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Resumen 

 

 

La presente tesis está enfocada en optimizar la localización de estaciones de carga 

para vehículos eléctricos (EVs) dentro de un escenario determinado, en este caso 

la ciudad de Cuenca. Se ha abordado la problemática de la contaminación 

ambiental como factor fundamental que lleva a los ciudadanos a optar por 

opciones más amigables. Sin embargo, la falta de infraestructura constituye uno 

de los mayores impedimentos para su implementación. 

Este estudio utiliza algoritmos evolutivos multiobjetivo (MOEAs) para optimizar 

el tiempo de viaje, la cantidad de estaciones de carga y la calidad de servicio. Se 

diseñó una interfaz que nos permita la interacción entre un simulador de transporte 

(MATSim) y un framework evolutivo (DEAP). A través de MATSim, hemos 

podido configurar el escenario, los planes de movilidad, y el movimiento de los 

agentes en la red de vial. Mediante DEAP configuramos el algoritmo genético, los 

individuos, la población, los parámetros y operadores. En este estudio, se 

identificaron 20 posibles ubicaciones para las estaciones de carga, que se 

codificaron como variables de decisión. 

Después de ejecutar el simulador, se obtuvo un conjunto de soluciones óptimas a 

través del proceso evolutivo NSGA-II. Se graficó el frente de Pareto para elegir 

las mejores soluciones, enfocándose principalmente en el objetivo del número de 

estaciones. Las mejores configuraciones se mapearon sobre la red vial de Cuenca 

y se realizaron análisis de hipervolumen y correlación entre los objetivos. 

Concluimos que la interfaz permite obtener un conjunto de soluciones óptimas 

mediante la interacción entre MATSim y DEAP. Los métodos de análisis, como 

el hipervolumen y la correlación de objetivos, ayudaron a evaluar la calidad de las 

soluciones y la correlación cuantitativa de los objetivos. 

Palabras Clave: Estaciones de carga para vehículos eléctricos, algoritmos 

evolutivos multiobjetivo, MATSim, DEAP, NSGA-II Frente de Pareto. 

 

 

 

 

 

 

 

 

 



 

Abstract 

 

 

This thesis aims to optimize the location of electric vehicle (EV) charging stations 

within Cuenca city. The study addresses environmental pollution as a fundamental 

factor that leads citizens to opt for more environmentally friendly options. 

However, the lack of infrastructure constitutes one of the major obstacles to its 

implementation. 

This study uses multi-objective evolutionary algorithms (MOEAs) to optimize the 

travel time, number of charging stations, and quality of service. We created an 

interface that allows the interaction between a transportation simulator (MATSim) 

and the evolutionary framework (DEAP). Using MATSim, we configured the 

transportation scenario in Cuenca, including the loading of mobility plans and the 

movement of agents through the road station placement. With the DEAP 

framework, we could configure the genetic algorithm with individuals, 

population, parameters, and operators. The study identified 20 potential locations 

for charging stations and coded them as decision variables to be optimized by the 

algorithm. 

After running the simulator, we obtained a set of optimal solutions through the 

NSGA-II evolutionary process. We graphed the Pareto front to select the best 

solutions, focusing primarily on the objective of the number of stations. Finally, 

we mapped the best configurations onto Cuenca's road station placement and 

performed analyses of hypervolume and correlation between objectives. The study 

conclude that the interface allows obtaining a set of optimal solutions through the 

interaction between MATSim and DEAP. We evaluated the quality of the 

solutions and analyzed the quantitative relationship between objectives using 

analytical methods such as hypervolume and objective correlation. 

Key Words: Electric vehicle charging stations, multi-objective evolutionary 

algorithms, MATSim, DEAP, NSGA-II, Pareto Front. 
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Chapter 1

Introduction

1.1 Background

The increasing demand for sustainable transportation has led to the development of elec-

tric vehicles (EVs) as a more environmentally friendly alternative to traditional gasoline-

powered cars. Public and private institutions are currently seeking solutions to reduce

the use of fossil fuels and thus mitigate CO2 emissions. The automobile industry is in-

troducing more proposals to the market that incorporate the use of clean energy. Cities

of all countries are beginning to focus on the construction of infrastructure to enable the

change from fuels-based mobility to more ecological proposals. The change brings several

considerations for its implementation, such as location, infrastructure, costs, demand, etc.

This research aims to determine the optimal charging stations infrastructure in the

city of Cuenca using a multi-objective optimization approach. By integrating the traffic

simulator MATSim [14], the evolutionary framework DEAP [15], and data exploration

methods, we will identify the best solutions for conflicting objectives such as travel time

(tt), number of charging stations (Nst), and quality of service (QoS). Specifically, we will

use the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) as the Multi-Objective

Evolutionary Algorithm (MOEA) to obtain the best individuals through the evolutionary

process.

The scenario selected for this study is the city of Cuenca, the third-largest city in

Ecuador, which has taken initiatives in implementing ecological technologies , including

the proposal to use electric transportation [16]. With a current population of 417632,

1
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Cuenca has a well-designed road network and ample spaces for experimenting with the

traffic simulator. This research aims to obtain solutions for a given scenario rather than

conducting a comprehensive study of mobility in Cuenca. The transportation simulator

implements a combination of artificial and real-world data. Artificial data includes pa-

rameters such as the number type of vehicles within the city and charging capacity. In

contrast, real-world data includes aspects such as the road network, peak traffic hours,

suitable spaces, and areas of highest human activity. By integrating these two data types,

Cuenca’s electric vehicle charging infrastructure simulation is more comprehensive and

accurate.

The interdisciplinary study combines transportation engineering, mathematical opti-

mization, data, and computer sciences. First, transportation engineering is essential in

understanding the city’s road network, traffic flow, and mobility patterns. Second, math-

ematical optimization is crucial in developing and applying algorithms to find the best

solutions based on multiple conflicting objectives, such as travel time, number of charging

stations, and quality of service. Third, data science is necessary to collect and analyze the

data and apply exploratory methods to interpret the optimization process results. Finally,

computer science is crucial in developing and implementing software tools to integrate and

process the data, run simulations, and perform the necessary calculations for the optimiza-

tion algorithms. Combining these fields allows for a comprehensive approach to solving

the problem of limited charging infrastructure for electric vehicles in a given scenario city.

1.2 Problem statement

Implementing new technology always poses significant challenges for authorities and cit-

izens, particularly when changing a traditional mobility model. As the population seeks

solutions to climate change and the greenhouse effect caused by CO2 emissions, electric

car technology has emerged as a popular solution that offers many advantages. However,

a significant challenge to the widespread adoption of Electric Vehicles (EVs) is the lack

of sufficient charging infrastructure, limiting their range and usability and reducing their

overall appeal to potential consumers.In many countries, including Ecuador, the lack of

charging stations is a major barrier to adopting electric vehicles.
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The problem this research address is finding the optimal network of charging stations

for electric vehicles, which is a multi-objective optimization problem. Achieving the bal-

ance between minimizing travel time, optimizing the number and capacity of stations, and

maximizing the quality of service for drivers is challenging due to the trade-off between

these objectives. Finding the optimal solution requires a thorough understanding of the

transportation system, the integration of multiple data sources and algorithms, and ex-

pertise in transportation engineering, electrical engineering, computer sciences, and data

analytics

The solution to this mobility problem is important because it can significantly impact

the adoption and usage of electric vehicles, which is a key factor in reducing greenhouse gas

emissions and mitigating the impacts of climate change. Therefore, ensuring that charging

stations are located in convenient and easily accessible locations with sufficient capacity is

essential for encouraging the widespread use of electric vehicles. Additionally, optimizing

the number of charging stations and their capacity can help to reduce the costs associated

with building and maintaining the charging infrastructure, which is another important

factor in promoting the widespread use of electric vehicles.

Finding the optimal solution for this electric mobility problem is a complex and multi-

faceted issue that has yet to be fully addressed by previous studies. There are several

reasons why previous authors may not have fully addressed the problem of finding the

optimal network of charging stations for electric vehicles. Firstly, electric vehicle technol-

ogy is a relatively new phenomenon, and the demand for charging infrastructure is still

emerging. As such, there may not have been enough data to understand the problem’s

complexity fully. Secondly, the problem involves multiple objectives and trade-offs, and

finding a single optimal solution is challenging. Finally, the problem is affected by uncer-

tainties such as fluctuations in demand for charging services and the evolving adoption rate

of electric vehicles, making it challenging to predict and accommodate the charging needs

of electric vehicle users. Therefore, solving the problem of finding the optimal network of

charging stations requires a comprehensive and interdisciplinary approach.

An integrated approach using a traffic simulator, evolutionary framework, and data

exploration methods can identify the optimal location and capacity of charging stations

to meet the demands of electric vehicle drivers while minimizing the costs of building and
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maintaining the charging infrastructure, resulting in a more efficient and effective electric

vehicle charging infrastructure in the city of Cuenca.

1.3 Objectives

1.3.1 General Objective

This research aims to develop a comprehensive solution for determining the optimal loca-

tion and capacity of electric vehicle charging stations in the Cuenca scenario, considering

the interdisciplinary nature of the problem and the trade-off between different objectives.

By integrating the DEAP evolutionary framework with the MATSim traffic simulator,

the study seeks to provide valuable insights for decision-makers and stakeholders in the

development of electric vehicle charging infrastructure.

1.3.2 Specific Objectives

1. Develop an interface that integrates the MATSim transportation simulator with the

DEAP evolutionary framework to optimize the placement of electric vehicle charging

stations.

2. Utilize genetic algorithms within the DEAP framework to perform multi-objective

optimization, balancing conflicting objectives such as travel time, the number of

charging stations, and service quality.

3. Simulate the electric vehicle charging infrastructure using MATSim, considering fac-

tors such as the number and types of vehicles in Cuenca, the road network, mobility

plans, peak traffic hours, and areas of high human activity.

4. Analyze the simulation results to evaluate the performance of the electric vehicle

charging infrastructure and provide recommendations for future improvements and

implementations.
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Chapter 2

Theoretical Framework

2.1 Electromobility and Sustainable Transportation

The transportation sector significantly contributes to greenhouse gas emissions, negatively

impacting public health and the environment. The global shift towards urbanization has

increased the demand for transportation and its associated energy consumption. In recent

years, there has been growing interest in developing and adopting electric vehicles (EVs)

to reduce emissions and improve transportation sustainability.

Acording to Baker, Chon, and Keoleian, the development of electric vehicles has been

driven by environmental concerns, advances in battery technology, and government policies

to encourage their adoption. The ecological impacts of the transportation sector have been

well documented, particularly regarding greenhouse gas emissions. EVs have the potential

to significantly reduce CO2 emissions, particularly if powered by renewable energy sources

[17].

According to International Energy Agency, the adoption of electric vehicles is expected

to increase in the coming years due to technological advancements, government regulations,

and consumer demand. This growth is expected to significantly reduce greenhouse gas

emissions from the transportation sector [5]. However, despite their potential, electric

vehicles face several challenges to widespread adoption.

According to the International Energy Agency’s (IEA) Global EV Outlook 2021, electric

vehicles in use in 2020 saved 54 million tons of CO2 emissions, compared to CO2 emissions

by combustion engines [18]. In 2021, the sales of electric vehicles have reached an all-time
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high globally, as stated in a report by BloombergNEF, with an estimated 5.1 million electric

cars sold worldwide, representing 7.5% of total passenger car sales. This means a notable

surge from the previous year, where electric cars made up only 4.2% of the total sales

of passenger vehicles. The report from BloombergNEF also forecasts a further increase

in electric car sales in the upcoming years, with a projection of 31% of total passenger

car sales being electric by 2040 [19]. As the Figure 2.1 shows, the number of electric

vehicle sales has increased significantly over the past decade, with a notable acceleration

in growth in recent years. As a result, the percentage of total vehicle sales represented by

electric vehicles has also increased steadily, reaching over 5% in 2021. Governments and

organizations worldwide are increasingly adopting policies and incentives to encourage the

adoption of electric vehicles, which is expected to continue in the coming years.

Figure 2.1: EV sales growth over the past decade [5]

2.1.1 Overview of Electromobility

Electric vehicles (EVs) use electric motors for propulsion, rather than internal combustion

engines (ICEs) that burn gasoline or diesel fuel. According to Kurani and Turrentine, EVs

can be powered by grid electricity or on-board batteries, which are charged by regenerative
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braking or external charging stations.

There are three main types of electric vehicles: battery electric vehicles (BEVs), plug-

in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) [20]. Battery

electric vehicles (BEVs) are fully electric vehicles powered exclusively by electricity stored

in on-board batteries. Lu et al., describes that BEVs have the highest driving range of

all-electric vehicles and are the most energy-efficient type of electric vehicle. On the other

hand, plug-in hybrid electric vehicles (PHEVs) combine a gasoline or diesel engine with

an electric motor and battery[21]. PHEVs can run on electricity alone, gasoline or diesel

alone, or a combination of both, and have an electric driving range shorter than BEVs.

Hybrid electric vehicles (HEVs) use both a gasoline or diesel engine and an electric motor,

but the electric motor is not powerful enough to propel the vehicle alone [20]. Figure 2.2

shows different types of EVs and the ICEs.

Figure 2.2: Different types of engines and mechanisms. Obtained from [6]

In Zhang et al research, they describe that EVs have several advantages over conven-

tional vehicles, including lower operating costs, reduced greenhouse gas emissions, and

improved energy efficiency [22]. For example, EVs have a higher efficiency rate than inter-

nal combustion engines, which waste a large amount of energy as heat [21]. In addition,

EVs produce no tailpipe emissions, reducing local air pollution and improving public health

[17]. Furthermore, using EVs powered by renewable energy sources can significantly re-

duce greenhouse gas emissions and contribute to the decarbonization of the transportation
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sector [5].

Sierzchula et al., conclude that EVs face several challenges to widespread adoption. One

of the biggest challenges is the high upfront cost of EVs compared to conventional vehicles.

In addition, the limited driving range of EVs and the lack of charging infrastructure are

barriers to adoption. Public charging stations are not yet widespread, making it difficult

for EV owners to find a place to charge their vehicles while away from home [23].

2.1.2 Advantages of Electromobility

Electromobility has several advantages over conventional vehicles, both for individual users

and for society as a whole. One of the primary advantages of electromobility is that it can

reduce greenhouse gas emissions and improve air quality and noise reduction. EVs produce

zero tailpipe emissions, which can help to reduce local air pollution and improve public

health [17]. In addition, using renewable energy to power EVs can significantly reduce

greenhouse gas emissions, which is critical for addressing the global climate crisis [5].

Another advantage of electromobility is increased energy efficiency. EVs are more ef-

ficient than conventional vehicles, as they convert a higher percentage of energy from the

grid into vehicle propulsion [21]. Traditional vehicles waste a large amount of energy as

heat, which is not the case for EVs. In addition, greater efficiency means that EVs can

travel farther on a single charge, making them more convenient for long-distance travel.

Moreover, electric vehicles are quieter and provide a smoother driving experience than

conventional vehicles. Electric motors have fewer moving parts than ICEs, resulting in

less vibration and noise [17]. The smoother driving experience can also improve passenger

comfort and reduce motion sickness, making EVs more appealing to passengers.

Furthermore, electromobility can help to reduce dependence on fossil fuels and increase

energy security. The transportation sector is heavily dependent on petroleum-based fuels,

which are subject to price fluctuations and supply chain disruptions [5]. Using renewable

energy sources to power EVs can reduce dependence on fossil fuels and increase energy secu-

rity. Finally, electric vehicles can provide cost savings over the vehicle’s lifetime. Although

the upfront cost of EVs is higher than conventional vehicles, EVs have lower operating

prices, particularly regarding fuel and maintenance [23]. In addition, electric motors re-

quire less maintenance than ICEs, as they have fewer moving parts and do not require oil
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changes, making EVs more cost-effective in the long run.

2.1.3 Challenges of Electromobility

Despite the various advantages of electromobility, it is necessary to address several chal-

lenges to its widespread adoption. According to Hidrue et al., one of the primary challenges

of electromobility is the range limitation of electric vehicles. Although battery technology

has improved significantly in recent years, electric vehicles still have a limited driving range

compared to conventional vehicles [24]. As a result, range anxiety, or the fear of running

out of battery charge before reaching the destination, is a significant barrier to EV adoption

[25].

According to Acheampong et al., another challenge of electromobility is the lack of

charging infrastructure. Without a sufficient number of charging stations, EV drivers may

experience difficulties in finding a place to charge their vehicles, particularly during long-

distance trips [26]. Potential EV buyers may be discouraged from switching to electric due

to the inadequate charging infrastructure.

Furthermore, the upfront cost of electric vehicles is still higher than that of conventional

vehicles, although the cost decreases as battery technology improves and economies of scale

are achieved [21]. However, the high initial cost remains a significant barrier to EV adoption

for many consumers, particularly in low- and middle-income countries.

In addition, the production and disposal of EV batteries can have negative environ-

mental impacts. Battery production involves extracting raw materials, which can result in

environmental degradation and human rights abuses[27]. Furthermore, at the end of their

life, EV batteries must be disposed of or recycled, which can also have environmental and

social consequences [22].

Finally, stakeholders must address several regulatory and policy challenges to facilitate

the widespread adoption of electromobility. These include issues related to charging infras-

tructure, battery disposal, and financial incentives for EV adoption [25]. Addressing these

challenges will be critical for the widespread adoption of electromobility and the realization

of its potential benefits.
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2.1.4 Role of Electromobility in Sustainable Transportation

The role of electromobility in sustainable transportation has continued to gain attention

and interest from researchers and policymakers in recent years. As a result, electromobil-

ity has been identified as a potential solution to mitigate transportation’s environmental

impact and enhance urban population mobility.

In a study by Liu et al., the authors evaluated the environmental impact of electric

vehicles (EVs) and internal combustion engine vehicles (ICEVs) in China. The results

showed that EVs could significantly reduce carbon dioxide (CO2) emissions and improve

air quality, particularly in urban areas [28].

Electromobility can also enhance the quality of life in cities by reducing traffic conges-

tion and improving the accessibility of transportation. According to a study by Gao et al.,

the adoption of EVs in Beijing could significantly reduce traffic congestion and travel time,

thereby enhancing the city’s livability [29]. Moreover, the role of electromobility in sustain-

able transportation extends beyond the environment and quality of life. Electromobility

can also contribute to energy security and the growth of the renewable energy sector. In a

study by Li et al., the authors evaluated the impact of EV adoption on renewable energy

integration in China. The results showed that EVs could serve as a significant source of

flexibility in the power system, enhancing renewable energy integration and energy security

[30].

However, the widespread adoption of electromobility faces several challenges, including

high costs, range anxiety, and limited charging infrastructure. According to a study by

Wang et al., the lack of charging infrastructure is one of China’s most significant barriers to

EV adoption. The authors recommended the development of public charging infrastructure

to enhance the adoption of EVs in the country[31].

In summary, the role of electromobility in sustainable transportation is critical in miti-

gating the environmental impact of transportation, enhancing energy security, and improv-

ing the quality of life in urban areas. However, addressing the challenges facing the adop-

tion of electromobility is critical for its widespread adoption. Researchers and policymakers

must collaborate to develop and deploy innovative solutions that address electromobility’s

challenges.
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2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) encompasses a variety of optimization techniques inspired

by natural evolution called Evolutionary Algorithms. Evolutionary algorithms are a class

of optimization algorithms that use the principles of natural evolution to solve complex

problems. They iteratively generate and evaluate a population of candidate solutions and

use selection, crossover, and mutation operators to create new candidate solutions. EAs can

be used to solve optimization problems with multiple objectives, constraints, and variables.

[4]. The following are some common types of evolutionary algorithms:

Figure 2.3: Classification of Evolutionary Algorithms

• Genetic Algorithms (GA): Mechanisms inspired by natural selection, crossover, and

mutation are used to evolve a population of candidate solutions. They are often used

to solve optimization problems involving binary or real-valued variables. GAs solve

single objective problems and also Multiobjective problems (MOEA).

• Evolution Strategies (ES): A variant of genetic algorithms that works with continu-

ous variables. Mutation and selection are used to evolve a population of candidate

solutions toward the optimum. ES algorithms typically use a self-adaptive approach

to adjust the mutation rate based on the population’s fitness.

• Genetic Programming (GP): A population of computer programs is evolved to solve

a problem using the principles of genetic algorithms. A tree-like structure is used to

represent the solution space, and genetic operators are used to evolve the tree toward

an optimal solution.

• Evolutionary Programming (EP): A variant of genetic algorithms that uses mutation
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and selection to optimize a population of candidate solutions. However, the mutation

operator is used to exploit the solution space rather than explore it.

• Particle Swarm Optimization (PSO): A metaheuristic optimization algorithm in-

spired by the movement of swarms in nature. Candidate solutions are represented by

particles that move through the solution space. The movement of particles is guided

by their own best-known position and the best-known position of the swarm.

In the upcoming sections, we will focus on Genetic Algorithms (GAs) as they are one

of the main aims of this research. GAs are one of the most widely used techniques in

the field of evolutionary computation, and have proven to be effective in solving complex

optimization problems. They are inspired by the natural process of evolution and use a

combination of selection, crossover, and mutation to generate a population of candidate

solutions, which are then iteratively improved until an optimal or near-optimal solution is

found. Understanding GAs is crucial for the success of this thesis, as they will be used to

solve multi-objective optimization problem.

2.3 Genetic Algorithms

Charles Darwin developed his theory of natural evolution in his famous book “Origin of

Species”. According to Sivanandam and Deepa [32], Darwin describes that specific laws of

survival govern every living being. Species have disappeared throughout history because

they did not know how to adapt, referring to “the survival of the fittest.” The efficiency

and perfection in swimming of dolphins and sharks, the specialization of finch beaks, the

color of the polar bear’s fur, etc., are examples of a random evolution that preserves the

best characteristics of each generation to have the “fittest individual.”

Since the 1950s, researchers have used Darwin’s evolutionary theory applied to search

and optimization algorithms. Holland, in his book “Adaptation in Natural and Artificial

Systems,” describes for the first time how to use natural evolution to optimization problems

making the first Genetic Algorithm [32]. Nowadays, Holland’s theory has been developed,

and GAs startup as a powerful and efficient tool for solving search and optimization prob-

lems.
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2.3.1 Genetic Algorithms Definition

As defines Thanura et al., Genetic Algorithms (GAs) are heuristic search algorithms that

equal other algorithms (neural networks, ant colony algorithm) that try to replicate natural

evolution to find near-optimum solutions to complex problems. Genetic Algorithms take

the properties of “natural evolution” and “survival of the fittest.” [33] Genetic Algorithms

(GAs) are a popular type of evolutionary algorithms that have been used in a wide range

of optimization problems. According to Deb et al. (2019), GAs are a subset of the broader

evolutionary computation field that uses genetic operators, including selection, crossover,

and mutation, to evolve a population of candidate solutions. These operators are inspired

by natural selection principles and genetics and are used to simulate the process of evolu-

tion. In GA, the population evolves over a number of generations, with fitter individuals

being selected for reproduction and recombination and less fit individuals being replaced

by new offspring [12, 33].

2.3.2 Stages of Genetic Algorithms

The classical genetic algorithm is based primarily on starting with a set of random can-

didate solutions not optimized that represent a solution to the optimization problem that

we want to solve. When these solutions pass through the genetic algorithm, candidate

solutions with better characteristics begin to be generated [1]. A solution is a potential

candidate when it achieves the best results when evaluated with the fitness function. Solu-

tion or set of solutions can be maximum or minimum. The representation of the solutions

plays an essential role since it determines the type of genetic operators used. In general,

as described by [32], the solutions’ representation can be scalar or a bit strings. The cod-

ing of the solution, which is subject to the evolutionary process, is called the genotype or

chromosome. Algorithm 1 indicates the basic genetic algorithm’s pseudocode, which can

be a model for problems of different approaches [1].

In Natural Selection some specific properties or characteristics survive over time. Ge-

netic algorithms take advantage of this fact and make an analogy with the natural evolu-

tion. As defines [34], GA takes the inspiration of the natural selection mechanism, where

stronger individuals are likely to be the winners in a competing environment.
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Algorithm 1 Basic Genetic Algorithm
1: Starts with initial population P(0).
2: For each solution i in the previous step P(t) do
3: Evaluate i fitness
4: End for
5: While the stop criteria not reached do
6: Selection of the parents solutions or chromosomes for crossover
7: In the selected chromosomes of population P(t) apply crossover operator
8: the mutation operator is applied to new population P(t)
9: For each individual i in the new population P(t) do
10: Test the individual fitness
11: End for
12: End while

Table 2.1: Genetic Algorithm Pseudocode. Based on [1], and [2]

GA aims to obtain a potential solution as an individual representing a vector. Genetic

evolution begins from a population of chromosomes; some fitter chromosomes tend to

produce good quality offspring; with this process, the better solutions are obtained.

A genetic algorithm (GA) is a type of optimization algorithm inspired by the process

of natural selection. According to Jiang et al., GAs typically consist of several phases:

1. Initialization: In this phase, a population of candidate solutions is randomly gener-

ated as the initial set of potential solutions. This phase is critical because the quality

of the initial population can significantly impact the optimization process [35].

2. Selection: In this phase, a subset of the population is selected for further process-

ing based on their fitness, which is evaluated by a fitness function. Various selec-

tion methods have been proposed in recent years, such as tournament selection and

roulette wheel selection [36].

3. Crossover: In this phase, pairs of selected individuals are combined to produce

new offspring. The crossover operation involves exchanging parts of the genetic

information between parents to create new candidate solutions. There are many

crossover techniques, such as single-point crossover and uniform crossover [37].

4. Mutation: In this phase, some individuals are randomly modified to introduce new

genetic information into the population. The mutation operation can help to prevent

the population from converging prematurely to suboptimal solutions [38].
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5. Replacement: In this phase, some individuals in the current population are replaced

by the newly generated offspring based on a replacement strategy. For example, the

worst-performing individuals in the current population can be replaced by the best-

performing offspring [39].

6. Termination: The algorithm terminates when a stopping criterion is met. The cri-

terion can be a maximum number of generations or a minimum fitness level achieved

by the population [40].

2.3.3 Applications of Genetic Algorithms

Genetic algorithms (GAs) have been successfully applied in various fields, including engi-

neering design, machine learning, scheduling, transportation, and optimization. In engi-

neering design, GAs have been used to optimize the design of structures and components,

such as trusses, beams, and frames [40]. In machine learning, GAs have been used to train

neural networks and to select features for data classification, and clustering [41]. In schedul-

ing, GAs have been used to optimize the scheduling of tasks in manufacturing systems and

transportation networks [42]. GAs have been used in transportation to optimize vehicle

routing, fleet management, design transportation networks, and traffic signal timings [43].

Finally, in optimization, GAs have been used to solve complex optimization problems,

such as the traveling salesman problem and the knapsack problem [44]. By leveraging the

strengths of GAs in exploring large solution spaces and optimizing complex objectives,

these applications have demonstrated the potential of GAs as a powerful optimization tool

in many fields.

2.3.4 Biological and GAs terminology

GAs operate on potential solutions populations, where each solution is represented by a

chromosome that encodes the values of the problem variables. The concepts of chromo-

some, gene, allele, locus, genotype, phenotype, and epistasis are central to the genetic

algorithm approach. Table 2.2 compares the genetic concepts of chromosome, gene, allele,

locus, genotype, phenotype, and epistasis and their computational counterparts in genetic

algorithms.

Information Technology Engineer 15 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Concept Definition in Nature Computational Equivalent in GA.
Chromosome A thread-like structure

made up of DNA that
carries genetic information

A solution or candidate solution
to a problem represented by a
string of values, such as binary
digits or real numbers.

Gene A segment of DNA that
encodes a specific trait or
function

A subset of the chromosome that
represents a specific characteristic
or variable of the solution.

Allele One of the possible forms of
a gene that can occur at a
specific location

One of the possible values that a
gene can take, representing a vari-
ation of the trait encoded by the
gene.

Locus The specific location on a
chromosome where a gene is
located

The index or position of a gene
within the chromosome.

Genotype The genetic makeup of an
individual, including all of
its alleles

The complete set of genes and
their values in a particular solu-
tion.

Phenotype The observable physical or
behavioral characteristics of
an individual resulting from
its genotype and environ-
ment

The result of applying the values
of the genes in the genotype to the
problem, representing the actual
solution.

Epistasis The interaction between dif-
ferent genes that affects the
expression of a particular
trait

The influence of one gene on the
effect of another gene in the solu-
tion, affecting its contribution to
the fitness or quality of the solu-
tion.

Table 2.2: Comparison of genetic concepts in nature and in genetic algorithms. Based on
[3]

2.4 Genotype and Phenotype definitions

The genotype and phenotype are critical components of genetic algorithms (GAs) that can

significantly impact their performance. The genotype refers to the genetic information of

an individual in the population, typically represented as a bit string or vector. On the other

hand, the phenotype refers to the physical expression of the genotype in the problem space.

In this section, we will discuss the importance of genotype and phenotype representation

in genetic algorithms
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2.4.1 Genotype

As the authors in [1] explain, in nature, biologically, one or more chromosomes mix to form

a complete genetic structure containing both the physical and operational characteristics

of an individual. This grouping of chromosomes is known as the genotype. According to

Chen et al., the genotype is “the complete set of genes or variables that define the structure

of a solution” [45].

The genotype is a critical component of the genetic algorithm, as it determines the range

of possible solutions that can be evaluated and improved through the selection, crossover,

and mutation operators. By manipulating the genes or parameters within the genotype,

the genetic algorithm can generate new potential solutions and explore the solution space

in search of an optimal or near-optimal solution to the problem.

It is worth noting that the specific definition of genotype may vary depending on the

context and application of the genetic algorithm, and the terminology used in the literature

may differ slightly. However, in general, the genotype is an essential component of the

genetic algorithm that represents the potential solutions to the optimization problem being

solved.

Chromosome Structure

According to Jain et al., the chromosome is the data structure that represents a potential

solution to the optimization problem. It typically consists of a string of genes, where each

gene represents a variable or parameter of the solution [46]. The chromosome structure is

critical to the performance of the genetic algorithm, as it determines the range of possible

solutions that can be generated and evaluated. A well-designed chromosome can ensure

that the search space is appropriately defined and that the genetic algorithm can effi-

ciently explore the solution space. Figure 2.4 represents a Choromose with its components

previously described in the Table 2.2.

Importance of Correct Chromosome Structure

The chromosome structure is a critical factor in the performance of genetic algorithms.

Several authors have emphasized the importance of a correct chromosome structure in
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Figure 2.4: Basic Structure of a Chromosome[7]

finding good solutions. For example, Jain et al. state that “the chromosome represen-

tation is the most crucial factor in the design of a genetic algorithm,” and Singh et al.

conclude that “the representation of the chromosome plays a crucial role in determining

the performance of the genetic algorithm” [46, 47]. By understanding the importance of the

chromosome structure and its interaction with other components of the GA, researchers

and practitioners can design effective and efficient genetic algorithms for a wide range of

optimization problems

2.4.2 Phenotype

The organism formed by the interaction of the entire known genetic component and the

environment in which it inserts and interacts is as a phenotype. According to Forbes, in

an artificial intelligence system, the phenotype refers to the alternative solutions produced

by the genetic algorithm within the search space. [32].

Phenotype importance

Several authors have emphasized the importance of phenotype in the success of genetic

algorithms. For example, Deb notes that “the phenotype represents the true value of the

solution to the given problem, and the genotype encodes the information that is necessary
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to derive the phenotype” [12].

The phenotype representation determines the range of solutions that can be generated

and evaluated by the genetic algorithm. By selecting an appropriate phenotype represen-

tation, researchers and practitioners can ensure that the genetic algorithm can efficiently

explore the solution space and converge to good solutions [12].

Examples of Genotype and Phenotype representation in real computational
problems

1. Vehicle Routing Problem: The genotype is typically represented as a sequence of

integers that represents the order in which customers are visited, while the phenotype

is the actual routing plan that the delivery vehicles will follow [48].

2. Image Processing: In the context of image processing, the genotype might be a

binary string that represents the parameters for a specific image processing operation,

while the phenotype is the transformed image resulting from the application of these

parameters [49].

3. Scheduling Problem: For the job shop scheduling problem, the genotype could be

a permutation encoding that represents the sequence of jobs and their operations,

while the phenotype is the actual schedule for each job on each machine [50].

4. Protein Folding Problem: In the protein folding problem, the genotype is often

represented as a string of amino acids, while the phenotype is the actual 3D structure

of the protein [51].

5. Text Classification: In the context of text classification, the genotype could be

represented as a binary vector that encodes the presence or absence of specific features

in a document, while the phenotype is the actual classification label assigned to the

document [52].

2.5 Encoding Schemes

The encoding scheme is a critical aspect of genetic algorithms, as it determines the rep-

resentation of individuals and the operators used to manipulate them [53]. As Figure 2.5
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shows, there are different encoding schemes that can be used, including binary, real-valued,

permutation, and tree-based encoding. Each encoding scheme has its strengths and weak-

nesses, and the choice of encoding depends on the problem at hand. The selection of

an appropriate encoding scheme can significantly impact the performance of the genetic

algorithm[54]. According to Kumar here we have a description of some encoding schemes

[8]

1. Binary Encoding: A method of representing variables as a sequence of 1s and 0s,

where each bit represents a specific value. This encoding is commonly used for

optimization problems that involve decision-making or classification tasks.

2. Real-Valued Encoding: A method of representing variables as real numbers within

a specified range. This encoding is useful for problems that involve continuous vari-

ables, such as optimization problems involving physical quantities or engineering

design parameters.

3. Permutation Encoding: It is a type of genetic algorithm encoding where each chro-

mosome is represented as a string of values, which can be integers, real numbers,

characters, or other objects.

4. Tree Encoding: A method of representing variables as a hierarchical structure of

nodes and branches. This encoding is useful for problems that involve complex

relationships between variables, such as problems involving mathematical expressions

or decision trees.

2.6 Selection Methods

According to [3], selection is a crucial component in GAs that helps to determine the

most promising individuals in a population and generate offspring for the next generation.

This section will delve into the various selection methods utilized in GAs, including their

classifications, examples, and mathematical definitions. Two primary selection methods in

GAs are fitness-proportional selection and tournament selection [55].
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Figure 2.5: Some examples of encoding schemes. Based on [8]

2.6.1 Fitness-Proportional Selection

Fitness-proportional selection methods, also known as roulette-wheel selection or stochastic

universal sampling, select individuals for reproduction with a probability proportional to

their fitness value. Some of the commonly used fitness-proportional selection methods

include [3]:

• Roulette-Wheel Selection: In roulette-wheel selection, each individual is assigned a

slice of a roulette wheel that is proportional to its fitness value. A random spin of

the wheel then determines which individuals are selected for reproduction.

• Stochastic Universal Sampling: Stochastic universal sampling is similar to roulette-

wheel selection but uses multiple points on the wheel to select multiple individuals at

once. This approach can be more efficient than roulette-wheel selection but requires

more computation.

The fitness-proportional selection method can be mathematically defined as follows:

pi = fi∑N
j=1 fj

(2.1)

where pi is the probability of selecting individual i, fi is the fitness value of individual

i, and N is the size of the population.
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2.6.2 Tournament Selection

Tournament selection methods randomly select a group of individuals from the population

and choose the best individual from that group to reproduce. The size of the tournament

and the probability of selection can be adjusted to control the selection pressure. Some of

the commonly used tournament selection methods include [56]:

• Binary Tournament Selection: In binary tournament selection, two individuals are

randomly selected from the population and compared based on their fitness value.

The fitter individual is then chosen for reproduction. This process is repeated until

the desired number of offspring is produced.

• Multi-Way Tournament Selection: Multi-way tournament selection is similar to bi-

nary tournament selection but selects more than two individuals for each tournament.

The best individual from the tournament is then chosen for reproduction. This ap-

proach can be more effective at preserving genetic diversity but can also increase the

computational cost.

The tournament selection method can be mathematically defined as follows:

Let T be a tournament of size k, and let pi be the probability of selecting individual i.

pi = 1
k

k∑
j=1

[i = argmaxj∈T fj] (2.2)

where argmaxj∈T fj is the index of the individual in tournament T with the highest

fitness value.

2.7 Genetic operators

Genetic algorithms (GAs) use mutation and crossover as primary genetic operators to

create new offspring and explore the search space. Mutation and crossover are important

in finding optimal solutions in genetic algorithms because they allow for the exploration

and exploitation of the solution space.
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2.7.1 Crossover

Crossover is a genetic operator that combines information from two or more individuals

to create new offspring that inherit some features from their parents. In Figure 2.7 we

can observe a single point crossover in a binary encoding scheme. Crossover is used to

explore new areas of the search space and generate diverse solutions. Crossover is based on

exchanging information between individuals by selecting parts of their chromosomes and

recombining them to form new offspring [9].

Figure 2.6: Single point Crossover in a Binary scheme

There are different types of crossover operators that can be used, depending on the

problem and the encoding scheme used. Some of the commonly used crossover operators

include [9]:

• One-point crossover: In single-point crossover, a random point is selected in the

chromosomes of the two parents, and the chromosomes are exchanged at that point.

The resulting offspring inherit one part of their chromosomes from one parent and

the other part from the other parent.

• Multi-point crossover: Multi-point crossover is similar to single-point crossover but

involves selecting multiple points in the chromosomes of the parents to exchange

genetic material.

• Uniform crossover: In uniform crossover, the offspring are created by selecting genes

from each parent with a fixed probability. This approach can introduce more diversity

in the offspring and is often used in problems where the location of genes is not critical.
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Figure 2.7: Crossover operators. Obtained from [9]

2.7.2 Mutation

According to [55], mutation is a fundamental genetic operator in genetic algorithms that

randomly changes an individual’s genes in the population. The primary objective of mu-

tation is to add diversity to the population and avoid premature convergence by exploring

new regions in the search space. It can be applied to different encoding schemes such as

binary, real-valued, and permutation encoding. Various mutation operators are used in

GAs to introduce randomness to the population. These include bit-flip mutation, swap

mutation, inversion mutation, and Gaussian mutation. Bit-flip mutation is the simplest

operator and involves flipping a single bit in the genome. Swap mutation, on the other

hand, swaps two genes in the genome, while inversion mutation inverts a segment of the

genome. Gaussian mutation adds a random value sampled from a Gaussian distribution

to each gene [33].

2.8 Fitness

According to Hussain et al, fitness measures the quality of a candidate solution in a genetic

algorithm. It is defined as the objective function or evaluation function that calculates the

fitness value of each candidate solution. The fitness value represents how well the candidate

solution satisfies the optimization criteria and is used to guide the search toward better

solutions [57].
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2.8.1 Fitness Function

The fitness function plays an important role in the success of genetic algorithms in solving

complex optimization problems. The fitness function guides the search for better solutions

by evaluating the quality of candidate solutions and selecting the best ones for reproduction

and survival in the next generation [57]. A well-designed fitness function can significantly

improve the efficiency and effectiveness of a genetic algorithm by reducing the number of

evaluations needed to find the optimal solution. Furthermore, the fitness function can be

used to incorporate domain-specific knowledge and problem-specific constraints, which can

improve the quality of the solutions obtained [58].

2.8.2 Types of Fitness Functions:

Different types of fitness functions can be used in genetic algorithms depending on the

optimization problem being solved. Some common types of fitness functions include:

• Objective-based Fitness Functions: These fitness functions are based on the objec-

tive(s) of the optimization problem. They calculate the fitness value of a candidate

solution based on how well it satisfies the objective(s) of the problem. For example, in

a vehicle routing problem, the fitness value of a candidate solution can be calculated

based on the total distance traveled by the vehicles. [59]

• Constraint-based Fitness Functions: These fitness functions are used when the op-

timization problem has constraints that must be satisfied. The fitness value of a

candidate solution is calculated based on how well it satisfies the constraints of the

problem. For example, in a scheduling problem, the fitness value of a candidate

solution can be calculated based on how well it satisfies the constraints of resource

availability and task deadlines. [60]

• Hybrid Fitness Functions: These fitness functions combine objective- and constraint-

based fitness functions. They are used when the optimization problem has both

objectives and constraints. The fitness value of a candidate solution is calculated

based on how well it satisfies both the objectives and the constraints of the problem.

[45]
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2.9 Termination Criteria

Termination criteria are essential in genetic algorithms (GAs) because they dictate when

the optimization process should stop. If the algorithm runs indefinitely, it may lead to

overfitting or poor performance. Therefore, choosing appropriate termination criteria that

ensure the GA’s convergence to an optimal solution within a reasonable time is crucial

[58].

One common termination criterion is a fixed number of generations. This approach

terminates the algorithm after a predetermined number of generations. However, this cri-

terion may lead to suboptimal solutions if the specified number of generations is insufficient

for the algorithm to converge. Another approach is to use a convergence criterion, which

stops the algorithm when the population has converged. The convergence can be mea-

sured by the fitness function’s standard deviation or the change in the best fitness value

over generations [59].

Another popular termination criterion is the computing time limit. The algorithm stops

after a specified amount of time, regardless of whether the algorithm has converged or not.

This criterion is often used in real-time applications where the optimization process must

be completed within a certain time frame. However, as suggested by [60], the computing

time limit must be set carefully to avoid terminating the algorithm prematurely, leading

to suboptimal solutions.

2.10 Single an Multi-objective Optimization

Optimization problems can be classified into two main categories: single-objective and

multi-objective optimization. In single-objective optimization, the goal is to find the op-

timal solution for one objective function, and the solution is optimized based on a single

criterion

In contrast, multi-objective optimization deals with optimizing multiple conflicting ob-

jectives simultaneously. This approach is typically used when several objectives are con-

sidered, and finding the best solution is not as straightforward as in single objective opti-

mization.

In this section, we will discuss the basic concepts and approaches of both single-objective
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and multi-objective optimization and highlight the differences.

2.10.1 Single objective optimization problem

Before learning what multi-objective optimization is all about, it is very convenient to

define single-objective optimization. The optimization of a simple objective can be defined

mathematically according to [4] as maximizing or minimizing f(x) (the only one objective

function) subject to:

gi(x) ≤ 0, i = {1, . . . , m},

hj(x) = 0, j = {1, . . . , p}x ∈ Ω
(2.3)

The found solution can minimize or maximize the scalar f(x) where,

x is a n-dimensional decision variable vector x = (x1, . . . , xn) from some universe Ω.

Notice that Equations 2.3 are the constraints that must be fulfilled in the optimization

process of f(x).Ω contains all possible x that can be used to satisfy an evaluation of f(x)

and its constraints.

2.10.2 Multi-objective optimization problem (MOP)

Multiobjective optimization, or multicriteria optimization, involves finding a set of deci-

sion variables that satisfies specific constraints and optimizes a vector function. The vector

function comprises objective functions that often represent performance criteria that con-

flict with each other. The goal is to find a solution that provides acceptable values for all

objective functions, as the decision maker judges [55].

As stated by Coello et al. [4], the problem of multiobjective optimization aims to

optimize two or more objectives that conflict with each other simultaneously. This means

that improving one objective may negatively impact another objective [55].

Decision Variables

The decision variables refer to the numerical values that give solution to the optimization

problem. Mathematically we can define x as the vector of n decision variables [4]:
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x =



x1

x2
...

xn


(2.4)

That can be convenient written as:

x = [x1, x2, . . . , xn]T (2.5)

Constraints

Constraints represent restrictions imposed by the environment or available resources [58].

They are expressed as mathematical inequalities or equalities [4]. Inequalities are typically

represented as gi(x) ≤ 0, where i = 1, ..., m, and equalities are represented as hj(x) =

0, where j = 1, ..., p. It is important to note that the number of equality constraints,

represented by p, must be less than the number of decision variables, represented by n,

to ensure that the problem is not overconstrained [58]. Additionally, constraints can be

explicit or implicit, and algorithms must be able to compute gi(x) for any given vector x

if constraints are implicit [4].

Objective Functions

According to [9], an objective function is a function that maps a candidate solution in the

search space to a single real number that measures how good that candidate solution is

concerning the problem being solved. In other words, an objective function is a mathe-

matical expression that takes a candidate solution as input and produces a scalar value as

output, indicating the solution’s quality [9].

According to [4], each objective function can be defined as f1(x), f2(x), . . . , fk(x). The

number of objective functions in a Multiobjective Optimization Problem (MOP) is denoted

by k. Hence, the objective functions are represented as a vector function F(x) in the MOP

being solved.
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F(x) =



f1(x)

f2(x)
...

fk(x)


(2.6)

In Multiobjective Optimization Problems, two Euclidean spaces are typically consid-

ered. The first is the n-dimensional space of decision variables, where each axis corresponds

to a component of the vector x. The second is the k-dimensional space of objective func-

tions, where each axis corresponds to a component vector fk(x). Each point in the decision

variables space represents a solution and maps to a corresponding point in the objective

functions space, which provides information about the quality of the solution in terms of

its objective function values.

Mathematical Definition of MOP

The Multiobjective Optimization Problem (MOP) is a problem in which the aim is to opti-

mize k objective functions simultaneously. This requires finding a set of decision variables

that minimize or maximize a vector function F (x) subject to m + p constraints on the

objective functions and n decision variables. In general, there is not one unique solution

but a set of solutions, which can be found using the Pareto Optimality Theory [4].

Eiben and Smith [9] provide a formal symbolic definition of a general MOP as follows:

“A general MOP is defined as minimizing (or maximizing) F (x) = (f1(x), . . . , fk(x))

subject to gi(x) ≤ 0, i = 1, . . . , m, and hj(x) = 0, j = 1, . . . , p, x ∈ Ω.”

Here, x represents a vector of n decision variables, f1(x), . . . , fk(x) are the objective

functions, gi(x) ≤ 0 and hj(x) = 0 represent constraints that must be fulfilled while

optimizing F (x), and Ω contains all possible values of x that can be used to satisfy the

evaluation of F (x).

The decision variables are represented in the n-dimensional space, while the objective

functions are represented in the k-dimensional space. The evaluation function, F : Ω → Λ,

maps the vector of decision variables x = (x1, . . . , xn) to output vectors y = (a1, . . . , ak).

The k objective functions can be linear or nonlinear and continuous or discrete in nature.
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The Ideal Vector

The ideal vector in multi-objective optimization is defined as the vector obtained by evalu-

ating the optimal values of each objective function at a point in the feasible region. Math-

ematically we have in Equation2.7 a vector of variables that optimizes the ith function,

either minimizes or maximizes:

x0(i) =
[
x

0(i)
1 , x

0(i)
2 , . . . , x0(i)

n

]T

(2.7)

We can also define it as vector x0(i) ∈ Ω:

fi

(
x0(i)

)
= optx∈Ω fi(x) (2.8)

In Equation 2.9, we have a vector of ideal solutions for each objective. fi
0 represents

the optimum of the corresponding ithobjective function. The corresponding point in Rn

determines this vector is the ideal or utopical.

f0 =
[
f 0

1 , f 0
2 , . . . , f 0

k

]T
(2.9)

In conclusion, the ideal vector consists of the optimal solutions for each individual

objective function that are attained at the identical point in Rn.

2.10.3 Pareto Optimality

In multiobjective optimization problems, the concept of ”optimum” differs from that in

global optimization problems (single objective) because there are multiple objective func-

tions to consider. Rather than a single solution, the goal is to find a set of solutions that

represent good trade-offs or compromises among the different objectives. This set of so-

lutions is known as the Pareto Optimal Set, which consists of solutions that cannot be

improved in one objective without worsening at least one other objective. In other words,

the Pareto Optimal Set represents a set of non-dominated solutions where no other feasible

solution is better in all the objectives.

Coello et al. defines a solution x ∈ Ω is said to be Pareto Optimal with respect to Ω if

and only if (iff) there is no x′ ∈ Ω for which v = F (x′) =
(
f1 (x′) , . . . , fk (x′)

)
dominates
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u = F (x) =
(
f1(x), . . . , fk(x)

)
. The phrase Pareto Optimal means concerning the entire

decision variable space unless otherwise specified [4].

Pareto Dominance

Pareto dominance is a comparison criterion used in multi-objective optimization to compare

two solutions in terms of their objective function values [12] . For example, solution A is

said to dominate solution B if A is no worse than B in any objective and is strictly better

than B in at least one objective. In other words, solution A dominates B if it provides a

better trade-off in the objectives than B. [4] expresses it mathematically as:

A vector u = (u1, . . . , uk) is said to dominate another vector v = (v1, . . . , vk) (denoted

by u ⪯ v) if and only if u is partially less than v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈

{1, . . . , k} : ui < vi

Pareto Optimal Set

Coello et al. [4] defined Pareto optimal solutions as non-inferior, admissible, or efficient

solutions. The set of all solutions whose associated vectors are non-dominated is called

the Pareto optimal set. Pareto optimal solutions refer to solutions in the search space

of genotypes (decision space) whose corresponding objective vector components in the

phenotype space cannot be improved at the same time.

Coello et al. provide a mathematical definition of the Pareto Optimal Set as P∗, where:

P∗ :=
{

x ∈ Ω | ¬∃x′ ∈ Ω F
(
x′
)

⪯ F (x)
}

(2.10)

This equation defines P∗ as the set of all solutions x in the decision space Ω for which

there does not exist another solution x′ in Ω whose corresponding objective function values

F (x′) are all dominated by the objective function values F (x) of x, represented by the

Pareto dominance relation ⪯. In other words, the solutions in P∗ are non-dominated and

no other solution exists that is better in all objectives.

Pareto Front

In the previous section, we learned that the Pareto optimal set is a set of solutions in the

decision space, whereas the Pareto front, as defined by [9], is a set of objective function
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values in the objective space. See figure 2.8. The Pareto front represents the trade-

offs between the different objectives and provides a visualization of the optimal trade-

offs between the objectives. The Pareto optimal set gives us the set of solutions that

achieve these optimal trade-offs, while the Pareto front gives us the corresponding objective

function values of these solutions.

Coello et al. define the Pareto Front PF∗ for a given MOP, F (x), and Pareto optimal

set P∗ as:

PF∗ :=
{
u = F (x) | x ∈ P∗} (2.11)

Here, x represents a solution in the decision space that belongs to the Pareto optimal

set, and u represents the corresponding objective vector in the objective space that belongs

to the Pareto front. The Pareto front provides a visualization of the optimal trade-offs

between different objectives, while the Pareto optimal set gives the set of solutions that

achieve these optimal trade-offs [55].

The usual approach for obtaining the Pareto front is to calculate a large number of

points in the decision space Ω, along with their corresponding objective function values

f(Ω). In contrast to single-objective optimization problems, where there is typically only

one optimal solution, multi-objective optimization problems often have a vast number of

solutions that lie on a Pareto front.

As illustrated in Figure 2.8, the Pareto front represents a trade-off between minimizing

f1 and f2. The points lying on the Pareto front, such as X1 and X2, are superior solutions

compared to X3 in some of the objectives. [10]

The function f : Ω → Λ in an MOP maps the decision variables x = x1, ..., xn to

vectors y = a1, ..., ak as illustrated in Figure 2.9. For the case where n = 2, and k = 3, this

function can either cover or not cover a region of the objective function space, depending

on the functions and constraints that define the specific MOP.

2.11 Performance Indicators in MOP

According to [61], Evolutionary Multi-objective (EMO) procedures aim to achieve two

goals: (i) to converge towards the Pareto-optimal front and (ii) to obtain a diverse set of
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Figure 2.8: Pareto Front representation of two conflicting objectives. Obtained from [10]

Figure 2.9: Evaluation Mapping from Decision Variable Space to Objective Function Space
[4]

solutions. There are three sets of performance indicators used in EMO research:

• Convergence metrics evaluating the convergence to the known Pareto-optimal front.

• Spread metrics evaluating the spread of solutions on the Pareto-optimal front.

• Metrics evaluating the convergence and spread of solutions, such as hypervolume,

coverage, and R-metrics.

The study of Knowle et al. suggests that binary performance metrics, such as the
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epsilon indicator, hypervolume indicator, and utility indicators R1 to R3, are more suitable

measures for multi-objective optimization when comparing two sets of solutions A and B

[62].

2.11.1 Hypervolume as a Performance Indicator

Hypervolume is a performance indicator used in multi-objective optimization (MOO) to

evaluate the quality of a set of solutions concerning the Pareto-optimal front. It is based

on the volume of the objective space dominated by a set of solutions, relative to a reference

point in the objective space [11]. The larger the hypervolume, the better the set of solutions

is considered regarding coverage of the Pareto front. Figure 2.10 illustrates the concept

of hypervolume and hypervolume contributions in both 2-D and 3-D spaces. The top left

panel shows an example of a 2-D hypervolume calculation, where the hypervolume is the

area enclosed by the dotted line, and the reference point is marked with an ”r.” The top

right panel shows the hypervolume contributions of each solution in the set. The bottom

figures show the hypervolume and hypervolume contributions but in 3-D.

2.11.2 Calculation of Hypervolume

To calculate the hypervolume, a reference point in the objective space is needed. This

point is typically set to be a point dominated by all solutions, or a user-defined point [12].

According to Custodio et al. ,the hypervolume indicator, also known as the S-metric or

size of space covered, is a measure used in multi-objective optimization to evaluate a set

A of approximated solutions in Rm relative to a reference point r in Rm that is dominated

by all points in A. It is calculated as the volume of the space dominated by the solutions

in A and bounded by the reference point r [63]. This can be written mathematically as:

HI(A) = Vol
{
b ∈ Rm | b ≤ r ∧ ∃a ∈ A : a ≤ b

}
= Vol

(
∪a∈A[a, r]

)
(2.12)

where V ol(.) represents the Lebesgue measure of a m-dimensional set of points and

[a, r] is the interval box with lower corner a and upper corner r. In two dimensions, this

corresponds to the covered area, while in three dimensions, it corresponds to the covered

volume.
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Figure 2.10: Hypervolume graphical representation in 2-D and 3-D. [11]

2.12 Non-dominated Sorting Algorithm II

Non-dominated Sorting Algorithm II (NSGA-II) is a non-explicit black-box multi-objective

evolutionary algorithm designed for solving multi-objective problems (MOPs). It is an

extension of Srinivas and Deb’s original nondominated sorting algorithm (NSGA). NSGA-

II is widely used and is characterized by being of the Elitist type [4]. According to Yusoff

et al., it incorporates a mechanism for preserving the dominant solutions through several

iterations in the execution of the genetic algorithm. The algorithm uses modified crossing,

selection, and mutation mechanisms defined by the classic genetic algorithm [64].
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2.12.1 NSGA-II definition

The NSGA-II algorithm is a Multi-Objective Evolutionary Algorithm (MOEA) developed

by Deb as an extension of the NSGA algorithm [4]. NSGA-II is characterized by three

essential features: a fast crowded distance estimation procedure, a simple crowded com-

parison operator, and a fast non-dominated sorting approach [64].

2.12.2 NSGA-II Algorithm Overview and Pseudocode

As shown in figure 2.11, the algorithm creates a population of competing individuals, ranks

and sorts each individual according to their level of non-dominance, and applies evolution-

ary operations (EVOP) to obtain a new pool of offspring. This offspring is combined with

the parents, and the pool is partitioned into fronts. The NSGA-II algorithm then does

niching by calculating the crowding distance of each individual. Finally, the selection op-

erator uses the crowding distance to maintain a diverse front and ensures that a crowding

distance separates each individual. This process provides a diverse population and helps

the algorithm explore the fitness landscape.

Figure 2.11: The classic representation of the NSGA-II algorithm behavior. Pt (parent’s
population), Qt (offspring population at generation t). F1 are the best solutions from the
combined populations (parents and offspring). F2 are the second best solutions, and so on.
Based on[4]
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Algorithm 1 shows the NSGA-II pseudocode proposed by Deb as a better version of

the NSGA [4].

Algorithm 1 NSGA-II algorithm
1 : procedure NSGA-II

(
N ′, g, fk (xk)

)
▷ N ′ members evolved g generations to

solve fk(x)
2 : Initialize Population P′

3 : Generate random population - size N ′

4 : Evaluate Objective Values
5 : Assign Rank (level) Based on Pareto dominance - sort
6 : Generate Child Population
7 : Binary Tournament Selection
8 : Recombination and Mutation
9 : for i = 1 to g do
10 : for each Parent and Child in Population do
11 : Assign Rank (level) based on Pareto - sort
12 : Generate sets of nondominated vectors along PF known

13 : Loop (inside) by adding solutions to next generation starting from
the first front until N ′ individuals found determine crowding distance between
points on each front

14 : end for
15 : Select points (elitist) on the lower front (with lower rank) and are outside

a crowding distance
16 : Create next generation
17 : Binary Tournament Selection
18 : Recombination and Mutation
19 : end for
20 : end procedure

Table 2.3: NSGA-II Pseudocode. Obatained from [4]

The NSGA-II algorithm starts by randomly generating a population of individuals.

Each individual is evaluated using the objective functions. The algorithm assigns a rank

(level) to each individual based on Pareto dominance and sorts the population accordingly.

The next step is to generate a child population using binary tournament selection,

recombination, and mutation. The same process of rank assignment and sorting is applied

to the parent and child population.

The algorithm then generates sets of non-dominated vectors along the Pareto front. It

determines the crowding distance between points on each front and selects points on the

lower front, which are outside a crowding distance to create the next generation.

This process continues for a specified number of generations until the optimal solution(s)
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are found. The algorithm’s output is a set of Pareto optimal solutions that represents the

trade-off between the objective functions.

2.12.3 Crowding Distance

The crowding distance is a measure of the diversity of solutions in the objective space

in multi-objective optimization problems (MOPs). According to Coello et al., [4], the

crowding distance of a point i is a measure of the objective space around i that is not

occupied by any other solution in the population. This measure is used to maintain a

diverse front and ensures that each individual in the front has enough space around it.

The crowding distance concept was introduced in the original NSGA algorithm [65] and is

widely used in many multi-objective optimization algorithms. See Figure 2.12.

Figure 2.12: Calculation of Crowding distance. Obtained from[12]
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Chapter 3

State of the Art

This section reviews some of the algorithms and proposals to solve the problem. All the

proposed methods have, as their primary objective or as one of their objectives, found the

best location for electric vehicle charging stations.

3.1 Optimization trough Evolutionary algorithms

Evolutionary algorithms are powerful tools for solving nonlinear problems that handle

many variables. These problems can be found in industry, in the intelligent design of

cities, in mobility planning, etc.

Various optimization techniques, including genetic and swarm algorithms, have been

proposed to address traffic problems by adapting the schedules of traffic signals. A review

of this research can be found in [66]. In a related work, [67] focuses on optimizing the

location and dimensions of charging stations along a highway network while taking bud-

get constraints into account. The proposed model is applied to a road network that is

represented by nodes and arcs.

The algorithm searches for potential nodes or cities where electric charging stations

can be located. The methodology of this project is based on the use of two algorithms:

A genetic algorithm used for the optimization of combinational problems and a Heuristic

Algorithm explicitly designed for this problem. In the search carried out by [68], a new

fuzzy bi-objective mathematical model is presented for the supply chain’s production and

distribution problem. This research uses multi-objective fuzzy programming, possibility

programming, and a self-adaptive evolution algorithm. In the article developed by [69],
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researchers address vehicle routing problems with backhauls. The Backhaul concept is a

new business idea. It is based on preventing the vehicle from traveling empty on the return

trip. The route is planned based on the providers who wish to take advantage of the free

space. This problem is classified as NP; therefore, it produces a high computational cost;

the researchers propose a linear algorithm for deliveries with few stays, but for significant

problems, genetic algorithms are used. Zhou et al. [70] create a model that considers

the total social cost and the cost of electric charging station operations under various

distribution conditions. Among its main objectives is the location of charging stations

using genetic algorithms. Finally, this work seeks to determine the factors that directly

influence the cost of the stations, and for this, a Sensitivity study is carried out. The social

cost model considers two fundamental aspects, the economic and environmental costs.

The model proposed by the researchers suggests three objective functions to be optimized:

Building cost, charging costs and environmental costs.

As we can see, urban problems can be widely resolved through different evolutionary

algorithms since they deal with restrictions and variables that make a model approach

reality. Mohammad et al.[71] study analyzes the situation of suspended sediments that

can cause damage to drainage systems or contamination in rivers. The researchers propose

a novel hybrid approach of several algorithms for estimating SSL (River Suspended Sedi-

ment Load) in which the multi-layer perceptron together with particle swarm optimization

(PSO) and then integrated with differential evolution (DE) algorithm called MLP-PSODE.

This study is carried out in the Mahabad river in northwest Iran. The model works sat-

isfactorily and shows high confidence [72]. Evolutionary Algorithms addressed the bus

synchronization problem in Montevideo, Uruguay. This study indicates that the use of a

(µ + λ) model shows an improvement of 13% compared to other intuitive algorithms and

the current organization system. Another example of evolutionary algorithms application

is the one proposed by Jahandideh et al.. Researchers seek to guarantee the optimal use

of water reservoir systems. A large number of evolutionary algorithms are discussed, ar-

tificial bee colony (ABC), ant colony optimization (ACO), bat algorithm (BA), particle

swarm optimization (PSO), etc. All algorithms outperform traditional reservoir optimiza-

tion methods, such as non-linear programming (NLP) and dynamic programming (DP)

[73]. In Adenaw and Lienkamp’s research, authors have designed a project that seeks to
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optimize the charging routes of electric vehicles through a co-evolutionary algorithm. For

agents simulated through the MATSIM framework [14], decision making is directly re-

lated to model assumptions or an integrated process that considers both charging behavior

and location choice. The co-evolutionary algorithm, regarded as an evolutionary method,

consists of assigning a score to mobility charging plans based on the usefulness of the

performance behavior. Depending on the score, mobility plans are optimized, replanning

heuristically over several generations until having the desired optimized charging plan. It

is essential to point out that the authors have developed a co-evolutionary model due to

the dependency between the agents’ behavior and the score obtained by the charging plans

[74].

In Rizopoulos et al. investigation, the aim is to solve the Daily Activity Chains Opti-

mization problem, which is a problem that, like [74] , is a route search problem similar to

TSP. This project seeks to use genetic algorithms to generate practically usable activity

chains. The proposed model considers factors such as the consumption of Electric Cars,

the location of the charging stations, and the types of plugs. This model suggests a pre-

optimization; the authors affirm it improves the final results. One of the main objectives

is travel time minimization, and the results show an improvement of 31.42% compared to

other travel schedules [75].

3.2 Charging Station Location Models

One of this research’s main objectives is to search for the optimal location of charging

stations for electric cars and thus form a solid distribution network. In the study carried

out by [76], a comparative summary of the most popular models for solving this type of

problem is made. They show the importance of the leap from mobility based on fossil

fuels to electromobility. They also suggest that a good infrastructure significantly reduces

implementation costs. The authors of this article mention the popularity of two types

of algorithms such as genetic algorithms and particle algorithms, always showing more

significant popularity of genetic algorithms. However, they also talk about other algorithms

with optimal results, such as gray wolf optimization, spider monkey optimization, game

theory, grasshopper optimization, etc. [74]
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In Gampa’s et al. study, it is proposed to use a fuzzy multi-objective approach based on

the Grasshopper optimization algorithm (GOA). This large-scale project seeks to optimally

size and locates components for an electrical charge distribution system. The projector

consists of Distributed Generations (DG), Shunt Capacitors (SC), and Electric Vehicles

(EVs). The fuzzy Grasshopper optimization algorithm is used to identify the optimal

locations for EV charging stations and the number of vehicles at the charging stations. The

simulation shows the rapid convergence in the results against the techniques of Particle

Swarm Optimization (PSO) and Genetic Algorithms (GA) [77]. The study developed by

Pan et al. proposes a model based on the driver’s activities. The main goal is to maximize

the number of EV user activities. Firstly, the researchers carry out a deterministic process

that seeks to simulate the charging behavior of EV drivers. This step involves drivers’

existing activities and public and domestic charging availability. A coverage location model

for public electric vehicle charging stations is proposed as a second step. The study is

applied in Beijing, China. Results show the model covers 90% of the driver’s needs without

modifying the daily trips [78]. Zhang et al. proposes a model for ride-hailing or public

transport. This model talks about using autonomous electric vehicles (AEV) to reduce

greenhouse gas emissions and costs. Before launching a proposal, the authors discuss

the design of a reliable and extensive network of charging stations for electric vehicles

and propose the following methodology: First, they use the MATSIM BEAM module to

simulate driving, parking, and driving behaviors of AEV in San Francisco city. The second

step is to record the load needs, when, where, and how the load needs occur within the

system. Finally, the charging stations are located according to the needs and consider the

service quality as a restriction [79].

In Ji’s et al. research, a charging demand model is proposed to analyze the utility of each

point where a charging station is placed. They take factors such as the number of vehicles

that park in one place, the battery charge state, the parking time, and where are the most

frequently associated locations. The authors solve the problem using a Spatio-temporal

analysis model. The proposed model is based on driver behavior and uses MATSIM to

simulate electric vehicles in Berlin. Through a series of iterations, the algorithm searches

for the most optimal result based on an initial budget and the above criteria. The new

stations are placed according to the results of the optimization. The objective of this study
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is that drivers do not change their mobility plans and do not have to deviate from their

route to complete the charge. As a result, this model allows for Spatio-temporal planning of

the deployment of charging infrastructure. The results indicate that the method proposed

by the authors helps reduce range anxiety without adding restrictions due to using electric

vehicles instead of conventional ones [80]. In the research carried out by Raith et al. ,

the authors develop a simulator known as ETSIM (Electronic Taxi Simulation) with a

focus on implementing an electric taxi service, remarkably unlike other projects. The

methodology used by this project is based on a simulation of discrete events. According

to the authors, this means there are a certain number of available taxis in any place in

the scenario. In the common taxi situation, a passenger hails the taxi, and it takes the

passenger to their destination and then becomes inactive or returns to the taxi stop. In

the case of e-taxi, before accepting a passenger’s request, the state of charge (SoC) is

analyzed. If there is enough charge to make the trip and go to a charging station, then the

e-taxi accepts the request; otherwise, the request is rejected. The developed framework

allows the measurement of certain variables, such as the SoC of a certain e-taxi in a day.

Together with other factors, for instance, the rejection of trips, the charging time, and

the popularity of particular places in the scenario, allow determining the best position for

charging stations [81].

3.3 Electromobility Frameworks

In the world of computational research, there is a vast diversity of frameworks, and elec-

tromobility is a field that takes advantage of these resources. Research such [79, 74, 80]

use the MATSIM framework and some kinds of extensions to simulate agents and scenar-

ios. For instance, Zhang et al. [79] uses BEAM extension (Behaviour, Energy, Autonomy,

and Mobility). BEAM is an MATSIM extension that shifts some behavioral emphasis from

planning throughout the day to planning within the day. This is important because BEAM

can simulate modern mobility services in a way that reflects the emerging transportation

system. According to authors, agents dynamically respond to the system state during

mobility simulation.The research of [74] employs a new coevolutionary learning model for

adaptive charging behavior. The simulation framework used to implement the system is
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based on the MATSiM framework using the EVContrib. The authors use MATSIM’s scor-

ing and rescheduling to optimize agent charging plans through an iterative algorithm that

optimizes the resulting plans. In [82] study, an online vehicle charger assignment model

is proposed to minimize the total vehicle inactivity time for recharging. This is a relevant

problem in electromobility, especially in public transport, since fleets must waste as lit-

tle time queuing at charging stations as possible. The model applied by the researchers

is a MILP (Mixed-Integer Linear Programming) model based on the rolling time-window

framework. The case study is developed in the bus service of Luxembourg city. Authors

execute a simulation scenario. The results show the proposed method considerably reduces

up to 27% vehicle charging operation time and queue delays. In [81], the authors develop

their own simulation tool. The authors use the Julia language and the Open Street Maps

(OSM) data to identify specific characteristics that make implementing an electric taxi

service possible. The simulator models the e-taxi behavior, charging needs, and the state

of charge-based services. With the results obtained, it is possible to understand the space-

time demand and thus also look for the best location for the charging stations. The system,

E-Taxi Simulation or ETSIM, obtains results of the number of trips that the e-taxis could

not execute due to the state of charge (SOC) and thus decides the best location for the

charging stations.

3.4 Evolutionary Frameworks approach

Evolutionary frameworks have been extensively used for solving optimization problems

in various domains, including engineering, finance, and biology. With the availability of

multiple optimization frameworks, some researchers compare their performance in terms

of convergence and diversity to select the most appropriate framework for a particular

application [83, 84, 85, 86, 87]. Here we present a review of some authors, the problem to

solve, the used frameworks, and their respective conclusions.

In a study by [83], several optimization frameworks, including DEAP, PyGMO, and

Platypus, were compared for optimizing the design of offshore wind turbines. The study

showed that DEAP outperformed the other frameworks regarding convergence and diver-

sity, while Platypus provided a better balance between convergence and diversity. Oyama
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et al. research talks about the performance of several multi-objective optimization frame-

works, including Platypus, NSGA-II, and MOEA/D, compared for optimizing water dis-

tribution network design. The study showed that Platypus outperformed the other frame-

works in terms of convergence, while NSGA-II and MOEA/D provided better diversity.

Mariscal et al. research compares DEAP, PyGMO, and Platypus frameworks in optimizing

aircraft wings desing. The study showed that Platypus provided the best balance between

convergence and diversity, while DEAP and PyGMO provided better convergence. In a

survey by Rodŕıguez-Fernández et al., the performance of several optimization frameworks,

including PyGMO, DEAP, and Optunity, was compared for optimizing the design of pho-

tovoltaic systems. The study showed that PyGMO and DEAP provided better convergence

and diversity than Optunity. In a study by Chen et al., optimization frameworks, includ-

ing DEAP and PyGMO, were compared for optimizing the design of power systems. The

study showed that DEAP provided better convergence and diversity than PyGMO.

3.5 Station location through GA

As the number of electric vehicles (EVs) on the road increases, so does the need for electric

vehicle charging stations. Therefore, the placement of these charging stations plays a

critical role in the widespread adoption of EVs, as the location and number of charging

stations directly affect the convenience and accessibility of EVs. To address this challenge,

researchers have developed various genetic algorithm (GA) based approaches to optimize

the placement of charging stations, taking into account a wide range of factors such as user

convenience, charging station utilization, network connectivity, and environmental impact.

In the study by Liu et al., researchers optimized the placement of electric vehicle charg-

ing stations in urban areas. The study used a multi-objective optimization framework to

find the optimal balance between user convenience, charging station utilization, and net-

work connectivity [88]. Gao et al. proposed a hybrid GA-based approach for optimizing

the placement of electric vehicle charging stations in large-scale transportation networks.

The study used a combination of GA and simulation techniques to find the optimal location

and capacity of the charging stations, taking into account factors such as traffic demand,

energy consumption, and network connectivity [89]. Niu et al. studied the placement of
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electric charging stations in rural areas. The study used a multi-objective optimization

framework to find the optimal balance between user convenience, charging station uti-

lization, and environmental impact [90]. Li et al. studied the placement in urban areas

with limited space. The study used a novel clustering technique to group charging sta-

tions based on their proximity and usage patterns and then used GA to find the optimal

placement of the clusters [91]. Zhou et al. used a multi-objective GA-based approach for

optimizing the placement of fast charging stations for electric vehicles. The study used

a novel encoding scheme and genetic operators to improve the algorithm’s performance

[92]. Zhang et al. cared about large-scale transportation networks with uncertain demand.

Therefore, the study used a robust optimization framework to find the optimal location

and capacity of the charging stations under different demand scenarios [93]. Huang et al.

optimized the placement of electric vehicle charging stations in urban areas with limited

parking spaces. The study used a novel parking-based optimization framework to find the

charging stations’ optimal placement, considering the parking spaces’ availability and the

charging needs of electric vehicles [94].

GA-based approaches have proven to be effective tools for optimizing the placement

of electric vehicle charging stations in a variety of settings, including urban areas, large-

scale transportation networks, rural areas, and areas with limited space. By using multi-

objective optimization frameworks, clustering techniques, and simulation-based approaches,

researchers have found optimal solutions that balance the competing objectives of conve-

nience, efficiency, and sustainability. These studies provide valuable insights into the po-

tential of GA-based approaches to address the challenges of building a robust and accessible

EV charging infrastructure and suggest promising avenues for future research.
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Chapter 4

Methodology

4.1 Phases of Problem Solving

This section outlines the general phases of solving the charging station allocation prob-

lem, including data gathering, tools and techniques selection, assumptions and limitations

of the problem-solving process. In upcoming sections, we will discuss in detail all the

methodological phases that led to the problem’s solution based on the theory studied and

the research in this field. Figure 4.1 shows the phases of problem solving.

Figure 4.1: Problem solving phases

4.1.1 Problem Definition

The first step in solving the charging station allocation problem was to identify the pos-

sible tools and techniques necessary to find the ideal location and capacity of each elec-

tric charging station. Next, the objective optimization functions were defined, identifying
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three essential characteristics: travel time, the number of stations, and quality of service.

The problem was identified as multi-objective, and the resolution was carried out through

MOEA, specifically the NSGA-II.

4.1.2 Simulation

The next step was to choose a transportation simulator; in this case, we decided on the

MATSim simulation framework, which allowed us to simulate the movement of different

agents within a road network.

The road network data for the city of Cuenca was obtained through OpenStreetMap

(OSM) to conduct our experiments. We set different charging values, loaded mobility

plans, and located departure and arrival points for the agents. We also identified areas

with high space availability and high activity to help determine the candidate locations

for charging stations. Through this study, we identified 20 possible locations for charging

stations.

4.1.3 Genetic Representation

After setting up the simulator, we translated the problem into a genetic configuration. We

defined a chromosome of 20 genes, where each gene represented a charging station with a

value between 0 and 4, indicating the capacity or number of chargers for that station.

4.1.4 Simulation Interface

We developed a Python interface to facilitate the communication between the simulator

and the genetic algorithm. Specifically, the interface can read the population of solutions

and call the simulator to generate reports on various metrics, such as travel time, vehicle

charging statistics, and charging times. To achieve this, we defined a set of Python classes

and created a test interface to read a pre-defined station configuration or a population of

solutions. This interface interacts with the simulator and obtains the necessary information

for fitness value calculation through configuration files.
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4.1.5 Fitness Value Calculation

Using the generated reports from the simulation interface, we calculated fitness values for

each solution in the population. Specifically, we aimed to minimize travel time and the

number of stations while maximizing quality of service simultaneously. These values were

obtained using the travel time report, vehicle charging statistics report, and charging times

report generated by the MATSim simulator.

4.1.6 DEAP Integration

We select DEAP framework for our experimentation as it allowed us to genetically define

our individual and generate a random population with those characteristics. Furthermore,

DEAP enables us to carry out the evolutionary process with the NSGA-II algorithm, which

allows us to obtain the Pareto optimal set according to the fitness values and generate the

Pareto front with these solutions. Thus, we created an interface between the genetic

algorithm and the transportation simulator.

4.1.7 Dockerization

Finally, we created a Docker image that can run on any platform after obtaining the best

individuals with their fitness values. Due to the high computational cost, we used an HPC

to run our experiment in parallel and repeated it 12 times using a different seed.

4.2 Description of the Problem

The limited availability of fossil fuels and the environmental problems caused by green-

house gas emissions have prompted cities to transition from conventional transportation

to electromobility. Electric cars are becoming an increasingly popular option, offering ac-

cessibility and environmental benefits. However, the growing number of electric vehicles

creates a demand for charging stations, which must be strategically located to meet the

needs of electric vehicle users while minimizing building costs. Developing a robust charg-

ing station network is critical to promoting electromobility and incentivizing people to

purchase electric vehicles. In urban areas with high charging demand and limited space,
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authorities and urban planners require planning tools to allocate financial and organiza-

tional resources efficiently. Simulations are a useful tool for successful decision-making in

many city planning tasks

4.3 Analysis of the Problem

Given an specific geographical area and a mobility demand, we need a framework that can

simulate the plans of mobility, agents, and charging configurations. This simulator must

be integrated through a set of classes that can interface between the simulator and an

external application. The external application will be a framework for generating sets of

candidate solutions using evolutionary algorithms. These candidate solutions should have

a genetic configuration that will enable us to express the variables of the problem in the

form of genes and chromosomes.

The decision variables within the genetic representation are each gene that encodes a

value for the station’s capacity. The goal is to find the optimal combination that minimizes

the number of charging stations and travel time while maximizing the quality of service.

The trade-off between the different objective functions in our problem is an area of

interest. For example, it is possible that reducing the number of charging stations could

lead to an increase in travel time, while increasing the number of charging stations might

improve service quality but could also increase construction and maintenance costs. We

aim to analyze the relationship between these objectives to identify potential trade-offs

and find an optimal balance.

4.4 Variables of the problem

The problem variables that we consider are geographic area, mobility patterns, the location

of the stations, and the characteristics of electric vehicles. Below we will detail each of the

variables.
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4.4.1 Geographic area and Scenario Setup in MATSim

This section discusses the geographic area where we conducted our research and how we set

up our scenario using MATSim. We carried out our study in the city of Cuenca, Ecuador,

and utilized MATSim, an agent-based simulation framework, to model the movement of

agents within the city.

To set up our scenario in MATSim, we needed to provide the network infrastructure,

the mobility plans, and the respective incorporation of the charging stands to simulate

the agents’ movements. To achieve this, we studied the city of Cuenca and identified

20 potential locations for charging stations based on their proximity to areas with high

activity, such as schools, airports, stadiums, and malls, or based on space availability.

We used Open Street Maps to extract the road network information and obtain the

network infrastructure. We then converted this information into the format required by

MATSim, which is XML. The resulting network contained 26361 links and represented an

area of 56 km2. In Figure 4.2, we appreciate Cuenca’s street network.

Figure 4.2: Cuenca’s network infrastructure. Obtained from Open Street Maps

Artifitial scenario

According to the scope of this work, we artificially adjusted the scenario as we did not

use completely real data about Cuenca’s transportation. We set the number of circulating

vehicles to a pre-defined value and used only one type of vehicle. However, we also used

real data such as peak-hour traffic, mobility plans based on places with high activity, and
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availability of space. The scenario was modified artificially to verify that the simulator

works optimally, rather than to conduct a mobility study in Cuenca.

4.4.2 Mobility patterns

The mobility patterns define the distribution of trips that agents execute. These patterns

represent agents’ behavior; for example, a mobility pattern could describe that a vehicle

has made an average of two daily trips and has spent 30 minutes per trip. Mobility patterns

are closely related to mobility plans since these specify the details of an individual agent’s

trips within a determined mobility pattern. Mobility plans contain information such as

the exact starting and ending locations of each trip, the duration time of the trip, and the

vehicle type.

Mobility plans

Mobility plans are defined by an XML file containing the main parameters for agents’ trips

in the road network, including origin location, activity, departure time, end time, activity

duration for each trip, and location of selected activity. The agents execute two main trips:

home-activity and activity-home. The mobility plan file is configured within the transport

simulation framework. Figure 4.3 shows an example of the most important configurations

in a mobility plan for each agent.

Origins and Destinations

The agent’s travel origin point is the home location, assigned according to the proportion

of the current population. The agents travel through the network of links and nodes until

reaching their destination defined by shopping, work, personal activities and locations.

Each location in the city where these activities can be carried out has an assigned weight,

which was determined probabilistically. The geographical distribution considered places

with a high concentration of these activities.

Times for Departures and Activity Durations

We defined times for departures and activity durations in the mobility plans. Then, we

randomly assigned starting times and durations for each activity, sampling from the des-
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Figure 4.3: Exemplary mobility plan of agents trips.

ignated ranges for each type of activity. We set the times for departures to obey the peak

traffic, with a higher concentration of trips during the morning, midday, and afternoon

periods.

4.4.3 Location of Charging Stations Candidates

To determine the most suitable location for the charging stations, we relied on locations

with high activity, such as schools, parking lots, stadiums, markets, shopping centers,

transportation stations, airports, or places that provide the necessary space for the imple-

mentation of electric charging stations. As a result, we were able to identify a total of 20

locations that meet the requirements. In the Figure 4.4, we can see the street network of

the city of Cuenca, the selected geographical area, and the location of the 20 electric charg-

ing stations. MATSim requires the network and the charging station locations as input

files. Each of the 20 stations has a geographical area regarding latitude and longitude.
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Figure 4.4: Geographical location of the 20 charging stations

4.5 Search space

The search space refers to the entire set of possible solutions for a given optimization

problem. In our research, we aim to find the optimal configuration for 20 charging stations

for electric vehicles, where each station has a capacity ranging from 0 to 4. Where 0

means there’s no charging station, 1 represents a station with five chargers, 2 represents 10

chargers, 3 represents 15 chargers, and 4 represents 20 chargers. Determining the number

of possible solutions is crucial because it helps us choose an appropriate method. We have

defined the search space in two ways: the entire space of solutions and the search space

that considers unique solutions.

4.5.1 All possible solutions

To find all possible solutions, we have defined the problem as a permutation problem that

allows repetitions, where order matters since each variable represent a different station

with its geographic location. Mathematically, we can define the search space as follows:
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Search Space = nk possibilities, (4.1)

n is the number of options for each digit (in this case, 5)

k is the number of genes (in this case, 20).

Substituting these values into the formula, we get:

Search Space = 520 = 9.537 × 1016 possible solutions (4.2)

4.5.2 Unique solutions

We determined the search space that considers unique solutions where order still matters

as a combination problem. Mathematically, we can express the search space as:

(
20
5

)
= 20!

5!(20 − 5)! = 15504300 possible solutions (4.3)

So we have 15,504,300 possible combinations without repetition for an individual with

20 digits, where each digit can take on values of 0, 1, 2, 3, or 4.

We can see that this problem has a high-dimensional search space that is difficult to

solve using traditional optimization methods. Common methods require significant com-

putational resources and time to explore the entire search space. Therefore, we have chosen

to use evolutionary algorithms, which are well-suited to solving high-dimensional optimiza-

tion problems. Additionally, to speed up the optimization process, we can take advantage

of parallelization techniques to distribute the computations across multiple processors or

nodes.

4.6 Electric cars

In our research, one of the fundamental aspects is electric cars. MATSim enables us to

simulate these agents through the EV module. Electric vehicles (EVs) move within the

proposed scenario and have specific configuration files where their charging capacity at the

beginning of the simulation, vehicle type, and mobility plans that indicate their routes are
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specified. Once the simulation completes, it generates reports, including the status of the

vehicle’s battery consumption, the record of charging times, travel time, waiting time, and

charging time.

4.6.1 Battery capacity

We determined the maximum charging capacity of each vehicle and station through exper-

imentation. We simulated a scenario with 500 vehicles in motion to measure the required

charge to complete the trips and fulfill the mobility plans. As a result, we set the maximum

capacity of each vehicle to 40 kWh and the stations’ capacity to 50 kWh. It is important to

note that the vehicles start the simulation with a full charge by default, but we randomized

the initial charge, which could also be incomplete.

4.6.2 Mid-size vehicles

MATSim allows us to run simulations using different types of vehicles. In our research,

we have decided to configure family or personal car types specifically chosen by the ”size”

class. Mid-size vehicles in MATSim refer to vehicles with moderate size and capacity,

such as sedans, SUVs, and station wagons. These vehicles are typically used for personal

transportation.

4.6.3 EVs charging simulation

The Simulation runs with a specified number of vehicles, each EV is assigned a state of

charge (SoC). Some of the electric vehicles are set with a low initial SoC, which forces them

to find the best route to the nearest charging station and minimize travel time to reach

their destination without running out of energy. When the vehicle arrives at a station and

there are no available ports, it has to wait until a port becomes available.

4.6.4 Charge and Discharge Model

According to the study by Bischoff et al. [13], the integration of electric vehicles (EVs)

into the MATSim simulation cycle was extended in several ways to better account for the

behavior and needs of EVs.
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First, the authors addressed the issue of vehicle routing for long-distance trips. To do

this, they pre-estimated EV charging breaks at the beginning of each MATSim iteration.

The overall trip route was calculated, considering the vehicle’s initial state of charge (SoC)

and the location of available charging infrastructure. This information determined suitable

charging locations along the route, and the route was adjusted accordingly. Charging

breaks were modeled as a MATSim activity, but the agent was not given a positive score

for performing this action. The duration of a charging activity was determined based on

the estimated required charging duration.

Second, the authors tackled the issue of energy consumption by EVs. The queue model

used in MATSim allows tracking energy consumption by analyzing vehicles as they enter

and leave links in the network. The authors used this information to calculate the average

speed driven on a link and the vehicle’s energy consumption on that link. The energy

consumption model used in the study was based on previous work by the authors and

calculated energy consumption as a function of average speed and road slope, using the

World harmonized Light Vehicle Test Procedure (WLTP) drive cycle [13]. Fig. 4.5 shows

the energy consumption of a medium-sized, compact class car, with relatively high con-

sumption per distance at low speeds due to the significant contribution of auxiliary systems

(modeled as a constant power load) and the more frequent decelerations and accelerations

in stop-and-go traffic.

Finally, the authors addressed the charging logic for long-distance travel. To minimize

delay and disruption to the initial travel schedule, fast charging or dynamic charging (i.e.,

charging while driving) were considered the most suitable technical solutions. In the study,

all vehicles were assumed to start their long-distance trip with a fully charged battery, and

all charging during the trip was handled by fast charging infrastructure. Upon arrival at

a charging station, charging would commence immediately if a free spot was available, or

the vehicle would be queued. The charging process was modeled to mimic real-world fast

charging behavior, with charging happening at full speed up to 50% SoC, before decreasing

linearly.
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Figure 4.5: Energy consumption on a middle size car in MATSim modele based on [13]

4.7 Algorithm Design

The algorithm aimed to find an optimal balance between travel time, the number of sta-

tions, and quality of service for electric vehicles. This section describes the three objectives

and their mathematical representation. It also describes the genetic configuration of indi-

viduals, which represent different combinations of charging stations, and how the NSGA-II

algorithm was used to generate a diverse set of Pareto-optimal solutions. Additionally,

the section discusses the role of DEAP and MATSim, two powerful tools used in the re-

search, and how they were integrated to optimize the location and distribution of electric

vehicle charging stations. Finally, the section explains the genetic operators used in the

experiment and how the algorithm was tested and deployed.

4.7.1 Objective functions

In this research, we aimed to find an optimal balance between travel time, number of sta-

tions, and quality of service for electric vehicles. The trade-off between these objectives was

crucial for balancing efficiency, building costs, and accessibility in our proposed scenario.
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Travel Time

(f1 = tt) : The travel time objective refers to the time vehicles must travel to reach the

destination. It computes the average time needed to complete the agents’ trips requiring

charging. and it is expressed by Equation 4.4 .

f1 = tt = 1
nEV

nEV∑
i=1

L∑
i=1

til (4.4)

The equation calculates the travel time for electric vehicles (EVs) that finish their

journey with a charge. It considers the travel time on each link of the route, represented

by til, where l is the link, and i is the vehicle. L means the total links in the route. The

calculation only considers the commuting time between activities and does not include the

charging or waiting time. We include the time to go to the station in the total travel time

for vehicles that require recharging during their journey, but not the charging or waiting

time.

Number of Stations

(f2 = nSt): The number of stations objective aimed to determine the optimal amount of

stations required to ensure efficient mobility and accessibility. This objective counts the

active stations, expressed as
(
Cj ̸= 0

)
in the representation and can be calculated using

Equation 4.5.

f2 = nSt =
P∑

j=1
Dj, where Dj =


1, if Cj ̸= 0

0, otherwise
(4.5)

Quality of Service

(f3 = QoS): The quality of service objective was based on the ratio between the number

of vehicles charging (Evcharg) and the number of vehicles in the queue (Evwaiting). It is

expressed by Equation 4.6.

QoS =
∑T

t Evcharg(t)∑T
t Evwaiting (t)

(4.6)
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The variable t represents a time interval of 5 minutes, while T refers to the entire

duration of the simulation.

4.7.2 Genetic configuration of individuals

We have genetically defined each individual or solution as a chromosome of 20 genes, where

each gene represents an electric charging station. The values of the genes are integers

ranging from 0 to 4, where 0 represents the absence of a charging station, and 1, 2, 3,

and 4 represent charging stations with 5, 10, 15, and 20 chargers, respectively. Figure 5.5,

represents an individual’s population sample and configuration.

Figure 4.6: Genetic representation of a population of possible solutions

The optimization process seeks to find the best combination of charging stations that

can serve a given population of electric vehicles, balancing the objectives of minimizing

travel time, reducing the number of charging stations, and maximizing the quality of

service.

The NSGA-II algorithm is used to generate a population of diverse individuals, where

each individual represents a different combination of charging stations. The fitness of each

individual is evaluated based on the multi-objective optimization function, which considers

the three objectives.

The goal of the optimization process is to find a set of individuals that represents the

Pareto optimal set, where no individual can be improved in one objective without sacrificing

performance in another. The Pareto optimal set represents the best trade-offs between the

three objectives and provides decision-makers with a range of solutions to choose from.

By using the genetic configuration of each individual, we can explore different combi-

nations of charging stations and evaluate their performance based on the three objectives.
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This allows us to identify the best set of charging stations that can serve the population

of electric vehicles with minimum travel time, reduced number of charging stations, and

high quality of service.

4.7.3 Fitness Values Calculation

In any optimization problem, fitness values are the key to evaluating the quality of the

solutions generated by the algorithm. In the electromobility problem, the fitness values

were defined to optimize the travel time, the number of charging stations, and the service

quality. We defined a set of Python classes to obtain the fitness values that integrated

the MATSim simulator with the genetic algorithm. MATSim simulator generated reports

on travel time, vehicle charging statistics, and charging times, which were then used to

calculate fitness values. In our experimentation, the fitness of each solution is given by:

fitness = (tt, nst, QoS) (4.7)

Where tt, the average travel time to be minimized; nst, the number of charging stations

to be minimized; and QoS, the quality of services to be maximized. The fitness value is

represented as a tuple consisting of these three variables.

The fitness value calculation process can be broken down into the following steps:

1. Read the charging station configuration for the given solution or individual.

2. Configure the MATSim simulator with the charging station configuration.

3. Simulate the travel of the agents in the transportation network and record the nec-

essary statistics.

4. Use the recorded statistics to calculate the fitness values for the solution or individual.

Once the fitness values were obtained for the population of solutions or individuals, the

evolutionary algorithm evaluated and compared them, selecting the best individuals for

the next generation.
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4.7.4 Simulator Integration

Integrating the simulator with the genetic algorithm led us to design a set of Python classes

that serve as a interface. These classes play a crucial role in the simulation and obtaining

results. In the annexes, we can find a description of these classes. In summary, their role

is:

• Receive the parameters for the simulation.

• Assign the parameters to the different variables.

• Set the transportation network and mobility plans.

• Run the scenario and set the fitness variables.

• Evaluate the individuals according to the obtained fitness.

• Define the fitness functions used by the evolutionary algorithm.

• Run the simulation through parallelization.

4.7.5 NSGA-II optimizing the Location of Charging Stations

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a popular multi-objective opti-

mization algorithm widely used in various research fields due to its numerous advantages.

One of the main advantages of NSGA-II is its ability to generate a diverse set of Pareto-

optimal solutions. NSGA-II uses a non-dominated sorting technique to rank solutions

based on their dominance, ensuring that the Pareto front is always preserved throughout

the optimization process.

In this research, the objectives are to minimize travel time, minimize the number of

stations, and maximize the quality of service. These objectives are conflicting; finding the

optimal solution requires balancing them in a trade-off. Using NSGA-II, we generated a

set of Pareto-optimal solutions, representing the optimal trade-off between the objectives.

To solve the multi-objective problem, we created the Python class deap nsgaii ev, which

calls the NSGA-II tool from DEAP. Within this class, we have defined several functions

that contain the following aspects:
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• The simulator object, which contains all the necessary parameters to run the scenario,

and the algorithm parameters that are passed on the command line.

• The definition of individuals, population, and operators through DEAP toolboxes.

• The definition and registration of the operator we designed for mutation and the

mutation parameter.

• The calculation of fitness values per individual, the parameters of crossover and

mutation, and the call to the NSGA-II selection algorithm.

• The main function ”eaMuPlusLambda” which carries out the generational process

and returns the evolved population.

• The saving and loading function of checkpoints to resume a population’s evolution

from a specific point.

4.7.6 DEAP and MATSim role

This thesis explores the integration of two powerful tools, the MATSim transport simulation

platform and the DEAP evolutionary computation framework, to optimize the location and

distribution of electric vehicle charging stations. MATSim enables the simulation of large-

scale travel behavior scenarios in urban areas, while DEAP can solve complex optimization

problems using MOEAs.

DEAP

DEAP (Distributed Evolutionary Algorithms in Python) is a Python-based evolutionary

computation framework that allows users to develop and compare different algorithms for

solving problems using genetic algorithms. It is an open-source software package that

provides a flexible set of tools for implementing genetic algorithms, genetic programming,

and other evolutionary algorithms.

DEAP allowed us to define the individuals, population, and evolutionary parameters

such as selection, crossover, and mutation. Furthermore, we were able to integrate DEAP

with MATSim to create a simulation framework for optimizing the charging station loca-

tions.
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MATsim

We used the MATSim simulator to model and simulate the mobility patterns of electric

vehicles (EVs) in an artificial scenario set in Cuenca, Ecuador. MATSim is a powerful open-

source agent-based transport simulation platform that enables the simulation of large-scale

travel behavior scenarios of urban areas, including various modes of transport such as car,

public transport, bike, and walking.

In our research, we specifically used the MATSim EV module, which is a contribution

that provides additional functionality for modeling and simulating electric vehicles. This

module allows us to simulate the behavior of EVs, including their charging patterns and

range limitations, and to evaluate the impact of EVs on the transportation network.

By using the MATSim EV module, we were able to investigate the feasibility of de-

ploying EV charging infrastructure in the scenario, and to evaluate the trade-offs between

travel time, the number of charging stations, and the quality of service. The module en-

abled us to model the charging behavior of EVs, and to simulate the impact of different

charging station configurations on the overall system performance.

4.7.7 DEAP Genetic Operators

In Section 2.7, we described the different types of genetic operators. DEAP offers sev-

eral options for this operators, as well as the possibility of creating new ones. For our

experimentation, we used a selection operator selNSGA2(), crossover operator cxOne-

Point(), and additionally we have designed a mutation operator stepMut(). Here is a

brief description of their functioning:

stepMut() function:

We designed this operator according to our needs. Its function is to increment or decrement

the value of each decision variable (gene) of the chromosome. Once the gene to mutate

has been established, there is a 50% probability that its value will increase or decrease.

Later, we will also discuss the probability of mutation. In our experiment, each variable

can have discrete values ranging from 0 to 4, so we had to adjust this operator to ensure

that it does not exceed or fall below this range.
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MUTATION FUNCTION

deap.tools.stepMut(ind):

Components
Parameters: ind – The individual to be mutated with a mutation probability

Retunrs: The mutated individual

Table 4.1: Self designed mutation function: stepMut()

cxOnePoint() function:

Executes a one point crossover on the input sequence individuals. The two individuals are

modified in place. The resulting individuals will respectively have the length of the other

[15].

DEAP FUNCTION

deap.tools.cxOnePoint(ind1, ind2)

DEAP Components
Parameters: ind1 – The first individual participating in the crossover.

ind2 – The second individual participating in the crossover.
Retunrs: A tuple of two individuals.

Table 4.2: DEAP evolutionary tools: cxOnePoint()

selNSGA2() function

The NSGA-II selection operator is applied to a group of individuals. It is typical for the size

of the input individuals to be larger than the resulting output list (k), as each individual

can only appear once in the returned list. If the size of the input individuals is equal

to k, the only effect will be the sorting of the population by front rank. The output list

is comprised of references to the input individuals. Further information on the NSGA-II

operator can be found in [95].
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DEAP FUNCTION

deap.tools.selNSGA2(individuals, k, nd=’standard’)

DEAP Components
Parameters: individuals – A list of individuals to select from.

k – The number of individuals to select.
nd – Specify the non-dominated algorithm to use:

‘standard’ or ‘log’.
Retunrs: A list of selected individuals.

Table 4.3: DEAP evolutionary tools: selNSGA2()

4.7.8 Testing and deployment

The integration project of the simulator with the genetic algorithm requires a directory

structure that contains both the Genetic Algorithm, Python classes, and the simulator.

The class structure is designed as shown in the Figure 4.7. These directories allow us to

execute the simulator through the console and obtain the corresponding results. Within

our experiment, we have used this mechanism for testing data acquisition, integrating new

modules, and components.

Figure 4.7: Directory structure and components for testing and deployment
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4.8 Model Proposal

We have developed a model to identify the most suitable locations and capacities for

charging stations. The model includes an evolutionary framework that assists in geneti-

cally defining and configuring individuals, operators, and parameters. For this study, we

have chosen the DEAP framework to facilitate the configurations described above and the

NSGA-II algorithm to create candidate solutions that form a subset of the already defined

possible locations. The algorithm sets the activity or inactivity of a particular charging

station and assigns its capacity randomly.

In the next phase, MATSim uses the population of candidate solutions to simulate

the mobility of electric vehicles according to the established mobility plans. At the end

of the simulation, the framework generates detailed reports, such as travel time, energy

consumption, charging time, and the number of vehicles charged. The genetic algorithm

calculates each candidate’s fitness values in the cycle based on optimization criteria. Figure

4.8 illustrates this cycle and the model components.

The cycle continues according to the number of defined generations in the MOEA, ob-

taining solutions that cannot be further improved. Upon completion of the optimization

process, we obtain optimal solutions with their respective active and inactive charging sta-

tions and the corresponding capacity for each station. As the final stage of this cycle, we get

a set of optimal solutions that require further analysis according to specific requirements.

4.9 Analysis Method

Our analysis method section includes two key components: hypervolume calculation and

optimal solution selection. The hypervolume is used to evaluate the quality of the Pareto

front approximation. The optimal solutions represent a combination of adjusted decision

variables searching for the best trade-offs between multiple objectives.

4.9.1 Hypervolume

Calculating the hypervolume is a useful method to assess the quality of the Pareto front

approximation generated by a multi-objective optimization algorithm. As described in
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Figure 4.8: Integration of the model components

section 2, we used the hypervolume as a performance indicator in our experimentation.

We utilized the PyGMO library to calculate the hypervolume, which requires a reference

point and the fitness values, in our case (f1, f2, f3).

Firstly, we defined the reference point, which is outside the search space (RP = 900,

0, 5200). The first and third values represent the maximum thresholds for the travel time

and quality of service objectives, respectively, which are subject to maximization. The

second value represents the minimum threshold for the number of active charging stations,

which is subject to minimization. Secondly, we modified the fitness values for the second

objective by setting them to negative values, so that the PyGMO hypervolume function

could accurately compute the values. Finally, we computed the hypervolume for each

generation.
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4.9.2 Optimal Solutions

In multi-objective optimization using MOEAs, the optimal solutions represent a combi-

nation of adjusted decision variables to search for the best trade-offs between multiple

objectives. These decision variables represent a solution’s phenotype or physical or func-

tional characteristics. Following the criteria for obtaining the Pareto-optimal set described

in Chapter 2, our research found several optimal solution sets. We executed 12 experi-

ments, each with 50 generations, and grouped the optimal solution sets into a single set.

With the help of DEAP, we obtained the Pareto-optimal set that contains only the best

solutions and generates the final Pareto front.

From the entire set of optimal solutions, we will choose for further analysis and visu-

alization on the map those that best fit the criterion of reducing building costs. That is,

we will prioritize solutions with fewer active stations, a reasonable travel time, and good

quality of service. The performance and advantages of each of these solutions will be an-

alyzed, as well as how the number of chargers in each respective configuration influences

the results.

4.10 Experimental Setup

This section describes the experimental setup for our study, which involved setting up

evolutionary operators and parameters for the experiment and creating a reproducible re-

search environment using Docker. We designed the mutation operator and selected the

DEAP operators for selection and crossover. After conducting experiments and evaluating

different parameter values, we identified optimal values for our MOEA, which are expected

to balance exploration and exploitation of the search space. Finally, we set up the experi-

mental environment using Docker, which bundles all the necessary dependencies, ensuring

the same software runs consistently on different systems without compatibility issues.

4.10.1 Setting Evolutionary Operators and Parameters for an
Experiment

As described in subsection 4.7.7, DEAP offers a variety of operators and the possibility

of creating new ones. We designed the mutation operator stepMut() and selected the
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DEAP operators selNSGA2() and cxOnePoint() for selection and crossover, respectively.

Additionally, we set the algorithm parameters, such as the population size, the number of

generations, the crossover probability, and the mutation probability.

• Population size: The population size typically refers to the number of individuals

or solutions that exist in a population at any given generation in an evolutionary

algorithm. This includes the initial population and any subsequent populations that

are generated through the evolution process.

• Mutation Probability: It determines the probability of changing one or more genes

of an individual in a population. In our experiment, we determined the optimal

value to be 0.05, which is equivalent to a probability of mutating one out of the 20

genes (1/20). According to research studies, a low mutation probability can cause

premature convergence, where the algorithm gets stuck in a local optimum, while a

high mutation probability can result in chaotic behavior and poor convergence. The

optimal mutation probabilities for evolutionary algorithms have been suggested to

be between 1% and 5% [96, 97, 98].

• Number of Generations: In evolutionary algorithms, the number of generations

refers to the number of iterations or cycles that the algorithm will run to find the

optimal solution or solutions [96].

• Number of Experiments: According to Alaya et al., the number of experiments in

optimization algorithms refers to the process of running the algorithm multiple times

with different random seeds to obtain statistically significant results. This practice

helps to evaluate the stability and reliability of the algorithm’s performance [99].

After conducting experiments and evaluating different parameter values, we have identi-

fied optimal values for our MOEA. These values were determined through empirical studies

and are expected to provide a balance between exploration and exploitation of the search

space, leading to better convergence and more accurate results. Our experimental study

is in line with the research efforts of several scholars who have also conducted empirical

studies to find optimal parameter values for genetic algorithms [100, 101]. It is important
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to note that there is no one-size-fits-all solution to parameter selection, as different prob-

lems may require different values to achieve optimal results. Table 4.4 shows the selected

parameter and operator values after experimentation:

Parameter Value
Population size 20

Crossover probability (CXPB) 0.95
Mutation probability (MUTPB) 1

20 = 0.05
Number of generations (NGEN) 50

Number of experiments 12 (with different random seeds)
MATSim 12.0

Table 4.4: Selected evolutionary parameters after experimentation

4.10.2 Setting Up the Experimental Environment with Docker

Ensuring the reproducibility of experiments is a significant challenge in scientific research,

especially in computational fields. One of the key solutions to this challenge is to create

a software environment that is independent of the underlying system, and Docker has

emerged as a popular tool for achieving this goal. Docker provides a containerization

platform that enables the creation, packaging, and distribution of applications as portable

containers that can run on any system supporting Docker [102].

Docker containers bundle all the necessary dependencies, libraries, and configuration

files needed to run the application, ensuring that the same software runs consistently on

different systems without compatibility issues [103]. Docker also allows the creation of

reproducible research environments by providing a mechanism for version control of code

and environment [104].
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Required Components and Dependencies

This Dockerfile sets up an environment with the following components:

Components Details
Operating System Ubuntu 20.04
Timezone America/Guayaquil
Utilities wget, bzip2, git, unzip, and nano
Java Development Kit OpenJDK 11
Python Python 3 with pip and the following packages:

lxml, pandas,
matplotlib, deap

Maven Apache Maven 3.6.3

Table 4.5: Required components and dependencies in the Dockerfile
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Chapter 5

Results and Discussion

5.1 Pareto set of solutions

After running the simulation and the evolutionary process based on the NSGA-II algorithm,

we obtained the Pareto Optimal Set of solutions. This set of optimal solutions resulted in

112 possible genetic configurations that optimize the three objectives (tt, Nst, QoS).

Out of the 112 solutions, we have decided to analyze the solutions whose configuration

prioritizes the number of stations, as the lower the number of stations, the lower the

construction costs. As a second decisive factor accompanying the number of stations, we

have also focused on the quality of service. Finally, as a less decisive factor, we have defined

travel time.

It is important to note that prioritizing the number of stations over the quality of service

and travel time is based on reducing building costs. The construction and maintenance

costs of stations can be high, especially if the number of stations is high. By prioritizing

the number of stations, we aim to minimize these costs while maintaining an acceptable

quality of service and travel time. Later on, we will analyze some solutions based on the

criteria above.

From the obtained results, we can make the following considerations:

• There are few solutions with a low number of stations and high quality of service.

• There are solutions where the number of stations is low, and the quality of service is

acceptable.
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• We must be careful with the solutions where there is a high quality of service since

we observed that this value is related to a higher number of available stations and

chargers.

Figure 5.1 shows the 3D representation of Pareto Front based on the perspective of

Number of Stations.

Figure 5.1: 3D plot of Pareto Optimal Set Nst vs QoS vs tt

Figure 5.2 shows a 2D plot of the Pareto Optimal set with the following configurations:

travel time vs. the number of stations, and the solutions are colored according to the

quality of service.

In contrast, Figure 5.3 shows a 2D plot of the Pareto Optimal set with the following

configurations: quality of service vs. the number of stations, and the solutions are colored

by travel time.

Information Technology Engineer 74 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.2: 2D plot of Pareto Optimal Set tt vs nst

Figure 5.3: 2D plot of Pareto Optimal Set QoS vs nst

Overall, the Pareto front analysis helped us to identify the trade-offs between the differ-

ent objectives and to find a set of optimal solutions that can be useful for decision-making

in the planning of electric vehicle charging station placement.
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5.2 Hypervolume results

As described in subsection 4.9.1, hypervolume is a quantitative measure of the quality of

a set of solutions obtained from an optimization process. In this research, we executed 12

experiments, each running 50 generations, to obtain the Pareto Optimal Set of solutions.

First, we calculated the hypervolume for each generation in each experiment. Then we

combined the hypervolumes by generation and plotted them using boxplots. The results

can be seen in Figure 5.4. The x-axis represents the generations, while the y-axis represents

the hypervolumes through generations.

Figure 5.4: Hypervolume calculation by generations

Figure 5.4 shows variability in the hypervolumes for the initial generations, which grad-

ually increases as the generations progress. The upper whisker in some boxplots is longer

than the lower, indicating outliers with higher hypervolumes than with lower; this suggests

that some solutions perform significantly better than others.

The most important observation is that the hypervolume increases steadily from the

initial generations until generation 40, after which it starts to flatten out. The steady

increase in hypervolume implies that the set of solutions is improving across all objectives.

The gradual flattening out of the hypervolume curve from generation 40 suggests that

the algorithm is approaching convergence and that the improvements in the solution set
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become less significant beyond that point. Thus, it can be concluded that 50 generations

are sufficient to obtain the most optimal solutions.

5.3 Analysis of the trade-off between objectives

When optimizing multiple objectives in a problem, it is common to face trade-offs between

them. That is, improving one objective may result in the degradation of another. In this

context, it is important to understand the relationships between the different objectives

to make informed decisions. In this section, we will analyze the trade-off between our

problem’s three objectives using a parallel coordinate plot and a correlation analysis.

5.3.1 Analysis using parallel coordinate plot

A parallel coordinate plot is a visualization tool that allows us to plot multiple variables

on the same plot. The vertical axes represent variables or attributes that are connected

by lines. This graph helps us understand the relationship between multiple objectives. By

plotting each objective on a separate axis, parallel coordinate plots can help visualize the

trade-offs between objectives.

In our case, we plotted the three fitness values: travel time, number of stations, and

quality of service. Then, we loaded the fitness values of the Pareto optimal set and nor-

malized them. From Figure 5.5, we can observe a trade-off between travel time and the

number of stations, where the travel time increases when the number of stations is lower.

However, the correlation between the number of stations and service quality is unclear.

Although we see some intersections, the correlation is not straightforward.

5.3.2 Correlation analysis

We performed a correlation analysis to obtain a more accurate understanding of the rela-

tionships between the objectives. As Figure 5.6 shows, there exists a negative correlation of

-0.81 between travel time and the number of stations, indicating a trade-off between these

objectives. We also found a positive correlation of 0.58 between the number of stations and

the quality of service, but the correlation is not necessarily negative. Additionally, there

is a negative correlation of -0.16 between travel time and the quality of service. Overall,
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Figure 5.5: Coordinate plot graphical analysis

the correlation analysis provides a more quantitative way to understand the relationships

between the objectives in our problem.

Figure 5.6: Quantitative analysis of objectives correlation
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5.4 Analysis and plotting of solutions

Using R, we have configured a script that allows us to visualize on the map of Cuenca

the solutions that we have in the Pareto optimal set. In this case, we have selected some

examples prioritizing the number of stations. The active stations are colored blue, while

the inactive stations are colored red. See figure 5.7.

5.4.1 Analysis of solution 107

The first solution we will analyze is solution 107 because it has the minimum number of

stations in its configuration and is the only solution that fully minimizes this objective.

Figure 5.7 shows the stations located on the map of Cuenca, where each active station is

colored in blue with its respective station code and the number of chargers.

Figure 5.7: Spatial location of the stations on the Cuenca’s map (solution 107)

Table 5.1 presents the genetic configuration and fitness values for solution 107. Al-

though the travel time required for vehicles in this configuration is reasonable and falls

within a range similar to that of other solutions with a higher number of stations, the

quality of service offered by this arrangement is not optimal due to the reduced number of

stations. However, this is an interesting solution for our study as it would optimize con-
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struction costs. Additionally, this configuration requires a considerable number of chargers

per station, either 15 chargers or the maximum amount of 20 per station.

Genetic configuration (solution 107)
0 0 0 0 3 0 4 0 0 3 4 0 4 4 0 0 0 0 0 0
tt nst QoS Chargers

804.7112334 6 150.2686567 110

Table 5.1: Configuration of solution 107

Figure 5.8 shows the 3D spatial localization of solution 107 in the Pareto Optimal Set

according to the fitness values.

Figure 5.8: 3D Pareto optimal set - Spatial localization of Solution 107

Information Technology Engineer 80 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

5.4.2 Analysis of solution 112

The next solution to be analyzed also presents a minimum station configuration, in this

case with 7 stations. Figure 5.9 shows how the stations are distributed on the map of

Cuenca.

Figure 5.9: Spatial location of the stations on the Cuenca’s map (solution 112)

Table 5.2 shows the genetic configuration of this solution, as well as the fitness values

and the number of chargers. This configuration offers us a reasonable travel time wich is a

higher than solution 107 and an acceptable quality of service. This is due to the fact that,

equal as solution 106, the number of stations is prioritized over the other two objectives.

The number of chargers in this case is mostly either 15 or 20 per station. However, in

Figure ??, we can see that station 9 has 5 chargers, which is because it is a peripheral

station.

Genetic configuration (solution 112)
4 0 3 0 4 0 0 0 1 0 0 0 4 0 0 0 3 0 0 3
tt nst QoS Chargers

814.5467789 7 46.96330275 110

Table 5.2: Configuration of solution 112
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Figure 5.10 shows the 3D spatial localization of solution 112 in the Pareto Optimal Set

according to the fitness values.

Figure 5.10: 3D Pareto optimal set - Spatial localization of Solution 112

5.4.3 Analysis of solution 106

Finally, solution 106 offers a configuration of 8 active charging stations that can be visu-

alized in Figure 5.11. We continue to prioritize the criterion of a low number of charging

stations.
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Figure 5.11: 3D Pareto optimal set - Spatial localization of Solution 106

Table 5.3 shows the configuration values for this solution, and we can observe that in

this case, unlike the previous solutions, the quality of service is superior. This is due to the

availability of more stations and chargers, which reduce waiting times within the stations.

The travel time remains acceptable and is similar to the 6-station configuration, while the

total number of chargers increases to 125.

Genetic configuration (solution 106)
4 4 0 0 2 0 3 3 1 0 4 0 4 0 0 0 0 0 0 0
tt nst QoS Chargers

804.7109097 8 177.3448276 125

Table 5.3: Configuration of solution 106

Figure 5.12 shows the 3D spatial localization of solution 112 in the Pareto Optimal Set

according to the fitness values.
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Figure 5.12: 2D plot of Pareto Optimal Set tt vs nst
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5.5 Simulation of the solutions in Via-Simunto

Vı́a-Simunto is a software that provides us with tools for simulating transportation systems

[105]. With Vı́a-Simunto, we can import and visualize the data generated by MATSim,

allowing us to simulate the movement of vehicles on the road network of Cuenca, according

to established mobility plans and the configuration of charging stations.

Figure 5.13 shows a snapshot of the mobility of 500 vehicles at 7 am, with a configuration

of 6 charging stations. The green arrows represent the agents (vehicles), and the red dots

are the charging stations taken from solution 106.

Figure 5.13: Vehicles movement over the Cuencas Map)

Figure 5.14a shows the travel trajectory of vehicle 0520 until 3 pm, which needed to

pass through one of the charging stations. We can also see one of the vehicle’s trajectories

highlighted in red. Figure 5.14b shows the trips by the vehicle during the day, and Figure

5.14c shows some vehicle data such as ID, speed, type of car, etc.
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(a) Travel trajectory of vehicle 0520 within the map of Cuenca.

(b) Table of vehicle travel trajectories. (c) Table of vehicle attributes.

Figure 5.14: Simulation of vehicle trips through Vı́a-Simunto.
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Chapter 6

Conclusions

The study addresses the complex challenge of determining the optimal locations and ca-

pacities of electric vehicle charging stations in the Cuenca scenario. By integrating the

DEAP evolutionary framework with the MATSim traffic simulator, we have developed an

innovative approach that considers the interdisciplinary nature of the problem and effec-

tively balances conflicting objectives. Through analyzing various mobility scenarios and

collecting relevant data, we have achieved a comprehensive understanding of the charging

infrastructure. Furthermore, the integration of evolutionary algorithms and traffic sim-

ulation allows us to evaluate different solution options and provide recommendations for

improving electric vehicle charging infrastructure performance and implementation. This

research contributes to the advancement of transportation engineering, electrical engineer-

ing, computer science, and data analytics but also promotes the adoption of electric cars

and fosters the development of sustainable transportation systems. Below we expose our

main conclusions and to outline the possible tasks that can emerge from this research study.

1. Integration of DEAP and MATSim: We successfully integrated the DEAP evolu-

tionary framework with the MATSim traffic simulator by developing a Python-based

interface. This integration enabled a comprehensive analysis of mobility scenarios

and collecting relevant data, laying the foundation for determining optimal charging

station locations and capacities.

2. Multi-objective Optimization: By utilizing the NSGA-II algorithm within the DEAP

framework, we achieved a multi-objective optimization that effectively balanced con-

flicting objectives. Factors such as travel time, the number of charging stations, and
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service quality were considered, resulting in a set of 112 optimal solutions plotted on

the Cuenca scenario map.

3. Performance Evaluation: Through simulations in the MATSim environment, we eval-

uated the performance of the electric vehicle charging infrastructure. By considering

various factors, including vehicle types, road networks, peak traffic hours, and areas

of high human activity, we obtained valuable insights into the effectiveness of the

infrastructure.

4. Visualization of Solutions: Through the use of Vı́a-Simunto, we successfully visu-

alized the movement of agents based on mobility plans and the selected charging

station configuration. This visualization allowed us to analyze and understand the

obtained solutions for the optimal location and capacity of electric vehicle charging

stations in Cuenca.

5. Recommendations for Improvement: The thorough analysis of simulation results

allowed us to provide valuable suggestions for future improvements or implementa-

tions. These recommendations will guide decision-makers and stakeholders involved

in developing electric vehicle charging infrastructure, facilitating more efficient and

effective implementation strategies.

6.0.1 Future Work

The integration of MATSim with NSGA-II has shown promising results in simulating and

optimizing large-scale travel behavior scenarios. However, there are still several areas where

the research can be extended.

One of the most important future directions is the use of real data on transportation

in Cuenca, including the number of cars circulating, the different types of transport, and

the actual traffic flows. By incorporating real-world data, we can create more accurate

simulations that better reflect the behavior of travelers in the area.

Additionally, we can further improve the simulation by adding other objectives such as

building costs, energy efficiency, and environmental sustainability. By incorporating these

additional objectives, we can better evaluate the trade-offs between different transportation

options and help inform policy decisions.
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Finally, we can explore creating additional scenarios that consider the use of electric

buses as a public transportation option. This could involve evaluating the impact of electric

buses on the transportation system, as well as analyzing their potential benefits in terms of

environmental sustainability and energy efficiency. By incorporating this additional factor

into the simulation, we can better evaluate the trade-offs between different transportation

options and provide more comprehensive insights for decision-making

6.0.2 Limitations

This research faced several limitations throughout the development of the project. One of

the main limitations was related to the version of the MATSim simulator used. Initially, we

attempted to use version 0.14.0, which was the most recent version at the time of the study.

However, we encountered a bug in the source code that prevented us from generating a

correct charging stats file. This problem was further compounded by compatibility issues

between the different versions of Java and Python.

Another limitation was the computational resources required to run the experiments.

Due to the complexity and size of the simulation, it was necessary to run the experi-

ments using Docker in a cluster for parallelization. This required a significant amount of

computing power, which was not readily available.

In addition, the study focused solely on the travel time, number of stations, and quality

of service as the objectives to optimize. Other important factors, such as building costs,

energy efficiency, and the number of cars circulating in Cuenca were not considered. Future

research could explore the integration of these factors into the optimization process.

Overall, while the study was successful in integrating the simulator with the genetic

algorithm and obtaining the Pareto optimal set with the configurations, these limitations

highlighted the need for further research and development in this area.
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Congresso Brasileiro de Redes Neurais, 1995, pp. 373–403.

[8] A. Kumar, “Encoding schemes in genetic algorithm,” International Journal of Ad-

vanced Research in IT and Engineering, vol. 2, no. 3, pp. 1–7, 2013.

[9] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,

2015.

90

https://www.suzuki.co.nz/cars/suzuki-life/news/article/hybrid-tech-how-does-it-work/592920
https://www.suzuki.co.nz/cars/suzuki-life/news/article/hybrid-tech-how-does-it-work/592920


School of Mathematical and Computational Sciences Yachay Tech University

[10] A. Lavin, “A pareto front-based multiobjective path planning algorithm,” arXiv

preprint arXiv:1505.05947, 2015.

[11] M. T. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimization: funda-

mentals and evolutionary methods,” Natural computing, vol. 17, pp. 585–609, 2018.

[12] K. Deb, N. Srinivas, and S. Bandaru, “Genetic algorithms,” in Handbook of Genetic

Programming Applications. Cham: Springer, 2019, pp. 79–116.

[13] J. Bischoff, F. J. Márquez-Fernández, G. Domingues-Olavarŕıa, M. Maciejewski, and

K. Nagel, “Impacts of vehicle fleet electrification in sweden–a simulation-based as-

sessment of long-distance trips,” in 2019 6th International Conference on Models

and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, 2019,

pp. 1–7.

[14] A. Horni, K. Nagel, and K. W. Axhausen, The Multi-Agent Transport Simulation

MATSim. Ubiquity Press, 2016.

[15] F.-A. Fortin, F.-M.-D. Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
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electromovilidad e-cuenca. [Online]. Available: https://www.cuenca.gob.ec/content/

se-realizo-presentacion-de-plan-de-electromovilidad-e-cuenca

[17] E. Baker, H. Y. Chon, and G. A. Keoleian, “Environmental impacts of electric ve-

hicles in the united states,” Environmental Science Technology, vol. 55, no. 2, pp.

855–866, 2021.

[18] International Energy Agency, Global EV Outlook 2021: Scaling up the transition

to electric mobility. Paris, France: International Energy Agency, 2021. [Online].

Available: https://www.iea.org/reports/global-ev-outlook-2021

[19] BloombergNEF, “Bloombergnef electric vehicle outlook 2021,” 2021. [Online].

Available: https://about.bnef.com/electric-vehicle-outlook/

Information Technology Engineer 91 Graduation Project

https://deap.readthedocs.io/en/master/
https://www.cuenca.gob.ec/content/se-realizo-presentacion-de-plan-de-electromovilidad-e-cuenca
https://www.cuenca.gob.ec/content/se-realizo-presentacion-de-plan-de-electromovilidad-e-cuenca
https://www.iea.org/reports/global-ev-outlook-2021
https://about.bnef.com/electric-vehicle-outlook/


School of Mathematical and Computational Sciences Yachay Tech University

[20] K. S. Kurani and T. S. Turrentine, “The future of electric vehicles,” Annual Review

of Environment and Resources, vol. 44, pp. 289–316, 2019.

[21] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-

ion battery management in electric vehicles,” Journal of Power Sources, vol. 408, pp.

166–180, 2020.

[22] X. Zhang, G. Li, J. Chen, and Z. Liu, “Life cycle assessment of electric vehicles: a

review,” Renewable and Sustainable Energy Reviews, vol. 107, pp. 1–13, 2019.

[23] W. Sierzchula, S. Bakker, K. Maat, and B. van Wee, “The influence of financial

incentives and other socio-economic factors on electric vehicle adoption,” Energy

Policy, vol. 68, pp. 183–194, 2014.

[24] M. K. Hidrue, G. R. Parsons, W. Kempton, and M. P. Gardner, “Vehicle-to-grid

power: Battery, hybrid, and fuel cell vehicles as resources for distributed electric

power in california,” Applied Energy, vol. 261, p. 114304, 2020.

[25] C. Bauer, E. Helmers, and L. Hirth, “Electromobility: The impact of regulatory

and policy measures on the development of electric vehicles,” Journal of Cleaner

Production, vol. 212, pp. 716–728, 2019.

[26] R. A. Acheampong, R. J. Hafner, and J.-P. Belieres, “Electric vehicle charging infras-

tructure deployment in germany: A quantitative analysis,” Transportation Research

Part A: Policy and Practice, vol. 129, pp. 163–184, 2019.

[27] K. Schmidt-Rohr, “Lithium-ion batteries: Solid-electrolyte interphase,” Nature, vol.

571, no. 7765, pp. 478–479, 2019.

[28] W. Liu, F. Zhao, L. Guo, C. Liu, Q. Zhu, and B. Zhang, “Life cycle environmental

impact of electric vehicles in china,” Environmental Science and Pollution Research,

vol. 27, no. 15, pp. 17 668–17 678, 2020.

[29] P. Gao, T. Tang, X. Cheng, H. Chen, and S. Zhu, “Impact of electric vehicle adoption

on urban travel demand: A case study of beijing,” Transportation Research Part D:

Transport and Environment, vol. 94, p. 102783, 2021.

Information Technology Engineer 92 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[30] X. Li, P. Liu, Y. Li, H. Li, B. Li, and X. Chen, “Integrated operation of electric vehicle

charging station and renewable energy source considering uncertainty,” Energy, vol.

230, p. 120662, 2021.

[31] X. Wang, M. Hu, Y. Shi, and X. Li, “Research on the coordinated development of

new energy vehicle and charging infrastructure in china,” Renewable and Sustainable

Energy Reviews, vol. 123, p. 109745, 2020.

[32] S. Sivanandam and S. Deepa, “Genetic algorithms,” in Introduction to genetic algo-

rithms. Springer, 2008, pp. 15–37.

[33] J. Thanura, R. D. Rathnayake, S. Dewasurendra, and L. Rajakaruna, “Generating

optimised mrp lot sizes using genetic algorithm: Considering supplier deals.”

[34] W. Ip, Y. Li, K. Man, and K. Tang, “Multi-product planning and scheduling using

genetic algorithm approach,” Computers & Industrial Engineering, vol. 38, no. 2, pp.

283–296, 2000.

[35] S. Chakraborty, S. Ghosh, and S. Das, “Effective population initialization techniques

for genetic algorithms: A review,” Information Sciences, vol. 501, pp. 20–44, 2019.

[36] J. Singh and S. S. Yadav, “Comparative analysis of selection techniques in genetic

algorithm for engineering optimization,” Applied Soft Computing, vol. 75, pp. 517–

531, 2019.

[37] Y. T. Le and K. Nakamatsu, “Genetic algorithms applied in dynamic environments:

A survey,” Applied Soft Computing, vol. 77, pp. 275–294, 2019.

[38] W. Hua, J. Li, Y. Li, J. Li, and Z. Gao, “Dynamic mutation probability strategy

for multi-objective genetic algorithm,” Engineering Applications of Artificial Intelli-

gence, vol. 80, pp. 88–101, 2019.

[39] X.-y. Tan, J.-h. Hu, X.-y. Zhao, R. Zhang, W. Yang, and X. Chen, “An improved

genetic algorithm for solving the maximum clique problem,” Engineering Applications

of Artificial Intelligence, vol. 78, pp. 121–130, 2019.

Information Technology Engineer 93 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[40] R. Sharma, M. Dwivedy, R. Shankar, and S. S. Mahapatra, “A hybrid genetic al-

gorithm for optimization of machining parameters for sustainable manufacturing,”

Journal of Cleaner Production, vol. 231, pp. 440–453, 2019.

[41] K. V. Krishna, “Genetic algorithms: An overview,” Journal of Physics: Conference

Series, vol. 1244, no. 1, p. 012073, 2019.

[42] A. Rad, J. Aghaei, S. M. Mousavi, and N. Javadian, “Application of genetic algo-

rithms in scheduling,” Computers & Industrial Engineering, vol. 136, pp. 691–703,

2019.

[43] R. Wadhwa and G. Singh, “Genetic algorithms in transportation engineering: A

review,” Transportation Research Part C: Emerging Technologies, vol. 103, pp. 392–

412, 2019.

[44] A. Sobhani and S. Hasani, “Optimizing urban transport: A hybrid method based on

genetic algorithm and artificial bee colony algorithm,” Sustainable Cities and Society,

vol. 44, pp. 246–257.

[45] W. Chen, S. Chen, and M. Wang, “A multi-objective genetic algorithm based on

pareto boundary detection for energy-efficient task scheduling,” Applied Soft Com-

puting, vol. 98, p. 106898, 2021.

[46] A. Jain, P. Vashistha, P. Kumar, and S. Chandra, “Multi-objective optimization of

grinding process using hybrid genetic algorithm,” Computers & Industrial Engineer-

ing, vol. 146, p. 106566, 2020.

[47] S. K. Singh, S. Gupta, and J. C. Bansal, “A new hybrid genetic algorithm for the

optimization of surface grinding process,” Expert Systems with Applications, vol. 116,

pp. 169–180, 2019.

[48] J. Miao, Y. Zhang, X. Wang, and B. Liu, “A multi-objective genetic algorithm based

on random local search for the vehicle routing problem,” IEEE Access, vol. 8, pp.

197 679–197 689, 2020.

Information Technology Engineer 94 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[49] S. Li, H. Xu, and X. Du, “Multichannel image processing algorithm based on genetic

algorithm,” Journal of Physics: Conference Series, vol. 1341, no. 1, p. 012092, 2019.

[50] H. Li, Q. Li, and Y. Li, “A genetic algorithm based on phenotype diversity and

nearest-neighbor for the job shop scheduling problem,” Computers & Industrial En-

gineering, vol. 156, p. 107277, 2021.

[51] A. Gomez and D. Wilson, “Optimizing protein folding energy landscapes using ge-

netic algorithms,” PLoS computational biology, vol. 16, no. 6, p. e1007948, 2020.

[52] D.-H. Lee and B.-S. Yang, “A genetic algorithm-based feature selection method

for text classification,” Journal of Ambient Intelligence and Humanized Computing,

vol. 9, no. 6, pp. 1801–1811, 2018.

[53] Z. Michalewicz, Genetic algorithms + data structures = evolution programs. Springer

Science Business Media, 2013.

[54] R. L. Haupt and S. E. Haupt, Practical genetic algorithms. John Wiley Sons, 2019.

[55] O. Kramer, “Genetic algorithms,” in Genetic algorithm essentials. Springer, 2017,

pp. 11–19.

[56] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, no. 2,

pp. 65–85, 1994.

[57] I. Hussain, M. A. Sabir, and S. Hussain, “A novel hybridization of grey wolf optimizer

and genetic algorithm for constrained optimization problems,” Journal of Ambient

Intelligence and Humanized Computing, vol. 11, no. 11, pp. 4757–4773, 2020.

[58] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Springer,

2020.

[59] M. Ali, S. Asghar, S. A. Butt, W. Shahzad, and J.-H. Kim, “Performance analysis

of objective functions in genetic algorithm for vehicle routing problem,” Computers

& Industrial Engineering, vol. 145, p. 106545, 2020.

Information Technology Engineer 95 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

[60] R. Cheng, Q. Zhang, and Y. Zhu, “A novel constraint handling method for moea/d

based on multi-objective surrogate constraint satisfaction,” Soft Computing, vol. 24,

no. 19, pp. 14 711–14 730, 2020.

[61] K. Deb, Multi-objective optimisation using evolutionary algorithms: an introduction.

Springer, 2011.

[62] J. D. Knowles and D. W. Corne, “On metrics for comparing nondominated sets,” in

Congress on Evolutionary Computation (CEC-2002). Piscataway, NJ: IEEE Press,

2002, pp. 711–716.
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.1 Appendix 1.

.1.1 MATSIM

MATSim (Multi-Agent Transport Simulation) is an open-source, large-scale, multi-modal,

agent-based transportation simulation framework [14]. It was developed to model complex

transport systems in a realistic way, including the behavior of individual travelers and

the interaction with the transport network. One of the main features of MATSim is its

modular architecture, which allows users to easily customize the simulation according to

their needs. One of these modules is the EV (Electric Vehicle) module, which simulates

the behavior of electric vehicles in the transport system.

Ev Module

The EV module in MATSim allows for the simulation of electric vehicles as a part of the

transport system. The module enables the inclusion of electric vehicles in the simulation

and the modeling of their charging behavior, including charging times and locations. It

also allows for the modeling of range anxiety and other constraints that are specific to

electric vehicles [14]. The EV module can be combined with other modules in MATSim,

such as the network module, to simulate the interaction between electric vehicles and the

transport network.

The EV module is based on the concept of agent-based modeling, which represents

individual travelers and their decision-making processes. In the EV module, electric vehicle

users are represented as agents, who make decisions about when and where to charge their

vehicles based on their individual preferences and constraints. These agents interact with

the transport network, other agents, and charging infrastructure to reach their destination

in an efficient way.

The EV module in MATSim provides a flexible and customizable framework for simu-

lating the behavior of electric vehicles in the transport system. It allows for the modeling

of complex charging behavior and range anxiety, and can be integrated with other mod-

ules in MATSim to simulate the interaction between electric vehicles and the transport

network. Overall, the EV module in MATSim is a useful tool for studying the potential

impact of electric vehicles on the transport system and for evaluating policies related to
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electric vehicle adoption.

.1.2 matsim ev environment

The matsim ev environment contains the jar file, which we have named ev esenarios, and

the subdirectory with the configurations, network, and mobility plans. The simulation of

the EV MATSim module generates the JAR file. Through Eclipse IDE, we can import,

as a Maven project, the MATSim contribs that we need for our simulation project. This

research needs the EV module, which contains the necessary files for simulating electric

cars. Python calls the JAR file with the required configurations, meaning the Cuenca

scenario with its network and mobility plans. The JAR file contains the libraries with

scenarios classified according to the vehicles’ capacities and the agents’ mobility plans.

.1.3 ev interface environment

Once we have obtained the JAR file, which we have named ev scenarios, we can integrate it

with our Python project. The python environment, which we have named ev interface, has

several classes that call the call JAR file and pass it the necessary parameters to run the

simulation and get the results. The python classes connect the simulator with any multi-

objective evolutionary optimization framework. The simulation receives the configuration

of an individual or population and reports the evaluation. Some of the classes we need to

integrate the simulation are the following.

• ev runI.sh: The ev runI.sh script contains the call to the ev interface environment.

The script captures the input parameters and sets them to a series of environment

variables. The input parameters it receives are ¡scenario name¿ ¡number of agents in

the simulation¿ ¡individual¿.

• ev cliI.py: This class, through a classification, assign the simulation parameters to

different variables. With the simulation parameters, the simulation is pre-configured

(ev simulatorI.py), and then ev callMianI.py is called, which receives the simulation

object for execution through ev problemI.py.

• ev simulatorI.py: This class takes care of all the configuration of the simulation.

The configuration, network, and mobility plans (config.xml, network.xml, plan.xml,
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etc.) are necessary files for running the simulation. This class has two main functions:

sim and run. The sim class deals with the configurations, and the run class deals with

executing the simulation. It takes some values through the ev settingsI.py class that

contains some constants of simulator configuration values, for example, the locations

of the charging stations associated with the network links of each scenario. Use

ev parserI.py to get the values from the simulation output files so you can set the

fitness variables.

• ev callMainI.py: This class is in charge of instantiating the ev problemI.py class,

which contains the fitness function that allows evaluating the individual.

• ev problem.py: This class allows the configuration of the fitness function, necessary

for the evolutionary algorithm to obtain the evaluations of the solutions. This class

calls the ev initializeI.py class which allows, in the particular case of electric mobility,

to instantiate the solution through the ev solutionI.py class which defines the names

of the fitness functions among other attributes. The ev initializeI.py class creates

some files to complete the simulation setup (for example, creating the charging sta-

tions file in xml format) and calls the ev simulatorI.run function to get the fitness

values of the solutions. The ev problemI.py class uses the ray library to parallelize

the execution of the simulations (see fitnessPop method).

.1.4 DEAP

The Distributed Evolutionary Algorithms in Python (DEAP) library is an open-source

software designed for implementing various types of evolutionary computation algorithms

in Python. DEAP provides several tools for implementing evolutionary algorithms, such

as genetic algorithms, genetic programming, and swarm intelligence algorithms. One of

the main features of DEAP is its flexibility, which allows users to easily customize the

algorithms for their specific needs.

DEAP toolbox

The DEAP toolbox is the core of the library and contains all the necessary components

for building evolutionary algorithms. The toolbox provides a wide range of functions,
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classes, and algorithms for various tasks, including individual and population creation,

fitness evaluation, selection, and genetic operators. These tools can be used to create a

custom evolutionary algorithm by combining them in different ways.

DEAP individuals definition

Individuals in DEAP are represented as Python objects that contain a genome, which is

a collection of parameters that define a solution. The toolbox provides several pre-defined

data types, such as floats, integers, and lists, to represent the genome. Users can also

define their own data types to represent more complex solutions.

DEAP fitness function definition

The fitness evaluation function in DEAP is a user-defined function that calculates the

fitness of an individual. The toolbox provides several types of fitness functions, such as

maximizing or minimizing a single objective, maximizing or minimizing multiple objectives,

and constraint satisfaction. Users can also define their own fitness functions to suit their

specific needs.

DEAP Selection methods

Selection in DEAP is performed using a variety of methods, such as tournament selection,

roulette wheel selection, and rank-based selection. The toolbox also provides several genetic

operators, such as mutation, crossover, and reproduction, which can be used to create new

individuals from the current population.

DEAP also includes several advanced features, such as parallelization, island models,

and checkpointing, which can be used to speed up the optimization process and improve

the quality of the solutions.

DEAP (Distributed Evolutionary Algorithms in Python) is an evolutionary comput-

ing framework written in python which is used to create projects involving evolutionary

algorithms quickly. This framework enables researchers to develop custom projects since

the authors provide the necessary libraries and the source code. The developers explicitly

provide the algorithms and structures to be adaptable, unlike other software encapsulating

the algorithms with the black box approach. DEAP is a framework that enables paral-
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lelization mechanisms such as multiprocessing and SCOOP modules. The source code is

available at https://github.com/DEAP/notebooks.

According to Andres, the DEAP framework has the following principles

• The data structures are key to using this framework because they make writing

algorithms easy and clean.

• Depending on the type of problem, the selection operators and the parameters can be

chosen. This choice significantly influences the evolution, so the authors recommend

defining the problem as close to reality as possible to obtain the most accurate results.

• DEAP provides the necessary mechanisms to solve evolutionary algorithms frequently

requiring parallel execution.

.1.5 DEAP operators

The DEAP framework provides a variety of genetic operators to create new offspring from

parent individuals in evolutionary algorithms.

1. stepMut: This function performs the mutation operation on the offspring population.

It applies a specific mutation method to each offspring with a given probability. The

mutation operator can be customized to meet the needs of a specific problem. The

stepMut function is called by the eaSimple or eaMuPlusLambda algorithms in the

DEAP framework.

2. xOnePoint: This function performs the crossover operation on the parents to generate

offspring. It applies the one-point crossover method to each parent with a given

probability. This function can be replaced with other crossover methods, depending

on the specific requirements of a problem. The xOnePoint function is also called by

the eaSimple or eaMuPlusLambda algorithms in DEAP.

3. selNSGA2: This function performs the selection operation on the population using

the NSGA-II algorithm. The NSGA-II algorithm is a widely used multi-objective

optimization algorithm that ranks individuals based on their non-dominance level

and their crowding distance. The selNSGA2 function is called by the eaMuPlusLambda

algorithm in DEAP.

Information Technology Engineer 106 Graduation Project

https://github.com/DEAP/notebooks


School of Mathematical and Computational Sciences Yachay Tech University

.2 Appendix 2

.2.1 Coordinates of charging stations

Table 1: Coordinates of Charging Stations

station x y
st-1 721631.4855313053 9680391.180570882
st-2 723000.4311702102 9679744.778843224
st-3 721688.6788659381 9680050.486500792
st-4 720836.4889870753 9677307.93879515
st-5 723914.2040172062 9680495.377165154
st-6 728731.5746737241 9681646.518565264
st-7 725001.7400978936 9680233.125461085
st-8 724050.1781458601 9682120.102357747
st-9 728869.93 9683144.0
st-10 724397.0563394848 9678445.49127423
st-11 720165.8724970899 9679212.32718246
st-12 718982.5543238329 9681754.794208251
st-13 719185.9448167619 9678456.61874815
st-14 722634.4878721512 9678645.908995178
st-15 717454.8125 9677002.0
st-16 719083.25 9679597.0
st-17 720248.5625 9678016.0
st-18 722969.25 9681165.0
st-19 715181.625 9681477.0
st-20 725614.375 9682138.0

Information Technology Engineer 107 Graduation Project


	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives


	Theoretical Framework
	Electromobility and Sustainable Transportation
	Overview of Electromobility
	Advantages of Electromobility
	Challenges of Electromobility
	Role of Electromobility in Sustainable Transportation

	Evolutionary Algorithms
	Genetic Algorithms
	Genetic Algorithms Definition
	Stages of Genetic Algorithms
	Applications of Genetic Algorithms
	Biological and GAs terminology

	Genotype and Phenotype definitions
	Genotype
	Phenotype

	Encoding Schemes
	Selection Methods
	Fitness-Proportional Selection
	Tournament Selection

	Genetic operators
	Crossover
	Mutation

	Fitness
	Fitness Function
	Types of Fitness Functions:

	Termination Criteria
	Single an Multi-objective Optimization
	Single objective optimization problem
	Multi-objective optimization problem (MOP)
	Pareto Optimality

	Performance Indicators in MOP
	Hypervolume as a Performance Indicator
	Calculation of Hypervolume

	Non-dominated Sorting Algorithm II
	NSGA-II definition
	NSGA-II Algorithm Overview and Pseudocode
	Crowding Distance


	State of the Art
	Optimization trough Evolutionary algorithms
	 Charging Station Location Models
	Electromobility Frameworks
	Evolutionary Frameworks approach
	Station location through GA

	Methodology
	Phases of Problem Solving
	Problem Definition
	Simulation
	Genetic Representation
	Simulation Interface
	Fitness Value Calculation
	DEAP Integration
	Dockerization

	Description of the Problem 
	Analysis of the Problem
	Variables of the problem
	Geographic area and Scenario Setup in MATSim
	Mobility patterns
	Location of Charging Stations Candidates

	Search space
	All possible solutions
	Unique solutions

	Electric cars
	Battery capacity
	Mid-size vehicles
	EVs charging simulation
	Charge and Discharge Model

	Algorithm Design
	Objective functions
	Genetic configuration of individuals
	Fitness Values Calculation
	Simulator Integration
	NSGA-II optimizing the Location of Charging Stations
	DEAP and MATSim role
	DEAP Genetic Operators
	Testing and deployment

	Model Proposal
	Analysis Method
	Hypervolume
	Optimal Solutions

	Experimental Setup
	Setting Evolutionary Operators and Parameters for an Experiment
	Setting Up the Experimental Environment with Docker


	Results and Discussion
	Pareto set of solutions
	Hypervolume results
	Analysis of the trade-off between objectives
	Analysis using parallel coordinate plot
	Correlation analysis

	Analysis and plotting of solutions
	Analysis of solution 107
	Analysis of solution 112
	Analysis of solution 106

	Simulation of the solutions in Via-Simunto

	Conclusions
	Future Work
	Limitations


	Bibliography
	Appendices
	Appendix 1. 
	MATSIM
	matsim_ev environment
	ev_interface environment
	DEAP
	DEAP operators

	Appendix 2
	Coordinates of charging stations



		2023-07-27T20:25:43-0500


		2023-07-27T20:27:44-0500




