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Boosting Image Captioning Using ConvNeXt Deep Neural
Networks

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingenieria de Tecnoloǵıas de la Información y la
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Resumen

Este trabajo propone un modelo basado en ConvNeXt para generar subt́ıtulos de imágenes.

Espećıficamente, se integra el modelo convolucional ConvNeXt, una arquitectura de visión

por computadora de última generación, con una red de memoria a corto y largo plazo que

incluye un módulo de atención visual. Se realizaron diversos experimentos para evaluar

la viabilidad de ConvNeXt en esta tarea. En primer lugar, se estudió el impacto de usar

cuatro versiones de ConvNeXt para la extracción de caracteŕısticas. Además, se probaron

dos tasas de aprendizaje diferentes durante la etapa de entrenamiento del codificador para

analizar el impacto de esto en el rendimiento. Asimismo, se analizó el efecto de la inclusión

y exclusión de teacher-forcing en el decodificador durante el entrenamiento. Se utilizó el

conjunto de datos MS COCO 2014, y se adoptaron la pérdida, top-5 accuracy y BLEU-n

como métricas de rendimiento. Los resultados muestran que nuestro modelo propuesto

supera el modelo de referencia en un 43.04% y un 39.04% para los modelos de atención

suave y atención dura, respectivamente, en términos de BLEU-4. Nuestro modelo también

supera en un 4.57% y un 0.93% a los enfoques equivalentes basados en transformador de

visión y transformador de imagen con eficiencia de datos, respectivamente, en términos de

BLEU-4. Además, nuestro modelo mejoró a alternativas que utilizan codificadores basados

en arquitecturas ResNet-101, ResNet-152, VGG-16, ResNeXt-101, y MobileNet V3, en un

6.44%, 6.46%, 6.47%, 6.39% y 6.68%, respectivamente, en términos de precisión en top-5

accuracy, y en un 18.46%, 18.44%, 18.46%, 18.24% y 18.72%, respectivamente, en términos

de pérdida.

Palabras Clave:

Subt́ıtulado de imágenes, ConvNeXt, Redes neuronales artificiales, Visión computacional,

Procesamiento del lenguaje natural, Aprendizaje profundo
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Abstract

This work proposes a ConvNeXt backbone-based model for image captioning. Specifi-

cally, the ConvNeXt convolutional model, a state-of-the-art computer vision architecture,

is integrated with a long short-term memory network enclosing a visual attention module.

Diverse experiments were performed to evaluate the feasibility of ConvNeXt in this task.

First, the impact of using four versions of ConvNeXt for feature extraction was studied.

Additionally, two different learning rates were tested during the training stage of the en-

coder to analyze the impact of this on performance. Furthermore, the effect of inclusion

and exclusion of teacher-forcing at the decoder during training was analyzed. The 2014

MS COCO dataset was used, and the loss, top-5 accuracy, and BLEU-n were adopted as

performance metrics. The results show that our proposed model outperforms the bench-

mark by 43.04% and 39.04% for soft-attention and hard-attention models, respectively,

in terms of BLEU-4. Our model also surpasses equivalent approaches based upon vision

transformers and data-efficient image transformers by 4.57% and 0.93%, respectively, in

terms of BLEU-4. Moreover, it outperforms alternatives that use ResNet-101, ResNet-

152, VGG-16, ResNeXt-101, and MobileNet V3 network-based encoders, by 6.44%, 6.46%,

6.47%, 6.39%, and 6.68%, respectively, in terms of top-5 accuracy, and by 18.46%, 18.44%,

18.46%, 18.24%, and 18.72%, respectively, in terms of loss.

Keywords:

Image captioning, ConvNeXt, Artificial neural networks, Computer vision, Natural lan-

guage processing, Deep learning

xi



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project



Contents

Dedication v

Acknowledgment vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Framework 5

2.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 14

xiii



School of Mathematical and Computational Sciences Yachay Tech University

2.2.3 Transformer networks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 State of the Art 23

3.1 Image captioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 ConvNeXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Methodology 29

4.1 Data Set Description and Preprocessing . . . . . . . . . . . . . . . . . . . . 29

4.2 Model Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Benchmark model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 ConvNeXt-based approach . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Results and Discussion 39

5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 51

Bibliography 53

Information Technology Engineer xiv Graduation Project



List of Tables

2.1 Types of machine learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Summary of image captioning related works. . . . . . . . . . . . . . . . . . 25

3.2 Summary of ConvNeXt related works. . . . . . . . . . . . . . . . . . . . . 28

4.1 Example of how captions are encoded . . . . . . . . . . . . . . . . . . . . . 31

4.2 ConvNeXt variants used in this work. . . . . . . . . . . . . . . . . . . . . . 34

4.3 Final encoding size produced by each of the ConvNeXt variants used. . . . 34

5.1 BLEU metrics obtained using a learning rate of 4e − 4. . . . . . . . . . . . 40

5.2 BLEU metrics obtained using a learning rate of 1e − 4. . . . . . . . . . . . 40

5.3 Average inference time (seconds) . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Average loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Top-5 accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Comparison of our results according to the top-5 accuracy and loss metrics 46

5.7 Comparison of our results according to the BLEU metrics . . . . . . . . . . 47

xv



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project



List of Figures

2.1 Relationship between artificial intelligence, machine learning, and deep learn-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 ML model workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Machine learning and Deep learning comparison. . . . . . . . . . . . . . . . 8

2.4 The perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 The multi-layer-perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 The gradient descent process. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 The Long short-term memory architecture. . . . . . . . . . . . . . . . . . . 13

2.8 LeNet-5 architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Comparison of Swin Transformer, ResNet, and ConvNeXt block structures 17

2.10 The Scaled Dot-Product block. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 The Multi-head Attention block. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 The transformer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Examples taken from the MS COCO dataset . . . . . . . . . . . . . . . . . 30

4.2 Encoder-decoder architecture for image captioning used as benchmark. . . 31

4.3 Proposed ConvNeXt backbone-based architecture . . . . . . . . . . . . . . 33

4.4 Overall workflow followed in this study. . . . . . . . . . . . . . . . . . . . . 36

5.1 Visual results of image captions using a learning rate of 4e − 4. . . . . . . . 41

5.2 Visual results of image captions using a learning rate of 1e − 4. . . . . . . . 42

5.3 Visual results of image captions using a learning rate of 4e − 4. . . . . . . . 43

5.4 Visual results of image captions using a learning rate of 1e − 4. . . . . . . . 44

5.5 Image captioning results using the best model . . . . . . . . . . . . . . . . 49

xvii



School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xviii Graduation Project



Chapter 1

Introduction

1.1 Background

Image captioning is the task of generating a natural language description of the content

within an image. It is a field that combines both, computer vision and natural language

processing [1]. Specifically, image captioning involves image understanding by generating

a description for an image [2]. The first stage involves object detection and recognition;

understanding the type of scene, the properties of objects, and the interactions between

them. The latter comprises the generation of syntactically and semantically well-formed

sentences [3].

The range of image captioning applications is broad and it is used in wide variety

of areas, including education, digital libraries, biomedicine, military, commerce, and web

search [2]. For instance, image captioning-based assistive technology can help visually

impaired people to understand their environment [4]. Image captioning can also be applied

in search engines and social networking platforms for content-based image retrieval [2, 4, 5].

It is also helpful in generating descriptions for augmented reality images, virtual reality

experiences, and video games [6]. Image captioning can also be utilized in sophisticated

recommendation systems and visual assistance systems [5].

Image captioning has been a challenging task in the field of computer vision with

significant difficulties and challenges [7]. For example, image captioning systems must deal

with a wide variety of images, from simple scenes with few elements to complex scenes with

a large amount of detail [2, 4]. In addition, objects in the scene may vary in shape, size,
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and appearance, as well as include noise, blur, or occlusion [8]. Also, these systems often

have to deal with new or rare objects for which they were not trained [4]. This makes it

difficult to accurately identify the scene or objects in the image and their relationships to

each other. Moreover, an image may contain multiple scenes, making it even more difficult

to describe accurately [9].

Template-based and retrieval-based techniques have been considered early approaches

for image captioning [5, 10]. The former methods use fixed-dimension empty-space tem-

plates to generate captions [2]. These methods first use classifiers to recognize the objects,

attributes, and relationships in an image, and then fill in the spaces in the template [4].

These methods can generate grammatically correct captions; however, they cannot gener-

ate variable-length description captions, nor do they correctly express the visual context of

the image [11]. The latter find visually similar images and their captions from the training

dataset [2, 12]. The caption for the query image is selected from this set of captions, called

candidate captions. Although these methods produce grammatically correct captions, they

cannot generate image-specific captions because the results are significantly general [4].

With the advancement of technology, superior systems that are able to handle the

complexities and challenges of image captioning have been proposed. Currently, most

methods for image captioning use deep learning, specifically artificial neural networks [2].

Although there are different approaches based on neural networks for image captioning, the

encoder-decoder architecture is the most commonly used. This approach allows the task to

be divided into two parts; the encoding phase, in which visual features are extracted from

the input image, and the decoding phase, which creates the output concerning the encoded

or extracted features [5]. Commonly, a convolutional neural network (CNN) is in charge of

feature extraction, and a recurrent neural network (RNN) converts this information into

words and phrases that produce the image’s caption [1, 4].

However, classical encoder-decoder architectures cannot analyze the image over time

while generating the image descriptions. Moreover, they generate the caption considering

the scene as a whole without the image’s relevant spatial aspects [2]. Therefore, attentional

mechanisms have emerged as a tool to overcome these limitations. The main difference

between methods based on attentional mechanisms and other schemes, is that the former

can focus on the salient parts of the input image while generating the output sequences

Information Technology Engineer 2 Graduation Project
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simultaneously [1, 4, 7]. Thereby, the model can focus on the important regions of the image

at each timestep and dynamically updates the caption until the final result is obtained

[2, 13]. This allows the generation of captions that are more accurate and closer to those

generated by a human.

1.2 Problem Statement

Modern technology has allowed us to have better techniques to tackle different computer

vision tasks. We moved, for example, from the use of CNNs to the new transformers. These

new architectures have become a standard in natural language processing and computer vi-

sion tasks [14]. They have gradually replaced CNNs and pushed them into the background

[15], even though one of their disadvantages is their high time and space complexity, which

can increase training time.

Although neural networks have enabled image captioning systems to achieve impres-

sive results, generating accurate descriptions is still a challenge [16]. Unlike other tasks,

such as image classification, the field of image captioning still has room for improvement,

particularly when the task involves challenging conditions. Furthermore, image caption-

ing systems are bound to become more efficient and effective due to their wide range of

applications. For all these reasons, the study and development of new image captioning

systems and algorithms is a field that has attracted much attention and remains an exciting

challenge for the research community [5]

In this work, we propose a system for image captioning using a new architecture called

ConvNeXt for feature extraction. In summary, ConvNeXt is a modernization of CNNs,

whose redesign was inspired by the transformer architecture. So far, this architecture has

proven to achieve similar or even superior performance to the transformer while maintaining

the simplicity and efficiency of standard CNNs. Overall, our ConvNeXt feature extractor

combines with a long short-term memory (LSTM) with attentional mechanisms to generate

the image descriptions.

In addition, to evaluate the feasibility of ConvNeXt in diverse contexts, we have con-

ducted different experiments that include using four variants of ConvNeXt, from lightweight

to robust models to evaluate the impact on the performance of caption generation. We

Information Technology Engineer 3 Graduation Project
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have also evaluated the use of teacher-forcing and the effect on the system’s performance.

Finally, we have tested the impact of two different learning rates during the training stage.

To evaluate our proposal, we have used the top-5 accuracy and BLEU-n metrics, proving

that our system is capable of generating accurate descriptions improving the state-of-the-

art.

1.3 Objectives

1.3.1 General objective

The general objective of this work is to improve the performance achieved by the ar-

chitecture of the paper Show, Attend and Tell [17], by modifying the encoder with a

state-of-the-art approach and varying some hyperparameters.

1.3.2 Specific objectives

• Modify the original architecture by replacing its encoder with a ConvNeXt backbone.

• Use different versions of ConvNeXt and compare the performance obtained by each

of them.

• Use different learning rates to train the proposed architecture and compare the per-

formance obtained using each.

• Analyze the effect of applying teacher forcing during architecture training and com-

pare the performance when this is not applied.
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Chapter 2

Theoretical Framework

2.1 Artificial Intelligence

Artificial intelligence (AI) refers to systems capable of performing problem-solving tasks by

imitating human intelligence [18]. This concept term was first mentioned in 1950 by Alan

Turing in his book Computing Machinery and Intelligence [19, 20]. In that book, he asked,

“can machines think?” and introduced the Turing Test method to determine whether a

machine can be considered intelligent from the point of view of imitation [19]. Then, in

1956, John MacCarthy officially established the term artificial intelligence as “the science

and engineering of making intelligent machines, especially intelligent computer programs”

[19, 20].

Over the years, AI algorithms have evolved from simple sets of “if-then” rules to today’s

complex algorithms [19]. The development of AI has brought great advances in the industry

as it allows solving tasks that typically require human intelligence [21, 20]. As a result,

there have been economic and social benefits that have improved people’s lifestyle [20].

2.1.1 Machine learning

Machine Learning (ML) is a subdivision of AI (see Fig. 2.1) that focuses on solving tasks

and learn relationships and patterns using examples and observations from sample data

[20, 21, 22]. In order to build these predictive models, a process of selection or generation

of a set of convenient features is performed; this procedure is known as feature engineering

[21]. Once the model identifies the patterns or features that describe a particular problem,

5
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it “learns” to apply these relationships in future similar scenarios [19]. Not all problems

involving ML are approached in the same way; however, there are some essential and

generalizable steps that ensure the proper functioning of ML models [23]. These are shown

in Fig. 2.2.

Figure 2.1: Relationship between artificial intelligence, machine learning, and deep learn-
ing.

Figure 2.2: ML model workflow.

ML can be classified into four types according to the problem and the available data:

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement

learning [20, 22, 24, 25, 26, 27], as shown in Table 2.1.
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ML techniques have been enhanced with the technological development of computing

and the increase in existing data volume [23, 30]. Some of the tasks in which ML has

special applicability are classification, regression, and clustering [22, 23]; for this reason, it

is widely used in areas such as fraud detection, customer segmentation, and credit scoring

[22].

2.1.2 Deep learning

As illustrated in Fig. 2.1, Deep learning (DL) is another subset of AI [21, 29], which is

within ML. Unlike ML, DL uses more complex and sophisticated methods based on deep

neural networks [29]. The main difference between ML and DL lies in feature engineer-

ing. ML requires to indicate to the algorithm the features which it must look at, which

needs expertise and is a time-consuming procedure. In contrast, DL algorithms extract

the features themselves and search for the optimal set of these that allow them to obtain

the most accurate output possible [29, 31], as seen in Fig. 2.3. In other words, DL deals

with unstructured data and “learns” from it. For this reason, DL is considered the closest

technique to human learning [19, 31].

Figure 2.3: Machine learning and Deep learning comparison.

2.2 Artificial neural networks

In 1957, Frank Rosenblatt, known as the “father of deep learning,” created the perceptron,

the smallest computational unit of DL [25]. The perceptron, also called artificial neuron, is

inspired by the biological neuron [26]; it is shown in Fig. 2.4. The output of the perceptron

y can be mathematically defined as:

Mathematically it is defined as:
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Figure 2.4: The perceptron.

y = f(
D∑

i=1
wixi + b) (2.1)

where D is the dimension of input space, x is the input vector, w is a set of weights

corresponding to the input vector, b is the bias, and f(·) is a function called “activation

function”. It works as follows: first, each input value is multiplied by a corresponding

weight; then, the sum of the resulting products is calculated, and the bias is added. Sub-

sequently, this value is passed to the activation function. This function generates a binary

value, 0 or 1, as a binary classifier [25, 26, 30].

Although the perceptron marked the beginning of the revolution in AI-based technolo-

gies [32], it could not solve nonlinearly separable problems since the core of a perceptron

is, basically, a linear regression [25]. The solution to this problem was to combine multiple

perceptrons in parallel, forming layers as in Fig. 2.5. This grouping was called multi-layer-

perceptron (MLP) and is the most basic artificial neural network (ANN) [23, 25, 30]. The

functionality of the MLP is based on that of the perceptron, with the difference that the

outputs of the neurons in one layer are the inputs of the neurons in the next [30].

After this, the backpropagation (BP) algorithm came to solve the biggest problem of

MLP. BP is an optimization algorithm that uses the chain rule to calculate how slightly

changing each weight would change the network error [33]. Its name is since the algorithm
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Figure 2.5: The multi-layer-perceptron.

first calculates the error value of each neuron in the last layer and propagates it backward

[25, 33]. In this way, the global error is minimized. Before BP, MLPs could not automati-

cally derive network weights and biases; in other words, the network could not be trained

[25, 30]. The error function in classic backpropagation is the sum of squared error (MSE)

over all instances n [25], which is defined as follows:

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (2.2)

where yi is the target value and ŷi is the predicted output of the network on input xi.

Variations of the BP algorithm have appeared over the years. One of them is the

widely used gradient descent algorithm [25]. This algorithm allows finding the minimum

of a function automatically. For this, it uses the gradient (or derivative) of the function,

which guides the algorithm to approach the minimum ideal of said function progressively

[34, 35].

Mathematically it is defined as in Equation 2.3, where θt+1 is the parameter that is

updated by subtracting its current value θt and the product of the learning rate α and
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the gradient (∇f). We use the gradient to know which way to “move.” If the gradient is

negative, we will go in the current direction, and if the gradient is positive, we will go in the

opposite direction [35, 36]. Thus, iteratively, we will arrive at a point where the gradient

is close to zero, which will indicate that we are at a minimum value [36], as in Fig. 2.6.

θt+1 = θt − α∇f (2.3)

Figure 2.6: The gradient descent process.

The learning rate is a parameter that defines the proportion in which we advance in

each iteration of the descending gradient algorithm [35, 36]. It is important to define this

parameter correctly. On one hand, if we choose a learning rate that is too small, the

algorithm will be inefficient, and it will take many iterations to reach a minimum. On

the other hand, if we assign a large value, the “steps” of the algorithm will be very large,

and it will be impossible for it to converge to a minimum [28, 36]. Fortunately, there are

different techniques to adjust this parameter, such as Stochastic gradient descent (SGD),

Momentum, Nesterov accelerated gradient (NAG), among others [34, 35, 36].

Due to its excellent results, the descending gradient algorithm is the most used to

train almost any architecture, from the classic multi-layer networks to the most advanced

transformer networks.

Information Technology Engineer 11 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

2.2.1 Recurrent neural networks

Classical neural networks allow the processing of only one piece of data at a time, but

if the input is a sequence of data, such as a dialog, this type of architecture will not be

able to process this type of sequence [30]. The recurrent neural network (RNN) is a neural

network specially designed to work with data whose elements have a temporal relationship,

such as time series or ordered data sequences [22, 30, 37]. In RNNs, information can be

passed to the nodes of the following layer or the nodes of a previous layer. This property

gives RNNs a kind of artificial memory that allows previous inputs to influence the current

output [26].

Since NLP is word order dependent, language processing requires memory about pre-

vious items. For example, to analyze a sentence, interpreting a particular word requires

knowledge of the surrounding words to obtain the correct meaning of the whole sequence

[37]. A common example of this idea is the auto-correct text generation of cell phones.

These programs generate the next word according to the context provided by the user’s

previously typed words.

RNNs respond to a very intuitive idea, given that their functioning is similar to that of

a human. For example, when a person reads, he processes words sequentially, relying on

the context of all the previous words to give a concrete meaning to the information. For

these reasons, RNNs were widely used to address various tasks in this field [30, 37].

However, RNNs present a problem: they suffer from loss of context if the input to be

processed is large [22]. The more words a recurrent neural network processes, the more

the first words lose importance within the context of the sentence concerning the last ones

being processed [22, 37]. In other words, the network forgets which were the first words

in a sequence. This, of course, leads to serious errors of interpretation and understanding.

Fortunately, over the years, more sophisticated architectures have been developed that

allow us to deal with this problem better [37].

Long short term memory

Although RNNs allow processing sequences of data, they have the disadvantage of lacking

long-term memory. This significantly limits the usefulness of RNNs, since they are generally
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intended to process large sequences of data.

One of the best-known architectures and one of the first that tried to control this

problem is the Long short-term memory (LSTM). This network can “store” sequence-

relevant data and preserve it in both the short and long term [37, 38]. Unlike a classic

RNN, it contains an additional input and output, called “cell state” [30], as seen in Fig. 2.7,

which allows it to add or remove information from the neural network’s memory [22, 30].

This cell state works like a conveyor belt. Then, the “forget” gate allows to decide which

information to discard; the “update” gate allows to update the state cell by adding or

changing information; finally, the “output” gate filters the contents of the cell state, and

the output is obtained [30, 37, 38].

Figure 2.7: The Long short-term memory architecture. σ: sigmoid activation function;
h: tanh activation function; g: tanh activation function; ⊕: sum over all inputs; ⊗:
multiplication; xt: input vector; yt−1: previous hidden state; yt: current hidden state; ct−1:
previous cell state; ct: current cell state.
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2.2.2 Convolutional neural networks

Although classical multilayer neural networks have been widely used in image processing,

they have some disadvantages. Each input in a classical ANN corresponds to a pixel; in

other words, the model input is a one-dimensional vector. This means that the spatial

context of the image features is lost. That is, the possible relationships between the

elements or pixels of an image are lost. For example, pixels close to each other in an image

are likely to be more correlated than pixels on opposite sides of the image, but this is not

taken into account in a feed-forward neural network [26].

Convolutional neural networks (CNN) are a special class of ANNs that specialize in

working with images as input data. They comprise a series of processes that allow the

extraction and learning of features from an image [22]. In this way, the aim is to generate

a data matrix whose values contain the relevant information, taking into account the spatial

distribution of the data.

Feature extraction begins with a process called convolution. This process consists

of mathematically operating a group of image pixels with a convolution matrix called a

kernel. The operation performed is the scalar product. This kernel operates through the

image from left to right and from top to bottom until a new data matrix is generated [28].

For feature extraction, not one but several kernels are applied; the set of kernels is known

as filters. Each of them runs through the image and generates an output matrix. The set

of output matrices generated by the filters is known as a feature map [26].

Subsequently, an operation known as pooling is performed. This is used to reduce the

dimensionality of the data, taking only the most representative pixels of the matrix. Two

types of pooling are the most commonly used, average pooling and max pooling [31].

As the name suggests, average pooling calculates the average of the values of a feature

map. On the other hand, max pooling selects only the highest value of all. In this way, we

reduce the dimension of the data and keep only the most relevant.

This convolution and pooling processes are repeated several times until the most com-

plex features of the image can be extracted. Once this is done, it is possible to flatten the

data to introduce it into a classical feed-forward network and generate the corresponding

prediction [22]. Fig. 2.8 shows the architecture of the LeNet-5 model, considered the first
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convolutional neural network created.

Figure 2.8: LeNet-5 architecture. Subsampling is another term for pooling.

ConvNeXt arquitecture

The ConvNeXt architecture emerges as an alternative to the, for the time being, state-of-

the-art transformers. It was developed by researchers at Facebook AI Research (FAIR) in

2022. The idea of this development focuses on ‘modernizing’ CNNs. The researchers used

a ResNet-50 architecture as a basis and made changes to its design and configuration.

First, they changed the classical way CNNs were trained and trained the ResNet with

techniques similar to those used to train vision transformers [39]. This first change already

yielded significant results since this procedure improved the performance of the original

ResNet-50. Subsequently, they applied several design modifications divided into five as-

pects:

1. Macro design

2. ResNeXt

3. Inverted bottleneck

4. Large kernel size

5. Layer-wise micro designs

For the macro design stage, they analyzed the design of the Swin Transformers. Specif-

ically, they analyzed and applied the multi-stage design, in which each stage has a different

feature map resolution. For this, they made changes in the stage computation ratio and

the stem cell structure.
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Then, they tried to adopt the idea of ResNeXt [40], which has a better FLOPs/accuracy

ratio than a conventional ResNet. To do this, they use the concept of grouped convolution,

in which the convolutional filters are separated into different groups. In other words, the

aim is to ”use more groups, expand the width,” which significantly reduces FLOPs.

After, they replicated the use of a transformer’s inverted bottleneck. This makes the

hidden dimension of the MLP block four times larger than the input dimension. This

change reduces the FLOPs of the entire network and produces a slight improvement in its

performance.

The next part consisted of analyzing the performance of large convolutional kernels.

Basically, they increased the kernel size, motivated by transformers. They used as an

example the Swin Transformers, whose kernel size is 7x7, which is larger than the 3x3

kernel of the ResNetXt. This resulted in a performance improvement without affecting the

FLOPs of the network too much. However, they found that starting with a 7x7 kernel,

increasing the kernel size does not generate significant improvements.

After this, they focused on a micro-scale analysis, most of which was at the last layer’s

level. Specifically, they analyzed different configurations of activation functions and nor-

malization layers. The most significant changes were: replacing the activation function

ReLU with GELU, reducing the number of activation functions, reducing the number of

normalization layers, replacing batch normalization with layer normalization, and separat-

ing the downsampling layers. Fig. 2.9 shows the difference between the ConvNeXt block

designs and the reference models.

After this, they obtained what they called ConvNeXt. After being trained and evalu-

ated, ConvNeXt showed similar and, in some cases, better performance in image classifi-

cation, object detection, and segmentation tasks than state-of-the-art models such as Swin

Transformers. The full explanation of the design, operation, and training of the ConvNeXt

can be read in the original paper in [41].
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Figure 2.9: Comparison of Swin Transformer, ResNet, and ConvNeXt block structures

2.2.3 Transformer networks

Self-attention

The big problem of RNNs lies in their lack of long-term memory [22]. When the sequences

are long, the first processed words become unimportant in the sequence context, and the

network starts to fail [37]. Even networks such as LSTM are not robust enough to support

the large volume of data and the complexity of tasks demanded by today’s world. A

mechanism that pays “attention” to a complete sequence was proposed to address the

limitations of RNNs [37]. This is known as self-attention.

Self-attention is a mechanism that pays “attention” to all words in a sequence [42, 43].

In this mechanism, first, the input is transformed into three new vectors: the query vector

q, the key vector k, and the value vector v [43, 44]. The query vector and key refer to

the key-lock principle, similar to that found in databases for retrieving information. The
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vector q can be understood as the set of characteristics or representative properties of a

word, the vector k represents the properties that the word looks for in another word, and

the v is the vector value of the word. In this way, it is possible to analyze whether a word

has has a stronger or weaker relationship with another word [44].

In order to know the strength of this relationship, the q vector of one word must be

multiplied by the k vector of another, using the dot product [43]. The higher the value

of this operation, the greater the compatibility between the words. Then, this attention

vector serves as a mixing factor for each v vector; these vectors are summed, and an output

vector is obtained. This vector contains information about all the words that make up a

sequence, giving greater importance to those to which more “attention” has been paid

[43, 44, 45]. This approach is known as Scaled Dot-Product Attention and is illustrated in

Fig. 2.10.

Figure 2.10: The Scaled Dot-Product block.

Calculations are commonly performed by grouping the vectors derived from the different

inputs into matrices: Q, K and V . Mathematically, the output calculation is a vector of

attentional weights of the values by applying a softmax function as follows:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2.4)
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Figure 2.11: The Multi-head Attention block.

where dk is the embedding size that represents the words in the data set.

In this way, it is possible to know the context of a word concerning any other word in

a sequence, regardless of the distance between them [42]. In other words, this approach

solves the problem of RNNs lack of long-term memory [37]. These attention mechanisms

have revolutionized the world of NLP since their creation has allowed the development of

giant models that have been successfully applied to many natural language tasks [42].

Transformer architecture

The attentional mechanisms allowed to solve the problem of lack of memory of the RNNs,

and thanks to these the recurrent neural networks and others were benefited. However,

in 2017, Vaswani et al. [46] proposed the idea that it is not necessary to combine at-

tention mechanisms with RNNs to perform well. These authors mention that attentional

mechanisms by themselves are enough to achieve similar or even superior performances to

classical RNNs. The proposal of these authors was a new architecture called transformer.

The transformer is the first artificial neural network based entirely on attention mech-

anisms [42]. This architecture consists of two main blocks: the encoder and the decoder

[43, 45], as shown in Fig. 2.12. The encoder block extracts the most relevant information
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from a sequence. The output of this block is connected to a decoding block that takes this

result and generates a new output, which is the one with the highest probability according

to the context of the sequence [43].

Figure 2.12: The transformer architecture.

The encoder and decoder blocks’ main components are the feed forward neural network

and the multi-head attention module [45]. A feed forward network is a classical neural

network in which information flows in one direction only, from the input nodes to the

output nodes [26]. A multi-head attention module is a mechanism that works with several

self-attention components in parallel, as illustrated in Fig. 2.11. The independent attention
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outputs are concatenated and linearly transformed into the expected dimension [43, 45].

Unlike RNNs, which process an input sequentially, the Transformer processes the input

in parallel [43, 44]. A priori, this has a disadvantage: in a language sequence, the order is

important. By processing all the components of a sequence simultaneously, the contextual

information that allows us to know its meaning is lost [43]. For this, the creators of the

Transformer propose a special type of encoding called positional encoding.

This is a non-absolute positional encoding that uses an intuition based on sine and

cosine waves. Mathematically the positional encoding is defined as follows:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.5)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.6)

where pos is the position of the word within the input sequence, i is the dimension, and

dmodel the embedding dimension. The constant term is because the wavelengths form a

geometric progression from 2π to 10000·2π [46].

In this way, it is possible to tell the Transformer the order of the words that make

up an input sequence [43]. The attention mechanisms and this parallel processing make

the transformer a superior architecture to the RNN since it is possible to process a larger

amount of data efficiently.
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Chapter 3

State of the Art

3.1 Image captioning

A large number of systems have been proposed for image captioning. A recognized architec-

ture is the one proposed by Xu et al. [17]. This architecture is, in short, an encoder-decoder

architecture. First, a convolutional network is used to perform feature extraction. Then,

the decoder, powered by an attentional mechanism, focuses on specific parts of the image

and generates an output sequence, the image caption. The authors used the MS COCO

data set and the BLEU and METEOR metrics to train the architecture to measure per-

formance. As result, they obtained better numbers in all metrics concerning the models

with which they were compared.

The work of Liu et al. [47] is quite similar to the previously mentioned. It also

comprises an attentional mechanism, a feature extractor, and an LSTM decoder. However,

the architecture incorporates a merging gate that adaptively adjusts the weight between

the visual information and the conceptual information for generating the caption. For

training, they used the MS COCO and Flickr30k data sets. The metrics SPICE, CIDEr,

METEOR, ROUGE-L, and BLEU-4. The results showed an improvement concerning other

architectures; for example, the one proposed in [17].

Continuing with the trend of using attentional mechanisms, the work of Qiu et al. [48]

proposes an encoder-decoder architecture for image captioning. In this case, the idea is

similar to thw work seen in [17] but applied to the captioning of terrain images. For this

purpose, they used the MICD data set containing Martian data. Furthermore, to evaluate

23
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the performance, they used the metrics BLEU, METEOR, ROUGE-L, and CIDEr. As a

result, they obtained state-of-the-art results and demonstrated that this type of network

can and has scope for application in planetary and astronomical domains.

As technology advanced, new components were adopted to enhance and improve ex-

isting architectures. For example, we have the work of Lei et al. [49] which incorporates

a transformer module. First, feature extraction is performed by adapting a Region Based

CNN. In this way, they could perform a multi-level encoding that allowed them to have

more accurate information about the image. Then, they modified a transformer architec-

ture, incorporating a sparse module between the scale and softmax functions of this one.

This module is then connected to an LSTM to form the decoder. For training, they used

the data sets MS COCO and Flickr30k and measured the performance using BLEU, ME-

TEOR, CIDEr, and ROUGE-L. The results they obtained showed slight improvements

over the baseline architectures.

The work of Li et al. [50], in the meanwhile, proposes a modification to the classical

encoder-decoder networks used for image captioning. In addition to containing the image

captioning network, it includes a multi-level similarity fusion network. This allows to

compute the local and global semantic similarities and merges them to build the multilevel

similarity-based reward. The reward is back-propagated to guide the parameter update of

the caption generation network by a reinforcement learning algorithm, to achieve better

matching semantics. To train the model, they used the MS COCO data set. The metrics

BLEU, METEOR, ROUGE-L, CIDEr−D, and SPICE. As a result, they obtained numbers

that reflected a state-of-the-art performance of their proposal. They outperformed the

classical models combining CNN and RNN; however, they were slightly inferior to the

transformer-based proposals.

Table 3.1 shows a summary of the works analyzed above.
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3.2 ConvNeXt

The inclusion of transformers generated a revolution and meant a significant improvement

in many neural network architectures at the time, especially those applied to images. As

a result, they gradually replaced CNNs as the base architecture for any Computer Vision

task. Moreover, the transformers inspired many researchers to propose more and better

architectures to compete with them. One of them is the ConvNeXt architecture which is

directly inspired by the design of the Transformers. This is an architecture proposed in

2022 that claims to match and, in some cases, surpass the transformers’ performance.

Despite being a new architecture, many researchers are already incorporating it into

their research areas. According to Table 5, there are many fields in which this new archi-

tecture is being applied. For example, we have the work of Yang et al. [51], which applies

ConvNeXt in remote sensing. Specifically, the authors made several modifications to a

YOLOv4 architecture, including incorporating ConvNeXt to replace the original feature

extractor. This, along with the other modifications, allowed the authors to outperform the

original architecture and other state-of-the-art options. Two data sets, RSOD and NWPU

VHR-10, were used for training. The metrics used were the F1 score and mean average

precision.

In another field, the work of Zhu et al [52]. proposes the use of ConvNeXt in the

medical field. Specifically, the authors propose a network for predicting the origin for bone

metastatic cancer. For this purpose, they used a network composed of an encoder and

an attention-pooling mechanism. Once feature extraction is performed, the features are

merged into a representative vector by attention-based pooling. They used a proprietary

data set that they collected from eight healthcare centers in China for training and testing.

They also used recall, precision, ACC, and ROC metrics to measure the performance of

the approach. They obtained state-of-the-art results and demonstrated the effectiveness of

the model for detecting cancer and some types of cancer.

A similar work is proposed by Hassanien et al.. [53], which uses ConvNeXt as part of

an architecture for breast tumor malignancy prediction. The architecture consists of three

main elements, a backbone, a pooling mechanism, and a visual explanation mechanism.

The backbone is responsible for the feature extraction, the pooling mechanism generates
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the malignancy score for each input sequence, and the visual explanation mechanism helps

interpret the deep learning decisions to generate a prediction. They used a data set of

malignant and benign sequences for training, part of a clinical database of ultrasonic ra-

diofrequency strain imaging data created by the Engineering Department of Cambridge

University. Likewise, the metrics used were accuracy, precision, recall, and F1 score. It

should be noted that, in addition to ConvNeXt, they tested other architectures for feature

extraction; however, ConvNeXt proved to provide the best numbers in conjunction with

the other mechanisms that make up the complete architecture.

In the work of Xu et al. [27], a visual tracking architecture is proposed. It comprises

three components. First, a ConvNext is used as a feature extractor. Then, a feature fusion

network suppresses the responses of similar targets by applying a 3D C-Max fusion network

to enhance the network’s feature recognition capability. Finally, a multibranch prediction

network comprises classification and regression branches for foreground and background

classification. The data sets used in this work were ILSVRC-VID/DET, COCO, and GOT-

10k. The metrics used to measure performance were AUC, precision, success rate graph,

average overlap, frames per second, and degree success rate. As a result, they obtained

competitive numbers in all metrics and even outperformed other variants, such as ResNet-

based architectures.

In the work of Hoo et al. [54], the authors’ proposal is focused on using and modifying

a ConvNeXt for face recognition. The authors propose some variations of the ConvNeXt,

whose differences are centered on different combinations of downsampling approaches in the

stem partition and the bottleneck partition. Moreover, the downsampling approaches differ

in kernel size for convolutional operation. Specifically, they introduced a non-overlapping

patch in addition to the typical overlapping approach. The authors used the UMD Faces

data set to train all models. Also, the metric used to evaluate performance was accuracy. As

a result, they obtained that their models present a state-of-the-art performance. However,

they did not outperform other alternatives by a short margin. Even so, it should be noted

that the authors’ proposal presented lighter models than the existing ones.
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Chapter 4

Methodology

4.1 Data Set Description and Preprocessing

This work uses the 2014 MS COCO [56] dataset, the variant intended for image captioning.

Moreover, we report results using the splits described in the work of Karpathy and Li [57].

The dataset contains 123,287 images in total. The splits provide ready-made datasets for

training, validation and testing. There are 5,000 images designated for the validation set,

5,000 for testing and the remaining for training. Fig. 4.1 shows some example images

of this dataset. It is also necessary to indicate that the model receives three inputs: the

images, the captions, and the lengths of the captions.

Since we use a pre-trained model, the input images must have the structure required by

it to work correctly. For this reason, the images are resized to 224 × 224 pixels. Likewise,

it is necessary to normalize the images; for this, the mean (µ = [0.485, 0.456, 0.406]) and

standard deviation (σ = [0.229, 0.224, 0.225]) of the ImageNet dataset are used.

Now, the captions are used both as the model’s target and the decoder’s input. The

latter needs to know where the caption begins and ends; for this reason, it is necessary

to add two characters to delimit its extension. These are represented as < start > and

< end > ‘signals.’ With the addition of these characters, a caption would look like this:

< start > a large bus sitting next to a very tall building < end >

Also, since not all captions are of a fixed length, filling the missing spaces in the caption

with a padding character is necessary. This is represented by < pad >. With the inclusion
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(a) Caption: “a horse carrying
a large load of hay and two peo-
ple sitting on it”

(b) Caption: “bunk bed with a
narrow shelf sitting underneath
it”

(c) Caption: “a large bus sit-
ting next to a very tall build-
ing”

Figure 4.1: Some examples taken from the MS COCO dataset and their respective ground-
truth captions.

of this character, a caption would look as follows:

< start > a large bus sitting next to a very tall building < end >< pad >< pad >

Furthermore, given that every neural network model does not receive letters as input

but numbers, it is necessary to encode the input. Each word is assigned an identification

number for this purpose and by means of a dictionary-based mapping system. In this way,

each of the captions is represented as a numerical array. For the example in Fig. 4.1c, the

input caption after all the preprocessing would look something like the one shown in Table

4.1.

Regarding caption lengths, these are just numerical arrays containing the number of

words that make up the description of each image.

4.2 Model Proposal

4.2.1 Benchmark model

Our proposal is inspired by the architecture of Xu et al. [17], and will be used as the

benchmark. This can be seen in Fig. 4.2.

The authors of the mentioned work proposed an encoder-decoder architecture with

visual attention mechanism. The model takes a raw image and generates a caption y
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Table 4.1: Example of how captions are encoded. The caption is the one in Fig. 4.1c.

Word Encoding

< start > 9876
a 1
large 2
bus 3
sitting 4
next 5
to 6
a 7
very 8
tall 9
building 10
< end > 9877
< pad > 9878
< pad > 9878
· · · · · ·

Figure 4.2: Encoder-decoder architecture for image captioning used as benchmark.

encoded as a sequence of 1-of-K encoded words as follows:

y = {y1, y2, · · · , yC}, yi ∈ RK

where K is the vocabulary size and C is the length of the caption.

For feature extraction, they used a CNN VGGNet pre-trained on ImageNet. This

produces L vectors (known as annotation vectors), each of which is a D-dimensional rep-

resentation corresponding to a part of the image.

a = {a1, a2, · · · , aL}, ai ∈ RD

For the encoder, they used an LSTM that produces a caption by generating a word
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at each decoding step. For each annotation vector at time t, the attentional mechanism

computes the corresponding weights using the previous hidden state (ht−1) and passing

this output through a softmax function:

wti = Att(ai, ht−1)

αti = exp(wti)∑L
K=1 exp(λtk)

Once the weights have been calculated, the context vector z̃t is calculated as follows:

z̃t = ϕ({ai}, {αi}),

where ϕ is a function that returns a single vector given the set of annotation vectors

and their corresponding weights. The context vector z̃t is nothing more than a dynamic

representation of the relevant parts of the input image at time t.

Finally, the probability of the output word is calculated using the context vector, the

previously generated word, and the previous hidden state as follows:

p(yt | a, yt−1
1 ) ∝ exp(L0(Eyt−1 + Lhht + Lz z̃t))

where L0 ∈ RKxm, Lh ∈ Rmxn, Lz ∈ RmxD, and E are learned parameters initialized ran-

domly. Note that m and n denote the embedding and LSTM dimensionality respectively.

For a more detailed explanation of this architecture see [17].

4.2.2 ConvNeXt-based approach

Given the above context, our proposal focuses on studying the alternative of replacing

the encoder of the original architecture with a current state-of-the-art model. Specifically,

we propose the use of the ConvNeXt architecture as the encoder. Originally, ConvNeXt

was trained and tested for image classification tasks. In that field, ConvNeXt has already

demonstrated its viability and effectiveness as it reported superior performance to the

CNNs of the time and also outperformed vision transformers. For this reason, and given the

outstanding performance shown by ConvNeXt, our experiments are focused on evaluating
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the performance of this architecture for image captioning tasks.

Following a methodology similar to the benchmark work, we use transfer learning em-

ploying pre-trained models without finetuning to implement our proposal. In this way, we

avoid training the entire architecture from scratch. Since we use pre-trained models, it is

necessary to modify them to use them as feature extractors. Specifically, it is necessary to

remove the last layer of the ConvNeXt, which contains the MLP classification head, since

we will not perform classification tasks.

Once the feature extraction is done, this information is passed to the LSTM-based

encoder, with attentional mechanisms over the image. It is important to note that, in this

work, we use the ‘soft attention’ approach, stated by the benchmark authors, for which we

calculate a weighted soft attention annotation vector (z̃t) defined as:

z̃t =
L∑

i=1
αt,iai

and described above.

Finally, the encoder generates one word at a time until the final caption is obtained.

The general scheme of the proposed architecture is shown in Fig. 4.3.

Figure 4.3: Overall representation of the proposed ConvNeXt backbone-based adaptation
for image captioning.
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4.3 Experiments

As mentioned above, the main objective of this work is to study the effect of replacing the

encoder of the benchmark architecture with the new ConvNeXt architecture. Nevertheless,

we also want to perform different experiments and analyze the proposal’s performance in

each of them.

Therefore, the first case study we analyzed is to evaluate the proposal’s performance

using different versions of ConvNeXt. These range from the lightest version to a more

robust version with a larger number of parameters. The details of each of these are shown

in Table 4.2.
Table 4.2: ConvNeXt variants used in this work. All version are pre-trained on ImageNet-
1K dataset; accuracy results shown were also measured on this dataset.

Model Resolution Acc@1 Acc@5 Params FLOPs

ConvNeXt tiny 224x224 82.52 96.15 28M 4.5G

ConvNeXt small 224x224 83.62 96.65 50M 8.7G

ConvNeXt base 224x224 84.07 96.87 89M 15.4G

ConvNeXt large 224x224 84.42 96.98 198M 34.4G

It should be noted that some implementation modifications are necessary depending on

the version of ConvNeXt used. Specifically, all ConvNeXt versions used generate a final

encoding of size 7x7, but each one generates a different number of channels, as shown in

Table 4.3.
Table 4.3: Final encoding size produced by each of the ConvNeXt variants used.

Model Encoding size

ConvNeXt tiny (768, 7, 7)

ConvNeXt small (768, 7, 7)

ConvNeXt base (1024, 7, 7)

ConvNeXt large (1536, 7, 7)

The next point we decided to evaluate is to vary some of the parameters with which the
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architecture is trained. Specifically, we decided to use two different learning rates (α) to

train the proposal and analyze the impact of each of them on its performance. We did this

since performing experiments with smaller learning rates is recommended when working

with pre-trained models [58]. The learning rates used are shown in Equations 4.1 and 4.2.

α = 4e − 4 (4.1)

α = 1e − 4 (4.2)

It is important to remember that we decided to use different versions of ConvNeXt for

our proposal, so each architecture variant was trained with each of the mentioned learning

rates.

The last aspect we decided to evaluate was the use of teacher-forcing (TF) during the

architecture training. In a nutshell, teacher-forcing is a technique for training RNNs in

which, at each time step, the ground-truth captions are used as the input to the decoder

and not the word that the decoder generated at the previous time step [59, 60, 61]. The

use of TF usually helps the training to be faster and more efficient [62]; however, the model

may present some instability in the evaluation since it learned to depend on the ground-

truth captions. Along with the previous experiment, each variant of the architecture was

trained with and without TF to evaluate the difference in performance.

The entire workflow used in this work can be seen in Fig. 4.4.

The implementation was performed using the PyTorch framework, while the pre-trained

models were obtained from the torchvision library. The loss function and optimizer used

were Cross entropy and Adam, respectively. Also, the training was implemented in such

a way that this is stopped when there is no improvement in the metrics for 20 epochs in

a row or when 120 epochs have been reached. In another aspect, training was performed

using an HPC node with a 32-core AMD EPYC 7742 processor and a Nvidia A100 SXM4

graphics card of 40 GB.
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Figure 4.4: Overall workflow followed in this study.

4.3.1 Performance Metrics

In addition to measuring the loss of the trained models, we use two metrics to evaluate the

performance of our approach.

BLEU-n

BLEU-n is a metric that evaluates machine-generated texts by comparing them to one or

more reference texts created by humans [63, 48]. This evaluation is performed at the n-gram

level, which means that BLEU-n measures the overlap between the machine-generated

sequences and the reference texts based on consecutive sequences of n words [48]. The

BLEU-n score is calculated by taking the geometric mean of the n-gram precisions, where

each precision value is weighted according to the length of the n-gram [64]. Furthermore,

a brevity penalty factor is applied to discourage the machine-generated texts from being

significantly shorter than the reference texts [65]. In mathematical terms, we can define it

as:

BLEU-n = BP · exp
 n∑

i=1
wi log Pi


where BP is the brevity penalty factor, wi are the weights for each level of n-gram, and Pi

is the precision of each level of n-gram.
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Top-5 accuracy

The next metric used is top-5 accuracy. This is a specific type of top-n accuracy. In

general terms, the top-n accuracy metric measures the proportion of times the model

correctly predicts the first n elements in a set of possible outcomes [66, 67]. In this case,

we measure the proportion of predictions that match the correct labels within the top five

prediction options [68]. Mathematically, we can define it as:

top-5 accuracy = 1
N

N∑
i=1

[yi ∈ top-5(f(xi))]

where N is the total number of examples, xi is the i − th example, yi is the true label

for the i − th example, f(xi) is the model making predictions on the i − th example, and

top-5(f(xi)) is the set of the top five predictions according to the model f(xi).
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Chapter 5

Results and Discussion

Table 5.1 shows the results obtained from the models trained with a learning rate of 4e−4,

regarding the BLEU metrics. From this, the first evident thing is that the models that do

not use TF show better performance than those that do. The gap between models that

use TF and those that do not is, in all cases, greater than 8 points concerning the BLEU-4

metric.

Likewise, the ConvNeXt-base models are the ones that show the best performance

among all the alternatives tested both with and without TF. The next model is the

ConvNeXt-large with the second-best performance shown. However, the difference in per-

formance between the base and large variants is more significant when TF is not used.

Specifically, the difference between the base and large variant is 0.03 and 0.44 in TF and

no TF, respectively, relative to the BLEU-4 metric. Regarding the ConvNeXt-small and

ConvNeXt-tiny variants, they show lower performance than the more robust alternatives.

However, it is repeated that the differences in performance are smaller when TF is used.

Moving on to training using the learning rate of 1e − 4, a similar behavior to that seen

with the larger learning rate is observed, as shown in Table 5.2. However, the gap between

the models with and without TF is more significant in this case. Specifically, all models

without TF outperform those using TF by no less than 9 points in terms of BLEU-4.

Likewise, the Convext-base variants again show the best performance whether or not TF

is used, over the other variants. In second place are again the Convext-large variants, and

finally, the Convext-small and Convext-tiny variants.

It is evident that avoiding the use of TF produces better results. In all the experimental

39



School of Mathematical and Computational Sciences Yachay Tech University

Table 5.1: BLEU metrics obtained by the best checkpoint generated using a learning rate
of 4e − 4.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Teacher-forcing

ConvNeXt-tiny 72.90 52.70 35.63 24.03
ConvNeXt-small 73.09 52.99 36.07 24.55
ConvNeXt-base 73.17 53.02 36.11 24.60
ConvNeXt-large 73.35 53.20 36.14 24.57

No teacher-forcing

ConvNeXt-tiny 74.37 57.79 44.03 33.59
ConvNeXt-small 73.81 57.16 43.44 33.20
ConvNeXt-base 74.61 57.88 44.48 34.20
ConvNeXt-large 74.30 57.71 44.05 33.76

Table 5.2: BLEU metrics obtained by the best checkpoint generated using a learning rate
of 1e − 4.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Teacher-forcing

ConvNeXt-tiny 72.75 52.62 35.58 24.04
ConvNeXt-small 73.22 52.96 36.13 24.54
ConvNeXt-base 73.17 53.16 36.17 24.63
ConvNeXt-large 73.32 53.13 36.16 24.58

No teacher-forcing

ConvNeXt-tiny 74.59 57.92 44.10 33.61
ConvNeXt-small 74.37 57.69 43.95 33.59
ConvNeXt-base 74.79 58.07 44.61 34.76
ConvNeXt-large 74.39 57.92 44.41 34.24

scenarios analyzed, the models that did not use TF were superior in performance. For this

reason, we will focus our further analysis on this set of models.

In order to graphically analyze the performance of the models, Fig. 5.1 and Fig. 5.2

were made. The first corresponds to the models with the highest learning rate, and the

second corresponds to the models with the lowest learning rate.

Regarding Fig. 5.1, it is evident that all models deliver coherent captions; however,

none sufficiently match the ground-truth. The ConvNeXt-tiny, ConvNeXt-small, and

ConvNeXt-large variants delivered similar results but did not describe all relevant ob-

jects in the image. The ConvNeXt-base variant generated a different, consistent caption

but did not accurately reflect the entire scene, relative to the ground-truth. In none of the

captions generated was the flag mentioned as part of the scene.

Turning to Fig. 5.2, on the one hand, it is evident that the ConvNeXt-tiny and
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(a) Image caption generated by ConvNeXt-
tiny model.

(b) Image caption generated by ConvNeXt-
small model.

(c) Image caption generated by ConvNeXt-
base model.

(d) Image caption generated by ConvNeXt-
large model.

Figure 5.1: Visual results of image captions using a learning rate of 4e−4. Ground-truth:
“The plane was flying high near the flag in the air”

ConvNeXt-small variants give erroneous results, both in coherence and in the match with

the ground-truth. On the other hand, the ConvNeXt-base and ConvNeXt-large models

give very accurate results similar to the ground-truth. The ConvNeXt-base variant stands

out as the model that comes closest to ground-truth in terms of matching. The ConvNeXt-

large variant differs slightly from the ground-truth, but the caption generated by it is still

significantly accurate and correctly describes the scene.

For this example, it is clear that the ConvNeXt-base and ConvNeXt-large models

trained with the lowest learning rate produce the best results overall. Likewise, some

superiority is observed for ConvNeXt-tiny and ConvNeXt-small models trained with the

lower learning rate over those trained with the higher learning rate.
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(a) Image caption generated by ConvNeXt-
tiny model.

(b) Image caption generated by ConvNeXt-
small model.

(c) Image caption generated by ConvNeXt-
base model.

(d) Image caption generated by ConvNeXt-
large model.

Figure 5.2: Visual results of image captions using a learning rate of 1e−4. Ground-truth:
“The plane was flying high near the flag in the air”

The second example is shown in Fig. 5.3 and Fig. 5.4. Similar to the previous ex-

ample, the first corresponds to the models with the highest learning rate, and the second

corresponds to the models with the lowest learning rate.

Concerning Fig. 5.3, and using the ground-truth as a reference, the ConvNeXt-tiny

variant stands out as the only model that does not produce an adequate caption. Although

this variant generated a coherent description, it does not describe the main object of the

scene. Concerning the other variants, all generated adequate captions. However, the

ConvNeXt-base and ConvNeXt-large variants stand out over ConvNeXt-small for including

more details. These two variants have a good match with the ground-truth, describe the

main object, and, in addition, include more details about the context.
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(a) Image caption generated by ConvNeXt-
tiny model.

(b) Image caption generated by ConvNeXt-
small model.

(c) Image caption generated by ConvNeXt-
base model.

(d) Image caption generated by ConvNeXt-
large model.

Figure 5.3: Visual results of image captions using a learning rate of 4e−4. Ground-truth:
“A hot dog covered in mustard and ketchup.”

Turning to Fig. 5.4, the ConvNeXt-tiny and ConvNeXt-small variants stand out for

having generated the captions that match the ground-truth the least. These two vari-

ants do not describe the most important elements of the scene. The ConvNeXt-base

and ConvNeXt-large variants, on the other hand, generated coherent captions with a good

match to the ground-truth. However, it should be noted that although both variants gener-

ated accurate captions, the ConvNeXt-large variant includes more detail in its description.

From these two examples, it is possible to highlight that the models that give the

best overall results are the two most robust variants, ConvNeXt-base and ConvNeXt-

large, trained with the lowest learning rate. Likewise, when we analyzed only the lighter
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(a) Image caption generated by ConvNeXt-
tiny model.

(b) Image caption generated by ConvNeXt-
small model.

(c) Image caption generated by ConvNeXt-
base model.

(d) Image caption generated by ConvNeXt-
large model.

Figure 5.4: Visual results of image captions using a learning rate of 1e−4. Ground-truth:
“A hot dog covered in mustard and ketchup.”

variants, ConvNeXt-tiny and ConvNeXt-small, they gave better results when trained with

the largest learning rate. In short, on the one hand, for robust models, training with a lower

learning rate produces better results; on the other hand, training with a larger learning

rate generates better performance for the lighter models.

Moreover, considering the graphical results, and the numerical results in Table 5.2,

the best model we obtained in overall performance is the ConvNeXt-base variant trained

with the lowest learning rate and without TF. The second best model obtained is the

ConvNeXt-large variant, trained under the same conditions as the first one.

Moving on, Table 5.3 shows the average inference times for each variant and with each

learning rate used. From this table, it is possible to highlight that, in general, all models
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take a short time for inference. However, the models trained with the largest learning rate

are shown to be slightly faster than those trained with the lowest learning rate. Likewise,

the ConvNeXt-tiny variants are those that take the least time compared to their more

robust alternatives during the inference process.

Table 5.3: Average inference time (seconds). Best checkpoints with no teacher-forcing.

Model α = 4e − 4 α = 1e − 4
ConvNeXt-tiny 0.0286 0.0362
ConvNeXt-small 0.0367 0.0381
ConvNeXt-base 0.0453 0.0455
ConvNeXt-large 0.0461 0.0489

On another point, Table 5.4 shows the average loss of the models. From this table,

as expected from what we have seen above, the ConvNeXt-base variants stand out as

those with the lowest loss, concerning both learning rates used. In second place are the

ConvNeXt-large variants, and then, the lighter variants. In general, a small loss is observed

in all models.

Table 5.4: Average loss. Best checkpoints with no teacher-forcing.

Model α = 4e − 4 α = 1e − 4
ConvNeXt-tiny 2.838 2.8383
ConvNeXt-small 2.8398 2.821
ConvNeXt-base 2.7947 2.783
ConvNeXt-large 2.8154 2.82

Moving on to the next point, Table 5.5 shows the results of the top-5 accuracy of the

models according to each learning rate used. From this table, the ConvNeXt-base variants

stand out as those with the best numbers, both for the smallest and the highest learning

rate. Then there are the ConvNeXt-large variants. The ConvNeXt-base and ConvNeXt-

tiny variants have similar numbers to each other.

Finally, we compared our best models’ performance with the alternatives available in

the literature. For this, we use the best model for each learning rate used. It should be

remembered that we consider only the models without TF since they are the ones that

give the best performance, as explained above.
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Table 5.5: Top-5 accuracy. Best checkpoints with no teacher-forcing.

Model α = 1e − 4 α = 4e − 4
ConvNeXt-tiny 77.399 77.322
ConvNeXt-small 77.298 77.419
ConvNeXt-base 77.763 77.797
ConvNeXt-large 77.556 77.487

Table 5.6 shows a comparison between our best models and some approaches from

the literature in terms of loss and top-5 accuracy. This table shows that our best models

outperform the other approaches by a considerable margin, both in loss and top-5 accuracy.

Our ConvNeXt-base variant trained with the lowest learning rate stands out as the one

with the best numbers among all.

Table 5.6: Comparison of our results with other approaches according to the top-5 accuracy
and loss metrics. We compare our best models with both learning rates: *α = 4e − 4,
**α = 1e − 4.

Encoder Top-5 accuracy Loss

ResNet-101[69] 73.092 3.413
ResNet-152[69] 73.077 3.412
VGG-16[69] 73.069 3.413
ResNeXt-101[69] 73.128 3.404
MobileNet V3[69] 72.928 3.424
ConvNeXt-base* 77.763 2.794
ConvNeXt-base** 77.797 2.783

Turning to Table 5.7, this compares our best models with the benchmark. Nevertheless,

we also compare our proposal with another state-of-the-art approach. Specifically, we

compare our proposal with the approach proposed in [69], in which transformers are used

as feature extractors to perform image captioning. As mentioned above, transformers

are modern and powerful architectures that replaced the classical CNNs, and are a great

challenge to overcome.

The results show that our proposal outperforms the benchmark and transformer-based

models in BLEU-4. Specifically, our best model, the ConvNeXt-base trained with a learning

rate of 1e − 4 and no TF, outperforms the state-of-the-art from [17] by 43.04 % for the

soft-attention model and by 39.04 % for the hard-attention model. Likewise, our proposal
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outperforms the state-of-the-art from [69] by 4.57 % for the ViT-based model and by 0.93

% for the DeiT-based model. Furthermore, our models were not fine-tuned, in contrast to

the models proposed in [69]. In other words, there is still room for improvement for our

proposal.

Table 5.7: Comparison of our results with state-of-the-art approches according to the
BLEU metrics. We compare our best models with both learning rates: *α = 4e − 4,
**α = 1e − 4.

BLEU-1 BLEU-2 BLEU-3 BLEU-4

SAT (Soft)[17] 70.70 49.20 34.40 24.30
SAT (Hard)[17] 71.80 50.40 35.70 25.00
ViT[69] - - - 33.24
DeiT[69] - - - 34.44
ConvNeXt-base* 74.61 57.88 44.48 34.20
ConvNeXt-base** 74.79 58.07 44.61 34.76

As a final experiment, we performed some tests using our best model on images captured

by the authors of this paper using their cell phones. The images correspond to different

contexts, including pets, friends, and objects. All images used are publicly available. The

results can be seen in Fig. 5.5. These results show that our model is able to generate

coherent descriptions with a good level of detail in different contexts. In all tests, we

obtained a description that correctly reflected the scene, even considering specific details

such as colors and accessories. This was especially evident in the example in Fig. 5.5h. In

this example, it is difficult to identify that the person is inside a car; however, the model

correctly detected this situation and described it.

We have successfully evaluated the approach in different contexts along with the latter

tests. The tests performed included scenes with different numbers of entities and different

types of things, including food, people, animals, simple objects, and complex objects. It

was also shown that adequate descriptions of varying lengths could be generated.

5.1 Limitations

Some limitations of our work include the need for more knowledge of the proposal’s per-

formance in more specific contexts or applications. For example, in medicine, to describe
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objects and situations in medical images, in satellite images to describe geographic features

such as rivers and mountains, and in wildlife images to describe a specific animal or plant

species.

Given the nature of the dataset used to train the model, it is foreseeable that the

proposal will underperform in some specific context in its current state. However, with an

adequate re-training or fine-tuning of the proposal in a specific dataset, it is expected to

perform similarly to the one reported in this work.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Image captioning results using the best model. The images were taken with
cell phones in different contexts.
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Chapter 6

Conclusions

This paper proposes an image captioning system that uses ConvNeXt, a state-of-the-art

computer vision architecture, as a feature extractor. The feature extractor is combined

with an LSTM block with a visual attention module to generate accurate and coherent

descriptions. We conducted various tests in various situations to assess the efficiency of

ConvNeXt. These experiments included testing four variants of ConvNeXt to analyze

the impact on caption generation, training the system with two different learning rates

to analyze the effect on the performance. And finally, we have analyzed the inclusion of

teacher-forcing during the training process, and compared its performance without teacher-

forcing.

As a result, we claim that teacher-forcing should be avoided to produce a better overall

performance of the system. Likewise, it was shown that using a small learning rate can

produce performance improvements, mainly when robust models are used as feature ex-

tractors. The opposite was demonstrated with lightweight models, which produce slightly

better results when trained with larger learning rates.

Numerical results shows that our proposal is able to not only generate comprehensive

captions, but also surpass the transformer-based benchmark’s metrics. In particular, our

leading model surpassed the state-of-the-art BLEU-4 by 43.04 % for its soft-attention model

and 39.04 % for its hard-attention model. In addition, our best model outperformed the

ViT and DeiT-based BLEU-4 by 4.57 % and 0.93 %, respectively. Similarly, it outperforms

alternatives that utilize ResNet-101, ResNet-152, VGG-16, ResNeXt-101, and MobileNet

V3 network-based encoders by 6.44%, 6.46%, 6.47%, 6.39%, and 6.68%, respectively, in
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terms of top-5 accuracy, and by 18.46%, 18.44%, 18.46%, 18.24%, and 18.72%, respectively,

in terms of loss.

The significance of accurate image descriptions becomes evident, as even a minor mis-

description of an object can potentially lead to severe consequences. Any additional per-

centage of accuracy, even a mere 1%, enables us to enhance the overall user experience and

ensure the effective utilization of image captioning technology in real-world scenarios.

Additionally, the numerical findings were reinforced by the visual results, indicating that

the suggestion produces logical descriptions of varying lengths. The experiments conducted

encompassed various scenarios, including diverse quantities of entities and types of objects,

such as food, individuals, animals, simple objects, and complex objects. The proposal was

not only tested with images from the dataset but also with unfamiliar images taken by

people. In this scenario, the proposal also demonstrated good performance, as it generated

suitable descriptions.

For future works, it is suggested to extend the analysis of this proposal by expanding

the number of experiments. For example, it is possible to perform hyperparameter tuning

to verify if a different configuration allows for better performance. Also, it is possible to

train and test this proposal with other datasets to verify its behavior.

Similarly, it is advisable to fine-tune the model by retraining some decoder layers, which

is likely to improve the metrics. And finally, the impact of modifying further components,

such as the decoder, with available state-of-the-art architectures can be studied to discuss

if this update can complement the ConvNeXt enconder improving the overall performance

of the system. The code and material developed in this work are available in a GitHub

repository1.

1https://github.com/Leo-Thomas/ConvNeXt-for-Image-Captioning-.git
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