ(s) = exp(sX). (2.30)

From (2.30), for g ∈ G, η ∈ Lie(G) we get

lim
ε→0

g exp(εη) = g. (2.31)

2.2.7 Adjoint representation

Let G be a Lie group, g its Lie algebr and g ∈ G. The Lie homomorphism

Cg : G→ G

h 7→ ghg−1,

called the conjugation map, has interesting properties. From this map we define Ad(g) as

its induced Lie algebra homomorphism, i.e., Ad(g) := (Cg)∗ : g→ g given as in (2.27). We

have that, (Cg)∗ ∈ GL(g), the general linear group of the vector space g. From the previous

development, we get a new map called the Adjoint representation of G, Ad : G→ GL(g),

which is a Lie group representation [13]. In the same way, we define the map ad : g→ gl(g),

called the adjoint representation of g defined by using the Lie brackets,

∀X ∈ g : ad[X](Y ) = adX(Y ) := [X, Y ]

It can be shown that ad is a Lie algebra homomorphism. Moreover we have that

Ad∗ = ad. From ad we also consider its dual maps ad∗ from g∗ to itself with the following
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property.

∀X, η ∈ g, ω ∈ g : ⟨ ad∗
X(ω), η⟩ = ⟨ω, adX(η)⟩ (2.32)

2.2.8 Differential Forms and Tensors

In the inverse problem of calculus of variation we have to deal with tensors and differential

forms. We will introduce those concepts and their properties. Our main guide for this

section is [14]. Let V be a vector space. Recall that L(V,R) is the set of all real linear

functions on V . Moreover, L(V,R) = V ∗.

Given r, s ∈ N ∪ {0}, we denote by T r
s (V ) := Lr+s(V ∗, r. . ., V ∗, V, s. . ., V ;R) the set of

all real multilinear functions on V ∗ r
× V ∗ × V

r
× V . The elements of T r

s (V ) are called

tensors of type (r, s) or (r, s)-tensors. It is easy to see that elements of L(V,R) = V ∗ and

L(V ∗,R) = V ∗∗ = V are (0, 1)-tensors and (1, 0)-tensors respectively.

Let M be a manifold. The definition of a tensor field is analogous to that of vector

field. In fact, a tensor field is a section of the set T r
s (M);i.e, a vector field is an element of

X(T r
s (M)).

A differential one form is an element of X(T 0
1 (M)).

In the preceding sections we have cover the necessary concepts to understand the La-

grangian formulation and the inverse problem of the calculus of variations along with its

variations.

2.3 Classical Mechanics

We will introduce the Euler-Lagrange equations considering two different approaches.

First, we will use calculus of variations an than we will take a look at the geometrical

formulation.

2.3.1 Lagrangian Formulation

We let L : TQ→ R be a Lagrangian on a smooth manifold Q. This space will be referred

to as the configuration space. The local coordinates of Q are denoted (qi), while the local
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coordinates on TQ are (qi, vi), where

v = vi ∂

∂qi
(2.33)

The tangent bundle TQ describes the states of our system, see [15], which are position and

velocity.

Let us consider the following set of curves which map real values to Q:

C2 ([t0, t1] , Q, q0, q1
)

= C2(q0, q1) =
{
γ ∈ C2 ([t0, t1] , Q) : γ (ti) = qi, i = 0, 1

}
. (2.34)

For these function we consider their lifts, described in the next definition.

Definition 2.3.1 (Lift of a curve). For a curve in (2.34) we define its lift as the smooth
curve γ̃ : [t0, t1]→ TQ such that

∀f ∈ C∞(Q) : (γ̃ (t0)
)
(f) = d

dt(f ◦ γ)
∣∣∣∣∣
t=t0

. (2.35)

In the local coordinates on TQ we can write

γ̃(t) =
(
γi(t), γ̇i(t)

)
. (2.36)

In order to use the variational approach we have to add perturbations to the curves, but

it is important that the endpoints remain untouched. Otherwise, we would end up with a

curve with different start and end points.

Definition 2.3.2. Let γ ∈ C2 (q0, q1) and take a small ϵ > 0. We say that the curve

γs : [−ϵ, ϵ]→ C2 (q0, q1)

is a variation of γ if and only if γ0 is equivalent to γ.

Now consider the vector field δγ (over the curve γ) such that for a fixed t in [t0, t1]

δγ(t) = dγs(t)
ds

∣∣∣∣∣
s=0

. (2.37)

If δγ(t0) = δγ(t1) = 0 (in other words, the variations vanish at the boundary points), we

say that this vector field is an infinitesimal variation of γ.
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Recall that C2(q0, q1) is an infinite dimensional manifold. Its tangent space manifold at

γ is given by

Tγ(C2 (q0, q1)) =
{
δγ ∈ C1 ([t0, t1] , TQ) : τQ ◦ δγ ≡ γ, δγ (ti) = 0, i = 0, 1

}
. (2.38)

Definition 2.3.3 (Critical Point). Given a function F ∈ C1(C2 (q0, q1) ,R), we say that a
curve γ ∈ C2 (q0, q1) is a critical point of F provided

∀γs : d (F ◦ γs)
ds

∣∣∣∣∣
s=0

= 0. (2.39)

Note that this is a generalization of the critical point of a function in a Euclidean space.

The sum action AL : C2 ([t0, t1] , Q, q0, q1
)
→ R given by

AL(γ) =
∫ t1

t0
L(γ̃(t))dt =

∫ t1

t0
L
(
γi(t), γ̇i(t)

)
dt (2.40)

returns the total cost to go from q0 to q1 on a curve γ ∈ C2 ([t0, t1] , Q, q0, q1
)
.

We would like to find a curve γ that minimizes this cost. The following theorem can be

found in [15].

Theorem 2.3.1 (Euler-Lagrange equations.). Let Q be a smooth manifold, q0, q1 ∈ Q and
consider a Lagrangian L : TQ→ R. A curve γ ∈ C2 ([t0, t1] , Q, q0, q1

)
is a critical point of

the sum action AL if and only if the lift γ̃ of γ satisfies the differential equations

∂L

∂qi
◦ γ̃ − d

dt

(
∂L

∂vi
◦ γ̃
)

= 0, (2.41)

where (qi, vi) are coordinates in a neighbourhood of γ̃.

The differential equations
∂L

∂qi
− d

dt

(
∂L

∂vi

)
= 0, (EL)

are known as the Euler-Lagrange equations.

Proof. First, we need to find the derivative A′
L of the integral action AL given in (2.40).

We know that

A′
L(γ) = lim

ε→0

AL(γ + εδγ)−AL(γ)
ε

.
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From (2.40) we get that

A′
L(γ) = lim

ε→0

1
ε

∫ t1

t0
L
(
γi(t) + εδγi(t), γ̇i(t) + εδγ̇i(t)

)
dt−

∫ t1

t0
L
(
γi(t), γ̇i(t)

)
dt

=
∫ t1

t0
lim
ε→0

1
ε

[
L
(
γi(t) + εδγi(t), γ̇i(t) + εδγ̇i(t)

)
− L

(
γi(t), γ̇i(t)

)]
dt

=
∫ t1

t0

[
∂L

∂qi
(γi(t), γ̇i(t)) δγi + ∂L

∂vi
(γi(t), γ̇i(t)) δγ̇i

]
dt

=
∫ t1

t0

∂L

∂qi
(γi(t), γ̇i(t)) δγidt−

∫ t1

t0

d
dt
∂L

∂vi
(γi(t), γ̇i(t)) δγidt+ ∂L

∂vi
(γi(t), γ̇i(t)) δγi

∣∣∣∣∣
t1

t0

=
∫ t1

t0

[
∂L

∂qi
(γi(t), γ̇i(t))− d

dt
∂L

∂vi
(γi(t), γ̇i(t))

]
δγidt.

In order to get minimize AL, we let A′
L(γ) = 0. Hence,

∂L

∂qi
◦ γ̃ − d

dt

(
∂L

∂vi
◦ γ̃
)

= 0.

Since the latter is 0 for every δ, we get the Euler-Lagrange equations

∂L

∂qi
− d

dt

(
∂L

∂vi

)
= 0.

We have cover fundamental concepts from algebra to topology and introduced the

definition of manifold. Moreover, we have scratched the surface of classical mechanics.

This concludes this chapter.
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Chapter 3

Results

3.1 Preliminary Results

In this section we present and prove important results that will yield the main result.

3.1.1 Discrete Euler-Lagrange Equations

We consider a discrete Lagrangian Ld on a discrete space Q.

Remark 3.1.1. Q×Q is the analogue discrete version of TQ.

Smooth curves on a continuous Q are changed by a sequence of points on the discrete

space Q , which we denoted as follows

Cd(Q) = {qk : {k}n
k=0 → Q}. (3.1)

Also, we consider steps of time h = tk − tk−1 for k = 1, . . . , n. Then the discrete

Lagrangian is given by

Ld : Q×Q→ R (3.2)

(qk−1, qk) 7→ L

(
qk−1 + qk

h
,
qk − qk−1

h

)
. (3.3)

Before we jump to the minimization problem, we have to introduce discrete derivatives,

see [16].
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Definition 3.1.1. Given q1, q2 ∈ Q, we say that the discrete derivative D1 with respect
to the first component of Ld as a function in T ∗

q1Q and the D2 ∈ T ∗
q2Q such that they

correspond to d(Ld)(q1, q2).

By using (3.2) the integral action can be approximated in the following way

AL(Cd(Q)) =
∫ Nh

0
L
(
qi(t), vi(t)

)
dt (3.4)

≈
N∑

k=1

∫ kh

(k−1)h
L(qi(t), q̇i(t))dt (3.5)

≈
N∑

k=1
hL

(
qk−1 + qk

h
,
qk − qk−1

h

)
(3.6)

=h
N∑

k=1
Ld(qk−1, qk) (3.7)

=:ALd
({q0, . . . , qn}) (3.8)

Assume that δq0 = δqN = 0. To get the critical points we calculate the derivative of

the discrete integral action,

A′

Ld
({q0, . . . , qn}) = lim

ε→0

ALd
({qk + εδqk}N

k=0)−ALd
({qk}N

k=0)
ε

= h lim
ε→0

∑N−1
k=0 (Ld(qk + εδqk, qk+1 + εδqk+1)− Ld(qk, qk+1))

ε

= h
N−1∑
k=0

D1Ld(qk, qk+1)δqk +D2Ld(qk, qk+1)δqk+1

= h
N−1∑
k=1

D1Ld(qk, qk+1)δqk +
N−2∑
k=0

D2Ld(qk, qk+1)δqk+1

= h
N−1∑
k=1

(D1Ld(qk, qk+1) +D2Ld(qk−1, qk))δqk = 0,

for any δqk. Then, by using this discretization, we get the discrete Euler-Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (DEL)

Therefore, by knowing the value q0, q1 we can obtain the whole set Cd(Q); i.e., a discrete

curve that minimizes the value of the discrete integral sum.
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3.1.2 Euler-Poincaré Equations

Now we consider the continuous Lagrangian system (G,L) where G is a Lie group and

L ∈ C2(TG) is a Lagrangian. In general we cannot identify the tangent bundle TQ as a

cartesian product Q×Q. However, when we consider a Lie group and its Lie algebra, we

can find an identification.

Theorem 3.1.1. Given a Lie group G and its Lie algebra g, we have that TG ∼= G× g.

Proof. Take g ∈ G and consider the left action Lg : G→ G. Recall that g = TeG ∼= Lie(G),
with TeG the tangent space at the identity element e. The isomorphism is obtained through
the left traslations Lg : h ∈ G 7→ gh ∈ G. Their differential at e are d(Lg)e = TeG→ TgG.
Then we get the isomorphism that we wanted.
The inverse of this isomorphism is given by d(L(·))g−1 = TgG→ TeG.

Now we consider a new lagrangian L = l(g, ξ) where g(t) ∈ G and ξ(t) ∈ g. Our goal

is to find the critical points of sum action (2.40) for our redefined Lagrangian

l : G× g→ R

when δAl(g, ξ) = 0. We will do this by working with the exponential map.

By using (2.31), we define infinitesimal variations δg of g ∈ G, for any η ∈ g by

δg = gη := d

dε
(g exp(εη))|ε=0 = d(Lg)(η), (3.9)

where η(0) = η(T ) = e. For the case of ξ ∈ Lie(G) we consider its infinitesimal variation

as δη = η̇ + [ξ, η].

With this variations we consider the associated integral action of l, which is now refor-

mulated as

Al

(
g exp(εη); ξ + ε

(
η̇ + [ξ, η]

)
,
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where g, η and ξ are functions of time. Then, for the critical points we have

δAl

δ (g, ξ) = lim
ε→0

1
ε
Al

(
g exp (εη) ; ξ + ε(η̇ + [ξ, η])

)
= lim

ε→0+

1
ε

∫ T

0
l(g exp(εη); ξ + ε(η̇ + [ξ, η]))dt

=
∫ T

0

d

dε
l
(
g exp(εη); ξ + ε(η + [ξ, η])

) ∣∣∣∣
ε

= 0.

Since g, η, ξ depend on t we have

=
∫ T

0

d

dε
l
(
g exp(εη); ε+ ε(η̇ + [ε, η])dt

=
∫ T

0

∂l

∂g

∣∣∣∣∣
(g,ξ)

d

dε
(g + exp(εη))

∣∣∣∣∣∣
ε=0

+ ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

(η̇ + [ξ, η]) dt

=
∫ T

0

∂l

∂g

∣∣∣∣∣
(g,ξ)

d(Lg)e(η) + ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

(η̇ + [ξ, η])dt

=
∫ T

0

∂l

∂g

∣∣∣∣∣
(g,ξ)

d(Lg)e(η) + ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

(
η̇ + [ξ, η]

)
dt

=
∫ T

0
L∗

g

(
∂gl
)

(η) + ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

η̇ + ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

[ξ, η]dt.

Since adξ(η) = [ξ, η],

=
∫ T

0
L∗

g(∂gl)(η) + ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

η̇ + dl

dε

∣∣∣∣∣
(y,ξ)

adξ(η)dt

By definition of ad∗ we have that

ad∗[∂ξl](η) = dl

dξ

∣∣∣∣∣
(g,ξ)

adξ(η).

Then,
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=
∫ T

0

L∗
g(∂gl)η + ∂l

∂ξ

∣∣∣∣∣
(g,ξ)

η̇ + ad∗[∂ξl]η
 dt. (3.10)

Also, by using integration by parts we get,

∫ T

0

∂l

∂ξ

∣∣∣∣∣
(g,ξ)

η̇ = ∂ξlη
∣∣∣T
0
−
∫ T

0

d

dt

∂l

∂ξ
ηdt.

Since η(0) = η(T ) = 0, the first term in the right hand side is zero. By replacing in

(3.10), we get

∫ T

0
L∗

g(∂gl) + d

dt

∂l

∂ξ
+ ad∗[∂ξl])ηdt = 0

for all η : [0, T ] → g with η(0) = η(T ) = 0. Thus, we get the following condition to find

critical points.

L∗
g(∂gl) + d

dt

∂l

∂ξ
+ ad∗[∂ξl] = 0. (EP)

These equations are known as the Euler-Poincaré equations.

3.1.3 Inverse Problem for Euler-Lagrange Equation

As we have seen in subsection (2.3.1) for a given Lagrangian function we get a system of

Second Order Differential Equations corresponding to the Euler-Lagrange equation. The

inverse problem states that if a given system of second order differential equations has a

related Lagrangian, i.e. if the given system is equivalent to some Euler-Lagrange equations.

There are two approaches to this problem. In this section we study both. We have used

[1] and [17] as a reference.

Variational Approach

Definition 3.1.2 (Liouville Vector Field). The Liouville vector field is a vector field ∆ ∈
X(TQ) defined by

∆: TQ −→ TTQ

vq 7−→ d
t

∣∣∣
t=0

(etvq).
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Definition 3.1.3 (Vertical Endomorphism). The vertical endomorphism is a (1, 1) tensor
∆ ∈ X(TQ) defined by

S : TTQ −→ TTQ

wvq 7−→ d
t

∣∣∣
t=0

(vq + tT τQ(wvq))

Definition 3.1.4 (SODE). A second order differential equation is called a SODE on the
tangent bundle if and only if it is a vector field Γ ∈ X(TQ) such that S(Γ) = ∆, which can
be written as

Γ = q̇i ∂

∂q̇i
+ Γi(q, q̇) ∂

∂q̇i

in coordinates. Here S(Γ) means the composition of Γ and S.We denote q̈i := Γi(q, q̇)

If we consider a time dependent system, we have that

Γ = ∂

∂t
+ q̇i ∂

∂q̇i
+ Γi(q, q̇) ∂

∂q̇i
. (3.11)

In order to carry out the derivatives in the Euler-Lagrange equations (EL) we consider

a path q : t ∈ I → Q ∋ q(t). Then, we get

q̈
∂2L

∂q̇k∂q̇i
+ q̇

∂2L

∂qj∂q̇i
− ∂L

∂q̇i
= 0. (3.12)

The first term contains the Hessian matrix, whose entries will be denoted gki. If the inverse

of this matrix exists and we denote its components gki, we can rewrite (3.12) as

q̈k = gki

(
−q̇ ∂2L

∂qj∂q̇i
+ ∂L

∂q̇i

)
, (3.13)

which is in X(TQ). The Lagrangian L is said to be regular when matrix qki has an inverse

[18]. The following theorems can be found in [1] and summarize how to find solution for

inverse problem.

Theorem 3.1.2 (Inverse Problem of Variational Calculus). Let Fi(t, q, q̇, q̈) = 0, with
i = 1, . . . , n, be a system of second order differential equation (not necessarily a SODE).
There is a regular Lagrangian L : R×Q→ R such that for each i

Fi(t, q, q̇, q̈) = d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
(3.14)
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if and only if Fi satisfies the covariant Helmholtz conditions

∂Fi

∂q̈j
− ∂Fj

∂q̈i
= 0, (3.15)

∂Fi

∂qj
− ∂Fj

∂qi
− 1

2
d

dt

(
∂Fi

∂q̇j
− ∂Fj

∂q̇i

)
= 0, (3.16)

∂Fi

∂q̇j
+ ∂Fj

∂q̇i
− d

dt

(
∂Fi

∂q̈j
− ∂Fj

∂q̈i

)
= 0. (3.17)

For a complete proof we refer the reader to [17].

Theorem 3.1.3 (Inverse Problem of Variational Calculus (Explicit Form)). Consider a
system of SODEs q̈ = Γ(t, q, q̇), i = 1, . . . , n. There is a regular Lagrangian L : R×Q→ R
such that for each i

gij

(
q̈j − Γj(t, q, q̇)

)
= d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
, (3.18)

where gij is defined as in 3.13, if and only if the multipliers gij satisfy the Helmholtz
conditions

det(gij) ̸= 0, (3.19)

gij = gji, (3.20)
∂gij

∂q̇k
= ∂gik

∂q̇j
, (3.21)

Γ(gij)−∇k
j gik −∇k

i gkj = 0, (3.22)

gikΦk
j = gjkΦk

i , (3.23)

with ∇i
j = −1

2
∂Γi

∂q̇j and Φk
j = Γ

(
∂Γk

∂q̇j

)
− 2∂Γk

∂qj −−1
2

∂Γj

∂q̇j
∂Γk

∂q̇i .

In this case, finding a regular Lagrangian is equivalent to find multipliers that

satisfy the Helmholtz conditions. Moreover, solutions to the SODE are the same

solutions for the Euler-Lagrange equations and the system of SODEs is called variational.

Note that Helmholtz conditions in 3.1.3 and 3.1.2 show there are symmetries and an-

tisymmetries, which come from the Jacobian matrix.
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Geometric Formulation

We consider a smooth manifold Q and define the canonical projections

τQ : TQ → Q and πQ : T ∗Q → Q

(qi, q̇i) 7→ (qi) (qi, f i) 7→ (qi).

Let L : TQ → R be a Lagrangian. We define dL : T (TQ) → R, which is given in

coordinates by

dL = ∂L

∂qi
dqi + ∂L

∂q̇i
dq̇i. (3.24)

The geometrical formulation allows us to study the inverse problem in a more general and

abstract way. First, we will introduce the following functions.

Definition 3.1.5 (Poincaré-Cartan one-form). The Poincaré-Cartan one form ΘL is the
pullback of dL by the vertical endomorphism S; i.e., ΘL = S∗(dL).

Definition 3.1.6 (Poincaré-Cartan two-form). We define the Poincaré-Cartan two form
ΩL as ΩL = −dΘL.

Definition 3.1.7 (Energy Function). We define the energy function EL : TQ → R by
EL = ∆(L)− L.

Definition 3.1.8. Given a two form β, we define the inclusion map i such that for each
v, w ∈ X(TQ) ivβ = β(v, ·) and iw(ivβ) = β(v, w) ∈ R.

Using these definitions we can prove that

iΓΩL = dEL (3.25)

and

LΓΘL = dL, (3.26)

for some SODE Γ. Equation (3.25) is the symplectic reformulation of the inverse problem,

while equation (3.26) is known as the geometric formulation of the inverse problem. In

fact, both equations are equivalent and solving the SODE Γ gives us the solution of the

Euler-Lagrange equations (2.3.1). Furthermore, we have the following theorem.
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Theorem 3.1.4. A SODE Γ ∈ X(TQ) is said to be variational if and only if there is a
two-form Ω such that the following statements hold.

dΩ = 0, (3.27)

LΓΩ = 0, (3.28)

Ω(v1, v2) = 0. (3.29)

where v1, v2 are arbitrary vertical subspaces of the tangent bundle.

Recall that a two-form is said to be of maximal rank if and only if the Hessian matrix

define by gij in (3.13) is invertible. see [18] for a proof of this theorem. The next approach

(called the new geometrical approach in [1] ) is the most important in this work. It will give

us an insight on how to develop the remaining inverse problems. This approach is based

on the existence of a local diffeomorphism (which behaves like a Legendre transformation

of the Lagrangian) to prove that a SODE is derivable from a regular Lagrangian.

Definition 3.1.9 (Legendre Transformation). Let Q be a smooth manifold and L : TQ→
R a Lagrangian. The Legendre transformation of L is defined as

LegL : TQ −→ T ∗Q

vq 7−→ Leg(vq)
(qi, q̇i) 7−→ (qi, ∂L

∂q̇j )

Definition 3.1.10 (Tulczyjew Isomorphism). The Tulczyjew Isomorphism is an involution
of the spaces TT ∗Q and T ∗TQ defined in local coordinates as

αQ : TT ∗Q −→ T ∗TQ

(qi, pi, q̇
i, ṗi) 7−→ (qi, q̇i, pi, ṗi).

For more information on the Tulczyjew triple, we refer the reader to [19], [20] and [21].

We now let F : TQ → T ∗Q be any local diffeomorphism, denote TF : TTQ → TT ∗Q its

tangent and define the one form µΓ,F := αQ ◦TF ◦Γ. Note that Im(µΓ,F ) is a submanifold.

Remark 3.1.2. The tangent maps of πM can we written in coordinates as

TπQ
: TT ∗Q −→ TQ

(qi, pi, q̇
i, ṗi) 7−→ (qi, q̇i).

Remark 3.1.3. The canonical projection map of the cotangent bundle is given in coordi-
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nates as
τT ∗Q : TT ∗Q −→ T ∗Q

(qi, pi, q̇
i, ṗi) 7−→ (qi, pi).

Remark 3.1.4. The canonical Liouville form (see 3.1.2) can be written as

θQ : TT ∗Q −→ R
v 7−→ ⟨τT ∗Q(v), TπQ(v)⟩,

which can be expressed in local coordinates as θQ(v) = piq̇
i.

Definition 3.1.11. We denote ωQ = dθQ = dpi ∧ dqi the differential of the Liouville form,
which is a symplectic form.

Given the natural structure of the cotangent bundle, the pair (T ∗Q,ωQ) is a symplectic

manifold. Using the Tulczyjew triple 3.1.10 as developed in [19], we will see the symplectic

form for TQ is wT Q = dpi ∧ dqi + dṗj ∧ dq̇j, and the pair (T ∗TQ, ωT Q) is a symplectic

manifold.

Remark 3.1.5. The set Im(µΓ,F ) is a Lagrangian submanifold of (T ∗TQ, ωT Q) if and only
if µΓ,F is closed; i.e., dµΓ,F = 0.

Remark 3.1.6. Assume that µΓ,F is closed. We know that

µΓ,F =
(
∂Fi

∂qj
q̇j + ∂Fi

∂q̇j
Γj

)
dqi + Fidq̇

i.

Therefore,

dµΓ,F = ∂

∂qj

(∂Fi

∂qj
q̇j + ∂Fi

∂q̇j
Γj

)
dqi + Fidq̇

i

 dqj

+ ∂

∂q̇j

(∂Fi

∂qj
q̇j + ∂Fi

∂q̇j
Γj

)
dqi + Fidq̇

i

 dq̇j

= ∂2Fi

∂qk∂qj
q̇jdq̇i ∧ dqk + ∂2Fi

∂qk∂q̇j
Γjdq̇i ∧ dqk + ∂Fi

∂qj

∂Γj

∂qk
dq̇i ∧ dqk

+∂Fi

∂qk
dq̇i ∧ dqk + ∂2Fi

∂q̇k∂qj
q̇jdq̇i ∧ dq̇k + ∂Fi

∂qk
dq̇i ∧ dq̇k

+ ∂2Fi

∂q̇k∂q̇j
Γjdq̇i ∧ dq̇k + ∂Fi

∂qj

∂Γj

∂q̇k
dq̇i ∧ dq̇k + ∂Fi

∂q̇k
dq̇i ∧ dq̇k = 0.
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Hence, the following conditions hold.

∂Fi

∂q̇k
=∂Fk

∂q̇i
,

∂2Fi

∂qk∂qj
+ ∂2Fi

∂qk∂q̇j
+ ∂2Fi

∂qk∂qj
= ∂2Fk

∂qi∂qj
+ ∂2Fk

∂qi∂q̇j
+ ∂2Fk

∂qi∂qj
,

∂Fi

∂q̇k
− ∂Fk

∂q̇i
= ∂2Fi

∂q̇k∂qj
+ ∂2Fi

∂q̇k∂q̇j
+ ∂2Fi

∂q̇k∂qj
.

These conditions are similar to the covariant Helmholtz conditions. Remember that we are
using the summation convention.

Next we have an important theorem.

Theorem 3.1.5. We say that a SODE Γ is variational if and only if there is a local
diffeomorphism F such that Im(µΓ,F ) is a Lagrangian submanifold of (T ∗TQ, ωT Q).

This theorem can be summarized in the next diagram,

TTQ TT ∗Q T ∗TQ

TQ T ∗Q,

Γ

TF

F

αQ

µΓ,F

which can be expressed in local coordinates as

(qi, q̇i, q̇i,Γj(q, q̇))
(
qi, Fi, q̇

i, ∂Fi

∂qj q̇
j + ∂Fi

∂q̇j Γj
) (

qi, Fi,
∂Fi

∂qj q̇
j + ∂Fi

∂q̇j Γj, q̇i
)

(qi, q̇i) (qi, Fi).

Γ

TF

F

αQ

µΓ,F

Proof. First we prove the necessary condition.

⇐ Let F be a local diffeomorphism. Suppose that Im(µΓ,F ) is a Lagrangian submanifold
and define the two-form Ω := −d(F ∗θQ). We have to prove the conditions in theorem
3.1.4 are satisfied. Using properties of the exterior differentiation, we have that

d
(
−d(F ∗θQ)

)
= −d

(
d(F ∗θQ)

)
= 0. (3.30)
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That is, Ω is a closed form.
The proof of the third condition is trivial and comes directly from the definition of
Lagrangian submanifold.
It remains to prove that LΓΩ = 0.
Using properties of the exterior differential and Lie derivative, and 3.1.5, we have
that

LΓΩ = LΓ
(
−d(F ∗θQ)

)
= −dLΓ(F ∗θQ)

= −d
(
Γ(Fidq

i) + Fidq̇
i
)

= −d
(∂Fi

∂qj
q̇j + ∂Fi

∂q̇j
Γj

)
dqi + Fidq̇

i


= −(dµΓ,F ) = 0.

We have proved that Γ is variational.

⇒ We assume that Γ is variational and there is a two form that satisfies conditions
in theorem 3.1.4. We want to prove that Im(µΓ,F ) is a Lagrangian submanifold of
(T ∗TQ, ωT Q). From theorem 3.1.4 we know that there is a two form Ω such that
dΩ = 0. Therefore, there is a one form Θ in an open set U ⊆ TQ such that Ω = dΘ.
From the third condition in theorem 3.1.4 it follows that for all v vertical subspace
of the tangent bundle, there is a function f : U → R such that

Θ(v) = ⟨df, v⟩ = df(v).

Now we define a one form Θ̃ = Θ− df . It is clear that Θ̃ satisfies condition three in
theorem 3.1.4 and since dΘ̃ = d(Θ− df), we have that dΘ̃ = Ω.
We choose

F : U → T ∗Q

define by
⟨F (vq), wq⟩ = ⟨Θ̃(vq),Wq⟩ (3.31)

Here, Wq ∈ TTQ and TτQ(Wq) = wq. We still have to prove that F is a diffeomor-
phism.
Then, we get that Θ̃ = F ∗θQ. Since µΓ,F = dLΓΘ and LΓΩ, it follows that dµΓ,F = 0.
Thus, by remark 3.1.5, we get that Im(µΓ,F ) is a Lagrangian submanifold.
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We have proved the necessary and sufficient conditions for this theorem.

3.1.4 Inverse Problem for the Discrete Euler-Lagrange Equa-
tions

The inverse problem for the discrete Euler-Lagrange equations DEL is addressed in a

similar way to the continuous case. In this case we will deal with second order difference

equations (SOdE), which are a discrete version of a SODEs. Given a discrete space Q, we

claim that Q × Q and Q × Q × Q × Q are discretizations of TQ and TTQ, respectively.

We define the canonical projections

pr1 : Q×Q → Q and pr2 : Q×Q → Q

(q1, q2) 7→ (q1) (q1, q2) 7→ (q2).

Recall that Cd(Q) = {qd : {k}n
k=0 → Q} is a discrete curve in Q.

Definition 3.1.12. We say that Γd : Q×Q→ (Q×Q)× (Q×Q) is a SOdE if and only
if pr1 ◦ Γ = Id.
Moreover, a system of SOdEs qk+1 = Γd(qk−1, qk) is said to be variational if and only if
there is a discrete Lagrangian L such that

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (3.32)

and
qk+1 = Γd(qk−1, qk) (3.33)

have the same solutions.

We now let Fd : Q × Q → T ∗Q be any local diffeomorphism, denote it tangent map

TFd : (Q×Q)× (Q×Q)→ T ∗Q× T ∗Q and define the one form µΓd,Fd
:= TFd ◦ Γd. Note

that Im(µΓd,Fd
) is a submanifold.

Theorem 3.1.6. A SOdE is variational if and only if there is a local diffeomorphism
Fd : Q×Q→ T ∗Q and Im(µΓd,Fd

) is a Lagrangian submanifold of (T ∗Q× T ∗Q,ΩQ).

This theorem can be pictured in the following diagram.
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Q×Q×Q×Q T ∗Q× T ∗Q

Q×Q T ∗Q,

Γd

TFd

Fd

µΓd,Fd

which locally can be written as

(qk−1, qk, qk,Γd(qk−1, qk)) (qk−1, Fd(qk−1, qk), qk, Fd(qk,Γd(qk−1, qk)))

(qk−1, qk) (qk−1, Fd(qk−1, qk)).

Γd

TFd

Fd

µΓd,Fd

3.2 Main Results

In this section we present our main results.

3.2.1 Trivialization

In the subsequent subsections, we will work on discrete manifolds and its tangent and

cotangent spaces. Our goal is to find trivializations of the manifolds introduced in the

diagram of theorem 3.1.5. We will let G be a discrete Lie group.

Theorem 3.2.1. TG ∼= G× g

Proof. We have to find an isomorphism between TG and G × g. First, consider the map
DhLg : TgG→ TgG

DhLg(h) := d

dt

∣∣∣∣∣
t=0
Lg(h(t)) = gḣ. (3.34)

It is easy to see this map is an isomorphism. We already know that g ∼= TeG. Then, we
can define the isomorphism

DeLg : G× g −→ TG

(g, ξ) 7−→ (g,DeLgξ).

The inverse of this function is defined by

DgLg−1 : TG −→ G× g

(g, v) 7−→ (g,DgLg−1v).
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From now on, we will denote g−1v := DgLg−1v and gξ := DeLgξ, which shall not be

confused with the element g ∈ G.

Theorem 3.2.2. T (G× g) ∼= TG× Tg.

Proof. First, consider two manifolds M,N and a path

γ : I −→ M ×N
t 7−→ (γ1(t), γ2(t)).

Then, for any f : M ×N → R,

Vp,q = d

dt

∣∣∣∣∣
t=0
f(γ(t)) = d

dt

∣∣∣∣∣
t=0
f ◦ γ(t).

Let γ1 : I →M and γ2 : I → N and denote g := f(·, q), h := f(p, ·). Then, we can define

Vp = d

dt

∣∣∣∣∣
t=0
g ◦ γ1(t),

Vq = d

dt

∣∣∣∣∣
t=0
h ◦ γ2(t).

Note that Vp,q = [γ] is an equivalence class so that

T (M ×N) −→ TM × TN
Vp,q 7−→ (Vp, Vq).

Therefore, if we take a path

γ : I −→ G× g

t 7−→ (g(t), ξ(t)),

we have that
T (G× g) ∼= TG× Tg
(g, ξ, ġ, ξ̇) 7−→ (g, ġ, ξ, ξ̇).

Theorem 3.2.3. TTG ∼= T (G× g)
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Proof. Given a (g, ġ, v, v̇) ∈ TTG, we know that

d

ds
(g̃(s), ġ(s))

∣∣∣∣∣
s=0

=: (v, v̇),

with g̃(0) = g. From theorem 3.2.1, we have that

(g̃(s), g̃(s)−1ġ(s)) ∈ G× g.

Note that

d

ds
(g̃(s), g̃(s)−1ġ(s))

∣∣∣
s=0

=
v, d

ds
g̃−1(s)

∣∣∣∣∣
s=0

ġ + g̃−1 d

ds
ġ(s)

∣∣∣∣∣
s=0


=
v, d

ds
g̃−1(s)

∣∣∣∣∣
s=0

ġ + g−1v̇


=
(
(v,−g−1vg−1ġ + g−1v̇)

)
=
(
(v,−g−1(−v − g−1ġ + v̇)).

)
Thus, we have that

TTG −→ T (G× g)
(g, ġ, v, v̇) 7−→

(
(v,−g−1(−v − g−1ġ + v̇)).

)
.

The inverse can be found easily. In fact, we have

T (G× g) −→ TTG

(g, ξ, v, η) 7−→
(
(g, gξ, v, vξ + ξη)

)
.

Theorem 3.2.4. TG× Tg ∼= (G× g)× (G× g).

Proof. Since g is a vector space, it follows that Tg = g× g. From theorem 3.2.1 it is easy
to see that

TG× Tg (G× g)× (g× g)
(g, v, ξ, η) 7−→ (g, g−1v, ξ, η).

Theorem 3.2.5. (G× g)× (g× g) ∼= G× g× g× g.

Proof. The proof of this theorem is trivial.

Corollary 3.2.1. TTG ∼= G× g× g× g
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The proof of this corollary follows directly from theorem 3.2.1 to 3.2.5. In fact, we have

that
TTG G× g× g× g

(g, ġ, v, v̇) 7−→ (g, g−1ġ, g−1v, g−1v̇ − g−1vg−1ġ),

and
G× g× g× g TTG

(g, ξ, µ, η) 7−→ (g, gξ, gµ, gη − gµξ).

We denote the dual space of G× g by G× g∗.

Theorem 3.2.6. T ∗G ∼= G× g∗.

Proof. We construct the dual function using theorem 3.2.1. Let us consider the map
DgLg−1 : TgG→ TeG. Then, we can define

(DgLg−1)∗ : T ∗
eG −→ T ∗

gG

ω 7−→ (DgLg−1)∗(ω) = η,

where η ∈ T ∗
gG and

η : TgG −→ R
vg 7−→ η(vg).

Hence, (DgLg−1)∗(ω)(vg) := ω
(
DgLg−1(vg)

)
= ω(g−1vg).

Thus, (DgLg−1)∗(ω) = ωg−1. It follows that

G× g∗ ∼= T ∗G

(g, ω) 7→ (g, ωg−1)
(g, µg) ←[ (g, µg−1).

Theorem 3.2.7. T (G× g∗) and TG× Tg∗ are isomorphic. In fact,

T (G× g∗) ∼= TG× Tg∗

(g, ω, ġ, ω̇) ←→ (g, ġ, ω, ω̇)

Theorem 3.2.8. TT ∗G and T (G× g∗) are isomorphic and

T (G× g∗) ∼= TT ∗G

(g, η, v, ξ) 7→ (g, g∗−1
ξ, ġ, g∗−1

ξ − g∗−1
ġ∗g∗−1

η)
(g, g∗µ, ġ, ġ∗µ+ g∗µ̇) ←[ (g, µ, ġ, µ̇).
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Theorem 3.2.9. We have that

TG× Tg∗ ∼= G× g× g∗ × g∗

(g, ġ, ω, ω̇) 7→ (g, g−1ġ, ω, ω̇).

and
G× g× g∗ × g∗ ∼= G× g∗ × g× g∗

(g, ξ, µ, η) 7→ (g, µ, ξ, η).

Corollary 3.2.2. The spaces TT ∗G and G×g∗×g×g∗ are isomorphic and the isomorphism
is defined by

TT ∗G ∼= G× g∗ × g× g∗

(g, p, ġ, ṗ) 7→ (g, g∗p, g−1ġ, ġ∗p+ g∗ṗ).

3.2.2 Discrete Euler-Poincaré Equations

Consider the discrete Lie group G and a discrete curve Cd(G) = {qd : {gk}n
k=0 → G}.

Using the left action on G, we can see fk,k+1 := g−1
k gk+1 as an arrow from gk to gk+1.

We define the variation of gk by

d

dt
gk(ε)

∣∣∣∣∣
ε=0

= d

dt
gε

k

∣∣∣∣∣
ε=0

= gkδgk

such that δg0 = δgn = 0. Moreover, we define the variation of fk,k+1 as

δfk,k+1 = δgk+1 − Ad(fk+1,k)(δgk). (3.35)

We define a discrete Lagrangian ℓ : G→ R such that L = ℓ ◦ π, where L is the Lagrangian

used to find the discrete Euler-Lagrange equations DEL. Consider the sum action

Ad({gk}n
k=0) =

n∑
k=0

(
ℓ(gk) + ℓ(fk,k+1)

)
. (3.36)
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Next, we minimize (3.36); i.e.,

d

dε
Ad({gε

k}n
k=0) =

n∑
k=0

∂ℓ
∂g

d

dε
gε

k

∣∣∣∣∣
ε=0

+ ∂ℓ

∂f

d

dε
f ε

k,k+1

∣∣∣∣∣
ε=0


=

n∑
k=0

(
∂ℓ

∂g
gkδgk + ∂ℓ

∂f
fk,k+1δfk,k+1

)

=
n∑

k=0

(
∂ℓ

∂g
gkδgk + ∂ℓ

∂f
fk,k+1[δgk+1 − Ad(fk+1,k)δgk]fk,k+1

)

=
n∑

k=1

∂ℓ

∂g
gkδgk +

n∑
k=1

∂ℓ

∂f
fk−1,kδgk −

n∑
k=1

∂ℓ

∂f
fk,k+1

(
Ad(fk+1,k)δgk

)

=
n∑

k=1

(
∂ℓ

∂g
gk + ∂ℓ

∂f
fk−1,k −

∂ℓ

∂f
fk,k+1

(
Ad(fk+1,k)

))
δgk

=
n∑

k=1

(
∂ℓ

∂g
gk + ∂ℓ

∂f
DLfk−1,k

− ∂ℓ

∂f
DLfk,k+1 ◦ Ad(fk+1,k)

)
δgk = 0.

Thus, we get the discrete Euler-Poincaré equations

∂ℓ

∂g
gk + ∂ℓ

∂f
DLfk−1,k

= ∂ℓ

∂f
DLfk,k+1 ◦ Ad(fk+1,k) (DEP)

3.2.3 Inverse Problem for the Discrete Euler-Poincaré Equations

Before, we get into this problem, we need to translate the diagram

TTG TT ∗G T ∗TG

TG T ∗G,

Γ

TF

F

αG

µΓ,F

for Lie groups and algebras. In order to do so, we use the theorems introduced in this

section.

Definition 3.2.1. We define the second order differential equation

Γ̃ : G× g −→ G× g× g× g

(q, ξ) 7−→ (g, ξ, ξ, g−1Γ− ξ2).

Definition 3.2.2. We define the local diffeomorphism

F̃ : G× g −→ G× g∗

(g, ξ) 7−→ (g, g∗F (g, gξ)).
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Note that we built this function using the previous theorems. In fact

F̃ : G× g→ TG→ T ∗G→ G× g∗.

Definition 3.2.3. Let us define the map

T̃F : G× g× g× g −→ G× g∗ × g× g∗

(g, ξ, η, ξ) 7−→
(
g, g∗F (g, gξ), η, g∗

(
∂F
∂g
η + ∂F

∂ξ
(ξ̇ + ηξ)

))
.

We still need to trivialize αG.

Definition 3.2.4. Consider the maps

A : G× g∗ × g× g∗ → TT ∗G, (3.37)

αG : T ∗TG→ T ∗TG. (3.38)

B : T ∗TG→ G× g× g∗ × g∗. (3.39)

We denote the trivialized Tulczyjew isomorphism α̃G := B ◦ αG ◦ A, which is defined by

α̃G : G× g∗ × g× g∗ −→ G× g× g∗ × g∗

(g, η, ξ, µ) 7−→ (g, ξ, µ− ad∗
ξ(η), η).

Let us denote f(g, ξ) = g∗F (g, gξ) and γ(g, ξ) = g−1Γ(g, gξ)− ξ2. Finally, we have can

define the symplectic structure µ̃.

µ̃ : G× g −→ G× g× g∗ × g∗

(g, ξ) 7−→ (g, ξ,Df(g, ξ)(γ(g, ξ))− ad∗
ξ(f(g, ξ)), f(g, ξ)).

Using these definitions we can draw the diagram

G× g× g× g G× g∗ × g× g∗ G× g× g∗ × g∗

G× g G× g∗.

Γ̃

T̃F

F̃

α̃G

µ̃

Definition 3.2.5. The trivialized version of ωT G is given by ω̃T G : G× g× g∗ × g∗ × g×
g× g∗ × g∗ → R. For any ϕ = (g, ξ, µ, η,X, V,A,B), ψ = (g, ξ, µ, η, Y,W,C,D) we have

ω̃T G(ϕ, ψ) = ⟨A, Y ⟩ − ⟨C,X⟩ − ⟨µ, [X, Y ]g⟩+ ⟨B,W ⟩ − ⟨D, V ⟩. (3.40)
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For more details on this definition, we refer the reader to [19].

Theorem 3.2.10. A second order differential equation Γ̃ is variational if and only if there
is a local diffeomorphism F̃ such that Im(µ̃) is a Lagrangian submanifold of (G× g× g∗×
g∗, ω̃T G).

Proof (sketch). Suppose that Im(µ̃) is a Lagrangian submanifold, then we can find condi-
tions that resemble the Helmholtz conditions for which the system is variational. In order
to do that, we let ω̃T G(ϕ, ψ) = 0.

If we consider that Γ is left invariant, we get that

γ(ξ) := γ(e, ξ) = Γ(e, ξ)− ξ2.

So, γ is also invariant. If F is invariant, then F (g, gξ) = ((g−1)∗)F (e, ξ). Hence, we would

have the reduced diagram

g g∗

g g∗.

Γ̃

T̃F

F̃

µ̃
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Chapter 4

Conclusions

We have derive four important equations. First, of all the Euler-Lagrange equations

∂L

∂qi
− d

dt

(
∂L

∂vi

)
= 0. (4.1)

Then, we derived the discrete Euler-Lagrange equations

D1Lq(qk, qk+1) +D2Lq(qk−1, qk) = 0. (4.2)

After that we found the Euler-Poincaré equations

L∗
g(∂gl) + d

dt

∂l

∂ξ
+ ad∗[∂ξl] = 0. (4.3)

Finally, we derived the discrete Euler-Poincaré equations.

Ad({gk}n
k=0) =

n∑
k=0

(
ℓ(gk) + ℓ(fk,k+1)

)
. (4.4)

Each of these equation has an associated inverse problem. Even though the inverse problem

for Euler-Lagrange equations has many ways to be solved. The approach we emphasized

on is the new geometric formulation. This theorem states that given a system of SODEs,

this system is variational if and only if we can find a local diffeomorphism F such that

Im(µΓ,F ) is a Lagrangian submanifold.

Furthermore we were able to find equivalent theorems for the other inverse problem. The

best way to do so, was to translate the the diagram

65



School of Mathematical and Computational Sciences Yachay Tech University

TTQ TT ∗Q T ∗TQ

TQ T ∗Q,

Γ

TF

F

αQ

µΓ,F

depending on the space we were working on.

In the inverse problem for discrete Euler-Lagrange equations, this diagram became

Q×Q×Q×Q T ∗Q× T ∗Q

Q×Q T ∗Q

Γd

TFd

Fd

µΓd,Fd

In the case of the discrete Euler-Poincaré equations we had the diagram

G× g× g× g G× g∗ × g× g∗ G× g× g∗ × g∗

G× g G× g∗,

Γ̃

T̃F

F̃

α̃G

µ̃

which was possible because of the trivialization introduced in the last chapter.
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