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RESUMEN

La cordillera occidental de Ecuador es un cinturén orogénico complejo y dindmico que ha sido
moldeado por la interaccion de las placas de Nazca y Sudamericanay la subduccion de la dorsal
Carnegie. La geologia de esta regién es poco conocida debido a la dificultad de acceder a areas
remotas. Algunos de los principales desafios y limitaciones del estudio de la cordillera
occidental son: falta de exposicion de las rocas del basamento, el metamorfismo que afecté a
los terrenos y la escasez de datos geocronoldgicos y geoquimicos confiables. Sin embargo, se
han logrado algunos avances en los Gltimos afios mediante la aplicacion de nuevos métodos,
como la datacion con circén, la datacion isotdpica. Estos enfoques han ayudado a delimitar la

naturaleza, origen y evolucion de las diferentes formaciones.

Esta revision bibliografica consiste en recopilar una serie de fuentes bibliogréaficas
relevantes relacionadas con la geologia y tectdnica de Ecuador. Estas fuentes incluyen articulos
cientificos, mapas y libros que abarcan un amplio rango de temas, desde la evolucion tectonica
de la regién hasta la geologia de formaciones especificas y la geoquimica de las rocas. Se ha
realizado una exhaustiva busqueda y seleccion de estas fuentes para proporcionar una vision
completa y actualizada del tema en cuestién. Ademas, se ha prestado atencidn a la cronologia
de las publicaciones, tomando en cuenta los trabajos mas antiguos hasta los méas recientes, lo
que permite observar la evolucion del conocimiento y las investigaciones en el campo de la
geologia en Ecuador a lo largo del tiempo. Esta revision bibliogréafica constituye una
herramienta valiosa para comprender los enfoques utilizados en los estudios geoldgicos y

tecténicos en el Ecuador, y sienta las bases para investigaciones futuras en esta area.

Palabras clave: Acrecion, Colision, Mineral, Orogenia, Meseta y Cordillera Occidental



ABSTRACT

The western cordillera of Ecuador is a complex and dynamic orogenic belt that has been
shaped by the interaction of the Nazca and South American plates and the subduction of the
Carnegie Ridge. The geology of this region is poorly understood due to the difficulty of
accessing remote areas. Some of the main challenges and limitations of the study of the western
cordillera are: lack of exposure of the basement rocks, the metamorphism that affected the
terrain, and the scarcity of reliable geochronological and geochemical data. However, some
progress has been made in recent years by applying new methods such as zircon dating, isotopic
dating. These approaches have helped to define the nature, origin and evolution of the different

formations.

This bibliographic review consists of compiling a series of relevant bibliographic
sources related to the geology and tectonics of Ecuador. These sources include scientific
articles, maps, and books that cover a wide range of topics, from the tectonic evolution of the
region to the geology of specific formations and the geochemistry of rocks. An exhaustive
search and selection of these sources has been carried out to provide a complete and up-to-date
vision of the subject in question. In addition, attention has been paid to the chronology of the
publications, taking into account the oldest works to the most recent, which allows observing
the evolution of knowledge and research in the field of geology in Ecuador over time. This
bibliographical review constitutes a valuable tool to understand the approaches used in
geological and tectonic studies in Ecuador, and lays the foundations for future research in this

area.

Key Words: Accretion, Collision, Mineral, Orogeny, Plateau and Western Cordillera
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CHAPTER 1: Introduction

1.1 Conceptualization of the theme.

The Western Cordillera of Ecuador is a complex orogenic belt that resulted from the
accretion of several allochthonous terranes to the South American margin during the Late
Cretaceous and Early Tertiary (Vallejo et al., 2005). These terranes are composed of mafic
oceanic basement rocks, overlain sedimentary sequences (Vallejo et al., 2005). The Western
Cordillera has experienced significant deformation and transcurrent displacements along major
N-S trending faults, resulting in variable clockwise rotations of the tectono-stratigraphic units
(Margirier et al., 2023). This bibliographic review summarizes the main findings and
challenges in studying the Western Cordillera of Ecuador. It focuses on its geomorphological
and geochronological aspects, looking for information from the oldest to the most recent

articles research.

The geomorphology of the Western Cordillera reflects its complex structural
history.The Western Cordillera can be divided into three main domains: the Coastal Plain, the
Coastal Range, and the Interandean Depression (Vallejo et al., 2005). The Coastal Plain is a
low-lying area that extends from the Pacific Ocean to the foothills of the Coastal Range. It is
composed of Quaternary alluvial and marine deposits that overlie Cenozoic sedimentary rocks.
The Coastal Range is a mountainous belt that reaches elevations up to 1500 m above sea level.
It is composed of Paleozoic metamorphic rocks, Jurassic-Cretaceous volcanic rocks, and

Cenozoic sedimentary rocks.
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The red rectangle represents Figure 01, the area of the western Cordillera of Ecuador
where most units are present, like Macuchi, Mulaute, Pilaton, Naranjal, Angamarca, Yungilla,

Natividad, Pallatanga, San Juan and Pujili Units.

The Interandean Depression is a wide valley that separates the Western Cordillera from
the Eastern Cordillera. It is filled with Neogene-Quaternary volcanic and sedimentary deposits
that overlie Paleozoic-Mesozoic basement rocks, also crossed by several active faults that
accommodate part of the deformation related to the subduction of the Carnegie Ridge

(Margirier et al., 2023).

The geochronology of the Western Cordillera is based on various radiometric dating
techniques applied to different rock types and minerals. The most commonly used methods are
U/Pb zircon dating for igneous and metamorphic rocks, “°Ar/*®Ar dating for mafic basement
rocks and volcanic rocks, and fission-track and (U-Th)/He dating for low-temperature
thermochronology. These methods have been used to constrain the age, provenance, and
thermal history of the basement and clastic cover sequences within the different terranes of the

Western Cordillera (Margirier et al., 2023).
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1.2 General Objective

e Determine the degree of knowledge about the geomorphological processes and
the geochronology of the different units that form the Western Cordillera of

Ecuador.

1.3 Specific Objectives

e Analyze the tectonic processes that have intervened in the formation and
evolution of the western mountain range, such as subduction, orogeny, and

sedimentation.

¢ Identify the main geochronological units that make up the western Cordillera,
from the Late Cretaceous to the Neogene period, and describe their geological

characteristics.

e To synthesize current knowledge about the geology of the western Cordillera,

highlighting the most relevant aspects and uncertainties for future research

16



CHAPTER 2: Methodology

The Western Cordillera is a complex tectonic unit that resulted from the accretion of
oceanic terranes and island arcs to the South American continental margin during the Mesozoic

and Cenozoic (J. A. Aspden & Litherland, 1992).

The methodology used in this bibliographic review process was based on a meticulous
and exhaustive search, a detailed and rigorous selection, as well as a critical analysis of relevant
sources in the field of geology and tectonics in Ecuador. By organizing the sources in
chronological order, it will be adapted to draw a time line that allowed us to observe the
evolution of knowledge in this fascinating field. The final result obtained is a complete and
updated synthesis that coherently integrates and synthesizes the available information. This
approach has provided us with a panoramic and deep vision of the advances and discoveries
made to date, providing a solid and reliable base to understand the geology and tectonic

dynamics of Ecuador as a whole.

2.1 ldentification of the topic

The identification of the main subject of study, the geological evolution of the western
cordillera, is fundamental for several reasons. It delimits the scope of the investigation,
allowing a deep and detailed analysis of the mountainous region. In addition, it provides a solid
basis for structuring the investigation and a coherent presentation of the analyzed information.
By focusing on the geological evolution of this mountain range, patterns and processes that
have shaped its current configuration are identified, fundamental to understanding its origin

and contribution to the geodynamic context.
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2.2 Search and selection of sources

The most relevant and up-to-date sources were evaluated and selected to be included in

the bibliography review. The scientific quality of the publications, the relevance of the content

and the reputation of the authors were taken into account. An exhaustive search was carried out

in scientific databases, digital libraries and other academic resources to find relevant sources

related to the topic. Scientific articles, maps and books covering different aspects of the geology

and tectonics of Ecuador were included.

2.3 Chronological organization:

The selected sources were ordered chronologically, type of publication and core focus

from the oldest works to the most recent. There are around 50 scientific articles, 1 map and 3

books. This allowed us to observe the evolution of research and knowledge in the field of

geology and tectonics in Ecuador over time.

Type of

X i Core Focus
YEAR Author Title publication
1946 Thalmann, H.| Micropaleontology of Upper Cretaceous and Scientific Paleogeography and
E. Paleocene in Western Ecuador Article stratigraphy
Hall, M. L, & | Geochronological control for the main tectonic- | Scientific Volcanism and Volcanic
1982 . . .
Calle, J. magmatic events of Ecuador Article Rocks in Ecuador
Baldock J Geologia del Ecuador: boletin de la explicacién
1982 W """ | del mapa geoldgico de la Republica del Ecuador, Map Geology of Ecuador
’ escala 1:1,000.000 [Mapa]
. La formacion Apagua: Edad y posicion s .
Egliez, A, & . . Scientific Metamorphism and
1986 . estructural en la Cordillera Occidental del . . .
Bourgois, J. Article Geological Formations
Ecuador
Lebras, M., . . .
Mégard, F., Ge.o.chemlstry and tectonic setting of pre- Scientific Geochemistry and
1987 collision Cretaceous and Paleogene volcanic . .
Dupuy, C, & Article tectonics
rocks of Ecuador
Dostal, J.
Aguirre, L, & Low.-grade metamorphlsm ano! geotectonic Scientific Metamorphism and
1987 | Atherton, M. setting of the Macuchi Formation, Western . . .
. Article Geological Formations
P. Cordillera of Ecuador
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Roperch, P.,

Mégard, F.,
j ientifi tectonics and oceanic
1987 LaJ'. C. Rotated oceanic blocks in western Ecuador SCIte]tIfIC
Mourier, T, Article plates
Clube, T. M,
& Noblet, C.
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2.4. Analysis and synthesis

A critical reading of each source was carried out, extracting the relevant information
and highlighting the most significant findings. The methodologies used in the studies were

identified and relationships and connections between the different sources were established.

2.5 Writing the bibliographic review

A text was written that integrates the information collected from the different sources,
following a logical and coherent structure. Adequate citations and bibliographic references

were included to support the claims and provide credit to the original authors.

In summary, the methodology used in this literature review was based on an exhaustive
search, careful selection, and critical analysis of relevant sources on the geology and tectonics
of Ecuador. The chronological order of the sources allowed us to observe the evolution of
knowledge in this field, and the final result is a coherent and updated synthesis of the available

information.
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CHAPTER 3: History Geology Evolution of Ecuador Region.

This paragraph summarizes the main geological eras in Ecuador’s history, highlighting

the key events and processes that shaped its geology.

3.1 Precambrian

Rodinia is known as Mesoproterozoic Supercontinent. It was formed around 1200-1000
Ma when different cratons were together due to plate convergence. (See Fig 02). The tectonic
collision between Laurentia and Amazonia cratons produced two orogenic belts, Grenville and
Susan (Cawood & Pisarevsky, 2017). At the current time, those cratons are along of America

Continent. (Cordani et al., 2010).
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Fig 02. Reconstruction ancient Geology of Rodinia. (Note. Adapted From: Cordani et

al., 2010)



The ancient metamorphic rocks around 1.2-1.3 Ga in the Colombian Andes resemble
the Greenville belt in eastern Canada. Even Susan belt was located in eastern Bolivia and
Southeast of Pert (Chew et al., 2011). Those orogeny extensions can be part of NE-SW of the

geology of Ecuador due to similar tectonic evolution with their bordering countries.

3.2 Paleozoic

Ecuador’s Paleozoic geology is marked by a complicated tectonic past that included
numerous instances of subduction, collision, magmatism, metamorphism and sedimentation
(Jackson et al., 2019). The Peltetec Complex (Villares etal., 2021) , which is depicted in violet
in Fig 03 and comprises amphibolites, gneisses and schists from the Neoproterozoic to
Cambrian periods, contains Ecuador’s most ancient rocks. These rocks were penetrated by
granitoids and covered by Paleozoic sedimentary and volcanic rocks from the Macuchi Group
and Alao Formation. The Macuchi Group is primarily made up of quartzites, shales and
limestones from the Ordovician to Devonian periods, while the Alao Formation contains
volcaniclastic rocks, lavas and pyroclastics from the Carboniferous to Permian periods (Griffis

etal., 2019).
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The Paleozoic rocks of Ecuador record the evolution of a continental margin that was
affected by the closure of the Rheic Ocean and the formation of Pangea (Jaillard et al., 2000).
The Paleozoic rocks also preserve evidence of paleoclimatic changes, such as glacial deposits
in the Carboniferous and Permian, and paleosols that indicate arid to semi-arid conditions in
the late Paleozoic (Sheldon & Tabor, 2009). Glaciation deposits are the sediments left behind
by glaciers that have retreated or melted. In the western Cordillera of Ecuador, glaciation
deposits are found on some of the highest peaks, mostly of volcanic origin, with small ice caps
and outlet glaciers (Hansen et al., 2003). These peaks include Cotacachi, Iliniza, Carihuairazo,
and Chimborazo in the Cordillera Occidental, and Cayambe, Saraurcu, Antisana, Sincholagua,
Cotopaxi, Quilindafa, Cerro Hermoso, Tungurahua, Altar, Cubillin, Sangay, Collay, and Cerro

Ayapungo in the Cordillera Oriental (Hansen et al., 2003).

3.3 Mesozoic

A significant aspect of Ecuador's geological history during the Mesozoic era is the
incorporation of the Amotape-Chaucha terrane, which underwent partial subduction beneath
an existing continental arc system of the same period (Arculus et al., 1999). The Amotape-
Chaucha terrane consists of Triassic mafic and granitoid rocks of the oro methamorphic
complex. Also the component eclogite, blueschist and amphibolite of the Raspas metamorphic
complex. These rocks were previously subducted but brought to the surface with tectonic
activity (Aspden & Litherland, 1992). Another important aspect of the Mesozoic geology of
Ecuador is the breakup of the supercontinent Gondwana, which is recorded by S-type granite
plutons in the Triassic, followed by the intrusion of calc-alkaline batholiths in the Jurassic
(Aspden & Litherland, 1992). These plutons and batholiths are related to subduction and

magmatism along the western margin of South America (Chinner, 1997).
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An additional characteristic observed in the Mesozoic geological landscape of Ecuador
is the amalgamation of oceanic basalts that originated during the Jurassic and Cretaceous
periods. These basalts, along with tuff, metasedimentary, and sedimentary rocks, comprise a
belt of basalt and diabase stretching north to south within Ecuador (Aspden & Litherland,
1992). These rocks are part of a separate terrane that was added to the edge of the continent
around 130 million years ago (Chinner, 1997) At the Mesozoic geology of Ecuador is the onset
of Andean orogeny, which began in the Late Cretaceous and continued into the Cenozoic
(Jaillard, 2022) . The Andean orogeny involved compression, uplift, deformation and
volcanism along the western margin of South America, as a result of convergence between the
Nazca and South American plates. The Andean orogeny created two main mountain ranges in
Ecuador: the Western Cordillera WC and the Eastern Cordillera EC, separated by an inter-

Andean depression ID. (Villamil & Pindell, 1998)

i~

BC Bellavista Catequilla WC Western Cordillera

ID Interandean Depression EC Eastern Cordillera
IV 1lal6 Volcano P Puengasi
GB Guayllabamba Basin ILB llumbisi - La Bota

CEl Carcelén - El Inca

Fig 04. Three-dimensional view of Quito basin in the Interandean Depression. (Taken

From: Alvarado et al., 2014)
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3.4 Cenozoic.

During the Cenozoic era, the geology of Ecuador was significantly impacted by the
accretion of oceanic terranes to the western edge of the continent. This formed a belt of basalt
and diabase, along with tuff, metasedimentary and sedimentary rocks that extended north-south
into Ecuador. This event took place around 130 million years ago in the early Cretaceous and
was caused by the subduction of oceanic crust beneath the South American plate. Another
major event was the intrusion of calc-alkaline batholiths in the Paleogene (66-23 million years
ago), which are associated with porphyry copper and epithermal gold deposits (Aspden &

Litherland, 1992)..

These batholiths are composed mainly of granodiorite and tonalite and are found in the
Eastern Cordillera and Interandean Depression of Ecuador Fig 05 . They may have originated
from an enriched mid-ocean ridge basalt (MORB) source and reflect the magmatic activity
related to the process of the Nazca plate descending beneath the South American plate, known
as subduction, is taking place (Chiaradia et al., 2004; Chiaradia, 2013). Another significant
event was the intrusion of calc-alkaline batholiths in the Jurassic and Cretaceous, which are
related to the subduction of oceanic crust and the formation of continental arcs (Romeuf et al.,
1995). These batholiths are composed mainly of granodiorite, tonalite and quartz diorite and
are exposed in the Western Cordillera and parts of the Eastern Cordillera. They are associated
with porphyry copper deposits and epithermal gold deposits that formed in the Paleogene

(Eocene to Miocene;) (Chiaradia, 2013).
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CHAPTER 4: Geological Framework of the Western Cordillera

4.1 Geologic Setting

Ecuador Region is part of a convergent active zone where the Nazca Plate is subducting
below the South America Plate with a mean velocity of 58 mm per year and an angle between
25° to 35° concerning the spreading of Cocos-Nazca oceanic crust (Vallejo, 2007). Ecuadorian

region it’s divided into four areas from the East to the West.

The first is Oriente Basin; the sediments correspond to the Cretaceous to the present
period, and the retro arc basin formation is due to the growth of the Andean Cordillera. The

second is Eastern Cordillera, known as Real Cordillera, conformed by metamorphic rocks.

The third is Western Cordillera, conformed by magmatic rocks. Between both
cordilleras, there is a separation known as Interandean Valley, which is composed of volcanic
arc volcanic sediments, and finally, the Coastal Zone is formed by deposits from Paleogene to

Neogene Sediments (Toro Alava & Jaillard, 2005)
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4.2 Geology of Western Cordillera of Ecuador

The Western Cordillera has three main units that have been uplifted: the Macuchi Unit,
the Naranjal Block, and the Pallatanga Block. Analysis of rare earth elements (REE) indicates
that the Macuchi Unit is an oceanic island arc with rocks such as tholeiites and dacites (Roperch
et al., 1987). Along the Western Cordillera’s margin with the Toachi Fault are outcrops of
massive andesitic lavas and pillow basalts similar to those found in southern Colombia.
Additionally, sediments containing radiolarian fossils discovered in the Naranjal River have

been dated to the Late Campanian (Kerr et al., 2002).

The principal characteristic of the Pallantanga unit is turbiditic deposits that correspond
to Late Cretaceous-Paleocene. Also Pallatanga Unit is part of a fragment from oceanic Pleateu
elevated through the Western Cordillera in the Late Cretaceous period (Toro Alava & Jaillard,

2005).
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4.3 Principal Geologic Faults

4.3.1 CCPP (Chingual Cosanga Pallatanga Puna) fault

The Chingual-Cosanga-Pallatanga-Puna (CCPP) fault system is a major active tectonic
feature in the Western Cordillera of Ecuador it belongs to a broad regional shear zone where

right-lateral movement occurs, facilitating the displacement of the North Andean Sliver in
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relation to the South American continental plate (Baize et al., 2020). The CCPP fault system
consists of several segments with different orientations and kinematics, such as the NE-SW
Pallatanga strike-slip fault, the sub-meridian fault-related folds in the Inter-Andean valley, and

the NE-SW Pisayambo fault in the Cordillera Real (Baize et al., 2020).

The CCPP fault system has produced very large crustal earthquakes (M~7.5) in
historical times, such as in 1698, 1797, and 1949, causing severe damage to the environment
and human settlements (Baize et al., 2020). The slip rates along the CCPP fault system vary
from ~2 to 6 mm/yr, depending on the location and geometry of the segments (Baize et al.,
2020). The CCPP fault system is therefore a key element for understanding the active tectonics

and seismic hazard in Ecuador.

4.3.2 Pallatanga Fault

The Pallatanga fault is a major active fault system in Ecuador that forms part of the
Chingual Cosanga Pallatanga Puna Fault System (CCPPFS), a continental-scale shear zone
characterized by right-lateral movement facilitates the displacement of the North Andean
Sliver in relation to the South American continental Plate (Baize et al., 2020). The fault
traverses the Western Cordillera, displaying a strike-slip orientation aligned in a northeast-
southwest direction. It continues northward, reaching both the Inter-Andean valley and the
Cordillera Real (Alvarado et al., 2016). The fault has been responsible for large crustal
earthquakes (M~7.5) during historical times, such as those in 1698, 1797, and 1949, causing

severe damage to environmental and cultural features (Baize et al., 2020).
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The fault also shows evidence of surface ruptures and morphological anomalies in
Holocene deposits, indicating long-term seismic activity (Baize et al., 2020). Based on new
geological data and digital elevation models, the slip rate of the Pallatanga fault has been
estimated to range from ~2 to 6 mm/yr for different segments of the fault zone (Baize et al.,
2020). The study of the Pallatanga fault is important for understanding the active tectonics and

earthquake geology of the Central Andes of Ecuador.
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CHAPTER 5. Geological Evolution of the Western Cordillera: Previous and

Current Theories

5.1 Previous Theories.

5.1.1 Proposal Theory by Lebras.

This theory suggested that the east-dipping subduction of oceanic crust of normal
thickness produced the Macuchi Arc and Intraoceanic arc that formed on top of the Pifion
Formation. According to these scientists, the Macuchi arc is Turonian-Santonian in age and
was contemporary with the Celica arc in southern Ecuador and the Cayo Formation in the
coastal region. (Lebras et al., 1987). This shows a proposed paleogeographic reconstruction of
the Coastal, Western Cordillera, and Eastern Cordillera regions during the Late Cretaceous to

Oligocene period.

The figure 09 illustrates how the Caribbean Plateau extruded in the Pacific region at
nearly equatorial latitudes, and how it subducted westward below an island arc sequence that
formed the Rio Cala Group, San Lorenzo arc and Cayo Formation. The figure also depicts how
the Pifion and Pallatanga blocks, which are composed of oceanic plateau mafic rocks, were
accreted to the South American continental margin at ~ 73 Ma, and how they received detrital
input from continental basement rocks and volcanic arcs during Paleocene-Eocene

sedimentation.
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Sections. (Note. Adapted From: Lebras et al., 1987)

5.1.2 Proposal Theory by Van Thournout

Cretaceous

The figure 10 shows a southwest-northeast movement of the Farallon Plate that
produces two types of effects. In the northern part, local intraoceanic subduction with magmatic
activity and possible back-arc spreading results in deposition of Lower Cretaceous to Paleocene
volcanics and intrusives. In the southern part, subduction beneath an ensimatic island arc leads

to deposition of tholeiitic to boninitic components of an ensimatic island arc during the Lower
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According to (Van Thournout et al., 1992), the San Lorenzo arc and accompanying
volcanic and sedimentary rocks of the Cayo Formation were created from the Early Cretaceous
to Paleocene by the eastward subduction of oceanic crust beneath the Pifion Formation. The
Macuchi submarine arc was created on top of accreted oceanic crust of the Pifion Formation
during the middle to early Oligocene, following a westward shift in the subduction zone. At
70-50 Ma, this island arc was added to the margin, deforming the Yunguilla Formation’s
flyschoid continental-margin deposits. According to these authors, the Apagua unit
corresponds to backarc basin deposits, while the West’s San Mateo and Punta Blanca

formations represent forearc deposits.

To determine that the Western Cordillera is made up of rocks from various oceanic
tectonic settings, (Kerr et al., 2002) and (R. A. Hughes & Pilatasig, 2002) They had been
analyzed geochemical data. These rocks include anomalously thick oceanic crust of oceanic
plateau origin (Pallatanga and Pifion formations), island arc tholeiites (Naranjal and Macuchi
units), and backarc basin basalts (La Portada Formation). These authors suggested that the
Pallatanga block formed over a prolonged period in the Late Cretaceous. In contrast, the Late
Cretaceous Naranjal and Eocene Macuchi island arcs may have formed during the Eocene

along the Chimbo-Toachi and Mulaute faults, respectively, against the continental margin.
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Fig 10. Van Thournout’s Proposed Model for the Development of Ecuador’s Western

Cordillera and Coastal Region. (Note. Adapted From: Van Thournout et al., 1992)

5.1.3 Proposal Model by Kerr.

A series of schematic cross-sections over the Ecuadorian edge are shown in the figure

11 to demonstrate and explain the observed variance in the geology and timing of geological
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events along the length of the Cordillera Occidental. We suggest the following progression of

events, beginning in the north.

(1) In Campanian period (83-74 Ma), the Pallatanga oceanic plateau collided with
Ecuador’s continental margin (Fig. 11a). The calc-alkaline lavas of the Rio Cala Arc, which
erupted through the accreted Pallatanga plateau, were produced by a subduction zone that

began near the plateau’s trailing edge (Fig. 11Db).

(2) Activity in the Rio Cala Arc ended during the Late Campanian—Mid-Maastrichtian
period (76-70 Ma), at the same time that the Naranjal Arc began to form and a back-arc basin
(represented by the La Portada Unit) opened between it and the remaining portions of the Rio

Cala Arc (Fig. 11c)

3) The Naranjal Arc’s activity was transient and is assumed to have ended during the
early Maastrichtian period with the approach and docking of an oceanic plateau. However, the
La Portada back-arc basin did not completely shut until the early to early mid-Eocene, possibly

because the impact occurred oblique to the continental edge (Fig. 11c).

(4) As a result of docking with the Naranjal plateau, the subduction zone moved
backward to behind the Pifion plateau’s trailing edge, causing calc-alkaline calc-alkaline lavas

to erupt through the oceanic plateau and the San Lorenzo Arc to form (Fig. 11d).

5) Due to persistent compression (probably dextral) due to stress, the La Portada back-
arc basin gradually closed over the Paleocene and early Eocene periods (Fig. 11e and f). The
Mulaute Shear Zone, which symbolizes the closure, is located in northern Ecuador and was

finished at the latest by early mid-Eocene epoch.
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5.2 Current Theories

5.2.1 Insights into the Geologic Progression of the Western Cordillera from the Late

Cretaceous to the Oligocene

The fig 12 is divided into several panels that represent different time periods and
geological events. The leftmost panel shows the Late Cretaceous period, during which marine
sedimentary rocks were deposited in a shallow sea. The middle panel shows the Paleocene to
Early Eocene period, during which sedimentary rocks such as sandstone and shale were
deposited in alluvial fans and braided rivers. The rightmost panel shows the Middle to Late
Eocene period, during which volcanic activity decreased significantly in the Western
Cordillera. Instead, sedimentary rocks such as sandstone and shale were deposited in a series
of intermontane basins that formed as a result of tectonic activity. The top row of panels shows
the Oligocene period, during which significant uplift and deformation occurred in the Western

Cordillera due to continued tectonic activity Vallejo, 2007).

The leftmost panel shows that during this time period, surface uplift within the central
Western Cordillera generated an emergent land mass, as documented by an angular
unconformity between the Rumi Cruz formation and the overlying Miocene Zumbagua
Formation. The middle panel shows that in the northern part of the Western Cordillera, the
Oligocene San Juan de Lachas Formation is deposited unconformably on top of the Eocene
Laurel Formation and Late Cretaceous Pilaton Formation Vallejo, 2007). These relationships
presumably match with a major Oligocene event of the Western Cordillera. Finally, the
rightmost panel shows that during this time period, volcanic activity resumed in the Western

Cordillera with renewed vigor.
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The Macuchi Arc was active during this time period, as shown by extrusive and
intrusive igneous rocks in the Western Cordillera, which yield ages of ~35 Ma. Furthermore,
volcanic material from this volcanic arc can be locally found in turbidites of the Apagua
Formation. The volcanic detritus was regionally distributed, because Late Eocene sedimentary
rocks of the coastal region (Punta Blanca, San Mateo and Zapallo formations) received large

quantities of volcanic derived minerals Vallejo, 2007).
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(Note. Adapted From: Vallejo, 2007)
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5.2.2 Insights into the Cenozoic Progression of Ecuador’s Western Cordiller

The highlighted text refers to Figure 13, which shows the Cenozoic evolution of the
Western Cordillera of Ecuador. The figure has three sections (a), (b), and (c) which show the

paleogeography of the region during the Paleocene and Eocene periods, respectively.

The initial uplift of the region started at the end of the Cretaceous period, which is
around 66 million years ago. The Paleocene section (a) shows the Pilalo Formation, which is a
submarine fan deposit that was formed during this time. The panel also shows the Tandapi arc,
which was contemporaneous with the Pilalo Formation. The Tandapi arc is a volcanic arc that

was active during the Paleocene period Vallejo et al., 2020.

The Eocene section (b) shows the Macuchi submarine arc, which was active during the
Eocene period. The panel also shows sedimentation of the Silante Formation. The Silante
Formation is a thick series of continental deposits that were deposited in an alluvial fan
dominated by debris flow. The sediments found in the area originated from the erosion of a
volcanic arc with a continental, calc-alkaline composition. This volcanic arc, known as the San
Juan de Lachas volcanic arc, was active from the Oligocene to Miocene epochs Vallejo et al.,

2020.

The section (c) of Figure 13 shows the tectonic evolution of the Western Cordillera of
Ecuador during the Oligocene to Middle Miocene period (~25-16 Ma) This segment illustrates
a swift elevation of both the Eastern and Western Cordilleras, accompanied by the
accumulation of the Silante Formation within an intermountain basin environment. The term
"intramontane basin setting™ pertains to a basin situated between mountain ranges. The graphic

also indicates the presence of the sea level (SL), signifying that the deposition of the Silante
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Formation took place above sea level Vallejo et al., 2020.

These provides important information on the tectonic and sedimentary history of the

Western Cordillera of Ecuador during the Oligocene to Middle Miocene period.
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Figure 13. Tracing the Cenozoic Tectonic Development of Ecuador’s Western Cordillera.

(Taken From: Vallejo et al., 2020)
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5.2.3 The Western Cordillera: A Thermochronological Perspective on its Evolution

The Fig 14 shows a schematic cross-section of the Andean margin, which is a region of
active tectonic activity that extends along the western coast of South America. The cross-
section includes two main regions: the Western Cordillera and the Eastern Cordillera
(Cordillera Real). The Western Cordillera is located closer to the Pacific Ocean and consists of
volcanic and sedimentary rocks that were deposited during the Mesozoic and Cenozoic eras.
The Eastern Cordillera is located further inland and consists of metamorphic rocks that were
formed during earlier periods of mountain building. The thermal history envelopes shown in
Fig 14 are based on thermochronological data, which provides information about how rocks
have been heated or cooled over time. This data is obtained by analyzing isotopic ratios in

minerals such as apatite and zircon, which are sensitive to temperature changes.

By measuring these ratios, researchers can estimate how long ago rocks were at certain
temperatures and how quickly they cooled or heated up. The thermal history envelopes in
Figure 14 show how different regions in the Andean margin have experienced different
temperature histories over time. For example, the Western Cordillera experienced a period of
rapid cooling during the Late Cretaceous, followed by a period of slower cooling during the
Paleogene. This suggests that this region was rapidly uplifted during the Late Cretaceous due
to tectonic activity such as subduction or mountain building. In contrast, the Eastern Cordillera
experienced a more gradual cooling history throughout the Cenozoic era. This suggests that
this region was uplifted earlier than the Western Cordillera, possibly during an earlier period

of mountain building.
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CHAPTER 6. Geochronology of the Western Cordillera Units

6.1 Geology Description of Lithostratigraphic Units

The western Cordillera comprises several geological units that originated from the late
Cretaceous to the Neogene. These units are represented in the Fig 15 proposal by (Vallejo et
al., 2019) from latitude 1°00°N until 2°00’S. Although each of these units has different
characteristics in terms of age and lithology, these formations are described in a stratigraphic

sequence, the most ancient to recent building.
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6.1.1 San Juan Unit.

The San Juan Unit is a geological formation in the Western Cordillera of Ecuador that
consists of mafic and ultramafic rocks intruded by granitoids. It is interpreted as the intrusive
component of an oceanic plateau that formed in the Early Cretaceous and was accreted to the
South American margin in the Late Cretaceous (Mamberti et al., 2011; Vallejo et al., 2019).
The San Juan Unit is exposed in several tectonic slices along the western flank of the Cordillera,
where it is overlain by volcanic and sedimentary rocks of the Pallatanga Formation (Lapierre

et al., 2000).

The San Juan unit comprises a sequence of cumulates ranging from dunite to gabbro,
with minor pyroxenite and anorthosite, that show evidence of fractional crystallization and
magma mixing processes (Mamberti et al., 2011; Lapierre et al., 2000). The cumulates are
intruded by granitoids that have calc-alkaline to tholeiitic affinities and display isotopic
signatures typical of oceanic plateaus (Mamberti et al., 2011). The granitoids have U-Pb zircon
ages ranging from 123 + 12 Ma to 87.10 + 1.66 Ma, indicating a prolonged magmatic history

of the San Juan Unit (Lapierre et al., 2000).

The San Juan Unit is considered as part of the Caribbean Plateau that formed in a mantle
plume setting in the Pacific Ocean and collided with the South American margin during the
Late Cretaceous (Vallejo et al., 2019). The accretion of the San Juan Unit resulted in
deformation and metamorphism of the adjacent continental crust, as well as magmatism and
mineralization along the continental margin (Vallejo et al., 2019). The San Juan Unit is
therefore an important piece of evidence for understanding the tectonic evolution of the

Western Cordillera and the interaction between oceanic and continental plates in Ecuador.
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6.1.2 Pallatanga Formation

The Pallatanga block is composed of sedimentary and volcanic formations that can be
divided into five categories: (1) basement rocks, which include basalts of the Pallatanga
Formation and ultramafic rock of the San Juan complex; (3) Volcanoclastic rocks of Rio Cala
Arc and submarine basaltic lavas from Late Cretaceous (Vallejo et al.,, 2019); (4)
Submarine deposits of the Angamarca Group from Paleocene-Eocene (R. A. Hughes &
Pilatasig, 2002); and (5) volcaniclastic rocks of calc-alkaline and subaerial volcanic
from Oligocene-Miocene (Vallejo et al., 2019), and the south of Ecuador is located Saraguro

Formation.

The Western Cordillera’s basement, the Pallatanga Formation, contains dolerites and
submarine basaltic lava. The basalts exhibit flat primitive mantle- and chondrite-normalized
REE patterns and are thought to have developed in an interoceanic environment since they
have a lot of chemical similarities with basalts from the Caribbean Plateau (Luzieux et al.,
2006). Oceanic plateaus are often more than 10 km thick and occasionally approach 30 km
(Sinton et al., 1998). What makes them challenging to subduct due to an excess of positive

buoyancy. As a result, pieces of the oceanic plateau can be added to the continental margin.

Southwest of Quito, the San Juan ultramafic complex is exposed and contains stratified
gabbros, dunites, and peridotites. According on REE geochemistry and isotopic evidence, the
San Juan complex is thought to be the intrusive portion of an oceanic plateau. (Sinton et al.,

1998).

56



6.1.3 Rio Cala Group

The Rio Cala Unit, as described by (Boland et al., 2000), has only been identified within
the 0°-1°N region of the Western Cordillera. The most extensive exposures of this unit can be
found in a fault block measuring approximately 2km by 12km, located a few kilometers east
of La Portada. The Rio Cala Unit mainly consists of massive basaltic andesite to andesite lavas,

along with volcaniclastic rocks that contain notable pyroxene phenocrysts.

Although the precise age of the Rio Cala Unit remains uncertain, it is thought to have
originated prior to the Pallatanga Unit and may have formed at the same time as the Campanian-
Maastrichtian volcaniclastic turbiditic sediments of the Natividad Unit, which can be seen to

the immediate west (Boland et al., 2000)

The Rio Cala Group consists of volcanic and sedimentary layers that were formed in an
intraoceanic island arc environment on top of the Pallatanga Formation. These stratigraphic
layers, known as the La Portada, Mulaute, Pilaton, Natividad, and Rio Cala formations, were

accumulated in the Late Cretaceous era (Vallejo, 2007).
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6.1.3.1 La Portada

Pillowed basalts and string lavas are found in the La Portada Formation along the
Otavalo-Selva Alegre road stretch. Pumpellyite, chlorite, and epidote are partially
recrystallized from the glassy matrix of the aphyric basalts. The volcanic rocks have undergone
significant hydrothermal and oxidative alteration (Vallejo, 2007). Near the Silante Formation
contact, calcite veining and zeolite filling vacuoles are frequently seen, and alteration
intensifies. Although the lavas west of La Concepcién hamlet are less oxidized and
hydrothermal alteration is evidenced by numerous fissures filled with calcite, the lithologies in
the exposures west of La Concepcion are comparable to those in the Otavalo - Selva Alegre

road. (Vallejo, 2007)

Along the road connecting Otavalo and Selva Alegre, pillow basalts from the La
Portada Formation are exposed. To the East are turbidites from the Natividad Formation, and
to the West are younger volcanoclastic rocks from the Silante Formation. Turbidites of the
Natividad Formation and deformed volcanic rocks of the La Portada Formation are in tectonic

contact close to La Concepciédn (Vallejo, 2007) .

6.1.3.2 Mulaute.

Along the Al6ag-Santo Domingo road segment, the Mulaute formation has thick to
medium-bedded turbidites , which are rich in plagioclase, pyroxene, and epidote. This facies,
which is found west of the La Esperie Batholith, is lithologically related to the previously
described Pilaton Formation of (Hughes & Bermudez, 1997). The sequence is dominated to
the East by primary volcanic rocks, such as basaltic andesites, tuffs, and volcanic breccias.

Epidote, pumpellyite, and chlorite are common in the volcanic rocks, which suggests a low-
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grade metamorphic overprint. This volcanic sequence, which produces island arc geochemical

features, was formerly known as the Toachi Unit (Vallejo, 2007).

6.1.3.3 Natividad

The Natividad Formation, according to (Boland et al., 2000) is a sedimentary sequence
made up of turbiditic sandstones, mudstones, cherts, intercalated lavas, and tuffs with a basaltic
composition . The Otavalo - Selva Alegre route provides excellent access to lava flows and
dykes that are part of the Natividad Formation. Basaltic andesites with millimeter to centimeter-
sized clinopyroxene crystals make up the volcanic intercalations. Strongly silicified and
tectonized, the sandstones are also rich in epidote, which is a byproduct of the low-grade

metamorphism of mafic minerals.

In the Salinas - Lita road stretch , turbidites of the Natividad Formation can be seen in
a coarsening-upward sequence. At this location, primary volcanic rocks with petrographic
similarities to the Rio Cala Formation are intercalated with turbidites of the Natividad
Formation. Due to their resemblance, (Boland et al., 2000) hypothesized that the Natividad

Formation’s sediments originated from the Rio Cala basalts.

The Natividad Formation was identified as isolated exposures of marine sedimentary
rocks with intercalated volcanic rocks along the eastern edge of the Western Cordillera, such
as northeast of Nono town; The volcanic rocks’ lithologies and geochemistry, however, differ
from those found in the type locality. Therefore, some of these exposures might not be

associated with the Natividad Formation.(Vallejo, 2007)
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6.1.3.4 Rio Cala

The Rio Cala Formation is a geological unit that is part of the Rio Cala Group, a set of
volcanic and sedimentary rocks that were deposited in an intra-oceanic island arc during the
Late Cretaceous in the Western Cordillera of the Ecuadorian Andes. The Rio Cala Formation
is mainly composed of andesitic and basaltic lavas with island arc geochemical affinities
(Vallejo et al., 2006) . According to the radiometric ages obtained by the “°Ar/*°Ar method on
hornblende, the Rio Cala Formation has a crystallization age that varies between ~85 and 72

Ma (Vallejo et al., 2006).

These ages coincide with the biostratigraphic ages in sediments of the Natividad
Formation, indicating a Campanian-Maastrichtian age(Boland et al., 2000). The Rio Cala
Formation is related to the Great Cretaceous Caribbean Arc, which originated from westward
subduction under the Caribbean-Colombian Oceanic Plateau (CCOP), a large oceanic igneous
province of Late Cretaceous age that constitutes the basement of the Western Cordillera and

the Coast of Ecuador (Vallejo et al., 2006).

6.1.4 Yunguilla Formation

The Yunguilla Formation is identified at Cordillera Occidental on the eastern flank
(Thalmann et al., 1946). It is composed of relatively thin beds with a thickness of 10 to 20 cm,
and it exhibits a rhythmic stratification pattern with fine-grained sandstones and massive
siltstones alternating with mudstones. The sandstones are composed of quartz and exhibit
turbidite subdivisions, which are thought to be the middle to outer portions of a submarine fan.
Because of its poor mapping over the Western Cordillera, which is primarily based on

lithological traits, the Yunguilla Formation can be mistaken for Paleocene and Eocene
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turbidites of the Angamarca Group.

Exiteloceras sp. and Phylloceras sp., two ammonites, indicate a Late Campanian to
Early Maastrichtian age (Jaillard et al., 2004). The Yunguilla Formation exhibits a composition
of heavy minerals such as zircon, tourmaline, rutile, garnet, and epidote. Minimal quantities of
titanite, anatase, and brookite are present as trace elements. These observations suggest a
notable contribution of detritus derived from granitic and metamorphic sources, originating
from the reworking of older formations within the Eastern Cordillera (Vallejo et al., 2019). The
Yunguilla Formation has a tectonic contact with the underlying Pallatanga Formation and was
deposited in a forearc basin with a north-south orientation along the South American

continental edge (Vallejo et al., 2019).

The Yunguilla Formation's lithologies vary greatly along the Western Cordillera's
strike. Dark grey, huge siltstones, pelagic cherts, fine-grained, well-sorted sandstones, and
calciturbidites are examples of typical lithologies. The sandstones are categorized as
feldspathic litharenites and lithic arkoses and contain plagioclase, quartz, amphibole, and
pyroxenes. Gradation and bedding cyclicity point to the deposition of the rocks by diluted
turbidity currents. Strongly folded, fine-grained turbidites are found in a sequence in strata that
are between 15 and 20 cm thick in the mapped Yunguilla Formation of the Alambi River.

(\Vallejo, 2007).

6.1.5 Silante Formation

The Silante Formation is a geological unit that represents the Cenozoic evolution of the
Western Andes of Ecuador. It consists of continental deposits that were derived from the

erosion of a volcanic arc and accumulated in an alluvial fan environment. The Silante
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Formation unconformably overlies the Pilalo Formation, which is a Paleocene submarine fan
with tholeiitic volcanism (Vallejo et al., 2020). The age of the Silante Formation is constrained
by radiometric dating of detrital zircons, which yield a maximum depositional age of 18.5 £
0.4 Ma (Vallejo et al., 2020). The deposition of the Silante Formation was coeval with regional
uplift and exhumation of the Andean margin, as indicated by thermochronological data and
regional correlations (Vallejo et al., 2020). The Silante Formation is exposed along a trench-
parallel distance of about 300 km in the Western Cordillera of Ecuador, and has a thickness of

up to 1500 m.

The lithofacies of the Silante Formation are dominated by conglomerates and
sandstones, with minor siltstones and mudstones. The provenance analysis of the Silante
Formation shows that it contains heavy minerals such as epidote, garnet, zircon, apatite, and
tourmaline, which indicate a continental, calc-alkaline volcanic arc source (Vallejo et al.,
2020). The detrital zircon U-Pb ages also support this interpretation, as they show a dominant
peak at 23 Ma, which corresponds to the Oligocene to Miocene San Juan de Lachas volcanic
arc (Vallejo et al., 2020). The Silante Formation is an important record of the tectonic and
sedimentary history of the Western Andes of Ecuador, and provides insights into the

interactions between subduction, volcanism, uplift, and erosion in this active margin.

6.1.6 Pilalo Unit

The Pilalo Formation is a sedimentary unit that crops out in the Western Cordillera of
Ecuador. It consists of marine deposits of sandstone, siltstone, shale and limestone, with
interbedded volcanic rocks. The age of the Pilalo Formation is controversial, but it has been

assigned to the Late Cretaceous to Paleocene based on biostratigraphy and radiometric dating
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(\Vallejo et al., 2021). The Pilalo Formation records the sedimentary evolution of the
Ecuadorian foreland basin during the initial stages of Andean orogenesis, as well as the
influence of the Caribbean Plateau collision in the Late Cretaceous (Vallejo et al., 2020). The
origin of the Pilalo Formation is mainly from a western volcanic arc, as indicated by the
presence of volcaniclastic material, clinopyroxene grains and zircon U-Pb ages (Vallejo et al.,
2021). The Pilalo Formation is covered by Eocene limestones belonging to the Unacota
Formation, and this relationship is interpreted as a contact that maintains the same geological

alignment (Vallejo et al., 2020).
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6.1.7 Saguangual Unit

The Saguangal Formation is a geological unit that outcrops in the Western Cordillera
of Ecuador, south of Nobol (Guayas province). It consists of shallow-marine sedimentary
rocks, mainly sandstones and shales, that overlie volcaniclastic rocks of the Rio Cala
Formation. The age of the Saguangal Formation is uncertain, but it has been tentatively
assigned to the Paleocene based on fossil evidence (Vallejo, 2007). The Saguangal Formation
is interpreted as a forearc basin deposit that records the accretion of oceanic plateau rocks and
island arc fragments to the continental margin during the Late Cretaceous to Paleogene (Vallejo
et al., 2006). The origin of the Saguangal Formation is mainly from the Eastern Cordillera,
where metamorphic and granitic rocks were uplifted and eroded during this tectonic event (R.

Spikings et al., 2015).

The petrology and geochemistry of the Saguangal Formation have not been extensively
studied, but some preliminary data are available from previous works. (Berrezueta et al., 2021)
reported that the sandstones of the Saguangal Formation are mostly litharenites and feldspathic
litharenites, with abundant metamorphic and magmatic rock fragments. They also observed
that the shales have high contents of iron, titanium, chromium and nickel, suggesting a mafic-
ultramafic source. These characteristics indicate that the Saguangal Formation was derived
from a mixed source that included both continental crust and oceanic plateau rocks. (Berrezueta
etal., 2021) also performed a detrital zircon U-Pb dating analysis on a sample of the Saguangal
Formation, and obtained a maximum depositional age of 66.9 £ 1.2 Ma, which is consistent

with a Paleocene age.
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6.1.8 Macuchi Unit

The Macuchi Formation is a geological unit that crops out in the central-northern part
of the Western Cordillera of Ecuador, hosting volcanogenic massive sulfide (VMS) deposits
such as EI Domo, La Plata and Macuchi. The formation consists of Cretaceous-Eocene basic
to intermediate marine volcanic rocks, mainly tholeiitic basalts with some calc-alkaline
affinities, that indicate an oceanic island arc setting (Aguirre & Atherton, 1987). The formation
underwent low-grade metamorphism under greenschist facies conditions, resulting in the

development of chlorite, epidote, albite and quartz assemblages (Aguirre & Atherton, 1987).

The VMS deposits are associated with submarine rhyodacite domes that intruded the
Macuchi Formation and were overlain by mafic volcaniclastic rocks (Vallejo et al., 2016 , as
cited in Sillitoe & Perell6, 2019). The mineralization includes massive and semi-massive
sulfides composed of pyrite, sphalerite, chalcopyrite and minor galena, bornite, tennantite,
stromeyerite and proustite (Vallejo et al., 2016 , as cited in Sillitoe & Perelld, 2019). The VMS
formation is constrained by U/Pb zircon dating of the footwall rhyodacite at 42.13 + 0.54 Ma
and “°Ar/*Ar dating of the hanging wall volcaniclastic rocks at 41.49 + 0.37 Ma (Vallejo et

al., 2016 , as cited in Sillitoe & Perell6, 2019).

6.1.9 Angamarca Group

The Angamarca Group is a sequence of siliciclastic rocks that includes sandstones and
conglomerates deposited by turbidity currents, as well as a limestone layer. It was formed
between the Paleocene and Oligocene epochs and is divided into four formations: Saquisili,
Apagua, Unacota, and Rumi Cruz. The El Laurel Formation is considered to be part of the

Angamarca Group based on its lithology and origin. The Angamarca Group can be found east
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of the Macuchi Unit and was studied by (Hughes & Bermudez, 1997).
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6.1.9.1 Saquisili Unit

The Saquisili Unit is a geological formation that consists of medium-to-fine-grained
turbidite sandstones deposited in the early to middle Paleocene (Vallejo et al., 2019). It is
located in the Western Cordillera of Ecuador, in the province of Cotopaxi, and is part of the
Pallatanga block, an allochthonous terrane that was accreted to the South American continental
margin at ~73 Ma (Vallejo et al., 2019). The Saquisili Unit corresponds to the farthest portion
of a submarine fan system that received sedimentary contributions from the continental
basement rocks of the Eastern Cordillera, as well as volcanic materials from the Tandapi and
Macuchi volcanic arcs (Vallejo et al., 2019). The Saquisili Unit is intercalated with
conglomerates (Gallo Rumi conglomerates) to the south, which indicate a more proximal

depositional environment (Vallejo et al., 2019).

The Saquisili Formation is a sedimentary unit of early to middle Paleocene age that
unconformably overlies the Yunguilla Formation and black cherts in the Western Cordillera of
Ecuador (Toro Alava & Jaillard, 2005). The Saquisili Formation records the erosion of the
continental margin after the accretion of oceanic terranes during the Late Cretaceous (Jaillard
et al., 2008). The petrographic analysis of the sandstones reveals a mixed provenance from
metamorphic, magmatic, and sedimentary rocks, with a dominant contribution from the
Cordillera Real (Toro Alava & Jaillard, 2005). The Saquisili Formation is interpreted as a
forearc basin deposit that reflects the tectonic uplift and exhumation of the Andean margin

during the Paleocene (Jaillard et al., 2008).
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6.1.9.2 Apagua Formation

The Apagua Unit is a sedimentary formation that crops out in the Western Cordillera of
Ecuador. It consists of turbiditic shales, siltstones, and medium-grained sandstones that were
deposited in a backarc basin during the Paleocene to Eocene epochs(Egiiez & Bourgois, 1986)
.The sandstones are feldspathic and contain mafic minerals and lithic fragments, indicating a
mixed provenance from continental and oceanic sources. The Apagua Unit overlies the
Saquisili Unit, which is composed of basaltic lavas and breccias of oceanic plateau origin
(Vallejo et al., 2019). The Apagua unit consists of turbiditic shales, siltstones, and medium-
grained sandstones that contain feldspathic and mafic minerals and lithic fragments (Valarezo

etal., 2017).

The Apagua Unit records the accretion of the Pallatanga Block, a fragment of the
Caribbean Plateau that collided with the South American margin at ~73 Ma (Vallejo et al.,
2019)(Vallejo et al., 2019) . The collision resulted in the uplift and erosion of the plateau rocks
and the formation of a forearc basin to the west, where the Pifion Formation was deposited.
The Pifion Formation is another fragment of the Caribbean Plateau that was accreted later,
during the late Eocene(Vallejo et al., 2019). The Apagua Unit also received detrital input from
the Tandapi volcanic arc and its submarine continuation, the Macuchi arc, which were active
along the continental margin from the Late Cretaceous to the Eocene (Vallejo et al., 2019). The
Macuchi arc is considered to be an in situ arc that developed on continental crust, rather than

an allochthonous arc that was accreted as a separate terrane(Vallejo et al., 2019).
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6.1.9.3 Unacota Unit

The Unacota Formation is a geological unit of late Cretaceous age that consists of
bioclastic marine limestones within a sequence of siliciclastic turbiditic fans. It is located in the
Cordillera Occidental of central Ecuador, where it is part of the accreted oceanic terrane known
as the Pallatanga unit (Jaillard et al., 2004). The Unacota Formation is a Middle Eocene
limestone unit that crops out in the Cordillera Occidental of central Ecuador. It is part of the
Angamarca Group, which records the sedimentary evolution of the Ecuadorian foreland basin
during the onset of Andean shortening (Vallejo etal., 2021). The Unacota Formation has been
dated as Eocene based on biostratigraphic correlations with other units in the region (Jaillard
etal., 1990). The Unacota Formation is overlain by coarse-grained conglomerates of the Rumi
Cruz Formation, which mark a change in the sedimentary regime related to tectonic uplift and

erosion (Jaillard et al., 1990).

The Unacota Formation represents a transgressive-regressive cycle that reflects the
interaction between tectonic uplift, subsidence and sea-level changes in the Ecuadorian
foreland basin. The transgressive phase is marked by the deposition of the Saquisili Formation,
which records the eastward migration of fluvial systems due to the flexural loading of the
Andean thrust belt (Vallejo et al., 2021). The maximum flooding surface is represented by the
Unacota Formation, which indicates a marine ingression that covered most of the basin. The
regressive phase is marked by the deposition of the Apagua Formation, which records the

progradation of turbidite fans from the Andes towards the basin center (Jaillard et al., 2004).
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6.1.9.4 Rumi Cruz

The Rumi Cruz Formation is a clastic sedimentary unit that records a major change in
the paleogeography of the Western Cordillera of Ecuador during the Late Eocene. It consists
of coarse-grained sandstones and conglomerates that are partly subaerial and contain abundant
clasts of black cherts (Toro Alava & Jaillard, 2005). The Rumi Cruz Formation overlies the
mafic rocks of the Pallatanga Formation, which are interpreted as part of an oceanic plateau

accreted to the South American margin at ~73 Ma (Vallejo et al., 2019).

The origin of the Rumi Cruz Formation indicates a mixed source area composed of
oceanic plateau rocks, continental basement rocks of the Eastern Cordillera, and volcanic rocks
of the Tandapi-Macuchi arc (Toro Alava & Jaillard, 2005). The deposition of the Rumi Cruz
Formation was likely related to an upper Eocene accretion event that involved the collision of
another oceanic terrane with the Western Cordillera (Alava & Jaillard, 2003). This event caused
uplift and erosion of the previously accreted oceanic plateau and its associated volcanic arc, as
well as deformation and exhumation of the Eastern Cordillera(Vallejo et al., 2019). The
deposition of the Rumi Cruz Formation in the Western Cordillera of Ecuador during the upper

Eocene period can be attributed to the response of clastic sediments to the process of accretion.
6.1.9.5 El Laurel Unit.

The Laurel Formation is a geological unit that crops out in the Western Cordillera of
Ecuador, a mountain range that resulted from the accretion of an oceanic plateau and an
intraoceanic volcanic arc to the South American continental margin during the Late Cretaceous
(Vallejo et al., 2019). The Laurel Formation consists of submarine basaltic lavas and dolerites

that have oceanic plateau geochemical affinities, indicating their origin from the Caribbean-
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Colombian Oceanic Plateau (CCOP) that formed between 100 and 87 Ma (Reynaud et al.,

1999).

The Laurel Formation is overlain by island arc sequences that formed by westward
subduction beneath the CCOP, such as the Pujili Granite, the Rio Cala Group and the Naranjal
Unit, which have ages ranging from 85 to 72 Ma (Vallejo et al., 2019). The collision between
the CCOP and the South American Plate occurred at around 73 Ma, as indicated by provenance
analyses of Paleocene-Eocene sedimentary rocks that show detrital input from continental
sources (Vallejo et al., 2019). The collision also caused accelerated uplift and exhumation of
the Western Cordillera, as well as clockwise rotation of the coastal forearc region (Luzieux et

al., 2006)

6.2 Setting Units with Geochronology Time

Starting from the bottom of the Fig. 19, we see that the first Unit is the Paleozoic
basement, which is composed of metamorphic rocks such as gneiss and schist. This basement
is overlain by a series of sedimentary rocks including sandstone, shale, and limestone that make
up the Paleozoic to Mesozoic sequence. The next Unit is the Cretaceous to Oligocene sequence
which includes several formations such as the Pallatanga Formation, Yunguilla Formation,
Silante Formation, Pilalé Formation, and Saguangal Formation. The Pallatanga Formation
consists of sandstone and shale with minor amounts of conglomerate and volcanic rocks. The

Yunguilla Formation is composed of sandstone and shale with minor amounts of limestone.
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The Silante Formation consists mainly of volcanic rocks such as tuff and lava flows.
The Pilalé Formation includes volcanic rocks such as andesite and rhyolite along with
sedimentary rocks such as sandstone and conglomerate. Finally, the Saguangal Formation
consists mainly of sandstone with minor amounts of shale. The topmost Unit shown in Fig 19
is the Neogene to Quaternary sequence which includes several formations such as the Pliocene-
Pleistocene Chimborazo Volcanics, Late Pleistocene-Holocene Tungurahua Volcanics, Late
Pleistocene-Holocene Cotopaxi Volcanics, Late Pleistocene-Holocene Cayambe Volcanics,
Late Pleistocene-Holocene Chacana Volcanics, Late Pleistocene-Holocene Pululahua
Volcanics among others. These formations are composed mainly of volcanic rocks such as

andesite, basalt, and dacite. (Vallejo, 2007)

6.3 Relationship Between Units

- Pallatanga Block: This block is composed of various formations, including the
Pallatanga Formation, San Juan Unit, Pujili Melange and Granite, Totoras Amphibolite, and

Rio Cala Group. It is an important part of the Western Cordillera’s geology.

- Yunguilla Formation: This formation is found in tectonic blocks juxtaposed against
most other stratigraphic formations identified within the Western Cordillera. It is consistently
associated with the Pallatanga Formation along the eastern border of the Cordillera. The

Yunguilla Formation may be correlated with similar deposits in northern Peru.

- Silante Formation: This formation consists mainly of sandstones and shales with
minor conglomerates. It is found in several areas throughout Ecuador and has been dated to be

Late Cretaceous to Early Paleocene in age.

- Pilal6 Formation: This formation consists mainly of volcanic rocks such as tuffs,
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breccias, and lavas. It is found in several areas throughout Ecuador and has been dated to be
Late Cretaceous to Early Paleocene in age. - Saguangal Formation: This formation consists
mainly of sandstones and shales with minor conglomerates. It is found in several areas

throughout Ecuador and has been dated to be Late Cretaceous to Early Paleocene in age.

- Rio Cala Group: This group includes several formations such as La Portada
Formation, Mulaute Formation, Pilatobn Formation, Natividad For mation, and Rio Cala
Formation. These formations are important because they provide insight into the geological
history of Ecuador during the Late Cretaceous to Oligocene period. Overall, these units and
formations are significant because they help us understand the geological history of Ecuador
and provide insight into the tectonic processes that have shaped the country’s landscape over

millions of years.

Chapter 6.4. Stratigraphic Columns with Mineral Content.

6.4.1 The Geology and mineral content of the Yunguilla, Pilalo, and Silante Formations

The Pilalo and Silante formations show a clear difference in their composition, as they
came from volcanic sources. On the other hand, the Yunguilla Formation’s sediments from the
Campanian—Maastrichtian period originated from granitic and metamorphic sources that were

part of a continental plate. These sources now form the Eastern Cordillera.

Unit 1: Yunguilla Formation. The Yunguilla Formation, depicted as the earliest unit in
Figure 20, primarily comprises sandstones with lesser proportions of siltstones and mudstones.
These sedimentary rocks were laid down during the Campanian-Maastrichtian period and are
believed to have originated from granitic and metamorphic sources within a continental plate

setting. The sedimentary rocks in this Unit were shed from the Eastern Cordillera, which was
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uplifted during the Late Cretaceous to Paleocene period. (Vallejo et al., 2020)

Unit 2: Pilalo Formation The Pilalo Formation is the middle Unit in Figure 20 and
consists mainly of sandstones, siltstones, and mudstones with minor amounts of conglomerates.
These rocks were deposited during the Paleocene period and are interpreted to have been
derived from a tholeiitic volcanic arc that formed on top of an oceanic plateau basement. The
sedimentary rocks in this Unit were deposited by turbidity currents that flowed down submarine

canyons into a deep marine basin (Vallejo et al., 2020).

Unit 3: Silante Formation The Silante Formation is the youngest Unit in Figure 20 and
consists mainly of conglomerates with minor amounts of sandstones, siltstones, and mudstones.
These rocks were deposited during the Miocene period and are interpreted to have been derived
from volcanic sources. The sedimentary rocks in this Unit were deposited by alluvial fans that

formed at the base of steep mountain fronts (Vallejo et al., 2020)
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6.4.2 Mineral Assemblages in Upper Cretaceous to Neogene Stratigraphy

Mulaute, Pilaton, and Natividad formations: These formations belong to the Rio Cala
Group and consist of sedimentary rocks from the Coniacian to Campanian periods. The heavy
mineral assemblages in these rocks suggest that they were sourced from a volcanic arc and

were deposited in an intraoceanic setting, far from continental influence.

Pilalo and Saguangual formations: These formations belong to the Pallatanga Group
and are geochemically equivalent to the Pifion Formation. The heavy mineral assemblages in
these rocks suggest that they were sourced from a volcanic arc and were deposited in an
intraoceanic setting. Macuchi Formation: This formation consists of sedimentary rocks from
the Eocene to Oligocene periods. The heavy mineral assemblages in these rocks suggest that
they were sourced from a volcanic arc and were deposited in an intraoceanic setting. (Vallejo

etal., 2019)

Apagua, Laurel, and Rumi Cruz units: These units belong to the Angamarca Group and
consist of sedimentary rocks from the Oligocene to Miocene periods. The heavy mineral
assemblages in these rocks suggest that they were sourced from metamorphic rocks, with some
volcanic-derived minerals in the Apagua unit. Silante Formation: This formation consists of
sedimentary rocks from the Miocene period. The heavy mineral assemblages in these rocks
suggest that they were sourced from a volcanic arc and were deposited in an intraoceanic

setting. (Vallejo et al., 2019)

In summary, the mineral content and geology relationship of the formations and units
in the Western Cordillera of Ecuador suggest that they were sourced from a volcanic arc and

were deposited in an intraoceanic setting, with some contributions from metamorphic rocks.
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CONCLUSIONS

The Western Cordillera of Ecuador is a complex tectonic unit that resulted from the
accretion of oceanic terranes and island arcs to the South American continental margin

during the Mesozoic and Cenozoic.

The Pallatanga Block in Ecuador is composed of several formations that provide insight
into the tectonic processes that have shaped Ecuador's landscape over millions of years.
These formations include the Pallatanga Formation, San Juan Unit, and Rio Cala Group.
The Rio Cala Group itself includes several formations such as La Portada Formation,

Mulaute Formation, Pilaton Formation, Natividad Formation, and Rio Cala Formation.

A vast range of Late Cretaceous to Early Tertiary accreted oceanic igneous terranes,
including island-arc sequences and their associated back-arc basins, oceanic plateau
material, calc-alkaline arc rocks erupted through thickened oceanic plateau, and more, are

preserved in Western Ecuador.

Recent advances in techniques such as zircon dating, provenance analysis, isotopic dating,
and apatite fission tracking have helped to better understand the nature, origin, and
evolution of the different terranes in the Western Cordillera, as well as their geodynamic

implications for the continental growth of Ecuador.

e Western Ecuador has undergone two distinct accretionary stages. The first stage was
the accretion of the Pallatanga Unit, an oceanic plateau that occurred during the Late
Cretaceous and lasted for around 10 to 20 million years. The second stage occurred during

the early to late Eocene and was characterized by the accretion of the Pifion and
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Pedernales-Esmeraldas oceanic plateau sequences as well as the Naranjal and Macuchi

island arcs.

The application of radiometric dating techniques has improved the precision and resolution
of stratigraphic correlations in the Western Cordillera, and has helped to constrain the
timing and duration of some rock units, and the use of these techniques has also allowed
for the identification of different tectonic events that have affected the Western Cordillera,
such as the accretion of oceanic terranes, the formation of magmatic arcs, and the

development of extensional basins.

Geochronological data from the Western Cordillera has revealed two main phases of
cooling. The first phase is related to post-magmatic thermal relaxation after early and
middle Miocene magmatism. The second phase is related to tectonically driven rock uplift
and exhumation after 6 million years ago, coinciding with the onset of subduction of the

Carnegie Ridge.

The Western Cordillera of Ecuador is a unique and important geological region that
deserves further attention and study to better understand its role in the tectonic evolution

of the Andean margin and the growth of the South American continent.
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RECOMMENDATIONS

More radiometric dating is needed from various rock types, such as sedimentary and
metamorphic rocks, and different regional locations better to understand Western

Cordillera’s thermal history and deformation patterns.

More in-depth geochemical and isotopic studies are needed to understand better the
origins and magmatic development of volcanic rocks from the oceanic plateau and island

arc sequences.

It is necessary to verify the rotational histories of the Western Cordillera, more
paleomagnetic studies should be conducted on various rock units and structural domains

within it

To better understand the Western Cordillera’s crustal structure and dynamics, geological
data should be combined with geophysical data (such as seismic, gravity, and magnetic)

and numerical models.
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