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herramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la

autor/a del trabajo de integración curricular. Ası́ mismo, me acojo a los reglamentos

internos de la Universidad de Investigación de Tecnologı́a Experimental Yachay.

Urcuquı́, Abril de 2023.

Guido Samuel Tapia Riera

CI: 1750857151



School of Mathematical and Computational Sciences Yachay Tech University

Mathematician ii Graduation Project



Autorización de publicación

Yo, Guido Samuel Tapia Riera, con cédula de identidad 1750857151, cedo a la Uni-

versidad de Investigación de Tecnologı́a Experimental Yachay, los derechos de publi-

cación de la presente obra, sin que deba haber un reconocimiento económico por este
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Resumen

Esta tesis consta de dos partes. En la primera parte, consideramos un sistema elı́ptico

de ecuaciones en el plano denominado ecuación principal de Vekua

∂z̄w =
fz̄

f
w, en Ω, (1)

donde ∂z̄ =
1
2(∂x + i∂y), Ω es un conjunto abierto en C, f ∈ C2(Ω) es una función real

sin ceros definida en Ω y w ∈ C1(Ω) es la función desconocida. Estudiamos aspectos

teóricos de la teorı́a de funciones pseudoanalı́ticas respecto a la ecuación principal

de Vekua. En concreto, partiendo del concepto de par generador desarrollamos la

teorı́a de diferenciación e integración para (1). Luego, presentamos un método para

la construcción de un sistema infinito de soluciones de (1), denominado potencias

formales, que en cierto sentido generalizan las potencias usuales del análisis complejo.

Además, estudiamos la conexión entre la ecuación principal de Vekua y la ecuación de

Schödinger estacionaria bidimensional. En la segunda parte extendemos algunos de

los resultados anteriores para la ecuación principal de Vekua en su forma matricial

∂z̄W = (∂z̄F)F−1W, en Ω,

donde F ∈ C2
n×n(Ω) es una función matricial real invertible sin ceros definida Ω y

W ∈ C1
n×n(Ω).

Palabras Clave: Ecuación principal de Vekua, teorı́a de funciónes pseudoanalı́ticas,

potencias formales, ecuación estacionaria de Schödinguer.
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Abstract

This thesis consists of two parts. In the first part, we consider an elliptic system of

equations in the plane called main Vekua equation

∂z̄w =
fz̄

f
w, in Ω, (2)

where ∂z̄ =
1
2(∂x + i∂y), Ω is an open set in C, f ∈ C2(Ω) is a given nonvanishing real-

valued function in Ω and w ∈ C1(Ω) is the unknown function. We study theoretical

aspects of pseudoanalytic function theory for the main Vekua equation. Specifically,

starting with the concept of generating pair we develop the theory of differentiation

and integration for (2). Then, we present a method for the construction of an infinite

system of solutions of (2), called formal powers, that in some sense generalizes the

usual powers of complex analysis. Also, we study the connection between the main

Vekua equation and the two-dimensional stationary Schödinguer equation. In the sec-

ond part we extend some of the previous results for the main Vekua equation in its

matrix form

∂z̄W = (∂z̄F)F−1W, in Ω,

where F ∈ C2
n×n(Ω) is a given nonvanishing invertible real matrix function in Ω and

W ∈ C1
n×n(Ω).

Keywords: Main Vekua equation, pseudoanalytic function theory, formal powers, sta-

tionary Schödinguer equation.
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Chapter 1

Introduction

In this work, we focused on studying an elliptic system of equations in the plane called

main Vekua equation

∂z̄w =
fz̄

f
w, in Ω, (1.1)

where ∂z̄ = 1
2(∂x + i∂y), Ω is an open set in C, f ∈ C2(Ω) is a given nonvanishing

real-valued function in Ω , w ∈ C1(Ω) is the unkown function and w is the conjugate

of w . The interest in studying (1.1) is due to the fact that under the general conditions

the study of several equations of mathematical physics such as the Dirac equation, the

stationary Schrödinger equation or the Beltrami fields can be reduced to the study of

the main Vekua equation (see [7]). In this work we are mainly interested in study

and apply several concepts from the L. Bers theory for the main Vekua equation (1.1),

such as: generating pair , differentiation and integration with respect to a generating

pair, generalization of Cauchy and Morera’s integral theorems, generating sequence,

and construction of formal powers. An important part of this work is that we have

extended some of this results for the main Vekua equation in its matrix form (Section

4)

∂z̄W = (∂z̄F)F−1W, in Ω, (1.2)

where F ∈ C2
n×n(Ω) is a given nonvanishing invertible real matrix function in Ω and

W ∈ C1
n×n(Ω).

This work is organized as follows. Chapter 2 is devoted to provide several results

and concepts of mathematical analysis which are needed throughout the subsequent

3



School of Mathematical and Computational Sciences Yachay Tech University

chapters. In Chapter 3 we present the pseudoanalytic function theory for the main

Vekua equation. The first important tool in this theory is the so called generator pair

(Section 3.2) that play a role in pseudoanalytic function theory similar to the role of

1 and i in the theory of analytic functions. An important feature when dealing with

equation (1.1) is that a generating pair can be constructed in closed form, namely

( f , i/ f ) (Proposition 6). This allows one to develop the results regarding differentia-

tion (Section 3.3) and integration (Section 3.4) for solutions of (1.1) with respect to this

generating pair. Among other results, we prove the analog of the Cauchy’s integral the-

orem (Corollary 8) and Morera’s theorem (Proposition 12) for solutions of (1.1). One

of the main difficulties in the study of (1.1) is that the derivative of a solution of (1.1) is

a solution of (in general) another Vekua equation (see Proposition 9) called successor

Vekua equation. This lead us to introduce the concept of generating sequence, a special

sequence of generating pairs needed to deal in a suitable manner with higher order

derivatives of solutions of (1.1) (see Definition 15). In Section 3.5 we deal with the con-

struction of an infinite system of solutions of (1.1), called formal powers, that in some

sense generalize the usual powers of complex analysis. When f has a separable form,

f (x, y) = σ(x)τ(y) we provide a method that allows one to construct explicitly the

formal powers in terms of a simple algorithm based on recursive integration (Section

3.5.2). Finally, in Section 3.6 we give a complex factorization of the two-dimensional

stationary Schödinger equation in terms of Vekua type operators. This factorization is

important to us because it help us to construct solutions of the Schödinger equation by

means of the solutions of the main Vekua equation (see Proposition 18).

In Chapter 4 we study the main Vekua equation in its matrix form. One of the

main difficulties in the study of (1.2) is the noncommutativity of the matrix product.

By introducing the concept of compatible pair (Definition 18) we extend some of the

results present in Chapter 3 to the solutions of (1.2).

Mathematician 4 Graduation Project



Chapter 2

Preliminaries

In this Chapter we present some results from mathematical analysis needed through-

out the manuscript. For further details see [1], [11], [10], and [4].

2.1 Line integrals, path independence, and conservative

vector fields

Along this manuscript we denote N = {1, 2, 3, . . . } and N0 = N ∪ {0}. Before intro-

ducing the definition of line integral, let us enunciate the curve and path definitions.

Definition 1. We call path in R2 to a continuous function γ : [a, b] ⊆ R → R2, t 7−→ γ(t).
While a curve Γ in R2 is the one that is defined by a path γ such that Γ = γ([a, b]). In this
case, we say that Γ is parameterized by γ (or γ is a parameterization of Γ).

Let a curve Γ ⊆ R2 be parameterized by γ : [a, b] → R2. In order to give the line

integral definition we first need to enunciate some concepts:

• Let n ∈ N0 and take a partition of the interval [a, b] as follows

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

This generates a partition over the curve Γ

A = P0, P1, P2, . . . , Pn = B,

where A = γ(a) is the initial point and B = γ(b) the terminal point of Γ.

5
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• Let us denote P0, . . . , Pn as partition points. These divide Γ into n sub-curves of

length ∆si where i = 1, . . . , n. Also, note that ∆xi and ∆yi are the projection of

each sub-curve onto the x and y axes, respectively.

• ∥P∥ denotes the length of the longest sub-curve.

• γ(t∗i ) = (x(t∗i ), y(t∗i )) denotes some point over the i-th sub-curve where t∗i ∈

[ti−1, ti] and i = 1, . . . , n. For simplicity we denote (x(t∗i ), y(t∗i )) as (x∗i , y∗i ).

Without loss generality, we assume that the domains where the functions used in

this section are defined are open.

Definition 2. Let f : Ω ⊆ R2 → R be a continuous function and Γ ⊆ Ω be a curve
parameterized by γ : [a, b] ⊆ R → R2 . Then

(a) The line integral of f with respect to x along Γ from A = γ(a) to B = γ(b) is given as

∫
Γ

f (x, y)dx = lim
∥P∥→0

n

∑
i=1

f (x∗i , y∗i )∆xi.

(b) The line integral of f with respect to y along Γ from A = γ(a) to B = γ(b) is given by

∫
Γ

f (x, y)dy = lim
∥P∥→0

n

∑
i=1

f (x∗i , y∗i )∆yi.

Remark 1. It is important to mention that a line integral is independent of the parameteriza-
tion of the curve Γ as long as Γ is equipped with the same orientation through all parametric
equations defining the curve Γ.

Now, we extend the line integral concept to vector fields. Formally, we get

Definition 3. Let F = (P, Q) : Ω ⊆ R2 → R2 be a continuous vector field and Γ ⊆ Ω.
Then, the line integral of F along Γ is defined as follows∫

Γ
F · dγ :=

∫
Γ

P(x, y)dx +
∫

Γ
Q(x, y)dy.

Proposition 1. Let F = (P, Q) : Ω ⊆ R2 → R2 be a continuous vector field and a smooth
curve (or piece-wise smooth) Γ ⊆ Ω be parameterized by γ = (x(t), y(t)) : [a, b] ⊆ R → R2.
Then ∫

Γ
P(x, y)dx +

∫
Γ

Q(x, y)dy =
∫ b

a
P(γ(t))x′(t)dt +

∫ b

a
Q(γ(t))y′(t)dt.

Mathematician 6 Graduation Project
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Definition 4. We say that a vector field F : Ω ⊆ R2 → R2 is conservative if there exists
φ : Ω ⊆ R2 → R ∈ C1(Ω) such that F = ∇φ in Ω. Moreover, in this case we say that φ is
the potential of F.

Theorem 1 (Fundamental Theorem for Line Integrals). Let F = (P, Q) : Ω ⊆ R2 be a
vector field and a smooth curve (or piece-wise smooth) Γ ⊆ Ω be parameterized by γ : [a, b] ⊆
R → R2. If F is a conservative vector field and φ : Ω → R is the corresponding potential
function, then the integral of F along Γ depends only of the initial and terminal point and∫

Γ
F · dγ = φ(B)− φ(A),

where A = γ(a) and B = γ(b).

See Ruiz [10, Th. 7.4.1, pp. 703] for a proof.

Corollary 1. Under the conditions of Theorem 1 for a closed curve Γ we have that∮
Γ

P(x, y)dx + Q(x, y)dy = 0.

Note that if Corollary 1 is fulfilled for every closed curve in the domain of definition

of F, then we have that F is a conservative vector field.

Theorem 2. Let a vector field F : Ω ⊆ R2 → R2 of class C1 where Ω is a simply connected
domain. We have that F is conservative if and only if

Py = Qx, in Ω. (2.1)

See Ruiz [10, Th. 7.4.4, pp. 714] for a proof.

Theorem 2 give us a tool to construct potential functions of conservative fields. To

end this section we introduce the real version of the Green’s formula which will be

important for section 3.4

Theorem 3. Let a regular domain Ω1 ⊆ R2 and a continuously differentiable vector field
F = (P, Q) : Ω → R2. Then the following formula is valid:∫

Ω

(
Px(x, y)− Qy(x, y)

)
dxdy =

∫
∂Ω

(P(x, y)dy + Q(x, y)dx).

See Tutschke [11, Lemma. 6, pp. 106] for a proof.

1We say that Ω is a regular domain if Ω is bounded and ∂Ω is formed by a finite number of piecewise
continuously differentiable simple closed Jordan curves.

Mathematician 7 Graduation Project
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2.2 Cauchy-Riemann operators and related topics

2.2.1 The operators ∂z̄ and ∂z

Let Ω be an open set in C.

Definition 5. The linear operators ∂z̄, ∂z : C1(Ω) → C(Ω) given by

∂z̄ :=
1
2
(∂x + i∂y) and ∂z :=

1
2
(∂x − i∂y)2,

are known as the Cauchy-Riemann operators.

Remark 2. The operator ∂z̄ acts on a complex function Φ = Φ1 + iΦ2 as follows

∂z̄Φ :=
1
2
(∂xΦ1 − ∂yΦ2 + i(∂yΦ1 + ∂xΦ2)).

Proposition 2. Let Φ, Ψ ∈ C1(Ω) be complex valued functions, then:

(a) ∂z̄∂zΦ = ∂z∂z̄Φ =
1
4

∆Φ, where ∆ = ∂2
x + ∂2

y is the Laplacian operator (here Φ ∈ C2(Ω))

(b) ∂z̄CΦ = C∂zΦ, where CΦ = Φ is the conjugation operator

(c) ∂z̄(ΦΨ) = (∂z̄Φ)Ψ + Φ∂z̄(Ψ)

Proof. Let us prove item (a). We have

∂z̄∂zΦ =
1
2

∂z̄(∂xΦ − i∂yΦ)

=
1
4
(∂2

xΦ − i∂x∂yΦ + i∂y∂xΦ + ∂2
yΦ)

note that ∂x∂yΦ = uyx + ivyx and ∂y∂xΦ = uxy + ivxy. By Clairaut’s Theorem we get
∂x∂yΦ = ∂y∂xΦ. Thus

∂z̄∂zΦ =
1
4
(∂2

xΦ + ∂2
yΦ) =

1
4

∆Φ.

Analogous for ∂z∂z̄Φ. Now we prove item (b). We have

∂z̄CΦ = ∂z̄(u − iv) =
1
2
(∂xu + ∂yv + i(∂yv − ∂xv)) (2.2)

C∂zΦ = C∂z(u + iv) =C
1
2
(∂xu + ∂yv + i(∂xv − ∂yu))

=
1
2
(∂xu + ∂yv + i(∂yv − ∂xv)) (2.3)

2∂x and ∂y denote the partial derivative respect to x and y, respectively.

Mathematician 8 Graduation Project
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Consequently, by (2.2) and (2.3) we get that ∂z̄CΦ = C∂zΦ. Finally, let us prove (c).
Applying ∂z̄ to ΦΨ we get

∂z̄(ΦΨ) =
1
2
(
∂x + i∂y

)
(ΦΨ)

=
1
2
(
∂x(ΦΨ) + i∂y(ΦΨ)

)
=

1
2
(
(∂xΦ)Ψ + Φ(∂xΨ) + i(∂yΦ)Ψ + iΦ(∂yΨ)

)
=

1
2
(
(∂xΦ)Ψ + i(∂yΦ)Ψ

)
+

1
2
(
Φ(∂xΨ) + iΦ(∂yΨ)

)
= (∂z̄Φ)Ψ + Φ(∂z̄Ψ).

This completes the proof of Proposition 2.

2.2.2 The operators A and A

Let us consider the equation

∂z φ = Φ, in Ω, (2.4)

(which will be needed in Section 3.4). Here Φ ∈ C1(Ω) is a given complex-valued

function Φ = Φ1 + iΦ2, the unknown function φ is real valued and Ω is a simply

connected domain. Taking into consideration the real and the imaginary parts of (2.4)

we realize that it is equivalent to the following system

∂x φ = 2Φ1, ∂y φ = −2Φ2

which tell us that φ is a potential of the vectorial field F := (2Φ1,−2Φ2). According to

Theorem 2 this is possible if the compatibility condition

∂yΦ1 + ∂xΦ2 = 0 (2.5)

holds on Ω. Moreover, φ can be recovered up to a constant by the formula

φ(x, y) = 2
(∫

Γ
Φ1(x, y)dx − Φ2(x, y)dy

)
+ c (2.6)

where Γ ⊆ Ω is some curve joining an arbitrary fixed point (x0, y0) to (x, y).

Mathematician 9 Graduation Project
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Definition 6. For a complex function Φ = Φ1 + iΦ2 fulfilling (2.5) let us define

A[Φ](x, y) = 2
(∫

Γ
Φ1(x, y)dx − Φ2(x, y)dy

)
. (2.7)

Note that the previous operator can be also written as follows:

A[Φ](x, y) = 2 Re
∫

Γ
(Φ1(x, y) + iΦ2(x, y)) (dx + idy) = 2 Re

∫
Γ

Φ(z)dz.

By construction we have proved the following proposition.

Proposition 3. If Φ = Φ1 + iΦ2 fulfills (2.5), then ∂z A[Φ] = Φ.

Remark 3. The previous proposition tell us that in some sense the operator A is the right
inverse of ∂z.

Remark 4. By analogy it is easy to see that a kind of right inverse for ∂z̄ can be constructed by
the formula

Ā[Φ](x, y) = 2
(∫

Γ
Φ1(x, y)dx + Φ2(x, y)dy

)
assuming that the real and imaginary parts of Φ enjoy the compatibility condition ∂yΦ1 −
∂xΦ2 = 0.

2.2.3 Green-Gauss Integral Theorem

The following theorem is the complex version of the Green’s formula.

Theorem 4. Let Ω ⊆ C be a regular domain and a continuously differentiable complex function
Φ defined in Ω. Then the following formulas are valid:

∫
Ω

∂z̄Φ(z)dxdy =
1
2i

∫
∂Ω

Φ(z)dz, (2.8)

and ∫
Ω

∂zΦ(z)dxdy = − 1
2i

∫
∂Ω

Φ(z)dz̄. (2.9)

Proof. Let us prove (2.8). Setting Φ = Φ1 + iΦ2, from the definition of ∂z̄ we get

2
∫

Ω
∂z̄Φ(z)dxdy =

∫
Ω

(
∂xΦ1(x, y)− ∂yΦ2(x, y)

)
dxdy

+ i
∫

Ω

(
∂xΦ2(x, y) + ∂yΦ1(x, y)

)
dxdy
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From the Green’s formula (Theorem 3) we get

2
∫

Ω
∂z̄Φ(z)dxdy =−

∫
∂Ω

(Φ1(x, y)dy + Φ2(x, y)dx)− i
∫

∂Ω
(Φ2(x, y)dy − Φ1(x, y)dx)

=i
∫

∂Ω
(iΦ1(x, y)dy + iΦ2(x, y)dx) +

∫
∂Ω

(Φ1(x, y)dx − Φ2(x, y)dy)

=i
∫

Ω
(Φ1(x, y)dx + iΦ1(x, y)dy + iΦ2(x, y)dx − Φ2(x, y)dy)

=i
∫

∂Ω
Φ(z)dz

Thus ∫
Ω

∂z̄Φ(z)dxdy =
1
2i

∫
∂Ω

Φ(z)dz.

To prove formula (2.9) note that ∂z̄Φ = ∂zΦ. Then, replacing Φ by Φ we easily obtain
(2.9).

Corollary 2. Under the conditions of Theorem 4, for a domain Ω ⊆ C bounded by a simple
closed smooth curve Γ we have the Cauchy theorem for analytic functions∮

Γ
Φ(z)dz = 0.

2.3 Analytic functions

Let Ω be an open set in C and Φ a complex-valued function defined in Ω.

Definition 7. We say that Φ has complex derivative at z0 ∈ Ω if and only if the following
limit exists

Φ′(z0) = lim
z→z0

Φ(z)− Φ(z0)

z − z0
.

If Φ has a complex derivative at z0 and at every point of some neighborhood of z0,

then we say that Φ is analytic at z0. Also, we say that Φ is analytic on Ω if Φ is analytic

at each point of Ω. By analogy to the theory of functions of real variable for analytic

functions we have:

Proposition 4. If Φ has complex derivative at zo ∈ Ω, then Φ is continuous at that point.

See Asmar [1, Th. 2.3.4, pp. 115] for a proof.

Proposition 5. Assume that Φ and Ψ are analytic functions in Ω and let c1 and c2 complex
constants, then
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(a) c1Φ + c2Ψ is analytic on Ω and

(c1Φ + c2Ψ)′(z) = c1Φ′(z) + c2Ψ′(z)

(b) ΦΨ is analytic on Ω and

(ΦΨ)′(z) = Φ′(z)Ψ(z) + Φ(z)Ψ′(z).

(c) Φ/Ψ is analytic on Ω̃, where Ω̃ = Ω \ {z ∈ Ω : Ψ(z) = 0} and(
Φ
Ψ

)′
(z) =

Φ′(z)Ψ(z)− Φ(z)Ψ′(z)
Ψ2(z)

.

See Asmar [1, Th. 2.3.5, pp. 116] for a proof.

Theorem 5 (Cauchy-Riemann Equations). Let Φ(z) = u(x, y) + iv(x, y) be a complex
function defined in Ω and z0 = x0 + iy0 ∈ Ω. If Φ has complex derivative at z0, then at z0 the
first order partial derivatives of u and v exist and satisfy the following equations

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0). (2.10)

Proof. Let z0 ∈ Ω and assume that Φ = u + iv has complex derivative at z0. Then

Φ′(z0) = lim
z→z0

Φ(z)− Φ(z0)

z − z0
,

= lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0) + i(v(x, y)− v(x0, y0))

x − x0 + i(y − y0)
. (2.11)

Since Φ′(z0) exists, the value of (2.11) is the same for any direction. Particularly, by
setting y = y0 and x → x0, we get

Φ′(z0) = lim
y=y0,x→x0

(
u(x, y0)− u(x0, y0)

x − x0
+ i

v(x, y0)− v(x, y0)

x − x0

)
= ux(x0, y0) + iux(x0, y0). (2.12)

Analogously, setting x = x0 and y → y0 we get

Φ′(z0) = vy(x, y)− ivy(x0, y0). (2.13)

Then, by (2.12) and (2.13) we obtain (2.10).
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Equations on (2.10) are known as the Cauchy-Riemann equations. These equations

also provide a helpful rule to compute the complex derivative, let us see it in the

following corollary.

Corollary 3. If Φ′(z0) exists, then

Φ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

By themselves, the Cauchy-Riemann equations are not a sufficient condition to

guarantee the existence of the complex derivative. Let us see this in the next example.

Example 1. Let us consider Φ(z) = u(x, y) + iv(x, y) where

u(x, y) =
x3 − y3

x2 + y2 and v(x, y) =
x3 + y3

x2 + y2

for (x, y) ̸= (0, 0) and u(0, 0) = v(0, 0) = (0, 0). Let us compute the partial derivatives of u
and v at (0, 0). We have

ux(0, 0) = lim
h→0

u(0 + h, 0)− u(0, 0)
h

= lim
h→0

h3

h2 − 0
h

= 1.

By analogy we also get uy(0, 0) = −1, vx(0, 0) = 1, and vy(0, 0) = 1. Thus, the Cauchy-
Riemann equations are satisfied at (0, 0). However, Φ has no complex derivative at that point.
To see it, note that

Φ′(0) =
Φ(z)− Φ(0)

z − 0
= lim

z→0

x3 − y3 + i(x3 + y3)

(x2 + y2)(x + iy)
,

and taking the directional limit along the lines y = 0 and y = x we get

lim
x→0,y=0

x3(1 + i)
x3 = 1 + i, lim

x→0,y=x

i2x3

2x3(1 + i)
=

i
1 + i

.

Therefore, Φ at z = 0 does not derivative in that point.

As we shall see later, if u and v are sufficiently smooth, then via Cauchy-Riemann

equations, we can guarantee the existence of complex derivative for Φ. First let us state

some auxiliary definitions and facts.

Mathematician 13 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Definition 8. Let Ω ⊆ R2 be an open set and (x0, y0) ∈ Ω. A scalar field u : Ω → R is
R2-differentiable at (x0, y0) if the partial derivatives exist and

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− ux(x0, y0)(x − x0)− uy(x0, y0)(y − y0)√
(x − x0)2 + (y − y0)2

= 0.

Lemma 1. Let z0 ∈ Ω and Φ, Ψ be complex functions defined in a neighborhood of z0. Then,

lim
z→z0

Φ(z)
Ψ(z)

= 0 if and only if lim
z→z0

Φ(z)
|Ψ(z)| = 0.

Proof. The proof of this Lemma is straightforward using ε − δ definition of limit.

Theorem 6. A function Φ = u + iv defined in Ω has a complex derivative at z0 = x0 + iy0 ∈
Ω if and only if both conditions hold:

(a) u and v are R2−differentiable at (x0, y0);

(b) u and v satisfy the Cauchy-Riemann equations (2.10) at (x0, y0).

Proof. Assume that Φ has a complex derivative at z0. Then from Theorem 5 we have
that (b) holds. Also, from definition of complex derivative we get

lim
z→z0

Φ(z)− Φ(z0)− Φ′(z0)(z − z0)

z − z0
= 0. (2.14)

By (2.14) and Lemma 1 we deduce

lim
z→z0

Φ(z)− Φ(z0)− Φ′(z0)(z − z0)

|z − z0|
= 0,

or equivalently

lim
z→z0

Φ(z)− Φ(z0)− Φ′(z0)(z − z0)√
(x − x0)2 + (y − y0)2

= 0. (2.15)

Taking into account that Φ′(z0) = ux(x0, y0) + ivx(x0, y0) that u, v satisfy the Cauchy-
Riemann equations the numerator of (2.15) can be written as follows

Φ(z)− Φ(z0)− Φ′(z0)(z − z0) =

=u(x, y)− u(x0, y0)− ux(x0, y0)(x − x0)− uy(x0, y0)(y − y0)

+ i[v(x, y)− v(x0, y0)− vx(x0, y0)(x − x0)− vy(x0, y0)(y − y0)].

(2.16)

Joining (2.16) with (2.15) we easily deduce

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− ux(x0, y0)(x − x0)− uy(x0, y0)(y − y0)√
(x − x0)2 + (y − y0)2

= 0, (2.17)

Mathematician 14 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

lim
(x,y)→(x0,y0)

v(x, y)− v(x0, y0)− vx(x0, y0)(x − x0)− vy(x0, y0)(y − y0)√
(x − x0)2 + (y − y0)2

= 0. (2.18)

From (2.17) and (2.18), we have proved (a). Conversely, from the Cauchy-Riemann
equations we see that (2.16) holds if we set Φ′(z0) = ux(x0, y0) + ivx(x0, y0). Moreover,
joining (2.17), (2.18), and (2.16) we get (2.15) which is equivalent to (2.14). Finally from
(2.14) we conclude that Φ has a complex derivative at z0.
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Chapter 3

Pseudoanalytic function theory for the
main Vekua equation

3.1 Main Vekua equation

Let Ω be an open set in C. An equation of the form

∂z̄w = aw + bw, in Ω, (3.1)

is called Vekua equation. Here ∂z̄ = 1
2(∂x + i∂y) is the Cauchy-Riemann operator, w

is the conjugate of w, a and b ∈ C(Ω) are given functions (called coefficients) and

w ∈ C1(Ω) is the unknown function. All the involved functions are complex valued.

Historically, the mathematical theory for (3.1) was mainly developed by Lipman

Bers (Theory of pseudoanalytic functions, see [2]) and by Ilya Vekua (Generalized An-

alytic Functions, see [12]).

This chapter is devoted to the study of an important special Vekua equation intro-

duced and studied in [7], called the main Vekua equation

∂z̄w =
fz

f
w. (3.2)

Here f ∈ C2(Ω) is a given real-valued function such that f (z) ̸= 0 in Ω. Note that (3.2)

is a particular case of (3.1) with a = 0 and b = fz
f and that setting w = u + iv (3.2), is

17
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equivalent to the following first order elliptic system of equations

ux − vy −
fx

f
u −

fy

f
v = 0,

uy + vx −
fy

f
u +

fx

f
v = 0.

(3.3)

Observe that if we choose f = 1 then the main Vekua equation (3.2) is ∂z̄w = 0 and

(3.3) is the Cauchy Riemann system defining the classical analytic functions. We tress

that, regarding possible applications, the main Vekua equation is far-reaching than the

Cauchy-Riemann system. In fact, as shown in [7], under the general conditions the

study of several equations of mathematical physics such as the Dirac equation (see

[6]), the stationary Schrödinger equation (see Section 3.6) or the Beltrami fields (see

[9]) can be reduced to the study of the main Vekua equation.

In our study of the main Vekua equation we will consider mainly the constructive

techniques developed by L. Bers, known as Pseudoanalytic function theory, since they

are more close generalizations from complex analysis. In the next section we start by

introducing the first important tool of this theory, the so-called generator pair. In our

exposition we have followed mainly [2] and [7]

3.2 Generating pair

Definition 9. Let F and G be complex functions1 defined in Ω. We say that (F, G) is a
generating pair corresponding to (3.1) in Ω if

(a) F, G ∈ C1(Ω) and they are solutions of (3.1).

(b) For z0 ∈ Ω we have that

∀m ∈ C, ∃λ, β ∈ R : m = λF(z0) + βG(z0).

Up to this point, we note that the generating pair play a role in the pseudoanalytic

function theory similar to the role of 1 and i in the classical theory of complex analysis.

1In order to unify notation, we use a slight abuse of notation for writing complex functions. Specifi-
cally, for a complex function Φ = u + iv we write u(x, y) = u(x + iy) = u(z) and v(x, y) = v(x + iy) =
v(z).
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An important fact is that in the case of the main Vekua equation, a generating pair can

be constructed in explicit form as we explain next.

Proposition 6. Let f ∈ C2(Ω) be a nonvanishing function in Ω. Then,
(

f ,
i
f

)
is a generat-

ing pair corresponding to the main Vekua equation (3.2).

Proof. Clearly f and i/ f satisfy (3.2). Let z0 = x0 + iy0 ∈ Ω. Let us take any m =

m1 + im2 ∈ C. We choose λ = m1/ f (z0) and β = m2 f (z0). Then, we get

m = λ f (z0) + β
i

f (z0)
.

Therefore, by arbitrariness of m we have proved that
(

f ,
i
f

)
is a generating pair for

(3.2).

3.3 Differentiation with respect to generating pair
(

f ,
i
f

)
Consider the generating pair ( f , i/ f ) corresponding to the main Vekua equation (3.2)

given as in Proposition 6. Let w : Ω → C an arbitrary function. With the help of the

generating pair ( f , i/ f ), w can written as

w = φ f + ψ
i
f

, in Ω,

where φ = Re(w)/ f and ψ = Im(w) f are real-valued. Now, we introduce the concept

of ( f , i/ f )-derivative. Formally, we get

Definition 10. Let w : Ω → C and z0 = x0 + iy0 ∈ Ω. We say that w has
(

f , i
f

)
-derivative

at z0 if the following limit

ẇ(z0) = lim
z→z0

w(z)−
(

φ(z0) f (z) + ψ(z0)
i

f (z)

)
z − z0

(3.4)

exists and is finite.

If ẇ exists everywhere in Ω, we say that w is ( f , i/ f )-pseudoanalytic of first kind on

Ω (or simply pseudoanalytic if there is no confusion). The following auxiliary function
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(for a fixed z0 in Ω)

w̃ := w −
(

φ(z0) f + ψ(z0)
i
f

)
, in Ω, (3.5)

will be useful for what follows next.

Proposition 7. A complex function w defined in Ω has ( f , i/ f )-derivative at z0 = x0 + iy0 ∈
Ω if and only if a complex function w̃ defined in Ω given by (3.5) has complex derivative at
z0 ∈ Ω. Moreover, ẇ(z0) = w̃′(z0).

Proof. Assume that w has
(

f ,
i
f

)
-derivative at z0, that is,

ẇ(z0) = lim
z→z0

w(z)−
(

φ(z0) f (z) + ψ(z0)
i

f (z)

)
z − z0

.

From (3.5) we get w̃(z0) = 0, it follows that

ẇ(z0) = lim
z→z0

w̃(z)
z − z0

= lim
z→z0

w̃(z)− w̃(z0)

z − z0
.

Then, ẇ(z0) = w̃′(z0). Conversely, the other direction is clear.

Corollary 4. Let w : Ω → C and z0 = x0 + iy0 ∈ Ω. If w has ( f , i/ f )-derivative, then for
w̃ : Ω → C given by (3.5) we have:

(a) By previous Proposition w̃ has complex derivative at z0. Thus w̃ satisfies the Cauchy-
Riemann equations at z0, which is equivalent to w̃z(z0) = 0.

(b) The complex derivative of w̃ at z0 is computed by w̃z(z0).

Theorem 7. Let a complex function w = φ f + iψ/ f ∈ C1(Ω) and z0 = x0 + iy0 ∈ Ω. Then,
w has ( f , i/ f )-derivative at z0 if and only if

φz̄(z0) f (z0) + ψz̄(z0)
i

f (z0)
= 0. (3.6)

Moreover, we have that

ẇ(z0) = φz(z0) f (z0) + ψz(z0)
i

f (z0)
.
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Proof. Let us consider the function w̃ : Ω → C given by

w̃(z) = w(z)−
(

φ (z0) f (z) + ψ(z0)
i

f (z)

)
.

Note that
w̃(z) = (φ(z)− φ(z0)) f (z) + (ψ(z)− ψ(z0))

i
f (z)

.

Then, applying ∂z̄ we get

w̃z(z) =∂z

(
(φ(z)− φ(z0)) f (z) + (ψ(z)− ψ(z0))

i
f (z)

)
=φz(x, y) f (z) + (φ(z)− φ(z0)) fz(z) + ψz(z)

i
f (z)

− (ψ(z)− ψ(z0))
i fz(z)
f 2(z)

evaluating at z0 we get

w̃z(z0) = φz(z0) f (z0) + ψz(z0)
i

f (z0)
. (3.7)

In a similar way we get

w̃z(z0) = φz(z0) f (z0) + ψz(z0)
i

f (z0)
. (3.8)

Assume that w has ( f , i/ f )-derivative at z0. Then, from Corollary 4 follows that
w̃z̄(z0) = 0, joining this with (3.7) we get

φz̄(z0) f (z0) + ψz̄(z0)
i

f (z0)
= 0.

Moreover, again by item (b) of Corollary 4 and Proposition 7 we get

ẇ(z0) = φz(z0) f (z0) + ψz(z0)
i

f (z0)
.

Conversely, if (3.6) holds then by (3.7) we have that w̃z̄(z0) = 0 and from (3.8) we get
w̃′(z0) = ẇ(z0). This completes the proof.

Proposition 8. A complex function w ∈ C1(Ω) has ( f , i/ f )-derivative at z0 = x0 + iy0 ∈ Ω
if and only if it satisfies the main Vekua Equation (3.2) at z0.
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Proof. Assume that w has ( f , i/ f )-derivative at z0. From Theorem 7 we get

φz̄(z0) f (z0) + ψz̄(z0)
i

f (z0)
= 0. (3.9)

Note that

0 =φz̄(z0) f (z0) + ψz̄(z0)
i

f (z0)
+ φ(z0) fz(z0)− φ(z0) fz(z0)

− ψ(z0)
i fz(z0)

f 2(z0)
+ ψ(z0)

i fz(z0)

f 2(z0)

=φz̄(z0) f (z0) + φ(z0) fz(z0) + ψz̄(z0)
i

f (z0)
− ψ(z0)

i fz(z0)

f 2(z0)

− φ(z0) fz(z0) + ψ(z0)
i fz(z0)

f 2(z0)

=wz(z0)−
fz(z0)

f (z0)

(
φ(z0) f (z0)− ψ(z0)

i
f (z0)

)
=wz(z0)−

fz(z0)

f (z0)
w(z0).

Thus,

wz(z0) =
fz(z0)

f (z0)
w(z0).

Conversely, we assume that w satisfies the main Vekua equation (3.2) at z0. By the
previous direction we easily obtain that

φz̄(z0) f (z0) + ψz̄(z0)
i

f (z0)
= 0,

and the result follows from Theorem 7.

Corollary 5. Under the conditions of Proposition 8, w ∈ C1(Ω) is a solution of the main
Vekua equation in Ω if and only if

φz̄(z) f (z) + ψz̄(z)
i

f (z)
= 0, ∀z ∈ Ω.

Proposition 9. If a function w : Ω → C is a solution of the main Vekua equation in Ω, then
the ( f , i/ f )-derivative of w is a solution of the following Vekua equation

(ẇ)z̄ = − fz

f
ẇ, in Ω. (3.10)
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Proof. Let z = x + iy ∈ Ω. Since w is solution of the main Vekua equation at z, we get

ẇ(z) = φz(z) f (z) + ψz
i

f (z)
. (3.11)

By from Corollary 5 we get

φz̄(z) f (z) + ψz̄(z)
i

f (z)
= 0 (3.12)

taking the conjugate to (3.12), we have that

φz(z) f (z)− ψz(z)
i

f (z)
= 0. (3.13)

Solving (3.11) and (3.13), we get

φz(z) =
ẇ(z)
2 f (z)

and ψz(z) =
f (z)ẇ(z)

2i
. (3.14)

Applying ∂z to (3.12) we get

φz̄z(z) f (z) + φz̄(z) fz(z) + ψz̄z
i

f (z)
− iψz̄(z) fz(z)

f 2(z)
= 0. (3.15)

Applying ∂z̄ to (3.11) we get

ẇz̄(z) =φz̄z(z) f (z) + φz(z) fz̄(z) + ψz̄z
i

f (z)
− iψz(z) fz̄(z)

f 2(z)
(3.16)

Replacing (3.15) in (3.16) we get

ẇz̄(z) =φz(z) fz̄(z)−
iψz(z) fz̄(z)

f 2(z)
− φz̄(z) fz(z) +

iψz̄(z) fz(z)
f 2(z)

=φz(z) fz̄(z)−
iψz(z) fz̄(z)

f 2(z)
−
(

φz(z) fz̄(z)−
iψz(z) fz̄(z)

f 2(z)

)
(3.17)

Replacing (3.14) in (3.17) we have that

ẇz̄(z) =
ẇ(z)
2 f (z)

fz̄(z)−
f (z)ẇ(z)

2i
i fz̄(z)
f 2(z)

−
(

ẇ(z)
2 f (z)

fz̄(z) +
f (z)ẇ(z)

2i

(
i fz̄(z)
f 2(z)

))
=

ẇ(z)
2 f (z)

fz̄(z)−
ẇ(z)
2 f (z)

fz̄(z)−
¯̇w(z) fz(z)

2 f (z)
−

¯̇w(z) fz(z)
2 f (z)

=− fz(z) ¯̇w(z)
f (z)
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Therefore, the proof is done.

Definition 11. Note that (3.10) is a Vekua equation. More precisely, let v = u + iv : Ω → C

and f ∈ C2(Ω) be nonvanishing function in Ω . The successor Vekua equation of (3.2) is
given by

vz = − fz

f
v, in Ω. (3.18)

3.4 Integration with respect to the generating pair
(

f ,
i
f

)
By equation (3.14) we get

φz =
ẇ
2 f

and ψz = − i f ẇ
2

, in Ω. (3.19)

To recover φ and ψ we use the operator A (defined in section 2.2.2). Then, applying

operator A to each equation in (3.19) we recover φ and ψ as follows

φ = A
[

ẇ
2 f

]
and ψ = −A

[
i f ẇ

2

]
.

Hence, we write any complex-valued function w defined in Ω in terms of operator A

in the following way:

w = f A
[

ẇ
2 f

]
− i

f
A
[

i f ẇ
2

]
(3.20)

Consequently, in (3.20) appears the additive term c1 f + ic2/ f for c1, c2 ∈ R. Fixing

w(z0) where z0 ∈ Ω, we have that c1 = φ(z0) and c2 = ψ(z0).

Definition 12. Let w a complex-value function defined in Ω and Γ a rectifiable curve leading
from z0 = x0 + iy0 to z1 = x1 + iy1 in Ω. Then, we have that

(a) The
(

f ,
i
f

)
-*-integral is defined as

∗
∫

Γ
w(z)d( f ,i/ f )z = Re

∫
Γ

1
f (z)

w(z)dz − i Re
∫

Γ
i f (z)w(z)dz.

(b) The
(

f ,
i
f

)
-integral is defined by

∫
Γ

w(z)d( f ,i/ f )z = f (z1)Re
∫

Γ

1
f (z)

w(z)dz − i
f (z1)

Re
∫

Γ
i f (z)w(z)dz. (3.21)
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Definition 13. Let w : Ω → C be a continuous function. We say that w is ( f , i/ f )-integrable
in Ω if for every closed curve Γ lying in a simply connected subdomain of Ω we have∮

Γ
w(z)d( f ,i/ f )z = 0. (3.22)

Proposition 10. Let w : Ω → C be a solution of the main Vekua equation in Ω where Ω is
simply connected domain. Then its ( f , i/ f )-derivative is ( f , i/ f )-integrable in Ω.

Proof. Let us take a closed curve Γ such that it lies in Ω. It is enough to prove that

∗
∮

Γ
ẇ(z)d( f ,i/ f )z = 0. (3.23)

From Definition 12 item (a) we get

∗
∮

Γ
ẇ(z)d( f ,i/ f )z = Re

∮
Γ

1
f (z)

ẇ(z)dz + Re
∮

Γ
−i f (z)ẇ(z)dz.

Since ẇ(z) = φz(z) f (z) + ψz(z)i/ f (z), it follows that

∗
∮

Γ
ẇ(z)d( f ,i/ f )z =Re

∮
Γ

1
f (z)

(
φz(z) f (z) + ψz(z)

i
f (z)

)
dz

+ Re
∮

Γ
−i f (z)

(
φz(z) f (z) + ψz(z)

i
f (z)

)
dz

=Re
∮

Γ

(
φz(z) + ψz(z)

i
f 2(z)

)
dz + Re

∮
Γ

(
−iφz(z) f 2(z) + ψz(z)

)
dz

From (3.13) we have that φz(z) f (z) = ψz(z)i/ f (z). Then

∗
∮

Γ
ẇ(z)d( f ,i/ f )z =Re

∮
Γ

2φz(z)dz + Re
∮

Γ
2ψz(z)dz

=Re
∮

Γ

(
φx(z)− iφy(z)

)
(dx + idy) + Re

∮
Γ

(
ψx(z)− iψy(z)

)
(dx + idy)

=
∮

Γ

(
φx(z)dx + φy(z)dy

)
+
∮

Γ

(
ψx(z)dx + ψy(z)dy

)
(3.24)

By Theorem 1 we have that integrals in (3.24) are path-independent. Consequently, we
get ∮

Γ
ẇ(z)d( f ,i/ f )z = 0.

This completes the proof.

Corollary 6. Under the hypothesis that Proposition 10, we have that for Γ ⊆ Ω a rectifiable
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curve from z0 to z in Ω, the following equality is valid

∫
Γ

ẇ(z)d( f ,i/ f )z = w(z)− φ(z0) f (z)− ψ(z0)
i

f (z)
. (3.25)

Formula (3.25) is known as the
(

f , i
f

)
-antiderivative of ẇ.

Proposition 11. Let v : Ω → C be a continuous function where Ω is a simply connected
domain. If v is ( f , i/ f )-integrable in Ω, then there exists a solution w of the main Vekua
equation in Ω such that

v =
d( f ,i/ f )w

dz
, in Ω.

Proof. Let z0 = x0 + iy0 and z = x + iy both in Ω. Assume that v is
(

f ,
i
f

)
-integrable.

From Definition 12 item (a) we have that

∗
∫

Γ
v(z)d( f ,i/ f )z = Re

∫
Γ

1
f (z)

v(z)dz − i Re
∫

Γ
i f (z)v(z)dz,

where Γ a rectifiable curve leading from z0 to z. Let us denote

φ(z) = Re
∫

Γ

1
f (z)

v(z)dz, (3.26)

ψ(z) = Re
∫

Γ
−i f (z)v(z)dz. (3.27)

Note that for (3.26) we get

φ(z) =Re
∫

Γ

1
f (z)

v(z)dz (3.28)

=
2
2

Re
∫

Γ

1
f (z)

(v1(z) + iv2(z))(dx + idy)

=
∫

Γ

1
2 f (z)

(2v1(z)dx − 2v2(z)dy) (3.29)

=
∫

Γ

1
2 f (z)

(2v1(z)dx + iv1(z)dy − iv1(z)dy)

+
∫

Γ

1
2 f (z)

(iv2(z)dx − iv2(z)dx − 2v2(z)dy)

=
∫

Γ

1
2 f (z)

(v1(z)dx + iv1(z)dy + iv2(z)dx − v2(z)dy)

+
∫

Γ

1
2 f (z)

(v1(z)dx − iv1(z)dy − iv2(z)dx − v2(z)dy)

=
∫

Γ

1
2 f (z)

(v(z)dz + v(z)dz) (3.30)
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Analogously, we have that (3.27) is equal to

ψ(z) =
∫

Γ

f (z)
2i

(v(z)dz − v(z)dz) (3.31)

Taking ∂z to (3.30) and (3.31) we get

φz(z) =
v(z)

2 f (z)
, (3.32)

ψz(z) =
f (z)v(z)

2i
. (3.33)

Hence adding (3.32) and (3.33)

φz(z) f (z) + ψz
i

f (z)
=

v(z)
2 f (z)

f (z) +
f (z)v(z)

2i
i

f (z)
= v(z). (3.34)

Then taking the conjugate to (3.32) and (3.33) and adding them we get

φz(z) f (z) + ψz(z)
i

f (z)
=

v(z)
2 f (z)

f (z) +
i f (z)v(z)

2
i

f (z)
= 0.

From Theorem 7 and (3.34) we have that ẇ = v. While, by Proposition 8 we have that
ẇ is solution of the main Vekua equation. Therefore, by arbitrariness of z0 and z the
proof is done.

Corollary 7. Let a complex-valued function v a solution of the successor Vekua equation defined
in a simply connected domain Ω. Then for z0 = x0 + iy0 and z = x + iy in Ω we have that

w(z) =
∫ z

z0

v(ζ)d( f ,i/ f )ζ,

is a solution of the main Vekua equation in Ω.

Proposition 12. Let v : Ω → C where Ω is a simply connected domain. If v is a solution of
the successor Vekua equation in Ω, then v is ( f , i/ f )-integrable in Ω.

Proof. Let us take Ω1 ⊆ Ω. From Proposition 11 note that is enough to prove that if Ω1

is a regular domain and Ω1 ⊆ Ω, then

∗
∫

∂Ω1

v(z)d( f ,i/ f )z = 0. (3.35)
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By Definition 12 item (a), we have that

Re
(
∗
∫

∂Ω1

v(z)d( f ,i/ f )z
)
= Re ∗

∫
∂Ω1

1
f (z)

v(z)dz,

and
Im
(
∗
∫

∂Ω1

v(z)d( f ,i/ f )z
)
= Re ∗

∫
∂Ω1

−i f (z)v(z)dz.

From Theorem 4 we get∫
∂Ω1

−i f (z)v(z)dz =− 2i
∫

Ω1

(i f (z)v(z))zdxy

=2i
∫

Ω1

(i fz(z)v(z) + i f (z)vz̄(z))dxdy

Since v is solution of the successor Vekua equation, we get∫
∂Ω1

−i f (z)v(z)dz =− 2i
∫

Ω1

(i fz(z)v(z)− i fz(z)v(z))dxdy

=− 2i
∫

Ω1

(
i fz(z)v(z) + i fz̄(z)v(z)

)
dxdy

=− 2i
∫

Ω1

2 Re(i fz(z)v(z))dxy

=− 4i
∫

Ω1

Re(i fz(z)v(z))dxy. (3.36)

Note that (3.36) is pure imaginary hence

Re
∫

∂Ω1

−i f (z)v(z) = 0. (3.37)

Analogously, we obtain that

Re
∫

∂Ω1

1
f (z)

v(z) = 0. (3.38)

From (3.37) and (3.38), we have proved (3.35). Therefore, v is ( f , i/ f )-integrable.

Corollary 7 established a relation about how to pass from a solution of the successor

Vekua equation to one of the main Vekua equation through an integration process.

Moreover, by Propositions 12, 11,and 10 we obtain the following result

Corollary 8. Let v : Ω → C a solution of the successor Vekua equation in Ω where Ω is a
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simply connected domain. Then every closed curve Γ situated in a subdomain of Ω satisfies

Re
∮

Γ

v(z)
f (z)

dz + i Im
∮

Γ
f (z)v(z)dz = 0. (3.39)

Note that, Corollary 8 is a generalization of the well-known Cauchy Integral Theorem.

3.5 Formal Powers for the main Vekua equation

In complex analysis the nonnegative usual powers

α(z − z0)
n, n = 0, 1, 2 . . .

are a system of analytic functions of great importance. For example, they allow us

to expand an analytic function as a Taylor series. In this section we deal with the

construction of a system of solutions of the main Vekua equation

∂z̄w =
fz

f
w, in Ω, (3.40)

that generalize in some sense the usual powers. We call it formal powers and denote it

by

Z(n) (a, z0; z) , n = 0, 1, 2 . . .

Here a ∈ C, z0 ∈ Ω, and n ∈ N0 are parameters called the coefficient, center and grade

of the formal power, respectively. The function Z(n) (a, z0; z) should be a solution of

the main Vekua equation in the variable z and near the center it behaves like the usual

powers, that is,

Z(n) (a, z0; z) ∼ a (z − z0)
n as z → z0.

In this section we present an elegant method to construct explicitly the system of formal

powers for (3.40) when f has a separable form, that is, when f (x, y) = σ(x)τ(y). This

method was proposed by L. Bers (see [2], [3], [7], and [5]) and it can be applied when we

have at our disposal a special sequence of generating pairs called generating sequence.
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3.5.1 Generating sequence. The special case f (x, y) = σ(x)τ(y)

Recall that by Proposition 9 we have that the ( f , i/ f )-derivative of a solution of the

main Vekua equation is a solution of the successor Vekua equation. Motivated by this,

we arrive at the following definition.

Definition 14. Let (F, G) and (F1, G1) be two generating pairs defined in Ω. We say that
(F1, G1) is the successor of (F, G) if given a solution of the Vekua equation corresponding to
(F, G) its (F, G)−derivative is a solution of the Vekua equation corresponding to (F1, G1).

This process of constructing new generating pairs associated with the previous one

via Vekua equations can be continued and we arrive naturally at the next definition.

Definition 15. A sequence of generating pairs {(Fm, Gm)}, m ∈ Z, is called a generating
sequence if (Fm+1, Gm+1) is a successor of (Fm, Gm). Moreover, if (F0, G0) = (F, G), we say
that (F, G) is embedded in {(Fm, Gm)}.

Definition 16. A generating sequence {(Fm, Gm)} has period µ > 0 if (Fm+µ, Gm+µ) =

(Fm, Gm).

Let us consider the main Vekua equation (3.40) with f (x, y) = σ(x)τ(y) and the

corresponding generating pair (
f ,

i
f

)
=

(
στ,

i
στ

)
. (3.41)

Next we are going to construct a generating sequence embedding (3.41).

Proposition 13. Let (F, G) = (στ, i/στ). Then (F1, G1) = (τ/σ, iσ/τ) is the successor of
(F, G).

Proof. Let us prove that (F1, G1) is a generating pair corresponding to the successor
Vekua equation (3.18). Then

Step 1. Let us replace F1 in (3.18). Then

(i) ∂z̄

(τ

σ

)
=

1
2

(
i∂yτσ − ∂xστ

σ2

)
(ii) −∂z f

f

(
τ

σ

)
= −1

2

(
∂xστ − iσ∂yτ

στ

)(τ

σ

)
=

1
2

(
i∂yτσ − ∂xστ

σ2

)
From (i) and (ii) F1 satisfies (3.18).
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Step 2. Similar to the previous item we replace G1 in (3.18). Then

(i) ∂z̄

(
i
σ

τ

)
=

1
2

(
σ∂yτ + i∂xστ

τ2

)
(ii) −∂z f

f

(
i
σ

τ

)
=

1
2

(
∂xστ − iσ∂yτ

στ

)(
i
σ

τ

)
=

1
2

(
σ∂yτ + i∂xστ

τ2

)
From (i) and (ii) G1 satisfies (3.18).

Step 3. Fix z0 = x0 + iy0 ∈ Ω. Let m = m1 + im2 ∈ C we take λ = m1σ(x0)τ(y0) and
β = m2/σ(x0)τ(y0). Then

m = λ
1

σ(x0)τ(y0)
+ iβσ(x0)τ(y0).

By Proposition 9 we have that (F1, G1) is the successor of (F, G). This completes the
proof.

Next we are going to construct a successor for (F1, G1) = (τ/σ, iσ/τ).

Proposition 14. The generating pair (F2, G2) = (στ, i/στ) is the successor of (F1, G1) =

(τ/σ, iσ/τ).

Proof. To prove this is enough show that

∂z̄ f
f

= −∂z f̃
f̃

,

where f̃ = τ/σ.Then
∂z̄ f

f
=

1
2

(
∂xστ + iσ∂yτ

στ

)
and

∂z f̃
f̃

= −1
2

(−∂xστ − iσ∂yτ

σ2

)
σ

τ
=

1
2

(
∂xστ + iσ∂yτ

στ

)
Therefore, (F2, G2) is the successor of (F1, G1).

Note that by Proposition 13 we have that (F3, G3) = (τ/σ, iσ/τ) is the successor of

(F2, G2) = (στ, i/στ). Then, by construction we have proved the following proposition.

Proposition 15. The generating pair (3.41) is embedded in the generating sequence {(Fm, Gm)}
of period two given by

(F, G) =

(
στ,

i
στ

)
, (F1, G1) =

(τ

σ
, i

σ

τ

)
, (F2, G2) = (F, G), (F3, G3) = (F1, G1) . . .
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3.5.2 Definition and construction of formal powers

Let us consider the main Vekua equation (3.40) with f (x, y) = σ(x)τ(y) and let {(Fm, Gm)}

be the corresponding generating sequence given in Proposition 15. Let us define:

Definition 17. The formal power with center at z0 ∈ Ω, coefficient a ∈ C, and grade n ∈ N0

is given by

Z(0)
m (a, z0; z) = λFm(z) + µGm(z) such that λFm (z0) + µGm (z0) = a (3.42)

and
Z(n)

m (a, z0; z) = n
∫ z

z0

Z(n−1)
m+1 (a, z0; ζ) d(Fm,Gm)ζ, ∀n ∈ N. (3.43)

This definition implies the following properties:

(a) Z(n)
m (a, z0; z) is a solution of the Vekua equation corresponding to the generating

pair (Fm, Gm) as function of z.

(b) If a′ and a′′ are real constant, then

Z(n)
m
(
a′ + ia′′, z0; z

)
= a′Z(n)

m (1, z0; z) + a′′Z(n)
m (i, z0; z)

(c) The formal powers satisfy the following differential relation

d(Fm,Gm)Z
(n)
m (a, z0; z)
dz

= nZ(n−1)
m+1 (a, z0; z) .

Remark 5. Note that from property (b) the formal power Z(n)(a, z0; z) can be written through
Z(n) (1, z0; z) and Z(n) (i, z0; z). Therefore, it is enough calculate only these two formal powers
for any grade n and center z0.

The case f (x, y) = τ(y)

Consider the main Vekua equation (3.40) with f (x, y) = τ(y) and let {(Fm, Gm)} be the

corresponding generating sequence given in Proposition 15. For this case is easy to see

that the generating sequence has period one, that is,

(F, G) =

(
τ,

i
τ

)
, (F1, G1) = (F, G), (F2, G2) = (F, G), . . .
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and the main Vekua equation take the following form

∂z̄w =
iτy

2τ
w. (3.44)

In this subsection we consider the formal powers with the center at the point z0 =

x0 + iy0 ∈ Ω. We assume that τ(y0) = 1 and define the system of functions Ỹ(n) and

Y(n) constructed in terms of τ through the following recursive relations

Y(0) ≡ 1, Ỹ(0) ≡ 1, (3.45)

Y(n)(y) =


n
∫ y

y0

Y(n−1)(η)τ2(η)dη, n odd,

n
∫ y

y0

Y(n−1)(η)
dη

τ2(η)
, n even.

(3.46)

Ỹ(n)(y) =


n
∫ y

y0

Ỹ(n−1)(η)
dη

τ2(η)
, n odd,

n
∫ y

y0

Ỹ(n−1)(η)τ2(η)dη, n even.
(3.47)

Remark 6. If τ is chosen as τ ≡ 1, then Y(n)(y) = Ỹ(n)(y) = yn are the usual powers.

Let us calculate Z(n)(a, z0; z) of2 grades n = 0, 1, 2 for the Vekua equation (3.44)

where a = a1 + ia2 ∈ C. From Definition 17 property (b) we need calculate Z(n)(1, z0; z)

and Z(n)(i, z0; z). By formula (3.42) and since τ(y0) = 1 it is easy to see that

Z(0)(1, z0; z) = τ(y) and Z(0)(i, z0; z) =
i

τ(y)
.

In order to construct Z(1)(α, z0; z) for α = 1, i recall that (Fm, Gm) = (τ, i/τ) for any m

in Z. Then formula (3.43) give us

Z(1)(α, z0; z) =
∫ z

z0

Z(0)(α, z0; ζ)d( f ,i/ f )ζ, α = 1, i.

We calculate these two integrals using (3.21). Denoting ζ := κ + iξ we get

Z(1)(1, z0; z) =τ(y)Re
∫ z

z0

dζ − i
τ(y)

Re
∫ z

z0

iτ2(κ)dζ

2The absence of the subindice m means that all the formal powers correspond to the same generator
pair.
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=τ(y)
∫ z

z0

dκ +
i

τ(y)

∫ z

z0

τ2(ξ)dξ

We use the curve Γ from z0 = x0 + iy0 to z = x + iy which consists of Γ1 ∪ Γ2 parame-

terized by

γ1(t) = (t, y0) for x0 ≤ t ≤ x and γ2(t) = (x, t) for y0 ≤ t ≤ y, (3.48)

respectively. Then, we get

Z(1)(1, z0; z) =τ(y)
∫ x

x0

dκ +
i

τ(y)

∫ y

y0

τ2(ξ)dξ

=τ(y)(x − x0) +
i

τ(y)
Y(1)(y)

=τ(y)
(

1
0

)
(x − x0) +

i
τ(y)

(
1
1

)
Y(1)(y)

Similarly,

Z(1)(i, z0; z) =τ(y)Re
∫ z

z0

i
τ2(ξ)

dζ +
i

τ(y)
Re
∫ z

z0

dζ

=− τ(y)
∫ z

z0

1
τ2(ξ)

dξ +
i

τ(y)

∫ z

z0

dκ

using (3.48) we obtain

Z(1)(i, z0; z) =− τ(y)
∫ y

y0

1
τ2(ξ)

dξ +
i

τ(y)

∫ x

x0

dκ

=τ(y)Ỹ(1)(y) +
i

τ(y)
(x − x0)

Analogously we construct Z(2)(α, z0; z) for α = 1, i. By formula (3.43) we get

Z(2)(α, z0; z) = 2
∫ z

z0

Z(1)(α, z0; ζ)d( f ,i/ f )ζ, α = 1, i.

We calculate these two integrals using (b). Then

Z(2)(1, z0; z) =2τ(y)Re
∫ z

z0

1
τ(ξ)

[
τ(ξ)(κ − x0) +

i
τ(ξ)

Y(1)(ξ)

]
dζ

− 2i
τ(y)

Re
∫ z

z0

iτ(ξ)
[

τ(ξ)(κ − x0) +
i

τ(ξ)
Y(1)(ξ)

]
dζ
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=2τ(y)Re
∫ z

z0

(κ − x0)dζ + 2τ(y)Re
∫ z

z0

i
τ2(ξ)

Y(1)(ξ)dζ

− 2i
τ(y)

Re
∫ z

z0

iτ2(ξ)(κ − x0)dζ +
2i

τ(y)
Re
∫ z

z0

Y(1)(ξ)dζ

=2τ(y)
∫ z

z0

(κ − x0)dκ − 2τ(y)
∫ z

z0

1
τ2(ξ)

Y(1)(ξ)dξ

+
2i

τ(y)

∫ z

z0

τ2(ξ)(κ − x0)dξ +
2i

τ(y)

∫ z

z0

Y(1)(ξ)dκ

Using (3.48) we obtain

Z(2)(1, z0; z) =2τ(y)
∫ x

x0

(t − x0)dt − 2τ(y)
∫ y

y0

1
τ2(t)

Y(1)(t)dt +
2i

τ(y)
(x − x0)

∫ y

y0

τ2(t)dt

+
2i

τ(y)

∫ y

y0

Y(1)(y0)dt

=τ(y)(x − x0)
2 − τ(y)Y(2)(y) +

2i
τ(y)

(x − x0)Y(1)(y)

=τ(y)(x − x0)
2 +

2i
τ(y)

(x − x0)Y(1)(y)− τ(y)Y(2)(y)

=τ(y)
(

2
0

)
(x − x0)

2 +
i

τ(y)

(
2
1

)
(x − x0)Y(1)(y)− τ(y)

(
2
2

)
Y(2)(y)

Similarly, we calculate

Z(2)(i, z0; z) =2τ(y)Re
∫ z

z0

1
τ(ξ)

[
−τ(ξ)Ỹ(1)(ξ) +

i
τ(ξ)

(κ − x0)

]
dξ

− 2i
τ(y)

Re
∫ z

z0

iτ(ξ)
[
−τ0τ(ξ)Ỹ(1)(ξ) +

iτ0

τ(ξ)
(κ − x0)

]
dζ

=2τ(y)Re
∫ z

z0

−Ỹ(1)(ξ)dζ + 2τ(y)Re
∫ z

z0

i
τ2(ξ)

(κ − x0)dζ

+
2i

τ(y)
Re
∫ z

z0

iτ2(ξ)Ỹ(1)(ξ)dζ +
2i

τ(y)
Re
∫ z

z0

(κ − x0)dζ

=− 2τ(y)
∫ z

z0

Ỹ(1)(ξ)dκ − 2τ(y)
∫ z

z0

1
τ2(ξ)

(κ − x0)dξ

− 2i
τ(y)

∫ z

z0

τ2(ξ)Ỹ(1)(ξ)dξ +
2i

τ(y)

∫ z

z0

(κ − x0)dκ

Using (3.48) we obtain

Z(2)(i, z0; z) =− 2τ(y)
∫ y

y0

Y(1)(y0)dt − 2τ(y)(x − x0)
∫ y

y0

1
τ2(t)

dt

− 2iτ0

τ(y)

∫ y

y0

τ2(t)Ỹ(1)(t)dt +
2iτ0

τ(y)

∫ x

x0

(t − x0)dt
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=− 2τ(y)(x − x0)Ỹ(1)(y)− i
τ(y)

Ỹ(2)(y) +
i

τ(y)
(x − x0)

2

=
i

τ(y)
(x − x0)

2 − 2τ(y)(x − x0)Ỹ(1)(y)− i
τ(y)

Ỹ(2)(y)

=
i

τ(y)

(
2
0

)
(x − x0)

2 − τ(y)
(

2
1

)
(x − x0)Ỹ(1)(y)− i

τ(y)

(
2
2

)
Ỹ(2)(y)

By construction, the formal powers Z(n) computed previously are indeed solutions

of the Vekua equation (3.44). Following the previous reasoning, to calculate formal

powers, we arrive to the next proposition.

Proposition 16. For a = a′ + ia′′ ∈ C and z0 = x0 + iy0 ∈ Ω we have that Z(n)(a, z0; z) is
given by

Z(n)(a, z0, z) = τ(y)Re ∗Z(n)(a, z0, z) +
i

τ(y)
Im ∗Z(n)(a, z0, z) (3.49)

where

∗Z(n)(a, z0; z) = a′
n

∑
j=0

(
n
j

)
(x − x0)

(n−j)ijY(j) + ia′′
n

∑
j=0

(
n
j

)
(x − x0)

(n−j)ijỸ(j). (3.50)

The proof of this proposition is achieved by induction on n. Now, we give an

example of constructed formal powers.

Example 2. Consider the Yukawa equation(
−∆ + c2

)
u = 0, (3.51)

where is c a real constant. For (3.51) let us take a particular solution f = ecy. The correspond-
ing Vekua equation has the form

∂z̄w =
ic
2

w. (3.52)

For this case the generating pair (F, G) = (ecy, ie−cy) is embedded into a sequence of period
one, i.e., (Fm, Gm) = (F, G) for any m ∈ Z. Let us construct the first two formal powers with
center at the origin. Then

• Z(0)(1, 0; z) = ecy

• Z(0)(i, 0; z) = ie−cy
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• Z(1)(1, 0; z) =ecy Re
(

x + iY(1)(y)
)
+ ie−cy Im

(
x + iY(1)(y)

)
=xecy + ie−cyY(1)(y)

=xecy + ie−cy
∫ y

0
e2cηdη

=xecy + ie−cy
(

e2cy − 1
2c

)
=xecy +

i sinh(cy)
c

• Z(1)(i, 0; z) =ecy Re
(

ix − Ỹ(1)(y)
)
+ ie−cy Im

(
ix − Ỹ(1)(y)

)
=ixe−cy − ecyỸ(1)(y)

=ixe−cy − ecy
∫ y

0
e−2cηdη

=ixe−cy − ecy
(

1 − e−2cy

2c

)
=ixe−cy − sinh(cy)

c

• Z(2)(1, 0; z) =ecy Re
(

x2 + 2xiY(1)(y)− Y(2)(y)
)

+ ie−cy Im
(

x2 + 2xiY(1)(y)− Y(2)(y)
)

=x2ecy − ecyY(2)(y) + 2xiecyY(1)(y)

=x2ecy − ecy
((

e−2cy − 1
2c2

)
+

y
c

)
+ 2xie−cy

(
e2cy − 1

2c

)
=
(

x2 − y
c

)
ecy +

2xi sinh(cy)
c

+
sinh(cy)

c2

• Z(2)(i, 0; z) =ecy Re
(

ix − 2xỸ(1)(y)− iỸ(2)(y)
)

+ ie−cy Im
(

ix − 2xỸ(1)(y)− iỸ(2)(y)
)

=2x2ecyỸ(1)(y) + ixe−cy − ie−cyỸ(2)(y)

=ix2e−cy − 2xecy
(

1 − e−2cy

2c

)
− ie−cy

(
e2cy − 1

2c2 − y
c

)
=i
((

x2 +
y
c

)
e−cy − sinh(cy)

c2

)
− 2x sinh(cy)

c

Note each of these function is a solution of (3.52). Taking real parts of formal powers

we obtain a infinite system of solutions of the Yukawa equation

u0(x, y) = ecy, u1(x, y) = xecy, u2(x, y) = −sinh(cy)
c

,
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u3(x, y) =
(

x2 − y
c

)
ecy +

sinh(cy)
c2 , u4(x, y) = −2x

sinh(cy)
c

. . .

The case f (x, y) = σ(x)τ(y)

Consider the main Vekua equation (3.40) with f (x, y) = σ(x)τ(y) and let {(Fm, Gm)}

be the corresponding generating sequence given in Proposition 15. For this case we

know that the generating sequence has period two and the main Vekua equation take

the following form

∂z̄w =

(
σxτ + iστy

2στ

)
w (3.53)

In this subsection we consider the formal powers with the centre at the point z0 =

x0 + iy0 ∈ Ω. We assume that σ(x0) = τ(y0) = 1 and define the system of functions

X(n) and X̃(n) constructed in terms of σ through the following recursive relations

X(0) ≡ 1, X̃(0) ≡ 1, (3.54)

X(n)(x) =


n
∫ x

x0

X(n−1)(η)
dη

σ2(η)
, n odd,

n
∫ x

x0

X(n−1)(η)σ2(η)dη, n even.
(3.55)

X̃(n)(x) =


n
∫ x

x0

X̃(n−1)(η)σ2(η)dη, n odd,

n
∫ y

y0

X̃(n−1)(η)
dη

σ2(η)
, n even.

(3.56)

Remark 7. If σ is chosen as σ ≡ 1, then X(n)(x) = X̃(n)(x) = xn are the usual powers.

Now, we generalize Proposition 16 when f (x, y) = σ(x)τ(y).

Proposition 17. For a = a′ + ia′′ ∈ C and z0 = x0 + iy0 ∈ Ω we have that Z(n)(a, z0; z) is
given by

Z(n)(a, z0, z) = σ(x)τ(y)Re ∗Z(n)(a, z0, z) +
i

σ(x)τ(y)
Im ∗Z(n)(a, z0, z) (3.57)

where

∗Z(n)(a, z0, z) =a′
n

∑
j=0

(
n
j

)
X(n−j)ijY(j) + ia′′

n

∑
j=0

(
n
j

)
X̃(n−j)ijỸ(j), n odd
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and

∗Z(n)(a, z0, z) =a′
n

∑
j=0

(
n
j

)
X̃(n−j)ijY(j) + ia′′

n

∑
j=0

(
n
j

)
X(n−j)ijỸ(j), n even.

The proof of this proposition can be achieved by induction on n.

Remark 8. If we choose σ ≡ 1 and τ ≡ 1 formula (3.57) generalized the binomial representa-
tion of the analytic powers, i.e., Z(n)(a, z0, z) = a(z − z0)

n.

3.6 Connection between the main Vekua equation and

the two-dimensional stationary Schödinger equation

Let us consider the stationary Schödinger equation

(−∆ + ν) u = 0, in Ω, (3.58)

where ∆ = ∂2
x + ∂2

y and ν ∈ C(Ω) is a real-valued function. In the following theorem

we establish the complex factorization of the stationary Schödinger operator in terms

of Vekua type operators.

Theorem 8. Let f be a particular nonvanishing solution of (3.58) in Ω and denote by C the
complex conjugation operator. Then

1
4
(∆ − ν)φ =

(
∂z +

fz̄

f
C
)(

∂z̄ −
fz̄

f
C
)

φ, (3.59)

for all real-valued function φ ∈ C2(Ω) .

Proof. Let φ be a real valued twice continuously differentiable function. Then, we get(
∂z +

fz̄

f
C
)(

∂z̄ −
fz̄

f
C
)

φ =

(
∂z∂z̄ − ∂z

fz̄

f
C +

fz̄

f
C∂z̄ −

fz̄C fz̄C
f 2

)
φ

=
1
4

∆φ − ∂z
fz̄

f
φ +

fz̄

f
∂z φ − fz̄ fz

f 2 φ

=
1
4

∆φ −
((

∂z
fz̄

f

)
φ +

fz̄

f
∂z φ

)
+

fz̄

f
∂z φ − fz̄ fz

f 2 φ

=
1
4

∆φ −
(

∂z
fz̄

f

)
φ − fz̄ fz

f 2 φ
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=
1
4

∆φ −
(
(∆

4 f ) f − fz̄ fz

f 2

)
φ − fz̄ fz

f 2 φ

=
1
4

∆φ −
(
(∆ f ) f

4 f 2 − fz̄ fz

f 2

)
φ − fz̄ fz

f 2 φ

=
1
4

∆φ − 1
4
(∆ f ) f

f 2 φ

=
1
4

∆φ − 1
4

∆ f
f

φ

=
1
4
(∆ − ν) φ

Since φ was taken arbitrarily, we have proved (3.59).

Note that the kernel of the first operator appearing on the previous factorization,

that is ker
(

∂z̄ − fz̄
f C
)

, is formed by the solutions of the main Vekua equation.

Proposition 18. Let f be a nonvanishing solution of the Schrödinguer equation (3.58) in Ω.
If w is a solution of the main Vekua equation

∂z̄w =
fz̄

f
w,

then we have:

(a) u = Re(w) is solution of
(−∆ + q1) u = 0, in Ω,

where q1 = ∆ f / f .

(b) v = Im(w) is solution of
(−∆ + q2) v = 0, in Ω,

where q2 = 2( f 2
x + f 2

y )/ f 2 − q1.

See Kravchenko [8, Prop. 19, pp. 3955] for a proof.
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Chapter 4

On the main matrix Vekua equation

In this Chapter we shall generalized some results of Chapter 3 for the main Vekua

equation in its matrix form. We will mainly deal with the results regarding differenti-

ation and integration.

4.1 Main matrix Vekua equation

Let Mn×n(K) be the set of n×n matrices with entries in K (K = R or K = C) and let Ω

be an open set in C. By a matrix function we mean an application V : Ω → Mn×n(K)

and by Ck
n×n(Ω) we denote the class of matrix functions having Ck(Ω) entries.

Analogous to Chapter 3 we study an important special Vekua equation called the main

matrix Vekua equation

∂z̄W = (∂z̄F)F−1W, in Ω, (4.1)

where F ∈ C2
n×n(Ω) is a given invertible real matrix function in Ω and W ∈ C1

n×n(Ω)

is the unknown matrix function.

Definition 18. Let F and G be n × n invertible matrix functions defined in Ω. We say that G
is compatible with F if

GT∂z̄F − (∂z̄GT)F = 0. in Ω. (4.2)

Remark 9. Note that equation (4.2) also works for ∂z.
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4.2 Matrix generating pair

Definition 19. Let F and G be n × n complex invertible matrix functions defined in Ω. We
say that (F, G) is a generating pair corresponding to (4.1) if

(a) F, G ∈ C1
n×n(Ω) and they are solutions of (4.1).

(b) For z0 ∈ Ω we have that

∀M ∈ Mn×n(C), ∃Λ, B ∈ Mn×n(R) : M = F(z0)Λ + G(z0)B.

Similarly to the complex case, we can construct a generating pair for the main matrix

Vekua equation in explicit form, as we explain next.

Proposition 19. Let F and G be an n× n invertible nonvanishing real-valued matrix functions
defined in Ω such that G is compatible with F. Then,

(
F, i(G−1)T) is a generating pair

corresponding to the main matrix Vekua equation (4.1).

Proof. This proof is performed in the following steps:

Step 1. By replacing F in (4.1) we trivially obtain that F is solution of (4.1).

Step 2. By replacing i(G−1)T in (4.1) we get:

(a) In the left term
∂z̄(i(G−1)T) = −i(G−1)T∂z̄GT(G−1)T (4.3)

(b) In the right term

(∂z̄F)F−1(i(G−1)T) = −i(∂z̄F)F−1(G−1)T

Since G is compatible with F, by (4.2) we have that (∂z̄F)F−1 = (G−1)T∂z̄GT. Then

(∂z̄F)F−1(i(G−1)T) = −i(G−1)T∂z̄GT(G−1)T (4.4)

Thus, from (4.3) and (4.4) we have proved that i(G−1)T is solution of (4.1).

Step 3. Let z0 ∈ Ω. Let us take any M ∈ Mn×n(C) and denote Re(M) = M1 and
Im(M) = M2. We choose Λ = F−1(z0)M1 and B = GT(z0)M2. Then

M = F(z0)Λ + i(G−1(z0))
TB.

By arbitrariness of M we have that it has a representation through the generating pair(
F, i(G−1)T). Therefore from previous steps we have proved that

(
F, i(G−1)T) is a

generating pair for (4.1).
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4.3 Differentiation with respect to generating pair(
F, i(G−1)T

)
Throughout the rest of this chapter consider the generating pair

(
F, i(G−1)T) corre-

sponding to the main matrix Vekua equation (4.1) given as in Proposition 19. Let W

an arbitrary n × n matrix function defined in Ω. With the help of the generating pair(
F, i(G−1)T), by analogy to the complex case, we have that W can be written as

W = FΥ + i(G−1)TΨ, in Ω, (4.5)

where Υ = F−1 Re(W) and Ψ = GT Im(W) are n × n real-valued matrix functions.

Now, we introduce the concept of
(

F, i(G−1)T)-derivative. Formally, we get

Definition 20. Let W be an n × n complex matrix function defined in Ω and z0 ∈ Ω. We say
that W has

(
F, i(G−1)T)-derivative at z0 if the following limit

Ẇ(z0) = lim
z→z0

W(z)−
(

F(z)Υ(z0) + i(G−1(z))TΨ(z0)
)

z − z0
(4.6)

exists and is finite.

If Ẇ exists everywhere in Ω, we say that W is
(

F, i(G−1)T)-pseudoanalytic of first

kind on Ω (or simply pseudoanalytic if there is no confusion). The following auxiliary

complex matrix function (for a fixed z0 in Ω)

W̃ := W −
(

FΥ(z0) + i(G−1)TΨ(z0)
)

, in Ω, (4.7)

will be useful for what follows next.

Proposition 20. An n × n complex matrix function W defined in Ω has
(

F, i(G−1)T)-
derivative at z0 ∈ Ω if and only if an n × n complex matrix W̃ given by (4.7) has complex
derivative at z0. Moreover, Ẇ(z0) = W̃ ′(z0).

Proof. Assume that W has
(

F, i(G−1)T)-derivative at z0, that is,

Ẇ(z0) = lim
z→z0

W(z)−
(

F(z)Υ(z0) + i(G−1(z))TΨ(z0)
)

z − z0
.
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From (4.7) we get W̃(z0) = 0, it follows that

Ẇ(z0) = lim
z→z0

W̃(z)
z − z0

= lim
z→z0

W̃(z)− W̃(z0)

z − z0
.

Then, Ẇ(z0) = W̃ ′(z0). Conversely, the other direction is clear.

Corollary 9. Let an n × n complex matrix function W ∈ C1
n×n(Ω) and z0 ∈ Ω. If W has(

F, i(G−1)T)-derivative, then for W̃ given by (4.7) we have:

(a) By previous Proposition W̃ has complex derivative at z0. Thus W̃ satisfies the Cauchy-
Riemann equations at z0, which is equivalent to ∂z̄W̃(z0) = 0.

(b) The complex derivative of W̃ at z0 is computed by ∂zW̃(z0).

Proof. We denote Re(W̃) = U and Im(W̃) = V. Let us prove (a). Then

∂z̄W̃(z) =∂z̄ (U(z) + iV(z))

=∂z̄U(z) + i∂z̄V(z)

=
1
2
(∂x + i∂y)U(z) +

i
2
(∂x + i∂y)V(z)

=
1
2

∂xU(z) +
i
2

∂yU(z) +
i
2

∂xV(z)− 1
2

∂yV(z)

assuming that ∂zW̃(z0) = 0 we get

1
2

∂xU(z0) +
i
2

∂yU(z0) +
i
2

∂xV(z0)−
1
2

∂yV(z0) = 0.

It follows that
∂xU(z0) = ∂yV(z0) and ∂yU(z0) = −∂xV(z0).

Conversely, the other direction is straightforward. Now, let us prove (b). Proceeding
similarly to the previous item we get

∂zW̃(z0) =
1
2

∂xU(z0)−
i
2

∂yU(z0) +
i
2

∂xV(z0) +
1
2

∂yV(z0)

this means

∂zw̃ij(z0) =
1
2

∂xuij(z0)−
i
2

∂yuij(z0) +
i
2

∂xvij(z0) +
1
2

∂yvij(z0), ∀i, j ∈ N1. (4.8)

1w̃ij, uij, and vij represent the i, j-th entry of W̃, U, and V, respectively.
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Assume that W̃ has complex derivative at z0. This means that each entry of W̃ satisfies
Corollary 3 at z0, that is,

w̃′
ij(z0) = ∂xuij(z0) + i∂xvij(z0) = ∂yvij(z0)− i∂yuij(z0), ∀i, j ∈ N. (4.9)

From (4.8) and (4.9) we get

∂zw̃ij(z0) = w̃′
ij(z0), ∀i, j ∈ N.

Thus, we obtain
∂zW̃(z0) = W̃ ′(z0).

This completes the proof.

Theorem 9. Let an n × n complex matrix function W = FΥ + i(G−1)TΨ ∈ C1
n×n(Ω) and

z0 ∈ Ω. Then, W has
(

F, i(G−1)T)-derivative at z0 if and only if

F(z0)∂z̄Υ(z0) + i(G−1(z0))
T∂z̄Ψ(z0) = 0. (4.10)

Moreover, we have that

Ẇ(z0) = F(z0)∂zΥ(z0) + i(G−1(z0))
T∂zΨ(z0).

Proof. Let us consider the n × n complex matrix function W̃(z) given by (4.7), that is,

W̃(z) = W(z)−
(

F(z)Υ(z0) + i(G−1(z))TΨ(z0)
)

Note that
W̃(z) = F(z)(Υ(z)− Υ(z0)) + i(G−1(z))T(Ψ(z)− Ψ(z0))

Then, applying ∂z̄ we get

∂z̄W̃(z) =∂z̄

(
(F(z)(Υ(z)− Υ(z0)) + i(G−1(z))T(Ψ(z)− Ψ(z0))

)
=∂z̄F(z)(Υ(z)− Υ(z0)) + F(z)∂z̄Υ(z) + i∂z̄(G−1(z))T(Ψ(z)− Ψ(z0))

+ i(G−1(z))T∂z̄Ψ(z)

evaluating at z0 we get

∂z̄W̃(z0) = F(z0)∂z̄Υ(z0) + i(G−1(z0))
T∂z̄Ψ(z0). (4.11)
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In a similar way we get

∂zW̃(z0) = F(z0)∂zΥ(z0) + i(G−1(z0))
T∂zΨ(z0). (4.12)

Assume that W̃ has
(

F, i(G−1)T)-derivative at z0. Then, from Corollary 9 follows that
∂z̄W̃(z0) = 0, joining this with (4.11) we get

F(z0)∂z̄Υ(z0) + i(G−1(z0))
T∂z̄Ψ(z0) = 0.

Moreover, again by item (b) of Corollary 9 and Proposition 20 we get

Ẇ(z0) = F(z0)∂zΥ(z0) + i(G−1(z0))
T∂zΨ(z0).

Conversely, if (4.10) holds then by (4.11) we have that ∂z̄W̃(z0) = 0 and from (4.12) we
get W̃ ′(z0) = Ẇ(z0). This completes the proof.

Corollary 10. Under the conditions of Theorem 9 we have that

Ẇ(z0) = ∂zW(z0)− (∂zF(z0))F−1(z0)W(z0).

Proof. By equation (4.12) we get

∂zW̃(z0) = F(z0)∂zΥ(z0) + i(G−1(z0))
T∂zΨ(z0)

Let us denote Re(W) = W1 and Im(W) = W2. From equation (4.5) we get

∂zW̃(z0) =F(z0)∂z(F−1(z0)W1(z0)) + i(G−1(z0))
T∂z(GT(z0)W2(z0))

=F(z0)(−F−1(z0)(∂zF(z0))F−1(z0)W1(z0) + F−1(z0)∂zW1(z0))

+ i(G−1(z0))
T((∂zGT(z0))W2(z0) + GT(z0)∂zW2(z0))

=− (∂zF(z0))F−1(z0)W1(z0) + ∂zW1(z0) + i(G−1(z0))
T(∂zGT(z0))W2(z0)

+ i∂zW2(z0)

By Remark 9 we have that (G−1(z0))
T = (∂zF(z0))F−1(z0)∂z(G−1(z0))

T. Then

∂zW̃(z0) =∂zW1(z0) + i∂zW2(z0)− (∂zF(z0))F−1(z0)W1(z0)

+ i(∂zF(z0))F−1(z0)∂z(G−1(z0))
T(∂zGT(z0))W2(z0)

=∂z(W1(z0) + iW2(z0))− (∂zF(z0))F−1(z0)W1(z0) + i(∂zF(z0))F−1(z0)W2(z0)

=∂z(W1(z0) + iW2(z0))− (∂zF(z0))F−1(z0)(W1(z0)− iW2(z0))
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=∂zW(z0)− (∂zF(z0))F−1(z0)W(z0)

From Corollary 9 item (b) and Proposition 20 we get

Ẇ(z0) = ∂zW(z0)− (∂zF(z0))F−1(z0)W(z0).

Proposition 21. An n×n complex matrix function W ∈ C1
n×n(Ω) has

(
F, i(G−1)T)-derivative

at z0 ∈ Ω if and only if it satisfies the main matrix Vekua equation (4.1) at z0.

Proof. Assume that W has
(

F, i(G−1)T)-derivative at z0. From Theorem 9 we get

0 = F(z0)∂z̄Υ(z0) + i(G−1(z0))
T∂z̄Ψ(z0).

Note that

0 =F(z0)∂z̄Υ(z0) + i(G−1(z0))
T∂z̄Ψ(z0) + (∂z̄F(z0))Υ(z0)− (∂z̄F(z0))Υ(z0)

− i(G−1(z0))
T(∂z̄GT(z0))(G−1(z0))

TΨ(z0) + i(G−1(z0))
T(∂z̄GT(z0))(G−1(z0))

TΨ(z0)

=(∂z̄F(z0))Υ(z0) + F(z0)∂z̄Υ(z0)− i(G−1(z0))
T(∂z̄GT(z0))(G−1(z0))

TΨ(z0)

+ i(G−1(z0))
T∂z̄Ψ(z0) + i(G−1(z0))

T(∂z̄GT(z0))(G−1(z0))
TΨ(z0)− (∂z̄F(z0))Υ(z0)

=(∂z̄F(z0))Υ(z0) + F(z0)∂z̄Υ(z0) + i∂z̄(G−1(z0))
TΨ(z0) + i(G−1(z0))

T∂z̄Ψ(z0)

+ i(G−1(z0))
T(∂z̄GT(z0))(G−1(z0))

TΨ(z0)− (∂z̄F(z0))Υ(z0)

=∂z̄W(z0) + i(G−1(z0))
T(∂z̄GT(z0))(G−1(z0))

TΨ(z0)− (∂z̄F(z0))Υ(z0)

from Definition 18 note that (∂z̄F(z))F−1(z) = i(G−1(z))T∂z̄GT. Then

0 =∂z̄W(z0) + i(G−1(z0))
T(∂z̄GT(z0))(G−1(z0))

TΨ(z0)− (∂z̄F(z0))Υ(z0)

=∂z̄W(z0) + i(∂z̄F(z0))F−1(z0)(G−1(z0))
TΨ(z0)− (∂z̄F(z0))Υ(z0)

=∂z̄W(z0) + i(∂z̄F(z0))F−1(z0)(G−1(z0))
TΨ(z0)− (∂z̄F(z0))F−1(z0)F(z0)Υ(z0)

=∂z̄W(z0)− (∂z̄F(z0))F−1(z0)(F(z0)Υ(z0)− i(G−1(z0))
TΨ(z0))

=∂z̄W(z0)− (∂z̄F(z0))F−1(z0)W(z0)

Thus,
∂z̄W(z0) = (∂z̄F(z0))F−1(z0)W(z0).

Conversely, we assume that W satisfies the main matrix Vekua equation at z0. By the
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previous direction we easily obtain that

F(z0)∂z̄Υ(z0) + i(G−1(z0))
T∂z̄Ψ(z0) = 0,

and the result follows from Theorem 9.

Corollary 11. Under the conditions of Proposition 21, W ∈ C1
n×n(Ω) is a solution of the main

matrix Vekua equation (4.1) in Ω if and only if

F∂z̄Υ + i(G−1)T∂z̄Ψ = 0, in Ω. (4.13)

Proposition 22. If an n × n matrix function W defined in Ω is a solution of the main matrix
Vekua equation (4.1) in Ω, then the

(
F, i(G−1)T)-derivative of W is a solution of the following

Vekua equation
∂z̄Ẇ = −(∂zF)F−1Ẇ, in Ω. (4.14)

Proof. Let z ∈ Ω. Since W is solution of the main matrix Vekua equation at z, we have
that

Ẇ(z) = F(z)∂zΥ(z) + i(G−1(z))T∂zΨ(z). (4.15)

By Corollary 11 we get

F(z)∂z̄Υ(z) + i(G−1(z0))
T∂z̄Ψ(z) = 0. (4.16)

Taking the conjugate to (4.16), we have that

F(z)∂zΥ(z)− i(G−1(z))T∂zΨ(z) = 0. (4.17)

Solving (4.15) and (4.17) we get

∂zΥ(z) =
1
2

F−1(z)Ẇ(z) and ∂zΨ(z) =
1
2i

GT(z)Ẇ. (4.18)

Applying ∂z to (4.16) we get

0 =∂zF(z)∂z̄Υ(z) + F(z)∂z∂z̄Υ(z)− i(G−1(z))T(∂zGT(z))(G−1(z))T∂z̄Ψ(z)

+ i(G−1(z))T∂z∂z̄Ψ(z).
(4.19)

Applying ∂z̄ to (4.15) we get

∂z̄Ẇ(z) =∂z̄F(z)∂zΥ(z) + F(z)∂z̄∂zΥ(z)

− i(G−1(z))T(∂z̄GT(z))(G−1(z))T∂z̄Ψ(z) + i(G−1(z))T∂z∂z̄Ψ(z)
(4.20)
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Replacing (4.19) in (4.20) we get

∂z̄Ẇ(z) =∂z̄F(z)∂zΥ(z)− i(G−1(z))T(∂z̄GT(z))(G−1(z))T∂z̄Ψ(z)

− ∂zF(z)∂z̄Ψ(z) + i(G−1(z))T(∂zGT(z))(G−1(z))T∂z̄Ψ(z).
(4.21)

From Definition 18 note that (G−1(z))T∂z̄GT(z) = (∂z̄F(z))F−1(z). Then in (4.21) we
get

∂z̄Ẇ(z) =∂z̄F(z)∂zΥ(z)− i(∂z̄F(z))F−1(z)(G−1(z))T∂zΨ(z)− (∂zF(z))∂z̄Υ(z)

+ i(∂z̄F(z))F−1(z)(G−1(z))T∂z̄Ψ(z)

=∂z̄F(z)∂zΥ(z)− i(∂z̄F(z))F−1(z)(G−1(z))T∂zΨ(z) (4.22)

− (∂zF(z)∂z̄Υ(z) + i(∂z̄F(z))F−1(z)(G−1(z))T∂z̄Ψ(z))

by replacing (4.18) in (4.22) we obtain

∂z̄Ẇ(z) =
1
2
(∂z̄F(z))F−1(z)Ẇ(z)− 1

2
(∂z̄F(z))F−1(G−1(z))TGT(z)Ẇ(z)

−
(

1
2
(∂z̄F(z))F−1(z)Ẇ(z) +

1
2
(∂z̄F(z))F−1(z)(G−1(z))TGT(z)Ẇ(z)

)
=

1
2
(∂z̄F(z))F−1(z)Ẇ(z)− 1

2
(∂z̄F(z))F−1Ẇ(z)

−
(

1
2
(∂z̄F(z))F−1(z)Ẇ(z) +

1
2
(∂z̄F(z))F−1(z)Ẇ(z)

)
=−

(
1
2
(∂z̄F(z))F−1(z)Ẇ(z) +

1
2
(∂z̄F(z))F−1(z)Ẇ(z)

)
=−

(
(∂z̄F(z))F−1(z)Ẇ(z)

)
=− (∂zF(z))F−1(z)Ẇ(z)

Therefore, we have that
∂z̄Ẇ = −(∂zF)F−1Ẇ, in Ω.

This completes the proof.

Definition 21. Note that (4.14) is an n × n matrix Vekua equation. More precisely, let an
n × n complex matrix function V defined in Ω. In a complete analogy with the complex case
we say that the successor matrix Vekua equation of (4.1) is given by

∂z̄V = (−∂zF)F−1V, in Ω. (4.23)

Mathematician 49 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

4.4 Integration with respect to the generating pair

(F, i(G−1)T)

By equation (4.18) we get

∂zΥ =
1
2

F−1Ẇ and ∂zΨ = − i
2

GTẆ. (4.24)

To recover Υ and Ψ we use the operator A (defined in section 2.2.2). Then, applying

the operator A to each matrix equation in (4.24) we recover Υ and Ψ as follows

Υ = A
[

1
2

F−1Ẇ
]

and Ψ = −A
[

i
2

GTẆ
]

.

Hence, we write any n × n matrix complex-valued function W defined in Ω in terms

of operator A in the following way:

W = FA
[

1
2

F−1Ẇ
]
− i(G−1)T A

[
i
2

GTẆ
]

. (4.25)

Consequently, in (4.25) appears the additive term FC1 + i(G−1)TC2 for C1, C2 ∈ Mn×n(R).

Fixing W(z0) where z0 ∈ Ω, we have C1 = Υ(z0) and C2 = Ψ(z0).

Definition 22. Let W be an n × n complex matrix function defined in Ω and Γ a rectifiable
curve leading from z0 to z1 in Ω. Then, we have that

(a) The (F, i(G−1)T)-*-integral is defined as

∗
∫

Γ
W(z)d(F,i(G−1)T)z = Re

∫
Γ

F−1(z)W(z)dz − i Re
∫

Γ
iGT(z)W(z)dz.

(b) The (F, i(G−1)T)-integral is defined by∫
Γ

W(z)d(F,i(G−1)T)z = F(z1)Re
∫

Γ
F−1(z)W(z)dz− i(G−1(z1))

T Re
∫

Γ
iGT(z)W(z)dz.

Definition 23. Let a continuous n × n matrix function W defined in Ω. We say that W is
(F, i(G−1)T)-integrable in Ω if for every closed curve Γ lying in a simply connected subdomain
of Ω we have ∮

Γ
W(z)d(F,i(G−1)T)z = 0. (4.26)
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Proposition 23. Let W be an n × n matrix function solution of the main matrix Vekua equa-
tion (4.1) in Ω where Ω is simply connected domain. Then its (F, i(G−1)T)-derivative is
(F, i(G−1)T)-integrable in Ω.

Proof. Let us take a closed curve Γ such that it lies in Ω. It is enough to prove that

∗
∮

Γ
Ẇ(z)d(F,i(G−1)T)z = 0. (4.27)

From Definition 22 item (a) we get

∗
∮

Γ
Ẇ(z)d(F,i(G−1)T)z = Re

∮
Γ

F−1(z)Ẇ(z)dz − Re
∮

Γ
−iGT(z)Ẇ(z)dz.

Since Ẇ(z) = F(z)∂zΥ(z) + i(G−1(z))T∂zΨ(z), it follows that

∗
∮

Γ
Ẇ(z)d(F,i(G−1)T)z =Re

∮
Γ

F−1(z)
(

F(z)∂zΥ(z) + i(G−1(z))T∂zΨ(z)
)

dz

− Re
∮

Γ
iGT(z)

(
F(z)∂zΥ(z) + i(G−1(z))T∂zΨ(z)

)
dz

=Re
∮

Γ

(
∂zΥ(z) + iF−1(z)(G−1(z))T∂zΨ(z)

)
− Re

∮
Γ

(
iGT(z)F(z)∂zΥ − ∂zΨ(z)

)
dz

From (4.13) we have that F(z)∂zΥ(z) = i(G−1(z))T∂zΨ(z). Then

∗
∮

Γ
Ẇ(z)d(F,i(G−1)T)z =Re

∮
Γ

2∂zΥ(z)dx + Re
∮

Γ
2∂zΨ(z)dz

=Re
∮

Γ

(
∂xΥ(z)− i∂yΥ(z)

)
(dx + idy)

+ Re
∮

Γ

(
∂xΨ(z)− i∂yΨ(z)

)
(dx + idy)

=
∮

Γ

(
∂xΥ(z)dx + ∂yΥ(z)dy

)
+
∮

Γ

(
∂xΨ(z)dx + ∂yΨ(z)dy

)
(4.28)

By Theorem 1 we have that the integrals in (4.28) are path-independent. Consequently,
we get ∮

Γ
Ẇ(z)d(F,i(G−1)T)z = 0.

This completes the proof.

Proposition 24. Let V be an n × n continuous complex-valued matrix function defined in Ω
where Ω is a simply connected domain. If V is (F, i(G−1)T)-integrable in Ω, then there exists
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a solution W of the main matrix Vekua equation (4.1) such that

V =
d(F,i(G−1)T)W

dz
, in Ω.

Proof. Let z0 and z in Ω. Assume that V is (F, i(G−1)T)-integrable in Ω. From Defini-
tion 22 item (a) we have that

∗
∫

Γ
V(z)d(F,i(G−1)T)z = Re

∫
Γ

F−1(z)V(z)dz − i Re
∫

Γ
iGT(z)V(z)dz,

where Γ a rectifiable curve leading from z0 to z. Let us denote

Υ(z) = Re
∫

Γ
F−1(z)V(z)dz, (4.29)

Ψ(z) = Re
∫

Γ
−iGT(z)V(z)dz. (4.30)

Note that for (4.29) we get

Υ(z) =Re
∫

Γ
F−1(z)V(z)dz

=
2
2

Re
∫

Γ
F−1(z) (V1(z) + iV2(z)) (dx + idy)

=Re
∫

Γ

1
2

F−1(z) (2V1(z) + 2iV2(z)) (dx + idy)

=
∫

Γ

1
2

F−1(z) (2V1(z)dx − 2V2(z)dy)

=
∫

Γ

1
2

F−1(z) (2V1(z)dx + iV1(z)dy − iV1(z)dy)

+
∫

Γ

1
2

F−1(z) (iV2(z)dx − iV2(z)dx − 2V2(z)dy)

=
∫

Γ

1
2

F−1(z) (V1(z)dx + iV1(z)dy + iV2(z)dx − V2(z)dy)

+
∫

Γ

1
2

F−1(z) (V1(z)dx − iV1(z)dy − iV2(z)dx − V2(z)dy)

=
∫

Γ

1
2

F−1(z)
(
V(z)dz + V(z)dz

)
(4.31)

Analogously, we have that (4.30) is equal to

Ψ(z) =
∫

Γ

1
2i

GT(z)
(
V(z)dz − V(z)dz

)
(4.32)
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Taking ∂z to (4.31) and (4.32) we get

∂zΥ(z) =
1
2

F−1(z)V(z), (4.33)

∂zΨ(z) =
1
2i

GT(z)V(z). (4.34)

Hence adding (4.33) and (4.34)

F(z)∂zΥ(z) + i(G−1(z))T∂zΨ =
1
2

F(z)F−1(z)V(z) +
1
2
(G−1(z))TGT(z)V(z)

= V(z) (4.35)

Then taking the conjugate to (4.33) and (4.34) and adding them we get

F(z)∂zΥ(z) + i(G−1(z))T∂zΨ(z) =
1
2

F(z)F−1(z)V(z) +
1
2
(G−1(z))TGT(z)V(z)

= 0 (4.36)

From Theorem 9 and (4.35) we have that Ẇ = V. While, by Proposition 21 we have
that Ẇ is solution of the main matrix Vekua equation in Ω. Therefore, by arbitrariness
of z0 and z the proof is done.
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