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Abstract

In the light of new technologies to fight climate change, MOFs are proven to be quite useful. Metal-

organic frameworks (MOFs) are porous materials formed by linking organic units with metal clusters as

nodes (SBU). Large porosity and surface area values make them a good candidate for any application

where storage is involved (e.g., drug delivery, water harvesting, hydrogen and methane storage, carbon

dioxide capture, and catalysis applications.) In this work, we have presented spin-density functional theory

calculations (spin-DFT) to study the electronic properties of three di�erent MOFs based on copper SBU

and functionalized linker ABDC-X, X = F, Cl, Br (cf. Fig 3.7 from ref1) to assess photocatalytic applica-

tions. Electronic relaxation with meta-GGA functionals (r2SCAN + rVV10) yielded an antiferromagnetic

phase (AFM2) as the optimal state. All AFM2 structures show band gap energies inside the visible spectra,

Eg = 2.5 � 2.7 eV showing good photoabsorption capabilities. Spin projected atomic density of states

calculated with hybrid functional HSE06 displays ligand-to-metal (LMCT) and ligand-to-ligand (LLCT)

charge transfer band gap excitations are present in all stable MOFs, which creates charge-separated states

essential for photocatalysis. Aligned band edge positions against redox potentials of water splitting and

CO2 reduction enabled MOF photocatalysis activity evaluation. Our findings encourage the application

of copper based MOF functionalized with ABDC-X for photocatalytic water splitting and CO2 reduction.

Future research will focus on ABDC-X functionalization with X = I, NH2, NO2, and explore other type of

defects that could present even better electronic properties.

Keywords: MOF, DFT, magnetism, ABDC, LMCT, photocatalysis, CO2 reduction.
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Resumen

A la luz de las nuevas tecnologías de lucha contra el cambio climático, los MOFs han demostrado ser

bastante útiles. Las estructuras metal-orgánicas (MOF, por sus siglas en inglés) son materiales porosos

formados por la unión de unidades orgánicas con clústeres metálicos como nodos (SBU). Sus altos valores

de porosidad y área superficial los convierten en buenos candidatos para cualquier aplicación que implique

almacenamiento (por ejemplo, entrega de fármacos, captación de agua, almacenamiento de hidrógeno y

metano, captura de dióxido de carbono, así como también aplicaciones de catálisis). En este trabajo,

se presenta cálculos de teoría funcional de densidad de espín (spin-DFT) para estudiar las propiedades

electrónicas de tres MOFs diferentes construidos a partir de nodos de cobre y ligando ABDC-X fun-

cionalizado con X = F, Cl, Br, para evaluar sus aplicaciones fotocatalíticas. La relajación electrónica con

funcionales meta-GGA (r2SCAN + rVV10) dio como resultado que la fase antiferromagnética (AFM2)

es la más óptima. Todas las estructuras AFM2 muestran energías de banda dentro del espectro visible,

Eg = 2, 5 � 2, 7 eV mostrando buenas capacidades de fotoabsorción. La densidad de estados atómica

proyectada de spin calculada con el funcional híbrido HSE06 muestra que las excitaciones de carga de

ligando a metal (LMCT) y de ligando a ligando (LLCT) están presentes en todos los MOF estables, lo

que crea estados separados de carga esenciales para la fotocatálisis. Alineación de las posiciones de las

energías de banda con los potenciales redox de división de agua y reducción de CO2 permitió la evaluación

de la actividad de fotocatálisis de los MOFs. Nuestros resultados alientan la aplicación de MOF basados en

SBU de cobre y ligando ABDC-X funcionalizado con X = F, Cl, Br para la división fotocatalítica del agua

y la reducción de CO2. La investigación futura se centrará en la funcionalización de ABDC-X, X = I, NH2,

NO2, así como explorar otros tipos de defectos que podrían presentar propiedades electrónicas aún mejores.

Palabras claves: DFT, magetismo, ABDC, LMCT, fotocatálisis, reducción de CO2.
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Chapter 1

Introduction

The manipulation of materials has always characterized how we live and progress. We have even named

entire periods after the predominant material used (Stone, Bronze, Iron ages). The development of modern

technology is based mainly on semiconductors, and some may not be wrong to call the current period The

Silicon Age. However, as science and technology progress, we explore di�erent and more complex materi-

als. Nanoscience combines the fields of physics, chemistry, and nanotechnology to develop nanomaterials

with applications in energy, the electronic industry, solar cells, and biotechnology, to name some of the

fields.

The history of nanomaterials can be traced back to the early 20th century, with the proposal of the

existence of ’nanoparticles’ by Richard Feynman in his famous 1959 seminar ’There’s Plenty of Room

at the Bottom’4. However, it was not until much later that a proper definition categorized materials of

dimensions in the range of 1 to 100 nm as nanomaterials. The invention of various spectroscopic tech-

niques sped up innovation and research in nanotechnology. IBM researchers developed scanning tunneling

microscopy (STM) in 1982, and with STM, it became feasible to obtain images of single atoms on surfaces.

Atomic force microscopy (AFM) was invented in 1986, and it is regarded as the most crucial scanning

probe microscope technique which fed the current progress of materials science at the time. Nowadays,

we have vast ways of producing and characterizing nanomaterials, both experimental and computationally.

Density-functional theory (DFT) is a powerful computational approach to study nanostructures, molecules,

solids, surfaces, and interfaces by solving the electronic structure using quantum mechanics5.

Metal-organic frameworks (MOFs) are a relatively new kind of material that has been gaining pop-

1
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ularity due to their diverse applications in the storage of fuels (hydrogen and methane), carbon dioxide

capture6, and catalysis applications7, among others8. MOFs result from linking metal ions or clusters,

also called secondary building units (SBUs), with organic linkers. The flexibility of their geometry,

size, and functionality has allowed a vast landscape of materials with modular properties, sharing, how-

ever, one similarity: crystalline structures with a typical porosity greater than 50% of the total volume

as well as surface area values of 1000 to 10000m2/g,6. In recent years, the number of reported MOF

structures has increased exponentially. Although at first, linkers such as bipyridines and nitriles were

used, they were later replaced by charged chelating linkers with binding groups such as carboxylates,

phosphates, tetrazolates, pyrazolates, catecholates, and imidazolates1. These organic linkers can have

2 to 12 points of extension, and we refer to them as ditopic, tritopic, tetratopic, etc. The number of

extensions gives the number of connections a linker can make. The base of the organic linker used in this

work uses two benzene as extending units connected by a nitrogen-nitrogen bridge and have a carboxyl

group at each end, which is a ditopic linker with an o�set in its geometry due to the nitrogen-nitrogen bond.

The secondary building units (SBUs) are typically polynuclear clusters of metal ions, where the bind-

ing groups of the linkers are an intrinsic part of these units. In the structures of carboxylate-based MOFs,

as the one being studied in this work, the carboxylates can bind to the metal centers in di�erent ways:

ionic bonds, unidentate, symmetric chelating binding modes, and a variety of bridging binding modes,

where the nature of the R-COO-M bond ranges from purely ionic to partially covalent. The connectivity of

SBUs ranges from 3 to 12. The precise geometry of the linker and the SBU defines the resulting topology

of the framework9. In this work, we use a dinuclear paddle wheel copper-based SBU, in which each

ion is coordinated in a square-pyramidal fashion by four oxygen of the bridging carboxylates, periodic

representation can be seen in Fig. 1.1

On the other hand, inspired by the natural photosynthesis of plants, photocatalytic CO2 reduction is

also known as artificial photosynthesis that converts CO2 through solar energy to produce carbon-based

fuels, such as CO, CH3OH, HCOOH, CH4 and other chemicals10. In this context, MOFs have attracted

great attention of researchers in the fields of material and photocatalysis as they show certain similarities

to semiconductors.
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1.1 Problem Statement

Humankind is probably facing its greatest problem, climate change, a�ecting our planet and its inhabitants

completely. There is no excuse not to be involved in the path to avoid a climate disaster. One way to

tackle global warming is to change how we produce, consume, and recycle energy. In this context, new

technologies are being created every day. Metal-organic frameworks (MOFs) have been considered a good

option for emerging technologies such as carbon capture and storage, water harvesting11, catalysis and

photovoltaic materials among others8.

In this work, we study the electronic structure of copper-based MOF Cu2(CO2)4 with the organic linker,

(E)-4,4’-(diazene-1,2-diyl)bis(2-methylbenzoic acid), which we’ll call by its abbreviation H2ABDC (cf.

Fig 3.7 from ref1), functionalized by monosubstitution for photocatalytic purposes.

1.2 General and Specific Objectives

The main goal of this thesis is to study the properties of a metal-organic framework based on a 4-

connecting dinuclear paddle-wheel copper-based secondary building unit, Cu2(CO2)4, and the variations

of the functionalized organic linker H2ABDC-X, where substituent X = F, Cl, Br.

Specifics objectives of this work include:

• Describe the theoretical background of DFT including spin-polarized calculations and apply it to

study metal-organic framework systems.

• Compute mechanical properties and stability of MOFs studied in this work considering di�erent

magnetic phases.

• Predict the electronic structure of MOFs using spin-polarized DFT calculations employing meta-

GGA and hybrid functionals

• Predict the valence and conduction band edge energy positions respect to the vacuum energy with

electronic structure calculations using hybrid functionals.

• Screen out potential candidates for photocatalysis based on redox potential energy levels.
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1.3 Overview

The first chapter states the problem and the motivation to execute this work. Chapter 2, will state the basis

and the development of density-functional theory. To make the analysis simpler, some approximations

will be performed. Finally, since the results performed with DFT would depend on the type of functionals

we use to compute the electronic structure, these will also be explained. In Chapter 3, I will describe the

computational procedure, that is, DFTB+ and VASP calculations. Chapter 4 focuses on the results and

discusses the three di�erent MOFs structures. Finally, in Chapter 5, I present the conclusions and outlook

of this work.
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Figure 1.1: 3D periodic view of MOF using a copper SBU connected by functionalized ABDC linker.

Color code: gray, C; red, O; white, H; salmon, Cu; blue, N; light green, F.





Chapter 2

Theoretical Background

This chapter is mainly dedicated to the foundations and the formalism of density functional theory. In the

same way, how we can apply these concepts to metal-organic frameworks and the procedure to perform

calculations using the Vienna Ab Initio Package.

2.1 Many-Body Schrödinger equation

From quantum mechanics, we learn that in order to understand the behavior of quantum particles we must

solve the Schrödinger equation and determine the wavefunction,  (r), where r denotes position. If we

only consider the stationary electronic states, then we are left with the time-independent version of the

Schrödinger equation (TISE), the TISE has the following form:

(K + V) = E (2.1)

where K and V represent the kinetic and potential energy and E is the total energy eigenvalue for the

stationary state described by the wavefunction  . For a given electron eqn 2.1 can be written as:

"
p2

2me
+ V(r)

#
 (r) = E (r) (2.2)

where me is the electron mass and p is the quantum mechanical momentum operator. Suppose now that we

add many electrons and nuclei, we get what it is called the many-body wavefunction,  , which depends on

each electron and nuclei’s position. For N electrons and M nuclei their coordinates are given by r1, r2, ..., rN

and R1,R2, ...,RM, respectively and so we have:

7



8 �.�. MANY-BODY SCHRÖDINGER EQUATION

 =  (r1, r2, ..., rN ; R1,R2, ...,RM) (2.3)

Now, if we consider the many-body wavefunction,  , instead of the single-particle wavefunction,  ,

eqn 2.1 takes the form of:

2
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 = Etot  

(2.4)

where the first two terms represent the kinetic energy of each electron and nuclei, respectively. In the

same way, the last three terms represent the potential energy between electron-electron, nucleus-nucleus

and electron-nucleus, respectively; notice the excluded indices, i = j, since an electron does not repel itself

and we divide the summation by two to avoid double counting. Eqn 2.4 is the many-body Schrödinger

equation12. Excluding the time dependence, the interaction with external electromagnetic fields as well

as relativistic corrections eqn 2.4 represents almost everything we need to know about the behavior of

materials. At this point, should we be to solve eqn 2.4 and find the ground-state of the system (lowest

energy), we would be able to infer elastic, thermal and electronic properties of materials. However, solving

this equation is no easy task, and most of the times it is practically impossible which is why we make some

approximations to it.

In addition to the approximations done to solve eqn 2.4, we also like to express it in a more readable

way. The values of ~, me, e, and ✏o are fundamental constants and do not depend on the particular material

under analysis. Using a semi-classical argument we set the value of the electron charge, e = 1 and we

define the Hartree energy as the Coulomb energy between an electron and a proton:

EHa =
e2

4⇡✏oao
(2.5)

where ao is the Bohr radius. Then, we can find that the typical size of the potential energies in eqn 2.4

is of the order of EHa. In the same way, we can get to the conclusion that the kinetic energy of eqn 2.4 is

also of the order of EHa. Therefore, by measuring energies in units of EHa we can simplify Schrödinger

equation to:
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2
66666664�
X

i

r2
i

2
�
X

I

r2
I

2MI
+

1
2

X

i, j

1
|ri � r j|
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77777775 = ETOT  (2.6)

with the Hartree atomic units:

1Ha = 27.2114 eV = 4.3597 · 10�18J

1 bohr = 0.529177Å

1 a.u.o f mass = 9.109383 · 10�31kg

Other approximations now applied to eqn 2.6 include the clamped nuclei approximation, in which the

nucleus is thought to be so heavy compared to electrons, MI ! 1, that we can neglect its kinetic energy

and the Coulomb interaction between nuclei, thus Vn�n is simply a constant. We can then rewrite eqn 2.6

as:

2
66666664�
X

i

r2
i

2
+
X

i

Vn(ri) +
1
2

X

i, j

1
|ri � r j|

3
77777775 = E ,

Vn(r) = �
X

I

ZI

|ri � RI |
(2.7)

2.1.1 Hartree-Fock equations

Eqn 2.7 is now a much simpler equation to deal with, however, the last term on the left hand side still

represents a problem. What if we could ignore the electron-electron interaction but still account for the

Coulomb repulsion in some form? Such a thing is obtained when we consider the independent electron

and mean field approximations; we could write the many-body wavefunctions as a Slater determinant and

obtain the single-particle wavefunctions as solutions of the simpler single-particle Schrödinger equation.

In the same way, if we go back to classical electrostatics for a moment, we remember that a distribution

of charge, n(r), will generate an electrostatic potential of the Poisson’s form which we call the Hartree

potential:

r2VH(r) = �4 ⇡ n(r) (2.8)
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Since every independent electron in the system experiences this average potential, we can write the

Schrödinger equation as:

"�r2

2
+ Vn(r) + VH(r)

#
�i(r) = ✏i �i(r) (2.9)

where, �i(r), are the wavefunctions for each single electron. This method is better explained by

Hartree13 14 15. Now, if we we minimize the energy, E, with respect to the variations of the wavefunctions

�i(r) we introduce the non-local potential, VX(r, r0), that arises mainly from Pauli’s exlusion principle, and

we obtain the Hartree-Fock equations:

"�r2

2
+ Vn(r) + VH(r)

#
�i(r) +

Z
dr0VX(r, r0)�i(r0) = ✏i �i(r), (2.10)

n(r) =
X

i

|�i(r)|2, (2.11)

r2VH(r) = �4 ⇡ n(r) (2.12)

with:

VX(r, r0) = �
X

j

�⇤j(r
0)� j(r)

|r � r0| (2.13)

where the sum covers all the occupied single-particle states. The function VX is also called the Fock

exchange potential12. It is important to remember that the potentials, VH and VX , come from the result of

eliminating the electron-electron potential, Ve�e, in eqn 2.7. However, the description of the electrons is

not complete, it is intuitive to think that the probability of finding an electron somewhere decreases if there

is another electron nearby, we describe this repulsion yet with another potential, Vc(r), where ’c’ stands

for correlation. And so the single-particle Shrödinger equation reads:

"�r2

2
+ Vn(r) + VH(r) + VX(r) + Vc(r)

#
�i(r) = ✏i �i(r) (2.14)

2.2 Density Functional Theory

Now that we have reduced the complexity of the Schrödinger equation, that is, transforming from 3N-

dimensional many-body equation into 3-dimensional N equations, we are ready to analyze the total energy

of the system.
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2.2.1 Hohenberg-Khon theorem

Remembering the Hamiltonian of eqn 2.7:

Ĥ(r1, r2, ..., rN) = �
X

i

r2
i

2
+
X

i

Vn(ri) +
1
2

X

i, j

1
|ri � r j|

(2.15)

we notice that the structure of Ĥ does not depend on the material under consideration, i.e. any variation of

the energy, E, of the system is associated with variations in the many-body wavefunction, mathematically:

E = F [ ] (2.16)

Hohenberg and Khon developed this statement16 and concluded that:

1. The ground-state electron density, n0(r), of a system of interacting electrons determines uniquely the

external potential V(r) in which the electrons move, and therefore the Hamiltonian and all physical

properties of the system.

2. The ground-state energy E0 can be written as a functional of ground-state electron density

E0 = F [n0] (2.17)

3. There exists a functional F[n] such that

F [n] =
Z

dr n(r) Vn(r) +
D
 
���T̂ + Ŵ

��� 
E

;

T̂ = �
X

i

1
2
r2

i , Ŵ =
1
2

X

i, j

1
|ri � r j|

(2.18)

2.2.2 Kohn-Sham equations

As we saw in the previous section, Hohenberg and Khon tell us that the ground-state energy E0 can be

written as a functional of ground-state electron density. Nonetheless, this theorem does not mention how

to construct such functional. It was Khon and Sham’s idea17 to split the second term in eqn 2.18 into the

kinetic and Coulomb energy of independent electrons plus an extra term accounting for the exchange and

correlation energy, Exc:

E = F[n] =
Z

dr n(r) Vn(r) �
X

i

Z
dr �⇤i (r)

r2

2
�i(r) +

1
2

"

dr dr0 n(r) n(r0)
|r � r0| + Exc[n] (2.19)
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Now the construction of an entire functional F[n] has been reduced to a much simpler functional,

Exc[n], the exchange and correlation contribution. If we knew this, then calculating the ground-state

energy based on electron density would be straightforward. The main problem now remains with how we

determine the electron density. It turns out that the function that minimizes the total energy, E = F[n], is

actually the ground-state density, n0. This interesting fact is referred to as the "Hohenberg-Kohn variational

principle"16.

�F[n]
�n

�����
n0

= 0 (2.20)

After solving eqn 2.20 and requiring the wavefunctions to be orthonormal we get to an equation very

similar to eqn 2.14:

"
�r

2

2
+ Vn(r) + VH(r) + Vxc(r)

#
�i(r) = ✏i �i(r) (2.21)

with the kinetic, nuclear, and Hartree potentials �r2

2 , Vn, VH plus an extra term Vxc which is called the

energy and correlation potential, given by:

Vxc(r) =
�Exc[n]
�n

�����
n(r)

(2.22)

The set of equations resulting from eqn 2.21 are the Khon-Sham equations and by solving them we can

find many materials’ properties. Nonetheless, since there isn’t until now a known functional that perfectly

satisfies eqn 2.21, we instead construct a range of functionals that approximate the exchange-correlation

term as we will see in the next section.

2.2.3 DFT Functionals

In practice, the Kohn-Sham theory is used to set up the ground-state electron density of interacting

electrons in the presence of a static potential from density functions. Nevertheless, constructing an

accurate exchange-correlation functional, Exc[n] demands great e�ort18. Such functionals are divided into

their accuracy and the computational cost they demand. This hierarchy of electronic structure approaches

is known as Jacob’s ladder19, see Table 2.1.

The bottom or first rung is made up of local (spin) density approximation or LDA (LSDA) functionals,

these assume a homogeneous distribution of electrons throughout the material, i.e. they best apply to

metal-like materials, those with available energy states at the Fermi level. Examples of LDA functionals

include VWN20, PZ8121.



CHAPTER �. THEORETICAL BACKGROUND 13

Table 2.1: Jacob’s ladder of DFT functionals adapted from Mancuso et al2. As accuracy increases so does

the computational cost. In this table, the computational cost increases from bottom to top. Some common

functionals are also listed.
Chemical Accuracy Functionals

Beyond DFT

Double Hybrid B2K-PLYP, wB97X-2

Hybrid HSE06, B3LYP

Meta-GGA M06-L, TPSS

GGA PW91, PBE

LDA VWN, PZ81

Hartree Fock

The next rung in Jacob’s ladder pertains to generalized gradient approximation functionals (GGA). Since

these functionals consider the electron density as well as its gradient these apply to more complicated

systems such as molecules, 2D materials, interfaces, MOFs, etc. Common GGA functionals include

PBE22 and PW9123. However, although GGA functionals have a better description of the electronic

structure they still are not able to describe the electron exchange and correlation correctly. Since most

MOFs are systems containing spin-polarized, metal-based nodes, it is mandatory to account for exchange

and correlation corrections in their electronic structure. Which meta-GGA functionals do when including

the first and second derivatives of the electron density (e.g. M06-L24 and TPSS25).

Restored-regularized strongly constrained and appropriately normed (r2SCAN)

For a meta-GGA functional to be accurate and physically meaningful, such that it is used to correctly

describe a wide range of chemical and physical systems, it must satisfy all the 17 exact constraints known�.

SCAN is the first meta-GGA non-empirical semilocal functional to do so26. A semilocal approximation

can be written as:

Exc[n", n#] =
Z

dr n ✏xc (n", n#,rn",rn#, ⌧", ⌧#) (2.23)

where the functional not only depends on spin density, n", n#, but also on its gradient, rn",rn#, as

well as the kinetic energy density, ⌧. The SCAN functional presented numerical di�culties, which is

�Such constraints are listed in the supplementary material of the work of Sun et al. 26
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why it was later ’regularized’ for better computational performance27. However, in doing this five of

the exact conditions SCAN was designed to obey were broken. rSCAN also hinders the generation of

pseudopotentials and thus loses accuracy in atomization energies resulting in MAE (mean absolute error)

values greater than the original SCAN functional for a specific set of molecules28. Restored-regularized

or r2SCAN improves numerical e�ciency and recovers exact constraint adherence as well as presenting

convergence with fewer iterations than SCAN29. In this work, because we are working with highly porous

systems we need to account for van der Waals (vdW) interaction. r2SCAN is good for intermediate-range

but it misses the long-range interaction which is why we use the r2SCAN + rVV10 functional.

Revised non-local van der Waals density functional (rVV10)

For structures such as molecules, COF, or MOFs, dispersion interactions such as vdW must be taken into

account in DFT calculations. The VV10 functional developed by Vydrov and Voorhis30 is a non-local

van der Waals functional using only the electron density as input to describe the intra- and inter-molecular

dispersion interaction. In this work, we use the revised form of the VV10 functional (rVV10) that allow

us to work in a plane wave framework31. In the same way, It still maintains an accurate description of the

structural properties of representative ionic, covalent, and metallic solids.

Heyd-Scuseria-Ernzerhof (HSE06)

The next two rungs of Jacobs’s ladder pertain to hybrid functionals. Hybrid functionals include a fraction of

exact (Hartree-Fock) exchange mixed with more computationally e�cient semi-local exchange-correlation

functionals. The HSE functional can be also thought of as the addition of the PBE functional with 25% of

HF exchange developed by Heyd, Scuseria and Ernzerhofwhen32. Upon addition of a screened potential,

it becomes the HSE06. This functional already describes the long and range interactions, however, it is

more computationally demanding. For this reason, it will be used in the final step to find the density of

states and band gap (HOMO - LUMO) once we have found the most stable structure using the r2SCAN +

rVV10 functional.

2.3 Density Functional Theory and magnetic materials

Magnetism is also an important property of materials that has a wide range of applications in various

fields, including spintronics, data storage, energy conversion, as well as biomedical technologies. To dwell



CHAPTER �. THEORETICAL BACKGROUND 15

on the theory of magnetism the reader can refer to Kittel or Blundell33 34. In this section, we will see how

density functional theory includes magnetism to perform spin-DFT calculations.

2.3.1 The Dirac equation and Spin

Let us consider a single electron in an electromagnetic field. Electrodynamics tells us that the magnetic

field, B(r,t), and electric field, E(r,t) can be written in terms of a vector A(r,t) and a scalar function, '(r,t):

B(r, t) = r ⇥ A(r, t), E(r, t) = �r'(r, t) � @A(r, t)
@t

(2.24)

then, the Hamiltonian of an electron in an electromagnetic field can be expressed as:

Ĥ =
1

2me
(p + eA)2 � e' (2.25)

The quantum generalization of eqn 2.25 is:

i~
@

@t
 (r, t) =

"
1

2me
(p + eA)2 � e'

#
 (r, t) (2.26)

where p is the quantum mechanical momentum operator and  (r, t) is the electron wavefunction.

Equation 2.26 is the most general form of the time-dependent Schrödinger equation for an electron in an

electromagnetic field. However, it is not invariant under the Lorentz transformation, that is, it doesn’t obey

Einstein’s special relativity. In order to circumvent this problem, Dirac proposed a more general version

of the Schrödinger equation satisfying two postulates35 36: i) by construction the Dirac equation obeys the

principles of special relativity, and ii) at velocities, v << c, the Dirac equation reduces to eqn 2.26, then

the Dirac equation is:

i~
@

@t
 (r, t) =

h
c↵ · (p + eA) � e' + �mec2

i
 (r, t) (2.27)

where the wavefunction, , has now become a array of four functions:

 (r, t) =

2
666666666666666664

 (r, t; 1)
 (r, t; 2)
 (r, t; 3)
 (r, t; 4)

3
777777777777777775
, with  (r, t) =

2
666664
 (r, t; 1)
 (r, t; 2)

3
777775 and  (r, t) =

2
666664
 (r, t; 3)
 (r, t; 4)

3
777775

In the same way, ↵ and � are both 4 ⇥ 4 matrices:
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↵ =

0
BBBBB@
0 �

� 0

1
CCCCCA , � =

0
BBBBB@
1 0
0 �1

1
CCCCCA

where 0 is a 2 ⇥ 2 matrix of zeros and 1 is the 2 ⇥ 2 identity matrix. The quantity � is also a 2 ⇥ 2
matrix, called Pauli matrices, and are defined as follows:

�x =

0
BBBBB@
0 1
1 0

1
CCCCCA , �y =

0
BBBBB@
0 �i
i 0

1
CCCCCA , �z =

0
BBBBB@
1 0
0 �1

1
CCCCCA (2.28)

Considering only stationary solutions of eqn 2.27 after some algebra we get to the expression12:

"
1

2me
(p + eA)2 � e' +

2µB

~
S · B
#
 = E (2.29)

This equation is the Pauli equation37. The most important message to take home is that the last term

of the left side of eqn 2.29 is similar to the form of magnetic coupling, to which we can say the electron

has an intrinsic degree of freedom somehow similar to an angular momentum.

2.3.2 Spin in Density Functional Theory

Similarly, as to Section 2.2, we can reach an equation of the form of eqn 2.21 with the inclusion of the spin

with the idea of the Hohenberg-Kohn theorem and the variational principle. Since the Dirac equation (eqn

2.27) is a a matrix di�erential equation written in the four components of the Dirac spinor, it is intuitive

to think that the scalar electron density of standard DFT will be replaced by a four-component function

in relativistic DFT. Rajagopal and Callaway proved that the total energy of a system of electrons in its

ground-state is a unique functional of the ’relativistic 4-current Jµ(r)’38. Jµ(r) encloses three quantities:

the electron density, n(r), the electron spin density, s(r) and the electron current density. Spin-density

functional theory only considers the electron density and spin density contribution of Jµ(r), i.e., the total

energy of the system is now a functional of the electron and spin density:

E = G[n(r), s(r)] (2.30)

we can write these two quantities in terms of a compact object called density matrix defined as:

n↵ � (r) =
X

i

�⇤i (r;↵) �i(r; �) (2.31)
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where ↵ and � are integers of value 1 o 2 to identify the spinor components. Then the functional of the

density matrix representing the energy in the ground-state is:

E = G[n↵ � (r)] (2.32)

Similarly as to standard DFT, we can apply the formalism of Khon-Sham saying that the density matrix in

its ground-state, n0
↵ �, minimized the functional, G:

�G[n↵ �]
�n↵ �

������
n0
↵ �

= 0 (2.33)

In the same way, if we require the spinors to be orthonormal we obtained a relation similar to eqn 2.21

"
�r

2

2
+ Vn(r) + VH(r) + Vxc(r) + µB � · Bxc(r)

#
 i(r) = ✏i i(r) (2.34)

This expression represents the Khon-Sham equations for spin-DFT. Here the exchange and correlation

magnetic field, Bxc(r), is generated by the presence of each electron’s magnetic field. This extra field tends

to align the spin of the electrons and may give magnetic order to the system. As we will see later in Section

3, we have considered four types of spin alignment in our structure for spin-DFT calculations.

2.4 Computational methods

2.4.1 Plane Waves

The reliability of DFT calculations depends not only on the structure or the functionals chosen to include

exchange-correlation activity but also on the basis set the wavefunction is decomposed on. In solids state

physics, the most common basis set is plane waves, this is what we call the Bloch’s theorem

 nk(r) = eik·r unk(r) (2.35)

In VASP, the plane waves are used to represent the wavefunctions of the electrons in the crystal lattice.

The electron density is then calculated by summing over the contributions of all occupied states. The plane

wave basis set is constructed by selecting a maximum kinetic energy cuto� for the electrons. This cuto�

determines the maximum energy that an electron can have in the system, and thus the maximum frequency

of the plane waves. One of the advantages of using plane waves in DFT calculations is that they form a

complete basis set. This means that any electron density can be represented as a linear combination of
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plane waves. This completeness property ensures that the DFT calculations are accurate, as any deviation

from the exact solution can be systematically reduced by increasing the size of the plane wave basis set.

2.4.2 Pseudopotentials

In electronic structure calculations, the solution of the Schrödinger equation is often limited by the

computational cost of including all the atomic electrons in the calculations. However, for predicting

material properties we do not necessarily have to account for the core electrons, only those on the outer part

of the atom. The use of pseudopotentials can reduce this computational cost by treating the core electrons

as an e�ective potential instead of explicitly including them in the calculations. This approach has the

advantage of enabling larger systems to be modeled with less computational cost. The pseudopotential

is typically constructed using the all-electron wavefunctions and the true atomic potential as a starting

point. The process involves removing the core electrons from the wavefunctions and replacing the atomic

potential with an e�ective potential that reproduces the valence electron wavefunctions. The resulting

pseudopotential is then used to solve the Schrödinger equation with fewer electrons making the calculation

faster.

2.4.3 Vienna ab initio Simulation Package (VASP)

The Vienna Ab initio Simulation Package (VASP) is a computer program based on the density functional

theory for atomic scale materials modeling. VASP uses the projector-augmented wave (PAW) method to

compute an approximate solution to the many-body Schrödinger equation. Furthermore, Green’s functions

methods (GW quasiparticles, and ACFDT-RPA) and many-body perturbation theory (2nd-order Møller-

Plesset) are also available in VASP.

To determine the electronic ground-state, VASP makes use of e�cient iterative matrix diagonalization

techniques such as the residual minimization method with direct inversion of the iterative subspace (RMM-

DIIS) or blocked Davidson algorithms. These are coupled with highly e�cient Broyden and Pulay density

mixing schemes to speed up the self-consistency cycle39.

2.4.4 Density functional tight binding (DFTB+)

Density Functional Tight Binding (DFTB+) is a computational software package based on the Density

Functional Theory Tight Binding approach. It is designed to simulate the electronic structure of large

systems such as molecules and materials, at a lower computational cost compared to standard density
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functional theory calculations. In this work, it was used as a previous relaxation before VASP calculations

to optimize computational resources.

2.4.5 Birch-Murnaghan equation of state

For electronic relaxation, it is desired to choose the volume that optimizes energy, to get such optimal

volume we have employed the Birch-Murnaghan equation of state. The general form of the Birch-

Murnaghan equation is40:

P(V) =
3
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where P(V) is the pressure as a function of volume V , B0 is the bulk modulus at equilibrium V0, and B00
is the first derivative of the bulk modulus with respect to pressure. At zero temperature, the pressure may

be written as a function depending only on volume,

P(V) = �dE(V)
dV
, (2.37)
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Now if use Murnaghan’s equation of state to fit the theoretical electronic ground-state energy we could

obtain thermodynamical quantities like the bulk modulus41, which is given as:

B0 = V0
@2E(V)
@V2 (2.40)

Eqn 2.40 is used in this work to report Bulk modulus values and it is a good parameter to indicate the

material’s resistance when subject to pressure.

2.5 Density of States

An important feature, used to describe the electrical and optical properties of solids, of the electronic

structure of materials is the density of electronic states as a function of the energy. The density of states,

g(✏), for energies in the range [✏, ✏ + d✏] is defined as the sum over every state labeled by n with energy ✏n

in the range [✏, ✏ + d✏], per volume V of the system:



20 �.�. DENSITY OF STATES

g(✏)d✏ =
1
V

X

n,✏n2[✏,✏+d✏]

1 ) g(✏) =
1
V

X

n
�(✏ � ✏n) (2.41)

where the � function appears as a consequence of taking d✏ ! 0, centered at the value ✏n

2.5.1 Local Density of States

For systems where the electrons are localized, as a consequence of the structure of the material as in MOFs,

an important concept is the “localized density of states” or “projected density of states” (PDOS). This

concept makes it possible to resolve the total density into components related to specific local orbitals in

the system (e.g. atomic orbitals). In such situations, suppose that the state | ni can be expressed in the

basis of the orthonormal localized orbitals |�ii:

| ni =
X

i

c(n)
i |�ii, h� j|�ii = �i j ) h n| ni =

X

i

|c(n)
i |2 = 1 (2.42)

From the definition of the density of states g(✏) we get:
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with the PDOS, gi(✏) corresponding to the orbital |�ii, defined as:

gi(✏) =
1
V

X

n
c(n)

i |2�(✏ � ✏n) (2.44)

This quantity gives the density of states at the value ✏ related to the specific orbital |�ii in the basis.

Furthemore, if spin contribution is considered when calculating the DOS, we will have the spin project

density of states. In this work, we report the atomic/orbital, spin-projected density of states (cf. Section

A, B).
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Methodology

This chapter is dedicated to the methods used in this work to construct, compute and analyze the metal-

organic framework units considered in this thesis as well as the detailed protocols we followed to study

their electronic properties. Software implementation is also explained (input, output files libraries, and

packages).

3.1 Construction of MOF

Construction of MOFsym5-ABDC-X (M5-X for short), was done in Materials Studio software, and it’s

obtained by linking the organic unit, (E)-4,4’-(diazene-1,2-diyl)bis(2-methylbenzoic acid) (H2ABDC, cf.

Fig 3.7 from ref1)), and copper-based secondary building unit (SBU) Cu2(CO2)4 as shown in Fig 3.1a).

The organic linker uses two benzene rings as extending units which are connected by a nitrogen-nitrogen

bond and have a carboxyl group at the other end, it is a ditopic linker with an o�set in its geometry due

to the N-N bond, contrary to BDC and BPDC which have been thoroughly reviewed by researchers3,42–44;

as we’ll see later, the e�ects of the ligand longitude are important for photocatalysis. Resuming the

construction, one ligand is connected to each end of the copper-based SBU as shown in Figure 3.1b). We

studied M5 with three di�erent linker designs obtained by monosubstituting F, Cl, Br on ABDC. Figure

3.1a) shows the position of the substitution.

The resulting unit cell of M5-X has 140 atoms so we can imagine the VASP calculations are not for the

common home PC. Instead, the supercomputer of Gdansk University was used for such calculations.

21
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Figure 3.1: a) ditopic carboxylate linker functionalized by monosubstitution by X = F, Cl Br, and a

4-connecting dinuclear paddle-wheel copper-based secondary building unit b) periodic representation of

M5. Color code: gray, C; red, O; white, H; salmon, Cu; blue, N; light blue, substituent X.
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3.1.1 Introducing magnetic order

Exchange interactions play a leading role in defining the bands as well as band edge positions which is

why four possible magnetic arrangements were considered to perform spin-DFT calculations; these are

displayed in Fig 3.2. Each copper atom has a magnetization of one Bohr magneton. It is important to

note that the spin polarization is introduced once obtained the relaxed non-magnetic (NM) state. Then, we

perform electronic relaxation again for the other magnetic states: ferromagnetic (FM), antiferromagnetic

type A (AFM1), and antiferromagnetic type C (AFM2).
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3.1.2 Introducing defects

When analyzing photocatalysis properties, it is essential that the band energies of the material under

consideration straddle the redox potential of interest. That is, the energy of the conduction band minimum,

ECBM, lies higher in energy than the reaction-free energy corresponding to the reduction potential, and

the EVBM, lies lower in energy than the reaction-free energy corresponding to the oxidation potential10,

this will be better explained in the following sections. To modify where the band edge position falls under

certain material we can try di�erent options such as functionalization with other molecules (e.g. NH2,

NO2) instead of simple F, CL, Br, double substitution as opposed to monosubstitution; or introducing

defects into the structure. In this work, we tried the latter, and although there exist three types of MOF

defects (vacancies, substitutions, interstitials1), we chose substitution as it is experimentally feasible by

transmetalation. Thus, we tried replacing one copper atom on one node of the unit cell with zirconium or

magnesium as seen in Fig 3.3.

3.2 Relaxation using DFTB+

As mentioned earlier, calculations with structures having two or more order of magnitudes of the number

of atoms mean high computational cost. Inserting the constructed unit cell of M5 from Materials Studio

straight to VASP calculations is a wrong move that could mean days of computational processing. This

is why we have first relaxed the structure with the package DFTB+. DFBT+ is an implementation of

the Density Functional based Tight Binding (DFTB) method that enables simulations of complex systems

and long timescales with reasonable accuracy while being two orders of magnitudes faster than ab initio

methods. In this way, we can start VASP calculations with a more reasonable structure physically and

chemically speaking45.

3.3 VASP implementation

The Vienna package needs file input files to run an atomic simulation39: INCAR, KPOINTS, CONTCAR,

POTCAR and the executable file (.sh format). The first thing done was a self-consistent field (SCF) itera-

tion to find the plane wave cut-o� energy and k-point sampling. We specify these values in the INCAR and

KPOINTS files respectively. In addition, INCAR also contains tags for which the parameters are chosen to

run simulations, here is specified the meta-GGA functional, r2SCAN, plus the non-local electron density

correction, rVV10. CONTCAR contains the atomic positions of the atoms of the unit cell. For the first
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calculation, this file is taken from the results of DFTB+ relaxation, after so we only use CONTCAR files

from VASP itself. POTCAR contains the pseudopotentials of the atoms described in the CONTCAR file

given in the same order, these pseudopotentials are only obtained under VASP license. (more information

on VASP files can be found on its website39 )

Once electronic relaxation is obtained for a given material, hybrid functional, HSE06, is used for

electronic properties due to its precision. We call this protocol r2SCAN+rVV10//HSE06. It is important

to notice that HSE06 is not used from the very beginning because of its high computational demand. For

instance, calculations of full electronic relaxation with functionals r2SCAN+rVV10 can take from 15-30

days with previous DFBT+ relaxation.

3.4 Band Alignment

A method developed by Butler et.al.46 was used to determine the vacuum levels of porous M5 frameworks.

Spherical electrostatic probes with radii of 1� 5Å located at the center of the large cubical cage (⇡ 9Å) of

each M5 framework were used to estimate the electrostatic reference potential (see Fig 3.4). For each case,

only values for which the variance of the potential is less than 10�5 V were regarded, indicating accurate

results; at last, the mean of the electrostatic potential (EP) values was used for band alignment.
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Figure 3.2: Unit cell of M5 displaying four di�erent magnetic order: a) non-magnetic (NM), b) ferromag-

netic (FM), c) antiferromagnetic type A (AFM1), d) antiferromagnetic type C (AFM2). Color code same

as Fig 3.1. H atoms are omitted for simplicity.
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Figure 3.3: Unit cell of M5 with a di�erent atom introduced to one SBU simulating defect: a) magnesium

(green), b) zirconium (bigger light blue. Color code same as Fig 3.1. H atoms are omitted for simplicity)
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Figure 3.4: a) M5-F unit cell enclosing a 9 Å-radius yellow sphere representing the main pore. b) Contour

map of electrostatic potential at the main pore. Dashed circles of radii = 1, 2, 4 Å are plotted to give an

idea of the sampled area for vacuum level calculation. Color code same as Fig 3.1. H atoms are omitted

for simplicity
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Results and Discussion

This section presents the results of the Spin-DFT r2SCAN+rVV10 and HSE06 computed electronic

properties for three di�erent MOF structures named here as M5-F, M5-Cl, and M5-Br. Furthermore,

nomenclature in plots is given by MOF name-SBU functionalization-magnetic states, i.e. M5-F-AFM1

refers to antiferromagnetic type A state MOF5 constructed with ABDC linker functionalized with F. In

addition, plane-wave cut-o� energy and k-points convergence will be checked for the corresponding non-

magnetic structures only and then continue using the same values in the other cases. We have computed

and studied the equation of state, the partial density of states, magnetic phase stability with respect to

the non-magnetic phases, and band alignment with respect to the vacuum energy. Defects were only

introduced to the AFM2 cases, which are predicted to be the most stable magnetic phase.

4.1 The M5-F

4.1.1 Cut-o� energy and k-Points

To start the calculations in VASP, the first step is to calculate the plane wave cuto� energy and k-points

convergence. Fig 4.1 shows that in order to obtain convergence of energy di�erence to within 1 meV/atom,

a plane wave cut-o� energy of 850 eV or higher is needed. Then, we choose ENCUT = 850 eV (in the

INCAR file) for faster performance. In the same way, The k-point mesh was sampled using a 2 ⇥ 1 ⇥ 1
MonkhorstPack grid (or �k = 2⇡ 0.05 Å�1) since it is inside the window of 1 meV/atom convergence.

29
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Figure 4.1: a) Plane wave cut-o� energy convergence of M5-F. Inset displays a zoom of 1 meV/atom

showing convergence starts at 850 eV. b) Energy convergence as a function of k-points in terms of �k/2⇡
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Figure 4.2: Birch-Murnaghan equation of states of M5-F fitted with data obtained by relaxation with

functionals r2SCAN+rVV10. To the right a zoom of the dashed-selected area.
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Table 4.1: Computed r2SCAN+rVV10 crystallographic data and properties of all four M5-F magnetic

states: antiferromagnetic AFM, ferromagnetic FM and non-magnetic NM. a, b, c are the lattice parameters

and the corresponding angles ↵, � and �. The optimal volume V , bulk modulus B0. The relative energy

�E with respect to the most stable phase AFM2 and the absolute values of the local magnetic moment

|mCu| at the Cu sites are computed from the r2SCAN+rVV10//HSE06 results.

Calculated (r2SCAN+rVV10)
Property

AFM1 AFM2 FM NM

Space group C121

a (Å) 8.88 8.86 8.83 8.86

b = c(Å) 16.98 17.01 17.01 16.99

↵ (�) 83.58 83.98 83.75 83.89

� = � (�) 74.83 74.88 74.92 74.88

Volume (Å3) 2380.82 2387.21 2379.99 2383.45

B0 (GPa) 3.16 3.05 3.14 3.56

�E (eV) 1.156 0.0 1.156 1.157

|mCu| (µB) 0.65 0.66 0.66 0.0

4.1.2 Bulk Structure

Fig 4.2 shows the r2SCAN+rVV10 computed Birch-Murnaghan equation of states (BM-EOS) of all four

magnetic arrangements fitted with data obtained with VASP. The AFM2 state was found to be the most

stable configuration. The energy di�erence between AFM2 and the other magnetic phases is �E = 1.16

eV. This di�erence in energy suggest that it is less demanding to arrange opposite spins in the same node

contrary to AFM1 state where nodes as a whole have opposite spins or FM where all spins point in the

same direction. Unit cell parameters and other crystallographic data for the four structures are given in

table 4.1. Bulk modulus are between 3.0 � 3.6 GPa which is expected since we are dealing with porous

structures (e.g. diamond, 440 GPa; silicon, 100Gpa33). In fact, others MOFs report values in the range

10� 20 GPa, the smaller values reported here are due to the use of a longer organic linker (ABDC) which

increases the porosity.



CHAPTER �. RESULTS AND DISCUSSION 33

4.1.3 Density of States & Band Alignment

The partial density of states (PDOS) was computed with the hybrid functional HSE06 using the optimal

structure obtained from r2SCAN+rVV10, from now on we refer this calculations r2SCAN+rVV10//HSE06.

PDOS was obtained for each magnetic state, all of them show similar electronic properties but the non-

magnetic case, which has smaller band gap and workfunction, Eg = 0.81 eV and � = 5.90 eV. The band

gap for the AFM1, AFM2 and FM states are Eg = 2.68, 2.73 and 2.61 eV respectively. These values makes

them a good candidate for photocatalysts since the visible light region of the solar spectra corresponds to

energies of 1.7 � 3.2 eV. A desired characteristic of a good photocatalytic is a prolonged lifetime of the

exited state, then the photogenerated electrons should present ligand-to-metal charge transfer (LMCT) to

form charge separated states that prevent fast recombination of photogenerated charges. This is required

for photocatalysis purposes since the promotion of long lifetime charge-separated states enables reduc-

tion/oxidation reactions to occur47. Considering the LMCT energy, ELMCT; an e�cient LMCT should

have a negative ELMCT that is the energy change of the photogenerated electron from the photoexcited

linker to the lowest unoccupied metal state. Spin projected PDOS is shown in Fig 4.3, here we can notice

that AFM1, AFM2, FM states present ELMCT = 0 eV since the lowest unoccupied states are delocalized on

the linker and metal states. It is also noted that the PDOS in the ferromagnetic state (FM) is not symmetric

due to its intrinsic magnetic arrangement. On the other hand, NM state presents metal-to-metal excitation

which is less favorable in photocatalysis.

Band energies are aligned to vacuum levels of each porous MOF according to Butler et.al.46 which

is explained in Section 3.4. MOF’s vacuum level energies are taken at the center of the main pore. It is

recommended that the selected area is a plateau in electrostatic potential (EP). This procedure is the same

for all states, however, only the AFM2 state is depicted below since it is the most stable configuration.

Figure 4.4 shows 2D perpendicular planes along the three lattice vectors showing the pore as well as the

EP magnitude (color bar). Mean electrostatic potential for each spin arrangement values are reported in

table 4.2. We can notice that although the EP magnitude goes from 0 � 5.35 eV throughout the material,

the mean EP value for M5-F-AFM2 is 4.04 eV at the center of the pore. As we’ll see later, these EP values

are decreased for MOF-Cl, Br due to electronegativity.

Finally, in the AFM2 state, although the PDOS image shows LMCT, there might also exists linker

localized excitations which may a�ect the photocatalysis process as well as the reduction yield (i.e. in the

the case of CO2 reduction). For this reason, we have decided to introduce defects into MOF-F to see if its

possible to shift the bands belonging to the linker and leave the SBU-bands only in the CBM (cf. Section
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4.4).

Table 4.2: Mean electrostatic potential at pore for each M5-F magnetic state.

AFM1 AFM2 FM NM

Potential (eV) 4.08 4.04 4.06 4.04
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Figure 4.3: Spin-separated atomic pDOS (r2SCAN+rVV10//HSE06) for all M5-F magnetic configurations.

Band gap (Eg) and band edge positions are aligned with their vacuum level according to table 4.2. Nomen-

clature is given by MOF name-SBU functionalization-Magnetic state (e.g. M5-F-NM). Workfunction is

represented by the Greek letter �.
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Figure 4.4: Contour plot of 2D sections at half the distance of the lattice vectors showing the electrostatic

potential of M5-F-AFM2. The intersection of the three planes is taken as the center of the pore. In the

bottom, each 2D plane with their corresponding Miller indices. Color code same as Fig 4.3.
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Table 4.3: Computed r2SCAN+rVV10 crystallographic data and properties of all four M5-Cl magnetic

states: antiferromagnetic AFM, ferromagnetic FM and non-magnetic NM. a, b, c are the lattice parameters

and the corresponding angles ↵, � and �. The optimal volume V , bulk modulus B0. The relative energy

�E with respect to the most stable phase AFM2 and the absolute values of the local magnetic moment

|mCu| at the Cu sites are computed from the r2SCAN+rVV10//HSE06 results.

Calculated (r2SCAN+rVV10)
Property

AFM1 AFM2 FM NM

Space group C121

a (Å) 8.86 9.49 9.47 9.47

b = c 17.02 17.02 17.02 16.99

↵ (�) 82.94 80.85 81.55 80.44

� = � (�) 74.75 73.55 73.61 73.56

Volume (Å3) 2387.37 2518.89 2520.38 2504.62

Bo (GPa) 2.85 4.10 4.08 3.61

�E (eV) 4.80 0.0 0.10 1.16

|mCu| (µB) 0.66 0.66 0.66 0.0

4.2 M5-Cl

4.2.1 Bulk Structure

Fig 4.5 shows the r2SCAN+rVV10 computed Birch-Murnaghan equation of states (BM-EOS) of all four

magnetic arrangements of M5-Cl. In this case, the AFM2 state was also found to be the most stable

configuration, however, the FM state have similar energy stability (�E = 0.10 eV). The energy di�erences

between AFM2 and NM, AFM1 states are �E = 1.16 and 4.80 eV, respectively. This latter di�erence in

energy suggest that it is less demanding to arrange opposite spins in the same node contrary to AFM1 state

where nodes as a whole have opposite spins. Unit cell parameters and other crystallographic data for the

four structures are given in table 4.3. The bulk modulus for the FM state is lower following the statement

that the FM state is the less stable configuration. For the other states, we noticed an increase of unit cell

volume due to Cl monosubstitution. Bulk modulus values stays in the range < 4 Gpa.
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Figure 4.5: Birch-Murnaghan equation of states of M5-Cl fitted with data obtained by relaxation with

functionals r2SCAN+rVV10.
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4.2.2 Density of States & Band Alignment

The partial density of states (PDOS) was computed with the hybrid functional HSE06. PDOS was obtained

for each magnetic states, all of them show similar electronic properties but the non-magnetic case, which

has smaller values for band gap and workfunction, Eg = 0.81 eV and � = 5.89 eV. The band gap for

the AFM1, AFM2 and FM states are Eg = 2.61, 2.70 and 2.61 eV respectively showing reduced values

compared to the MOF-F structures. Nonetheless, the values for the workfunction remain almost identical.

PDOS is shown in Fig 4.6. Here we can see that the three magnetic states also present ELMCT. As in

the case of M5-F, NM state only presents metal-to-metal excitation. Similar to MOF-F, we encourage to

introduce and study defects into MOF-Cl for isolation of SBU-states in the conduction band minimum�.

Band energies are aligned to vacuum levels of each porous MOF according to Butler et. al.46 which is

explained in Section 3.4. MOF’s vacuum level energies are taken at the center of the main pore. Figure 4.7

shows 2D perpendicular planes along the three lattice vectors showing the pore as well as contour map for

the electrostatic potential. This procedure is repeated for each spin arrangement and values are reported in

table 4.4. MOF-Cl vacuum energy levels showed reduction compared to MOF-F, in accordance to what

one would expect since chloride is less electronegative than fluoride.

Table 4.4: Mean electrostatic potential at pore for each M5-Cl magnetic state.

AFM1 AFM2 FM NM

Potential (eV) 4.05 3.99 3.98 4.00

�The reason for not including these e�ects in this work is related to computational time issues.
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Figure 4.6: Spin-separated atomic pDOS (r2SCAN+rVV10//HSE06) for all MOF-Cl magnetic configu-

rations. Band gap (Eg) and band edge positions are aligned with their vacuum level according to table

4.4. Nomenclature is given by MOF name-SBU functionalization-Magnetic state (e.g. M5-Cl-NM).

Workfunction is represented by the greek letter �.
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Figure 4.7: Contour plot of 2D sections at half the distance of the lattice vectors showing the electrostatic

potential of M5-Cl-AFM2. The intersection of the three planes is taken as the center of the pore. In the

bottom, each 2D plane with the corresponding Miller indices. Color code same as Fig 4.6.
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4.3 M5-Br

4.3.1 Bulk Structure

Electronic relaxation with functionals r2SCAN+rVV10 yielded the optimal structure. Fig 4.8 shows the

Birch-Murnaghan equation of states (BM-EOS) of all four magnetic arrangements of M5-Br fitted with

VASP data. As in previous cases, the AFM2 state was also found to be the most stable configuration for

MOF-Br. Nonetheless, the AFM1 state is equally stable (�E = 0.00), certainly not following the trend of

MOF-F, Cl in which the AFM1 state was the less stable state. We believe this stability issue is related to

more Br-bands located in the valence band contrary to MOF-F, Cl-AFM1. Furthermore, volume and bulk

modulus between AFM1 and AFM2 states are quite similar (tab 4.6).

In addition, the FM state has similar energy stability too, �E = 0.10 leaving the NM states as the

only unstable configuration, �E = 1.16. Unit cell parameters and other crystallographic data for the four

structures are given in table 4.5.

Table 4.5: Computed r2SCAN+rVV10 crystallographic data and properties of all four M5-Br magnetic

states: antiferromagnetic AFM, ferromagnetic FM and non-magnetic NM. a, b, c are the lattice parameters

and the corresponding angles ↵, � and �. The optimal volume V , bulk modulus B0. The relative energy

�E with respect to the most stable phase AFM2 and the absolute values of the local magnetic moment

|mCu| at the Cu sites are computed from the r2SCAN+rVV10//HSE06 results.

Calculated (r2SCAN+rVV10)
Property

AFM1 AFM2 FM NM

Space group C121

a (Å) 9.73 9.74 9.73 9.71

b = c 17.02 17.00 17.03 16.99

↵ (�) 81.45 81.34 81.41 81.58

� = � (�) 73.12 73.14 73.09 73.15

Volume (Å3) 2573.62 2573.68 2577.68 2562.40

Bo (GPa) 4.48 4.63 4.16 4.45

�E (eV) 0.0 0.0 0.10 1.16

|mCu| (µB) 0.66 0.66 0.66 0.0
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Figure 4.8: Birch-Murnaghan equation of states of M5-Br fitted with data obtained by relaxation with

functionals r2SCAN+rVV10.
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Table 4.6: Mean electrostatic potential at pore for each M5-Br magnetic state.

AFM1 AFM2 FM NM

Potential (eV) 3.93 3.92 3.92 3.94

4.3.2 Density of States & Band Alignment

The partial density of states (PDOS) was computed with the hybrid functional HSE06. DOS was obtained

for each magnetic states, all of them show similar electronic properties but the non-magnetic case, which

has smaller values for band gap and workfunction, Eg = 0.81 eV and � = 5.88 eV , respectively. The band

gap for the AFM1, AFM2 and FM states are Eg = 2.57, 2.63 and 2.56 eV respectively showing reduced

values compared to the MOF-F and MOF-Cl structures. In the same way, the values for the workfunction

are also reduced. Partial DOS is shown in Fig 4.9. Here we can see that the three magnetic states also

present LMCT and LLCT. As in the case of M5-F, Cl, NM state only presents metal-to-metal excitation.

Band energies are aligned to vacuum levels of each porous MOF. Figure 4.7 shows 2D perpendicular

planes along the three lattice vectors showing the pore as well as contour map for the electrostatic

potential. This procedure is repeated for each spin arrangement and values are reported in table 4.6.

MOF-Br vacuum energy levels are further reduced, in accordance to what one would expect since bromide

is less electronegative than Cl and F.
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Figure 4.9: Spin-separated atomic pDOS (r2SCAN+rVV10//HSE06) for all MOF-Br magnetic configu-

rations. Band gap (Eg) and band edge positions are aligned with their vacuum level according to table

4.6. Nomenclature is given by MOF name-SBU functionalization-Magnetic state (e.g. M5-Br-NM).

Workfunction is represented by the greek letter �.
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Figure 4.10: Contour plot of 2D sections at half the distance of the lattice vectors showing the electrostatic

potential of M5-Br-AFM2. The intersection of the three planes is taken as the center of the pore. In the

bottom, each 2D plane with the corresponding Miller indices. Color code same as Fig. 4.9.
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4.4 Photocatalysis Activity

Previously, it was stated that for photocatalysis to happen it is necessary that the reduction/oxidation

potentials energy levels should lie within the band gap for a given semiconductor. That is, for water

splitting, the highest occupied crystal orbit (HOCO) energy should be lower than the energy level of the

oxygen evolution reaction (OER), H2O $ 2H+(aq) + 1/2 O2(g) + 2e� ; and the lowest unoccupied crystal

orbit (LUCO) energy should be higher than the energy level of the hydrogen evolution reaction (HER)

2H+(aq) + 2e� $ H2(g). For CO2 reduction, the LUCO energy of the photocatalyst should be higher than

the energy level of the CO2 reduction reaction, which depends on the product. Table 4.7 specifies the

electrode potential and the free energy change per electron of a reduction reaction at room temperature

(298.15 K) and ph = 7 for some selected reactions.

Then, plotting these energy levels corresponding to their redox potentials it is possible to filter out

promising MOF-X candidates for photocatalysis. Figure 4.11 shows the band gaps and absolute band edge

positions (respect to vacuum level) for all twelve configurations; dashed green (dark yellow) lines represent

energy levels corresponding to redox potentials to which CO2 reduction is (not) feasible. In the same way,

dashed purple (light purple) lines represent energy levels corresponding to redox potentials to which water

splitting is (not) feasible.

Figure 4.11 is a compact way to represent band edge positions and aligned redox potentials. However,

it misses information about the density of states. Figure 4.12 shows that although the redox potential levels

are above the lowest unoccupied crsystal orbital (LUCO), these still overlap with the free available energy

states in the CBM, which suggests MOF-X-AFM2 state (the most stable state) is shown to be a potential

photocatalyst for OER and to reduce CO2 into three di�erent carbon-based fuels, C2H4, C2H5OH, CH4.
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Figure 4.11: Absolute band edge positions and bangaps for magnetic states of MOF-F, Cl, Br. Magenta

dashed lines represent energy levels corresponding to redox potentials for water splitting, and the green

and dark yellow lines represent energy levels corresponding to redox potentials for various CO2 reduction

reactions as listed in Table 4.7. A zoom of the region of interest is depicted in the bottom.
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Figure 4.12: Absolute band edge positions and band gaps of all AFM2 states. Purple, green and dark

yellow dashed lines represent the same redox potential energy as Fig 4.11. Although some CO2 reduction

reactions fall above the LUCO, they still overlap with available states in the CBM.
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Table 4.7: Standard electrode potentials ("�, in V) and �G (in eV) at pH = 7 and T = 298.15 ) of selected

reactions. Taken from3.
Reaction "� �G
H+/H2 0 -3.87

H2O/O2 1.229 -5.09

CO2/HCOOH -0.250 -3.62

CO2/CO -0.106 -3.76

CO2/HCHO -0.070 -3.80

CO2/CH3OH 0.016 -3.88

CO2/C2H4 0.064 -3.93

CO2/C2H5OH 0.084 -3.95

CO2/CH4 0.169 -4.03

4.5 Defects

As it was seen in the previous sections, the density of states of MOF-F, Cl, Br did present ligand-to-metal

charge transfer. However, bands belonging to the SBU were not alone in the conduction band minimum, i.e.

there is mixing of node and linker available energy states in the CBM. It is possible that the photocatalysis

process can be a�ected by this, to try and isolate node-states only we have introduced defect by substitution

into MOF-F-AFM2 as explained in Section 3. The reason to choose this configuration in particular has to

be with its greater band gap, which as we saw in Sec 4.4 makes it the best candidate for CO2 reduction.

4.5.1 Zirconium substitution (Def-Zr)

Relaxation with functionals r2SCAN+rVV10 yielded the optimal structure, crystal parameters can be found

in table 4.8. Zirconium substitution into the nodes incremented the electrostatic potential at the pore giving

a mean EP of 4.10 eV. However, the workfunction energy is reduced due to a change in the VBM position

which also brings smaller band gap of Def-Zr, � = 4.69 eV and Eg = 0.78 eV. Density of states also

shows di�erence, Def-F no longer presents LMCT or LLCT, instead metal-to-metal and metal-to-ligand

transitions are present. This is due to higher Zr orbitals (e.g. d orbitals. cf Section B) being occupied

shifting the whole valence band down.
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Figure 4.13: a) Aligned spin-separated atomic pDOS (r2SCAN+rVV10//HSE06) of Def-Zr, b) 3D view

of Def-Zr with electrostatic potential 2D sections contour map at half the distance of lattice vectors.
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Table 4.8: Computed r2SCAN+rVV10 crystallographic data and properties of Def-Zr, Mg. a, b, c are the

lattice parameters and the corresponding angles ↵, � and �. The optimal volume V , bulk modulus B0.

The relative energy �E with respect to the most stable phase AFM2 and the absolute values of the local

magnetic moment |mCu| at the Cu sites are computed from the r2SCAN+rVV10//HSE06 results.

Calculated (r2SCAN+rVV10)
Property

Zr Mg

Space group P1

a (Å) 8.79 8.82

b 17.17 17.06

c 17.02 17.02

↵ 84.45 83.96

� 76.09 75.22

� 74.18 74.69

Volume (Å3) 2400.53 2387.33

Bo (GPa) 3.16 3.17

4.5.2 Magnesium substitution (Def-Mg)

Relaxation with functionals r2SCAN+rVV10 yielded the optimal structure, crystal parameters can be

found in table 4.8. Magnesium substitution into the nodes showed similar EP values in the pore. Band gap

and workfunction values were recovered indicating VBM was similar to the original case (M5-F-AFM2),

Eg = 2.70 and � = 6.60 eV. In this context, the density of states remains similar in the valence band. Ad-

ditionally, Def-Mg also presents the same original band gap transitions, i.e. LCMT and LLCT excitations

which also makes it a good candidate for photocatalysis.

Finally, plotting Def-Zr, Mg density of states against HER, OER and CO2 reduction/oxidation reactions

we can notice Def-Zr is not a candidate for photocatalysis, however, since Def-Mg DOS is similar to M5-F-

AFM2, it has a band gap inside the visible and spectra and presents the transitions desired, it is a potential

catalyst for the compound already mentioned throughout this work.
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Figure 4.14: a) Aligned spin-separated atomic pDOS (r2SCAN+rVV10//HSE06) of Def-Zr, b) 3D view

of Def-Mg with electrostatic potential 2D sections contour map at half the distance of lattice vectors.
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Figure 4.15: Absolute band edge positions and band gaps of Def-Zr, Mg. Purple, green and dark yellow

dashed lines represent the same redox potential energy as Fig 4.11. Although some CO2 reduction reactions

fall above the LUCO, they still overlap with available states in the CBM.



Chapter 5

Conclusions & Outlook

We have presented here computational analysis (spin-DFT) of H2ABDC-based MOF. Owing to linker

functionalization by monosubstitution, we were able to study three di�erent structures, each considering

four magnetic states (NM, FM, AFM1, AFM2). Electronic properties were calculated using the Vienna

Ab Initio Package (VASP) using a plane wave cut-o� energy of 850 eV and a Monkhorst-Pack grid of

2 ⇥ 1 ⇥ 1 for k-points mesh. r2SCAN+rVV10 + rVV10 functionals were used for electronic relaxation.

The di�erence in electronic properties between magnetic and non-magnetic for MOF-F, Cl, Br highlights

the importance of including the spin contribution in DFT calculations when dealing with MOFs. After

electronic relaxation, it was found that the AFM2 state is the most stable configuration for MOF-X, X = F,

Cl, Br; although stability depended on linker substitution which was the case for MOF-Br wherein AFM1

and AFM2 showed no di�erence in energy stability.

Spin-projected density of states was obtained with the hybrid functional HSE06. Band edge positions

were aligned according to their vacuum level energy, which was calculated at the center of the pore.

Workfunction and band gap values were similar between the nine magnetic states, � = 6.5 � 6.6 eV and

Eg = 2.5�2.7 eV except for the other three non-magnetic states which showed a reduced workfunction and

band gap,� = 5.9 eV and Eg = 0.81 eV. In the same way, all magnetic states showed ligand-to-metal charge

transfer (LMCT) as well as ligand-to-ligand charge transfer (LLCT). Aligned band edge positions against

redox potentials allowed to filter out which MOF act as catalysts for water splitting and CO2 reduction. As

it turns out, excitons created by LMCT have longer lifetimes than by other band gaps transitions. For this

reason, it is preferable that if possible MOF show only ligand-to-metal excitations. With this objective in

mind, two types of defects were analyzed using AFM2 state of MOF-F for its wide band gap: zirconium
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and magnesium node substitution.

Zirconium substitution changed original electronic structure and showed a reduced band gap value

outside the visible spectra. Furthermore, it lost LMCT and LLCT transitions making it not a favorable

model. On the other hand, magnesium substitution preserved some features such as similar workfunction

and a band gap value inside the visible spectra. Therefore, Def-Mg is also considered as possible catalysts

for CO2 reduction and water splitting, ruling out Def-Zr defect model.

In this way, our findings suggest MOFsym5-ABDC-X (X = F, Cl, Br) are potential candidates for

water splitting and CO2 reduction. Building upon the results obtained, future work will focus on ABDC

functionalization with I, NH2, NO2, and linker related defects that could present even better electronic

properties.
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Figure A.1: r2SCAN+rVV10//HSE06 detailed atomic partial density of states for all M5-F magnetic

configurations: antiferromagnetic AFM, ferromagnetic FM and non-magnetic NM.
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Figure A.2: r2SCAN+rVV10//HSE06 detailed atomic partial density of states for all M5-Cl magnetic

configurations: antiferromagnetic AFM, ferromagnetic FM and non-magnetic NM.



60

Figure A.3: r2SCAN+rVV10//HSE06 detailed atomic partial density of states for all M5-Br magnetic

configurations: antiferromagnetic AFM, ferromagnetic FM and non-magnetic NM.
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Figure B.1: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-F-NM.
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Figure B.2: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-F-FM.
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Figure B.3: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-F-AFM1.
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Figure B.4: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-F-AFM2.
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Figure B.5: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Cl-NM.
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Figure B.6: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Cl-FM.
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Figure B.7: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Cl-AFM1.
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Figure B.8: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Cl-AFM2.
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Figure B.9: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Br-NM.
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Figure B.10: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Br-FM.
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Figure B.11: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Br-AFM1.
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Figure B.12: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of M5-Br-AFM2.
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Figure B.13: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of Def-Zr.
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Figure B.14: r2SCAN+rVV10//HSE06 detailed atomic orbital partial density of states of Def-Mg.
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