

UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA
EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TITULO: IMPLEMENTING YOLO ALGORITHM FOR REAL TIME
OBJECT DETECTION ON EMBEDDED SYSTEM

Trabajo de integración curricular presentado como requisito para
la obtención del título de Ingeniero en Tecnologías de la

Información

Autor:

Silva Pincay Paul Andre

Tutor:

PhD Guachi Guachi, Lorena de los Angeles

Cotutor:

PhD Ortega-Zamorano, Francisco

Urcuquí, agosto 2019

Resumen

La detección de objetos se ocupa de la clasificación y localización de múltiples objetos en

imágenes y videos al usar un tipo particular de redes neuronales artificiales conocidas como

Redes Neuronales Convolutivas. Una de las redes que ha ganado reconocimiento en el área de

visión computacional es YOLO, un algoritmo que es un conjunto de múltiples técnicas usadas

para mejorar el rendimiento en términos de velocidad y precisión en detectar objetos en imágenes.

Mayormente, YOLO es conocido por ser rápido en comparación a otros detectores de objectos

modernos que también usan GPUs para entrenamiento y detección. Desafortunadamente, las

GPUs son caras y no accesibles a todos de manera que limita el número de aplicaciones poten-

ciales que pueden ser implementadas. En ese sentido, este trabajo se enmarca en implementar

YOLO para detección en sistemas embebidos como el Raspberry Pi. A pesar de que este dis-

positivo es computacionalmente limitado, esto fue una gran oportunidad de ver si esta tarea era

posible debido a que el Raspberry Pi es una alternativa de bajo costo más accesible. El trabajo

abarca una pequeña descripción sobre detección de objetos y redes neuronales convolutivas con

una revisión más detallada de las técnicas, aplicaciones y limitaciones de YOLO. También pre-

senta detalles sobre los parámetros de entrenamiento usados para mejorar la precisión de YOLO

y las pruebas realizadas en el Raspberry Pi usando videos.

Palabras claves: detección de objetos, redes neuronales convolutivas, YOLO, parámetros de

entrenamiento, Raspberri Pi.

Abstract

Object detection deals with classifying and locating multiples objects in images and videos by

using a specific type of artificial neural networks known as Convolutional Neural Networks.

One of the networks that have gained recognition in this area of computer vision is YOLO,

an algorithm that is a collection of multiple techniques used to improve performance both in

terms of speed and precision to detect objects in images. Mostly, YOLO is known for being fast

in comparison to other state-of-the-art object detectors which all use GPUs for training and

detection. Unfortunately, GPUs are expensive and not accessible to everyone thus limiting the

number of potential applications that can be implemented. In that sense, this work is focused on

implementing YOLO for detection on an embedded system such as the Raspberry Pi. Although

this device is computationally constrained, it represented a great chance to see if this feat was

possible as the Raspberry Pi is a more accessible low cost alternative. The work covers a small

description on object detection and convolutional neural networks with a more detailed overview

of the techniques, applications and challenges of YOLO. It also presents details on the training

parameters considered to improved YOLO’s precision and the tests performed on the Raspberry

Pi using videos.

Keywords: object detection, convolutional neural networks, YOLO, training parameters, Rasp-

berry Pi.

Acknowledgements

First of all, I would like to express my gratitude to my thesis advisors Lorena and Francisco

who gave me enough encouragement to develop this project. Their constant support and in-

sights helped me in the research and I got the chance to learn about so many interesting things.

Without their guidance, patience and persistence, this thesis project would have not been pos-

sible. I am also grateful to all the members of the School of Mathematical and Computational

Sciences from the staff, professors, classmates to my dean Andreas Griewank. Thanks for all

the great teachings and experiences during my time at Yachay Tech. I immensely thank my

parents Jose and Trinidad and my siblings Bryan, Karina and Maria Jose for their unwavering

patience, support and love during the preparation of this project. They have always helped me

to accomplish too many things in my life.

Contents

List of Figures iii

List of Tables v

Abbreviations viii

1 Introduction 1

1.1 Problem statement . 1

1.2 Scope of the Project . 2

1.3 General Overview . 2

2 Theoretical Framework 3

2.1 Concepts . 3

2.2 Object Detection . 4

2.2.1 Applications . 5

2.2.2 Challenges . 6

2.2.3 Features . 7

2.3 Convolutional Neural Networks for Object Detection 8

2.3.1 CNN Architecture . 8

2.3.2 CNNs Detectors . 9

2.3.3 CNNs on Embedded Systems . 10

2.3.4 CNNs challenges for Object Detection on Embedded Systems 11

2.4 YOLO . 12

2.4.1 Description . 13

2.4.2 General Architecture . 18

2.4.3 Versions . 19

i

School of Mathematical and Computational Sciences YACHAY TECH

2.4.4 Applications . 23

2.4.5 YOLO’s Challenges . 24

2.4.6 YOLO on Embedded Systems . 25

3 YOLO on Raspberry Pi 27

3.1 General Thesis Structure . 27

3.1.1 Literature Review . 28

3.1.2 Experimental Design . 28

3.1.3 Thesis Writing . 29

3.2 Materials and Methods . 29

3.2.1 Dataset . 29

3.2.2 Architecture of Tiny YOLOv3 . 31

3.2.3 Training Parameters . 32

3.2.4 Metrics . 33

3.2.5 Training . 38

3.2.6 Software and Hardware . 39

3.2.7 Deployment . 40

3.3 Experimental Design . 41

3.3.1 Darknet Simplification for YOLO . 41

3.3.2 Training Parameter Tuning . 42

3.3.3 Video Performance Evaluation . 43

4 Results 45

4.1 Original YOLO vs Simplified YOLO . 45

4.2 Tuning the parameters . 48

4.3 Video . 51

5 Conclusions 55

5.1 Literature Review . 55

5.2 Experiments . 56

5.3 Results . 56

5.4 Future Work . 57

Bibliography 59

Information Technology ii Final Grade Project

List of Figures

2.1 Convolution example. 9

2.2 Basic Convolutional Neural Networks (CNN) Architecture 9

2.3 Max-pooling example. 10

2.4 AP.50 vs Inference time of common detection methods. 12

2.5 Bounding Box Prediction . 15

2.6 You Only Look Once (YOLO) detection network 19

3.1 Example of types of detections . 34

3.2 Input image vs Output Detection. 41

4.1 Precision-Recall Curve for 10 first categories . 46

4.2 AP.50 growth for original and simplified version 47

4.3 AP.50 growth for the first subset of experiments. 49

iii

List of Tables

2.1 Techniques used in the different versions of YOLO. 13

2.2 YOLO and Darknet-19 . 20

2.3 Darknet-53 . 21

2.4 YOLO classifier vs YOLO detector. 22

2.5 YOLOv2 classifier vs YOLOv2 detector. 22

2.6 YOLOv3 classifier vs YOLOv3 detector. 23

3.1 ImageNet high-level categories. 30

3.2 Common Objects in Context (COCO) 80 object categories 31

3.3 YOLOv3-Tiny Architecture. 32

3.4 Hardware for testing . 40

3.5 Training summary for parameter tuning . 42

3.6 Video characteristics. 43

4.1 mAP with different test set. 47

4.2 Original vs Simplified. 47

4.3 Initial Training - 100000 Iterations. 49

4.4 Intermediate Training - 100000 Iterations. 50

4.5 Final Training. 50

4.6 Frames per Second (FPS) on computer vs Raspberry Pi. 52

4.7 Total detections on computer vs Raspberry Pi. 53

v

Abbreviations

B Batch Size.

CNN Convolutional Neural Networks.

COCO Common Objects in Context.

FN False Negative.

FP False Positive.

FPN Feature Pyramid Network.

FPS Frames per Second.

GPU Graphics Processing Unit.

IoU Intersection over Union.

IR Input Resolution.

LR Learning Rate.

mAP mean Average Precision.

RPN Region Proposal Network.

S Step.

SSD Single Shot Multibox Detector.

Subd Subdivision.

vii

School of Mathematical and Computational Sciences YACHAY TECH

TN True Negative.

TP True Positive.

YOLO You Only Look Once.

Information Technology viii Final Grade Project

Chapter 1

Introduction

The Internet of Things has brought a wide range of applications that improve the lifestyle of

people. Small sensors and devices can be found almost everywhere now and they are connected

and sending information between each other and external operators that take decisions over

the data received. These applications have become critical and are prevalent areas of research

nowadays. One of them is the use of computer vision for object detection in applications such

as autonomous driving, video surveillance, navigation aid, and robotics by using a special type

of artificial neural networks known as CNN. These networks are very powerful and have demon-

strated great precision at the moment of detecting objects but there still a lot of work to do,

particularly for real-time applications due to their expected great performance, and thus, their

high computational requirements.

1.1 Problem statement

The ability of understanding image and video sequences to automatically recognize and detect

objects is one of the most challenging problems in computer vision. Modern high-speed tech-

nologies and its progressive increase in memory and processing capacity have allowed the use

of PCs to perform object detection, which in the past had been restricted to few fields due

to the computational cost. The problem is that in many cases these systems are not suitable

for embedded solutions, since PCs limit the portability due to high power consumption, size

and weight. Although there are many algorithms developed for object detection and that work

pretty well [1], there is a barrier that stops this technology in being ubiquitous which is the

use of a Graphics Processing Unit (GPU). Granted, GPUs are imperative in the training and

1

School of Mathematical and Computational Sciences YACHAY TECH

validation of computer vision algorithms but are an expensive piece of hardware that is not

accessible to everyone for execution in real environments. Actually, Raspberry Pi is an inex-

pensive alternative to implement techniques suitable for low-cost embedded systems. By the

other hand, YOLO algorithm [2], [3], [4] has gained a wide application as a CNN based object

detection approach, which has demonstrated to achieve a remarkable object detection precision

alongside a good performance in comparison to other approaches like Faster R-CNN [5] and

Single Shot Multibox Detector (SSD) [6]. Therefore, our main purpose is to implement YOLO

in a constrained environment finding a way to do only the detection task outside the scope of

GPUs in order to achieve precision and speed of YOLO in execution task within the Raspberry

Pi platform, which could facilitate the development of more applications. The main metrics to

evaluate these two characteristics are mean Average Precision (mAP) and FPS respectively.

1.2 Scope of the Project

Starting with the hypothesis that a simplication of code allows to implement and execute YOLO

within the Raspberry Pi, the aims of this project are:

1. Evaluate the efficiency and performance of YOLO for real-time object detection.

2. Explore ways to increase YOLO’s precision.

3. Evaluate YOLO performance on a low cost and accessible embedded system like the Rasp-

berry Pi.

This project consists of the following phases: a literature review, experimental design and thesis

writing. Each of these phases contributes to fulfilling the objectives of this research.

1.3 General Overview

The rest of this work is organized in the following way: Chapter 2 covers essential concepts

and theory related to object detection, CNNs and YOLO. In Chapter 3, a detailed explanation

of the methodology followed in this work, which includes the materials, methods and experi-

mental design, is discussed. Chapter 4 goes through a comprehensive analysis of the results

obtained following the methodology. Finally, Chapter 5 concludes this thesis with a summary

and directions for future work.

Information Technology 2 Final Grade Project

Chapter 2

Theoretical Framework

This chapter contains a look on concepts and published work related to the scope of this project.

The first part introduces some basic concepts. Afterwards, a little revision of object detection in

terms of applications, challenges and features is presented. Then, a review covering in general

some aspects of CNNs, the general architecture, the work done on embedded systems and some

additional considerations is shown. Finally, the last section gives details related to YOLO like

important features, challenges, versions and how it does on embedded systems so far.

2.1 Concepts

• Activation Function

The activation function defines the output of an artificial neural network given one input

or a group of inputs. There are many different types of activation functions that work

depending on the application such as sigmoid, hyperbolic tangent, ReLu, leaky ReLU,

among others.

• Embedded System

An embedded system [7] is a type of computer hardware with integrated software designed

to be used for a specific application. It is often limited on processing power, memory and

storage; and is intended for working on real-time.

• Feature Map

A feature map is a matrix that contains the information of the image. If the image has three

channels (like a RGB image) then there is a feature map for each of the three channels.

3

School of Mathematical and Computational Sciences YACHAY TECH

• Frames per Second

FPS is the rate that measures the number of frames, each frame represents a single image,

that can be processed in a second by the model. This usually is a metric for detection

speed.

• Object Detection

The object detection task allows for the identification of real-world objects in images or

videos. In recent years, most of the algorithms in this area of research use CNNs due to

great success in computer vision applications, such as image and video recognition and

classification.

• Overfitting

Overfitting occurs when a network does a pretty good job learning data on the training

dataset but has a bad performance when using a different dataset.

• Raspberry Pi

The Raspberry Pi is a micro-controller that can be both an embedded system or general

purpose computer depending on the application. Some characteristics [7] are: it is a low

cost device, model 3B has a 1.2 GHz ARM Cortex-A53 processor (still outperformed by a

personal computer), consumes little power with model 3B consuming up to 5.5 W under

load and runs Linux.

• Real Time Detection

Up to now, it’s not clear what real-time object detection is in the literature. Usually, real-

time refers to the ability of a system or solution to respond with certain time constrains.

In that sense, the ideal time will vary depending on the characteristics of the application.

In the case of object detection, this time constraint is given by the FPS.

2.2 Object Detection

In Computer Vision, one of the tasks that have received a lot of attention lately is Object

Detection due to the success given by the use of CNNs. In that sense, multiple methods are

being developed every year to tackle this particular problem. Object detection [8] consists of

two main tasks: classification and localization. Thus, an object detector will try to figure out

if an object belonging to a specific class is in the image and where this object is located in the

image. To showcase this location, the most commonly used representation is a bounding box.

Information Technology 4 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2.2.1 Applications

There are many situations in which object detection is being applied both academically or in

the industry. Applications such as autonomous driving, surveillance, robotics, rescue operations,

image analysis and visual aid are among the many that have object detection as a core challenge.

In the following paragraphs, we will review some of these applications and the role performed

by the object detector.

Autonomous Driving

For a car to have the ability to drive itself, it needs to identify different objects on the road and

it must be fast. Street signs, pedestrians, cyclists and vehicles are among the things that a car

needs to accurately see in real-time. Now, this is just a small part of the things the vehicle has

to do. A safe and robust autonomous driving system [9] depends on perception, monitoring,

decision making and control to provide the vehicle with visual information that allows for path

planning, lane detection and vehicle tracking. Some requirements [10] for an object detector in

this research area include: accuracy, speed, small model size and energy efficiency. Moreover,

this object detector should operate on embedded processors in order to be accessible and promote

wide deployment.

Video Surveillance

Video surveillance is useful to monitor security-sensitive areas such as banks, department stores,

highways, crowded public places and borders [11]. Traditionally, video output is processed by

human operators and saved for later use only in case of an event. An increasing number of

cameras have overloaded both the operators and the storage devices with high volumes of data

and is very difficult to monitor sensitive areas for long periods of times. Therefore, the use

of object detection to filter out redundant information and increase response time has become

necessary and requires the development of fast, reliable and robust algorithms. One specific sub

field is moving object detection as it handles the segmentation of moving objects from stationary

background objects. Dynamic environmental conditions such as illumination changes, shadows

and waving tree branches need to be taken into account for object segmentation as it is important

to distinguish objects from each other to track and analyze their actions reliably. Detecting

natural phenomena such as fire and smoke could help operators take precautions in a shorter

time to prevent dangerous situations.

Information Technology 5 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Robotics

An important skill for robots is also object detection, where, it can be used in home, office and

factory settings. Detecting classes of objects remains a challenging problem in robotics as it

requires high accuracy for a large variety of object classes [12] in order to perform even simple

tasks such as moving freely or taking inventory around that requires a robust detection of the

surrounding objects. On the other hand, detection of moving objects is a key component in

mobile robotic perception and understanding of the environment [13] which is useful for human-

robot interaction and collision avoidance. Since robots usually operate in real-time with limited

processing power, the computational resources available for different tasks are scarce making it

an interesting problem to tackle. Robots, however, have a number of advantages like being able

to view a real scene from multiple angles or viewing interesting objects up close when necessary,

yet most algorithms cannot directly leverage from these scenarios and still lack in performance.

Visual Aid

Object detection can be used to develop applications to help people with severe vision impair-

ment to independently access, understand, and explore unfamiliar environments. In an indoor

setting [14], finding doors, rooms, elevators, stairs, bathrooms, and other building amenities

can be challenging when there is no standard design. Consider also enabling visually impaired

people to scan and find products with ease on their grocery list while at the supermarket [15].

In an outdoor setting, detecting obstacles [16], [17] in video streams could ensure the safety of

the user if the proposed solution takes into account that the camera will change viewpoints con-

stantly. Algorithms that can detect text in city scenes [18] are of great importance so that text

can be enhanced or read aloud depending on the user. All these visual aid examples should be

able to handle object occlusion as well to give users an accurate description of the surrounding

environment.

2.2.2 Challenges

Even with the advances done in recent years, there are some shortcomings for the object detection

task. Hereby, there is a list of challenges to be overcome in order to achieve more accurate and

robust object detection. These were taken from [19]:

• Scale Variance: Object instances vary from image to image. In one picture, an instance

may represent a little portion of the pixels while in another one it may take almost all the

Information Technology 6 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

picture. A single feature map will have problems trying to predict objects with this kind

of variance.

• Rotational Variance: Objects could be found with an angle, inverted or even upside

down. Flexible objects, like animals and people, bring in even more challenges because it

is hard to define a single rotation in comparison to objects with rigid shapes, like text.

• Domain Adaptation: Sometimes, an object detector trained on a domain A need to

be reused in a different domain B. This is done to take advantage of the training done in

domain A as it may be the case that the training was done with a lot of examples and

categories while training in domain B was very specific.

• Object Localization: Finding where an object is located is still a source of error for

object detectors. The main reasons are the size of the object and more strict evaluation

protocols proposed on newer datasets.

• Occlusion: An object might not be completely present in a frame or might be occluded

by a different object. Therefore, there is missing information necessary to identify it. Oc-

clusion is a recurrent phenomenon in real-life images and could lead to incorrect detection

or no detection at all.

• Small Objects: Detecting medium and large-sized objects is easier than detecting small

objects. The detection is affected by limited information, confusion with background,

precision requirements for localization and large image size.

More factors that can impact object detection are lighting, contrast, low resolution, specularity,

noise and perspective distortion.

2.2.3 Features

In computer vision, the simplest definition of feature or descriptor is any piece of information

that can be extracted from an image. The main idea is to find information that is similar, or

that represents a characteristic of an object. As the instances of an object can have various

representations, features may account for different properties of images like:

• Color: Almost every image nowadays is represented with color. Therefore, it’s an obvious

approach to identify different objects using this characteristic. One way to this is using

Information Technology 7 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

color histograms [20], as it helps to get the color distribution in an image. Other descriptors

are dominant color and color layout.

• Texture: Just like color, texture is a very useful low-level feature used to identify objects.

Some attributes of texture are directionality, regularity and coarseness used for the texture

browsing descriptor [20]. Other examples of features are the homogeneous texture and the

local edge histogram.

• Shape: Features dealing with shape [21] provide a powerful clue to detect an object in

an image. Humans can recognize objects solely from their shapes meaning that shapes

usually carry semantic information. This is not possible using only color or texture. Some

descriptors that have been considered are 3-D shape, region-based shape, contour-based

shape and 2-D/3-D shape.

A good approach to follow when working with features is to combine two ore more of them to

then improve robustness in the object detector.

2.3 Convolutional Neural Networks for Object Detection

Convolutional Neural Networks [22] are a specialized kind of deep neural networks with a grid-

like topology that are mainly used to process images. The main characteristic of the network

is the use of a mathematical operation called convolution instead of the more common matrix

multiplication. Yann LeCun is widely recognized as the father of CNNs, taking inspiration from

the Neo-Cognitron model designed by Kunihiko Fukushima. A convolution is a linear operation

that filters information from an image by multiplying the feature map by an NxN filter where

N is most commonly 3. Figure 2.1 gives an example of a convolution with a filter used to detect

edges. By multiplying each element in the purple region with the elements in the filter and then

adding them we obtain -14. The filter moves from left to right, and from top to bottom.

2.3.1 CNN Architecture

Figure 2.2 shows a diagram of the more basic structure of a CNN:

The most common layers in a CNN are the convolutional, the pooling and the fully connected

layers:

• The convolutional layer performs a convolution in order to extract features from the input

given. Each layer can have a different number of filters meant to extract different features.

Information Technology 8 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4 2 5 7 1 3

6 8 5 1 4 9

1 6 4 5 7 2

2 7 3 1 7 5

3 6 2 8 2 5

2 9 6 2 2 8

∗
-1 0 1

-1 0 1

-1 0 1

=

3 -3 -2 1

3 -14 6 9

3 -5 7 -2

4 -11 0 7

Figure 2.1: Convolution example. Source: Created by authors.

Figure 2.2: Basic CNN Architecture. Source: [23].

• The pooling layer tries to condense the information from the features by reducing the size

of the feature map. The most common operations are getting the maximum or the average

of a region of the map. Figure 2.3 shows an example of max-pooling in which we reduce

the size of a 4x4 map to a 2x2 map by taking the maximum number from the colored

regions.

• The fully connected layer is a layer with connected nodes that perform the classification

of the data that was filtered on the previous layers. Some new models do not longer use a

fully connected layer for classification with YOLO serving as an example. We will review

this later on.

2.3.2 CNNs Detectors

The most common use for CNNs is in visual applications. Several models have been developed

to tackle the object detection problem and are known as object detectors. Following there is a

description of the most common models:

Information Technology 9 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4 2 5 7

6 8 1 4

6 1 5 4

7 2 1 3

→ 8 7

7 5

Figure 2.3: Max-pooling example. Source: Created by authors.

• Faster R-CNN: This method [5] is a two-stage detector where there exists a dedicated

Region Proposal Network (RPN) that shares convolutional layers with a detection network.

A region proposal network takes an image and gives a set of rectangular object proposals

used later for detection.

• SSD: This method [6] is a single-stage detector that uses multi-scale convolutional bound-

ing box outputs attached to multiple feature maps at the top of the network. This network

is based on the VGG-16 network from the Visual Geometry Group [24].

• RetinaNet: This method [25] is a single-stage detector that borrows techniques such as

anchors (RPN [25]) and feature pyramids (SSD [6] and Feature Pyramid Network (FPN)

[26]) with the addition of a novel loss known as Focal Loss. This loss addresses the

imbalance between foreground and background found in training single-stage detectors

and therefore increases performance.

2.3.3 CNNs on Embedded Systems

Given the different applications where CNNs can be used when detecting objects, the need to

implement small and efficient models have become of extreme importance in areas such as au-

tonomous driving or augmented reality that are commonly deployed on constraint environments

such as embedded system. There have been several attempts to bring the power of CNNs to

embedded systems. Efforts such as MobileNets and SqueezeNet are among the top examples.

Let’s review them now:

• MobileNets: [27] It’s a CNN model that uses depthwise separable convolutions. By re-

Information Technology 10 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

placing normal convolution by depthwise convolution and pointwise convolution the model

reduces the number of parameters, therefore, obtaining a lightweight neural network. A

normal convolution filters and combines features in a single step while a depthwise con-

volution first filters information for each channel of the input and then this information

is combined by a pointwise convolution by using a 1x1 convolution filter. A depthwise

separable convolution can be seen therefore as a factorization of the operations done by a

normal convolution.

• SqueezeNet: [28] It’s a model that introduced a new building block known as a Fire

module. By using this new module, SqueezeNet intended to achieve three things: to

change most of the 3x3 convolutional filters into 1x1 convolutional filters, to decrease the

number of channels per input and to delay the use of pooling to the end of the architecture.

The Fire module then is divided into two layers: a squeeze layer composed only by 1x1

filters and an expand layer that is a mix of 1x1 and 3x3 layers. The complete architecture

of SqueezeNet is then form by one common convolutional layer followed by eight Fire

modules and a final convolutional layer.

There have been efforts in combining these architectures, given their efficiency and small size,

with some of the architectures described in 2.3.2. Combining SSD and Faster-RCNN with

MobileNets is one of several examples [27].

2.3.4 CNNs challenges for Object Detection on Embedded Systems

When working with object detection in an embedded system, we should consider the limited

resources that we have at hand. Memory and processing power have an impact on the speed

and precision of object detectors, and, in that sense, there exists a trade-off between these

two. There have been some attempts to identify this relation as in the comprehensive study

performed in [29] where the authors evaluated some state of the art detectors under the same

rules. Working with videos on the other hand, brings special attention to the processing speed

of the frames belonging to the videos as it needs to be done in real-time. An example in which

this aspect takes great importance is autonomous driving, as decisions need to be taken in mere

seconds. But here is what happens: most systems show that increasing speed usually means that

precision will be affected. Therefore, recent work is focused on either improving the accuracy

of fast detectors or improving the speed of accurate detectors. All this work is mostly done on

GPU’s powered computers. But not every industrial setup can have powerful GPUs, so for most

Information Technology 11 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

applications the detectors have to run on CPUs or on different low power embedded devices like

Raspberry-Pi.

2.4 YOLO

YOLO [2] is a state of the art algorithm as it uses techniques that have been developed in recent

years. It implements most of the current ideas on computer vision such as batch normalization,

residual networks, data augmentation, among others and does a good job in terms of precision

and speed. YOLO is a CNN and belongs to the single-stage family detectors, which predicts

the bounding boxes and the class probabilities for those boxes at the same time. YOLO has

also a very small model known as Tiny YOLO, that is intended for constrained environments

with the main difference is based on the reduction of the number of layers and the number of

filters used while keeping the same training parameters. This is the model that is going to be

used on the Raspberry Pi since it requires less computing power. In 2.4.1 we will review the

different concepts applied in YOLO and its evolution from the first version to YOLOv3. Figure

2.4 shows a comparison between YOLO and the most common object detectors. YOLO is very

fast compared with the rest of methods and at the same time have a good mAP only surpassed

by the combined model between FPN and Faster R-CNN in [26].

20 40 60 80 100 120 140 160 180 200
45

48

51

54

57

60

Inference time (ms)

A
P
.5
0

YOLOv3
RetinaNet-50
RetinaNet-101

SSD513
DSSD513

FPN Faster R-CNN
R-FCN

Figure 2.4: AP.50 vs Inference time of common detection methods. Source: Adapted from [4],

[25], [30].

Information Technology 12 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

2.4.1 Description

YOLO makes use of different concepts that are useful to work with images in Computer Vision.

Table 2.1 mentions most of the techniques used in the different versions. Some of these techniques

were useful in the original model but were later left out as more recent ones were proved to be

more helpful. The techniques will be presented according to the order of appearance in the

different versions:

Versions (Year)
YOLO YOLOv2 YOLOv3

(2016) (2017) (2018)

Non-maximal suppression D D D
Contextual Reasoning D D D
Data Augmentation D D D

Dropout D
Bounding box prediction D D D

Batch Normalization D D
High resolution classifier D D
Convolutional Prediction D D

Anchor Boxes D D
Dimension Clusters D D
Location Prediction D D

Fine-Grained Features D D
Multi-Scale Training D D

Prediction Accross Scales D
Residual Network D

Table 2.1: Techniques used in the different versions of YOLO. Source: Created by authors.

Non-maximal suppression

YOLO grid design allows for spatial diversity in the predictions done for the bounding boxes.

Most of the time is quite clear to which grid an object belongs to and it is easy for the detector

to make this detection. However, there are cases were large objects or objects near the border of

multiple cells can be detected multiple times by more than one cell thus decreasing the accuracy

of the detector. To avoid this, non-maximal suppression is commonly used to fix these multiple

detections as it picks the best bounding box prediction for any specific object.

Information Technology 13 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Contextual Reasoning

Context [31] is a statistical property that provides critical information of a phenomena to help

solve perceptual inference tasks faster and more accurately. When YOLO performs a prediction,

it “reasons” in a global way about the image. In that sense, YOLO sees the entire image during

the training and testing phases so it encodes contextual information about classes as well as

their appearance.

Data Augmentation

Data augmentation [32] is used to increase the amount of training data based only on information

from the training data at our hands in order to avoid overfitting. In YOLO [2], random scaling

and translations of up to 20% of the original image size were used. YOLO also randomly

adjusted the exposure and saturation parameters of the image by up to a factor of 1.5 in the

HSV color space. YOLOv2 [3] used random crops, rotations, hue, saturation when training

for classification. When training for detection it used similar techniques as in the first version

and in SSD [6] such as random crops and color shifting. YOLOv3 [4] also makes use of data

augmentation using the same parameters as YOLOv2.

Dropout

Dropout [33] helps with overfitting by randomly omitting some of the feature detectors on

training to prevent cases in which a feature detector might only be helpful in the context in

which it was obtained. In the first version, YOLO used a dropout layer with a rate of 0.5 after

the first connected layer to prevent complex co-adaptations between layers. In the following

versions of YOLO, dropout was left behind, and batch normalization is used instead.

Bounding Box Prediction

YOLO predicts bounding boxes using a similar technique based on the MultiGrasp detection

system [34] that consists on dividing an image into a grid in which each cell is in charge of

detecting grasps coordinates by using a single CNN. Unlike MultiGrasp, YOLO estimates the

size, location and boundaries of the object and predicts its class and it does this for multiple

objects in an image. YOLO divides the input image into a 7 x 7 grid. Then, each grid cell

is responsible for detecting any object when the center of that object falls within it. Also,

each grid cell predicts 2 bounding boxes where each consists of 5 predictions: x, y, w, h, and

Information Technology 14 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

confidence. The (x, y) coordinates show where is the center of the box in relation to the grid

cell, w and h represent the width and height relative to the whole image, and the confidence

is defined as Pr(Object) ∗ IoU truth
pred . When there is no object in the cell, the confidence should

be zero. Otherwise the confidence is equal to the Intersection over Union (IoU) between the

prediction and the ground truth. Each grid cell also predicts 20 conditional class probabilities,

Pr(Classi|Object), one for each of the object classes belonging to PASCAL VOC [35]. Only

one set of class probabilities is predicted per grid cell, regardless of the 2 predicted boxes. At

testing, the conditional class probabilities are multiplied by the individual box confidence as in

equation 2.1:

Pr(Classi|Object) ∗ Pr(Object) ∗ IoU truth
pred = Pr(Classi) ∗ IoU truth

pred (2.1)

which gives class-specific confidence scores for each box and encode both the probability of that

class appearing in the box and if the predicted box fits the object. Figure 2.5 shows how the

prediction of the bounding boxes is performed.

Figure 2.5: Bounding Box Prediction. Source: [2].

Batch Normalization

Batch normalization [36] leads to significant improvements in convergence while eliminating the

need for other forms of regularization. This method makes normalization part of the model

Information Technology 15 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

architecture and performs it for each training mini-batch. Batch normalization also helps to

regularize the model and allows to use much higher learning rate while worrying less about

initialization. Since batch normalization acts as a regularizer, it allows to remove dropout from

the model and to control overfitting at the same time.

High Resolution Classifier

The first version of YOLO trained the classification network at a resolution of 224 x 224 and

increased to a 448 x 448 resolution for detection. This resulted in the network working double

by switching to learning object detection and adjusting to a different input resolution. Instead,

YOLOv2 [3] first fine tuned the classifier at a 448 x 448 resolution for 10 epochs on ImageNet

and then adapted the network for detection. This change in training allows for the network

filters to perform better on higher resolution images.

Convolutional Prediction With Anchor Boxes

YOLO detector predicted bounding boxes coordinates using fully connected layers but this

changed in YOLOv2 [3] as a convolutional layer was used for prediction instead. In [5], instead

of getting the coordinates of the bounding boxes it was easier to predict an offset by using

hand-picked anchor boxes. And by using a convolutional layer, the offsets could be predicted at

every location in the final feature map. Now, an anchor box is just a preset box of a certain size

and weight-height ratio but predicting only offsets and not coordinates simplifies detection and

learning. YOLOv2 [3] follows this example and predicts bounding boxes using anchor boxes.

Originally, the input of the YOLO detector was 448 x 448 but it was reduced to 416 x 416 to have

an odd number of locations for the final feature map. The rationale behind this is that there

is a tendency that objects, especially large ones, occupy the center of the image and instead of

having to predict and object in 4 different locations is better to predict it only at the center of

an odd feature map. Taking into account that YOLO also works with input resolutions that are

multiple of 32, using a resolution of 416 will at the end give a feature map of 13 x 13. By using

anchor boxes, YOLO faces two issues: first, the dimensions of the boxes are chosen arbitrarily

and second, the model became unstable. Dimension clusters and direct location predictions were

implemented in YOLO to reduce the impact of the issues just mentioned. The two techniques

are going to be described next.

Information Technology 16 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Dimension Clusters

Up to now, the work of the network is to adjust the anchor boxes to the correct size of the

bounding box that corresponds to the object that is being detected. But, it would be better

to pick more optimal dimensions in order to relax the work of the network and allow for better

learning. For this purpose, YOLOv2 [3] uses k-means clustering to obtain good anchor boxes.

Direct Location Prediction

Anchor boxes make the model unstable, especially at early iterations. When a network with

anchor boxes tries to predict the location of the center of the anchor box, the model takes a lot

of time to stabilize the prediction of these offsets and thus presents instability. Instead, YOLO

[2] predicts these coordinates relative to the location of the grid cell previously defined instead

of doing it for the whole image. In the end, YOLO will predict a total of 5 bounding boxes for

each grid cell in the output feature map.

Fine-Grained Features

YOLOv2 [3] make detections on a 13 x 13 feature map which usually is enough for large objects.

Using fine-grained features could help instead with smaller objects. To perform this, YOLOv2

added a passthrough layer which brings features from early in the network. This layer performs

two different operations. In the first case, if it is only pointed to a single layer it is just an

identity mapping the feature map on that layer. In the second case, if it points to two layers

then it concatenates the high-resolution features to the low-resolution features to get a new

feature map. This expanded feature map is what provides the fine-grained features.

Multi-Scale Training

In YOLOv2 [3], instead of using a single input image size for training, the network was changed

every few iterations. Every 10 batches the network randomly chooses a new image dimension

size. Since YOLOv2 downsamples by a factor of 32, multiples of 32 were used for the image size

as well, with the smallest option being 320 x 320 and the largest 608 x 608. The network was

then resized according to any dimension in that range and continued training. This allows the

network to predict well across a variety of input dimensions and at different resolutions. The

network runs faster at smaller image sizes up to a resolution of 128 x 128 (lower resolutions

do not show any detection and even 128 x 128 only works with certain images). That means

Information Technology 17 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

YOLOv2 is suitable to either provide speed or accuracy according to the characteristics of the

input image.

Predictions Across Scales

YOLOv3 [4] predicts boxes at 3 different scales and extracts the features from those scales using

a similar concept to FPN [26]. By this method, the last convolution layer makes a prediction of

a tensor that holds the information of the bounding box, the probability of this box being an

object and the prediction of the object category. For each scale used, 3 boxes were predicted

therefore the tensor looks like this:

(NxN)x[3 ∗ (4 + 1 + 80)] (2.2)

N is the scale, 3 represent each of the 3 boxes, 4 is the information of the bounding box

(x,y,width,height), 1 is the probability of being an object and 80 is the total number of ob-

ject categories. Finally, YOLOv3 randomly picks 3 scales and 9 clusters: (10 x 13), (16 x 30),

(33 x 23), (30 x 61), (62 x 45), (59 x 119), (116 x 90), (156 x 198), (373 x 326). The 9 clusters

are evenly divided for the three scales.

Residual Network

YOLOv3 [4] takes advantage of the properties of residual networks such as the additive merging

of signals both for image recognition and object detection. When deep networks are about to

converge, accuracy gets saturated and then degrades if going deeper in the network [37]. This

degradation is not caused by overfitting because the training error also gets worse. Therefore,

to tackle the degradation of training accuracy, in [38], residual connections were proposed [39].

Although there is not definite prove of all the benefits, using residual connections greatly im-

proves training speed. So, why are residual networks being used in YOLO?. The reason might

be that the deep of the model went from 19 layers in YOLOv2 [3] to 53 layers in YOLOv3 [4]

which obviously increases training time and by using residual networks this time is decreased.

2.4.2 General Architecture

As mentioned earlier, YOLO is a CNN and is mostly a combination of convolutional layers,

maxpool layers and connected layers. Figure 2.6 shows the general structure of the first version

of YOLO’s detector. This model has changed with time as YOLO introduced the different

techniques described previously.

Information Technology 18 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 2.6: YOLO detection network. Source: [2].

2.4.3 Versions

The architectures described in this section correspond to the three versions of YOLO and en-

compass both the networks used for training and the ones used for testing. Both networks are

similar when comparing the first layers but they differ when reaching the end of the network. The

networks used for training are mostly classifier architectures while for testing and deployment

these classifiers are adjusted as detectors to perform detections.

YOLO9000 [3], which was introduced alongside YOLOv2, was left out from this description

as it uses the same base YOLOv2 architecture. The main two differences between YOLO9000

and YOLOv2 are that it uses only 3 clusters instead of 5 to reduce the output size and it is

trained using WordTree, a hierarchical tree constructed with the synsets from WordNet used in

ImageNet [40].

Classifiers

All of YOLO classifiers are a mix of convolutional and maxpool layers with varying order de-

pending on the version and are pretrained using the 1000-class dataset from ImageNet [40].

Following is a description of each version classifier.

• YOLO: The original classifier architecture of YOLO [2] was composed of 20 convolutional

layers and 4 maxpool layers plus one average pooling layer and one fully connected layer

at the end. The input resolution used for training on this architecture is 224 x 224. See

Table 2.2a for more details on how the classifier is constructed.

Information Technology 19 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• YOLOv2: YOLOv2 classifier [3] is composed of 19 convolutional layers and 5 maxpool

layers thus it is known as Darknet-19. It works with the same input resolution of the first

version but with a different number of starting filters. See Table 2.2b for more details.

Type (Filter) → Output Size/Stride

Conv (64) → 112 x 112 7 x 7/2

Maxpool → 56 x 56 2 x 2/2

Conv (192) → 56 x 56 3 x 3

Maxpool → 28 x 28 2 x 2/2

Conv (128) → 28 x 28 1 x 1

Conv (256) → 28 x 28 3 x 3

Conv (256) → 28 x 28 1 x 1

Conv (512) → 28 x 28 3 x 3

Maxpool → 14 x 14 2 x 2/2

4x
Conv (256) 1 x 1

Conv (512) 3 x 3

Conv (512) → 14 x 14 1 x 1

Conv (1024) → 14 x 14 3 x 3

Maxpool → 7 x 7 2 x 2/2

2x
Conv (512) 1 x 1

Conv (1024) 3 x 3

Avgpool Global

Conn (1000) → 7 x 7 1 x 1

Softmax

(a) Original Classifier

Type (Filter) → Output Size/Stride

Conv (32) → 224 x 224 3 x 3

Maxpool → 112 x 112 2 x 2/2

Conv (64) → 112 x 112 3 x 3

Maxpool → 56 x 56 2 x 2/2

Conv (128) → 56 x 56 3 x 3

Conv (64) → 56 x 56 1 x 1

Conv (128) → 56 x 56 3 x 3

Maxpool → 28 x 28 2 x 2/2

Conv (256) → 28 x 28 3 x 3

Conv (128) → 28 x 28 1 x 1

Conv (256) → 28 x 28 3 x 3

Maxpool → 14 x 14 2 x 2/2

2x
Conv (512) 3 x 3

Conv (256) 1 x 1

Conv (512) → 14 x 14 1 x 1

Maxpool → 7 x 7 2 x 2/2

2x
Conv (1024) 3 x 3

Conv (512) 1 x 1

Conv (1024) → 7 x 7 3 x 3

Conv (1000) → 7 x 7 1 x 1

Avgpool Global

Softmax

(b) Darknet-19

Table 2.2: YOLO and Darknet-19. Source: Adapted from [2], [3].

• YOLOv3: This network [4] is a hybrid approach between Darknet-19 and a residual

network. The network uses successive 3 x 3 and 1 x 1 convolutional layers but now has some

shortcut connections as well which come as part of the residual network implementation.

The total number of convolutional layers is 53 thus is called Darknet-53 and the input

resolution is 256 x 256. Although in [4] the classifier shows a connected layer at the end

this is in reality a convolutional layer. See Table 2.3 for more details.

Information Technology 20 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Type (Filter) → Output Size/Stride

Conv (32) → 256 x 256 3 x 3

Conv (64) → 128 x 128 3 x 3/2

1x

Conv (32) 1 x 1

Conv (64) 3 x 3

Res → 128 x 128

Conv (128) → 64 x 64 3 x 3/2

1x

Conv (64) 1 x 1

Conv (128) 3 x 3

Res → 64 x 64

Conv (256) → 32 x 32 3 x 3/2

1x

Conv (128) 1 x 1

Conv (256) 3 x 3

Res → 32 x 32

Conv (512) → 16 x 16 3 x 3/2

1x

Conv (256) 1 x 1

Conv (512) 3 x 3

Res → 16 x 16

Conv (1024) → 8 x 8 3 x 3/2

1x

Conv (512) 1 x 1

Conv (1024) 3 x 3

Res → 8 x 8

Avgpool Global

Conv (1000) → 8 x 8 1 x 1

Softmax

Table 2.3: Darknet-53. Source: Adapted from [4].

Detectors

Here we are going to review the bits that change from the classifier architecure to the detec-

tor architecure as most of the architecture remains the same for every version. We used the

configuration files in the darknet github repository to get the whole picture of the detectors.

• YOLO: The first YOLO detection network had 4 additional convolutional layers followed

by 2 fully connected layers in comparison to the classifier. Before doing this, the last

three layers of the classifier were dropped which are the average-pooling layer, the fully

connected layer and the softmax layer. This trend is seen on the next versions too. The

input resolution of this network also changed and is 448 x 448. Table 2.4 shows both the

layers of the classifier that are changed alongside the layers added for detection.

Information Technology 21 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Type (Filter) → Output Size/Stride

Avgpool Global

Conn (1000) → 7 x 7 1 x 1

Softmax

(a) Classifier

Type (Filter) → Output Size/Stride

Conv (1024) → 14 x 14 3 x 3

Conv (1024) → 7 x 7 3 x 3/2

Conv (1024) → 7 x 7 3 x 3

Conv (1024) → 7 x 7 3 x 3

Local (256) → 7 x 7 3 x 3

Conn (12544) → 1715

(b) Detector

Table 2.4: YOLO classifier vs YOLO detector. Source: Created by authors.

• YOLOv2: YOLOv2 detection network included 5 convolutional layers, left behind the

connected layers used in the first version and added two new types which are route and

reorg. The route layer is another word for the passthrough layer explained earlier. The first

route layer only points to the layer 16 in the network so it brings a feature map of size 26 x

26 considering an input resolution of 416 x 416. The second route layer concatenate both a

13 x 13 map with a 26 x 26 map so it can be used to obtain the fine-grained features. The

reorg layer instead decreases the size of the feature maps by 2 and increases the number

of filters by a factor of 4. Table 2.5 shows the changes performed to the classifier in this

version.

Type (Filter) → Output Size/Stride

Conv (1000) → 7 x 7 1 x 1

Avgpool Global

Softmax

(a) Classifier

Type (Filter) → Output Size/Stride

Conv (1024) → 13 x 13 3 x 3

Conv (1024) → 13 x 13 3 x 3

Route

Conv (64) → 26 x 26 1 x 1

Reorg → 13 x 13 /2

Route

Conv (1024) → 13 x 13 3 x 3

Conv (125) → 13 x 13 1 x 1

(b) Detector

Table 2.5: YOLOv2 classifier vs YOLOv2 detector. Source: Created by authors.

• YOLOv3: The last version of the detector presents instead a more marked difference

from the classifier than previous versions. It adds a total of 23 new convolutional layers

which are divided in three groups each handling three different feature map sizes: 19 x

19, 38 x 38 and 76 x 76 considering an input resolution of 608 x 608. The route layers are

Information Technology 22 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

used in the exact same way as in the second version and it no longer uses the reorg layer

but instead upsamples the feature map by a factor of 2. The other outstanding difference

is the addition of a layer named as yolo. This layer acts only as a logistic activation and

takes care of the 9 clusters in groups of three to perform the predictions across scales.

Table 2.6 shows these changes in the network.

Type (Filter) → Output Size/Stride

Avgpool Global

Conv (1000) → 8 x 8 1 x 1

Softmax

(a) Classifier

Type (Filter) → Output Size/Stride

3x
Conv (512) → 19 x 19 1 x 1

Conv (1024) → 19 x 19 3 x 3

Conv (255) → 19 x 19 1 x 1

Yolo

Route

Conv (256) → 19 x 19 1 x 1

Upsample → 38 x 38

Route

3x
Conv (256) → 38 x 38 1 x 1

Conv (512) → 38 x 38 3 x 3

Conv (255) → 38 x 38 1 x 1

Yolo

Route

Conv (128) → 38 x 38 1 x 1

Upsample → 76 x 76

Route

3x
Conv (128) → 76 x 76 1 x 1

Conv (256) → 76 x 76 3 x 3

Conv (255) → 76 x 76 1 x 1

Yolo

(b) Detector

Table 2.6: YOLOv3 classifier vs YOLOv3 detector. Source: Created by authors.

2.4.4 Applications

Since 2016, YOLO has been applied in an array of visual applications. Some recent examples

can be found in:

• Transportation: by counting the number of vehicles to help in traffic management [41]

or identifying any type of objects in the road [42], [43] as vehicles, bikes, pedestrians [44],

traffic signs [45], etc .

Information Technology 23 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Pets and wild animals care: by developing a cat recognition system based on nose

features [46], underwater fish detection to measure the impact of water power solutions on

the environment [47], counting the population of zebras in Nairobi National Park [48] and

monitoring gorillas in the wild [49] to conduct ecological surveys.

• Agriculture and Farming: by identifying and counting insects for pest control mea-

sures [50], by efficiently controlling livestock such as pigs [51], measuring the growth of

strawberries [52] and apples [53].

• Satellite and Aerial Imagery: by detecting objects in images captured by unmanned

aerial vehicles (UAV) [54] and satellites [55]. Most often the images collected in this

scenarios are of very high quality and consist of objects in small size representations as the

pictures cover more area. Examples of objects that are being detected include cars [56],

ships and airplanes.

• Miscellaneous: Other less common applications worth mentioning here are the detection

of logos in vehicles to measure brand exposure [57] and the detection of building footprints

for urban planning [58].

2.4.5 YOLO’s Challenges

YOLO has suffered from different challenges since its development and each new version tries

to address them with some success. Let’s review some of them:

• Detecting small objects: In the first version of YOLO [2], given that there were spatial

constraints on the prediction of the bounding boxes because each grid cell only predicted

two boxes and was allowed to have only one class, YOLO couldn’t detect all the small

objects, specially the ones that appear in groups like for example a flock of birds. With the

use of different scales for predictions on YOLOv3 [4], the network improved on detecting

small objects.

• Scale and rotational variance: Although YOLO [2] used data augmentation to increase

the amount of training data, it struggled to detect objects in new or unusual aspect ratios

or settings.

• Localization errors and low recall: Given the loss function used for training, YOLO

[2] suffered from localization errors as these were treated the same way in both small and

Information Technology 24 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

large bounding boxes. Even more, YOLO had relatively low recall when compared to

region proposal-based methods. So, basically the improvements introduced in YOLOv2

[3] were meant to tackle these problems by using fine grained features and convolution

with anchor boxes.

• Different metrics: To evaluate precision in object detectors the main metric used is

mAP described in section 3.2.4. The thing is, different competitions have slightly different

ways to measure it and therefore the results change. YOLOv3 [4] focused more on making

the network stronger to improve precision by adding small improvements to the network

which increased PASCAL VOC’s mAP [35]. But even with these improvements, YOLOv3

suffered on COCO’s mAP [8] given that it calculates precision as an average of different

levels of IoU. Basically, this difference in results means that YOLOv3 struggles to align

bounding box predictions with the ground truth boxes.

• Detecting medium and large objects: With multi-scale predictions, YOLOv3 was

better in detecting small objects but affected performance on detecting medium and large

objects.

The remaining challenges for object detectors and not only YOLO is to increase precision without

sacrificing speed or even better to improve it.

2.4.6 YOLO on Embedded Systems

Some attempts have been made to move object detection to embedded systems but work on

raspberry pi seems to be limited due to the increased difficulty of working with scarce resources

due to the high computational complexity, power consumption, and store capacity that a network

often requires. In this sense, [59] shows that YOLO has been implemented on both the Raspberry

Pi and the Nvidia Jetson TX2 [60] for vehicle counting and classification, but a speed metric

was not considered in order to determine whether the approach is suitable for real-time object

detection. On the other hand, a new approach presented in [61] implemented a distributed

system in which the inference task is divided between a server and the Raspberry Pi.

Information Technology 25 Final Grade Project

Chapter 3

YOLO on Raspberry Pi

This chapter presents a walk-through on the different activities performed to achieve this work

main objective: to use YOLO on embedded systems. First, section 3.1 presents the basic

structure of the work done to achieve this goal, going from the literature review and the different

experimental phases to finish on this thesis writing. Then, section 3.2 covers the data and

the architecture used for training, followed by an explanation on the metrics used to evaluate

YOLO’s performance on detecting objects. Finally, section 3.3 describes each of the experimental

design in more detail: darknet simplification for YOLO, training parameter tuning and video

performance evaluation. Darknet simplification for YOLO involves the work done to simplify

and organize the framework to only use YOLO, training parameter tuning describes the different

combinations for parameters such as learning rate, steps, batch size and subdivision that were

considered to improve YOLO’s precision, and video performance evaluation deals with finding

a good configuration to work with videos on the Raspberry Pi.

3.1 General Thesis Structure

Diagram 3.1 shows the main phases of this work which are: literature review, experimental

design and thesis writing. Even more, experimental design is split into three more phases, each

containing different experiments carried out with the objective of simplifying, improving and

evaluating YOLO:

27

School of Mathematical and Computational Sciences YACHAY TECH

Literature

Review

Darknet

Simplification

for YOLO

Training

Parameter

Tuning

Video

Performance

Evaluation

Thesis

Writing

Diagram 3.1: Thesis Process. Source: Created by authors.

3.1.1 Literature Review

The main purpose of this activity was to collect information and ideas related to object detection,

CNNs, YOLO and the Raspberry Pi. This activity also provided information on how YOLO

performed object detection and all of the techniques that make YOLO a state of the art detector

taking into account the different changes that have been implemented up to now. It provided

as well information on the metrics currently used to verify the performance of object detectors

in terms of accuracy and speed of detection. Finally, it helped figure out how to perform the

training and testing in YOLO and things to be considered to obtain better results.

3.1.2 Experimental Design

The experimental part of this work was divided into three phases considering activities that

helped obtain a better understanding of object detection and the use of YOLO in embedded

systems. In general, the tasks performed in each phase are enumerated next:

• Darknet Simplification for YOLO:

1. To simplify the code found on Darknet and leave only the parts that correspond to

YOLO.

2. To test that the above changes did not affect YOLO in any way by training with the

same parameters as the original.

3. To run the network on the Raspberry PI.

• Training Parameter Tuning:

1. To identify training parameters that are likely to improve the overall accuracy of the

network.

2. To train the network with these parameters.

3. To evaluate network performance and compare it to the simplified version.

Information Technology 28 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Video Performance Evaluation:

1. To compare the performance of the weights obtained in the previous phase using

videos both in a computer and in the Raspberry Pi.

Each stage will be further explained in the following sections.

3.1.3 Thesis Writing

Thesis writing consisted on organizing the information found on the literature review with the

aim on making it easy to read and follow. Certainly, there are ideas that are more complex to

explain than others and that can be spotted on certain passages of this work. It also consisted

in planning and writing the general structure of the whole text: introduction, state of the art,

methodology, results and conclusion. Without a doubt, the parts that required the most work

were the state of the art and the results given that the first provides the foundations and the

second shows the achievements.

3.2 Materials and Methods

The materials and methods section provides with information necessary to later understand the

experimental design. First, it covers the datasets used to pretrain and train YOLO. Later, it

shows the architecture used for both training and performance evaluation followed by instruc-

tions on how to perform this training. Finally, a description of the metrics used for evaluation

is presented.

3.2.1 Dataset

Now, let’s discuss the data used for training. Most of the current state of the art detectors

pretrain their networks using the ImageNet dataset which is also the case for YOLO [4]. After

this initial training, YOLO can be further trained using the COCO dataset. Next is a description

for both datasets:

ImageNet

ImageNet [40] is an image dataset constructed with the WordNet hierarchy in mind. WordNet

is a lexical database of English where nouns, verbs, adjectives and adverbs are put together

into sets of cognitive synonyms known as synsets. Currently, only nouns are being taken into

Information Technology 29 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

account in ImageNet, with hundreds and even thousands of images belonging to each node in

the hierarchy. Table 3.1 shows the high-level categories of ImageNet where each one has more

than 50 synsets and well over 50000 images. In total ImageNet has 14197122 images and 21841

sysnsets indexed. For the ImageNet competition, there is a subset of 1000 synsets which is the

one used to pretrained YOLO. Some examples of synsets are: kit fox, siberian husky, grey whale,

accordion, revolver, laptop, strawberry, ballon, canoe, pirate, etc. It’s important to note too

that ImageNet does not own the copyright of the images and only provides thumbnails and urls

of the images like any other search engine. The images are mostly collected and validated from

the following search engines: Yahoo, Live Search, Picsearch, Flickr and Google [62].

amphibian animal appliance

bird covering device

fabric fish flower

food fruit fungus

furniture geological formation invertebrate

mammal musical instrument plant

reptile sport structure

tool tree utensil

vegetable vehicle person

Table 3.1: ImageNet high-level categories. Source: Created by authors.

Common Objects in Context

COCO [8] is an image dataset used for large-scale object detection, segmentation, and captioning.

COCO contains about 350000 images from which more than 200000 are labeled. It also contains

80 objects categories that are listed in Table 3.2. Objects in COCO are currently annotated

with a segmentation mask but information on bounding boxes is also available for researchers.

In another point, most images in COCO are non-iconic, meaning that there are more than a

single large object present in the image. Similar to the case of ImageNet, COCO does not own

the copyright of the images which belong to Flickr, an online application for photo management

and sharing. Also, the images do not have a standard size. YOLOv3 was trained with the 2014

train/valid dataset that is composed of 117264 images.

In addition to the training set, COCO provides three more sets for testing related to the com-

petition:

• Test-Val: This set has around 5000 images and is used to verify that a submission to the

Information Technology 30 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

person bicycle car motorbike aeroplane

bus train truck boat traffic light

fire hydrant stop sign parking meter bench bird

cat dog horse sheep cow

elephant bear zebra giraffe backpack

umbrella handbag tie suitcase frisbee

skis snowboard sports ball kite baseball bat

baseball glove skateboard surfboard tennis racket bottle

wine glass cup fork knife spoon

bowl banana apple sandwich orange

broccoli carrot hot dog pizza donut

cake chair sofa pottedplant bed

diningtable toilet tvmonitor laptop mouse

remote keyboard cell phone microwave oven

toaster sink refrigerator book clock

vase scissors teddy bear hair drier toothbrush

Table 3.2: COCO 80 object categories. Source: Created by authors.

evaluation server is being done correctly.

• Test-Dev: This set has around 20000 images and is used for testing in general circum-

stances. It’s recommended that the results for publications must be obtained using this

set.

• Test-Challenge: This set has around 20000 images and is used to test the results for the

COCO challenge.

3.2.2 Architecture of Tiny YOLOv3

As the raspberry pi is a device that is constrained both in terms of computational power and

memory, we considered the use of the smaller version of YOLO for this work. The main char-

acteristic of this network is that although it sacrifices some precision it is really fast allowing

for detection in constrained environments. Tiny YOLOv3 is remarkably different from the full

version. First, the number of convolutional layers is reduced from 75 to 13 which decreases the

size of the network considerably. It also has maxpool layers which are not present on the full

version and it looks like that the residual layers and the shortcut connections are not being

used in this model. Another modification, is that this version works with only 6 clusters instead

of 9 which are: 10x14, 23x27, 37x58, 81x82, 135x169 and 344x319 and an input resolution of

Information Technology 31 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

416x416. For more details check Table 3.3. As an additional note, here there is no distinction

between the network used in training and the network used for detection in contrast to the full

YOLO versions that use slightly different architectures for each case.

Type Filters Size/Stride Activation Output

Convolutional 16 3x3 Leaky 416x416

Maxpool 2x2/2 208x208

Convolutional 32 3x3 Leaky 208x208

Maxpool 2x2/2 104x104

Convolutional 64 3x3 Leaky 104x104

Maxpool 2x2/2 52x52

Convolutional 128 3x3 Leaky 52x52

Maxpool 2x2/2 26x26

Convolutional 256 3x3 Leaky 26x26

Maxpool 2x2/2 13x13

Convolutional 512 3x3 Leaky 13x13

Maxpool 2x2 13x13

Convolutional 1024 3x3 Leaky 13x13

Convolutional 256 1x1 Leaky 13x13

Convolutional 512 3x3 Leaky 13x13

Convolutional 255 1x1 Linear 13x13

Yolo

Route

Convolutional 128 1x1 Leaky 13x13

Upsample 26x26

Route

Convolutional 256 3x3 Leaky 26x26

Convolutional 255 1x1 Linear 26x26

Yolo

Table 3.3: YOLOv3-Tiny Architecture. Source: Created by authors.

3.2.3 Training Parameters

YOLO’s training is done following rules from a configuration file that encompasses the training

parameters and the structure of the architecture, For this work, we only considered the following

parameters:

• Learning Rate (LR): The learning rate is the parameter that controls the speed in which

the network is going to learn to detect objects. YOLOv3-tiny uses a standard training

Information Technology 32 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

rate of 0.001.

• Step (S): The step is a parameter that modifies the LR during training by decreasing

it by a given factor. The S specify in which iterations the learning will be decreased.

Full training of YOLOv3-tiny consists of 500200 iterations in which the S are enforced at

400000 and 450000 with a factor of 10.

• Batch Size (B): Batch Size determines the number of images that will be processed by

the network before updating the weights which is also the number of images per iteration

in YOLO. The standard B in YOLOv3-tiny is 64 and by decreasing or increasing this

number the network might need more/less number of iterations to obtain a higher mAP.

For the second part of training in this section, from each LR we selected the weights that

gave the highest mAP and trained each with a B of 16 and 128.

• Subdivision (Subd): Subdivision is closely related to the Batch Size. This parameter

determines the number of images that are processed in parallel which have the potential

of decreasing training time. It is also useful in cases in which there is not enough memory

for training. Consider a B of 64 and a Subd of 2. This configuration establishes that the

batch is going to be divided by 2 and therefore 32 images will be processed at the same

time.

More time would be needed if we were to try combinations of all the parameters that are used

in training YOLO.

3.2.4 Metrics

The detections done by the trained network described in 3.2.2 and with the different combination

of parameters described in 3.2.3 will be evaluated with the following metrics: IoU, precision,

recall, accuracy, the precision-recall curve, mAP and FPS. Let’s start checking IoU as it is the

starting point to get the remaining metrics except for the FPS.

Intersection over Union

The IoU is a metric that determines how well a predicted bounding box (Bp) encloses a ground

truth bounding box (Bgt) considering the following ratio:

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(3.1)

Information Technology 33 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

In short, the formula is comparing the area that is intersected by both boxes over the area of the

union. Most competitions accept an IoU of 0.50 to consider that an object has been correctly

detected. And in that sense, the IoU will be used to determine if the detections fall into one of

the following categories:

• True Positive (TP): An object in an image is correctly detected.

• True Negative (TN): This one is not considered for object detection as it would mean

that there is not an object present in the image thus is not useful whatsoever.

• False Positive (FP): An object in an image is not detected given that the detection does

not fulfill the IoU threshold.

• False Negative (FN): An object in an image is incorrectly detected.

Figure 3.1 shows an example with an image taken from the validation set. In 3.1a, the ground

truth object is a cat and the detection is correct as it is clear that the IoU is higher than 0.5,

therefore, is considered a TP. In 3.1b, although the object is well classified as a cat, the IoU is

lower than 0.5 therefore is an example of a FP. Finally, in 3.1c, although the IoU is higher than

0.5, the object is wrongly classified as a dog therefore is an example of a FN.

(a) TP (b) FP (c) FN

Figure 3.1: Example of types of detections. Source of image used in example: [63].

Information Technology 34 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Precision-Recall Curve and Area under the Curve

Now that IoU is a little bit more clear, it is time to see the precision-recall curve. This curve is

necessary to get the mAP as the mAP is not other than the area under it. Let’s review first the

concept of precision and recall independently:

• Precision: also known as the positive predicted value, measures how many correct detec-

tions were made from the total number of detections made by the detector.

TP

TP + FP
(3.2)

• Recall: also known as the true positive rate or sensitivy, measures the number of correct

detections made over the total number of ground truth objects.

TP

TP + FN
(3.3)

Once the precision and recall are obtained for each category, the precision-recall curve can be

plotted. In the x axis we found the recall while in the y axis we found the precision. To plot

this curve, we take all the detections of a single category and list them in descending order

with respect to the class probability given by the detector. As the first element have the highest

probability, then there is a high chance that this could be a TP (this is not always the case as we

need to also consider the IoU) thus the precision, in this case, would be 1, while the recall would

be smaller as it is computed against the number of ground truth objects. As we go through all

the detections made, the precision will decrease while the recall will increase.

mean Average Precision

The mAP is a metric that measures the precision of object detectors and is quite popular.

Different competitions have different ways to calculate this metric and for this work we only

considered the AP50 as the way to measure precision, where AP represents the Average Precision.

Now, COCO has 6 different metrics for mAP [64] which are:

• AP: AP with 10 different IoU thresholds that go from 0.5 to 0.95 in intervals of 0.05. This

is the metric used in the primary COCO challenge.

• AP50: AP with an IoU threshold of 0.5. This was the AP traditionally computed before

the introduction of the average AP by COCO.

Information Technology 35 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• AP75: AP with an IoU threshold of 0.75

• APsmall: AP for objects with an area less than 322

• APmedium: AP for objects with an area between 322 and 962

• APlarge: AP for objects with an area greater than 962

The mAP results, found in the different publications that measure precision with the COCO

metric as standard, were obtained using the COCO test-dev dataset [65] which can only be

evaluated on COCO evaluation servers [66]. COCO also provides an API 1 to locally evaluate

the results from any object detector and obtain the mAP and some other metrics related to recall.

For our case, we used this API and obtained the mAP using the test-val set. Furthermore, some

modifications were made to the API in order to obtain the values for TP, FP, FN, and for

precision and recall (needed to plot the Precision-Recall curve). From now on, only AP50 would

be used to talk about mAP as this was the one used for comparisons. To use COCO’s API the

results file must have the following structure:

[{

"image_id" : int ,

"category_id" : int ,

"bbox" : [x,y,width , height],

"score" : float ,

}]

Where x, y give the location of the top left position of the bounding box. Lucky for us, darknet

provides the following command that gives the results in the format required by COCO:

$./ darknet detector valid cfg/coco.data cfg/yolov3 -tiny.cfg

↪→ yolov3 -tiny.weights

As mentioned before, the COCO’s API was modified to obtain the reamining metrics. To obtain

the number of TP, FP and FN we print the following variables:

if len(dtm [0]) ==0:

print(f’Category: {k}, TD: 0, TP: 0, FP: 0, GT: {npig}’)

else:

1https://github.com/cocodataset/cocoapi

Information Technology 36 Final Grade Project

https://github.com/cocodataset/cocoapi

School of Mathematical and Computational Sciences YACHAY TECH

print(f’Category: {k}, TD: {len(dtm [0])}, TP: {tp_sum

↪→ [0][-1]} , FP: {fp_sum [0][-1]} , GT: {npig}’)

Where dtm is number of total detections, tp sum is the number of TP, fp sum is the number of

FP and npig is the number of ground truth.

To obtain the precision and recall this was the bit of code written:

def save(self , file):

’’’

Save precision -recall data per class.

’’’

f=open(file ,"w+")

for k, (i,j) in enumerate(zip(self.eval[’precision ’],self

↪→ .eval[’recallgraph ’])):

for n in range(0,len(i[0,:,0,0])):

f.writelines ("{0} {1}\n". format ("NaN", "NaN")

↪→ if round(x,3) == 0 and round(y,3) == 0

↪→ else "{0} {1}\n". format(round(x,3),

↪→ round(y,3)) for x,y in zip(i[:,n,0,0],j

↪→ [:,n,0,0]))

Where the self.eval dictionary contained the data corresponding to precision and recall in both

the y and x axis to be then saved to a file in disk.

Accuracy

Given that the number of TP, FP and FN were obtained, the accuracy metric was also consid-

ered. This metric measures the number of correct detections over the total number of detections

made regardless of this being right or wrong.

TP + TN

TP + TN + FP + FN
(3.4)

Frames per Second

FPS determines the number of frames that are processed by an object detector. A high FPS

is better for having real-time object detection. Now, this metric in dependant on the system

used for detection meaning that running the detector on a GPU will be faster than running on

Information Technology 37 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the CPU and way more than in the Raspberry Pi. Darknet provides the following command to

process video:

$./ darknet detector demo cfg/coco.data cfg/yolov3 -tiny.cfg

↪→ yolov3 -tiny.weights movie.mp4

which gives an amount for FPS as a new detection is made. In order to present a result for FPS,

we got an average of all the values for FPS obtained while processing of the video.

3.2.5 Training

To perform the training we used 4 GPUs NVIDIA Tesla K80 that are part of the hardware

infrastructure of the supercomputador QUINDE 1 [67] and ran the following script:

#!/bin/bash

#BSUB -e err.log

#BSUB -o out.log

#BSUB -cwd /home/paulsilvap/orig

#BSUB -J orig.job

#BSUB -q normal

#BSUB -n 4

module load cuda /8.0.61

module load cudnn /8.0.0

cd /home/paulsilvap/orig

./../ darknet/darknet detector train coco.data yolov3 -tiny.cfg ../

↪→ yolov3 -tiny.conv .13 -gpus 0,1,2,3

The important bit here is the line that calls darknet. Let’s break it down:

• detector: it is the file that contain all the instructions that can be done in darknet in

relation to YOLO. We already used valid and demo in some of the commands shown

earlier.

Information Technology 38 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• train: it is the instruction that performs the training of YOLO with the information found

in the .data and .cfg files.

• coco.data: it is the file that points to the files containing the location of the images in

the train/val and test-val datasets.

• yolov3-tiny.cfg: it is the file that contains all the information of the parameters and the

architecture for training/detection.

• yolov3-tiny.conv.13: it is the weight file used for training. These weights were obtained

from the yolov3-tiny.weights that correspend to Tiny YOLO and can be downloaded from

2

• gpus: it is an option that indicates how many GPUs are going to be used for training.

For the training to work, we also need to download the images belonging to the dataset. Dark-

net’s author provides a script that does all the job. The instructions can be found in 3.

3.2.6 Software and Hardware

The code of the simplified version is available in a github repository4. It maintains the base

structure of the orignal version of darknet and keeps C as the main coding language. The

framework uses the following libraries and APIs:

• OpenCV: The Open Source Computer Vision Library [68] (OpenCV) is an open source

library that provides implementations of algorithms focused on computer vision and ma-

chine learning applications. It supports Windows, Linux, Android and Mac OS.

• OpenMP: OpenMP [69] is an API that facilitates parallel programming in languages

such as C/C++ and Fortrand. OpenMP is also multiplatform enabling applications from

desktop computers to supercomputers.

• CUDA: CUDA [70] is an API that enables parallel computing and programming on

NVIDIA GPUs.

2https://pjreddie.com/darknet/yolo/
3https://pjreddie.com/darknet/yolo/
4https://github.com/paulsilvap/darknet/

Information Technology 39 Final Grade Project

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://github.com/paulsilvap/darknet/

School of Mathematical and Computational Sciences YACHAY TECH

• Cudnn: The NVIDIA CUDA Deep Neural Network [71] (cuDNN) provides deep neural

networks primitives to be used in GPUs. These primitives include forward and backward

convolution, pooling, normalization, and activation layers.

From this, only opencv and openmp are available in the Raspberry Pi. CUDA and cuDNN

require a NVIDIA GPU powered device to be able to compile.

Next, Table 3.4 shows the characteristics of the hardware used to obtain the different metrics

and to perform the testing for the video performance evaluation.

Computer Raspberry Pi

Processor Core i7 7th Gen 2.8 GHz ARM Cortex-A53 Quad Core 1.2 GHz

RAM 16GB 1GB

Architecture 64 bits 64 bits

GPU GTX 1050 Ti -

Drive HDD SD

Drive Size 1 TB 128 GB

Table 3.4: Hardware for testing. Source: Created by authors.

3.2.7 Deployment

To use darknet to perform detection from scratch, we need to follow the subsequent steps:

1. Download darknet from the github repository.

2. Download the weight file or files.

3. Compile darknet.

4. Run detector with the following command:

$./ darknet detect cfg/yolov3 -tiny.cfg yolov3 -tiny.weights

↪→ image.jpg

If we were to use darknet with videos, first we need to install OpenCV and compile darknet

again with the correct flag.

Information Technology 40 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.3 Experimental Design

In the experimental design section, it is described the different experiments performed to obtain

the metrics explained in 3.3.2. The three phases are darknet simplification, parameter tuning

and performance evaluation.

3.3.1 Darknet Simplification for YOLO

In order to take advantage of all the properties of YOLO, a revision of the code found in [72] was

necessary. In general, darknet is a nice framework to train different models of artificial neural

networks but for our case, we only needed to work with YOLO. For this reason, the parts that

did not belong to the general implementation of the three versions of YOLO were eliminated

from the original codebase. Reducing code complexity and improving code organization were

among the main tasks for this stage. The other consideration taken was to check if the code was

able to run on the Raspberry Pi and modify it in the case the code did not run in this device.

After performing the previous action, the next step was to check that the modifications did not

affect the general performance of YOLO. For that, we performed a full training on both the

original codebase and the simplified version without modifying any training parameter.

Figure 3.2: Input image vs Output Detection. Source of image used in example: [73]

Figure 3.2 shows, as a way of example, an image that was passed to YOLO as input and then the

obtained output. The detection consists of the bounding boxes and the object categories from

where the objects in the image are from. This result should be very similar if not the same for

both versions. The metrics that are going to be evaluated in this phase are the precision-recall

curve, the accuracy, recall and AP50.

Information Technology 41 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.3.2 Training Parameter Tuning

Once it was confirmed that the changes done to the code did not affect YOLO’s the precision

negatively, the next step was to find ways to improve it. The approach taken consisted in making

combinations of the training parameters explained in 3.2.3. LR and S were used in the first set

of tests while B and Subd were used to obtain the final training candidate. Table 3.5 shows a

summary of the tests performed.

LR S

0.1 -

0.1 40000, 80000

0.005 -

0.005 40000, 80000

0.002 -

0.002 40000, 80000

0.0005 -

0.0005 40000, 80000

0.0005 -

0.0005 40000, 80000

(a) First Set

B Subd

16 2

16 8

128 4

128 64

(b) Second Set

Table 3.5: Training summary for Parameter Tuning. 10 experiments for the first set of

training. One (successful) candidate per LR is kept and later each is trained with the four

combinations of the second set. Source: Created by authors.

• For the first set, we considered the following rates: 0.1, 0.005, 0.002, 0.0005, 0.0001.

Initially, we started training only with 0.1, 0.005 and 0.0001 to evaluate how drastic would

be the change in learning. Then, we considered to use 0.002 and 0.0005 which are an

increase/decrease by a factor of 2 of the standard training rate. As initially we only

trained for 100000 iterations, we considered two scenarios for the 5 LR we chose: the first

one did not consider S and the second one enforced steps at the 40000 and 80000 iterations.

By multiplying the 2 scenarios with the 5 LR we ended up with a set of 10 tests. From

each pair of tests (same LR), a candidate will be selected to be used next.

• For the second set, we considered two B: 16 and 128. For 16 a Subd of 2 and 8 was selected

while for 128 a Subd of 4 and 64 was used instead. A Subd smaller than 4 required more

than 12 GB of ram memory and therefore was not feasible given the memory available.

Information Technology 42 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The B and Subd will be tested for each selected candidate from the first set. At the end

of this set, only one candidate is selected.

• Once a final candidate was chosen, this was trained for 100000 and 200000 iterations with

S values that account for the 80 and 90 percent of the total number of iterations. For

100000, a S of 80000 and 90000 were used while for 200000 the S was at 160000 and

180000 respectively.

To select the candidates for each set, we used AP.50 as the main criteria. The remaining metrics

were also calculated except for the precision-recall curve and the FPS.

3.3.3 Video Performance Evaluation

The idea of improving the mAP of YOLO is for using the detector on real-time for videos.

Obtaining a better mAP could allow working with lower input size resolutions and therefore

decrease detection time which is what we need to work on real-time on the Raspberry Pi. Given

the results from subsection 3.3.2, it was time to prove if the previous affirmation held true also

in the case of using videos as input.

Video Testing

For evaluating the new weight file obtained from 3.3.2, first we needed to choose videos that

contain some of the objects from the 80 categories in COCO. In that sense, we took two videos

from Pexels [74], a portal that offers free videos, with the characteristics that can be seen in

Table 3.6. The object categories considered this time were person and car.

Video 1 Video 2

Resolution 1920px x 1080px 1920px x 1080px

Duration 0:15 0:34

FPS 25 29

Aspect Ratio 16:9 16:9

Format .mp4 .mp4

Codec H.264 - MPEG-4 AVC H.264 - MPEG-4 AVC

Table 3.6: Video characteristics. Source: Created by authors.

With this in mind, we ran two tests that took into account the following considerations:

• Video Resolution: This is the resolution of the video that enters the network. We

considered three different scenarios: the original resolution of the video (1920x1080), half

Information Technology 43 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

of this resolution (960x540) and the lowest resolution in which all the object categories

could be detected and YOLO could still draw bounding boxes (304x171). The video

resolution change is performed using the ffmpeg command in linux. FFmpeg [75] is a very

fast multimedia framework, able to change between random sample rates and resize video

using a high quality filter.

• Input Resolution (IR): This is the input resolution of the network. YOLOv3-tiny

uses a standard input resolution of 416x416. We considered three different scenarios: the

standard input resolution(416x416), a resolution that is a multiple of 32 and is near the

half of the standard input resolution (224x224, being 224 equal to 7x32, 416 is thirteen

times 32) and the lowest input resolution in which the detector could still detect all the

object categories considered (192x192 = 6x32).

We calculated and compared the FPS and the total number of detections (TP + FP) for all the

9 scenarios (3 video resolutions by 3 input resolutions) described above with the aim of finding

the best configuration to have object detection on the Raspberry Pi.

Information Technology 44 Final Grade Project

Chapter 4

Results

In this chapter, we will show the results from the different experiments described on chapter 3.

First, we will present general results of training YOLOv3-tiny with the original darknet code vs

a simplified version of the code. Then, we will discuss the results from training the simplified

version with the combination of parameters and values described on 3.3.2. Finally, we will

evaluate the performance in videos of the winning combination. The different comparisons in

each of the following sections consider the metrics discussed in section 3.2.

4.1 Original YOLO vs Simplified YOLO

Figure 4.1 shows the precision-recall curves of the original and the simplified version detections

on COCO’s validation dataset with an IoU = 0.5. It shows only the curves for the first 10

object categories of COCO. Although the behaviour of the curves does not change dramatically

between each version, the original version performed better on the test-val dataset. One example

of similar behaviour can be seen on the person object category in which the curves are almost

identical and really smooth (blue lines) while the rest have some degree of variance with the

most notable case for the train object category (green line). From the categories seen in Figure

4.1, bus and train were better detected than boat and traffic light that did not even reach a

recall higher than 0.5 meaning that the number of TP was less than half of the total ground

truths. To determine the general performance achieved, Figure 4.2 illustrates the AP.50 obtained

from training the original and the simplified version a total number of 500000 iterations. The

evolution of the AP.50 in both cases follows a similar trend, a point that reinforces that the

modifications done on the original version, in order to simplify the code, have been performed

45

School of Mathematical and Computational Sciences YACHAY TECH

appropriately so far. Evaluating the behaviour of the curves, it can be seen that the AP.50

increases rapidly in the beginning up to the iteration 100000. Then, the AP.50 maintains a semi

steady growth for the next 300000 iterations. Once it reached the iteration 400000, the AP.50

jumps almost 0.05 points due to the change on the LR from 0.001 to 0.0001. After that, the

AP.50 changes very little given the fact that the LR is quite small and does not have a huge

impact in the training anymore. At this point, the LR is equal to 0.00001.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

P
re

ci
si

on

person bicycle
car motorbike

aeroplane bus
train truck
boat trafic light

person bicycle
car motorbike

aeroplane bus
train truck
boat trafic light

Figure 4.1: Precision-Recall Curves for 10 first categories. This graph shows the curves

for the original version (continuos) and the simplified version (dashed). Source: Created by

authors.

Table 4.1 shows the 6 metrics for AP.50 proposed by COCO which gives a general idea of the

precision for the four versions evaluated. The results from evaluating YOLOv3 with both the

test-dev set and the test-val set are very similar, considering that a change smaller than one

point is not yet significant enough. As seen here, YOLOv3 suffers more when detecting small

objects than detecting large ones, a trend that gets worse for YOLOv3-tiny. Obtaining similar

results for both datasets is a good sign that the test-val set is good enough to evaluate the AP.50

for YOLOv3-tiny and the set of tests in Table 3.5. The difference in AP.50 is so small for the

original and the simplified version that is not even greater than 0.1.

Table 4.2 presents even more evidence to verify that the changes were done appropriately. In

1Taken from [4]

Information Technology 46 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

0 100000 200000 300000 400000 500000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Number of iterations

A
P
.5
0

original
simplified

Figure 4.2: AP.50 growth for original and simplified version in 500000 iterations. Source: Created

by authors.

Detector (Test Set) AP AP.50 AP.75 APsmall APmedium APlarge

YOLOv3 608 x 608 (Test-dev)1 33.0 57.9 34.4 18.3 35.4 41.9

YOLOv3 608 x 608 (Test-val) 33.4 58.5 34.5 19.4 36.4 43.8

YOLOv3-tiny original (Test-val) 14.5 31.9 11.6 3.2 13.7 24.8

YOLOv3-tiny simplified (Test-val) 14.4 31.8 11.2 3.1 13.6 24.5

Table 4.1: mAP with different test set. Source: Created by authors.

terms of TP, both versions were not that far apart meaning that recall will be very similar as

well. On the other hand, the original model made more incorrect predictions that ultimately

translates into a lower value for accuracy.

Detector AP.50 TP FP FN Acc R

YOLOv3-tiny original 31.9 20651 372064 14443 5.7 57.7

YOLOv3-tiny simplified 31.8 20554 321056 14540 6.6 57.0

Table 4.2: Original vs Simplified. Source: Created by authors.

From obtained results in this first section, it can be seen that the simplified version achieves

almost identical performance that the original version which ultimately is not a bad thing.

Our aim was to prove that the changes did not affect negatively darknet and YOLO. In that

Information Technology 47 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

sense, maintaining the same level of performance is satisfactory. For example, although there

is a difference in AP.50 and recall between both models, this difference is only 0.1 and 0.7

respectively. The difference is explained by the fact that the model randomly changes resolutions

during training, so it is possible that in a new training the AP.50 could be higher that the one

obtained at this time. One significant improvement though, is that by simplifying the code the

overall size of the framework decreased by 1.4 times going from approximately 500 kb to 350 kb

in the main library file.

4.2 Tuning the parameters

The results from the first set of training are presented in Table 4.3. Let’s now breakdown the

results. The first thing to notice is that the training belonging to the LR 0.1 failed even before

reaching the 1000 iterations. It seems that this rate is too high for training and therefore the

learning is unstable. In the case of an LR of 0.005, we obtained AP.50 that were too apart from

each other. In fact, the test that did not perform any S obtained the worst AP.50 = 24.7. On

the other hand, when applying the S, the AP.50 reached 30.6 and the recall was the highest of

all. Meaning that the the number of objects correctly detected was good. Almost the same

trend follows for the 0.002 and 0.0005 LR. For 0.0001, the situation was different. The highest

AP.50 was given for the case in which no S was done. A rate of this size is already small enough

for the training to be stable, decreasing it two more times makes the learning too small that

it does not learn much anymore. In terms of the time taken, all tests took similar times to

complete therefore the LR as well as the S had not great impact on training time. In fact, the

small difference in time is more likely given by the parameter ”random” in the configuration file,

for which the images change size randomly for training. Given all previous considerations, the

AP.50s in bold are the candidates chosen for the second set of training.

Figure 4.3 shows the evolution of the AP.50 from the first iteration until iteration 100000. Note

that in some cases, the training seems that goes up and down randomly. Changing resolution

from time to time seems to be responsible for this behavior. Conversely, the LR that seems to

have the most stable training is 0.0001. Training with steps and without steps also impacts the

resulting AP.50. In all of the cases, applying the first S at 40000 makes that the AP.50 increases

considerably with 0.005 being the one with the highest jump from 23 to 29. Instead, the second

step at 80000 fulfills the role of stabilizing the training. It is important to point out that this

behaviour is given by the action of performing the S rather than when the S is performed as it

Information Technology 48 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

LR S (000) B Subd AP.50 T (d.) TP FP FN Acc. R.

0.1 - 64 2 - - - - - - -

0.1 40 - 80 64 2 - - - - - - -

0.005 - 64 2 24.7 0.81 18871 353284 16223 6.1 50.1

0.005 40 - 80 64 2 30.6 0.82 20332 346912 14762 6.2 55.7

0.002 - 64 2 26.3 0.82 18852 270762 16242 7.0 50.3

0.002 40 - 80 64 2 30.8 0.82 20143 338228 14951 6.4 55.1

0.0005 - 64 2 27.7 0.80 19454 334865 15640 6.3 53.1

0.0005 40 - 80 64 2 29.6 0.81 19965 359209 15129 5.8 54.5

0.0001 - 64 2 27.9 0.80 19418 328067 15676 6.3 52.2

0.0001 40 - 80 64 2 26.0 0.80 19125 376721 15969 5.5 51.2

Table 4.3: Initial Training - 100000 Iterations. Source: Created by authors.

seems that it helps the training to leave a position of a local minimum.

0 20000400006000080000100000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Number of iterations

A
P
.5
0

0.005, S = 40 - 80 0.002, S = 40 - 80
0.0005, S = 40 - 80 0.0001, S = 40 - 80

0 20000400006000080000100000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Number of iterations

A
P
.5
0

0.005 0.002
0.0005 0.0001

Figure 4.3: AP.50 growth for the first subset of experiments. Source: Created by authors.

Table 4.4 shows the second part of the training in which the chosen LR were the ones that gave

a higher AP.50 with regard to being trained with or without S. The candidates from the initial

training were 0.005, 0.002 and 0.0005 with S and 0.0001 without steps. Now, for this new set

of tests, the parameters considered were the size of the B and Subd. The results in the second

set were more alike given that the LR with higher AP.50 are the ones with a B equal to 128

and Subd of 4. Also, the B and Subd did affect the training time, getting smaller times for the

Information Technology 49 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

configuration with small B. Conversely, the Subd tends to increase training size if being higher.

Since we put emphasis on the AP.50, the candidate chosen for the final training was the one

with an LR equal to 0.005 and steps in 40000 and 80000, with a B equal to 128 and

Subd of 4, as it obtains a AP.50 equal to 31.4. Even more, this is the one that also obtained

the highest value for recall being equal to 56.4.

LR S (000) B Subd AP.50 T (d.) TP FP FN Acc. R.

0.005 40 - 80 16 2 - - - - - - -

0.005 40 - 80 16 8 - - - - - - -

0.005 40 - 80 128 4 31.4 1.55 20422 321737 14672 6.8 56.4

0.005 40 - 80 128 64 29.7 1.89 19434 255012 15660 8.0 52.0

0.002 40 - 80 16 2 27.6 0.27 19804 379454 15290 5.5 53.4

0.002 40 - 80 16 8 26.1 0.31 18874 299324 16220 6.4 50.0

0.002 40 - 80 128 4 31.1 1.52 20254 325005 14840 6.6 55.6

0.002 40 - 80 128 64 29.8 2.06 19407 257442 15687 7.6 52.1

0.0005 40 - 80 16 2 28.0 0.26 19650 379963 15444 5.5 53.3

0.0005 40 - 80 16 8 26.8 0.31 18981 308349 16113 6.2 50.5

0.0005 40 - 80 128 4 29.6 1.50 19986 337172 15108 6.2 54.6

0.0005 40 - 80 128 64 28.9 2.05 19274 290050 15820 6.7 51.8

0.0001 - 16 2 26.6 0.27 19258 365004 15836 5.4 51.9

0.0001 - 16 8 25.0 0.31 18771 348523 16323 5.7 49.9

0.0001 - 128 4 28.0 1.46 19430 328091 15664 6.2 52.7

0.0001 - 128 64 26.4 2.07 18894 305170 16200 6.3 50.3

Table 4.4: Intermediate Training - 100000 Iterations. Source: Created by authors.

Finally, Table 4.5 shows the result of the last set of training. The AP.50 did not change con-

siderably within the candidate from the second set and the two tests carried out in this one.

The winning combination that will be used in video testing is the one with a step policy done

in the iterations 160000 and 180000. The AP.50 and recall for this candidate are 31.5 and 56.4

respectively.

LR S (000) B Subd AP.50 T (d.) TP FP FN Acc. R.

0.005 40 - 80 128 4 31.4 1.55 20422 321737 15089 6.8 56.1

0.005 80 - 90 128 4 31.1 1.51 20342 318642 14752 6.6 55.8

0.005 160 - 180 128 4 31.5 3.02 20584 314085 14510 6.8 56.4

Table 4.5: Final Training. Source: Created by authors.

Something to point out here is that although this one obtained the highest AP.50, it would

Information Technology 50 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

probably be fine to use the selected candidate from the second set as the difference in AP.50 is

not higher than 0.1. In cases in which time is a premium, this should be the route of parameter

combinations for training to be taken as it only takes half of the time to train in comparison to

the finally selected combination.

4.3 Video

In the last section of results, we evaluate how well the winning combination performs both in

a computer and in the Raspberry Pi against the original and simplified version in terms of the

FPS. Table 4.6 shows the FPS difference obtained from the two platforms. In a high resolution

video, there is no much difference in FPS with respect to the input resolution used. In other

cases, the change is more marked. The FPS increase when decreasing both the video resolution

and the input resolution, being the combination of a video resolution of 304 x 171 and input

resolution of 192 x 192 the fastest with more than 230 FPS on the computer. On the other hand,

the results in the raspberry pi were too slow when compared to the computer. The FPS changes

in the same fashion as in the computer but in none of the cases the FPS was higher than 0.40.

Processing at 0.1 FPS, a 15-seconds video with 25 FPS takes a lot of time. The total number of

frames to process is 375 given by 25 FPS x 15 seconds, at a rate of 0.1 is equal to 3750 seconds

= 62.5 minutes = 1.04 hours. Other alternatives should be considered otherwise the time taken

in the different tests make detection to be really slow. A note aside, FFmpeg does play a role

on FPS as the FPS was increased, in comparison to the the original video resolution, by more

than two times for both 960x540 and 304x171 resolutions.

Table 4.7 shows on the other hand the total detections. In general, the higher the input resolution

the higher the total number of detections. As soon as the input resolution decreases the number

of detections decreases as well. However, changing the video resolution does not seem to affect

that much the number of detections and there are cases in which the number of detections is

higher in a lower video resolution as in 960 x 540, but only for the person category. It seems that

the detectors are better in detecting cars in higher video resolutions than in smaller ones. There

are also some outcasts, like the one marked with an asterisk, that do not follow the general

trend. Now, the difference in detections between the computer and the Raspberry Pi is not

significant and varies from video 1 to video 2. For video 1, the difference does not go higher

than 10 detections in most cases. The difference is more marked for video 2. The reason behind

it might be that video 2 has a sequence of frames where there is a crowd of people thus it misses

Information Technology 51 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Computer Raspberry Pi

Detector Video R Input R Video 1 Video 2 Video 1 Video 2

original

1920x1080

416x416 34.9 34.6 <0.1 <0.1

224x224 36.2 35.9 <0.1 <0.1

192x192 36.1 36.7 <0.1 <0.1

960x540

416x416 86.8 83.3 <0.1 <0.1

224x224 109.1 107.9 0.20 0.20

192x192 131.6 130.1 0.31 0.31

304x171

416x416 96.8 96.8 <0.1 <0.1

224x224 212.6 212.7 0.21 0.21

192x192 233.3 237.1 0.34 0.37

simplified

1920x1080

416x416 36.4 34.6 <0.1 <0.1

224x224 35.8 36.7 <0.1 <0.1

192x192 36.5 36.8 <0.1 <0.1

960x540

416x416 84.3 83.2 <0.1 <0.1

224x224 108.2 105.9 0.21 0.21

192x192 131.1 130.1 0.33 0.30

304x171

416x416 96.0 96.8 <0.1 <0.1

224x224 211.4 212.0 0.22 0.20

192x192 238.5 235.2 0.31 0.31

0.005

1920x1080

416x416 34.4 35.1 <0.1 <0.1

224x224 35.5 36.8 <0.1 <0.1

192x192 36.6 36.2 <0.1 <0.1

960x540

416x416 87.0 82.1 <0.1 <0.1

224x224 111.9 106.4 0.25 0.20

192x192 130.4 129.5 0.31 0.32

304x171

416x416 96.4 96.9 <0.1 <0.1

224x224 207.9 215.2 0.25 0.29

192x192 234.4 236.4 0.31 0.30

Table 4.6: FPS on computer vs Raspberry Pi. Source: Created by authors.

to detect objects in this category from time to time.

Information Technology 52 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Computer Raspberry Pi

Video 1 Video 2 Video 1 Video 2

Detector Video R I.R. person car person car person car person car

orig

1920x1080

416 982 622 3589 544 - - - -

224 770 169 2822 249 - - - -

192 601 136 2251 159 - - - -

960x540

416 975 563 3617 540 - - - -

224 795 164 2764 290 801 158 2911 292

192 598 141 2403 183 597 139 2426 180

304x171

416 905 412 3199 534 - - - -

224 737 99* 2639 325 737 94 2683 327

192 593 135 2120 204 592 128 2211 216

simp

1920x1080

416 989 542 3592 544 - - - -

224 793 71 2509 232 - - - -

192 641 70 2159 162 - - - -

960x540

416 998 476 3616 530 - - - -

224 818 67 2698 276 821 62 2742 278

192 640 55 2094 222 639 50 2174 231

304x171

416 964 362 3204 527 - - - -

224 816 48 2400 285 815 46 2521 290

192 630 40 1821 215 630 36 1960 227

0.005

1920x1080

416 966 554 3566 521 966 556 3585 541

224 743 56 2157 202 744 55 2243 214

192 561 39 1828 166 567 37 1881 170

960x540

416 968 533 3581 549 970 532 3631 551

224 793 72 2298 269 795 69 2297 268

192 577 45 1783 223 575 40 1912 235

304x171

416 922 368 3209 536 921 356 3231 538

224 766 42 2037 311 767 42 2156 328

192 574 25 1715 274 573 25 1792 291

Table 4.7: Total detections on computer vs Raspberry Pi. Source: Created by authors.

Information Technology 53 Final Grade Project

Chapter 5

Conclusions

The final chapter covers a review of the work done in this research project starting from the

literature review, deciding what to test and improve to finally evaluate how it went. This work

ends with some concluding remarks and future work in this research topic.

5.1 Literature Review

This work started by reviewing the most important concepts related to object detection going

from what is this about into the most important applications, challenges and features. We

showed that object detection is a hot topic in research at the moment and that it is being

used strongly in many visual applications. But even though the high popularity, there were

some areas in which object detection could be improved therefore boosting even more interest

from researchers. Next, we focused on explaining a little bit about CNNs and how these look

in general. More specifically, we also took interest in implementations for embedded systems.

There were some good models that have been proposed already for constrained environments but

we explored the idea of using a model that is considered fast when compared to what could be

called state-of-the-art detectors such as SSD and Faster R-CNN. This model is YOLO. Most of

the success of YOLO is given by the use of multiple borrowed techniques from different models.

We showed how these combinations have improved YOLO making it more robust and powerful

while still maintaining its main characteristic: speed. And it terms of speed, YOLO has a

smaller version called Tiny YOLO which runs even faster. Nevertheless, YOLO suffered from

the same challenges showcased for object detection plus some extra consideration on localization

errors and bounding box alignment.

55

School of Mathematical and Computational Sciences YACHAY TECH

5.2 Experiments

Having darknet as the main framework to train and use YOLO was helpful but there is some

room for improvement. In that sense, we took away the little parts that were not related to

YOLO and reorganized some bits of code from one place to another one. The main darknet

code is not able to run on the Raspberry Pi due to a segmentation fault so it was time to

do some debugging as well. Once this was ready, learning how to use darknet was not that

much complicated although a complete guide could be helpful. Then, it came to the training

part. Training on a consumer-level computer would have taken time that was already in short

supply. For that reason, the training was done using 4 K80 GPUs which allowed us to consider

multiple parameter options for training: learning rate, steps, batch size and subdivision. Another

important aspect was choosing the right pretrained weight file. Using weights from a different

architecture or starting weights randomly increased the training time needed to achieve a better

AP.50.

5.3 Results

YOLO is able to run on the Raspberry Pi, albeit not at the speed we were looking for. Using

CNNs in this type of devices put a heavy load on the already constrained hardware resources.

Even smaller models have still a lot of work to do to be competitive with their GPU based

counterparts. However, we were only able to run Tiny YOLO on the Raspberry Pi, the full

version is too big for this type of architectures. In terms of average precision, the results gave

some new perspectives on how to perform training. By tuning the parameters, we explored

several routes where some were quite successful while others fell short in terms of precision.

Probably the most remarkable aspect of the training was that by increasing the LR and the

B a smaller training time was required to achieve a very similar AP.50 when compared to the

conditions used for full training. Finally, it is time to talk a bit about performance on video. As

expected, the detection speed was really slow on the Raspberry Pi compared to using a consumer-

level computer. Both the video resolution and the input resolution do affect detection speed

with the most remarkable case being represented by a video resolution of 304x171 and input

resolution of 192x192 when the detector reaches an average speed of 234.4 FPS. An important

factor to account for, it is where the video conversion is taking place, either inside or outside

of darknet. The total detections are also affected by the changes in video resolution and input

Information Technology 56 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

resolution, but it’s more apparent when changing the input resolution.

5.4 Future Work

Achieving a higher precision and speed is among the most important problems researchers are

working on regard object detection. And for that there are several alternatives: tuning the pa-

rameters, modifying the network architecture, and improving computing power. In this work, we

took care of only one of these activities: tuning the parameters. A more detailed exploration on

the parameters is needed in order to determine which ones have the more impact and tune them

accordingly. Adjusting parameters related to data augmentation such as saturation, exposure

and hue could may have an impact on increasing the AP.50. Modifying YOLO’s architecture

by increasing or decreasing the number of convolutional layers or by adding new methods and

techniques could also be fruitful.

In terms of the training dataset, COCO is pretty good and challenging in its own respect.

But here is the deal. Object detectors are better at detecting some categories than others.

There could be several reasons for that like the number of ground truth objects for training is

not equivalent between categories or that the training images present better information and

features for some and not all of them. Trying a different dataset or working with a subset of

COCO with the categories that are not well detected could bring more details on the reason

behind this behavior and probably allow to prepare measures to improve detection. It will be

also interesting to add more categories to the 80 classes used by COCO and thus be able to

detect more objects.

Testing YOLO performance with videos was among the things we tried to do. In that account,

there are several things we did not explore. Things that could be tested in the future include

but are not limited to: using live feed instead of a video, working with videos of night scenes or

low light conditions and trying a different video format and compression. Something that could

be tested as well but is more related to a configuration in darknet is trying different probability

thresholds. We noticed that this configuration does affect detection speed.

Although our main approach was to show if it was feasible to run YOLO solely on the Raspberry

Pi, it would be very interesting to try out a combination of the Raspberry Pi with a neural stick

like the Intel Movidius [76] or use a different hardware such as the Nvidia Jetson Nano [77]

which brings the benefits of full-size GPUs to embedded systems. Another approach will be to

consider running YOLO on a cellphone as it has become essential to our lifestyles and therefore

Information Technology 57 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

having an object detector on it could help the development of interesting applications in areas

such as augmented reality. Finally, at the time of wrapping up this work, the Raspberry Pi 4

[78] was being launched with a more powerful processor and up to 4GB of RAM. These new

characteristics could easily help improve detection speed.

Information Technology 58 Final Grade Project

Bibliography

[1] S. Agarwal, J. O. D. Terrail, and F. Jurie, “Recent advances in object detection in the

age of deep convolutional neural networks,” CoRR, vol. abs/1809.03193, 2018. [Online].

Available: http://arxiv.org/abs/1809.03193

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time

object detection,” 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[3] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525, 2017.

[4] ——, “Yolov3: An incremental improvement,” arXiv, 2018.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-

tion with region proposal networks,” IEEE Transactions on Pattern Analysis & Machine

Intelligence, vol. 39, no. 06, pp. 1137–1149, jun 2017.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:

Single shot multibox detector,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas,

N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 21–37.

[7] D. Molloy, Exploring Raspberry Pi: interfacing to the real world with embedded Linux. John

Wiley & Sons, 2016.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick, “Microsoft coco: Common objects in context,” Computer Vision – ECCV 2014

Lecture Notes in Computer Science, p. 740–755, 2014.

59

http://arxiv.org/abs/1809.03193

School of Mathematical and Computational Sciences YACHAY TECH

[9] L. JL, T. SM, W. JQ, Z. HB, and W. YK, “A review on object detection based on deep

convolutional neural networks for autonomous driving,” in Chinese Control and Decision

Conference, 2019.

[10] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified, small, low power fully

convolutional neural networks for real-time object detection for autonomous driving,” in

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,

July 2017.

[11] S. Selvi and A. I. Chellam, “Smart video surveillance: Object detection, tracking and clas-

sification,” International Journal of Innovations and Advancement in Computer Science,

vol. 7, no. 3, March 2018.

[12] A. Coates and A. Y. Ng, “Multi-camera object detection for robotics,” in 2010 IEEE

International Conference on Robotics and Automation, May 2010, pp. 412–419.

[13] A. Kundu, K. M. Krishna, and J. Sivaswamy, “Moving object detection by multi-view geo-

metric techniques from a single camera mounted robot,” in 2009 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Oct 2009, pp. 4306–4312.

[14] X. Yang, Y. Tian, C. Yi, and A. Arditi, “Context-based indoor object detection as an

aid to blind persons accessing unfamiliar environments,” in Proceedings of the 18th ACM

International Conference on Multimedia, ser. MM ’10. New York, NY, USA: ACM, 2010,

pp. 1087–1090. [Online]. Available: http://doi.acm.org/10.1145/1873951.1874156

[15] T. Winlock, E. Christiansen, and S. Belongie, “Toward real-time grocery detection for the

visually impaired,” in 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition - Workshops, June 2010, pp. 49–56.

[16] Chia-Hsiang Lee, Yu-Chi Su, and Liang-Gee Chen, “An intelligent depth-based obstacle de-

tection system for visually-impaired aid applications,” in 2012 13th International Workshop

on Image Analysis for Multimedia Interactive Services, May 2012, pp. 1–4.

[17] R. Tapu, B. Mocanu, A. Bursuc, and T. Zaharia, “A smartphone-based obstacle detection

and classification system for assisting visually impaired people,” in The IEEE International

Conference on Computer Vision (ICCV) Workshops, June 2013.

Information Technology 60 Final Grade Project

http://doi.acm.org/10.1145/1873951.1874156

School of Mathematical and Computational Sciences YACHAY TECH

[18] Xiangrong Chen and A. L. Yuille, “A time-efficient cascade for real-time object detection:

With applications for the visually impaired,” in 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, Sep. 2005, pp. 28–

28.

[19] S. Agarwal, J. O. D. Terrail, and F. Jurie, “Recent advances in object detection in the

age of deep convolutional neural networks,” CoRR, vol. abs/1809.03193, 2018. [Online].

Available: http://arxiv.org/abs/1809.03193

[20] B. S. Manjunath, J. . Ohm, V. V. Vasudevan, and A. Yamada, “Color and texture descrip-

tors,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp.

703–715, June 2001.

[21] M. Bober, “Mpeg-7 visual shape descriptors,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 11, no. 6, pp. 716–719, June 2001.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.

deeplearningbook.org.

[23] R. Xu, C. Li, A. H. Paterson, Y. Jiang, S. Sun, and J. Robertson, “Aerial images and

convolutional neural network for cotton bloom detection,” Frontiers in Plant Science, vol. 8,

02 2018.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:

http://arxiv.org/abs/1409.1556

[25] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2018.

[26] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature

pyramid networks for object detection,” CoRR, vol. abs/1612.03144, 2016. [Online].

Available: http://arxiv.org/abs/1612.03144

[27] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. Available:

http://arxiv.org/abs/1704.04861

Information Technology 61 Final Grade Project

http://arxiv.org/abs/1809.03193
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1704.04861

School of Mathematical and Computational Sciences YACHAY TECH

[28] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size,”

CoRR, vol. abs/1602.07360, 2016. [Online]. Available: http://arxiv.org/abs/1602.07360

[29] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,

Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for modern con-

volutional object detectors,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017, pp. 3296–3297.

[30] J. Dai, Y. C. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convo-

lutional networks,” in NIPS, 2016.

[31] R. Mottaghi, X. Chen, X. Liu, N. Cho, S. Lee, S. Fidler, R. Urtasun, and A. Yuille, “The

role of context for object detection and semantic segmentation in the wild,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

IEEE Computer Society, 1 2014, pp. 891–898.

[32] J. Wang and L. Perez, “The effectiveness of data augmentation in image classification using

deep learning,” Convolutional Neural Networks Vis. Recognit, 2017.

[33] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Im-

proving neural networks by preventing co-adaptation of feature detectors,” arXiv e-prints,

Jul. 2012.

[34] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural net-

works,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), May

2015, pp. 1316–1322.

[35] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The

PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results,” http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in Proceedings of the 32Nd International Conference on

International Conference on Machine Learning - Volume 37, ser. ICML’15. JMLR.org,

2015, pp. 448–456. [Online]. Available: http://dl.acm.org/citation.cfm?id=3045118.

3045167

Information Technology 62 Final Grade Project

http://arxiv.org/abs/1602.07360
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167

School of Mathematical and Computational Sciences YACHAY TECH

[37] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5353–5360, 2015.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016,

pp. 770–778.

[39] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and the

impact of residual connections on learning,” AAAI Conference on Artificial Intelligence,

2017. [Online]. Available: https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/

14806

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recog-

nition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.

211–252, 2015.

[41] J. Lin and M. Sun, “A yolo-based traffic counting system,” in 2018 Conference on Tech-

nologies and Applications of Artificial Intelligence (TAAI), Nov 2018, pp. 82–85.

[42] J. Tao, H. Wang, X. Zhang, X. Li, and H. Yang, “An object detection system based on yolo

in traffic scene,” in 2017 6th International Conference on Computer Science and Network

Technology (ICCSNT), Oct 2017, pp. 315–319.

[43] N. Bhandary, C. MacKay, A. Richards, J. Tong, and D. C. Anastasiu, “Robust classifica-

tion of city roadway objects for traffic related applications,” in 2017 IEEE SmartWorld,

Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Com-

munications, Cloud Big Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug 2017, pp. 1–6.

[44] Z. Yi, S. Yongliang, and Z. Jun, “An improved tiny-yolov3 pedestrian detection

algorithm,” Optik, vol. 183, pp. 17 – 23, 2019. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S003040261930155X

[45] Álvaro Arcos-Garćıa, J. A. Álvarez Garćıa, and L. M. Soria-Morillo, “Evaluation of

deep neural networks for traffic sign detection systems,” Neurocomputing, vol. 316, pp.

332 – 344, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S092523121830924X

Information Technology 63 Final Grade Project

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
http://www.sciencedirect.com/science/article/pii/S003040261930155X
http://www.sciencedirect.com/science/article/pii/S003040261930155X
http://www.sciencedirect.com/science/article/pii/S092523121830924X
http://www.sciencedirect.com/science/article/pii/S092523121830924X

School of Mathematical and Computational Sciences YACHAY TECH

[46] R. Widyastuti and C.-K. Yang, “Cat’s nose recognition using you only look once (yolo) and

scale-invariant feature transform (sift),” 2018 IEEE 7th Global Conference on Consumer

Electronics (GCCE), pp. 55–56, 2018.

[47] W. Xu and S. Matzner, “Underwater fish detection using deep learning for

water power applications,” CoRR, vol. abs/1811.01494, 2018. [Online]. Available:

http://arxiv.org/abs/1811.01494

[48] J. R. Parham, J. P. Crall, C. V. Stewart, T. Y. Berger-Wolf, and D. I. Rubenstein, “Animal

population censusing at scale with citizen science and photographic identification,” in AAAI

Spring Symposia, 2017.

[49] C.-A. Brust, T. Burghardt, M. Groenenberg, C. Kading, H. S. Kuhl, M. L. Manguette, and

J. Denzler, “Towards automated visual monitoring of individual gorillas in the wild,” in

The IEEE International Conference on Computer Vision (ICCV) Workshops, Oct 2017.

[50] Y. Zhong, J. Gao, Q. Lei, and Y. Zhou, “A vision-based counting and recognition system

for flying insects in intelligent agriculture,” Sensors, vol. 18, no. 5, p. 1489, 2018.

[51] J. Seo, J. Sa, Y. Choi, Y. Chung, D. Park, and H. Kim, “A yolo-based separation of

touching-pigs for smart pig farm applications,” in 2019 21st International Conference on

Advanced Communication Technology (ICACT), Feb 2019, pp. 395–401.

[52] E. G. Solberg, “Deep neural networks for object detection in agricultural robotics,” Master’s

thesis, Norgewian University of Life Sciences, 2017.

[53] Y. Tian, G. Yang, Z. Wang, H. Wang, E. Li, and Z. Liang, “Apple detection during

different growth stages in orchards using the improved yolo-v3 model,” Computers

and Electronics in Agriculture, vol. 157, pp. 417 – 426, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S016816991831528X

[54] M. Radovic, O. Adarkwa, and Q. Wang, “Object recognition in aerial images using

convolutional neural networks,” Journal of Imaging, vol. 3, no. 2, 2017. [Online]. Available:

https://www.mdpi.com/2313-433X/3/2/21

[55] A. V. Etten, “You only look twice: Rapid multi-scale object detection in satellite imagery,”

ArXiv, vol. abs/1805.09512, 2018.

Information Technology 64 Final Grade Project

http://arxiv.org/abs/1811.01494
http://www.sciencedirect.com/science/article/pii/S016816991831528X
https://www.mdpi.com/2313-433X/3/2/21

School of Mathematical and Computational Sciences YACHAY TECH

[56] J. Carlet and B. Abayowa, “Fast vehicle detection in aerial imagery,” CoRR, vol.

abs/1709.08666, 2017. [Online]. Available: http://arxiv.org/abs/1709.08666

[57] S. Yang, J. Zhang, C. Bo, M. Wang, and L. Chen, “Fast vehicle logo detection

in complex scenes,” Optics & Laser Technology, vol. 110, pp. 196 – 201,

2019, special Issue: Optical Imaging for Extreme Environment. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0030399218310715

[58] Y. Xie, J. Cai, R. Bhojwani, S. Shekhar, and J. Knight, “A locally-constrained yolo

framework for detecting small and densely-distributed building footprints,” International

Journal of Geographical Information Science, vol. 0, no. 0, pp. 1–25, 2019. [Online].

Available: https://doi.org/10.1080/13658816.2019.1624761

[59] M. S. Chauhan, A. Singh, M. Khemka, A. Prateek, and R. Sen, “Embedded cnn

based vehicle classification and counting in non-laned road traffic,” in Proceedings of

the Tenth International Conference on Information and Communication Technologies and

Development, ser. ICTD ’19. New York, NY, USA: ACM, 2019, pp. 5:1–5:11. [Online].

Available: http://doi.acm.org/10.1145/3287098.3287118

[60] “Jetson tx2 module,” Dec 2018. [Online]. Available: https://developer.nvidia.com/

embedded/buy/jetson-tx2

[61] Z. Zhao, Z. Jiang, N. Ling, X. Shuai, and G. Xing, “Ecrt: An edge computing system for

real-time image-based object tracking,” in Proceedings of the 16th ACM Conference on

Embedded Networked Sensor Systems, ser. SenSys ’18. New York, NY, USA: ACM, 2018,

pp. 394–395. [Online]. Available: http://doi.acm.org/10.1145/3274783.3275199

[62] L. Fei-Fei, “Imagenet: crowdsourcing, benchmarking & other cool things,” http://

image-net.org/about-publication, 2010.

[63] “Flickr,” https://farm4.staticflickr.com/3160/2901140028 aaed0953c0 z.jpg.

[64] “Detection evaluation,” http://cocodataset.org/#detection-eval.

[65] “Test guidelines,” http://cocodataset.org/#guidelines.

[66] “Coco detection challenge,” https://competitions.codalab.org/competitions/5181#learn

the details.

Information Technology 65 Final Grade Project

http://arxiv.org/abs/1709.08666
http://www.sciencedirect.com/science/article/pii/S0030399218310715
https://doi.org/10.1080/13658816.2019.1624761
http://doi.acm.org/10.1145/3287098.3287118
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.nvidia.com/embedded/buy/jetson-tx2
http://doi.acm.org/10.1145/3274783.3275199
http://image-net.org/about-publication
http://image-net.org/about-publication
https://farm4.staticflickr.com/3160/2901140028_aaed0953c0_z.jpg
http://cocodataset.org/#detection-eval
http://cocodataset.org/#guidelines
https://competitions.codalab.org/competitions/5181#learn_the_details
https://competitions.codalab.org/competitions/5181#learn_the_details

School of Mathematical and Computational Sciences YACHAY TECH

[67] https://hpc.yachay.gob.ec/.

[68] “Opencv,” https://opencv.org/about/.

[69] “Openmp,” https://www.openmp.org/.

[70] “Cuda faq,” https://www.openmp.org/.

[71] “Nvidia cudnn,” https://developer.nvidia.com/cudnn.

[72] “Darknet,” https://github.com/pjreddie/darknet, accessed: 2019-02-10.

[73] W. Click, “Unplash,” https://unsplash.com/photos/jkC1ul95ujQ, 2018, accessed: 2019-04-

15.

[74] “Pexels,” https://www.pexels.com/videos/, accessed: 2018-10-20.

[75] “ffmpeg documentation,” https://ffmpeg.org/ffmpeg-all.html.

[76] “Intel neural compute stick,” https://software.intel.com/en-us/neural-compute-stick.

[77] “Jetson nano developer kit,” https://developer.nvidia.com/embedded/

jetson-nano-developer-kit.

[78] “Raspberry pi 4,” https://www.raspberrypi.org/products/raspberry-pi-4-model-b/.

Information Technology 66 Final Grade Project

https://hpc.yachay.gob.ec/
https://opencv.org/about/
https://www.openmp.org/
https://www.openmp.org/
https://developer.nvidia.com/cudnn
https://github.com/pjreddie/darknet
https://unsplash.com/photos/jkC1ul95ujQ
https://www.pexels.com/videos/
https://ffmpeg.org/ffmpeg-all.html
https://software.intel.com/en-us/neural-compute-stick
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Problem statement
	Scope of the Project
	General Overview

	Theoretical Framework
	Concepts
	Object Detection
	Applications
	Challenges
	Features

	Convolutional Neural Networks for Object Detection
	CNN Architecture
	CNNs Detectors
	CNNs on Embedded Systems
	CNNs challenges for Object Detection on Embedded Systems

	YOLO
	Description
	General Architecture
	Versions
	Applications
	YOLO's Challenges
	YOLO on Embedded Systems

	YOLO on Raspberry Pi
	General Thesis Structure
	Literature Review
	Experimental Design
	Thesis Writing

	Materials and Methods
	Dataset
	Architecture of Tiny YOLOv3
	Training Parameters
	Metrics
	Training
	Software and Hardware
	Deployment

	Experimental Design
	Darknet Simplification for YOLO
	Training Parameter Tuning
	Video Performance Evaluation

	Results
	Original YOLO vs Simplified YOLO
	Tuning the parameters
	Video

	Conclusions
	Literature Review
	Experiments
	Results
	Future Work

	Bibliography

