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Resumen

El presente trabajo de investigación se centra en el estudio y desarrollo de un algoritmo de

reconstrucción de una superficie a partir de una nube de puntos obtenida con tecnoloǵıa

LiDAR. El algoritmo busca encontrar una medida cuantitativa de la suavidad y continuidad

del terreno analizándolo en pequeñas secciones; en base a ello, se calcula la triangulación de

Delaunay mediante la proyección de los puntos de cada sección a un plano o cono tangente.

Palabras Clave: Triangulacion de Delaunay, Mallas, LiDAR, Vecinos cercanos.
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Abstract

The present research work focuses on studying and developing an algorithm for reconstruct-

ing a surface based on a point cloud obtained with LiDAR technology. The algorithm seeks

to find a quantitative measure of the smoothness and continuity of the terrain by analyz-

ing it in small sections; based on this, the Delaunay triangulation is calculated using the

projection of the points of each section to a tangent plane or cone.

Keywords: Delaunay triangulation, Meshes, LiDAR, Nearest neighbor.
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Chapter 1

Introduction

In computer science, there are several important methods for triangulation, and Delau-

nay triangulation is one of them. It has important properties such as maximizing the

minimum angle on the plane, it is dual to the Voronoi diagram, and perhaps one of the

most important, the empty circumcircle criteria [5]. In the two-dimensional case, there

exist several algorithms to compute the Delaunay triangulation that can be extended to

the three-dimensional space or even the n-dimensional space [6]. In the three-dimensional

case, the triangulation becomes a tetrahedralization that reconstructs volume.

We want to address the reconstruction of the surface of objects or terrain defined from

point clouds by creating a triangular mesh with Delaunay properties. This represents quite

a challenge because it is not guaranteed that the surface to be triangulated will be smooth

or continuous; moreover, when the terrain has holes or cracks, it can lead to incorrect

triangulation or holes in the mesh.

On the other hand, with the technological advances in phones, tablets, and digital

cameras, range scanners, nowadays LiDAR technology is available for almost everyone,

and so it is the software needed to use it. There are several libraries with point cloud data

obtained from LiDAR scans in phones. Apple, for instance, is using it for their Apple Maps

app [7] to obtain a digital 3d model of cities. Instead, Samsung uses LiDAR scanner for

their JetBot 90 AI+; it uses the scanner to navigate the rooms and to fulfill its purpose of

vacuuming [8].

It is important to consider this availability of new technologies and use the opportunity

to develop an algorithm to reconstruct a surface from three-dimensional point clouds and

1
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obtain the correct surface topology. Once achieved an optimal an efficient implementation,

this algorithm could be used for reconstructing terrain in real time. Moreover, by using

LiDAR technology, we can create a system with the intention of using the notion of range

of vision. As a result, we want a mesh that represents the surface topography accurately,

i.e., adapting itself to the surface irregularity.

The structure of this work is as follows: later, on this same Chapter, the divide and

conquer and the randomized incremental algorithm are described on the Background Sub-

section 1.1. Then, subsection 1.2 describes the statement of the problem this investigation

work is focused. On Chapter 2, important definitions, as well as the the theoretical ba-

sis used to construct the Delaunay triangulation, are presented. Later on Chapter 3 the

process for developing the algorithm using the tools described on the previous chapter is

presented. Then, on chapter 4 the results obtained from the algorithm implementation

are shown as well as the analysis on the algorithm performance. Finally, on chapter 5 the

conclusions of this project are presented.

1.1 Background

There are several techniques with variable run time and implementation complexity for

producing the Delaunay triangulation. For the two dimensional case, [9] present two algo-

rithms: the first one based on a divide and conquer approach, takes O(nlogn) time; and

the second one adds points to an existing triangulation one by one. In the worst case it will

take O(n2) time. A better description on the Divide and Conquer Algorithm, is described

on [10]. It is a recursive algorithm such that given a set of points P , if |P | > 3, it splits

the set P into two sets, PL and PR and they become the new input for the next iteration.

If |P | = 3 it forms a triangle, if |P | = 2 it creates a line; then it creates new triangles

between the sets and checks if the triangulation is correct as shown bellow.

It is an efficient algorithm for the two dimensional Delaunay triangulation, and even

though it can be generalized to higher dimensions, it is not any more the only optimal

algorithm.

On [5], they describe the Randomized Incremental Algorithm which consists on adding

two points, p−1 and p−2 at random. Then together with the highest point p0 ∈ P , maximum

Mathematician 2 Final Grade Project
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Figure 1.1: Divide and conquer algorithm.

value on either x or y coordinate; this points form a triangle containing P\{p0}. For this,

p−1 and p−2 need to be far enough so that once computed the Delaunay triangulation

of P ∪ {p−1, p−2}, eliminating this two points wont affect the Delaunay triangulation of

P . The triangulation is obtained by adding the points of P\{p0} on a random order in

the triangulation, fixing the triangulation by legalizing the edges of Delaunay and finally

eliminating p−1 and p−2 As it is shown in figure1.2.

Figure 1.2: Randomized incremental algorithm.

Using this algorithm, the Delaunay triangulation on a plane can be computed in

O(nlogn) expected time, using O(n) expected storage. Another option is also comput-

ing the Voronoi diagram and then calculate its dual, the Delaunay triangulation, which is

achievable in linear time [11].

Mathematician 3 Final Grade Project
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On the other hand, for the three dimensional case of the Delaunay triangulation, there

are some considerations that must be taken since the properties of the Delaunay triangu-

lation on a three or higher dimensional space are not as good as in the two dimensional

case [6]. The three dimensional case for a triangulation will need at least four points to

create the corresponding tetrahedron, (see figure 1.3).

(a) Delaunay tetrahedron (b) 3D Delaunay triangula-
tion of 5 points

Figure 1.3: 3D Delaunay triangulation

According to [12], the algorithms for computing the Delaunay triangulation are divided

in categories:

• Local improvement algorithms, which triangulate the set of points in an arbitrary

way and then flip the incorrect edges so they become Delaunay.

• Incremental insertion, which is the same idea as in Randomized Incremental Algo-

rithm, adding points one by one and updating the triangulation.

• Higher dimension embedding which uses a lifting map to a higher dimension, in the

case of a 2 dimensional point set, the map leads to a paraboloid of revolution .

The issue with these algorithms is that they are thought for a volumetric reconstruction

while for the case of surface, reconstruction we have another whole story, see section 2.3.

1.2 Problem statement

We seek to develop an algorithm for the surface reconstruction of a finite set of points (a

point cloud) in a three-dimensional space. This algorithm must be able to maintain the

topological relationships between the points in the plane, determining quantitatively how

close the surface of the terrain corresponds to a roughly flat area or to a nearly singular

Mathematician 4 Final Grade Project
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surface, in order to triangulate efficiently with the correct technique and obtaining an ac-

curate reconstruction of the terrain’s topography. With this considerations, the objectives

are described on section 1.3

1.3 Objectives

1.3.1 General Objective

Construct an algorithm for a Delaunay triangulation of a surface using a finite three di-

mensional set of points.

1.3.2 Specific Objectives

• Research different approaches to achieve the Delaunay triangulation of a surface using

the information on the smoothness of the terrain.

• Choose a programming language to implement the algorithm for the surface Delaunay

triangulation.

• Learn to obtain and filter LiDAR files containing three-dimensional points, corre-

sponding to a terrain.

Mathematician 5 Final Grade Project



Chapter 2

Theoretical Framework

Throughout this chapter we will describe the theoretical basis on which the algorithm was

developed; as well as useful information on the data used to perform the triangulation and

important definitions.

2.1 Triangulation and Delaunay Triangulation

Before defining a triangulation [10], we must first introduce the notation to be used for a

triangle, its vertices and its edges.

Definition 1 A triangle t is defined as a geometric entity consisting on 3 different ver-
tices, V = {v1, v2, v3}, joined by 3 different edges (that are straight line segments), E =
{e1, e2, e3}, respectively, as shown in Figure 2.1. Notice that the vertices are not co-linear.

Definition 2 (Triangulation) Let P be a finite set of points. The triangulation T of P

consists on a set of triangles ti, i = 1, ..., n such that:

• All points pi ∈ P are vertices on at least one triangle ti.

• For pi ∈ P there exists at least one triangle ti ∈ T such that pi ∩ ti = pi i.e. pi

intersects the triangles at their vertices.

• ∀ti, tj ∈ T : t̊i ∩ t̊j = ∅ i.e. the interiors of the triangles do not intersect

• ∀ti, tj ∈ T , ∃ek : ti ∩ tj is either ∅, an edge ek or a vertex vi i.e. the triangles
intersect at their edges or vertices.

See Figure 2.1 for reference

6
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The points to be triangulated must not be colinear, otherwise they will form a degen-

erated triangle.

Figure 2.1: Delaunay triangulation on a small set of points.

For the purpose of a better understanding on the Delaunay triangulation, we will briefly

define the Voronoi diagram based on the idea given in [9]. Given a set of non-colinear points

V such that |V | ≥ 3, one can imagine Voronoi polygons as the building blocks of a regular

growth process. Each v ∈ V will represent the nucleus of a single cell, and a cell’s growth

will halt when its border touches the border of another cell that is also expanding. The

remaining cells will have divided the interior of the convex hull of V into a collection of non-

overlapping closed convex polygons. By the time the process is complete, these polygons,

together with the open polygons on the convex hull, define a Voronoi tessellation. See

Figure 2.2.

From the Voronoi diagram, if the pairs of generator points whose Voronoi polygons share

an edge are joined, a second tessellation is obtained, this tessellation is Delaunay, as long

as the points are not cocircular. If not, when 4 points are cocircular we call it a Delaunay

pretriangulation, which we can partition into triangles by non-intersecting line segments

[13]. Once all the tessellation consists of triangles, we call it Delaunay triangulation. In

Figure 2.2, we can see this construction from the Voronoi tessellation.

More formally we have the following definitions for the Delaunay triangulation, as well

as the definitions of the empty circumcircle and boundary edge.

Definition 3 (Empty circumcircle of an edge) Let pi, pj ∈ P . A circumcircle of an
edge going from pi to pj, is a circle passing through pi and pj. This circumcircle is said to
be empty if, and only if, its interior contains no other point pk ∈ P .

Mathematician 7 Final Grade Project
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Figure 2.2: Voroinoi diagram in green lines. Convex hull is represented by the orange
dotted lines.

Definition 4 (Delaunay edge) Let P be a finite set of points and ei an edge from pi

to pj with pi, pj ∈ P . An edge ei is Delaunay if, and only if, either it has an empty
circumcircle or it is a boundary edge.

In Figure 2.3a, both e1 and e2 are Delaunay edges. In the case of e1, its circumcircle

contains no other element of P . In the case of e2, it has another point of P , however it

corresponds to a boundary edge so it is still a Delaunay edge.

Definition 5 (Delaunay triangle) A triangle is Delaunay if and only if its circumcircle
is empty, i.e. the unique circle passing through its three points contains no point of P in
its interior.

See Figure 2.3b. Both triangles are Delaunay.

Definition 6 (Delaunay triangulation) A triangulation, T , is a Delaunay triangula-
tion if, and only if, all the edges in T are Delaunay.

It is quite obvious that all triangles in a Delaunay triangulation are Delaunay too.

2.1.1 Edge flips

An edge flip is a useful tool used to correct non-Delaunay edges in a triangulation such

that they become Delaunay. In figure 2.4a, e1 is not Delaunay, hence the triangulation is

not a Delaunay triangulation; in order to obtain the Delaunay triangulation an edge flip is

necessary and we will end up with a Delaunay triangulation as in Figure 2.4b.
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(a) Delaunay edges (b) Delaunay triangles

Figure 2.3: Delaunay edge and triangle with their circum circle

Sometimes, it is possible to find four cocircular points in a triangulation, in that case we

can still obtain a triangular structure since it will not affect which internal edge is formed,

see Figure 2.4c.

(a) Edge e1, not Delaunay (b) Edge e1 flipped to e′
1 (c) Cocircular points

Figure 2.4: Edge flips and cocircular points

2.1.2 Delaunay triangulation properties

There are several wonderful qualities of the Delaunay triangulation. These characteris-

tics make the Delaunay triangulation the preferred triangulation in many fields, such as

computer graphics where skinny triangles are avoided. Some of these attributes include:

It maximizes the minimum angle over all triangles. When some triangles become

too skinny, one of their angles becomes too small, that leads to numerical instability [10],

and in the cases of rendering, it makes the process more complex and can lead to errors.
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However, the Delaunay triangulation does not necessarily minimize the maximum angle

[14] nor necessarily minimize the length of the edges.

Subgraphs of Delaunay triangulations. The Delaunay triangulation can also be

seen as a graph and as such, there are several subgraphs to it such as the De Gabriel graph,

the relative neighbor graph and the Euclidean minimum spanning tree. A De Gabriel graph

is a graph where two points are connected by an edge if their circumcircle contains no other

point in it. The relative neighbor graph is a graph where two points p and q are connected if

and only if for some point s, dist(p, q) < max{dist(p, s), dist(q, s)}. A minimum spanning

tree is a connected point set such that any vertex can be reached from any other vertex by

exactly one path with smallest possible distance [11].

Lifted Circle. This is another interpretation for the circumcircle of three points and

the Delaunay triangulation. Consider the points p1, p2 and p3 which are projected onto the

surface of a paraboloid of revolution defined by f : (x, y) → (x, y, x2 + y2). Now consider

the three-dimensional plane passing through these projected points. Then, we will be able

to know if a new point p4 is inside the circumcircle of p1, p2 and p3 if it is bellow the plane.

See Figure 2.5.

Figure 2.5: Projection of the Delaunay triangulation of 4 points on the paraboloid of
revolution

In fact, each triangle of the Delaunay triangulation of a n-dimensional set of points

corresponds to a facet of the convex hull of the projection of the points onto a n+1-

dimensional paraboloid, and vice versa [15].
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2.1.3 3D Delaunay triangulation

For the case of the three-dimensional space, the Delaunay triangulation becomes a Delau-

nay tetrahedrization, since it consists on tetrahedras, however the term triangulation will

be still used through this work. Now let’s define a few concepts.

Definition 7 (Tetrahedron) This is a geometric entity formed by 4 different non co-
planar vertices V = {v1, v2, v3, v4}, joined by 6 different edges (line segments)
E = {e1, e2, e3, e4, e5, e6} forming 4 different faces F = {f1, f2, f3, f4}.

See Figure 2.6. Notice that a face includes 3 edges and 3 vertices.

Figure 2.6: Tetrahedra: Vertices, edges and faces (only f1 is labeled)

Definition 8 (Tetrahedralization) Let P be a set of finite three-dimensional points.The
tetrahedralization of P consists on a set of tetrahedra T such that:

• All points pi ∈ P are vertices on at least one tetrahedra.

• ∀ti, tj ∈ T : t̊i ∩ t̊j = ∅ i.e. the interiors of the tetrahedra do not intersect

• ∀ti, tj ∈ T : ti ∩ tj is either ∅ or an edge ei, a vertex vi or a face i.e. the tetrahedra
intersect at an edge, a vertex or a face unless they are disjoint.

As in the two dimensional case, the idea of the growing cells that subdivide the space

into a Voronoi tessellation is still valid for the n-dimensional case; moreover its dual is the

n-dimensional Delaunay graph. Another property that holds in the n-dimentional case is

the empty n−sphere: no n+2 points lie in the n−sphere passing through the n+1 vertices
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defining the corresponding unit (n−simplex) of the n-dimensional Delaunay cell complex

[12]. In contrast to this, in the n-dimensional space, the Delaunay cell complex does not

maximize the minimum angle [6].

Definition 9 (3D Delaunay Tetrahedralization) A tetrahedralization T is a 3D De-
launay tetrahedralization if, and only if, for each tetrahedron ti ∈ T , its circumsphere
passing through the vertices defining it, contains no other element of P in its interior.

See Figure 2.7

Figure 2.7: Delaunay triangulation of 5 points and circumsphere defining a Delaunay
tetrahedron

2.1.4 Algorithms for computing 3D Delaunay Tetrahedralization

There are several algorithms from the 2D case than can be adapted for the 3D Delaunay

tetrahedralization. In [6] we can find the following algorithms.

Incremental insertion: also known as the Bowyer–Watson algorithm, it inserts a

vertex q into a Delaunay triangulation in four steps.

• Find one tetrahedron whose open circumsphere contains q.

• In the triangulation, find all the other tetrahedra whose open circumspheres contain

q.

• Delete these tetrahedra.

• For each triangular face of the cavity, create a new tetrahedron joining it with q.

Gift wrapping: In two dimensions, the wrapping algorithm is similar to the process

of winding a string around the set of points, then focusing on an edge, it finds the triangle
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by looking for a point in front of the edge. The same idea can be extended to R3; the algo-

rithm constructs tetrahedra instead of triangles and maintains a dictionary of unfinished

triangular facets.

Point location by walking: the algorithm traces a straight line through the trian-

gulation, visiting tetrahedra that intersect the line until it arrives at a tetrahedron that

contains the new vertex. It has no guarantee of a fast running time but can be improved

with the following considerations: the vertices should be inserted in an order that has much

spatial locality and each walk should begin at the most recently created solid tetrahedron.

2.2 Polygonal and triangular meshes

The general objective in mesh generation is to decompose a geometric space into elements.

The elements are restricted in type and shape [15]. Meshes made out of polygons are

important for object representation; there are several types of mesh which will be ad-

equate depending on the application; while triangular meshes offer a smoother surface

representation in contrast with other polygonal meshes, quadrilateral meshes offer symme-

try, commonly used to create 3D characters or objects [10]; usually for achieving higher

resolution, more triangles in the mesh are needed.

Definition 10 (Polygonal Mesh) A polygonal mesh consists of a set of edges E, a set
of vertices V and a set of faces F defined by connected polygons.

The polygons in a mesh must meet at their edges or vertices and they shouldn’t intersect

their faces, see Figure 2.8. Generally speaking, it is fairly simple to change polygons

with more than three edges to triangles. The difficulty can increase if the polygon is not

convex but triangulating a polygon is a problem commonly studied in the Computational

Geometry field, so there are several algorithms for computing it. In fact, an algorithm for

a n−sided polygon, which does not require ordering of the vertices is described in [16],

while two O(nlog(n)) run time algorithms are described in [17]. The benefit of a triangular

mesh, is that it simplifies storage since triangles are planar [10].

Of course, there are several issues when dealing with a three-dimensional mesh; for

instance, there is a geometric issue: knowing where the triangles are in the space. A

topological issue: how the triangles are connected, (see Figure 2.9). And a representation
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Figure 2.8: Polygonal and triangular mesh

issue: the data structure for storing the triangles in order to use graphics hardware to plot

the mesh.

(a) Triangular mesh of a cube (b) Different topology (c) Different geometry

Figure 2.9: Geometry vs Topology on meshes

2.2.1 Mesh topology

Mesh topology constraints based only on the way that triangles link to one another, dis-

regarding vertex locations, can be used to formalize the notion that meshes behave like

surfaces. Many algorithms require a mesh with known connection to work [18]. Some

requirements are presented below.

• Be a manifold: any sufficiently small patch has an invertible mapping of that patch

onto a unit disk. Formally, a shape is a manifold if any sufficiently small patch is

homeomorphic to a disk (i.e., it looks like a surface everywhere on the mesh) [10].

A manifold mesh is defined as one that has no gaps and separates the space on the

inside of the surface from the space outside [18]. An easy way to check that a mesh is

a manifold is to check that for every edge ei ∈ E, ei is shared by exactly two triangles
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and, for every vertex vi ∈ V , vi has a single, complete loop of triangles around it.

See Figure 2.10.

(a) Manifold vertex and edge (b) Non-manifold vertex and
edge

Figure 2.10: Manifold and not manifold objects

• Orientation: There should be a consistent idea of where is the “front” and the “back”

of the triangles. The front of a triangle is the side from which the triangle’s three

vertices are positioned in counterclockwise order; this is how we determine the ori-

entation 2.11a and 2.11b. In Figure 2.12, we have a mesh of a Möbious band, which

is not orientable; of course in practice it is quite rare to find this kind of mesh.

(a) Consistently oriented (b) Inconsistently oriented

Figure 2.11: Orientation of triangles in a mesh

2.2.2 Mesh representation

Let’s consider the following mesh made of 3 triangles (see Figure 2.13). Here v0, v1, v2

and v3 are three-dimensional points defining the mesh. To show the data structures, the

C programming language will be used.

These three triangles can be stored as independent entities, like this:
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Figure 2.12: Möbious band, not orientable

1

2 struct Triangle {
3 double triangle [3][3]; // list of 3 vertices with 3 coordinates
4 };

As a result, we will store v2 three times and the rest of the vertices two times, or

three times per triangle. Other option is to share the common vertices and store only four

vertices, resulting in a shared-vertex mesh; this data structure uses pointers so that the

triangles store the location of the vertices containing the vertex data [18]:
1 struct Vertex {
2 double X, Y, Z;
3 };
4

5 struct Triangle {
6 struct Vertex triangles [3]; // list of vertices
7 };

The entries in the array “triangles” are references to the Vertex structure, pointers to

be precise. In practice, we store vertices and triangles in arrays, with the references to

triangles and vertices handled by storing indices:
1

2 struct Triangle * Mesh [50]; // list of pointers of 50 triangles
called mesh

3 /*
4 Mesh [0] // this is a pointer to the first triangle

Mathematician 16 Final Grade Project



School of Mathematical and Computational Sciences Yachay Tech University

5 (Mesh [0]. triangles )[1] // this is a pointer the second Vertex of the
triangle 0

6 (Mesh [0]. triangles )[1].X // this is the x coordinate to the second
vertex of triangle 0

7 */

Of course, there are simpler and more efficient ways of implementing the mesh part,

(this is just a personal favourite and serves to observe the idea of storing references). This

method of storing shared vertex triangles in a mesh is called an indexed triangle mesh [18],

it looks as follows.

Table 2.1: Indexed triangle mesh vertices and triangles

(a) Vertices

v0 x0 y0 z0
v1 x1 y1 z1
v2 x2 y2 z2
v3 x3 y3 z3

(b) Triangles

t0 v1 v3 v2
t1 v3 v0 v2
t2 v0 v1 v2

Figure 2.13: Triangular mesh made of 3 triangles in 3D space

2.3 Surface reconstruction and Delaunay

Meshes serve as a discrete representation of continuous space. According to Shewchuk

in [19], meshes based on triangles or tetrahedra are very useful for applications such as

interpolation, rendering, and numerical methods. Sadly, there is no metric that consistently
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separates good and bad space representations, it is a general rule to avoid tiny or extremely

large angles since they lead to numerical errors [15]. In practice, we try maximizing the

minimum angle of the triangles or tetrahedra, because in this way, we obtain well-shaped

figures with bounds on these minimum and maximum angles.

Many mesh generation algorithms are based on Delaunay triangulations, as they are ef-

fective in practice and theory. For example, in [19], the authors present an implementation

that generates excellent meshes, usually surpassing theoretical bounds, effectively eliminat-

ing tetrahedra with small or large dihedral angles. This implementation is based on an al-

gorithm that can generate a conforming mesh of Delaunay tetrahedra whose circumradius-

to-shortest edge ratios are not greater than two. Using a complex of vertices, constraining

segments, and planar straight-line constraining facets in E3, as input. More specifically,

this and other related algorithms come from the family of Delaunay Refinement technique.

These algorithms work by keeping “a Delaunay or constrained Delaunay triangulation,

which is refined by inserting carefully placed vertices until the mesh meets constraints on

triangle quality and size.” [19].

The use of Delaunay techniques for mesh generation of surfaces is not new. For example,

in 1980, in fields such as engineering, we already see the use of triangulation to guide vertex

creation [20]. Nevertheless, the first good Delaunay refinement algorithm is due to Paul

Chew [21], which takes as its input the region to be meshed in the form of a set of vertices

and segments that define it. The algorithm continues adding vertices generating a two-

dimensional constrained Delaunay triangulation where the triangles angles are bounded

between 30 and 120 degrees. Later, this algorithm was generalized to three dimensions

for unconstrained point set inputs [22]. The output of all these algorithms are uniform

meshes, whose units are approximately of the same size.

The problem with uniform meshes is that they usually produce many more triangles

or tetrahedra than necessary [19], making the computational cost of this algorithm bigger

than needed when using the meshes for applications. However, other authors have proposed

algorithms producing meshes of well-shaped triangles whose sizes are graded [19].

All these algorithms’ effectiveness relies on the favorable features of Delaunay triangu-

lation presented in Section 2.1.2. The greatest advantage is that when doing meshes, the

central question for a refinement algorithm is, “where should the next vertex be inserted?”

Mathematician 18 Final Grade Project



School of Mathematical and Computational Sciences Yachay Tech University

The reasonable answer tends to be “as far from other vertices as possible.” Since Delaunay

triangles are constructed so that no vertices are in the interior of its circumcircle, it results

in a good search structure for finding points far from other vertices when adding these

points for the mesh generation [19].

Delaunay refinement algorithms are not the only algorithms for surface reconstruction

based on Delaunay Triangulation. In fields such as astronomy, a Delaunay Density Estima-

tor Method is used to render a fully volume-covering reconstruction of a density field from

a set of discrete data points [23]. This method is based on the stochastic geometric aspect

behind Delaunay tessellation of a point set. The tessellation is a volume cover tiling of

space into tetrahedra [24], and is related with the Voronoi tessellation, since they are dual

because the vertex of a Voronoi cell is the nucleus of a Delaunay vertex, and viceversa.

2.4 LiDAR technology

LiDAR (Light Detection and Ranging) [25], is a remote sensing method that uses pulsed

laser to measure the height of objects on the ground or the terrain’s topography. The light

pulses generate precise three-dimensional information about the shape of the Earth and

its surface characteristics by sensing the light that reflects off of the surface of objects and

the earth.

To calculate the distance traveled by the emitted light, the LiDAR system measures the

time it takes to reach back from the ground, then converted to elevation. These measure-

ments use a GPS, identifying the light’s (x, y, z) location, and an Internal Measurement

Unit which provides the orientation [26].

Since the light energy used in the LiDAR system is a collection of photons, some of the

protons might travel farther and reach the floor, while some others can reflect on a higher

part. This results in multiple reflections recorded from one pulse of light and, thus, two

LiDar Systems, one that records peaks in the waveform curve of a pulse and another that

records the full waveform of the pulse. The first is called a Discrete Return LiDAR system

and the second Full Waveform LiDAR system [26]. In figure 2.14, the light emitted by

the LiDAR system is represented in blue while the reflecting one is in green. For a Full

Waveform, all the data from the green arrows is processed, while on the Discrete Return,

Mathematician 19 Final Grade Project



School of Mathematical and Computational Sciences Yachay Tech University

only the information from a few selected green arrows.

Figure 2.14: LiDAR light energy used to measure objects in the ground

Whether it is a discrete or full waveform system, LiDAR point clouds are often available

as discrete points in .las file format. .las is a format supported by the American Society

of Photogrammetry and Remote Sensing (ASPRS). It supports the exchange of any 3-

dimensional (x, y, z)-tuple [27]. There is also the .laz format; in comparison with .las

format, .laz is a highly compressed version of .las.[26]

Most of the time, the .las files contain huge sets of points, and to view the terrain,

convert the file to another format and do many more operations with the (x, y, z) points, we

can use LAStools. LAStools is an open software (there is a closed version, too) developed

by Martin Isenburg for raidlasso GmbH. It is a cluster of programs that can be used

individually or together to process enormous LiDAR data sets [28].

2.4.1 LiDAR applications

LiDAR technology is used in many areas, some applications follow [29]:

• Wide-area, Corridor and City Mapping, and Urban Planning: LiDAR tech-

nology is used to produce incredibly accurate digital city models and locate features

such as new construction, changes in vegetation, light poles, streets, etc. Which can

be used for city planning.

• Vegetation Mapping: The capacity of LiDAR to accurately measure the vertical
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structure of individual trees and forest canopies makes it the ideal tool for natural

resource management, forest inventory, ecological analysis, fire control planning, and

conservation planning.

• Power Lines: LiDAR can be used for mapping transmission line utilities, the ground

under the line, the location of the towers and poles, the sag on the wires, and the up

growth of any vegetation in the facilities that can damage the lines.

• Coastal Mapping: LiDAR is ideal to monitor coastal habitats, to map the uneven

topography and effectively monitor the land and marine borders.

• Archaeological and Historical Surveys: There are structures from ancient civi-

lization that have been discovered by a LiDAR scan, most of the time this structures

are hidden by some vegetation in the area.

2.4.2 LiDAR and smartphones

LiDAR is a rapidly growing technology that continues to advance in terms of power, ac-

curacy, and speed. Such advancements should result in new application spaces for LiDAR

technology, in particular devices like smartphones. In [30], it is demonstrated how well

the iPhone performs at capturing raster picture data and orientation, on par with analog

compass-clinometers and reflex/mirror-less cameras. In [31], a system that uses the LiDAR

sensors found in contemporary cellphones, is developed to ascertain fluid characteristics.

With just one drop, the system can distinguish between coagulated and un-coagulated

blood as well as milk with various fat contents. In [32], a mobile app uses iOS devices

with LiDAR capabilities and Clew3D, to locate orientation and mobility markers along a

recorded path and determine their relative locations to generate automated directions for

a trajectory.

2.5 KD-tree and spatial indexing

Unless stated otherwise, background material in the following section is collected from [33]
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2.5.1 Binary Trees

In computer science, trees are data structures consisting of nodes and leaves where we

store data. A tree can be defined recursively as follows: a tree is either empty or it has a

root whose children recursively are trees. The most famous trees are Binary Trees which

are characterized by having only two children for each node, namely the left child and the

right child. Binary trees can be ordered and oriented or not.

Binary trees are often used to store data that needs to be accessed in form of queries

or searches. A binary search tree is a binary tree that imposes the following constraint on

its nodes: the search key for a node A must be bigger than the values for all nodes in the

left sub-tree of A, and less than the values in the right sub-tree of A. These type of trees

are useful for storing data in form of registers and two-dimensional data, however they are

poorly structures when working with spatial data with more dimensions.

2.5.2 KD-trees

KD-trees were invented in 1970s by Jon Bentley as a modification to binary search trees

for efficient processing of multi-dimensional search keys [34]. Because KD-trees are used

specially for multidimensional searches, it is a good idea to think of them in geometrical

terms.

Let us suppose we have a set of spatial points describing a space. Any non-leaf node

in a KD-tree can be thought of as inherently generating a splitting hyperplane that splits

the space into two halves; this is shown in Figure 2.15a, the hyerplane passing through

A splits the space into two halves. The left sub-tree of that node represents points to

the left of this hyperplane, while the right sub-tree represents points to the right of this

hyperplane. Every node in the tree is connected to one of the k dimensions, with the

hyperplane perpendicular to that dimension’s axis (See Figure 2.15).

The properties of KD-trees include:

• Each level has a cutting dimension.

• We cycle through the dimensions as we walk down the tree.

• Each node contains the information of a point P = (x, y).
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To search for a point (x′, y′) we only need to compare coordinates from the cutting

dimensions, i.e., if cutting dimension is x, then we ask: is x′ < x?

(a) KD-tree hyperplanes

(b) KD-tree

Figure 2.15: KD-tree example

2.5.3 KD-Trees Nearest Neighbor

One the most famous uses of KD-trees is its application to solve the problem of finding the

nearest neighbor of a point. Nearest Neighbor Queries are very common, the idea is that

given a point P , we want to find the point Q in the data set such that it is the closest to
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P .

A first approach to solve this problem is finding the cell of the hyperplane defined by

P and return the point it contains. However, this does not work because the nearest point

to P in space may be far from P in the tree. Thus, the correct idea is traversing the whole

tree, but making two modification to prune the search space:

1. Keep a variable C to store the closest point found so far. Prune sub-trees once their

bounding boxes say that they cannot contain any point closer to P than C.

2. Look for subtrees in the order that maximizes the possibility of pruning.

3. If the distance between P and the current C is greater than the distance between P

and a new candidate, then no point in the bounding box of sub-tree can be closer to

P than C. Thus, there is no reason to search said sub-tree.

4. However, if there is a point closer to P than C, then update the new point.

5. Recursively search for the sub-tree closer to P : First search the sub-tree that would

contain P as if we were inserting P below.

The cost of this algorithm at its worst case is O(n), however in practice, the run time

is closer to: O(2d + log n). To summarize, the most important steps that occur in this

algorithm are: Storing partial results: keep best results so far, and update. Pruning:

reduce search space by eliminating irrelevant trees, thus saving storage and computational

resources. Traversal order: visit the most promising sub-tree first.

2.5.4 Spatial Indexing

The concept of using KD-trees for neighborhood computation is related to the concept of

Spatial Indexing. As [33] explains: “spatial indexing is much like the index in the back of

a book, which can be used to easily find the page, where a certain notion occurs.” In this

way, a spatial database indexes over points in space provides easy access to them without

the requirement of going through the whole database. It is clear, how KD-trees are useful

for spatial indexing, as each node represents a point, and you don’t need to search for the

whole space when looking for some specific point. However, KD-trees are not the only data

structures useful for spatial indexing, we also have Quadtrees and Octrees.
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2.5.5 Quadtree and Octree

Similar to KD-tree, quadtrees are spatial data structures that split a d-dimensional space

recursively into 2d equally sized cells. In our three-dimensional case, quadtrees are called

octrees. Given a point set P , the construction of a three-dimensional octree starts with a

bounding cube around P , which will be the initial cell of the octree. Recursively, each cell

is subdivided into eight equally sized cube cells until every cell of the octree only contains

one point pi ∈ P . We used the standard enumeration for these cells, as shown in Figure

2.16, here 0 refers to the hole cube.

Figure 2.16: The labeling of a Quadtree and an Octree [1, 2].

This procedure gives a tree where the initial bounding cube acts as the root. Each

internal node has eight children, corresponding to the eight equally sized cube cells that

the cell corresponding to the considered node is split into. The leaves of the tree either

represents a point from the input set P or are empty. An excellent introduction to Octrees

and their implementation can be found in [1, 2]. To end this section, it is good to notice

that octrees are better than KD-trees for procedures such as insertion and deletion of

points since in KD-trees, we need to rebuild the whole tree, and in an octree, we can do it

optimally.

2.6 Covariance matrices and representation of sur-
faces

One way to do it when storing points representing a surface is by arranging them into

a matrix. We can characterize a surface with the covariance matrix of local descriptors

rather than the descriptors themselves [35]. Covariance matrices have been used for texture
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classification, object detection and tracking, face recognition, and action recognition. The

advantage of using covariance matrices is that they provide a natural way to store fusing

multi-modal features about a surface without normalizing.

In [35], the authors represent a three-dimensional surface as a set of overlapping patches

{Pi, i = 1...m}, each patch Pi come from around a representative point pi = (xi, yi, zi)t.

For each point pj = (xj, yj, zj), j = 1, ..., ni, in the patch Pi, they compute a feature vector

fj, of dimension d, that contains the local geometric and spatial properties of the patch. If

we let {fj}j=1...n be the d-dimensional feature vectors computed over all points inside Pi,

then a three-dimensional patch Pi can be represented as a d × d covariance matrix Xi:

Xi = 1
n

n∑
j=1

(fj − µ)(fj − µ)t, (2.1)

where µ is the mean of the feature vectors computed in the patch Pi. By definition, this

covariance matrix is a symmetric matrix, whose diagonal elements represent the variance

of each feature and its off-diagonal elements represent their respective correlations.

Another way to see the use of covariance matrices for representing a surface is through

Algebraic Geometry and the use of vector fields. As [3] explains, vector fields are good

models to represent surfaces since they can encode the surface normal (a vector perpendic-

ular to the tangent plane of the surface at a point P ) together with the nearest neighbors

in each point, thus enabling nearest neighbor search in linear time complexity. As shown

in Figure 2.17, the vector field of a three-dimensional surface is composed of a regular grid

made of cubic nodes with side length L.

Figure 2.17: The vector Field implicit representation of a surface, taken from [3].

Each cube in the grid is indexed by the coordinates of its center vi,j,k in a reference

frame Wr. The covariance matrix Ci,j,k of the points falling in cube ijk is defined as
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Ci,j,k = 1
n

n∑
i=1

(pi − p̄)(pi − p̄)t, (2.2)

where p̄ is the mean vector defined as

p̄ = 1/n
n∑

i=1
(pi) (2.3)

Notice the similarities between equation 2.1 and equation 2.2. If the cube size L is small

enough, we can assume that the object surface in the cube can be approximated by the

plane ΠT tangent to the surface. The normal vector to this tangent plane is the eigenvector

corresponding to the smallest eigenvalue λmin of the covariance matrix Ci,j,k. Thus, the

idea behind the use of covariance matrices, is that we can extract the eigenvectors of

this matrix, obtaining the tangent plane which is a two dimensional approximation of the

surface, and over this plane, we can compute the Delaunay Triangulation of the patches.

Also, the eigenvalues of the covariance matrix are indicators of the roughness of the surface

in a given point, taking into consideration the other points from the patch.

2.7 Tangent plane and tangent cone

Consider a two-dimensional curve y = f(x), and a straight line that “just touches” said

curve at a particular point c. This line is referred to as the tangent line to a plane curve.

Space curves and curves in n-dimensional Euclidean space have a similar definition, the

plane that “just touches” a surface at a certain location is the tangent plane to that surface.

This concept on the tangent is one of the most fundamental ideas in differential geometry;

in higher dimensions, we might speak about the tangent space.

In [36] they define the tangent space to an affine variety X at a point x as the set of all

lines through x tangent to X. In the three-dimensional space we will have a surface. Let

z = f(x, y) be continuous, the tangent plane at the point P = (x0, y0, z0) can be defined

with the following equation:

A(x − x0) + B(y − y0) + C(z − z0) = 0 (2.4)

with the normal vector to the plane being n = (A, B, C).
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2.7.1 Tangent cone

From [4] we will describe the following subsection.

For a regular parametric surface, there are two tangent cones: Tu for a variable pa-

rameter u and a constant parameter v, and Tv for a variable parameter v and a constant

parameter u. Tu of a parametric surface is a set of points in E3 such that a position vector

of a point in Tu corresponds to a tangent vector of the surface with respect to u, at some

u and v. Tv is defined analogously. A normal cone N , is a set of points in E3 such that a

position vector of a point in N corresponds to a normal vector on the surface, at some u

and v. A visibility cone V , is a set of points in E3 such that any line parallel to the position

vector of a point in V intersects with the surface at most once for all u and v. Figure 2.18

illustrates cones for regular parametric surfaces.

Figure 2.18: Cones of a parametric surface. (a) A regular parametric surface. (b) Two
tangent cones. (c) Normal cone. (d) Visibility Cone [4]

For our purposes, we assume the surface is regular so that a normal vector exists at

each point on the surface.
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Chapter 3

Methodology

The Delaunay triangulation is a good choice for terrain representation since maximizing

the minimum angle will enable a good visualization of the data. However, it becomes a

bit difficult to implement since the 3-dimensional case is not that trivial. Moreover, it is

important to take into account the size of the data set to be used, since it will take a huge

amount of run time, even with a fully efficient implementation.

This chapter will describe all steps taken from the description of the problem to the

analysis of the obtained results, as well as the pseudo-code for the algorithm and some

recommendations for its implementation.

3.1 Phases of Problem Solving

3.1.1 Description of the Problem

We want to obtain a surface reconstruction by computing a Delaunay triangulation on a

three-dimensional set of points. The algorithm must not use a projection of the points on

a plane, since it does not give an accurate representation of the terrain when singularities

are present: a sharp edge, a failure, steep slopes, holes or the top of a sharp mountain, see

Figure 3.1. Around these singularities, we can have errors in the triangulation.

Therefore, the z coordinate must be taken into account and so, the relation between the

points of the data set, meaning that the algorithm must be able to identify quantitatively

when the surface to be reconstructed corresponds to a roughly flat smooth surface or a

nearly singular one.
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Figure 3.1: Examples of irregular terrains with singularities.

3.1.2 Analysis of the Problem

We want to develop an algorithm that does not do a projection on the plane; instead we

want the algorithm to analyse the topography of the terrain (to a certain level), we must

find an indicator that allows the building of the Delaunay triangulation. For the purpose

of achieving this, we will use the information that can be obtained with the variance and

covariance matrix of each point and its closest nearest neighbors, with the central point

taken as the origin of the vector space associated to the affine Euclidean space.

By computing the eigenvalues and eigenvectors of the variance and covariance matrix

of each point, we will obtain a geometrical interpretation of each point: if a point is a

singular point, corresponding to a terrain failure, a hole or steep slopes for example; or if

is flat, smooth and continuous terrain, in a local sense. This information will be obtained

from the smoothness index α which corresponds to

α = λ1

λ1 + λ2 + λ3
, (3.1)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the variance and covariance matrix. From

Equation 3.1, we can obtain these possible outcomes:

• α = 0: this only happens when there are no neighbors for a point pi, meaning it is

an outlier on the set or the points are less dense in some area.

• α = 1
3 : this means the point is singular or the terrain is irregular, hence for the

triangulation the tangent cone should be used for the triangulation.

• α = 1: meaning the terrain is flat and continuous, however it is less likely to obtain
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because of the noise in the data set.

• α ∈
(

1
3 , 1

)
: this is the most likely scenario, if α is closest to 1 it indicates a smooth

surface.

Figure 3.2 shows the location of points on the data set corresponding to four different

values of α. When the points are more scattered the values of α are lower as in Figures

3.2a and 3.2b. It is important to notice that when α is closer to 1 or even 1, it does not

necessarily mean an horizontal portion of the terrain, it can also mean vertical continuity

as it is shown in Figure 3.2d.

(a) α = 0.34 (b) α = 0.5

(c) α = 0.7 (d) α = 1

Figure 3.2: Graphic representation of α

With the points projected on the tangent plane we can compute the Delaunay trian-

gulation in two dimensions; keeping the reference to the original points will allow to plot

the Delaunay triangulation in its original three dimensional space obtaining the Surface

reconstruction.
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3.1.3 Algorithm Design

The algorithm is explained bellow as step by step guide and the following notation is going

to be used for the purpose of a better explanation:

Let P be a set of thee dimensional points such that for every pi ∈ P , there is a set Npi

containing the nearest neighbors of pi, also elements of P . An element pj ∈ P will be an

element of Npi
if pj ̸= pi.

There will be cases in which the points are more densely distributed in some areas, it might

happen that a ball centered in some point pi will enclose hundred of neighbors, while the

same ball centered in another point pj will have none.

The algorithm:

1. Find 10 nearest neighbors of each point: for each point pi ∈ P we can choose

ϵ small enough and work with the elements pj inside a ball d(pi, pj) < ϵ. Either

|Npi
| = 10, 1 < |Npi

| < 10 or |Npi
| > 10. In the first case we are done; in the

second case we can increase the radius of the ball and in the last case we can sort

the elements of Npi
and choose the 10 closest ones to pi.

2. Compute the Variance-Covariance matrix of each point and its 10 nearest

neighbors: using equation 2.1 we will compute the Variance-Covariance matrix Σi.

We need to make an axis chance before computing Σi for each point, pi will move to

the coordinates (0, 0, 0) and the nearest neighbors in Npj
will move accordingly. This

is a local axis change.

3. Compute the eigenvalues and eigenvectors: we need the eigenvalues λ1 > λ2 >

λ3, and their corresponding eigenvectors, v1, v2 and v3, of the Variance-Covariance

matrix Σi.

4. Compute the smoothness index: using the eigenvalues λ1, λ2 and λ3, obtained

before and equation 3.1 we will obtain a value α for each Σi

5. Use the tangent plane or tangent cone to project the neighbors: with the

smoothness index α we will know in which cases to use the tangent plane and which

ones the tangent cone. In the case of the tangent plane, the eigenvectors v1 and
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v2 will generate the tangent plane, while v3 will represent the normal vector to the

plane. Using the normal vector, we can project the points nij
∈ Npi

on the tangent

plane.

6. For the tangent plane: from the projection of pi and the corresponding nij
∈ Npi

on the tangent plane, we compute the Delaunay triangulation. With that informa-

tion, we return the triangles to the original points

7. Flips and fixes: What remains is to check for non Delaunay triangles, holes and

mistakes in the triangulation. For the non-Delaunay triangles, we can make an edge

flip if is possible and the surface will be triangulated.

3.1.4 Implementation

For the implementation, a LiDAR data set was obtained from the National Geographic In-

stitute of the Government of Spain, the link: https://centrodedescargas.cnig.es/Centro

Descargas/buscador.do; under the file name “PNOA-2014-BAL-356-4304- ORT -CLA-

CIR.laz”, a .laz file from 2014, with a density of 0.5 pts/m2 and 8.65 MB. The set corre-

sponds to a small region of Ibiza, specifically the one depicted in Figure 3.3. The same

region can be seen from the Google Maps app, it corresponds to Figure 3.4, where the

topography of the terrain can be appreciated and finally, on Figure 3.5, we can see the

2’833.554 points in the set by using LAStools program.

From Figure 3.5, we can notice some of the points define the surface of the sea and

the others the surface of land with some mountains and relatively smooth surface. On the

other hand, there is also an area in the sea where there are less points. In Table 3.1, we

see the density of the points by sector.

Table 3.1: Density of points in the poin cloud set

0 400 800 1200 1600 2000
2000 103737 123556 125780 170829 272336
1500 84415 49372 103601 294939 305282
1000 13104 11957 245686 161974 113317
500 35678 77214 125585 155330 259862

For the implementation of the algorithm, the C programming language was mainly used
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Figure 3.3: Region of Ibiza from where the LiDAR data set was taken. Image comes from
the National Geographic Institute of the government of Spain’s web page.

Figure 3.4: Data set view using Google Maps: approximate location of the point set.

for processing the point clouds and the nearest neighbor queries. RStudio was used for

computing the eigenvalues and eigenvectors of the variance and covariance matrix as well

for the triangulation with the “tripack” library, a constrained two-dimensional triangulation

package. LAStools was used to observe the point clouds and change the file format from

.las to .xyz and .txt for the analysis; and gnuplot was used for the 3D visualization. The
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Figure 3.5: LiDAR data set viewed using LAStools

KD-tree implementation was taken from a free source: https://github.com/jtsiomb/kdtree.

It is a non adaptative KD-tree with nearest neighbor queries.

3.1.5 Testing

For a better analysis on the algorithm implementation, from the main area, 3 sections

were chosen for triangulation (see Figures 3.6, 3.7 and 3.8). Section 1 is a smooth flat

area, corresponding to a region of the sea located in the lower left part of the original data,

with 13104 points without prepossessing. Section 2 corresponds to a boundary between

sea and land with small elevations but still a flat surface, it has 77214 points without

prepossessing. Finally, Section 3 corresponds to an irregular part of the land, this section

has a big amount of vegetation and 294939 points.

Since the LiDAR technology uses a beam of light, there is a chance to obtain outliers

in the data corresponding to places where the light reflects or is absorbed by the ground

or an object. A clear example is 3.6, where there is a white spot, probably due to the
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Figure 3.6: Section 1: (x, y, z) ∈ [0, 400) × [500, 100) × R

sea waves. Hence the first step taken was to use the KD-tree implementation to find the

nearest neighbor of each point; with this we can obtain the first data filtering. This was

computed on the entire set, resulting on table 4.1. The next step is to compute the ten

nearest neighbors of each set.

After that, when computing the variance and covariance matrix, and analyzing the

values of α, the points with lower values of α will be omitted since they will need to be

triangulated with the tangent cone. The other points will be triangulated by using the

tangent plane and then plotted.
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Figure 3.7: Section 2: (x, y, z) ∈ [400, 800) × [0, 500) × R
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Figure 3.8: Section 3: (x, y, z) ∈ [1200, 1600) × [1000, 1500) × R
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Chapter 4

Results and Discussion

From the development of the algorithm to the implementation, there are several observa-

tions to notice, they will be mentioned in chronological order:

Nearest neighbors: First, the nearest neighbor was computed for each point in the

point cloud, as well as the respective distance, for two purposes: the first was to find

outliers. Due to the way LiDAR technology works, erroneous data can be found in the

point cloud due to the light pulse being absorbed or reflected by an object. Secondly,

because the minimum spanning tree is a subgraph of the Delaunay triangulation, i.e., the

nearest neighbor information can serve as a reference for the triangulation.

The problem resulting from this method is that due to the density of the points, there

was more than one neighbor with the same distance for a said point in denser areas.

In contrast, there was no neighbor at all in fewer dense areas, and it was necessary to

recursively extend the neighbors’ search radius for certain points. In Table 4.1 we can see

the intervals of the distance to the nearest neighbor and its frequency.

To decide the number of data to use, we analyzed the frequencies by distance intervals

with the nearest neighbor to decide the number of data to use. After this, we calculated the

standard deviation between distance intervals. Then, we used this standard deviation with

the average, the number of intervals, and a value of α = 0.005 to obtain a confidence interval

value of 99.95%. Finally, we considered the value of the largest number of frequencies,

and 12 confidence intervals of 99, 5% were subtracted to obtain a significance limit of the

information. It was indicated that the cut should be done at a frequency of 26984.57. We

decided to include more points in the data set to triangulate, hence from d > 4, the points
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were considered outliers, and thus, the first filter was done. However it would be important

to consider some scattered areas in the point cloud where more points may be needed.

Table 4.1: Nearest neighbor histogram for the whole point cloud

Interval Frequency Interval Frequency Interval Frequency
[0.0 − 0.5) 1000614 [8.5 - 9.0) 48 [17.0 - 17.5) 1
[0.5 − 1.0) 844332 [9.0 - 9.5) 39 [17.5 - 18.0) 2
[1.0 − 1.5) 728719 [9.5 - 10.0) 22 [18.0 - 18.5) 2
[1.5 − 2.0) 202926 [10.0 - 10.5) 32 [18.5 - 19.0) 2
[2.0 − 2.5) 37507 [10.5 - 11.0) 14 [19.0 - 19.5) 2
[2.5 − 3.0) 10460 [11.0 - 11.5) 22 [19.5 - 20.0) 1
[3.0 − 3.5) 4238 [11.5 - 12.0) 12 [20.0 - 20.5) 1
[3.5 − 4.0) 1916 [12.0 - 12.5) 10 [20.5 - 21.0) 0
[4.0 − 4.5) 841 [12.5 - 13.0) 6 [21.0 - 21.5) 2
[4.5 − 5.0) 534 [13.0 - 13.5) 10 [21.5 - 22.0) 0
[5.0 − 5.5) 366 [13.5 - 14.0) 8 [22.0 - 22.5) 0
[5.5 − 6.0) 204 [14.0 - 14.5) 5 [22.5 - 23.0) 2
[6.0 − 6.5) 210 [14.5 - 15.0) 5 [23.0 - 23.5) 0
[6.5 − 7.0) 149 [15.0 - 15.5) 5 [23.5 - 24.0) 0
[7.0 − 7.5) 128 [15.5 - 16.0) 4 [24.0 - 24.5) 0
[7.5 − 8.0) 87 [16.0 - 16.5) 2 [24.5 - 25.0) 0
[8.0 − 8.5) 60 [16.5 - 17.0) 3 25.0 1

Computing the 10 nearest neighbors: This process was carried out to later analyze

the terrain in pieces small enough to approximate a flat surface. We used the KD-tree

implementation in C, which allowed us to make a ball around each point and work with

the points that stayed inside. Afterward, we only had to sort them by distance using the

bubble method. This step was done recursively with the following values for the radius

0.10, 0.20, 0.3, 0.5, 1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 20, 25. In the densest areas of the point cloud, a

radius of 1 returned about 150 thousand points; hence there was the need to implement the

restriction of allowing a maximum of 500 points to sort; if the number of points surpassed

this value, we needed to reduce the radius.

As a result, we obtained 16 iterations. In the last iteration, there were points with less

than ten neighbors. The points with less than three neighbors were considered possible

outliers. They were left for further processing when the triangulation should be reviewed

globally and because they will generate numerical problems when computing the variance

and covariance matrix and the eigenvalues and eigenvectors.

Covariance Matrix: This part of the implementation was quite simple and smooth;
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the only drawback was that for the last iteration of the ten nearest neighbors, in some cases,

the index of the same point was filtered as a neighbor, which resulted in some numerical

errors. This issue was easily solved by defining an index representing the ”non-neighbor”

and remembering it for the subsequent steps. The next step was implemented in R, so it

was necessary to adapt the output information in the correct format.

Eigenvalues and eigenvectors: The implementation in R is shown below. In each

line are the values of the Covariance matrix by columns, and for each line, the eigenvalues

and eigenvectors are computed and stored per line in separate files.
1 a <- read.csv(" VC_matrix .csv", header = FALSE , sep = ",", dec = ".")
2 values <-c(0 ,0 ,0)
3 vectors <-c(0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0)
4 for (i in 1:2833489) {
5 c <- a[i, , drop = FALSE]
6 f1 <- a[i, 1:3, drop = FALSE]
7 f2 <- a[i, 4:6, drop = FALSE]
8 f3 <- a[i, 7:9, drop = FALSE]
9 d <- as. matrix (f1 , nrow =3, ncol =3, byrow = TRUE)

10 d <- rbind(d, unlist (f2))
11 d <- rbind(d, unlist (f3))
12 ev <- eigen(d)
13 val <- ev$values
14 vec <- ev$vectors
15 c1 <- vec [1:3 , 1, drop = FALSE]
16 c2 <- vec [1:3 , 2, drop = FALSE]
17 c3 <- vec [1:3 , 3, drop= FALSE]
18 G<-c(c1 ,c2 ,c3)
19 vectors <- rbind(vectors ,t(G))
20 values <-rbind(values ,t(val))
21 print(i)
22 }
23 values <- values [-1, ]
24 vectors <- vectors [-1, ]
25 write.csv(values , file = " eigenval .txt",row.names = FALSE)
26 write.csv(vectors , file = " eigenvec .txt",row.names = FALSE)

Smooth index for tangent plane: Once the eigenvalues and eigenvectors for each

point were obtained, we checked the smoothness index. In general, we obtained the table

4.2 results for the whole file. There was no value of α = 1/3, but we obtained quite

close values. We used a similar method as with the first filtering for the table 4.2b. We
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obtained the values corresponding to the maximum value within the intervals, the standard

deviation, and the number of data. A value of α = 0.005 was set to obtain a confidence

interval of 99.95%. Finally, from the maximum value of frequencies of the smoothness index

obtained, four confidence intervals of 99.95% were subtracted to obtain the limitation of

the information. It was indicated that the cut should be done at a frequency of 39,03.

With this information, we established a range: points for which their value of α < 0.36

would use the tangent cone; if 0.36 ≤ α < 0.37, we can use both tangent plane and tangent

cone, and for α > 0.37, we can use the tangent plane.

Table 4.2: α histogram for the whole point cloud

(a) Interval [0.3 − 1.0]

interval frequency
[0.3, 0.4) 830
[0.4, 0.5) 94033
[0.5, 0.6) 920068
[0.6, 0.7) 871731
[0.7, 0.8) 441396
[0.8, 0.9) 231456
[0.9, 1.0) 273962

1.0 13

(b) Interval [0.3 − 0.4]

interval frequency
0.30 − 0.31 0
0.31 − 0.32 0
0.32 − 0.33 0
0.33 − 0.34 0
0.34 − 0.35 1
0.35 − 0.36 5
0.36 − 0.37 31
0.37 − 0.38 86
0.38 − 0.39 268
0.39 − 0.4 439

Choosing Section 1,2 and 3: Sections 1, 2, and 3 were chosen to study the

algorithm’s validity. Section 1 corresponds to a relatively flat and fairly smooth area,

corresponding to a part of the sea. Section 2 corresponds to a more mountainous terrain

without much vegetation and maintains the differentiability of the terrain but with inter-

esting areas of non-differentiability. Section 3 corresponds to an area with much vegetation;

both treetops and the ground are represented in the point cloud; for this section, quite low

and frequent values of α would be expected. Tables 4.3, 4.4, and 4.5 show each section’s

values of α and from analyzing them, we know these 3 sections can be triangulated using

the tangent plane.

Projection points and R: From each of the points, we obtained the projections on

the respective tangent plane, which was computed with the eigenvectors corresponding to

the two largest eigenvalues. Hence it was necessary to consider only the x and y coordinates
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Table 4.3: Values α in Section 1

Interval value α max α min
(0.3 − 0.4] 0 1 0.501951
(0.4 − 0.5] 0
(0.5 − 0.6] 3781
(0.6 − 0.7] 5597
(0.7 − 0.8] 2915
(0.8 − 0.9] 703
(0.9 − 1.0] 86

1.0 1

Table 4.4: Values of α in Section 2

Interval value α max α min
(0.3 − 0.4] 2 0.946453 min: 0.394795
(0.4 − 0.5] 408
(0.5 − 0.6] 5956
(0.6 − 0.7] 5126
(0.7 − 0.8] 1368
(0.8 − 0.9] 205
(0.9 − 1.0] 18

1.0 0

Table 4.5: Values of α in Section 3

Interval value α max α min
(0.3 − 0.4] 66 1 min: 0.360152
(0.4 − 0.5] 6174
(0.5 − 0.6] 64788
(0.6 − 0.7] 87648
(0.7 − 0.8] 67202
(0.8 − 0.9] 34073
(0.9 − 1.0] 33998

1.0 0

to triangulate two dimensions using the tripack library in R with the tri.mesh function.

Implementation is included.
1 library ( tripack )
2 a <- read.csv2(" sec1_tr .csv", header = FALSE , sep = ",", dec = ".",

stringsAsFactors = FALSE , encoding = "UTF -8")
3 #a <- read.csv (" test.csv", header = FALSE , sep = ",", dec = ".")
4 # sec1 26162 sec2 154420 sec3 587774
5 values <-c(0 ,0)
6 vectors <-c(0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0)
7 for (i in seq (1 ,26162 ,2)) {
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8 print(i)
9 cx1 <- a[i, , drop = FALSE]

10 cy1 <- a[i+1, , drop = FALSE]
11 cx <- t(cx1)
12 cy <- t(cy1)
13 obj <- tri.mesh(cx ,cy , duplicate = " remove ")
14 sum <-summary (obj)
15 numn <- sum$n
16 numtr <- sum$nt
17 num <- c(numn ,numtr)
18 values <-rbind(values ,num)
19

20 tr <- triangles (obj)
21 vectors <- rbind(vectors ,tr)
22

23 capture . output ( print(obj), file = "we_s1.txt",append = TRUE , type=
c(" output ", " message "), split = FALSE)

24 }
25

26 values <- values [-1, ]
27 vectors <- vectors [-1, ]
28 write.csv(values , file = " sec1_n_tr .txt",row.names = FALSE)
29 write.csv(vectors , file = " sec1_t .txt",row.names = FALSE)

For one entry, i.e., a point, and its neighbors’ projections on the tangent plane, we

obtain the information on the nodes and its triangulation, which can be tracked back to

the original points. In image 4.1 and image 4.2 we can see the Delaunay triangulation of

the first two inputs corresponding to Section 1 point cloud and the respective data file used

for the complete Delaunay reconstruction. Notice that with the “duplicate = “remove””

command in tri.mesh, we eliminate repeated values, this solves the problem if a point has

missing neighbors or repeated ones.

(a) i = 1 (b) Information file

Figure 4.1: Delaunay triangulation of the projection of point i = 1
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(a) i = 2
(b) Information file

Figure 4.2: Delaunay triangulation of the projection of point i = 2

(a) i = 3
(b) Information file

Figure 4.3: Delaunay triangulation of the projection of point i = 3

Delaunay triangulation: With the data obtained from the R algorithm, it remains

to search for the original values keeping the relation with the triangles. It is not that

evident for the whole set, so the result will be shown for the three points shown in Figures

4.1, 4.2 and 4.3, in Figure 4.4.

The Delaunay reconstruction of the whole sections can be visualized using the following

link: https://drive.google.com/drive/folders/1zbDYU7ZJIccDSaLFJSN JwYdA1nWNdsZ

D?usp=sharing.
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(a) (b)

(c) (d)

Figure 4.4: Delaunay triangulation of the first three points of the set and their nearest
neigbors
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Chapter 5

Conclusions

Due to the study of the material corresponding to the Delaunay triangulation and the

covariance matrix, an algorithm was developed to reconstruct surfaces defined by three-

dimensional points. On the other hand, the information provided by the eigenvalues and

eigenvectors of the covariance matrix of a nearby set of points helped to determine the

smoothness level of the point surface locally; therefore, the smoothness of a terrain can be

quantitatively analyzed using this method.

Additionally, a cloud of LiDAR points corresponding to one of the coasts of Ibiza was

obtained. With this point cloud, the algorithm’s implementation was mainly done in the C

programming language, except for certain parts of the algorithm that require much more

work and programming knowledge for which R was used. With R, the eigenvalues and

eigenvectors of the covariance matrix were obtained, as well as the Delaunay triangulation

of the points projections.

This “local” triangulation obtained from R is the basis of surface triangulation of the

entire set and, therefore, terrain reconstruction. Finally, regarding the efficiency and ac-

curacy of the algorithm, more tests and analyzes must be done to specify something more

conclusive; due to the limitations of the computational capacity, the performance of the

algorithm could not be studied in a better way since it will be more significant to evaluate

on big point clouds. Moreover many parts of the implementation can be improved.
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