
UNIVERSIDAD DE INVESTIGACIÓN DE
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Resumen

Este proyecto de investigación se centra en la superresolución de imagen (SR) implemen-

tando convoluciones, transformadores de visión con ventanas desplazadas e interpolaciones

proximales para mejorar la resolución de imágenes en una escala de cuatro.Estas imple-

mentaciones forman parte de tres módulos principales de la arquitectura SR propuesta

(SwinIR-OH): extracción de caracteŕısticas superficiales que consta de una capa de con-

volución de 3×3, extracción de caracteŕısticas profundas que contiene transformadores de

visión residual con bloques de ventanas desplazados y reconstrucción de imágenes SR que

incluye convoluciones e interpolaciones vecinas. Los últimos años han sido testigos de un

progreso notable en SR utilizando técnicas de aprendizaje profundo. Sin embargo, los

algoritmos de SR que utilizan técnicas difieren en los siguientes aspectos significativos:

diferentes tipos de arquitecturas de red, funciones de pérdida, principios de aprendizaje y

estrategias. Por tal motivo, para realizar una investigación más adecuada sobre el efecto de

las convoluciones en la arquitectura basada en transformadores SR, todos los modelos SR

de última generación presentados en esta investigación se entrenaron en el mismo entorno

computacional. Todos los modelos de SR forman parte de cinco métodos existentes: redes

de gráficos neuronales, redes residuales, redes basadas en la atención, modelos generativos

de redes antagónicas y transformadores de visión. Se considera el código fuente disponible

y la media de la proporción máxima de señal a ruido (PSNR) con la media del ı́ndice

de similitud estructural (SSIM) antes de ser entrenado en el mismo entorno computa-

cional. Por otro lado, los resultados durante el entrenamiento del modelo muestran que

las métricas de calidad de reconstrucción de imágenes (IRQM) de SR tradicionales, como

PSNR y SSIM, se correlacionan de manera imprecisa con la percepción humana de la cali-

dad de imagen y dificultan el estudio del rendimiento de un modelo de SR. Estos resultados

abren la posibilidad de considerar alternativas como la fidelidad de la información visual

ix
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y el coeficiente de correlación disperso como posibles IRQM para medir el desempeño de

los modelos SR. Finalmente, los resultados indican que la implementación de secuencias de

convoluciones en la arquitectura de reconstrucción de imágenes SR mejora el rendimiento

durante la reconstrucción de imágenes SR, recuperando algunos detalles mı́nimos, como

las pestañas de un retrato, detalles que, sin las secuencias de convoluciones, se pierden en

los módulos de extracción profunda o el módulo de reconstrucción SR.

Palabras Clave:

super-resolución de imagen, visión artificial, transformadores de visión, interpolaciones,

convoluciones.
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Abstract

This research project focuses on image super-resolution (SR) implementing convolutions,

vision transformers with shifted windows, and neighbor interpolations to enhance the res-

olution of images in an upscale of four. These characteristics form part of three modules

of the proposed SR architecture based on vision transformers (SwinIR-OH): shallow fea-

ture extraction consisting of convolution layers, deep feature extraction containing residual

vision transformers with shifted windows blocks, and SR image reconstruction includes con-

volutions and neighbor interpolations. Recent years have witnessed remarkable progress

in SR using deep learning techniques. However, the SR algorithms using deep learning

techniques differ in the following significant aspects: different types of network architec-

tures, loss functions, learning principles, and strategies. For that reason, to do more proper

research on the effect of the convolutions in the SR transformer-based architecture, all the

state-of-the-art SR models presented in this research were trained in the same computa-

tional environment. They were selected considering their available source code, the mean

peak signal-to-noise ratio (PSNR), and the mean of structural similarity index measure

(SSIM). All the SR models form part of five existing methods: neural graph networks,

residual networks, attention-based networks, generative adversarial networks models, and

vision transformers. On the other hand, the results during the model’s training show that

traditional SR image reconstruction quality metrics (IRQM), such as the PSNR and SSIM,

correlate inaccurately with the human perception of image quality and make it challenging

to study the performance of the SR models. These results open the possibility of consid-

ering alternatives such as visual information fidelity and the sparse correlation coefficient

as potential IRQMs to measure the performance of SR models. Also, the results indicate

that implementing sequences of convolutions into SR image reconstruction architecture

based on vision transformers improves the performance during SR image reconstruction,

xi
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recovering some minimal details such as the eyelashes of a portrait, details that, without

the sequences of convolutions, are lost during the deep feature extraction module or SR

reconstruction module.

Keywords:

Super-resolution, computer vision, vision transformers, neighbor interpolation, convolu-

tions.
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Chapter 1

Introduction

1.1 Background

Image super-resolution (SR) refers to the methodology of retrieving high-resolution (HR)

images from low-resolution (LR) images and is a significant category of image processing

techniques in computer vision and image processing [1]. It has diverse real-world ap-

plications, including medical imaging, security, and surveillance. Other than enhancing

perceptual image quality, it also permits the enhancement of other computer vision tasks

[2]. This problem is demanding and inherently ill-posed since multiple HR images always

correspond to a single LR image. In some articles, a diversity of classical SR methods have

been proposed; due to the revolutionary of these methods, convolutional neural networks

(CNN) have become the primary alternative for SR.

Several popular datasets, including Set5 [3], Set14 [4], BSD100 [5], Urban100 [6], and

DIV2K [7], have been widely used for training and evaluating the SR methods. In all

these datasets, the LR images are typically synthesized by an uncomplicated and consistent

degradation method, such as bicubic downsampling or Gaussian blurring, followed by direct

downsampling. On the other hand, to measure the performance of the SR models, that is,

to measure the quality of the HR image from the LR image predicted by the SR models,

commonly are used two image reconstruction quality metrics (IRQM), the peak signal-to-

noise ratio (PSNR) [8], and the structural similarity index (SSIM) [9].

Most CNN-based strategies, such as dense connections and residual learning, concen-

trate on building architecture designs. Even though the performance is enhanced signif-
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icantly compared with other model-based methods, they commonly suffer from two fun-

damental issues stemming from the convolution layer. For instance, the relations between

convolution kernels and images are content-independent; using the identical convolution

kernel to restore various image areas may not be a good option [10]. Furthermore, convo-

lution is useless for long-range dependency modeling focusing on local processing.

A good alternative to CNN is transformers because it designs a self-attention instrument

to catch global relations between contexts and has demonstrated good performance in many

vision problems. Nevertheless, vision transformers (ViT) for image restoration generally

separate the input image into little patches with specified sizes (e.g., 48 × 48) and process

each patch independently [11]. Such a strategy inevitably provides rise to two defects; first,

the restored image may have edge artifacts around each small patch [12]. Second, the edge

pixels of each patch lose information for better restoration [10]. While overlapping patches

can alleviate this, it would introduce additional computational load.

Swin transformer [10] appears as a good alternative because it has shown excellent

guarantees owing to its integration of the benefits of both CNN and transformer. On the

one hand, it has the benefit of CNN processing images with large sizes due to the local

attention mechanism. On the other hand, it benefits from a transformer to long-range

model dependency with the shifted window scheme.

An excellent example of applying a swin transformer for SR is the SwinIR model [10],

based on the swin transformer architecture. SwinIR comprises three modules: shallow fea-

ture extraction, deep feature extraction, and high-quality image reconstruction. The shal-

low feature extraction module employs a convolution layer to get shallow features instantly

transferred to the reconstruction module to maintain low-frequency information. The deep

feature extraction module primarily consists of residual swin transformer blocks (RSTB),

each of which employs many layers for local attention and cross-window interaction. In

addition, it has one convolution layer at the end of the block for feature enhancement

and uses a residual relation to provide shortcuts for feature collection [10]. In the end,

the shallow and deep features are combined in the reconstruction module for high-quality

image reconstruction.

Unlike prevalent CNN-based image restoration models, the transformer-based SwinIR

has some benefits, such as content-based interactions between image content and attention

Information Technology Engineer 2 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

weights, which can be analyzed as spatially varying convolution. Furthermore, it has long-

range dependency modeling allowed by the shifted window mechanism, and finally, it has

a more satisfactory performance with fewer parameters.

1.2 Problem Statement

The problem is that the family of SR models differs from each other in the following major

aspects: different types of network architectures, different types of loss functions, different

types of learning principles and strategies, etc. For that reason, there is a continuous need

for standardized SR benchmarks to compare different proposed methods under the same

conditions and determine the performance of an SR model during HR image reconstruction

from an LR image.

Currently, most SR models standardized the measure of their performance by comparing

the reconstructed HR image against the original one implementing the PSNR and SSIM.

The PSNR value approaches infinity as the mean squared error (MSE) between two images

close to zero, indicating that a higher PSNR value gives a higher HR image reconstruction

quality. Contrarily, a small value of the PSNR indicates high numerical differences between

images [8]. On the other hand, the SSIM is a well-known quality metric employed to

measure the similitude between two images. Rather than traditional error summation

methods, the SSIM is created by modeling any image distortion as a hybrid of loss of

correlation, luminance distortion, and contrast distortion [9].

However, some studies have demonstrated that, as opposed to the SSIM, the MSE

and the PSNR poorly discriminate structural content in images since diverse types of

degradations used in the same image can generate an identical value of the MSE. Additional

studies have demonstrated that the MSE, and therefore the PSNR, have the most suitable

performance in assessing the quality of noisy images against SSIM [13]. Thus, focusing on

just the PSNR and SSIM as standards to measure the performance of SR models can not

be suitable and needs alternative metrics.
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1.3 Objectives

1.3.1 General objective

This research project aims to improve the performance records established by the bench-

mark SR model called the SwinIR model, either through conventional techniques such as

hyperparameter tuning or others that exploit the benefits of implementing convolutions

in the model’s architecture. As well as suggest alternative image quality metrics for SR

image reconstruction instead of the conventional PSNR and SSIM that could be suitable

for testing the precision of the SR models.

1.3.2 Specific objectives

• Provide a complete review in the same computational environment of image SR

techniques based on CNNs and ViTs, including benchmark datasets and performance

metrics.

• Suggest alternative image restoration qualities metrics to manage challenges and open

issues that represent capturing and quantifying the human visual perception in the

SR research field.

• Demonstrate that convolutions can help ViTs improve their performance in SR tasks.
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Chapter 2

Theoretical Framework

2.1 Artificial Intelligence

2.1.1 What is artificial intelligence?

Artificial intelligence (AI) awakens feelings, and the primary inquiry for the engineer, par-

ticularly for the computer scientist, is the inquiry of the innovative machine that conducts

like a human, exhibiting intelligent behavior. Alan Turing, an earlier pioneer of AI, sug-

gested an explanation of an intelligent machine in which the machine must hand a test.

This test is well known as Turing test. The Turing test is a methodology of questioning

for an AI to determine whether this AI is qualified to think like a human being or not [14].

Turing suggested that a computer can be said to have AI if it can imitate human answers

under controlled conditions.

The authentic Turing test demands three terminals, each physically disconnected from

the other. One terminal is conducted by a computer, while humans use the other two [15].

During the test, one of the humans is the questioner, while the second human and the

computer are the respondents. The questioner quizzes the respondents within a precise

subject area, employing a specified context and structure. After a predetermined number

of queries or times, the questioner is asked to determine which respondent was a computer

and which was a human [16]. The test is replicated several times. If the questioner makes

the correct conclusion in half of the test runs or less, the computer is assumed to have

artificial intelligence because the questioner considers it “just as human” as the human

respondent.
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However, for practical AI, which deals with problem-solving, the Turing test is nonessen-

tial and cannot be viewed as a satisfactory definition of AI. Thus, it becomes difficult to

define AI robustly, but finding a more precise definition with a historical explanation is

feasible. For instance, in 1955, John McCarthy characterized the objective of AI is to

design machines that act as though they were intelligent [17]. This definition cannot be

correct because AI aspires to solve complex practical problems and not just conduct like

it is intelligent. Encyclopedia Britannica gives the other definition; it defines AI as the

capacity of computer-controlled robots or digital computers to solve issues usually associ-

ated with humans’ higher intellectual processing capacities [18]; but, this definition also

has drawbacks because, according to this definition, every computer is an AI system, and

that is not true. This predicament is solved elegantly by the following definition by Elaine

Rich, which describes AI as the analysis of how to make computers do things at which, at

the moment, people are better [19]. In this definition, Rich, tersely and concisely, describes

what AI investigators have been doing for the last 50 years.

2.1.2 Milestones in the development of AI

This subsection looks back from 2015 to 2021 and checks the AI innovations and milestones

that made it to the headlines. Table 2.1 with the most important AI milestones, complete

and summarizes this subsection.

Table 2.1: Important milestones in AI from 2015 to 2021

Year Milestone Details Reference

2015 Machines “see”

better than

humans

Researchers studying the annual ImageNet

challenge report that machines are now

surpassing humans since the accuracy rate

of the winning algorithm improved from

71.8% to 97.3%, thus, encouraging

researchers to claim that computers could

recognize objects in visual data more

accurately than humans.

[20]

Continued on next page
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Table 2.1: Important milestones in AI from 2015 to 2021 (Continued)

2016 AlphaGo goes

where no

machine has

gone before

AlphaGo, created by a Google subsidiary

called Deep Mind, defeated the world Go

champion Lee Sedol over five rounds.

AlphaGo employed neural networks to

analyze the game and learn as it played.

[21]

2018 Self-driving

cars hit the

roads

The growth of self-driving cars is a

headline usage case for today’s VR; their

applications have caught the public

creativity more than any other.

[22]

2021

MusicBERT The model can comprehend music from

symbolic data, that is, not in audio,

otherwise in MIDI format, and then do

complex tasks such as emotion

classification, genre classification, and

music piece matching.

[23]

GitHub Copilot The current AI system is trained on

open-source code, contextualizing a

situation using docstrings, preceding codes,

comments, and function names to determine

and generate relevant code.

[24]

Tensorflow 3D This upgrade provides access to models for

the development, operations, training, loss

functions, and deployment of 3D scene

understanding models, data processing tools,

and metrics.

[25]
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2.2 Neural Networks

Artificial neural networks are famous machine learning methods that imitate the mech-

anism of learning in biological organisms [26]. The human nervous system incorporates

cells, which are guided as neurons. The neurons are linked with dendrites and axons, and

the connecting regions between dendrites and axons are referred to as synapses [27]. These

connections are illustrated in Fig. 2.1a. The forces of synaptic relations often vary in re-

sponse to exterior stimuli and this change is how understanding occurs in living organisms

[27]. This biological mechanism is simulated in artificial neural networks containing com-

putation units referred to as neurons [26]. This research project will use the term “neural

networks” to refer to artificial neural networks rather than biological ones. The compu-

tational units are connected through weights, which serve the same role as the strengths

of synaptic connections in biological organisms. Each piece of information to a neuron is

scaled with a weight, which affects the function calculated at that unit [28]. This architec-

ture is illustrated in Fig. 2.1b where ∑ is the transfer function, φ is the activation function

and θ= [θ1, . . . , θn] is the threshold. An artificial neural network computes a function of

the inputs by propagating the computed values from the input neurons x = [x1, . . . , xn]

to the output neurons o = [o1, . . . , on] and using the weights W = [wi,j] as intermediate

parameters [26]; thus, learning occurs because of varying of W connecting the neurons.

Just as exterior stimuli are required for learning in biological organisms, the exterior stim-

ulus in artificial neural networks is supplied by the training data that includes examples

of input-output pairs of the process to be learned.

(a) Biological neural network [29] (b) Artificial neural network

Figure 2.1: The synaptic links between neurons, note the similitude between biological and
artificial neural network
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2.2.1 Architecture of neural networks

In this subsection, we will introduce single-layer and multi-layer neural networks. In the

single-layer network, a group of inputs is instantly mapped to output using a generalized

linear function variation. This simple instantiation of a neural network is also referred to as

the perceptron [30]. In multi-layer neural networks, the neurons are arranged in a layered

fashion, in which a group of hidden layers separates the input and output layers. This

layer-wise architecture of the neural network is also referred to as a feed-forward network

[31]. This section will discuss both single-layer and multi-layer networks.

Single-layer neural networks

This neural network includes a unique input layer and an output node [30]. The fundamen-

tal architecture of the perceptron is illustrated in Fig. 2.1b, in which a unique input layer

communicates the characteristics to the output node. The edges from the input to the out-

put include the W, with which the characteristics are multiplied and added at o[32]. After

that, the signal function is applied to transform the aggregated value into a class label.

The signal function plays the role of an φ [33]. Diverse φ alternatives can affect different

models used in machine learning, like the support vector machine, least-squares regression

with numeric targets, or a logistic regression classifier. Most fundamental machine learning

models can easily illustrate simple neural network architectures [33]. It is helpful to model

classic machine learning techniques as neural architectures because it provides a clearer

picture of how deep learning generalizes traditional machine learning.

A consistent part of the prediction is referred to as bias in many settings [33]. For

example, assume a setting where the feature variables are mean-centered, but the mean

of the binary class prediction from {−1, +1} is not 0; this will tend to happen when the

binary class distribution is highly imbalanced [32]. In such a case, the approach above is

not sufficient for prediction. We must include an additional bias variable that catches this

invariant part of the prediction. The bias can be included as the weight of an edge by using

a bias neuron b; this is performed by adding a neuron that always transmits a value of 1

to the output node [30]. The weight of the edge connecting b to the output node provides

the bias variable. An example of a biased neuron is shown in Fig. 2.2
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Figure 2.2: The basic architecture of the single computational layer: the perceptron with
bias

Multi-layer neural networks

Multilayer neural networks include more than one computational layer, and its basic ar-

chitecture, known as the perceptron, includes an input and output layer [31], of which

the output layer is the unique computation-performing layer, and the input layer sends

the data to the output layer. It is important to mention that all calculations are visible

to the user; on the other hand, the additional middle layers (between input and output)

are called hidden layers r because the calculations performed are not visible to the user

[34]. The distinctive architecture of multilayer neural networks is called feed-forward net-

works because succeeding layers feed into one another in the ahead direction from input

to output [31]. The default architecture of feed-forward networks supposes that all nodes

in one layer are linked to those of the following layer. Consequently, the neural network’s

architecture is practically fully clarified once the number of nodes in each layer has been

selected [35]. The only remaining component is the loss function optimized in the output

layer. It is particularly common to employ softmax outputs with cross-entropy loss for

discrete projection and linear outputs with the squared loss for real-valued projection.

Like single-layer networks, bias neurons can be employed in the hidden and output

layers. Models of multilayer networks with and without the bias neurons are illustrated in

Fig. 2.3a and Fig. 2.3b, respectively. In each case, the neural network includes three layers.

Note that the input layer is often not counted because it simply transmits the data, and

no computation is performed in that layer [34]. If a neural network contains p1 . . . pn units
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in each of its κ layers, then the column vector representations of these outputs, denoted by

h1 . . . hκ, have dimensionalities p1 . . . pκ [35]. Therefore, the number of units in each layer

is referred to as the dimensionality of that layer.

(a) With bias neurons (b) No bias neurons

(c) Vector notation and architecture

Figure 2.3: The basic architecture of a feed-forward network with two hidden layers and
a single output layer; notice that, even though each unit contains a single scalar variable,
one often represents all units within a single layer as a single vector unit which is often
represented as rectangles and have connection matrices between them.

The weights of the links between the input layer and the early hidden layer are included

in a matrix W1 with size d × p1 where d is the dimension of the input, while the weights

between the rth hidden layer and the (r +1)th hidden layer are represented by the pr ×pr+1

matrix Wr. If the output layer includes o nodes, then the last matrix Wκ+1 is of size

pκ ×o. Notice that, the input-to-hidden layer represented in Eq. 2.1, the hidden-to-hidden

layer represented in Eq. 2.2, and the hidden-to-output layer represented in equation 2.3

transformed the d-dimensional input vector x.

h1 = φ(WT
1 x) (2.1)
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hp+1 = φ(WT
p+1hp)∀p ∈ {1 . . . κ − 1} (2.2)

o = φ(WT
κ+1hk) (2.3)

2.2.2 Activation and loss functions

The selection of activation function is a crucial aspect of neural network configuration [36].

In the case of the perceptron, the selection of the signal activation function is inspired by

the reality that a binary class label requires to be predicted [37]. However, it is probable

to have other conditions where various target variables may be predicted. For instance, if

the target variable to be predicted is authentic, employing the identity activation function

makes sense, and the consequent algorithm is the same as least-squares regression [36].

If it is desirable to predict a possibility of a binary class, it makes sense to employ a

sigmoid function for activating the output node so that the output o shows the probability

that the observed value o of the dependent on variable 1 [38]. The negative logarithm of

|o/2 − 0.5 + o| is used as the loss, assuming that o is coded from {−1, 1} as the probability

that o = 1, then |o/2 − 0.5 + o is the probability that the accurate value is predicted [38].

This affirmation is efficiently verified by examining the two cases where o = 0 or o = 1.

The significance of nonlinear activation functions becomes important when one move

from the single-layered perceptron to the multi-layered architectures explained in this chap-

ter. Various nonlinear functions may be employed in diverse layers, such as signal, sigmoid,

or hyperbolic tangents. Keep in mind we use the notation φ to indicate the activation

function o = φ(W · x). Therefore, a neuron calculates two functions within the node,

so we have included the summation symbol ∑ and the activation symbol φ. The value

calculated before the activation function will be called the pre-activation value, whereas

the value calculated after using the activation function is called the post-activation value

[36]. The output of a neuron is permanently the post-activation value, although the pre-

activation variables are often employed in diverse types of analyses. The pre-activation

and post-activation values of a neuron are illustrated in Fig. 2.4. The fundamental acti-

vation function of φ(·) is the identity or linear activation, which provides no nonlinearity
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[39]. The linear activation function is often employed in the output node when the target

is a real value. It is even employed for discrete outputs when a smoothed surrogate loss

function requires to be set up.

Figure 2.4: Pre-activation and post-activation values within a neuron [39]

The classical activation functions employed earlier in the development of neural net-

works were the sign(·) function described by Eq. 2.4, the sigmoid(·) function described by

Eq. 2.5, and the hyperbolic tangent function described by Eq. 2.6 where ν is any value.

φ(ν) = sign(ν) (2.4)

φ(ν) = 1
1 + e−ν

(2.5)

φ(ν) = e2ν − 1
e2ν + 1 (2.6)

While the sign(·) activation function can be employed to map to binary outputs at

prognosis time, its non-differentiability avoids its benefit for making the loss function at

training time [40]. For instance, while the perceptron employs the sign(·) activation func-

tion for prediction, the perceptron criterion in training only needs linear activation. The

sigmoid(·) activation outputs a value between 0 and 1, which allows performing calcula-

tions that should be analyzed as probabilities[41]. Furthermore, it is also useful in making

probabilistic outputs and constructing loss functions derived from maximum-likelihood

models. The tanh(·) activation function has a shape equivalent to the sigmoid(·) function,
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except that it is horizontally re-scaled and vertically translated/re-scaled to the [−1, 1]

[37]. The tanh(·) and sigmoid(·) functions are connected as Eq. 2.7.

tanh(ν) = 2 · sigmoid(2ν) − 1 (2.7)

The sigmoid(·) and the tanh(·) functions have been the historical tools of alternative

for including nonlinearity in the neural network [42]. The tanh(·) function is preferable to

the sigmoid(·) when the outputs of the calculations are expected to be both positive and

negative. Similarly, its mean-centering and larger gradient concerning sigmoid(·) make it

easier to train [38]. In recent years, however, several piecewise linear activation functions

have become more popular such as the rectified linear union function ReLu(·) described

by Eq. 2.8 and hard tanh(·) described by Eq. 2.9.

φ(ν) = max{ν, 0} (2.8)

φ(ν) = max{min[ν, 1], −1} (2.9)

The hard tanh(·) and ReLU(·) activation functions have predominantly replaced the

soft tanh(·) and sigmoid(·) activation functions in contemporary neural networks because

of the facility of training multilayered neural networks with these activation functions [43].

Pictorial illustrations of all the activation functions mentioned above functions are repre-

sented in Fig. 2.5. Remarkably, all activation functions represented here are monotonic.

Furthermore, other than the identity activation function, most other activation functions

permeate at extensive absolute values of the argument, at which growing further does not

modify the activation much.

2.2.3 Training neural network

In the single-layer neural network, the training methodology is moderately straightforward.

The loss function or error can be calculated as a direct function of the weights, allowing

uncomplicated gradient computation [38]. In the case of multi-layer networks, the difficulty

is that the loss is a complex composition function of the weights in earlier layers. The gra-
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Figure 2.5: Activation functions are applied to the outputs of each neuron in a neural
network to introduce non-linearity into the output, permitting the network to learn a
wider range of complex relationships between inputs and outputs [38].

dient of a composition function is calculated by employing the backpropagation algorithm

[44]. The backpropagation algorithm leverages the chain rule of differential calculus, which

calculates the error gradients in representations of summations of local-gradient products

over the diverse paths from a node to the output. Even though this summation has an

exponential number of components well known as paths, one can calculate it efficiently

by employing dynamic programming [45]; thus, the backpropagation algorithm is a direct

application of dynamic programming. It contains two principal phases, the forward and

backward phases; the forward phase is needed to calculate the output values and the local

derivatives at various nodes. On the other hand, the backward phase is required to collect

the outcomes of these local values of whole paths from the node to the output:

1. Forward phase: In this phase, the inputs for a training model are fed into the

neural network, resulting in a forward cascade of computations through the layers

using the current set of weights [46]. The final predicted output can be compared to

the training instance, and the derivative of the loss function concerning the output

is computed [44]. After that, the loss derivative must be computed concerning the

weights in all layers in the backward phase.
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2. Backward phase: The main purpose of the backward phase is to understand the

gradient of the loss function concerning the diverse weights by employing the chain

rule of differential calculus [47]. These gradients are employed to edit the weights.

Since these gradients are learned in the backward movement, beginning from the

output node, this learning methodology is known as the backward phase [48]. Con-

sider a sequence of the hidden unit h1, h2, . . . , hn followed by output o concerning

which the loss function L(·) is calculated. Moreover, consider that the weight of the

link from the hidden unit to hr to hr+1 is W(hr,hr+1). Then, if a unique path exists

from h1 to o, it is possible to derive the gradient of the loss function concerning

any of these edge weights employing the chain rule [38]. The expression mentioned

above considers that only a single path from h1 to o exists in the network, whereas

an exponential number of paths might exist in reality. A generalized variant of the

chain rule, known as the multivariable chain rule, calculates the gradient in a com-

putational graph where there is more than one path [47]; this is reached by adding

the composition from h1 to o along each path.

2.3 Transformers and Deep Learning

Transformers are deep learning models with state-of-the-art performance in several fields

such as NLP, computer vision, and speech recognition [49]. The immense surge of newly

proposed transformer model variants has made it challenging for practitioners and re-

searchers alike find it challenging to keep pace. Like most neural networks, transformer

models are extensive encoder-decoder blocks that process data [50]. Small but strategic

additions to these blocks (illustrated in Fig. 2.6) make transformers uniquely powerful.

Transformers employ positional encoders to organize data elements in and out of the net-

work. Attention units follow these tags, computing an algebraic map of how each element

connects to the others [51]. Attention queries are generally executed in parallel by calcu-

lating a matrix of equations called multi-headed attention; computers can notice the same

patterns humans see with these tools.
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Figure 2.6: Primary transformer architecture suggested by [52] and established on the
encoder-decoder architecture.

2.3.1 Source and target representation

Both target and source words are tokenized; these tokens go via embedding and positional

encoding to provide a position-encoded illustration for all sentences [51].

Embedding

Classic word embedding lookup for tokens in a sentence can transform a sentence of length

l, to a matrix A of dimension (l, δ), i.e., A∈ Rl×δ where δ is the embedding dimension-

depth.

Positional encoding

In transformer architecture, recurrent neural networks are substituted by multi-head at-

tention layers to achieve parallelism and speed [53]; thus, it becomes essential to explicitly
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pass the information regarding the word ordering to the model layer as one way of catching

it. This encoding of word order information is called positional encoding; it is possible to

derive diverse requirements for effective positional encodings [54]. They are

• Exceptional encoding value for each time step.

• Constant distance between two-time steps through sentences of diverse lengths.

• The encoding results generally are independent of the length of the sentence.

• The encoding is deterministic.

One trivial way to achieve all the positional encoding conditions is to employ binary

representation [53]. Figure 2.7 highlights how with a vector of depth or size three, it is

possible to develop eight positional encodings using binary values that satisfy all the re-

quirements given above. The illustration of each bit as grey (0) and white (1) demonstrates

how each position is different and has a continuous difference. It is important to mention

that implementing binary values is very costly from a memory perspective [51].

Figure 2.7: Positional encoding of dimensionality three for eight positions [51].

If the length of the sentence is provided by l and the embedding dimension-depth is

provided by δ, positional encoding P is a 2-d matrix of identical dimension [54], i.e., P

∈ Rl×δ. Every position can be expressed with equation in terms of i, j as is demonstrated
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in Eq. 2.10 and Eq. 2.11 where i = 0, . . . , l − 1, j = 0, . . . , ⌊(δ − 1)/2⌋.

Pi,2j = sin(i/10002j/δ) (2.10)

Pi,2j+1 = cos(i/10002j/δ) (2.11)

The definition of the function above demonstrates that the frequencies are dropping along

the vector dimension and create a geometric progression from 2π to 10000 × π on the

wavelengths [51]. As is illustrated in Fig. 2.6, the two matrices, that is to say, the positional

encoding P, and A are added to generate the input illustration X = A + P ∈ Rl×d.

2.3.2 Attention layers

Self-attention is the fundamental building block in transformers, in both encoders and

decoders [55]. It has slight variations based on how and where it is employed in the

encoder and decoder.

Self-attention

To understand multi-head attention, it is crucial to break down the calculations and com-

prehend the single-head portion, known as self-attention [56]. Fig. 2.8 shows how the

input vectors, xi, are turned to the output vectors, zi, across the self-attention layer. Each

individually input vector, x, develops three various vectors: the query, key, and value,

(q, k, v, ) [57]. All of them are obtained by projecting the input vector, xi, at time i on

the learnable weight matrices Wq, Wk, and Wv to get qi, ki, and vi, respectively. These

queries, key, and value weight matrices are randomly set up, and the weights are learned

from the training process [56]. The inputs for the first attention layer of the encoder and

decoder are the summation of the word embeddings and positional encodings.

Parallel to the attention discussion, the self-attention has all three vectors developed

for every input, and their roles are the following:

1. The role of the query vector of token i, qi, is to connect with every other key vectors∑l
j=0 qjk

T
j to influence the weights for its output zi.

2. The role of the key vector of a token i, ki, is to be matched with every query vector to
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obtain similitude with the query and influence the output through query-key outcome

scoring.

3. The role of the value vector of a token i, vi, is taking out information by mixing it

with the output of the query-key scores to obtain the output vector zi.

The analytical flow of all the calculations carried out for individual tokens i from input to

output is illustrated in Fig. 2.9.

Figure 2.8: Self-attention inputs are mapped to queries, keys, and values, and develop the
output for each input [51].

Figure 2.9: The dotted lines indicate the total flow of calculation for one input through a
self-attention layer [51].

In place of a vector calculation for each token i, input matrix X ∈ Rl×d where d is the
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dimension of the inputs and l is the maximum length of the sentence [56], combines with

each query, key, and value matrices (q, k, v) as a unique calculation given by Eq. 2.12

where Att(·) is the attention layer and Smax(·) is the softmax function.

Att(Q, K, V) = Smax

QKT

√
dκ

V (2.12)

Multi-head attention

In place of a unique self-attention head, there can be ℏ parallel self-attention heads called

multi-head attention [58]. In the earliest transformer paper, the authors employed ℏ = 8

heads. Multi-head attention provides diverse subspace representations instead of a unique

representation for the inputs, which allows the capture of different aspects of the identical

inputs. It also allows the model expands the focus to diverse positions [59]. Each head can

learn something different; for instance, in machine translation, it may be about learning

conjugation, grammar, tense, etc.

Figure 2.10: Multi-head attention [51].

Multi-head attention has multiple groups of query, key, and value weight matrices, re-

sulting in different query, key, and value matrices for the inputs, eventually generating

output matrices Zi [51]. These output matrices from each head are connected and multi-

plied with another weight matrix WO to get a unique final matrix z, with vectors zi as

output for each input xi. The parallel input-to-output transformations for all the heads

are illustrated in Fig. 2.10.
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Masked multi-head attention

It is desired that the decoder learns from the encoder sequence and a particular decoder

sequence, which the model has already seen, to anticipate the next character or word [60].

Thus, for the first layer of the decoder, identical to the sequence-to-sequence architecture,

only prior target tokens must be present, and others must be masked. This is executed by

having a masking weight matrix M with -∞ for future tokens and 0 for previous tokens [51].

This calculation is inserted after the scaling of the multiplication of Q and KT and before

the softmax so that the softmax outcomes are in the actual scaled values for previous

tokens and the value 0 for future tokens [61]. This extraordinary alteration results in

masked multi-head attention described in Eq. 2.13 where Mmasked(·) is the masked multi-

head attention.

Mmasked(Q, K, V) = Smax

QKT + M√
dk

V (2.13)

Encoder-decoder multi-head attention

Learning the attention relationship between the entire source input and the target output

at a given time is required on the decoder side [51]. Hence, the query vectors from the

target sequence before a provided time and the values and keys from the whole input

sequence of the encoder are given to the self-attention layer in the decoder, as illustrated

in Fig. 2.6

2.3.3 Residuals and layer normalization

Equivalent to ResNets, the inputs x are briefly circuit to the output z, and both are

added and passed via layer normalization Lnorm(x + z) [51]. Layer normalization Lnorm(·)

guarantees each layer contains 0 mean and a unitary variance. For each hidden unit ι,

calculates Eq. 2.14 where g is the progress variable and can be set up to 1, µ is the mean

given by Eq. 2.15 and σ is the standard deviation given by Eq. 2.16. Layer normalization

decreases the covariance shift, that is, the gradient dependencies between each layer, and

hence speeds up the convergence as fewer iterations are needed [62]. This is related to

batch normalization, where batch normalization happens at one hidden unit level, and a 0
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mean and a unitary variance are achieved on that batch. The benefit of layer normalization

is that it operates independently of the batch size [63]; that is to say, it can give a single

example, a little batch, or a large batch.

ιi = g

σ
(ιi − µ) (2.14)

µ = 1
n

n∑
i=1

ιi (2.15)

σ =
√

1
n

(ιi − µ)2 (2.16)

2.3.4 Position-wise feed-forward networks

Both the encoder and decoder include a fully connected feed-forward network after the

attention sublayers. Every position goes via the same transformations, which are distinct

only at the layer level [64]. Similar linear transformations with a ReLU(·) activation in-

between positions are performed for each one. The feed-forward network is described in

Eq. 2.17.

Fforward(x) = max(0, xW1 + b1)W2 + b2 (2.17)

2.3.5 Encoder

The encoder block in the transformer is formed by n blocks of multi-head attention, add &

normalization, feed-forward networks, and add & normalization as represented in Fig. 2.6.

Every layer of multi-head attention on the encoder side follows the source input or input,

that is, attention between inputs and inputs. [51] hold that each layer of the transformer

on the encoder side serves a diverse NLP task in the classical sense, such as part-of-speech,

constituents, dependencies, entity resolution, etc.

2.3.6 Decoder

The transformer’s decoder block is formed by n blocks of multi-head attention, add &

normalization, encoder-decoder attention, add & normalization, feed-forward networks,

add & normalization as represented in Fig. 2.6. The first layer of multi-head attention
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on the decoder side follows the target, that is to say, attention between masked outcomes

with themselves [65]. The encoder-decoder attention layer produces attention between the

source and the target.

2.4 Image Super-Resolution and Vision Transformers

Image super-resolution refers to improving an image’s resolution from low resolution to high

resolution, and recently for doing this task are implemented transformers’ neural networks.

The transformer connects the benefits of convolutional neural networks to parallelize the

calculations and recurrent neural networks to catch long-range, variable-length sequential

knowledge [11]. Before transformers, the highest image recognition rate came from CNN.

Occasional pure transformer models for image recognition are competitive with state-of-

the-art CNN models [12]. In this section, we focus on the vision transformer, introduced

to notice how effective pure transformer models could be for computer vision.

2.4.1 Vision transformer

Given a picture with a resolution ω × m and c channels, the picture can be expressed by

x ∈ Rω×m×c [66]. ViT begins by breaking the two-dimensional image into a succession of

η image patches with ρ patch size, xp ∈ Rη×(ρ2×C), with a resolution ρ × ρ, where η = ωm
ρ2 .

The succession of image patches is like the token succession in the classic transformer.

Before transmitting the patch succession via the embedding layer, a learnable embed-

ding analogous to the [CLS ] token in BERT, xcls is prepended onto each patch vector [67].

So xp→ [xcls; xp]. Employing the embedding layer, E∈ R(ρ2×c)×D, and one-dimensional po-

sitional encodings, Epos ∈ R(η+1)×D, It is possible to compute the input to the transformer

[51]. D is the transformer’s hidden size.

z0 = [xcls; x(1)
p E; . . . ; xη

pE] + Epos (2.18)

From Eq. 2.18, z0 is given into a mostly common transformer encoder architecture with

encoder layers described by Eq. 2.19, Eq. 2.20 and Eq. 2.21 where z0
n is the classifica-

tion embedding for the final encoder layer, Mattention(·) is the multi-head attention layer,

Lnorm(·) is the normalization layer and Fforward(·) is the feed-forward network.
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z′
i = Mattention(Lnorm(zi−1) + zi−1) (2.19)

zi = Fforward(Lnorm(zi) + z′
i) (2.20)

y = Lnorm(z0
n) (2.21)

Also, the feed-forward layer has two fully-connected layers followed by a ReLu(·) acti-

vation function. One of how ViT is different from the standard transformer is that in ViT,

the LayerNorm operation is used to the output of the previous layer before the residual link

takes place [52]. In the standard transformer, the residual connection was added before

the layer norm.

A succession of experiments with ViT confirms that the inductive biases presented by

CNN are valuable for small datasets but not for larger ones [68]. The model can comprehend

the appropriate correlations with larger datasets, as shown for various transformers. ViT

also demonstrates that the positional encodings learn the spatial relationship between

patches; in other words, it learns the distance inside the image, and patches close to each

other end up with identical positional encodings. The positional encodings even learn the

two-dimensional spatial correlations, which are patches in the same row or column with

identical positional encodings [69]. The investigations also revealed that hard-coding the

two-dimensional layout of the image patches into the positional encodings does not enhance

quality. This outcome is possible because building inductive biases into a model as versatile

as a transformer controls it from understanding what is or is not significant on its own.

Lastly, the vision transformer analyzes axial attention’s modification to the self-attention

mechanism, known as axial attention. It represents where attention is between patches in

the identical row or the identical column [70]; in other words, ViT constructs axial trans-

former blocks, where a column attention mechanism pursues a row attention mechanism.
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2.4.2 Swin transformer

Numerous vision tasks, such as semantic segmentation, demand dense prediction at the

pixel level; this would be uncontrollable for a transformer on high-resolution images because

the computational complexity of its self-attention is quadratic to image size. To manage

the issues, there is a general-purpose transformer backbone called swin transformer [71],

which has linear computational complexity to image size because it creates hierarchical

feature maps.

Figure 2.11: The swin transformer constructs hierarchical feature maps by combining image
patches (indicated in white) in more deep layers. It has linear computation complexity to
input image size due to self-attention calculation exclusively within each local window
(indicated in green). Therefore, it can operate as a general-purpose backbone for image
classification and dense recognition tasks. On the other hand, ViT creates feature maps
of a single low resolution resulting in a quadratic computation complexity to input image
size due to the computation of self-attention globally.

As illustrated in Fig. 2.11, swin transformer forms a hierarchical illustration by be-

ginning with small-sized patches and slowly incorporating neighboring patches in deeper

transformer layers. With these hierarchical feature maps, the swin transformer model can

profit conveniently from advanced techniques for dense prediction [71]. The linear com-

putational complexity is performed by calculating self-attention in the local way within
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non-overlapping windows that partition an image (outlined in red in Fig. 2.11). The num-

ber of patches in separate windows is fixed, and thus the sophistication becomes linear

to image size. These distinctions make swin transformer appropriate as a general-purpose

backbone for diverse vision tasks, unlike previous transformer-based architectures, which

generate feature maps of a unique resolution and have quadratic complexity.

A fundamental composition element of the swin transformer is its shift of the window

division between successive self-attention layers [72]; as illustrated in Fig. 2.12, the shifted

windows bridge the preceding layer’s windows, given relations that significantly improve

modeling power. This method has good performance regarding real-world latency; fur-

thermore, all query patches within a window have identical keys, which facilitates memory

access in hardware.

Figure 2.12: In layer l (left), a typical window partitioning scheme is considered, and
self-attention is calculated within the separate window. In the successive layer l + 1, the
window partitioning is changed, resulting in new windows.

Architecture

Swin transformer divides an input image into non-overlapping patches by a patch-splitting

module, like any other ViT. Each patch is a “token”, and its feature is established as a

concatenation of the raw pixel RGB (red, green, blue) values [71]. A linear embedding
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layer is used for this raw-valued feature to project it to an arbitrary number of channels.

In the architecture illustrated in Fig. 2.13, there is a patch size of 4 × 4, and each patch’s

feature dimension is 4 × 4 × 3 = 48.

It is applied to many transformer blocks with modified self-attention computation on

patch tokens; these blocks keep the number of tokens
(

H
4 × W

4

)
and, jointly with the linear

embedding, form part of the “Stage 1.”

(a) Architecture of a Swin transformer.

(b) Two successive Swin transform-
ers blocks where W-MSA is a multi-
head self-attention module with reg-
ular and SW-MSA is a shifted win-
dowing configurations.

Figure 2.13: Architecture of a Swin transformer with successive blocks.

To create a hierarchical expression, the number of tokens is decreased by patch-merging

layers as the network gets deeper. The first patch connecting layer connects the features

of each group of 2 × 2 neighboring patches and uses a linear layer on the 4c-dimensional

connected features. This decreases the number of tokens by a multiple of 2 × 2 = 4 (2×
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downsampling of resolution) [71], and the outcome dimension is designated to 2c. Swin

transformer blocks are used later for feature transformation, with the resolution maintained

at ω
8 × m

8 . This first block of patch merging and feature transformation is represented as

“Stage 2” of Fig. 2.13. The procedure is replicated twice as “Stage 3”, and “Stage 4”, with

outcome resolutions of ω
16 × m

16 and ω
32 × m

32 , respectively. All these stages create a hierarchical

representation with identical feature map resolutions as ordinary convolutional networks

[72]. Consequently, the architecture can replace the backbone networks for different vision

tasks.
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Chapter 3

State of the Art

The following chapter introduces an overview of the search field to scale an image from

low to high resolution and the study areas involved in this work. Factors such as image

super-resolution methods, benchmark data sets, image quality metrics, and results of great

relevance to the state-of-the-art are considered.

3.1 State-of-the-art Image Super-Resolution Methods

State-of-the-art image super resolutions methods are based on CNN. Few attempts have

been made with transformers, which show impressive performance on high-level vision

tasks. To support this affirmation, we can take into account the summary of related works

about ViT architectures presented in Table 3.1; this table shows the recent works in ViT

and demonstrates how it emerged as a competitive alternative to CNN that are currently

state-of-the-art in computer vision, and therefore, they are widely used in different image-

related tasks such us video-image recognition [73] and classification-object detection [74].

Furthermore, new ViT models outperform the current state-of-the-art ones by almost ×2

in terms of computational efficiency and accuracy [75]. Transformers in machine learning

are thus strong promises toward a generic learning method that can be applied to various

data modalities, including recent advances in machine vision that achieve state-of-the-art

standard accuracy with better efficiency.

To introduce the benefit of the ViT over CNN for image super-resolution, we dis-

cuss some state-of-the-art image SR methods for LR to HR images in CNN. In 2018, the

deep back-projection networks for super-resolution exploited iterative up and downsam-
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pling layers, providing an error feedback mechanism for projection errors at each stage,

which allows for the reconstruction and improvement of super-resolution [76]. In the same

year, image super-resolution was introduced using deep residual channel attention net-

works (RCAN) that implement a residual in residual structure to form a deeper network

consisting of several residual groups with long skip connections [77]. Each residual group

contains some blocks with short skip connections, making the main network focus on learn-

ing high-frequency information; that year, experiments showed that RCAN achieves better

accuracy and visual improvements against state-of-the-art methods.

The next year, in 2019,[78] introduced the second-order attention network (SAN) for

single image super-resolution that suggests a second-order attention network for more effec-

tive feature expression and feature correlation learning. The experimental results indicate

this network’s superiority over state-of-the-art single-image super-resolution methods in

visual quality and quantitative metrics.

In 2020 [1] introduced the single image super-resolution through a holistic attention

network (HAN) presents an unexplored holistic attention network that consists of a layer

attention module and a channel-spatial attention module to model the holistic interdepen-

dencies among layers, channels, and positions. On the other hand, the same year, [79]

presented the cross-scale interior graph neural network (IGNN) for image super-resolution

that assembles a cross-scale graph by exploring k-nearest neighboring patches in the down-

sampled LR image for each query patch in the LR image, then getting the related HR

neighboring patches in the LR image and aggregate them adaptively in accord to the edge

label of the assembled graph. This way, the HR details can be passed from HR neighboring

patches to the LR query patch to help it recuperate complex textures. Vast experiments

indicate the significance of IGNN against the state-of-the-art single image SR methods,

including existing non-local networks on standard benchmarks.

In the past year, 2021, [80] introduced image super-resolution with non-local sparse at-

tention (NLSA) that suggests an unknown non-local scant attention with a dynamic scant

attention pattern which is developed to retain long-range modeling capacity from both non-

local processes while appreciating robustness and high-efficiency of sparse representation

and achieves state-of-the-art performance for single image super-resolution qualitatively

and quantitatively. On the other hand, [81] introduced the image super-resolution algo-
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rithm based on the residual-in-residual dense block model (RRDB) to solve the issues of

texture distortion and fuzzy details in existing image super-resolution reconstruction meth-

ods and can not only effectively improve the visual effect of the image, but the results on

the benchmark data set CUFED5 is similar to the classic super-resolution. In the same

year, some options to the previous CNNs discussed emerged and introduced the ViTs to

show their efficacy over traditional methods; for instance, to excavate the capability of

the transformers maximally, [82] introduced the pre-trained image processing transformer

(IPT) where utilizing the well-known ImageNet benchmark for developing a large num-

ber of deteriorated image pairs. The model is trained on these images with multi-tails

and multi-heads, exceeding the current state-of-the-art techniques on various low-level

benchmarks. Simultaneously, [10] introduced image restoration using a swin transformer

(SwinIR), which suggests a baseline model SwinIR for image restoration established on the

swin transformer. SwinIR consists of three components: simple characteristic extraction,

profound characteristic extraction, and high-quality image reconstruction. In particular,

the profound characteristic extraction component is formed by several residual swin trans-

former blocks (RSTB), each of which has diverse swin transformer layers jointly with a

residual connection. Practical results confirm that SwinIR outperforms state-of-the-art

methods on diverse tasks.

For appropriate analysis, Table 3.2 illustrates a quantitative comparison (average PSNR/SSIM)

of the SwinIR model with state-of-the-art methods discussed for image SR on x4 scale on

benchmark datasets.
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Table 3.1: Summary of related works about vision trasformers arquitectures.

Arquitecture Training
dataset Task Inference Reference

Vision Transformers
(ViTs) OOD dataset Study the out-of-distribution

(OOD) generalization of ViTs. IID/OOD generalization gap [83]

Multiscale Vision
Transformers(MViT)

Kinetics-400

Kinetics-600
Video and image recognition Uniformly samples K clips

from a video [73]

Convolutional vision
Transformer(CvT) ImageNet-22k Simplify the design for higher

resolution vision tasks.

Extensive experiments,
with fewer parameters and

lower FLOPs.
[84]

Multiscale Vision
Transformers(MViTv2)

ImageNet-1K

MS-COCO

Image and videoclassification,
as well as object detection. SoftNMS and multi-scale testing [74]

Adaptive Vision
Transformers(AdaViT) ImageNet

Improve inference efficiency
of vision transformers with a
minimal drop of accuracy

for imagerecognition

Efficiency/accuracy trade-offs
conditioned on different
computational budgets.

[75]
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Table 3.2: Quantitative comparison (average PSNR/SSIM) of SwinIR model with state-of-the-art methods for image SR on ×4
scale on benchmark datasets.

Method
Training

dataset

Set5 [3] Set14 [4] BSD100 [5] Urban100 [6] Manga109 [85]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Real-ESRGAN [86]

DIV2K

21.31 0.5449 21.54 0.5288 22.43 0.5035 19.90 0.5282 21.97 0.6989

SAN [78] 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

HAN [1] 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177

RCAN [77] 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

IGNN [79] 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182

NLSA [80] 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184

CARN [87] 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 N/A N/A

DRLN [88] 32.63 0.9002 28.94 0.7900 27.83 0.7444 26.98 0.8119 31.54 0.9196

ESRGAN [2] 30.47 0.8518 26.29 0.6984 25.32 0.6505 24.36 0.7330 28.44 0.85

SwinIR 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226

IPT [82] ImageNet 32.64 N/A 29.01 N/A 27.82 N/A 27.26 N/A N/A N/A

Inform
ation

Technology
Engineer

35
G

raduation
Project



SchoolofM
athem

aticaland
C

om
putationalSciences

Yachay
Tech

U
niversity

DBPN [76] DIV2K

+

Flickr2K

32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RRDB [81] 32.73 0.9011 28.99 0.7917 27.85 0.7455 27.03 0.8153 31.66 0.9196

SwinIR 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
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3.2 Benchmark Datasets

They are specialized datasets that train super-resolution models, and these datasets contain

two important parts: LR images with different degradations and HR images which are the

original image with no degradation or compression.

3.2.1 Classical super-resolution testing dataset

Currently, many datasets are commonly used for testing the performance of image super-

resolution models. Some of them are Set5 [3], Set14 [4], BSD100 [5], and URBAN100 [6].

The Set5 dataset consists of 5 images: a baby, a bird, a butterfly, a head, and a woman [89].

Another similar dataset is the Set14 dataset which consists of 14 images of natural scenes

[90]. On the other hand, the BSD100 and Urban100 are bigger datasets than previously

mentioned. The BSD100 is a classical dataset containing 100 test images that incorporate

different practical and object-specific images such as people, food, plants, and so on [91].

In the same way, the Urban100 dataset contains 100 images; however, this dataset includes

urban scenes such as buildings [92]. Figure 3.1 provides visualization for a more suitable

analysis of each dataset.
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(a) Set5 (b) Set14

(c) BSD100 (d) Urban100

Figure 3.1: Visualization of the classical super-resolution testing dataset: (a) Set5, (b)
Set14, (c) BSD100, and (d) Urban100.

3.2.2 Super-resolution training dataset

There are two principal datasets for training super-resolution models, DIV2K and Flickr2K,

where each image is 2K high-resolution [93]; in other words, each image has a horizontal

resolution of approximately 2,000 pixels. The most popular single-image super-resolution

dataset is DIV2K which contains 1,000 images with different scenes and is split into train-

ing, validation, and testing images, containing 800, 100, and 100 images, respectively [7].

On the contrary, Flickr2K consists of 2650 collected on the Flickr website [93]. Figure 3.2

provides a visualization of the DIV2K dataset for a more suitable analysis of the dataset.
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Figure 3.2: Visualization of the DIV2K, a super-resolution training, validation, and testing
dataset

3.3 Quality Metrics for The SR Reconstructed Image.

There is considerable interest in the automatic estimation of image quality to measure the

performance of a super-resolution model and define the state-of-the-art in this research

area; that is to say, when the original image I with ω × m pixels is available, the quality of

a corresponding SR image Î can be defined as the pixel-level fidelity to the ground truth

[94]. Representatives are mean square error (MSE) [95] defined by equation 3.1. where I

is the i − th pixels of Î, and peak signal-to-noise ratio (PSNR) [8], defined by equation 3.2

where MAX is the greatest probable pixel value of the image, here 255. However, small

shifts in the content of Î lead to poor MSE and PSNR scores even when the contents are

identical. Therefore, another group of measures tries to measure that structural similarity.

In other words, if MSE and PSNR measure absolute errors, there are others, such as

the structural similarity index (SSIM) [9], a perception-based model that considers image

degradation as a perceived change in structural information. Other good alternatives are
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visual information fidelity (VIF) [96], which evaluates the image quality established on

natural scene statistics, and the sparse correlation coefficient (SCC) [97], which measures

the correlation between I and Î.

MSE =
∑ω,m[I(i, j) − Î(i, j)]2

(ω × m)

 (3.1)

PSNR = 10 × log10

(
MAX2

MSE

)
(3.2)
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Chapter 4

Methodology

Before beginning a super-resolution project, it is important to set the guidelines to follow

to achieve the objectives and satisfy the requirements. Therefore, this section details all

the aspects related to the execution of the experiments that will allow the fulfillment of

this research project’s objectives.

4.1 Model Design

4.1.1 Selection of the benchmark models

Super-resolution methods are a fast-growing field with numerous practical methods pro-

posed. For that reason, a quantitative comparison was necessary for ten state-of-the-art SR

models over five challenging testing datasets (Set5, Set14, BSD100, Urban100, Manga109)

to benchmark single-image super-resolution.

For a more suitable analysis, Fig. 4.1 introduces a taxonomy for super-resolution meth-

ods that groups existing methods into five categories: graph neural networks, residual

networks, attention-based networks, GAN models, and vision transformers. Based on the

training dataset, the available source code, and the mean PSNR and SSIM quality restora-

tion metrics illustrated in Table 3.2, the color highlighted models in Fig. 4.1 are selected

to replicate the results in the same hardware environment. The results obtained during

the replication of the SR models are compared against the SwinIR model, which has the

best performance according to the literature.
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Super-resolution
methods

Graph neural network Residual Networks Attention-based
networks GAN models Vision transformer

IGNN CARN DRLN

RCAN

SAN

HAN

NLSA

ESRGAN

Real-
ESRGAN

SwinIR

Figure 4.1: The taxonomy of the state-of-the-art single-image super-resolution techniques
is based on the most distinguishing features; furthermore, the models with source code
available are highlighted with blue, and the model with the best performance according to
Table 3.2, is highlighted with green.

4.1.2 Setting the quality metrics for the SR reconstructed image.

Despite the progress of SR methods in recent years, this research project identifies several

shortcomings in the established quality metrics for the SR reconstructed image. For in-

stance, the PSNR poorly discriminates structural content in images since diverse types of

degradation used in the same image can generate an identical MSE value. On the other

hand, SSIM does not have a suitable performance in assessing the quality of noisy images.

Therefore, this research project suggests two alternatives: visual information fidelity and

sparse correlation coefficient.

Peak signal-to-noise ratio

This research project gets PSNR results from calculating the logarithm of the MSE of

an image, and it is expressed in terms of the logarithmic decibel scale (dB). In grayscale

images, MSE is computed based on ω × m dimensions; however, SR techniques work with

color images; therefore, MSE is calculated as illustrated in Eq. 4.1. where ω and m are

image resolution, c is the number of image channels, I(i, j, c) is the pixel value of the

original image at the i, j coordinates and channel c; meanwhile, Î is the SR reconstructed
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image.

MSE = 1
ω × m × C

Σω
i=1Σm

j=1ΣC
c=1

[(
I(i,j,c) − Î(i,j,c)

)2
]

(4.1)

Remember that MSE is closely connected with PSNR because the MSE value is used to

calculate the PSNR value, as illustrated in Eq. 4.2. where MAX is the most elevated scale

value of the 8-bit grayscale. As the error value is obtained by the difference in pixel values

at the identical coordinates and channels, PSNR will construct an infinity value when it

does not change the pixel value between the two images. Contrarily, more disparities in the

pixel value between the two images will produce a PSNR with a smaller value. Thus, the

range of PSNR is given by the interval [0, +∞) where 0 represents the worst Î generated

from low quality image Ilq by the SR model.

PSNR = 10 × log10

(
MAX2

MSE

)
(4.2)

Structural similarity index measure

SSIM is another measurement tool used in this research project to measure the quality

of SR reconstructed images, expressed in absolute value. SSIM is built based on three

main factors: luminance, contrast, and structure. These three main factors substitute

the summation method used for computing PSNR. In RGB color images, SSIM can be

represented by Eq. 4.3.

The first factor in Eq. 4.3 is Iluminance(I, Î) described by Eq. 4.4; Iluminance(·) compares

the luminance of image I and image Î. The maximum value of Iluminance(I, Î) is 1, which

is computed when the two luminance (γ) images are identical (γI = γÎ). The second factor

is Icontrast(I, Î) described by Eq. 4.5, a function that compares the contrast of image I and

image Î. The maximum value of Icontrast(I, Î) is 1, which is obtained when the standard

deviations (σ) are identical (σI = σÎ). The third factor is Istructure(I, Î) described by Eq.

4.6, a function that compares structures of image I and image Î based on the correlation

coefficient, for the record σIÎ is a covariance between image I and image Î. The maximum

value of Istructure(I, Î) is 1; this value is obtained if σIÎ = σIσÎ . Thus, if the three-factor

values are 1, the maximum value of SSIM is 1; therefore, the range of SSIM values is given
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by the interval [0, 1]. Last but not least, constant values β1, β2, and β3 are used to avoid

the zero denominators, so this research project, based on the literature, uses the values

β1 = (0.01 × 255), β2 = (0.03 × 255), and β3 = β2
2 as the default value.

SSIM(I, Î) = Iluminance(I, Î), Icontrast(I, Î), Istructure(I, Î) (4.3)

where:

Iluminance(I, Î) = 2γIγÎ + β1

γ2
I + γ2

Î
+ β1

(4.4)

Icontrast(I, Î) = 2σIσÎ + β2

σ2
I + σ2

Î
+ β2

(4.5)

Istructure(I, Î) = σIÎ + β3

σIσÎ + β3
(4.6)

γI =
Σω

i=1Σm
j=1ΣC

c=1Iijc

ω × m × C
(4.7)

γÎ =
Σω

i=1Σm
j=1ΣC

c=1Îijc

ω × m × C
(4.8)

σ2
I =

Σω
i=1Σm

j=1ΣC
c=1(Iijc − γI)2

ω × m × C
(4.9)

σ2
Î

=
Σω

i=1Σm
j=1ΣC

c=1(Îijc − γÎ)2

ω × m × C
(4.10)

σIÎ =
Σω

i=1Σm
j=1ΣC

c=1(Iijc − γI)(Îijc − γÎ)
ω × m × C

(4.11)

Visual information fidelity

Similar to SSIM, VIF has a default range value given by the interval [0, 1], so this quality

metric for the SR reconstructed image can be employed to measure the quality of the image

reconstructed.

The principle of VIF implemented in this research project is illustrated in Fig. 4.2 where

∆ denotes the set of spatial indices across the a subband and each Λi is a vector. VIF
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first decomposes the original image I and the SR image reconstructed Î into several sub-

bands and parses each sub-band into blocks. Then, VIF measures the visual information

by computing mutual information in the different models in each block and each sub-band.

Ultimately, the image quality value is calculated by integrating visual information for all

the blocks and all the sub-bands. Here, VIF presents three models to measure the visual

information: the Gaussian scale mixture (GSM) model, the human visual system model

(HVS), and the distortion model. Further, let E and Υ denote the visual signal at the

output of the HVS.

Figure 4.2: A schematic of visual information fidelity (VIF).

VIF is designed more specifically for natural imagery, which is mostly ‘consumed’ by hu-

mans; this reason may make this measuring tool unpopular and rarely used in SR methods

research.

Sparse correlation coefficient

The sparse correlation coefficient (SCC) represents the similarity of the spatial features

between the original and restored images. It is measured on a scale from −1 through

0 to +1; thus, the SCC values are given by the interval [−1, 1]. When the pixel value

of the original image I increases as the other from SR restored image Î increases, the

correlation is positive, which means the higher value of SCC represents the best-restored

image with great spatial detail. On the other hand, when the pixel value of the original
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image increases as the other from SR restored image decreases, SCC is negative; also, the

complete absence of correlation is represented by 0. In both cases, the SR image restored

has no spatial details concerning the original image. The mathematical form implemented

in this research project of SCC is described by Eq. 4.12.

SCC = σIÎ

σIσÎ

(4.12)

where σIÎ can be described by Eq. 4.11, σI by Eq. 4.13, and σÎ by Eq. 4.14.

√
Σω

i=1Σm
j=1ΣC

c=1(Iijc − γI)2

ω × m × C
(4.13)

√√√√Σω
i=1Σm

j=1ΣC
c=1(Îijc − γÎ)2

ω × m × C
(4.14)

4.1.3 Network architecture

As illustrated in Fig. 4.3, SwinIR consists of three modules: shallow feature extraction,

deep feature extraction, and SR image reconstruction modules. This research project

employs the same module’s structure for SR image restoration tasks presented in the SwinIr

paper [10]. Still, it suggests modifying the convolutions before the SR image reconstruction

module to improve the performance of the SR model.

Shallow feature extraction

Shallow feature extraction is a module that consists of a 3×3 convolution layer C3×3(·). The

convolution layer is suitable for early visual processing, conducting stable optimization, and

promising results. It also provides an uncomplicated way to map the input image space

to a higher-dimensional feature space. The input low-quality image Ilq is described in Eq.

4.15, where m is the image height, ω is the image width, and C is the image channel; thus,

it is possible to describe the shallow feature extraction module as Eq. 4.16.

Ilq ∈ Rω×m×C (4.15)

SF = C3×3(Ilq) (4.16)
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Figure 4.3: The general architecture of the proposed SwinIR-OH model for SR image
restoration

Deep feature extraction

As illustrated in Fig. 4.3, the deep feature extraction module contains n residual swin

transformer blocks (RSTB) and a convolution layer denoted by HConv(·) before the residual

connection. Therefore, the deep feature extraction can be described as Eq. 4.17, where

RSTBi is described in Eq. 4.18 where STLi,j is the j-th swin transformer layer in the

RSTBi and C3×3(·) is the 3 × 3 convolution layer.

DF = HConv(RSTBn) (4.17)

RSTBn = C3×3(STLn,j) + RSTBn−1 (4.18)

This layout has two advantages; first, although a transformer can be considered a specific

instantiation of spatially varying convolution, convolutional layers with spatially invariant

filters can improve the translational equivariance of SwinIR model. Second, the residual

connection gives an instantaneous identity-based connection from distinct blocks to the SR

image reconstruction module, allowing diverse levels of feature aggregation.
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Optimizing hyperparameters

It is important to note that hyperparameter optimization is a crucial step in develop-

ing super-resolution image models, as it can significantly impact their performance. The

research project implements the random search method, in which the values of the hyper-

parameters are randomly selected within a predefined range in each iteration. The model

resulting from the optimization of the hyperparameters is called SwinIR-OH, which re-

sults from the random selection of the sequence of convolutions after the RSTBn. Using

the random search method, the sequence of convolutions to be added to the architecture

is selected randomly from a predefined set of relevant hyperparameters, highlighting filter

sizes, number of filters, activation functions, and number of convolution layers. As a result,

better performance was obtained with the SwinIR-OH model.

In general, the more convolution layers implemented, the better; expanding the number

of convolution layers improves the detail in the image. For example, the first layer may

find vertical edges in an image, the second layer adds horizontal edges, and then a third

a certain type of curve. Each layer adds more detail to the image being passed to the SR

reconstruction image module.

For all mentioned before, this research project suggests adding three convolution layers

after the RSTBn instead of one convolution layer in the original benchmark SwinIR ar-

chitecture to improve the performance. This architecture modification can be denoted by

HConv(·) in Eq. 4.17 and is illustrated in Fig. 4.4.

The suggested convolutions have a mix of 1 × 1 and 3 × 3 filters. The 1 × 1 filters

perform cross-channel pooling. However, 1 × 1 filters work on individual pixels instead of

a patch of input like larger filters; consequently, they cannot detect spatial structures. On

the other hand, the 3 × 3 Convolution detects spatial structures; incorporating these two

different-sized filters makes the model more expressive while operating on lesser parameters.

Furthermore, suitable padding forms the same size output of 3 × 3 and 1 × 1 convolutions

so these can be stacked.
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Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

(a)

LeakyRelu

Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

LeakyRelu

Convolution with  kernel (no padding, stride: 1): 

Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

(b)

Figure 4.4: After the RSTBn, (a) illustrates the convolution present in the benchmark
SwinIR model, and (b) illustrates the convolutions suggested by this research project and
implemented in the SwinIR-OH model.

SR image reconstruction

The SwinIR model reconstructs the SR image by aggregating shallow and deep features, as

described in Eq. 4.19 where HSR(·) is illustrated in Fig. 4.5. Shallow features mostly in-

clude low frequencies, while deep features concentrate on recuperating lost high-frequencies.

With a long skip connection, the SwinIR model can transfer the low-frequency information

directly to the SR image reconstruction module, which can help the deep feature extraction

module focus on high-frequency information and stabilize training.

Î = HSR(DF + SF ) (4.19)
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LeakyReLU

Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

Interpolation (mode: nearest, scale factor: 2): 

LeakyReLU

Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

Interpolation (mode: nearest, scale factor: 2): 

LeakyReLU

Convolution with  kernel (padding: 1,padding_mode: zeros, stride: 1): 

LeakyReLU

Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

Convolution with  kernel (padding: 1, padding_mode: zeros, stride: 1): 

Figure 4.5: The architecture of the SR image reconstruction module HSR(·) consists of
convolutions and interpolations; as a result the Î ∈ R4ω×4m×3

4.2 Experimental Setup

To train the SR model is essential to define the training and test datasets.

4.2.1 Train dataset

The SR training dataset implemented is the DIV2K dataset, which includes 800 images in

2K resolution; that is, they have a minimum of 2K pixels at least height or width.

4.2.2 Test dataset

This research project implements the most common datasets from SR literature to test

the SR models, including low-resolution images with unknown 4× downscaling and the

corresponding HQ image.

• Set5: It includes five popular images: four smaller ones (bird, butterfly, head,
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women) and one medium size image (baby 512 × 512).

• Set14: The images are diverse and more significant than those in Set5. It includes

14 commonly employed images in image-processing publications.

• BSD100: It includes a large variety of real-life scenes.

• URBAN100: It consists of 100 clean urban environments with repetitive patterns

and high self-similarity.

• DIV2K-test: It includes 100 images with different scenes for testing SR models and

encourages research on image super-resolution with more realistic degradation.

Table 4.1: Average of the pixels per image (ppi) and bit per pixel (bpp) of the benchmark
test SR datasets.

Dataset Images Pixels per image (ppi) Bit per pixel (bpp)

Set5 [3] 5 113491 12.45

Set14 [4] 14 230202 12.57

BSD100 [5] 100 154401 14.12

URBAN100 [6] 100 774313 14.01

DIV2K-Test [7] 100 2757182 12.64

Table 4.1 summarizes the principal attributes of the SR test datasets. The average

image size (pixels per image or ppi) varies from 113491 pixels for Set5 to 2.8 million

pixels for the DIV2K-test. DIV2K-test images are about four times larger than those

from URBAN100. Also, the datasets are identical in terms of bits per pixel (bpp), which

indicates the number of details present in the image per image pixel. In the case of RGB

(Red, Green, Blue) images, each pixel is represented by a combination of values for the red,

green, and blue channels, which are typically encoded using 8 bits per channel. Therefore,

to calculate the bpp of an RGB image, we multiply the number of channels (3) by the

number of bits used to represent each channel (8), resulting in 24 bits per pixel. However,

it is worth noting that some image compression techniques may reduce the bpp by using

different encoding schemes or discarding some image data. Thus, DIV2K has the best

variety and the highest resolution.
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4.2.3 Computational environment

As the DIV2K training dataset contains large 2K images, it can take a long time to load

the HR images into memory for training. For that reason, the GPUs play an essential role

in training an SR model because, depending on their capacity, the training can take more

or less time. Thus, on the computational environment side, an NVIDIA A100 SXM4 with

40GB of memory is used in a dedicated workstation cluster.

Information Technology Engineer 52 Graduation Project



Chapter 5

Results and Discussion

This section presents the quantitative and qualitative results obtained for SwinIR and

the suggested SwinIR-OH model in the validation and testing process. In general, image

restoration techniques, such as image super-resolution presented in this research project,

aim to reconstruct the high-quality clean I image from its low-quality degraded counterpart

Ilq. Therefore, to get the quantitative and qualitative analysis of the SR image reconstruc-

tion quality in the validation and training process was always necessary to have the SR

image Î and the HR image I.

The quantitative analysis of the SR models was implemented in the validation and

testing process with the SR image reconstruction quality metrics. The two well-known

IRQMs are the peak signal-to-noise ratio and the structural similarity index measure, which

are measured in decibels and positive values, respectively. In both cases, the values are

between 0 and 1, where 1 means perfect similitude and 0 means no similarity. In addition

to the IRQMs previously mentioned, visual information fidelity and sparse correlation

coefficient were implemented and measured identically to SSIM.

5.1 Results During the Validation Process

Although the architecture of the shallow feature extraction module and the SR image

reconstruction module is practically the same in both SR models, there is a difference in

the deep feature extraction module between the SwinIR model and the SwinIR-OH model,

which makes the difference during the validation process. The deep feature extraction

module primarily comprises residual swin transformer blocks RSTB, each using multiple
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swin transformer layers for local attention and cross-window interaction in both models.

However, at the end of RSTBn, SwinIR-OH adds three convolutions layers instead of one

convolution in SwinIR to enhance the extracted deep features of the image. From Fig. 5.1,

it is possible to analyze the improvement mentioned before in the SR image reconstruction

performance of the SwinIR model during the validation in each epoch of training when

using the suggested convolution layers in the SwinIR-OH model.
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Figure 5.1: Plots of the quality metrics for SR reconstructed image (PSNR, SSIM, SCC,
VIF) during the training of the SwinIR model and the suggested SwinIR-OH model. Notice
that the suggested convolutions after the RSTBn in the SwinIR-OH model improve the
SR reconstruction since epoch 0 of training.

Furthermore, Fig. 5.1 illustrates the results obtained in the four IRQMs in the epochs

during the training; notice that the standardized PSNR (dB) and SSIM show a graphic

with noise and faster convergence, making them difficult to determine when the SR model
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is entering overfitting during the training. On the other hand, the suggested VIF and SCC

show more smooth graphics and continuous performance growth than the standardized

IRQMs, making them suitable to determine when the SR model is entering overfitting.

The SR models were trained with 144 epochs with 800 training images from the DIV2K-

train dataset, as well, owing to the time taken to implement the four IRQMs, to the

validation process during each epoch of training was implemented with the set 5 dataset,

which contains the I and Ilq images. The results of this validation process are summarized

in Table 5.1, which illustrates the measure of the PSNR (dB), SSIM, VIF, and SCC of the

SR reconstructed image Îα in the α epoch.

Moreover, from Table 5.1, it is possible to highlight the improvement in the SR im-

age reconstruction performance when implementing more convolutions in the SwinIR-OH

model. Notice the as is illustarted in Fig. 5.1, the values of the PSNR (dB) and SSIM do

not show a continuous growth of SR image reconstruction performance. In contrast, the

VIF and SCC show growth in performance, making it easier to detect that the model is

improving the performance in each training and not entering into overfitting.

Table 5.1: Average SR reconstruction quality metrics from the Set 5 validation database
in four representative epochs, epoch 1, epoch 48, epoch 96, and epoch 144.

Îα Model PSNR (dB) SSIM SCC VIF

0 SwinIR 17.31 0.50 0.01 0.14
SwinIR-OH 18.93 0.60 0.04 0.18

48 SwinIR 20.38 0.64 0.06 0.19
SwinIR-OH 21.63 0.71 0.12 0.26

96 SwinIR 20.22 0.63 0.07 0.20
SwinIR-OH 22.00 0.71 0.13 0.27

144 SwinIR 20.39 0.64 0.07 0.29
SwinIR-OH 22.16 0.71 0.14 0.27

It is straightforward for the human eyes to describe how identical the two provided

images are. Therefore, Fig. 5.2 illustrates the SR image reconstruction in each α epoch Îα

of the SwinIR and SwinIR-OH model for qualitative analysis.
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Figure 5.2: Qualitative results of the validation process of the SR reconstruction image during the training in each epoch Îα. The
LQ images Ilq are rounded with a blue box; the first row of each Ilq, with no box, illustrates the SwinIR model validation in the
α epoch. The second row, rounded with a red dashed box, shows the evaluation of the SwinIR-OH model in the α epoch. The
original image I is at the end of each row and is rounded with a yellow box.

Inform
ation

Technology
Engineer

56
G

raduation
Project



School of Mathematical and Computational Sciences Yachay Tech University

5.2 Results During the Testing Process

This section compares the SR image reconstruction performance of the SwinIR-OH model

in 5 benchmark SR test datasets: set5 [3], set14 [4], BSD100 [5], URBAN100 [6], and

DIV2K-test [7] against the state-of-the-art SR methods. For a more fair comparison,

the state-of-the-art methods: CARN [87], DRLN [88], ESRGAN [2], RCAN [77], Real-

ESRGAN [86], and SwinIR [10] were trained in the same computational environment of

the SwinIR-OH model. Therefore, they all share the same hyperparameters according

to the computational environment: bathsize=8, epochs = 144, train set = DIV2K, and

upscale = 4.
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Table 5.2: Quantitative comparison (average PSNR/SSIM/VIF/SCC) against state-of-the-art methods for classical image SR (×4)
in the same computational environment on the benchmark datasets.

IRQM
Test

Dataset

CARN

[87]

DRLN

[88]

ESRGAN

[2]

RCAN

[77]

Real-ESRGAN

[86]

SwinIR

[10]
SwinIR-OH

PSNR (dB)

SET5 [3]

21.91 22.04 20.44 22.09 20.71 20.69 22.16

SSIM 0.70 0.70 0.64 0.71 0.62 0.65 0.71

VIF 0.26 0.27 0.19 0.27 0.21 0.23 0.28

SCC 0.09 0.11 0.04 0.12 0.01 0.07 0.13

PSNR (dB)

SET14 [4]

19.08 19.09 18.25 19.10 19.08 18.85 19.11

SSIM 0.51 0.48 0.46 0.51 0.50 0.50 0.51

VIF 0.17 0.16 0.12 0.17 0.15 0.16 0.17

SCC 0.02 0.02 0.01 0.03 0.01 0.01 0.03

PSNR (dB)

BSD100 [5]

25.36 25.68 22.39 25.63 21.20 23.49 25.89

SSIM 0.75 0.74 0.64 0.76 0.53 0.61 0.76

VIF 0.36 0.38 0.21 0.38 0.16 0.28 0.39

SCC 0.13 0.15 0.04 0.16 0.01 0.06 0.18

Inform
ation

Technology
Engineer

58
G

raduation
Project



SchoolofM
athem

aticaland
C

om
putationalSciences

Yachay
Tech

U
niversity

PSNR (dB)

URBAN100 [6]

22.72 23.38 19.94 23.16 18.15 21.03 23.85

SSIM 0.75 0.78 0.65 0.77 0.52 0.64 0.79

VIF 0.35 0.38 0.21 0.37 0.13 0.27 0.41

SCC 0.14 0.19 0.06 0.18 0.01 0.09 0.26

PSNR (dB)

DIV2K-Test [7]

32.65 32.73 25.94 33.13 23.80 28.13 33.15

SSIM 0.94 0.92 0.82 0.94 0.72 0.83 0.94

VIF 0.57 0.57 0.31 0.59 0.21 0.42 0.60

SCC 0.28 0.28 0.13 0.33 0.03 0.13 0.33
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Table 5.2 shows the quantitative comparisons between the SwinIR-OH model and the

state-of-the-art SR models. As one can see, SwinIR-OH achieves the best performance on

all five benchmark datasets for the 4× scale factor against other SR models when trained

on DIV2K. The maximum PSNR, SSIM, VIF, and SCC are 33.15dB, 0.94, 0.60, and 0.33,

respectively, on the DIV2K-test dataset; this can be because according to Table 4.1 DIV2K-

test dataset presents more pixels per image, which means, more information to reconstruct

an Ilq image. Note that when we train SwinIR-OH with more convolutions before the SR

image reconstruction module, the performance increases by a large margin (about 5.02

dB), achieving better accuracy than the same transformer-based model SwinIR.

The following subsections illustrate the qualitative comparisons between the SwinIR-

OH model and the state-of-the-art SR models on the five benchmark SR test sets: set5

shown in Fig. 5.3, set14 illustrated in Fig. 5.4, BSD100 illustrated in Fig. 5.5, URBAN100

illustrated in Fig. 5.6, DIV2K-test illustrated in Fig. 5.7.
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5.2.1 Set5 dataset

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

Figure 5.3: Qualitative comparison of benchmark SR image restoration (4×) models. Com-
pared images are derived from the Set5 [3] test dataset. All SR models were re-trained in
the same computational environment to perform a fair comparison. Notice how the sug-
gested SwinIR-OH has a better performance restoring the structure details of the image.
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5.2.2 Set14 dataset11/20/22, 9:15 PM Set14.drawio

about:blank 3/4

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

Figure 5.4: Qualitative comparison of benchmark SR image restoration (4×) models. Com-
pared images are derived from the Set14 [4] test dataset.
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5.2.3 BSD100 dataset

CARN DRLN ESRGAN RCAN 

SwinIR SwinIR-OH OriginalReal-ESRGAN

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

Figure 5.5: Qualitative comparison of benchmark SR image restoration (4×) models. Com-
pared images are derived from the BSD100 [5] test dataset.
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5.2.4 URBAN100 dataset

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

Figure 5.6: Qualitative comparison of benchmark SR image restoration (4×) models. Com-
pared images are derived from the URBAN100 [6] test dataset.
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5.2.5 DIV2K-test dataset

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

CARN DRLN ESRGAN RCAN 

Real-ESRGAN SwinIR SwinIR-OH Original

Figure 5.7: Qualitative comparison of benchmark SR image restoration (4×) models. Com-
pared images are derived from the DIV2k-test [7] dataset.
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Chapter 6

Conclusions

6.1 Conclusions

• To work and investigate image super-resolution models is necessary to have consid-

erable computational power. Furthermore, considering the time factor for training

SR models is relevant to estimate how long does it take to have preliminary results.

To support this, at the beginning of the experiments of this research project, it was

decided to use most of the hyperparameters recommended in the source articles,

which in turn meant a great use of the GPU capacity, reaching its limit quickly. On

the other hand, the time taken to train a model and test the impact of suggested

changes in the transformer-based architecture was significant, resulting in the hy-

perparameters of the computational environment discussed in Chapter 5 to achieve

the objectives. It is essential to mention that the hyperparameters implemented in

this research project considerably affect the results of the state-of-the-art SR models;

however, all SR models needed to be in the same computational environment to make

the comparison and discussion fair.

• The results obtained during the training process and illustrated by Fig.5.1 suggest the

implementation of two alternative IRQMs: VIF and SCC, because these methods ex-

hibit better performance in capturing the quality of SR image restoration. However,

capturing and quantifying human visual perception can be more complicated than

it seems because it is difficult to define what kind of perceptual quality is required.

For instance, whether IRQMs measure the exact difference between the SR-restored
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image and the original image or if the SR-restored image is realistic. It is a question

to be explored and possibly because the PSNR and SSIM are currently the standard

IRQMs to investigate the performance of SR models.

• The results indicate that injecting a small sequence of convolutional into the early

stages of the SR image reconstruction module can be helpful. It is attractive to go

deep into the theoretical basis of why such a minimal architectural modification can

have such a considerable positive impact on SR image restoration. These results

introduce a desirable research field of how to match the benefits of convolutional

neural networks (CNNs) with the usefulness of the ViT architecture, such as shift,

scale, and distortion invariance, thus maintaining the merits of transformers, such as

dynamic attention, global context, and better generalization.

6.2 Recommendations

In this section, this research project list recommendation based on the issues and problems

faced during the implementation of the SwinIR-OH model.

• The computational environment plays an essential role in the performance of the

SR models. Therefore, we suggest implementing all the SR models in an identical

computational environment for a fair comparison.

• Set5 is suitable to be considered as a validation dataset for SR models during training.

It helps improve the SR model performance by fine-tuning the model after each epoch.

• Owing to the computational power needed to train SR models and quantify their per-

formance, it is recommended to use clusters dedicated to research instead of personal

computers.

• To conduct a deeper investigation of SR models, consider the training time as a

relevant factor of the research if there is low computational power.

• In selecting the image restoration quality metrics, there are more alternatives than

just the well-known SSIM and PSNR; in this research project, SCC and VIF were
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demonstrated to be more effective in validating the SR models after each training

epoch.

6.3 Future Work

In this section, this research project describes some potential research that future works

can consider in super-resolution.

• Massive train dataset. The experiments implemented by the research project

were conducted with the DIV2K dataset owing to the computational environment

that took a long time with a more extensive dataset. Nevertheless, with high com-

putational power and time to do the necessary experiments, it is recommended to

implement alternatives to train the SR model, such as the Flickr2K dataset with

2650 images or OST with 10324 images. With these experiments, it will be possi-

ble to determine if convolutions in SR models’ architecture can help improve their

performance with short-train datasets and the impact of using larger-train datasets.

• Implement all the SR models in their same computational environments

with their best hyperparameters. This research project re-trains the benchmark

SR models, modifies common hyperparameters to adapt to the computational en-

vironment, and compares the suggested SwinIR-OH model against benchmark SR

models. These changes can harm the benchmark SR models’ performance and do

not reach the highest accuracy reported in the literature. Thus, it is recommended

to implement all the SR models in their optimal configurations and make individual

comparisons. Remember that the suggested SwinIR-OH will need a manual setup to

perform best.

• Implement different types of convolutions. The experiments implemented by

this research project use the standard 2D convolution with the ViT to extract partic-

ular features from the input image. It is the most common and heavily used technique

in computer vision. Nevertheless, some alternatives must be explored and studied

in the image super-resolution with ViT and convolutions research field. Some good
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options are transposed convolution (deconvolution), separable convolution, dilated

(atrous) convolution, and deformable convolution.
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