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Resumen

En el campo de la investigación y la ciencia, los datos de estudio cada vez son más
grandes, lo que conlleva a una difı́cil gestión de estos, es aquı́ donde surgen muchas
técnicas de Análisis Multivariante que nos permiten gestionar estas bases de datos me-
diante la reducción de dimensión de estas. El método de reducción utilizado en este
trabajo se denomina Análisis de Componentes Principales Sparse, el cual se encarga de
obtener componentes principales cuya matriz de carga está mayoritariamente confor-
mada por ceros, facilitando su interpretación.

Se aplicaron algunos algoritmos de este método a una base de datos de Pruebas
Clı́nicas COVID-19 de la cual se obtuvo que de las 7 variables, 4 de ellas eran las más
importantes ya que con ellas se alcanzaba alrededor del 91% de la varianza explicada.
Finalmente, estos algoritmos fueron más efectivos que un PCA clásico ya que, debido a
la forma de su matriz de carga, son más fáciles de interpretar. Además, estos no presen-
tan dificultades a la hora de trabajar con outliers y, finalmente, presentan un bajo coste
computacional.

Palabras Clave:
Big data, Sparse PCA, Análisis Multivariante, PCA, Shrinkage Methods.
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Abstract

In the field of research and science, the study data is getting larger, which leads to diffi-
cult management of these, it is here where many Multivariate Analysis techniques arise
that allow us to manage these databases by reducing of dimension of these. The reduc-
tion method used in this work is called Sparse Principal Component Analysis, which is
responsible for obtaining principal components whose loadings matrix is mostly made
up of zeros, facilitating its interpretation.

Some algorithms of this method were applied to a Clinical test COVID-19 database
from which it was obtained that of the 7 variables, 4 of them were the most important
since with them around 91% of the explained variance was reached. Finally, these algo-
rithms were more effective than classic PCA since, due to the structure of their loadings
matrix, they are easier to interpret. In addition, they do not present difficulties when
working with outliers and, finally, they present a low computational cost.

Keywords:
Big data, Sparse PCA, Multivariate analysis, PCA, Shrinkage Methods.
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Chapter 1

Introduction

1.1 Background

During the last decades, the databases used in many investigations have become more
complex. In fact, new terms associated with this context have appeared, such as Big
Data, Data Mining and Machine Learning, among others. Some examples of this reality
are: in the area ofHuman Face Recognition [2], in Biomedical Research (gene expression
data analysis) [3], in image processing [4], Time Series Analysis [5], etc.

Multivariate Statistical Dimension Reduction techniques have been widely used to
handle, process and analyze large data sets. The main objective is to project the orig-
inal data into a low-dimensional subspace so that it is possible to capture the greatest
variability present in the data.

Principal Component Analysis (PCA), introduced by Karl Pearson [6] in 1901, is one
of the most extensively used dimension reduction approaches. Jolliffe (2002) [7] is a
more recent reference to themethod. The PCA generates new variables, which are linear
combinations of the original variables and are known as Principal Components (PC’s).
The coefficients of these linear combinations, known as loads (loadings), are frequently
different from zero, which leads to the technique’s fundamental disadvantage: the in-
terpretation of the principal components.

There are many cases where the principal components can be easily interpreted, and
many bibliographies about it. For example, Jolliffe [7] presented some exampleswhere a
straightforward interpretation is possible in chapter 4 of his book “Principal Component
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Analysis”.
Several alternatives have been proposed to improve the interpretation of the results

of a PCA. Some suggest using Rotation Techniques [8] to simplify the structure of the
principal components, but more is needed to solve the problem.

Other techniques propose the imposition of restrictions on the charges in the compo-
nents. Among these strategies are the Regularization Techniques, also known as shrink-
age methods. The main objective is to introduce penalties such that each component is
a combination of only the relevant variables (making them null or almost zero) so that
the interpretation of the results improves significantly. Hausman (1982) [9] proposed
to restrict the values of the charges of the Principal Components to the set of integers -1,
0, 1. Vines [10] in 2000 suggested the use of arbitrary integers.

In this sense, Tibshirani [11] developed the Least Absolute Shrinkage and Selection
Operator (LASSO) approach in 1996. In it, he paired a regression model with a tech-
nique for setting some parameters equal to zero, penalizing the regression coefficients.

Another type of penalty is known as Elastic Net for Regression, which combines
Ridge Regularization Techniques (a technique often employed when the Multicollinear-
ity problem occurs in Multiple Regression Analysis) with LASSO, and this was intro-
duced in 2005 by Zou et al [12]. Based on the l1 and l2 norms1, this technique penalizes
the magnitude of the regression coefficients.

Zou et al in 2006 [2], proposed a penalty algorithm, called Sparse PCA,which applies
Elastic Net regularization and LASSO penalty to efficiently solve the problem. Research
on this topic is still open as evidenced by the large number of recent scientific articles
reporting new theoretical developments and applications of these techniques.

In this thesis, theoretical aspects of Sparse PCA are studied and the technique is ap-
plied to a data set related to “Clinical Tests (COVID-19)”.

1We consider K(K = R or K = C) and p ∈ N

• lp(K) =

{
x = (xn)n∈N ⊆ K /

+∞

∑
n=1

|xn|p < +∞

}
.

• In lp(K), we consider the mapping ∥ · ∥p : lp(R) → R given by ∥x∥p =

(
+∞

∑
n=1

|xn|p
)1/p

.

Mathematician 2 Graduation Project
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1.2 Problem statement

Principal Component Analysis is a Multivariate Statistical technique widely used when
one of the researcher’s objectives is to reduce the data size. Despite this, this technique
has problems with the interpretation of the Principal Components since they are linear
combinations of the original variables, which are abstract mathematical concepts and,
sometimes, need to be interpretable, or their interpretation requires deep knowledge of
the field from which the data came.

Over the years, various techniques have been proposed to reduce these deficiencies.
In this sense, in this thesis, the Sparse PCA method is studied, which forces each Prin-
cipal Component to be a combination of only some of the original variables, hoping to
interpret the results better.

In this thesis, we present Sparse Principal Components Analysis. This multivariate
data analysis technique seeks to correct the basic deficiency of classic Principal Com-
ponents Analysis, which is the interpretation of the results. Likewise, the technique is
applied to a real-life data set. Therefore, this thesis contributes to explaining the theo-
retical basis of the technique and how to apply it to solve a particular problem.

1.3 Objectives

1.3.1 General Objective

Analyze the ‘Sparse Principal Component Analysis’ (Sparse PCA) Multivariate Statisti-
cal technique.

1.3.2 Specific Objectives

1. Show the state of the art of the Sparse PCA.

2. Explain the mathematical theory that supports the Sparse PCA.

3. Analyze and compare the results of the application of Sparse PCA to a real life data
set with respect to the classic PCA.

Mathematician 3 Graduation Project
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Chapter 2

Theoretical Framework

In this chapter, we will address some definitions and properties of linear algebra and
multivariate statistical analysis necessary for the understanding of principal components
analysis.This section is based on the following references [1], [2],[7], [8], [13], [14],[15],
[16], [17], [18],[19], [20],[21],[22],[23], and [24].

2.1 Matrix Algebra

2.1.1 Linear Combination

Let V be a vector space over a real number field R. Assume S is a nonempty subset of
V. Then a v ∈ V is said to be a linear combination of the set of vectors in S if S contains
vectors w1, w2, ..., wn and scalars α1, α2, ..., αn such that

v = α1w1 + α2w2 + · · ·+ αnwn

2.1.2 Eigenvalues

Let A ∈ Rn×n, we say that λ ∈ R is an eigenvalue of A if and only if there is a nonzero
vector v ∈ Rn×1 such that:

Av = λv v ̸= 0 (2.1)

v is called the eigenvector associated with λ.

5



School of Mathematical and Computational Sciences Yachay Tech University

2.1.3 Eigenvectors

LetA ∈ Rn×n. Let’s consider a nonzero vector v ∈ Rn×1. We say that v is an eigenvector
of A if and only if there is λ ∈ R such that:

Av = λv v ̸= 0 (2.2)

λ is called the eigenvalue associated with the eigenvector v.

2.1.4 Orthonormal Basis

If V is a basis and all of its vectors have a norm of 1 and are pairwise orthogonal, V is
said to be orthonormal.

2.1.5 Singular Values

If A is an m × n matrix, then the singular values of matrix A are said to be the square
roots of eigenvalues of matrix ATA, which is symmetric. These values are denoted as

σ1, σ2, ..., σn (2.3)

and for ease are considered
σ1 ≥ σ2 ≥ ... ≥ σn (2.4)

.

2.1.6 Singular Value Decomposition(SVD)

Let X be a matrix of size m × n and rank(X) = r , it is said to have a singular value
decomposition (SVD) if there exists a diagonal matrix D ∈ Rr×r and the orthogonal
matrices U ∈ Rm×r and V ∈ Rn×r such that

X = UDVT (2.5)

Mathematician 6 Graduation Project
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Proof. Let {vt}r
t=1 ⊆ Rp be an orthonormal eigenbasis for Rp associated with singular

values λ1, λ2, . . . , λr of X where

λ1 ≥ λ2 ≥ · · · ≥ λr > 0.

Moreover, we have that the sequence {ul}r
t=1 ⊆ Rn where

∀t ∈ {1, . . . , r} : ut =
Xvt

λt

is an orthonormal basis for the column space ofXwhere each ut is an eigenvector ofXXT.
It implies that

∀t ∈ {1, . . . , r} : Xvt = λtut. (2.6)

Let U = [u1 · · · ur] and V = [v1 · · · vr]. From (2.6) and the orthogonality of U and V, it
follows that

XV =

[
Xv1 · · · Xvr

]
=

[
λ1u1 · · · λrur

]
.

Also let Σ= diag (λ1, . . . , λr). Therefore,

UΣ =

[
u1 · · · ur

] 
λ1

. . .
λr

 =

[
λ1u1 · · · λrur

]

Therefore, we have hat XV=UΣ. Finally, by the orthogonality of V, we have proved that

X = UDVT (2.7)

. □

2.1.7 Frobenius Norm

Let X be an m × n matrix. We define the Frobenius norm∥·∥F as the square root of the
sum of the absolute squares of the elements X given by

∥X∥F =

√√√√ m

∑
i=1

n

∑
j=1

|xij|2 (2.8)

Mathematician 7 Graduation Project
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This can also be defined as the square root of the trace of XTX

∥X∥F :=
√

tr
(
XTX

)
. (2.9)

2.2 Principal Components

Principal Component Analysis (PCA) is a multivariate technique that consists of reduc-
ing the dimension of the data. It allows extracting n new variables, which we will call
Principal Components, from m related variables, with n << m, which explain the be-
havior of the sample in a low-dimensional space. It should be noted that each Principal
Component is a linear combination of all the original variables, which makes it difficult
to interpret. It must be taken into account that if the original variables are not correlated
with each other, then it would not make sense to carry out a PCA analysis.

2.2.1 PCA properties

According to Zou and Hastie (2005)[12], the maximum capture between the columns
of X is sequentially captured by the principle components, ensuring that there is little
information loss. Also, because major components are unrelated to one another, it is
possible to discuss onewithoutmentioning others. The PCA allows for the conversion of
the initial, generally correlated variables into new, uncorrelated variables, which aids in
the interpretation of the data. It is frequently challenging to interpret the findings of PCA
because each principle component is a linear combination of all the original variables.

Maximizes Variability

The principal components are sought that are a linear combination of the original vari-
ables, in such a way that they are uncorrelated and that they preserve as much informa-
tion as possible from the original data matrix X.

Let’s consider
z = aTX (2.10)

with variance
Var(z) = aTSa. (2.11)

Mathematician 8 Graduation Project
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In order to maximize the variance, we need that a to have the normalization constraint,
i.e.,

aTa = 1 (2.12)

First, the first component is calculated by choosing a1 so that z1 has the largest vari-
ance and maintaining the condition that a1

Ta1 = 1. Then

Var(z1) = Var(a1
TX) = a1

TSa1. (2.13)

Using the Lagrange multipliers to maximize (2.13), we get

L (a1) = aT
1 Sa1 − λ

(
aT

1 a1 − 1
)

∂
(

L (a1)
)

∂a1
= 2Sa1 − 2λ1a1

2Sa1 − 2λ1a1 = 0

Sa1 = λ1a1

(S − λ1I) a1 = 0

Sa1 − λ1Ia1 = 0

Sa1 = λ1Ia1

Then

Var (z1) = Var
(

aT
1 x
)

= aT
1 Sa1

= aT
1 λ1Ia1

= λ1aT
1 a1

= λ1 · 1

= λ1

(2.14)

where λ1 is the largest eigenvalue associated to the eigenvector a1, which maximizes the

Mathematician 9 Graduation Project
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variance of z1. Therefore, the first principal component is given by

z1 = aT
1 X

= a11x1 + a12x2 + · · ·+ a1pxp

(2.15)

where a1 corresponds to the eigenvector of S with the largest eigenvalue. In the same
way, the second principal component

z2 = aT
2 X (2.16)

can be obtained using the same argument as for the first principal component. In addi-
tion to maintaining the condition a2

Ta2 = 1. , it must also be uncorrelated with z1,i.e,

Cov (z1, z2) = Cov
(

aT
1 Y, aT

2 Y
)

= aT
2 Sa1

= aT
2 λ1a1

= λ1aT
2 a1

= 0

(2.17)

which implies that a2 and a1 are orthogonals and a′2Sa1 = 0. Seeking to maximize the
variance, maintaining the conditions and applying two Lagrange multipliers, we get

L (a2) = aT
2 Sa1 − λ

(
aT

2 a1 − 1
)
− δaT

2 a1

∂
(

L (a2)
)

∂a1
= 2Sa2 − 2λ2a2 − δa1

2Sa2 − 2λ2a2 − δa1 = 0 (2.18)

Multiplying (2.18) by aT
1

2aT
1 Sa2 − 2λ2aT

1 a2 − δaT
1 a1 = 0 (2.19)

(2.20)
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by the conditions, we have

2aT
1 Sa2 − δ = 0 (2.21)

(2.22)

which implies that
δ = 0

from (2.18)

2Sa2 − 2λ2a2 = 0

Sa2 = λ2a2

therefore, λ2 is the second largest eigenvalue of S associated to the eigenvector a2. In
general, the pth principal component is given by

zp = aT
p X

whose variance is
Var

(
zp

)
= λp.

Now, let’s call
Ap×p =

[
a1, a2, . . . , ap

]
as the matrix of the eigenvector ai, for i = 1, 2, ...p. Then, the vector of the principal
components can be written as

Zp×1 = AT
p×pXp×1

Singular Value Decomposition

Consider X the centred data matrix of size m × n where represents the number of ob-
servations and n the number of variables. The data matrix X can be expressed using its
singular value decomposition (SVD), which gives us

X = UDVT
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whereZ=UD is the principal component, U is a unit matrix n× n, D is a diagonal matrix
n× p which contains the eigenvalues of X, the columns ofV are the loads of the principal
components and the sample variance of the ith principal component is given by:

Var(zi) =
λi

n
.

Each principal component can be expressed in the form

zi = uiλi.

It is important to note that since the eigenvalues are ordered in decreasing order, the first
component z1 will have the largest eigenvalue λ1 and also the largest variance among all
normalized linear combinations of the columns of the X matrix.

Minimizes Error

The main purpose of this model is to estimate the load matrix that defines the principal
components through error minimization; that is, minimizing the difference between the
data of the original matrix, and the new variables (PC) in the original space,i.e.,

min||X− X̂||2, (2.23)

with the condition VVT = I, where X̂ is the coordinate matrix of the projections onto
the PC subspace in the original space. Since Z=UD=XV, it implies that

X̂ = ZVT,

X̂ = XVVT.

Then, the equation (2.23) can be written as

min||X − XVVT||2 with VVT = I. (2.24)

The matrix V can be obtained from the equation 2.24 by solving a least squares prob-
lem. For this, the k two-by-two orthogonal vectors v1, ..., vk that generate a subspace are
calculated and with the help of the Lagrange multipliers, it is proved that these vectors
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are the eigenvectors of XTX associated to the eigenvalues λ1, ..., λk which are ordered in
descending order.

The principal components obtained are linear combinations of the original variables,
which guarantees that there is no correlation between them and, these have decreasing
variance, with the first associated component having the highest eigenvalue that implies
the highest variance, and so on.

Loadings

PC loadings are defined as the relationship that exists between a PC and a variable. It is
worth noting that the sum of the squared correlation coefficients between a variable and
all of its components equals 1. Because the squares of the loadings offer a proportion of
the variance by the component components, we can more easily analyze them [7].

Interpretation

The interpretation of the PCs depends a lot on the magnitudes of the loadings of the
components, since these show us the relationship or the contribution that the original
variables have in the PC. This interpretation in some cases is not very easy to obtain,
since even if we have some PCs with reduced dimensions, each one of the Principal
Components is generated as a linear combination of the original variables, which would
complicate their interpretation when the number of new variables is much greater. In
order to facilitate the interpretation of the principal components, rotation techniques
were developed [7].

Rotation

As is generally known, one of the most difficult aspects of PC analysis is interpreting the
PCs. This has resulted in the use of rotation techniques on the components for interpre-
tation in order to arrange the generated data and make it easier to interpret.

Despite the fact that the PC analysis achieves a reduced dimension in k PCs and it is
expected that the interpretation of the principal components is simplewhenusing the PC
analysis, this does not always occur because the interpretation can be more complicated
when the matrix data contains an extremely large number of variables [8].
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Orthogonal and oblique rotations stand out among the various types of rotations.
One thing to bear in mind is that even if the loading matrix changes, the variance of the
model will not change when rotated.

The simplest rotations are orthogonal rotations, which directly indicate the connec-
tion between the factors and the beginning variables. The goal of this rotation is to max-
imize the variances of the squares of the charges in order to scatter the values as evenly
as possible, raising the greatest and decreasing the smallest.

In orthogonal rotations, given a matrix of chargesV, one seeks to find an orthogonal
matrix Q in such a way that a new matrix of charges can be created of the form

V̂ = VQ

make it easier for interpretation. The rotation matrix Q is an orthogonal matrix, which
satisfies QQ = I and associates the rows to the original axes and the columns to the new
axes.

The analytical criterion of the orthogonal rotations is given by the function [22]

G =
k

∑
m=1

k

∑
m ̸=j=1

[
p

∑
i=1

v2
ijv

2
im − γ

p

p

∑
i=1

v2
ij

p

∑
i=1

v2
im

]
(2.25)

where 0 ≤ γ ≤ 1.
The orthogonal rotations that stand out the most are VARIMAX, QUARTIMAX

and EQUIMAX. The most commonly used rotation introduced by Kaiser(1958) [25],
is a particular case of the equation 2.25 when γ = 1 known as VARIMAX(VARiance
MAXimization)

G =
k

∑
m=1

k

∑
m ̸=j=1

[
p

∑
i=1

v2
ijv

2
im − 1

p

p

∑
i=1

v2
ij

p

∑
i=1

v2
im

]
(2.26)

This rotation seeks the least number of variables that have high loadings in each PC,
i.e., that in the rotated axes the variables have the greatest number of almost null load-
ings and few high loadings. This approach utilizes the charge matrix’s columns and
maximizes the variations of each component’s factor loadings.

With a limited number of variables and correlations, the goal is to look for the pres-
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ence of components that have strong correlations. With the rest of them, nil. All of this
results in a redistribution of the components’ variance. As a result, for each element
independently, the charge dispersion is maximized.

Finding a matrix Q orthogonal of size k × k such that said quantity is maximum is
the basis of the rotational issue of VARIMAX [26].

2.3 Regression Models

Regression analysis is a statistical approach that is used to investigate andmodel the con-
nection between variables. Regression has many applications in practically every field,
including engineering, physical and chemical sciences, economics, management, life and
biological sciences, and social sciences. Regression analysis is the most extensively used
statistical approach [15].

2.3.1 Multiple linear regression model

Themultiple linear regressionmodel relates p exogenous variablesXwith n endogenous
variable y in the form:

y = Xβ + ϵ (2.27)

where

y =


y1

y2
...

yn


, X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
... ... ... ...
1 xn1 xn2 · · · xnp



β =


β0

β1
...

βp


, ε =


ε1

ε2
...

εn


and

E(y|X) = Xβ, (2.28)
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and
Var(y|x) = S2. (2.29)

An special case of thismodel is the simple linear regressionmodelwith a single regressor
x which is related to y through a straight line. The equation of this model is

y = β0 + β1x + ϵ

where β0 is the intercept, β1 is the slope and ϵ is the error of estimation, which is con-
sidered to have mean zero and variance σ2 [15]. It should be noted that β0 and β1 are
unknown parameters, which can be estimated using different methods. Also, we have
that the mean and the variance of the model are:

E(y|x) = β0 + β1x,

and
Var(y|x) = σ2.

Least-squares Estimation

This method is used to estimate β using the least squares estimation. So, the least-square
estimator β̂ can be obtained

S(β) =
n

∑
i=1

ε2
i

= εTε

= (y − Xβ)T(y − Xβ)

= yTy − βTXTy − yTXβ + βTXTXβ

= yTy − 2βTXTy + βTXTXβ.

(2.30)

Since βTXTy is an scalar and its transpose is the same scalar , we get

∂S
∂β

∣∣∣∣∣
β̂

= −2XTy + 2XTXβ̂ = 0, (2.31)
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which implies that

2XTy = 2XTXβ̂,

XTXβ̂ = XTy. (2.32)

Then multiplying (2.32) by (XTX)−1, we have that the least-squares estimator of β is

β̂ = (XTX)−1XTy. (2.33)

and the variance of the coefficients β̂ estimated by least squares is

Var(β̂) = XTXσ2

where σ2 corresponds to the variance of the errors of themodel ε which are independent
and follow a distribution N (0, σ2)

Thus, the model can be estimated using

ŷ = Xβ̂ = X(XTX)−1XTy = Hy (2.34)

where H = X(XTX)−1XT is the Hat matrix n × n. This matrix is particularly useful in
regression analysis since it defines the degrees of freedom of the model as

d f = tr(H) = p (2.35)

The equation 2.33 gives us the β̂ coefficients of the regression as long as (XTX)−1

exists. This does not occur when there are manymore variables than observations p >>

n, and the vector of coefficients cannot be calculated unless we apply some constraint.
Shrinkagemethods, which impose a penalty on the regression coefficients, play a crucial
role in this scenario[24].
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2.4 Shrinkage Methods

2.4.1 Ridge Regression

Let´s consider a linear regression model with n observations and p variables of the form

y = Xβ + ϵ (2.36)

where X is the centered data matrix. Ridge regression is a method of estimation of the
βk coefficients through least squares, but with a penalty of the square of the l2 norm of
the β with a scalar λ ≥ 0 [14]. This penalty is given by

∥∥β
∥∥2

2 =
p

∑
j=1

|β j|2 (2.37)

and the ridge coefficients β̂ridge are defined as the set of all β such that they minimize the
following equation

n

∑
i=1

(
yi − xiβ

)2
+ λ

p

∑
j=1

β2
j (2.38)

i.e.,

β̂ridge = argmin
β


n

∑
i=1

yi − β0 −
p

∑
j=1

xijβ j

2

+ λ
p

∑
j=1

β2
j

 . (2.39)

According to Hastie et al. [14], an equivalent way to write the ridge problem is

β̂ridge = argmin
β

n

∑
i=1

yi − β0 −
p

∑
j=1

xijβ j

2

, subject to
p

∑
j=1

β2
j ≤ t. (2.40)

The parameters λ and t shown in (2.39) and (2.40) are one-to-one correspondences. The
penalty imposed on the size of the coefficients (2.37) alleviates the problem that occurs
when there are numerous connected variables, since when there is a connection, the
coefficients might be wrongly estimated and exhibit a high variance. The parameter λ

controls the shrinkage, large values of this parameter cause more amount of shrinkage.
This type of penalty (2.37) is widely used in neural networks and is known as weight
decay [14].
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According toHastie et al.[14], awildly large positive coefficient on one variable can be
canceled by a similarly large negative coefficient on its correlated cousin. The remaining
coefficients are computed using the centered xij via a ridge regressionwithout intercepts.
Writing the criterion in matrix form

RSS(λ) = (y − Xβ)T(y − Xβ) + λβTβ. (2.41)

We have that the solution of the ridge regression is given by

β̂ridge =
(

XTX + λI
)−1

XTy (2.42)

where I is a identity matrix of size p × p. In the equation 2.42, when λ → 0 we get the
ordinary least squares of the equation 2.33 and when λ → ∞ we get β̂ridge = 0

One of the advantages of ridge regression over ordinary regressions is that the coeffi-
cients ˆβridge exist regardless of whether (XTX)−1 exists, since the penalty 2.37 adds a pos-
itive constant to the diagonal of the (XTX)matrix so that always there exists (XTX + λI)

which guarantees the existence and uniqueness of the coefficients ˆβridge.
The variance of the ridge regression is

Var(β̂ridge) = σ2
(

XTX + λI
)−1

XTX
(

XTX + λI
)−1

The Ridge regression penalty has the effect of lowering the coefficient estimates toward
zero, creating Bias but reducing the estimate’s variance.

Bias(β̂ridge) = λ
(

XTX + λI
)−1

β

Theparameterλ of equation (2.39) can be chosenusing theAIC (Akaike In f ormation Criterion)
[27], BIC (Bayesian In f ormation Criterion)[28] or GCV (General Cross Validation).This
allows us to select the model that best fits the data, resulting in a response vector y with
the fewest variables and errors.

In ridge regression, the matrix Hridge is given by

Hridge = X(XTX + λI)−1XT (2.43)
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and the degrees of freedom of the model are

d fridge = tr(H) =
p

∑
j=1

λ2
j

λ2
j + λ

(2.44)

where λj for j = 1, · · · , p, are the eigenvalues of X.
The appropriate value for λ can be chosen using the AIC or BIC

AIC = n log(RSS) + 2d fridge

BIC = n log(RSS) + d fridge log(n).

However, this causes an issue since the data must be separated in order to estimate the
model and calibrate its explanatory ability, and many times there is not enough data.

As a solution to this problem, the Cross Validation is used in practice. As a solution
to this problem, the CrossValidation is used in practice. This consists of partitioning the
data into a folds in such a way that the data is adjusted for a − 1 folds and testing the
model on the remaining fold. In practice, the most used values for a are 5, 10 and n.
The issue with this approach is its high computational cost, which is why we chose to
employ General Cross Validation, which is defined as [29]

GCV =
1
n

n

∑
i=1

(
yi − ŷi

1 − tr(H)/n

)2

(2.45)

2.4.2 Multicollinearity

One of the main problems that can occur on a regression model is multicollinearity,
since this implies that there would be an almost linear dependence on the regressor
variables. Multicollinearity is when there is an almost linear dependency between the
regressors, i.e., the columns of the data matrix X. The linear dependency between the
variables would cause the matrix XTX to be singular, i.e., it would not have an inverse.

This problem greatly influences the regression model since the variances of the re-
gression coefficients would be very large. The non-existence of a linear relationship be-
tween the regulating variables, it is said that these are orthogonal to each other, which
facilitates an analysis and inferences about them.

Although in most applications there is no orthogonality between the regressors, in
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some cases it is not so serious. However, in some cases theremay be an almost perfect re-
lationship between the regressor variables, but the inferences based on them are usually
wrong.

Effects of Multicollinearity

Multicollinearity has a large number of effects on the estimators of the regression coef-
ficients when these are calculated using least squares. For example, suppose we only
have x1 and x2 as regressor variables. then the model can be written as

y = β1x1 + β2x2 + ϵ (2.46)

and using the least-squares estimation, we have

(XTX)β̂ = XTy (2.47)

i.e.,  1 r12

r12 1


 β̂1

β̂2

 =

 r1y

r2y

 (2.48)

where r12 is the simple correlation between x1 and x2, also r1y and r2y are the simple cor-
relations between x1 with y and x2 with y respectively. The estimators of the regression
coefficients are

β̂1 =
r1y − r12r2y(

1 − r2
12

) and β̂2 =
r2y − r12r1y(

1 − r2
12

) . (2.49)

Note that when there is multicollinearity between x1 and x2, the coefficient r12 will be
very large, which results in very high values of the variances andvery high covariances of
the least squares regression coefficient estimators. Another result of multicollinearity is
the generation of estimators β̂ j with excessively high magnitudes. In order to appreciate
this more clearly, consider the squared distance between β̂ and β

L2
1 = (β̂ − β)T(β̂ − β).
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Taking the expected value of L1, we have that

E
(

L2
1

)
= E[(β̂ − β)T(β̂ − β)]

= E((β̂1 − β1) + · · ·+ (β̂p − βp))


β̂1 − β1

β̂2 − β2
...

β̂p − βp


= E

(
β̂1 − β1

)2
+ · · ·+

(
β̂p − βp

)2

=
p

∑
j=1

E
(

β̂ j − β j

)2
.

(2.50)

Note that

Var
(

β̂ j

)
= E[(β̂ j)

2]− [E(β̂ j)]
2

= E[(β̂ j)
2]− (β̂ j)

2,
(2.51)

and

E
[(

β̂ j − β j

)2
]
= E(β̂2

j )− 2E(β̂ jβ j) + E(β2
j )

= E(β̂2
j )− 2β jE(β̂ j) + E(β2

j )

= E(β̂2
j )− 2β jβ j + β2

j

= E(β̂2
j )− 2β2

j + β2
j

= E(β̂2
j )− β2

j .

(2.52)

From (2.51) and (2.52) we have that

E
[(

β̂ j − β j

)2
]
= Var

(
β̂ j

)
. (2.53)

Replacing (2.53) in (2.50), we have that

E
(

L2
1

)
=

k

∑
j=1

Var
(

β̂ j

)
= σ2 tr

(
XTX

)−1
(2.54)
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Someof the eigenvalues of thematrixXTXwill be very smallwhen there ismulticollinear-
ity and since the trace is defined as the sum of the eigenvalues of the matrix , we can
rewrite (2.54) as

E
(

L2
1

)
= σ2

k

∑
j=1

1
λj

(2.55)

where λj are the eigenvalues of XTX. It is clear from (2.55) that if any of the eigenvalues
is very tiny due to multicollinearity, the distance estimated by the least squares defined
as E

(
L2

1

)
may be large. Equivalently, we can show that

E
(

L2
1

)
= E[(β̂ − β)T(β̂ − β)]

= E[(β̂
T − βT)(β̂ − β)]

= E[β̂
T

β̂ − β̂
T

β − βT β̂ + βTβ]

= E[β̂
T

β̂ − 2β̂
T

β + βTβ]

= E[β̂
T

β̂]− 2E[β̂
T

β] + E[βTβ]

= E[β̂
T

β̂]− 2βTβ + βTβ

= E[β̂
T

β̂]− βTβ.

(2.56)

From (2.56) and (2.54), it follows that

E
(

β̂
T

β̂

)
= E

(
L2

1

)
+ βTβ

= βTβ + σ2 Tr
(
X′X

)−1 .
(2.57)

Since vector β̂ is longer than vector β, the least squares approach gives predicted regres-
sion coefficients that are excessively big in absolute value.

2.4.3 LASSO Regression

Let´s consider a linear regression model with n observations and p variables of the form

y = Xβ + ϵ (2.58)

where X is the centered data matrix. LASSO (LeastAbsolute Shrinkage and Selection
Operator) regression is amethodof estimation of the βk coefficients through least squares,
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but with a penalty of the square of the l1 norm of the β with a scalar λ ≥ 0 [14].
This penalty is given by ∥∥β

∥∥
1 =

p

∑
j=1

|β j| (2.59)

and the LASSO coefficients β̂LASSO are defined as the set of all β such that theyminimize
the following equation

n

∑
i=1

(
yi − xiβ

)2
+ λ

p

∑
j=1

β j. (2.60)

The solution of the problem (2.60) is defined by

β̂lasso = argmin
β

n

∑
i=1

yi − β0 −
p

∑
j=1

xijβ j

2

(2.61)

subject to
p

∑
j=1

∣∣∣β j

∣∣∣ ≤ t. (2.62)

According to Hastie et al.[14], we can also write the lasso problem in the equivalent
Lagrangian form

β̂lasso = argmin
β

1
2

n

∑
i=1

yi − β0 −
p

∑
j=1

xijβ j

2

+ λ
p

∑
j=1

∣∣∣β j

∣∣∣
 . (2.63)

The coefficients predicted by LASSO are constantly reduced to zero in order to en-
hance model prediction via variance and bias. Since of their penalty (2.59), certain co-
efficients become zero for high values of λ, and this approach is beneficial for variable
selection since LASSO creates both a sparse and precise model.

Since the LASSO estimator is not a linear estimator, the hat matrix HLASSO cannot be
defined such that

ŷ = HLASSO y (2.64)

this makes it difficult for us to calculate the degrees of freedom. For this, the non-null
coefficients in the regression model can be used to quantify the degrees of freedom and
to be able to implement the AIC, the BIC or the General Cross Validation as selection
criteria of λ.
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As in ridge regression, the most reliable method of estimating λ is through general
cross validation.

2.4.4 Elastic-Net Regression

This regression model combines the LASSO and ridge penalties in such a way that it
preserves the individual advantages of eachmethod and in turn overcomes the problems
of each [12].

For non-negative λ1 and λ2, the model coefficients β̂EN are defined as

β̂EN = (1 + λ2)

arg min
β

∥∥∥∥∥∥Y −
p

∑
j=1

Xj β̇j

∥∥∥∥∥∥
2

+ λ2

p

∑
j=1

∣∣∣β j

∣∣∣2 + λ1

p

∑
j=1

∣∣∣β j

∣∣∣
 . (2.65)

In the equation (2.65), the term λ2 ∑
p
j=1

∣∣∣β j

∣∣∣2 allows variables with a high correlation co-
efficient to have similar coefficients, while the term λ1 ∑

p
j=1

∣∣∣β j

∣∣∣ allows Sparse solutions.
Note that for λ2 = 0, the equation (2.65) becomes in the LASSO equation.

For the case p >> n, the solution is given for λ2 > 0 which eliminates the main
disadvantage of LASSO including all the variables in the model [2].
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Chapter 3

Sparse Principal Component Analysis

3.1 Sparse Principal component analysis (SPCA)

Principal Component Analysis (PCA) was developed to improve interpretation of Prin-
cipal Components, help with non-uniqueness and some inconsistencies that arise from
loading. For this reason, the sparse PCA was originated, which seeks to achieve that a
large part of the coefficients of the charge matrix are zero, thus facilitating the under-
standing of the principal components[30].

It must be taken into account that this technique has applications in practically all
areas of science: machine learning, image processing, engineering, genetics, neurocom-
puting, chemistry, meteorology, control theory, computer networks, etc[31]. The SPCA
solution criterion is defined from the row vectors xi of the matrix X.

Hastie, Tibshirani and Friedman (2009)[14] transform the PCA into a regression
problem imposing the ridge penalty by means of the following theorem

Theorem 1 Let Ap×k and Bn×k be matrices. If λ2 > 0 and

(Â, B̂) = argmin
A,B

n

∑
i=1

∥∥∥xi − ABTxi

∥∥∥2
+ λ2

k

∑
j=1

∥∥∥β j

∥∥∥2
subject to ATA = Ik×k (3.1)

then, β̂ j ∝ Vj for j = 1, 2, . . . , k.

They also propose obtaining sparse loadings through the LASSO penalty, which gives
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rise to the equation 3.2

(Â, B̂) = argmin
A,B

n

∑
i=1

∥∥∥xi − ABTxi

∥∥∥2
+ λ2

r

∑
j=1

∥∥∥β j

∥∥∥2
+

r

∑
j=1

λ1,j

∥∥∥β j

∥∥∥
1

subject to ATA = Ikxk

(3.2)

The steps to solve the problem 3.2 can be described as follows

Algorithm 1: General Sparse PCA Algorithm
1 Initialize the loadings of the k principal components A at V[, 1 : k].
2 Solve the problem

β j = arg min
β

(
αj − β

)T
XTX

(
αj − β

)
+ λ∥β∥2 + λ1,j∥β∥1

with a fixed A = [α1, . . . , αk].
3 Calculate the singular value decomposition of XTXB = UDVT with

B =
[
β1, · · · , βk

] and let´s pick A = UVT.
4 Steps 2-3 must be repeated until convergence is achieved.
5 Normalize V̂j =

β j

∥β j∥ , j = 1, . . . , k.

3.1.1 Sparse PCA via Lasso

The SCoTLASS algorithm (Simplified Component Technique subject to LASSO) is one
of the most important when talking about Sparse PCA. This algorithm proposed by Jol-
liffe, Trendafilov, and Uddin (2003) modifies the principal components by imposing the
LASSO penalty in such a way that it allows obtaining many null charges. Let’s consider
a data matrix Xn×p. This method solves the problem 3.3

ak
T
(

XTX
)

ak, (3.3)

subject to
ak

Tak = 1 and (for k ≥ 2 ) ah
Tak = 0, h < k. (3.4)

It maximizes the equation 3.3 using the LASSO penalty

∥ak∥1 =
p

∑
j=1

∣∣∣akj

∣∣∣ ≤ t.
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This problem can also be rewritten as

max
∥a∥=1,a⊥a1,...,,a⊥aj−1

at
(

XTX
)

a − λ1∥a∥1. (3.5)

According to Zou, Hastie and Tibshirani (2006) ”The high computational cost of SCoT-
LASS makes this an impractical solution. This high computational cost is probably due
to the fact that SCoTLASS is not a convex optimization problem”[2]. The parameter t

has a great influence on the loadings, since sufficiently small values of t produce exactly
zero loadings. In SCoTLASS, the value of the parameter t is very important, which is
why there are certain values that give us information (see figure 3.1).

As t is reduced from√
p, we will not get the PCA directly and get a solution that has

only one non-zero charge on each component for the variable, while the other variables
will be reduced along with t to zero.

Figure 3.1: The two-Dimensional SCoTLASS [1].

(a) For values of t ≥ √
p, we can carry out the Principal Component Analysis.

(b) For values of 1 < t <
√

p, the SCoTLASS is limited by the part of unit circle aT
1 a1 = 1

inside the green dotted square ∑2
j=1

∣∣∣a1j

∣∣∣ ≤ t (see Figure 3.1).
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(c) For values of t < 1, the problem 3.5 does not have solution.

(d) For t = 1, we have one nonzero akj for each k. These correspond to the shaded
square (see Figure 3.1) and the solutions are only on the axes

3.1.2 Robust Sparse Principal Component Analysis Via Variable Pro-
jection (ROBSPCA)

It is a technique used formatrix decomposition and dimensionality reduction, where the
goal is to separate a matrix into two components: a low-rank component and a sparse
component. The low-rank component represents the underlying structure or signal of
the data, while the sparse component represents the noise or outliers. Robust sparse
PCA is one of the few methods that combines robustness and sparseness. It focuses
on PCs projection and search, where PCs are extracted from the data by searching for
directions that maximize a robust measure of variance of the projected data. Using this
variance-robust method prevents PCs from being attracted to outliers that inflate the
standard variance.

On the one hand, sparsity can be imposed on PCA directions by adding an l1 penalty
in the objective function as we can see in the equation 3.3. So, one way of robust sparse
PCA is to replace the empirical covariance matrix with a robust covariance estimator, as
is often done in robust multivariate data analyzes [32]. On the other hand, to avoid er-
rors and problems in the estimator, this method proposes a projection-search approach,
where the PCs are obtained directly using a previous estimation of covariance.

max
∥a∥=1,a⊥a1,...,,a⊥aj−1

atΣ̂a, subject to ∥a∥1 ≤ t (3.6)

where âj is the sparse PCA direction and λ1 controls sparcity. Note that

• λ1 = 0 results in the first unrestricted PCA direction a1.

• λ1 > 0 sparsity gains importance.

The jth sparse PCA direction is defined by (1 < j ≤ p). The projection-pursuit approach
reduces the computation time of this algorithm since the estimators are computed se-
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quentially and it would not make sense to calculate all the principal components but
just a few [33]. Finally, the advantage of the robust sparse PCA over the SCoTLASS,
PCAwith rotation and Sparse PCA via elasticnet methods is that this method is efficient
with respect to outliers due to its robustness[34].

3.1.3 Randomized sparse principal component analysis Via Variable
Projection (RSPCA)

This method combines the concept of low-rank matrix and random methods, which al-
lows to build a low-dimensional scheme that captures essential information from the
initial data. Then we consider

(a) This equation denotes the randomized value function

v(B) := min
A

1
2

∥∥∥X̃ − X̃BA⊤
∥∥∥2

F
subject to A⊤A = I,

where the low-dimensional scheme of X ∈ Rn×p is given by X̃ ∈ Rl×p. In this case
l is bigger than k.

(b) Now, a new sample matrix Y ∈ Rn×p is created such that

Y = XΩ

where Ω ∈ Rp×l is a randomly generated test matrix.

(c) We compute the QR factorization of the sample matrix Y, to obtain an orthonormal
basis matrix

Y = QR. (3.7)

(d) Finally we create the low-dimensional schema by projecting the data matrix onto
the range of Y,i.e.

X̃ = Q⊤X. (3.8)

This algorithm has computational advantage and it becomes significant when the
range of the data is small compared to the dimension of the measurement space[34].
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3.1.4 Sparse PCA for p >> n (Gene Array)

This is a special Sparse PCA model that is applied when we have many more variables
than observations (p >> n). For example, in the case of gene expression array the
number of genes (variables) we have is much larger than the number of samples (obser-
vations).

The SPCA general algorithm can be adapted to this case by using λ1 > 0. A major
disadvantage found in this algorithm is that by having many variables, it will have to
search for a large number of non-zero loads, which considerably increases its computa-
tional cost [2]. Since a positive λ1 > 0 is required, a saving solution is proposed that is
λ1 → ∞ which generates the following theorem

Theorem 2 Let V̂j(λ) =
β̂ j

∥β̂ j∥ (j = 1, . . . , k) be the loadings obtained from the equation 3.2.

Then (Â, B̂) is the solution of the problem:

(Â, B̂) = arg min
A,B

− 2 tr
(

ATXTXB
)
+

k

∑
j=1

∥∥∥β j

∥∥∥2
+

k

∑
j=1

λ1,j

∥∥∥β j

∥∥∥
1

subject to ATA = Ik×k.

(3.9)

when

λ → ∞ and V̂j(λ) →
β̂ j∥∥∥β̂ j

∥∥∥ .

The algorithm to carry out this type of Sparse PCA is the same as the one mentioned
above 1, only with a variation in step 2 that would now be as follows:

For j = 1, . . . , k

β j =

(∣∣∣αT
j XTX

∣∣∣− λ1,j

2

)
+

Sign
(

αT
j XTX

)
. (3.10)

This operation is known as Soft-Thresholding.
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Chapter 4

Methodology

There are several algorithms to carry out the Sparse PCA, however in this thesis we take
the Sparse PCA via variable projection as a reference and we apply the SPCA, RSPCA
and ROBSPCA algorithms, since these present significant advantages and are efficient
whenworking with outliers and the computational cost of this is relatively lowwhenwe
have data of low dimension

4.1 Sparse PCA Steps

In a simplified way we can explain that the Sparse PCA procedure can be carried out
following the steps described below:

(a) Pre-Processing: Before the analysis can begin, the input data is pre-processed to
eliminate any noise or outliers that can skew the results.

(b) Covariance Matrix: The pre-processed data’s covariance matrix is computed.

(c) Eigenvalue Decomposition: To determine the eigenvectors and eigenvalues of the
covariance matrix, the eigenvalue decomposition is carried out.

(d) Sparsity Constraint: A sparsity constraint is imposed on the eigenvectors to make
sure that only a small number of coefficients are non-zero.

(e) Modified Power Iteration: Amodified power iteration algorithm is used to find the
eigenvectors that maximize variance subject to the sparsity constraint.
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(f) Iteration: The algorithm continues iterating until convergence, i.e., when the co-
variance matrix of the residual errors is below a certain threshold.

(g) Selection of SparseComponents: The sparse componentswith the highest variance
are selected as the principal components.

The following stages make up the sparse PCA algorithm:

4.2 Algorithm Design

For the R implementation of the Sparse Principal Component Analysis (SPCA) algo-
rithm it was necessary to install Package sparsepca focuses on finding sparse weight
vectors (loadings), with only a few non-zero values. This approach provides better in-
terpretability of principal components in high-dimensional data sets. This is because
the principal components are formed as a linear combination of only a few of the origi-
nal variables. This package provides efficient routines for SPCA. Specifically, a variable
projection solver is used to compute the sparse solver. In addition, a fast random accel-
erated SPCA routine and a robust SPCA routine are provided. Robust SPCA allows you
to capture severely corrupted entries in the data. The methods are discussed in [34].

4.3 Packages

There are a fewdifferent packages available in RStudio for performing sparse PCA (prin-
cipal component analysis). Here are a few options:

4.3.1 Elasticnet package

The elasticnet package offers functions for performing sparse PCA using an elastic net
penalty. The epca function can be used to run the PCA, and the print.epca function can
be used to view the results.

4.3.2 PcaPP package

The pcaPP package includes a spca function for sparse PCAusing a penalized covariance
matrix.
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4.3.3 PcaMethods package

The pcaMethods package includes a pca function that can be used with the sparsePCA

method. The plotLoadings function can be used to view the resulting loadings.

4.4 Implementation

Robust Sparse Principal Component Analysis (ROBSPCA)

The principal components are produced as a linear combination of only a few of the
original variables, this technique improves model interpretability. Furthermore, SPCA
avoids overfitting in a high-dimensional data configuration with p variables higher than
n observations. This parsimonious model is obtained by introducing prior information
as regularizers that favor scarcity. More specifically, given a datamatrix Xn×p, the robust
SPCA tries to minimize the following objective function:

f (A, B) =
1
2

∥∥∥X − XBA⊤ − S
∥∥∥2

F
+ ψ(B) + γ∥S∥1 (4.1)

where:

• B is the sparse weight matrix (loadings)

• A is an orthonormal matrix.

• ψ denotes a sparsity inducing regularizer such as the LASSO or the elastic net.

• The matrix S captures grossly corrupted outliers in the data.

• Z = XB

• And the data can be approximately rotated back as

X̃ = ZA⊤ (4.2)

Randomized sparse principal component analysis (RSPCA)

This parsimonious model is obtained by introducing prior information as regularizers
that promote scarcity. More specifically, given a data matrix Xn×p, SPCA tries to mini-
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mize the following objective function

f (A, B) =
1
2

∥∥∥X − XBA⊤
∥∥∥2

F
+ ψ(B) (4.3)

where

• B is the sparse weight matrix (loadings)

• A is an orthonormal matrix.

• ψ denotes a sparsity inducing regularizer such as the LASSO or the elastic net.

• Z = XB

• And the data can be approximately rotated back as

X̃ = ZA⊤ (4.4)

Sparse Principal Component Analysis (SPCA)

SPCA avoids overfitting in a high-dimensional data setupwhere the number of variables
p is greater than the number of observations n. This parsimonious model is obtained by
introducing prior information as regularizers that promote sparsity. More specifically,
given a data matrix Xn×p, SPCA tries to minimize the following objective function

f (A, B) =
1
2

∥∥∥X − XBA⊤
∥∥∥2

F
+ ψ(B) (4.5)

where

• B is the sparse weight matrix (loadings)

• A is an orthonormal matrix.

• ψ denotes a sparsity inducing regularizer such as the LASSO (l1 norm) or the elas-
tic net (a combination of the l1 norm and l2 norm).

• Z = XB
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• And the data can be approximately rotated back as

X̃ = ZA⊤ (4.6)

We now apply our SPCA framework to a Clinical Tests (COVID-19) data Set fromvar-
ious clients of the Ibarra clinical laboratory. These real data examples capturemany chal-
lenges driving new algorithms, with high-dimensional measures and low-dimensional
structures across multiple scales. In this case we will apply the three algorithms: SPCA,
ROBSPCA, RSPCA. These will reduce the dimension of the data to facilitate the under-
standing of the principal components obtained. In this case, the variables to consider
in the data set are IGM, IGG, PCT, Dimer, Ferritin, Age and CRP. Finally, we project the
input data in new directions, known as principal components (PCs), which absorb as
much information as possible and thus be able to eliminate those variables that con-
tribute less variability.
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Chapter 5

Data Description

5.1 Data Description

This section provides a description of the data sets that were used. The dimension of the
data is not very large since they have 7 variables, but the most interesting thing about
this data set is that the observations of each variable are not on the same scale, i.e., there
are very large values and others that are too small.

5.1.1 Clinical Tests (COVID-19) Data Set

The Clinical Laboratory of Clı́nica Ibarra, located in Ibarra, Ecuador, provided the first
data set for this thesis. This data set was used for the first time by Enrı́quez et al [35]
who applied the ”random” CUR algorithm technique. Permission to use this data was
obtained from the laboratory owner because this clinical facility is private. For privacy
reasons, we choose not to include people’s IDs. A total of 255 people were evaluated
between May 17 and June 26, 2020. The variables used were: Age, IGG, IGM, D-dimer,
Ferritin, PCT and PCR, however only two of them are focused on the COVID-19.[35]

First, we will explain the IGG and IGM variables. These are responsible for detecting
an infection in our respiratory system. In our data set they are used to confirmor rule out
respiratory conditions caused by COVID-19. In this case, the COVID-19 IgG antibody
was in charge of detecting the presence of old infections in the individual. While the
COVID-19 IgM antibody provides us with information about the presence of a current
respiratory infection, since these show the individual’s immune response. The Clinical
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Laboratory - Clı́nica Ibarra performs these tests using a method called immunofluores-
cence. Obtaining the results of both the IGG and the IGManalyzes takes approximately 1
hour from the patient’s blood sample. The results of this type of examination are qualita-
tive, can be quantitative and expressed numerically. That is, the IGG and IGM variables
have a range between 0-10. Negative results are shown between 0-0.9, indeterminate or
without much information are shown between 0.9-1.1 and IGG and IGM levels must be
greater than or equal to 1.1 for the test to be considered positive. Finally, we are going
to explain the other five variables. Then, we get

(1) Variable age: it is the one that shows the age of the individual.

(2) Variable D-dimer: looks for D-dimer in the blood, a piece of protein that is produced
when a blood clot dissolves in the body [value range is 0, 500 ng/mL].

(3) Variable Ferritin: is a test that measures the level of ferritin in the blood [value range
is 30, 350 ng/mL].

(4) Variable PCT: is the procalcitonin test that measures the level of procalcitonin in the
blood (High levels indicate serious infections)

(5) Ultrasensitive CRP variable: measured in mg/l, indicates C-reactive protein values
[ reference values for this test are 0.5 mg/L]
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Chapter 6

Results and Discussion

In this section we will apply 3 sparse principal component analysis (SPCA) algorithms
to the “Clinical Tests (COVID-19)” dataset. First, an exploratory analysis of the data
was carried out, which allows us to have a prior idea of how the data behaves before
applying the SPCA to them. Then we will apply the SPCA , ROBSPCA , and RSPCA
algorithms described in the section 4.4 to obtain the sparse principal components of the
data set. Finally, we will compare which of the applied sparse PCA algorithms manages
to capture the greatest amount of information with fewer principal components.

6.1 Exploratory Analysis of Data

First, summarymeasures for each variablewere computed, yielding the following values
for each variable’s means and variances (see table 6.1)

Age IGG IGM D-Dimer Ferritin PCT CRP
min 1 0 0 20.73 20.5 0 0
mean 42.04 0.1914 1.684 674.70 188.4 0.2578 10.68

variance 374.0772 0.2160 53.5764 2130105.6895 11497.8003 0.1714 1046.3900
max 94 3.7 47.10 9562.45 578.4 3.4 199.60

Table 6.1: Summary of variables.

Also, for this data set we have its correlation matrix 6.2 which is given by
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

1.0000 −0.0052 0.0586 0.1054 0.0581 0.0157 0.0552
−0.0052 1.0000 0.1717 0.2222 0.1154 0.5008 0.7184
0.0586 0.1717 1.0000 0.9160 0.4014 0.6232 0.5385
0.1054 0.2222 0.9160 1.0000 0.4334 0.5867 0.5608
0.0581 0.1154 0.4014 0.4334 1.0000 0.2736 0.2593
0.0157 0.5008 0.6232 0.5867 0.2736 1.0000 0.6504
0.0552 0.7184 0.5385 0.5608 0.2593 0.6504 1.0000


Table 6.2: Correlation Matrix of Data set

and its determinant is equal to 0.01592. Note that this value is close to zerowhich implies
that the variables (simultaneously) of the data set are correlated and we can apply this
multivariate technique (SPCA).

In the same way we can see easier the variables that are correlated in the figure 6.1.
Note that according to figure 6.1, the variables D Dimer and IGG have a high positive
correlation due to the correlation coefficient is 0.92. Another variables that has a sig-
nificant positive correlation are CRP and IGM, PCT and CRP, D Dimer and PCT with a
correlation coefficient of 0.72, 0.65 and 0.59, respectively.

Figure 6.1: Graphical representation of the Correlation matrix
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Furthermore we have another graph obtained from the data set called Violin plots

(figure 6.2), which helps us to visualize the distribution of numerical data of different
variables. As can be seen, the regions with the widest distribution curve correspond to
the greatest presence of data in that region. Also due to the scale variety of the data, the
curve generated for the D Dimer variable is much larger than the others. Additionally,
in each density curve of the variables, there is a cloud of points of the values of each
variable and it is observed that most of the points are inside the curves.

Figure 6.2: Violin plot of Real Data

In order to get a better observation of the violin plot, we plotted onwith the standard-
ized data (figure 6.3). In this case, given that the variables are in similar dimensions and
that they have a mean of 0 and a variance of 1, it is possible to better appreciate the dis-
tributions together with the observations of each variable.
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Figure 6.3: Violin plot of Standardized Data

It is important to take into account that based on the data from the IGG and IGM
variables, the possible positive and negative results of the covid tests can be determined.
Following the ranges of values to determine the absence or presence of the disease pro-
vided by the laboratory, we have the following results:

IGG IGM Percentage of Individuals Clinical interpretation
≤ 0.9 ≤ 0.9 89.80% Negative
≥ 1.1 ≤ 0.9 3.92% Positive
≤ 0.9 ≥ 1.1 1.18% Positive
≥ 1.1 ≥ 1.1 5.10% Positive

Table 6.3: Data Interpretation.

From the Table 6.3, we have that 89.80% of the tests carried out were negative, i.e.,
these patients have never had COVID-19. while 10.20% were positive either because the
patient was in the early phase of the COVID-19 infection, in the active phase or in its final
phase.This may even be because this is a recurring infection or an old infection.
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6.1.1 Sparse Principal Component Analysis (SPCA)

We used R-studio to apply the SPCA algorithm on Clinical Tests (COVID-19) Data Set
through the following function� �

1 SPCA <- spca(X, k=4, alpha=1e-3, beta=1e-6,center = TRUE , scale

= TRUE , verbose =0).� �
For this function, several values for alpha and beta were tested, which are the Sparsity
controlling parameter and the Amount of ridge shrinkage to apply in order to improve
conditioning and it was found that with alpha = 1 × 10−3 and beta = 1 × 10−6 the
greatest amount of variance is reached, for which we worked with those values.

In this case we chose 4 principal components since with it a cumulative proportion of
the variance of 0.907 is reached. As you can see in the table 6.4, the first principal com-
ponent has an explained variance of 3.42, which is equivalent to a variance proportion of
0.482, while the second, third, and fourth principal components have an explained vari-
ance of 1.226, 0.977 and 0.724, which represents 0.175 , 0.140, and 0.103 of the proportion
of variance respectively.

PC1 PC2 PC3 PC4
Explained variance 3.420 1.226 0.977 0.724
Standard deviations 1.849 1.107 0.988 0.851

Proportion of variance 0.489 0.175 0.140 0.103
Cumulative proportion 0.489 0.664 0.803 0.907

Table 6.4: SPCA Summary

In the figure 6.4 we have on the left side the graph of the variances for each principal
component. It is easy to see that as the number of principal components increases, the
variance associated with each one decreases, with the first component having the max-
imum variance and the last component the minimum variance. While on the right side
we have the graph of the proportion of variances by principal component.
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Figure 6.4: Variances of the Principal components
As with the variances, each principal component has an associated eigenvalue (see

table 6.5)where the first component has the largest eigenvalue and the fourth component
has the smallest eigenvalue.

PC1 PC2 PC3 PC4
Eigenvalues 3.420 1.226 0.977 0.724

Table 6.5: Eigenvalues of Principal Components

The loadings help determinewhich variables aremostly contained in each of the prin-
cipal components. The advantage of these sparse loadings (see table 6.6) obtained from
the sparse pca is that most of them are very close to 0, which facilitates the interpretation
of the principal components.

From the table 6.6 we can interpret that the age variable is contained in the third
principal component since it has a loading value of 0.996 in this component. The IGG,
D Dimer, PCT, CRP variables aremostly contained in the first principal component since
they have a higher loading value in that component than in the others. The IGMvariable
is mostly contained in the second principal component with a loading of -0.744 which
is by magnitude the largest of all loadings. Finally, the Ferritin variable is in the fourth
principal component since it has a loading of 0.994.
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PC1 PC2 PC3 PC4
Age 0.000 0.000 0.996 0.000
IGM 0.230 -0.744 0.000 0.017
IGG 0.524 0.394 0.000 0.000

D Dimer 0.512 0.348 0.013 0.012
Ferritin 0.023 0.000 0.000 0.994
PCT 0.474 -0.104 -0.034 -0.071
CRP 0.425 -0.385 0.018 0.000

Table 6.6: Sparse Loadings

The table 6.7 contains the value of the 4 principal components for each of the 255
observations. For ease, only the first 3 rows and the last 4 rows are shown.

PC1 PC2 PC3 PC4
[1] -0.493178803 0.205505522 -0.519122479 0.534950777
[2] -0.564959676 0.176131843 0.149302952 -0.800133607
[3] -0.903131364 0.256824953 -0.610051226 -1.297055002
· · · · ·
· · · · ·
· · · · ·

[252] -0.813972443 0.099986926 1.038883298 -1.105554036
[253] -0.748976974 -0.044547725 -0.556990363 -1.288587220
[254] -0.589171728 -0.121423416 -0.049442101 0.286173100
[255] 6.949755323 1.972385485 0.327976351 1.533082847

Table 6.7: SPCA values per observation

6.1.2 Robust Sparse Principal Component Analysis (ROBSPCA) on
Clinical Tests (COVID-19) Data Set

We used R-studio to apply the ROBSPCA algorithm on Clinical Tests (COVID-19) Data
Set through the following function� �

1 ROBSPCA <- robspca(X, k=4, alpha=1e-4, beta=1e-6, gamma=1,

center = TRUE , scale = TRUE , verbose =0)� �
For this function, several values for alpha, beta and gamma were tested, which are the
Sparsity controlling parameter, the Amount of ridge shrinkage to apply in order to im-
prove conditioning and Sparsity controlling parameter for the error matrix S respec-
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tively. It was found that with alpha = 1 × 10−3, beta = 1 × 10−6 and gamma = 1. The
greatest amount of variance is reached, for which we worked with those values.

In this case we chose 4 principal components since with it a cumulative proportion of
the variance of 0.906 is reached. As you can see in the table 6.8, the first principal compo-
nent has an explained variance of 3.423, which is equivalent to a variance proportion of
0.489, while the second, third, and fourth principal components have an explained vari-
ance of 1.218, 0.979 and 0.723, which represents 0.174 , 0.140, and 0.103 of the proportion
of variance respectively.

PC1 PC2 PC3 PC4
Explained variance 3.423 1.218 0.979 0.723
Standard deviations 1.850 1.104 0.990 0.850

Proportion of variance 0.489 0.174 0.140 0.103
Cumulative proportion 0.489 0.663 0.803 0.906

Table 6.8: ROBSPCA Summary

In the figure 6.5 we have on the left side the graph of the variances for each principal
component. It is easy to see that as the number of principal components increases, the
variance associated with each one decreases, with the first component having the max-
imum variance and the last component the minimum variance. While on the right side
we have the graph of the proportion of variances by principal component.

Figure 6.5: Variances of the Principal components
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As with the variances, each principal component has an associated eigenvalue (see
table 6.9)where the first component has the largest eigenvalue and the fourth component
has the smallest eigenvalue.

PC1 PC2 PC3 PC4
Eigenvalues 3.423 1.218 0.979 0.723

Table 6.9: Eigenvalues of Principal Components

From the table 6.10 we can interpret that the age variable is contained in the third
principal component since it has a loading value of 0.963 in this component. The IGG,
D Dimer, PCT, CRP variables aremostly contained in the first principal component since
they have a higher loading value in that component than in the others. The IGMvariable
is mostly contained in the second principal component with a loading of -0.644 which
is by magnitude the largest of all loadings. Finally, the Ferritin variable is in the fourth
principal component since it has a loading of 0.871.

PC1 PC2 PC3 PC4
Age 0.049 0.253 0.963 -0.018
IGM 0.315 -0.644 0.156 0.241
IGG 0.458 0.339 -0.136 -0.311

D Dimer 0.465 0.328 -0.078 -0.240
Ferritin 0.272 0.382 -0.104 0.871
PCT 0.437 -0.149 -0.033 -0.158
CRP 0.452 -0.348 0.100 0.028

Table 6.10: Sparse Loadings

The table 6.11 contains the value of the 4 principal components for each of the 255
observations. For ease, only the first 3 rows and the last 4 rows are shown.
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PC1 PC2 PC3 PC4
[1] -0.391211539 0.256381409 -0.581263199 0.534812154
[2] -0.760147753 -0.113767187 0.212418854 -0.626841260
[3] -1.252122404 -0.415225577 -0.471617330 -0.989049775
· · · · ·
· · · · ·
· · · · ·

[252] -1.017234109 -0.060005649 1.135507744 -0.811658844
[253] -1.061947263 -0.661356367 -0.358546495 -0.905743936
[254] -0.481728571 -0.002339508 -0.022733616 0.458489501
[255] 6.842567451 2.328974985 -0.693119636 -1.321060452

Table 6.11: ROBSPCA values per observation

6.1.3 RandomizedSparse PrincipalComponentAnalysis (RSPCA)on
Clinical Tests (COVID-19) Data Set

We used R-studio to apply the RSPCA algorithm on Clinical Tests (COVID-19) Data Set
through the following function� �

1 RSPCA <- rspca(X, k=4, alpha =1e-4, beta=1e-6, center = TRUE ,

scale = T,verbose =0).� �
For this function, several values for alpha and betawere tested, which are the Sparsity

controlling parameter and the Amount of ridge shrinkage to apply in order to improve
conditioning and it was found that with alpha = 1 × 10−3 and beta = 1 × 10−6 the
greatest amount of variance is reached, for which we worked with those values.

In this case we chose 4 principal components since with it a cumulative proportion of
the variance of 0.910 is reached. As you can see in the table 6.12, the first principal com-
ponent has an explained variance of 3.428, which is equivalent to a variance proportion
of 0.49, while the second, third, and fourth principal components have an explained vari-
ance of 1.232, 0.981 and 0.726, which represents 0.176 , 0.140, and 0.104 of the proportion
of variance respectively.
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PC1 PC2 PC3 PC4
Explained variance 3.428 1.232 0.981 0.726
Standard deviations 1.851 1.110 0.991 0.852

Proportion of variance 0.490 0.176 0.140 0.104
Cumulative proportion 0.490 0.666 0.806 0.910

Table 6.12: RSPCA Summary

In the figure 6.6 we have on the left side the graph of the variances for each principal
component. It is easy to see that as the number of principal components increases, the
variance associated with each one decreases, with the first component having the max-
imum variance and the last component the minimum variance. While on the right side
we have the graph of the proportion of variances by principal component.

Figure 6.6: Variances of the Principal components
As with the variances, each principal component has an associated eigenvalue (see

table 6.13) where the first component has the largest eigenvalue and the fourth compo-
nent has the smallest eigenvalue.

PC1 PC2 PC3 PC4
Eigenvalues 3.428 1.232 0.981 0.726

Table 6.13: Eigenvalues of Principal Components
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From the table 6.14 we can interpret that the age variable is contained in the third
principal component since it has a loading value of -0.963 in this component, which
is the largest in magnitude of all the loadings associated with this variable. The IGG,
D Dimer, PCT, CRP variables aremostly contained in the first principal component since
they have a higher loading value in that component than in the others. The IGMvariable
is mostly contained in the second principal component with a loading of -0.648 which
is by magnitude the largest of all loadings. Finally, the Ferritin variable is in the fourth
principal component since it has a loading of -0.871.

PC1 PC2 PC3 PC4
Age -0.050 0.253 -0.963 0.018
IGM -0.313 -0.648 -0.157 -0.244
IGG -0.457 0.341 0.137 0.311

D Dimer -0.463 0.331 0.077 0.239
Ferritin -0.273 0.382 0.104 -0.871
PCT -0.445 -0.151 0.036 0.163
CRP -0.450 -0.348 -0.102 -0.029

Table 6.14: Sparse Loadings

The table 6.15 contains the value of the 4 principal components for each of the 255
observations. For ease, only the first 3 rows and the last 4 rows are shown

PC1 PC2 PC3 PC4
[1] 0.3901113 0.256891946 0.581803159 -0.533765938
[2] 0.7596963 -0.114215135 -0.212188864 0.627268628
[3] 1.256437 -0.415400658 0.470605094 0.986619071
· · · · ·
· · · · ·
· · · · ·

[252] 1.021162 -0.060467513 -1.136850643 0.808977039
[253] 1.067673 -0.662675231 0.356996872 0.902098419
[254] 0.4836932 -0.003275687 0.022091328 -0.459852910
[255] -6.867467 2.340572065 0.703300016 1.338834810

Table 6.15: RSPCA values per observation
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6.1.4 Principal Component Analysis

We used R-studio to apply the PCA algorithm on Clinical Tests (COVID-19) Data Set
through the following function� �

1 pca <- prcomp(X, scale = TRUE)� �
In this case we chose 4 principal components since with it a cumulative proportion of
the variance of 0.907 is reached. As you can see in the table 6.16, the first principal com-
ponent has an explained variance of 3.429, which is equivalent to a variance proportion
of 0.4898, while the second, third, and fourth principal components have an explained
variance of 1.233, 0.981 and 0.726, which represents 0.1761 , 0.1402, and 0.1037 of the
proportion of variance respectively.

PC1 PC2 PC3 PC4
Explained variance 3.429 1.233 0.981 0.726
Standard deviations 1.8517 1.1102 0.9906 0.8520

Proportion of variance 0.4898 0.1761 0.1402 0.1037
Cumulative proportion 0.4898 0.6659 0.8061 0.9098

Table 6.16: PCA Summary

In the figure 6.7 we have the plot of the percentage of explained variances for each
principal component. It is easy to see that as the number of principal components in-
creases, the percentage of explained variance associated with each one decreases, with
the first component having the maximum percentage of explained variance and the last
component the minimum percentage of explained variance.

Mathematician 53 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 6.7: Percentage of explained variances of the Principal components
As with the variances, each principal component has an associated eigenvalue (see

table 6.17) where the first component has the largest eigenvalue and the fourth compo-
nent has the smallest eigenvalue.

PC1 PC2 PC3 PC4
Eigenvalues 3.42889178 1.23260141 0.98128957 0.72596439

Table 6.17: Eigenvalues of Principal Components

In this case, note that the values of the PCA loadings are not very close to zero (see
table 6.18), which would make it difficult for us to interpret the principal components.

From the table 6.18 we can interpret that the age variable is contained in the third
principal component since it has a loading value of 0.9633 in this component. The IGG,
D Dimer, PCT, CRP variables aremostly contained in the first principal component since
they have a higher loading value in that component than in the others. The IGMvariable
is mostly contained in the second principal component with a loading of -0.6476 which
is by magnitude the largest of all loadings. Finally, the Ferritin variable is in the fourth
principal component since it has a loading of 0.8710.
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PC1 PC2 PC3 PC4
Age 0.05013917 0.2532077 0.96333062 -0.0179284
IGM 0.31265592 -0.6476940 0.15706579 0.2437451
IGG 0.45734890 0.3408251 -0.13675849 -0.3112044

D Dimer 0.46357749 0.3315088 -0.07750017 -0.2391182
Ferritin 0.27268890 0.3825627 -0.10452665 0.8710209
PCT 0.44544959 -0.1510817 -0.03651889 -0.1634349
CRP 0.45041720 -0.3480497 0.10176369 0.0292033

Table 6.18: Loadings

The table 6.19 contains the value of the 4 principal components for each of the 255
observations. For ease, only the first 3 rows and the last 4 rows are shown

PC1 PC2 PC3 PC4
[1] -0.3902631073 0.256920130 -0.581970768 0.533968268
[2] -0.7599061552 -0.114307083 0.212392772 -0.627409720
[3] -1.2569242315 -0.415636288 -0.470347709 -0.986626156
· · · · ·
· · · · ·
· · · · ·

[252] -1.0212839382 -0.060373000 1.137380276 -0.809228463
[253] -1.0680870016 -0.662952464 -0.356664045 -0.902047658
[254] -0.4837753506 -0.003235085 -0.021988480 0.460062101
[255] 6.8690540559 2.341329572 -0.705770519 -1.340739167

Table 6.19: PCA values per observation

Despite the fact that there is no significant difference between the variances achieved
with four principal components by the SPCA, ROBSPCA and RSPCA algorithms with
respect to the PCA for this data set, the three sparse PCA algorithms present a great ad-
vantage over the PCAalgorithmwhich It can be evidencedwhen calculating the loadings
since these will show more null or close to zero loads than the PCA.

min lq mean median uq max neval
SPCA 37.3108 40.04265 56.959806 45.11960 67.96215 155.7481 100
RSPCA 1.7048 1.82175 2.636254 2.11740 3.08285 11.1738 100

ROBSPCA 1.1232 1.25655 2.063722 1.41335 2.21515 16.9791 100

Table 6.20: Computation time of the algorithms
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The SPCA, RSPCA and ROBSPCA algorithms were executed in Rstudio using a 7th

generation Intel core i5 processor computer with 8gb of RAMmemory and a 256gb solid state
drive. In the table 6.20 we can see that using the aforementioned computer, the SPCA
algorithm was the one that had the longest running time with 56.9598ms. While the
RSPCA and ROBSPCA algorithms have similar running time averages of 2.6362ms and
2.0637ms respectively. However, the RSPCA presents less dispersion, which gives it a
great advantage in computational terms.
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Chapter 7

Conclusions and Future Work

As a conclusion, wehave that theMultivariateDataAnalysis Techniques applied through-
out this thesis, such as Sparse PCA and PCA, are very useful to deal with a huge amount
of data, since they help us to reduce the size of the data and allow us to facilitates inter-
pretation.

We applied with R the SPCA, ROBSPCA and RSPCA algorithms to the data set re-
lated to clinical tests of COVID-19 where approximately 91% of the initial data with only
4 principal components was obtained. Similar results were also obtained with the PCA
algorithm. However, the Sparse PCA algorithms had a slight advantage over the PCA
algorithm for these data since they generated more null loadings, which facilitated the
interpretation of the principal components.

An interesting idea to be able to see the potential of Sparse PCAwould be to apply it to
a data set with more variables, such as gene arrays, which have been extensively worked
in recent times. By havingmore variables and observations, it wouldmakemore sense to
carry out dimension reduction analysis techniques such as the Sparse PCA in this case.

When there is multicollinearity problems in the variables, the Sparse PCA helps us to
eliminate this problem by creating uncorrelated principal components. As future work,
we could implement a generalized linear logistic model that helps us determine based
on the principal components. the result, either positive or negative, of the clinical tests
for COVID-19.
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Eds. Cham: Springer International Publishing, 2022, pp. 383–397.

[20] G. H. Golub and C. F. Van Loan,Matrix computations. JHU press, 2013.

[21] M. Cubilla-Montilla, A. B. Nieto-Librero, M. P. Galindo-Villardón, and C. A. Torres-
Cubilla, “Sparse hj biplot: A newmethodology via elastic net,”Mathematics, vol. 9,
no. 11, p. 1298, 2021.

[22] C. M. Cuadras, Nuevos métodos de análisis multivariante. CMC Editions Barcelona,
Spain, 1996.

[23] S. Infante, L. Sánchez, and F. Cedeño, “Filtros para predecir incertidumbre de lluvia
y clima,” Revista de Climatologı́a, vol. 12, pp. 33–48, 2012.

[24] S. Castro, “Analisis de datos en grandes dimensiones. estimacion y seleccion de
variables en regresion.” Instituto de Estad ıstica (IESTA) y Departamento de M etodos

Cuantitativo, 2012.

[25] H. F. Kaiser, “The varimax criterion for analytic rotation in factor analysis,” Psy-

chometrika, vol. 23, no. 3, pp. 187–200, 1958.

[26] N. T. Trendafilov, “From simple structure to sparse components: a review,” Com-

putational Statistics, vol. 29, pp. 431–454, 2014.

[27] H. Akaike, “A new look at the statistical model identification,” IEEE transactions on

automatic control, vol. 19, no. 6, pp. 716–723, 1974.

[28] R. E. Kass and A. E. Raftery, “Bayes factors,” Journal of the American Statistical

Association, vol. 90, no. 430, pp. 773–795, 1995. [Online]. Available: https:
//www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572

[29] G. H. Golub and U. von Matt, “Generalized cross-validation for large-scale prob-
lems,” Journal of Computational and Graphical Statistics, vol. 6, no. 1, pp. 1–34, 1997.

Mathematician 61 Graduation Project

https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572


School of Mathematical and Computational Sciences Yachay Tech University

[30] R. Guerra-Urzola, K. Van Deun, J. C. Vera, and K. Sijtsma, “A guide for sparse
pca: Model comparison and applications,” psychometrika, vol. 86, no. 4, pp. 893–
919, 2021.
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Appendix A

R Codes for Results

A.1 Exploratory Analysis of Data

1 #Data

2 View(X)

3 summary(X)

4 var(X)

5 cov(X)

6 means <-c(mean(X$Age),mean(X$IGM),mean(X$IGG),mean(X$D_Dimer),mean(X$

Ferritin),mean(X$PCT),mean(X$CRP))

7 means

8

9 #Correlation Matrix

10 M<-cor(X)

11 M

12 det(M)

13

14 #Standardized Data

15 library(dplyr)

16 set.seed (1)

17 X_STANDARDIZED <- X %>% mutate_all(~(scale (.) %>% as.vector))

18 X_STANDARDIZED

19 summary(X_STANDARDIZED)

20 var(X_STANDARDIZED)

21 means_STANDARDIZED <-c(mean(X_STANDARDIZED$Age), mean(X_STANDARDIZED$

IGM),mean(X_STANDARDIZED$IGG), mean(X_STANDARDIZED$D_Dimer),mean(X_

STANDARDIZED$Ferritin),mean(X_STANDARDIZED$PCT),mean(X_STANDARDIZED

$CRP))

22 means_STANDARDIZED

23

24
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25 #Violinplot

26 library("vioplot")

27 #Standardized Data

28 vioplot(X_STANDARDIZED , col = "gray", border = "black")

29 stripchart(X_STANDARDIZED , vertical = TRUE , method = "jitter",

30 pch = 1, add = TRUE , col = "black")

31 abline(h = 0)

32 points(means_STANDARDIZED , col = "white", pch = 21, cex = 1, bg = "

white", lwd = 2)

33

34 #real data

35 vioplot(X, col = "gray", border = "black")

36 stripchart(X, vertical = TRUE , method = "jitter",

37 pch = 1, add = TRUE , col = "black")

38 points(means , col = "red", pch = 21, cex = 1.5, bg = 2, lwd = 2)

39

40 #Multicolinearity

41 library(ggplot2)

42 library(grid)

43 library(gridExtra)

44 library(corrplot)

45 corrplot(M, method="number", order="hclust", type="lower")
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A.2 SPCA Algorithm on Clinical Tests (COVID-19) Data
Set

1 # Compute SPCA

2 library(sparsepca)

3 out <- spca(X, k=4, alpha=1e-3, beta=1e-6, center = TRUE , scale = TRUE

, verbose =0)

4 print(out)

5 summary(out)

6 SPCA <-out$scores

A.3 ROBSPCA Algorithm on Clinical Tests (COVID-19)
Data Set

1 # Compute ROBSPCA

2 out2 <- robspca(X, k=4, alpha=1e-4, beta=1e-6, gamma=1, center = TRUE ,

scale = TRUE , verbose =0)

3 print(out2)

4 summary(out2)

5 ROBSPCA <-out2$scores

A.4 RSPCAAlgorithmonClinical Tests (COVID-19)Data
Set

1 # Compute RSPCA

2 out3 <- rspca(X, k=4, alpha=1e-4, beta=1e-6, center = TRUE , scale = T,

verbose =0)

3 print(out3)

4 summary(out3)

5 RSPCA <-out3$scores
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