
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: E-voting Platform for direct democracy on
communities using blockchain

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor/a:

Franz Paúl Guzmán Basurto

Tutor/a:

Francesc Antón Castro, Ph.D.

Urcuqúı, agosto 2023

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer Graduation Project

Autoŕıa

Yo, Franz Paúl Guzmán Basurto, con cédula de identidad 1721888293, declaro que las

ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y concep-

tualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas

utilizadas en la investigación, son de absoluta responsabilidad de el autor del trabajo de

integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad

de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, agosto 2023.

Franz Paúl Guzmán Basurto

CI: 1721888293

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer ii Graduation Project

Autorización de publicación

Yo, Franz Paúl Guzmán Basurto, con cédula de identidad 1721888293, cedo a la Uni-

versidad de Tecnoloǵıa Experimental Yachay, los derechos de publicación de la presente

obra, sin que deba haber un reconocimiento económico por este concepto. Declaro además

que el texto del presente trabajo de titulación no podrá ser cedido a ninguna empresa edi-

torial para su publicación u otros fines, sin contar previamente con la autorización escrita

de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-

bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el

Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, agosto 2023

Franz Paúl Guzmán Basurto

CI: 1721888293

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer iv Graduation Project

Dedication

I am humbled and grateful for what I have achieved through this thesis project, and I am
proud to dedicate it to those who may find it useful, especially to my friends and family

who have supported me every step of the way.

I will also dedicate this thesis to those who have been marginalized and excluded from the

political process, and to those who have not been given a fair chance to make their voices

heard. I hope that this work will inspire and empower individuals and communities to

take control of their governance and strive for a more just and equitable society.

Franz Paúl Guzmán Basurto

v

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer vi Graduation Project

Acknowledgments

Gratitude fills my heart as I express my sincere thanks to those who believed in me from

the very beginning. Without their unwavering support, this journey wouldn’t have been

possible.

I sincerely appreciate my advisor, Francesc Antón Castro, Ph.D., for his invaluable

guidance and support throughout my thesis writing journey. His passion for the topic and

his expertise in the field have been evident in the many engaging discussions we have had.

I am deeply grateful to my father, Franz, for his invaluable guidance and support

throughout the thesis writing process. His extensive experience in directing theses and his

expertise were instrumental in helping me review and improve this work. His insightful

comments and suggestions have challenged me to think critically and have greatly enhanced

the quality of my thesis.

To my manager, Cristhian, for not only encouraging me to complete this project but

also for providing me with insightful discussions and suggestions during our one-on-one

meetings. His support has been key for my personal and professional growth. To my family

for their support and patience throughout my thesis writing journey. Their encouragement

and belief in me have kept me motivated and focused on my goals. Especially my sister,

Nahomy, for being an inspiration and role model in my life. And my mother, Janeth, for

her unconditional love and care.

I would like to take this opportunity to express my heartfelt gratitude to my girlfriend,

Maŕıa Eugenia, for her unwavering support and encouragement throughout this thesis

writing journey. I am grateful to have her by my side and look forward to many more

adventures to come.

Franz Paúl Guzmán Basurto

vii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer viii Graduation Project

Resumen

Las democracias presentan falencias, en particular el desaf́ıo de lograr una representación

adecuada sin una rendición de cuentas continua. Esta falta de supervisión lleva a un

electorado ignorado a volverse apático hacia el voto, profundizando la desconfianza. Los

mecanismos que fomentan la participación ciudadana aumentan el apoyo a causas justas,

reconocen situaciones ineficaces y mejoran la conciencia pública.

La tesis propone una plataforma de votación electrónica accesible, segura y descen-

tralizada. Aprovechando las ventajas de la tecnoloǵıa blockchain, como la criptograf́ıa

y la transparencia, empodera a los miembros de la comunidad para emitir votos sobre

propuestas e imponer su visión en sus representantes. El objetivo central es un modelo

funcional que utilice lo último en tecnoloǵıa. El proceso de desarrollo sigue un modelo

iterativo, ofreciendo un sistema que cumpla con el objetivo propuesto. Involucra el desar-

rollo de contratos inteligentes y una interfaz de usuario, pruebas de software exhaustivas

y la implementación en una red blockchain personalizada. Las mejoras futuras incluyen la

accesibilidad, la seguridad del usuario y algoritmos de consenso más seguros.

La tesis establece un marco referencial para futuras iniciativas en el ámbito de gober-

nanza, actuando como una gúıa para aquellos que aspiran a alcanzar objetivos similares.

Resalta la importancia de priorizar el bienestar de las personas y mejorar su calidad de

vida mediante el apoyo de la tecnoloǵıa.

Palabras Clave: votación blockchain, contrato inteligente, red blockchain

privada, software de votación, votación electrónica, aplicación descentralizada

ix

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer x Graduation Project

Abstract

Democracies have flaws, notably the challenge of achieving proper representation without

continuous accountability. This lack of oversight leads to an unheard electorate becom-

ing apathetic to voting, deepening distrust. Mechanisms encouraging citizen involvement

increase support for righteous causes, recognize ineffective situations, and enhance aware-

ness. The thesis proposes an accessible, secure, decentralized electronic voting platform.

Leveraging blockchain technology’s advantages, like cryptography and transparency, it em-

powers community members to cast votes on proposals and enforce their vision on their

representatives. The central objective is a functional model utilizing the latest technolo-

gies. The development process follows an iterative model, delivering a system fulfilling the

proposed objective. It involves smart contract and user interface development, compre-

hensive software testing, and deployment on a custom-built blockchain network. Future

enhancements include accessibility, user security, and more secure consensus algorithms.

The thesis establishes a referential framework for future initiatives in the domain of gov-

ernance, acting as a guiding roadmap for those aspiring to achieve similar objectives. It

highlights the significance of prioritizing people’s well-being and elevating their quality of

life through technology.

Keywords: blockchain voting, smart contract, private blockchain network,

voting software, electronic voting, decentralized application

xi

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xii Graduation Project

Contents

Dedication v

Acknowledgments vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Background . 2

1.2 Problem statement . 3

1.3 Objectives . 3

1.3.1 General Objective . 3

1.3.2 Specific Objectives . 4

2 Theoretical Framework 5

2.1 Electronic Voting Systems . 5

2.1.1 History of alternative voting systems 5

2.1.2 Measures to develop an electronic voting system 7

2.2 Blockchain . 7

2.2.1 Characteristics of blockchain architecture 8

2.2.2 Byzantine General’s Problems and consensus mechanisms 8

xiii

School of Mathematical and Computational Sciences Yachay Tech University

2.2.3 Types of Blockchain . 11

2.2.4 Ethereum . 11

2.2.5 Smart Contracts . 16

2.2.6 Digital Wallets . 17

2.2.7 Decentralized Application (dApp) 17

2.3 Software Engineering Concepts . 19

2.3.1 Agile Methodology . 20

2.3.2 SCRUM . 22

2.3.3 Minimum Value Product . 23

2.3.4 Tech Stacks . 24

3 State of the Art 25

3.1 Decentralized Voting System Proposals . 25

3.2 Real-life examples of decentralized voting systems 26

3.3 Criticism on Blockchain voting systems . 28

3.4 Improving security on decentralized voting systems 29

4 Methodology 33

4.1 Requirements gathering . 34

4.1.1 Stakeholder Analysis . 34

4.1.2 Functional Requirements . 37

4.1.3 Non-functional requirements . 38

4.1.4 User Requirements . 39

4.1.5 Technical Requirements . 40

4.2 Architecture Design . 41

4.2.1 UML Diagrams for modeling the proposed system 42

4.3 Introduction to tools for development . 43

4.3.1 Git . 45

4.3.2 Truffle Framework . 45

4.3.3 Ganache CLI . 46

4.3.4 MetaMask . 46

4.3.5 Node . 46

Information Technology Engineer xiv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.3.6 React . 47

4.3.7 Typescript . 47

4.3.8 Webpack . 48

4.3.9 Bootstrap . 48

4.3.10 Docker . 49

4.3.11 Web3.js . 49

4.4 User Interface Design . 49

4.4.1 Heuristic Evaluation . 50

5 Results and Discussion 53

5.1 Development Process . 54

5.2 Implementation . 55

5.2.1 Setting up the Development Environment 55

5.2.2 Smart Contract Development . 61

5.2.3 Front-End Development . 67

5.3 Testing . 67

5.4 Deployment . 73

5.4.1 Front-End Deployment . 74

5.4.2 Private Blockchain Setup . 74

5.4.3 Smart Contract Deployment . 76

6 Conclusions 79

6.1 Conclusions . 79

6.2 Future Work . 82

Bibliography 85

Appendices 92

.1 Appendix 1. Code Repository for the Electronic Voting System 95

.2 Appendix 2. Code Repository for the

Private Blockchain Network . 95

.3 Appendix 3. Project Management Utilities 95

Information Technology Engineer xv Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xvi Graduation Project

List of Tables

2.1 Characteristics of a blockchain . 10

2.2 Types of blockchain summary . 12

2.3 Ethereum transaction schema descriptions 15

4.1 Stakeholder Analysis Matrix . 36

4.2 Functional requirements of proposal voting system 38

4.3 Nonfunctional requirements for a proposal voting system 39

4.4 Addition stereotypes for UML Diagrams 44

4.5 Assessing system usability through Heuristic Evaluation 52

xvii

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xviii Graduation Project

List of Figures

2.1 A simple blockchain example . 8

2.2 An example of a blockchain network . 9

2.3 Ethereum Network . 13

2.4 Ethereum Transaction Schema . 15

2.5 Ethereum Virtual Machine . 17

2.6 Smart Contract Deployment Flowchart . 18

2.7 Descentralized Application Architectures 20

2.8 Agile Project Life Cycle . 22

2.9 Scrum . 23

4.1 Descentralized Voting System Architecture 42

4.2 UML Class Diagram for SC for an Electronic Decentralized Proposal Voting

System . 43

4.3 UML User Story Diagram for an Electronic Decentralized Proposal Voting

System . 45

4.4 User Design Mockup: Proposal List . 50

4.5 User Design Mockup: Results View . 51

5.1 User story about results view . 55

5.2 Sprint 4 - Developing smart contract . 56

5.3 Gantt Diagram of the Development Process 57

5.4 User Flow . 63

5.5 Private blockchain network running on Docker 76

xix

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer xx Graduation Project

Chapter 1

Introduction

The most important aspect of a democracy is not only the ability of citizens to share

ideas, opinions, and beliefs but also to have their individual voices expressed by voting

(collectively) about their future. Representative democracy has its deficiencies, elected

representatives do not always follow the plan that they used to win an election [1]. This

is one of the reasons why direct democracy mechanisms exist, they allow people to vote

on matters that they care about the most. In contrast with this, direct democracy is a

political system in which citizens participate directly in decision-making processes rather

than through elected representatives. In a direct democracy, decisions are made by a vote

of the entire eligible population, typically through popular referendums or initiatives. This

form of governance emphasizes direct citizen involvement and aims to give individuals

greater power and control over the political process [2]. Direct democracy mechanisms

such as public opinion pooling and signature collection are effective tools for knowing

public opinion on some issues. Electronic pooling can be a tool for people to make their

voices heard and leverage their power in favor of their community.

However, for electronic pooling to proceed as intended, there needs to be a transparent

and secure process in which voters knowingly also keep their privacy. The challenge is

finding a solution that prevents illegal manipulation of collected data and achieves the

desired transparency in security measures to protect voter privacy and collected results [3].

1

School of Mathematical and Computational Sciences Yachay Tech University

1.1 Background

In Ecuador, elections for choosing representatives have repeatedly resulted in disappoint-

ment due to the prevalence of corrupt politicians who consistently fail to uphold their

campaign pledges. This trend is prevalent across democracies globally where represen-

tatives prioritize their interests over the citizens during the intervals between elections.

During these intervals, citizens can influence public policy through intermediaries such as

interest groups, social movements, and clientelistic arrangements.

Democracy, as a form of government, involves regular elections that are conducted fairly

and counted accurately, giving citizens the opportunity to choose between alternatives of-

fered by political parties. However, one issue with democracy is that elected representatives

may not always align with the voters’ interests and may change their plans once in power,

leading to disillusionment among the electorate [4].

To address this issue, this thesis suggests implementing an electronic voting platform

to empower citizens. This platform enables users to create initiatives and gather support

from other members of their community, organization, or neighborhood. When a sufficient

number of users have supported an initiative, a referendum on that topic may be held to

maintain democratic structures.

Similar mechanisms for direct democracy already exist but are not widely used due to

logistical challenges in conducting a referendum for each initiative or collecting signatures.

Electronic voting systems are a popular solution for reducing the costs of running polls,

however, ensuring the reliability and security of these systems is crucial for gaining voter

confidence. Several solutions have been proposed to address this challenge.

This work proposes the use of blockchain technology to decentralize the ballots and

make them immutable, whose added benefit is to make it harder to manipulate and change

the outcome of an election [5]. This project’s scope is to develop and provide a tool

for the community to start organizing itself. This project does not attempt to replace

traditional voting or make other direct democracy mechanisms obsolete but rather gives

the people a tool to have an immediate effect on their communities. It will also help

elected representatives have constant surveillance of the preferences of their constituents

and represent them better, not just when election time comes.

Information Technology Engineer 2 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Finally, this project does not address the central issue of corrupt government officials.

Still, it does mitigate the effect of a disenfranchised electorate because it empowers the

people to change their environment according to their needs and to have their voices

heard. An electorate that mobilizes and voices its opinions is more difficult to deceive than

a paralyzed one. Representatives will have to be more cautious about going against the

will of their constituents if they want to be reelected.

1.2 Problem statement

Representative democracies and top to bottom organizations with elected officials often

struggle to transform collective preferences into public policies successfully. Furthermore,

those representatives can be corrupted by external influences, such as money or favors done

on promises of support. This problem can be mitigated if we start using more mechanisms

of direct democracy that do not rely on the decisions of the elected representatives and

allow the electorate to have a say in the decisions that affect them. Direct democracies

mechanism such as the proposed platform can be helpful tools to organize people in the

comfort of their homes.

Electronic voting systems reduce the cost of running traditional elections for both the

government and the people by eliminating the cost of printing and transporting ballots

and transporting ballot boxes. And they are also less error-prone in gathering the results

of the election.

Therefore, the main challenge can be stated, as: How can one create a minimum

valuable product of a decentralized voting system capable of managing initiatives, creating

and displaying vote results, and being accurate while employing blockchain technology?.

1.3 Objectives

1.3.1 General Objective

The main objective of this project is to develop the aforementioned prototype of an elec-

tronic voting platform that lets users add proposals and vote on initiatives ensuring trans-

parency, privacy, correctness, and integrity as key pillars.

Information Technology Engineer 3 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1.3.2 Specific Objectives

The proposed electronic voting platform must follow the security criteria for electronic

voting systems and accomplish the following goals:

1. Program an electronic decentralized voting platform using agile methodologies to

create a minimum valuable product.

2. Ensure the integrity, privacy, and reliability of the system using blockchain technol-

ogy, whose properties provide the solution for these challenges.

3. Guarantee accessibility of the system. By developing a friendly graphic user interface,

which delivers an easy-to-use application and facilitates the reading of the results.

4. Mitigate possible system failures. Publishing the web application on a web server

ensures that the system is tamper-proof to connection errors.

Information Technology Engineer 4 Graduation Project

Chapter 2

Theoretical Framework

The theoretical framework chapter provides a comprehensive overview of the fundamental

concepts, tools, and principles required for a thorough understanding of the thesis and

its underlying blockchain voting system. It includes an examination of electronic voting

systems, the challenges in their development, blockchain technology, and its application in

creating decentralized systems, along with the advantages and limitations associated with

such systems. This chapter will also cover the necessary tools for decentralized application

development, their functionality, and the fundamental principles of software engineering,

which are crucial to comprehend the methodology of the project and the functioning of

the proposed blockchain voting system.

2.1 Electronic Voting Systems

The section on electronic voting systems provides a comprehensive overview of the tech-

nical principles and history of electronic voting systems. It delves into the current state

of the technology and sets the standard for what constitutes a suitable prototype for a

decentralized voting system. The focus is on enabling members of a community to sub-

mit proposals to their representatives for consideration and subsequent action on relevant

issues.

2.1.1 History of alternative voting systems

Paper voting is the default choice when running an election. Although paper voting systems

are reliable and we have gathered a lot of experience in this subject, they have disadvantages

5

School of Mathematical and Computational Sciences Yachay Tech University

such as inefficient cost, security, accuracy, accessibility, participation, and sustainability

[6]. There have been other options away from the traditional paper voting like punch-card

system and mechanical-based. In this section, we will explain the history of alternative

voting systems so that we can later get a good understanding of what makes a good voting

system.

The first electronic vote recorder was invented by Thomas Edison in 1869. In this

system, a signal to a central recorder listed the names of the members in two columns of

metal type headed ’Yes’ and ’No’ [7], and was introduced first in 1886.

From 1849 to 1900, several places around the world started using mechanical machines

and lever machines for voting, such as the state of Victoria in Australia or New York in

the United States [7]. It will not be until 1901 that we start to see some legal framework

fore-voting technologies that ensure adequate protection of human rights. By the end of

1930, almost every major city in the United States was voting using lever machines.

Direct-recording electronic voting systems (DRE), which are physically hardened ma-

chines that prevent from the typical PC connectors, were first used in 1986. Another

alternative to traditional voting was the Punch Card Voting/Tabulation System. And the

optical scan voting system is used together with optometric authentication to read the

marked paper ballots and count the results [7].

The telephone network facilitated remote voting, which has provided an alternative

voting procedure for a specific subset of the electorate - usually, those with disabilities - in

a small but significant number of democratic elections [8].

With the arrival of the Internet, electronic voting became more popular. Its use was

widespread across the European Union, in fact, Estonia was the first country to introduce

electronic voting over the web, and it fully covered Internet voting including mobile voting

[7]. However, internet voting is not widely used today because of its potential risks of fraud

and election tampering.

Then came an important technology, which is the basis for this thesis, blockchain. It

was first conceived as a way to remove the need for central control of a digital currency,

properties mainly increased trust, security, transparency, and the traceability of data can

be helpful in providing an alternative to electronic voting.

Information Technology Engineer 6 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.1.2 Measures to develop an electronic voting system

As was mentioned, there have been alternatives to the traditional voting system but all

those systems have something in common. They are meant to be secure, reliable, and

accessible to everyone.

Having said that, a “good” electronic voting system must satisfy four important criteria

[3]:

1. To be reliable and integral, which means not being altered for malfunctions or bad

faith actors.

2. To be private so that a malicious actor cannot trace back a vote of a user.

3. To be accessible to any person who wants to be part of the election. An electronic

voting system must be easy to use and understand.

4. To be available any time a person wants to cast a vote when there is a running

election.

With these preconditions, then the core of an electronic voting system on which we

have to vote on a particular topic with possibles outcomes in Favor or Against, is as easy

as to validate that each vote has been successfully accepted in the count of votes and once

the voting phase is finished the results have to be available to the public.

2.2 Blockchain

A ledger is a centralized or decentralized digital record-keeping system that tracks trans-

actions and maintains a history of all changes made to the data. Blockchain is a way of

implementing a decentralized ledger, blockchain is a new technology that has gained popu-

larity in the recent decade for it is used in finance, the most well-known application of this

technology is the crypto-currency Bitcoin [9], however, it is not the only application for a

technology that guarantees traceability and immutability of the data. In simple terms, a

blockchain is a data chain that consists of a set of data packages (blocks), where the block

is made up of multiple transactions (see Fig. 2.1) and can also carry additional data, for

example, the counts of votes.

Information Technology Engineer 7 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.1: A simple blockchain example

The network can validate blocks using cryptographic algorithms. In addition to trans-

actions, each block contains a timestamp and the hash value of the previous block “parent”,

and a nonce is a random number that helps verify the hash.

This concept ensures the integrity of the entire blockchain through to the first block.

Hash values are created by hash functions and there are multiple functions that produce

hash values [10], however, hash values have an interesting property, which is that they

are a long hexadecimal number intended to uniquely identify each block and its inner

content. They help prevent fraud in the block since changes in a block in the chain would

immediately change the corresponding hash value.

A node is a participant in the network holding a copy of the ledger (see Fig. 2.2). If the

majority of nodes in the network agree with a consensus mechanism on the integrity of block

transactions and the validity of the blocks themselves, and if the consensus mechanism is

reached, then the block can be added to the chain.

2.2.1 Characteristics of blockchain architecture

Blockchain architecture offers many advantages for various industries that adopt it. It has

various built-in characteristics that are outlined below in Table 2.1 [11].

2.2.2 Byzantine General’s Problems and consensus mechanisms

How do we ensure that all information is correct before proceeding with an action in a

distributed system? A problem called the Byzantine General’s Problem [12], can be used

to illustrate this concept. Imagine you have a group of generals gathered around a besieged

castle with their own armies. Each general must attack at the same time to take the castle

Information Technology Engineer 8 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.2: An example of a blockchain network

or else they face inevitable failure. Another critical factor in the Byzantine General’s

problem is that some of the generals are corrupt and untrustworthy; they would send false

messages to their commanders so that they would attack at a different time than necessary.

These issues can arise in distributed systems because each node must communicate with its

neighboring nodes to coordinate its actions. To overcome this problem, all parties involved

in a distributed system need to work together when communicating information about an

event or change in state.

For instance, what if the enemy captures a messenger and changes the message or if

generals do not receive the news? What happens when messengers are spies, changing

the content of their messages? What happens if one general is a traitor and sends false

information through messengers?

Information Technology Engineer 9 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Characteristic Description

Cryptography Blockchain transactions are authenticated and accu-
rate due to complex computations and cryptographic
evidence between parties involved

Immutability Blockchain documents cannot be altered or deleted
once they have been added to the blockchain

Provenance Every transaction can be tracked in the blockchain
ledger

Decentralization The entire distributed database is accessible to all
members of the blockchain network and a consensus
algorithm is used to manage the system

Anonymity Blockchain network participants use addresses instead
of personal identification, which preserves anonymity,
particularly in public blockchain systems

Transparency It is impossible to manipulate the blockchain network
as it would require a huge amount of computational
resources to change the network

Table 2.1: Characteristics of a blockchain

That is the central issue that blockchain had to overcome to validate the integrity of

the message and the messengers. That is the reason why consensus algorithms are used on

the blockchain. There are multiple consensus mechanisms and all try to tackle this issue.

In the case of Ethereum, transitioned from a proof-of-work (PoW) based consensus

mechanism to a proof-of-stake (PoS) based one. PoW relies on miners who compete to

solve mathematical puzzles and create new blocks, while PoS relies on validators who lock

up their ether and vote for the correct chain. PoS offers several advantages over PoW, such

as lower energy consumption, higher scalability, and stronger security [13].

There are also other types of consensus mechanisms, such as proof-of-authority (PoA),

which are used by some permissioned blockchains that require trusted validators [14].

In summary, a consensus mechanism [15] is a process in which a majority (or, in some

cases, all) of the network participants agree on the state of a ledger. In other words, it is

a set of rules and procedures that allows for maintaining a coherent set of facts between

multiple participating nodes.

Information Technology Engineer 10 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.2.3 Types of Blockchain

As the popularity of blockchain technology has grown, so has the number of different

types of blockchains. In this table 2.2, we will explore the different types of blockchains,

including public, private, and consortium blockchains, and their unique characteristics.

Understanding the differences between these types of blockchains is essential to determine

which would be suitable for our proposal voting system[16].

2.2.4 Ethereum

After the appearance of Bitcoin, a programmer named Vitalik Buterin saw the potential

of blockchain technology and the decentralization feature. That is the reason that he

started working on a blockchain protocol that would simulate a quasi-Turing-complete

decentralized machine where programs could be executed. In 2015, the Ethereum project

was finally released and has since grown in the developer community and has received

technical improvements.

As of today, Ethereum stands as a prominent blockchain-based platform for smart

contracts, enabling the development and execution of a wide range of decentralized ap-

plications (dApps). These dApps leverage the capabilities of smart contracts to facilitate

various functionalities such as financial services, supply chain management, decentralized

exchanges, governance systems, and more (see Fig. 2.3). The programmable nature of

smart contracts on the Ethereum network allows for the automation and transparency of

transactions, eliminating the need for intermediaries and enhancing efficiency and trust in

decentralized applications, in the following subsections. An explanation of what a smart

contract is will be further provided; meanwhile, it is important to note that, unlike Bitcoin,

there is no limit for the block size, which will prove useful for the purpose proposed by this

thesis. Ethereum is a peer-to-peer network of mutually distrusting nodes that maintain

a common view of the global state and execute code on request. The stated is stored

in a blockchain secured by a proof-of-work consensus mechanism. [17]. This will also be

explained in more detail in the continuous section.

Therefore, the main difference with Bitcoin is that for every transaction in the transac-

tion list, the new state is created by applying the previous state. The block header on the

Information Technology Engineer 11 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Type of
Blockchain

Description Advantages Disadvantages Examples

Permissionless
(Public)
Blockchain

A blockchain that is
open to anyone without
any restrictions on who
can use it or participate
in the network.

Independence,
Transparency,
Trust

Performance,
Scalability,
Security

Bitcoin,
Ethereum

Permissioned
(Private)
Blockchain

A blockchain that
is only accessible to
authorized individu-
als or organizations.
It operates within
a closed ecosystem,
where participants
require permission to
join the network, view
the blockchain history
or issue transactions.

Access Control,
Performance

Trust, Au-
ditability

Hyper
Ledger
Fabric,
Hyper
Ledger
Besu

Consortium
(Federated)
Blockchain

A blockchain that is
governed by a consor-
tium or group of orga-
nizations, that jointly
control the network. It
is designed to remove
power from a single in-
dividual or entity, and
distribute it among a
group of people or or-
ganizations.

Access Control,
Scalability, Se-
curity

Transparency Quorum,
Corda

Hybrid
Blockchain

A blockchain that
blends essential com-
ponents of both public
blockchain and private
blockchain with the
mix of the best of both
public and private
blockchain protocols.

Access Control,
Performance,
Scalability

Transparency,
Upgrading

IBM
hybrid
blockchain

Table 2.2: Types of blockchain summary

Information Technology Engineer 12 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.3: Ethereum Network

Ethereum blockchain consists of the Keccak 256-bit hash of the parent block’s header, the

address of the mining fee recipient, the hashes of the roots of state, the transaction and the

receipts tries, the difficulty, the current gas limit of the block, a number representing the

total gas used in the block transactions, timestamp, nonce, and several additional hashes

for verification purposes [18].

Ether is the currency that this blockchain to perform transactions. Proof-of-Work

(PoW) was the consensus algorithm adopted for Ethereum. By successfully solving math

puzzles, the winners of this PoW competition are allowed to generate new blocks that

contain as many outstanding transactions as possible. As a return, each winner can collect

all transaction fees and earn a block reward (if its new block is accepted by other partic-

ipants). This economic incentive encourages participants to contribute their computation

power as much as possible in solving PoW puzzles this is a process called mining in the

literature [19].

Specifically, the math puzzle that Ethereum miners solve is as follows:

σt+1 ≡ Π (σt, B) (2.1)

Where σt+1 represents the state of the Ethereum virtual machine (EVM) at time t + 1.

Therefore, Π(σt, B) denotes the block-level state transition function, which takes the pre-

Information Technology Engineer 13 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

vious state σt and the current block B as inputs to calculate the next state. This function

ensures that the execution of transactions within a block is consistent and deterministic,

updating the state accordingly.

Let B be a block defined as an ordered sequence of transactions:

B ≡ [T0, T1, . . .] (2.2)

In this equation, B is represented as a list, denoted by square brackets, containing indi-

vidual transactions T0, T1, Each transaction is identified by its index in the sequence.

Finally, the right side of equation 2.1:

Π(σ, B) ≡ Ω
(
B, Υ

(
Υ (σ, T0) , T1

)
. . .

)
(2.3)

represents the block-level state transition function, where σ denotes the machine state,

and Ω refers to the block-finalization state transition function responsible for rewarding

a nominated party. It is important to note that the specific implementation details of Ω

are not necessary for the reader’s understanding as they can vary based on the particular

version of Ethereum and the consensus algorithm employed [20].

Ethereum Transactions

Any change in the blockchain state starts with a transaction. This transaction can be

directly transferring Ether to another account or could be a trigger for a contract.

A transaction (T) is a single instruction code that sends a message from an Exter-

nally Owned Account. Ethereum blockchain launches with a genesis block, and the other

transactions process and create a new block and a new state [21].

As Ethereum can be viewed as a transaction-powered state machine, as depicted in

equation 2.4 where Υ is the Ethereum state transition function and T represents the

transaction.

σt+1 ≡ Υ (σt, T) (2.4)

The Ethereum state transaction function performs multiple tasks such as checking if

the transaction is valid and well-formed, updating nonces and account balances, refunding

Information Technology Engineer 14 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the remaining gas, and rewarding miners for the computations.

The Ethereum transaction schema (see Fig. 2.4) defines the structure of a transaction

and specifies the various fields and data that must be included in a transaction (see Table

2.3).

Field Description

Nonce A unique identifier for the transaction that prevents replay attacks.
Gas Price The price in Ether that the sender is willing to pay per unit of gas to

execute the transaction.
Gas Limit The maximum amount of gas that the sender is willing to pay for exe-

cuting the transaction.
To The recipient address for the transaction.

Value The amount of Ether or other tokens being transferred.
V, R, S Components of the digital signature used to verify the authenticity of

the transaction.
Data Additional data to be included in the transaction, such as the vote count.

Table 2.3: Ethereum transaction schema descriptions

When a transaction is sent to the Ethereum network, it must conform to the transaction

schema in order to be processed by the network. If any of the required fields are missing

or incorrect, the transaction will be rejected by the network.

Figure 2.4: Ethereum Transaction Schema

Information Technology Engineer 15 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

2.2.5 Smart Contracts

A smart contract is a piece of code that serves a unique purpose, like vending machines,

the sole purpose of which is to deliver products to its customers and nothing else. In our

case, a contract is then a piece of code that will serve the purpose of allowing to vote on

initiatives and read the results of the voting.

Smart contracts act as stateful decentralized applications that run on Ethereum Virtual

Machine implementations to enforce contract instructions.

Ethereum follows an execution model that specifies how the system state is altered

given a series of bytecode instructions and a small tuple of environmental data. This

is specified through a formal model of a virtual state machine, known as the Ethereum

Virtual Machine (EVM). It is a quasi-Turing complete machine; the quasi-qualification

comes from the fact that the computation is intrinsically bounded through a parameter,

gas, which limits the total amount of computation done [20].

The EVM is a simple stack-based architecture. The word size of the machine (and thus

the size of the stack item) is 256-bit. This was chosen to facilitate the Keccak256 hash

scheme and elliptic-curve computations. The memory model is a simple word-addressed

byte array. The stack has a maximum size of 1024. The machine also has an independent

storage model; this is similar in concept to the memory but rather than a byte array, it is

a word-addressable word array. Unlike memory, which is volatile, storage is non-volatile

and is maintained as part of the system state. All locations in both storage and memory

are well-defined initially as zero [20].

The machine does not follow the standard von Neumann architecture (see Fig. 2.5).

Rather than storing program codes in a generally-accessible memory or storage, it is stored

separately in a virtual ROM, that can be interacted with only through specialized instruc-

tions. The machine can have exceptional execution for several reasons, including stack

underflows and invalid instructions. Like the out-of-gas exception, they do not leave state

changes intact. Rather, the machine halts immediately and reports the issue to the ex-

ecution agent (either the transaction processor or, recursively, the spawning execution

environment) which will deal with it separately [20].

A smart contract written in the Solidity language undergoes execution within an

Information Technology Engineer 16 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Ethereum virtual machine, which then translates the contract into both Application Bi-

nary Interface (ABI) and Smart Contract Bytecode. The ABI facilitates interaction with

the contract, while the bytecode, together with other parameters, is incorporated into a

transaction. After being signed, this transaction is then deployed onto an Ethereum block.

The whole process is depicted in Fig. (2.6).

Figure 2.5: Ethereum Virtual Machine

2.2.6 Digital Wallets

Digital wallets in the Ethereum ecosystem are software applications that enable users to

interact with their Ethereum accounts. They function akin to online banking applica-

tions, providing the ability to view account balances, initiate transactions, and establish

connections with various applications [22].

2.2.7 Decentralized Application (dApp)

Ethereum Decentralized Applications can deploy smart contracts to use the capabilities

provided by Ethereum to implement business logic. In theory, all processes and data from a

Information Technology Engineer 17 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.6: Smart Contract Deployment Flowchart

Information Technology Engineer 18 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

blockchain-based dApp should be handled and stored on the blockchain for pure decentral-

ization. However, due to the performance bottleneck of state-of-the-art blockchain systems,

current dApps usually implement only parts of their functionality on the blockchain. As

a result, Ethereum dApps adopt three kinds of architecture in practice, as shown in Fig.

2.7: direct, indirect, and mixed. For dApps of the direct architecture (Fig. 2.7a), the

client directly interacts with smart contracts deployed on Ethereum. dApps of the indirect

architecture (see Fig. 2.7b) have back-end services running on a centralized server, and

the client interacts with smart contracts. through the server. Mixed architecture dApps

combine the previous two architectures in which the client interacts with smart contracts

both directly and indirectly through a back-end server (see Fig. 2.7c) [23]. This thesis

proposes a fully decentralized architecture as a voting system is no complex logic that

would require an additional back-end service.

Solidity is the programming language for developing smart contracts in the Ethereum

community. It is a JavaScript-like language, in which there are contracts (such as classes),

functions, and events. The source code of a smart contract is compiled into byte code to

be deployed on Ethereum. After the deployment, the smart contract will get an address

that allows users to interact with it [23]. All accounts in a network can deploy smart

contracts. To do this, accounts must pay for gas for every transaction. The cost of a smart

contract consists of two parts: deployment and contract execution. The deployment of a

smart contract can be seen as a contract execution of calling a special function constructor.

The cost of deployment can represent the complexity of the contract. Since executions are

uniformly encoded in transactions and finally packed into blocks, the total gas sent in

transactions of a block is limited. Therefore, a contract execution that costs more gas than

the limit will fail and will change nothing in the blockchain state [23].

2.3 Software Engineering Concepts

This section delves into the fundamental concepts of software engineering, as it is crucial to

understand the best practices and methodologies for software development. The purpose

of this section is to lay the foundation for the adoption of agile methodologies in project

development, which will help ensure the timely delivery of a software solution that meets

Information Technology Engineer 19 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

(a) Direct Architecture (b) Indirect Architecture (c) Mixed Architecture

Figure 2.7: Descentralized Application Architectures

the requirements and standards of the software industry.

2.3.1 Agile Methodology

One of the models used in software development is the agile model and it is one of the

latest models to be introduced in the software development industry. In comparison with

the Waterfall methodology which was inherited from the hardware manufacturers, the

agile breed of models focuses on ’agility’ and ’adaptability’ in development. Instead of one

time-consuming and rigid development schedule, agile models involve multiple iterative

development schedules that seek to improve the output with every iteration. Each iteration

goes through all the steps of design, coding, and testing. The design is not set in stone and

is kept open to last-minute changes due to iterative implementation. The team structure

is cross-functional, closely knit, and self-organizing. The design idea is never totally frozen

or set in stone, but it’s allowed to evolve as new ideas come in with each release. Less

importance is given to documentation and more to the speed of delivering a working

program. Customers may be provided demonstrations at the end of each iteration, and

their feedback may determine the next course of changes in the next iteration. The iterative

cycle continues until the customer receives a product that exactly meets his expectations

[24] (see Fig. 2.8).

The Agile methodology follows a set of rules described in [25], which can be summarized

in these key points:

1. The top priority is to please the customer by providing valuable early and continuous

Information Technology Engineer 20 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

deliveries.

2. Embrace changing requirements, even during later stages of development. Agile

procedures leverage changes for the customer’s competitive edge.

3. Frequently provide functional software within a couple of weeks to a few months,

preferring shorter time frames.

4. Throughout the project, business professionals and developers work together daily.

5. Construct projects around motivated individuals, providing them with the necessary

environment and assistance, and relying on them to complete the task.

6. Face-to-face discussions are the most efficient and effective method of exchanging

information within a development team.

7. The primary measure of progress is the delivery of functional software.

8. Agile processes promote sustainable development, allowing sponsors, developers, and

users to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design improves agility, em-

phasizing the importance of design quality in maintaining agility.

10. Simplicity is critical, emphasizing the maximization of work not done. Include only

what everyone needs, making it easier for teams to add features that address their

specific requirements.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. The team regularly reflects on how to become more effective and adjusts its behavior

accordingly.

In Agile tasks to be performed are divided into user stories. User stories are a technique

to capture and describe software requirements from the perspective of an end-user. The

main principle of user stories is to focus on the needs of the user rather than the technical

implementation details. They are typically written in a simple, concise, and structured

format that includes a title, a description, an estimation in story points, and acceptance

Information Technology Engineer 21 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 2.8: Agile Project Life Cycle

criteria. The description should outline what the user wants to achieve, why they want to

achieve it, and what value it brings to them. Estimation in story points is an approach

to size the effort required to complete a user story. Finally, acceptance criteria define the

conditions that must be met for the user story to be considered complete [25].

2.3.2 SCRUM

Scrum is basically an agile, lightweight framework that provides steps to manage and

control the software and product development process.

Scrum is the combination of the Iterative model and the Incremental model because

the builds are successive and incremental in terms of the features to develop software [26].

Scrum was created to enhance the pace of development, unify individual and organizational

goals, establish a performance-driven culture, facilitate shareholder value creation, promote

effective communication at all levels, and enhance personal growth and quality of life.

While it has gained popularity in recent years and has demonstrated its usefulness, it is

Information Technology Engineer 22 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

not a methodology that should be employed at all times [27].

Scrum rituals are essential components of the Scrum framework, which is an agile and

lightweight methodology designed to effectively manage and control software and prod-

uct development processes. These rituals consist of specific events that allow teams to

collaborate, inspect and adapt their work in an iterative manner.

The key Scrum rituals are depicted in Fig. 2.9. These Scrum rituals foster collabora-

tion, transparency, and continuous improvement within the development team, promoting

effective project management and delivering valuable outcomes in an iterative and incre-

mental manner.

Figure 2.9: Scrum

2.3.3 Minimum Value Product

A Minimum Viable Product (MVP) in Scrum is a development approach where a product

is built with just enough features to satisfy early adopters, gather feedback, and validate

assumptions about the product’s design, market fit, and potential success. The goal of

an MVP is to deliver a working product to customers as quickly as possible to learn and

iterate based on their feedback [28]. The goal of this thesis is to develop an MVP that

satisfies the purpose of allowing a community to add and vote on initiatives that are of

Information Technology Engineer 23 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

interest to them.

2.3.4 Tech Stacks

Tech stacks refer to the set of software tools and technologies used to build and run a

software application. This includes programming languages, databases, web servers, and

operating systems, among others. Understanding the components of a software stack and

how they work together is important for building efficient and scalable software applica-

tions.

The distinction between the frontend and backend pertains to the level of interaction

with the developers’ code. The frontend encompasses all aspects of the website that are

not related to coding and is typically referred to as the public-facing side of the application.

This is the portion of the site that users directly interact with [29].

As an administrator, the responsibility of managing and maintaining the website also

lies within your jurisdiction. This task cannot be performed from the public-facing aspect of

the frontend. A Content Management System (CMS) typically includes an administrative

dashboard, known as the backend, that provides functionalities for administrative purposes.

In general, the backend of an application is everything behind the digital curtain, or – in

other words – the developers’ end. In the case of dApps, it refers to the servers, databases,

and other infrastructure components that support the application’s functionality and stores

its data [30]. Unlike traditional applications, dApps are designed to run on a decentralized

network such as blockchain, meaning that the backend is distributed among many different

nodes or participants in the network rather than being centralized in a single server or data

center. This decentralized architecture helps ensure the availability, security, and scalability

of the application, as well as enables users to interact with the application directly without

the need for a trusted intermediary.

In this thesis, the backend of the application will be the smart contract that interacts

with the decentralized ledger.

Information Technology Engineer 24 Graduation Project

Chapter 3

State of the Art

The field of electronic voting has gained significant attention in recent years, with a focus

on using blockchain technology to enhance the transparency, security, and integrity of the

voting process. This state-of-the-art chapter in a blockchain voting system thesis offers a

thorough analysis of current developments and advancements in the field. It summarizes

the current understanding of blockchain-based voting systems, highlighting their key at-

tributes, advantages, and limitations, with real-life examples. The chapter also critically

evaluates the current state of the art, identifying the main challenges and opportunities

for future research. This will serve as a solid foundation for the proposed blockchain vot-

ing system that will be presented later in the thesis. The objective of this chapter is to

provide a comprehensive understanding of the current state of the art in blockchain voting

systems through real-life examples, setting the stage for the design and implementation of

a cutting-edge and secure blockchain voting system.

3.1 Decentralized Voting System Proposals

Hanifatunnis (et al.) [31] designed a blockchain-based electronic voting system, that har-

nessed the power of blockchain to optimally perform voting in a way that avoids collision

in the transfer of the results. Also, make sure all nodes that have registered are included

in the calculation process. In terms of cost, it can also be more efficient because it does

not require equipment, that is always redone in each election carried out.

Hsiao (et al.) [32] proposed the first decentralized voting system on the blockchain,

that takes advantage of anonymity and security achieved by the secret sharing scheme

25

School of Mathematical and Computational Sciences Yachay Tech University

with Paillier’s public key cryptosystem and verifiable votes provided by the transparency

and non-repudiation of the blockchain.

According to [33], there are two emerging streams of blockchain applications in e-voting.

The first one involves the use of blockchain for e-voting (or blockchain-based e-voting,

BEV), while the other employs blockchain to support e-voting or voting processes as a

third party non-intrusively. This role is synonymous with that of third-party observers in

elections. Advocates of Blockchain enabled e-voting (BEV) seek to harness the decentral-

ized blockchain protocols for voting without the control of a central authority such as the

electoral management body. BEV attempts to eliminate tampering with votes through

cryptographically secure voting records.

Yang (et al.) [34] present an intelligent contract-based, self-tracking, ranked choice

decentralized voting system, whose idea is as follows: the election administrator deploys a

voting contract by confirming public parameters (such as the public key of the election).

Each voter can then submit a vote via the voting contract, with each ballot constituting a

transaction of the blockchain system. This system is developed in the Ethereum network.

3.2 Real-life examples of decentralized voting systems

This section showcases real-life examples of successful and ongoing decentralized voting

projects, highlighting the practical applications of the technology and the challenges faced

during their development and deployment.

By examining these real-life examples, the section provides a comprehensive under-

standing of the potential and limitations of decentralized voting systems and the practical

aspects of their implementation. The objective of this section is to provide a valuable

perspective on the current state of decentralized voting systems and to provide a basis for

the design and implementation of the proposed blockchain voting system in the thesis.

There have been experiences with decentralized electronic voting systems, according

to [35] in Zug, Switzerland. The city proposed using uPort, which is an app that allows

users to interact with decentralized applications, as well as identity-related tasks outside

the chain through their mobile phones [36]. This app allowed them to provide consulting

to the citizens of Zug and broaden their participation, but there are still issues because

Information Technology Engineer 26 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

there is legal uncertainty about the use of this kind of application.

Another example of blockchain-based electronic voting is described in [37], it is called

Agora, a blockchain-powered voting solution intended for governments and organizations,

which provides a system from start to finish, that can be checked and validated. Agora has

its own token that is utilized on the blockchain for ballots, for which concerned governments

and bodies will buy tokens for every individual authorized to cast their vote.

There have been other proposals for using decentralized voting systems such as in

Turkey. According to [38], the blockchain-based electronic voting system provides a trusted,

secure, and fast voting system for Turkey, and its model could be integrated into other

countries with hard work since each country has different laws and election systems.

Other countries are interested in decentralized voting systems as well [39], [40], each

molding the technology according to their laws and social context.

Some countries, such as Finland, Estonia, Norway, Switzerland, and others, have been

successful in implementing e-voting on a broad scale and increasing legally [41]. The

tendency is that more countries will see electronic voting as a solution in the future.

In fact, E-voting in Estonia was established in 2005, and it offers two methods of

voting: physically voting at a polling station or e-voting from anywhere in the country.

The main goal of the Estonian government was to make the voting process easier and

increase voter participation. The traditional voting system requires about 45 minutes to

complete, but e-voting only takes 4-6 minutes to cast a vote, reducing the time spent by

the voter. E-voting in Estonia is based on Estonian ID cards, which also provide a platform

for digital signatures. Voters can choose to vote from home if they have a computer and

internet connection, or they can go to public libraries or university labs to cast their votes.

There have been proposals to migrate to blockchain voting, as Estonia is also known for

promoting the use of blockchain in government, where more than 90 percent of the services

are running on blockchain technology and cryptocurrencies [42].

As the adoption of electronic voting systems continues to grow globally, it is likely

that more countries will explore the use of blockchain technology to enhance the security,

transparency, and integrity of their voting processes. Blockchain’s ability to provide a

tamper-evident and auditable record of all transactions, as well as its decentralized nature,

makes it a promising solution for addressing some of the challenges facing e-voting today

Information Technology Engineer 27 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

[43].

A proposal to integrate blockchain technology into an existing voting system in the

UK was made, allowing citizens to vote at polling places or on the Internet. Netvote is a

network utilizing the Ethereum blockchain that uses decentralized applications as part of

its user interface. Election administrators can use the Admin dApp to create ballots, set

rules, and open or close voting. The Voter dApp allows users to register and cast their

ballot, and it can be linked to other devices for increased security. Lastly, the Tally dApp

is used to tally and confirm the results of the election as described in [44].

Another real-life success of blockchain voting was performed in the provincial gov-

ernment of Gyeonggi-do, South Korea, in partnership with Blocko, which implemented a

blockchain-based voting solution for community funding. This platform allows members of

the community and local residents to propose and vote on initiatives for community aid.

Over 9,000 votes were received through both online and offline channels, and 527 projects

were ultimately selected by the government. According to the government, this blockchain

solution provided an opportunity to supplement traditional representative democracy with

direct democracy. Blocko, a Korean blockchain research and services start-up developed

the CoinStack platform used in this initiative [45].

3.3 Criticism on Blockchain voting systems

This section highlights the security concerns surrounding the technology, scalability issues,

usability difficulties, privacy concerns, regulatory uncertainty, and accessibility challenges

present in academia. By discussing these criticisms, the section provides a comprehensive

examination of the current state of blockchain voting systems and the challenges, that

must be addressed in their development and implementation. The goal of this section

is to provide a critical evaluation of the technology and to review future research and

development efforts in this area.

Jafar [11] highlights that blockchain-based technology is still in its infancy as an elec-

tronic voting option and that there are still many technical challenges that need to be

addressed. This article discusses recent electronic voting research using blockchain tech-

nology. This article identifies and addresses the shortcomings of existing electronic voting

Information Technology Engineer 28 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

systems. It also explores the potential of blockchain to enhance electronic voting and

examines current solutions for blockchain-based electronic voting systems, as well as pos-

sible future research paths. Many experts believe that blockchain may be suitable for

a decentralized electronic voting system and that it allows all voters and impartial ob-

servers to view voting records. However, the research also found that most publications

on blockchain-based electronic voting identified and addressed similar issues, and there are

still many study gaps in electronic voting, that need to be addressed in future studies. The

research concludes that blockchain technologies need more sophisticated software architec-

ture and managerial expertise and that blockchain-based electronic voting systems should

be initially implemented in limited pilot areas before being expanded, due to the security

concerns that still exist in the internet and polling machines.

Tas and Tanriover [46] provide an overview of the current state of research in blockchain-

based e-voting systems. It uses a systematic review approach to analyze 63 research papers

found in scientific databases and provides a categorization of the main challenges in the

field into 5 categories: general, integrity, coin-based, privacy, and consensus. The main

conclusion is that blockchain technology has the potential to provide solutions to problems

in current election systems, but there are challenges to be addressed in terms of privacy

protection, transaction speed, remote participation security, and scalability. The authors

highlight the need for further development and improvement of blockchain frameworks for

use in voting systems.

3.4 Improving security on decentralized voting sys-
tems

Critics of decentralized voting systems argue that there is no assurance that the voter is who

they say they are. Nevertheless, in [47], a biohash to perform authentication is proposed.

This biohash is a combination of the individual’s fingerprint and ID. Under this model,

voters must first register to cast their vote from any mobile device then. Other studies

such as in [48] combine blockchain and IoT technology to exchange data from electronic

voting machines to the network nodes. While this limits the mobility of blockchain-based

voting systems, it significantly enhances security by requiring the voter to physically be

Information Technology Engineer 29 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

present to cast their ballot.

Another non-remote secure blockchain voting was proposed in [49], the ABVS (Au-

ditable Blockchain Voting System) is divided into three stages: election setup, voting, and

counting and verification. During the election setup, trusted public institutions are selected

to act as nodes in the ABVS blockchain system, software, and hardware are prepared and

certified, unique Vote Identification Tokens (VITs) are generated for voters, and the VITs

and ABVS equipment are distributed to polling stations. During the voting stage, voters

use the VITs to cast their votes through a secure and encrypted channel to the trusted

nodes, where they are verified and added to a vote blockchain. After the election, the

counting and verification stage begins, where the election officials deactivate the system,

open containers with unused VITs, and send a list of remaining tokens to national electoral

central authorities for vote verification. Voters can verify the presence and correctness of

their votes by comparing them to the blockchain and the paper trail.

To improve blockchain performance by optimizing the core module, the consensus al-

gorithm [50] uses proofs of assets and proofs of reputation in a voting-based decentralized

consensus (VDC) algorithm for consortium blockchain, which is combined with a verifi-

able random function (VRF). This new algorithm improves the efficiency of the consensus

process and user fairness, without compromising on security and energy efficiency.

Another proposal for better consensus algorithms was described in [51], it is an improved

version of the delegated proof of stake (DPoS) the new method uses a vague set, which is

a mathematical concept that allows for imprecision and uncertainty based on the work of

[52] and adapted to human voting. Because in human voting, individuals may not always

have a clear preference for a candidate or a decision, and their opinions may be influenced

by various factors. For example, they may have some degree of support for a candidate,

some degree of opposition, or they may be unsure about their decision. The vague set

captures these nuances of human decision-making by using a membership function that

includes support degree, against degree, and unsure degree for each candidate or decision.

The vague set can be interpreted as a voting model. The membership function of the

vague set represents the degree of support or opposition for each candidate and the degree

of uncertainty for each vote. The model allows each individual to express their preferences

for each candidate or decision more accurately than a simple yes or no vote. This method

Information Technology Engineer 30 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

allows each node to vote for the agent node, which is a fair and effective way to select

the agent node when multiple candidates have the same value. This improves the security

and fairness of the blockchain and reduces the chance of malicious nodes being selected as

agent nodes. The maximum probability of nodes after the vote of the fuzzy membership

degree is 0.5, which means that the voting process is designed to balance the weight of

different nodes and prevent any single node from dominating the selection process.

The Open Vote Network is a decentralized, self-tallying internet voting protocol that

uses the Blockchain for maximum voter privacy. It is written as a smart contract for

Ethereum and can be used for boardroom elections. It does not rely on any trusted

authority for tally computation or voter privacy, and each voter has control over the privacy

of their own vote. It has been tested on Ethereum’s test network and its execution cost

has been analyzed to be sufficient by today’s standards [53].

Information Technology Engineer 31 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 32 Graduation Project

Chapter 4

Methodology

This chapter provides a detailed description of the steps taken to design, implement, and

operate the system. This chapter aims to provide an overview of the system development

process and its contribution to the development of the blockchain voting system, and is

further divided into the following sections:

1. Requirements gathering: Explanation of the process of gathering requirements for

the system, including any techniques used to gather requirements and how the re-

quirements were validated.

2. Architecture design: Discussion of the design of the system architecture, including

the choice of technology and the design of the system components.

3. Introduction to tools for development: Overview of the tools used for the development

of the system, including the programming languages, development environments, and

other software used to build and test the system.

4. User interface design: Description of the design of the user interface, including any

tools used to create the interface and any usability testing performed.

In the following sections, each of these topics will be discussed in greater detail to pro-

vide a complete understanding of the system development process and how it contributed

to the creation of the blockchain voting system. Through this chapter, readers will gain

insights into the development process of a complex system and the challenges that arise

when developing a secure and decentralized voting system using blockchain technology.

33

School of Mathematical and Computational Sciences Yachay Tech University

4.1 Requirements gathering

This section outlines the process of identifying and documenting the functional and non-

functional requirements for the proposed blockchain voting system. The section will cover

the following sub-topics:

1. Stakeholder Analysis: An identification of all stakeholders who will be impacted by

the system, their roles and responsibilities, and their requirements.

2. Functional Requirements: A comprehensive list of the functions and features required

in the system, including the necessary inputs, outputs, and data flow.

3. Non-functional Requirements: The quality attributes such as security, scalability,

accessibility, and performance requirements that the system must adhere to.

4. User Requirements: The user-specific requirements such as usability, user experience,

and accessibility requirements that the system must cater to.

5. Technical Requirements: A description of the technical specifications required to

support the functionality of the system, including hardware, software, and network

requirements.

This section provides a complete understanding of the requirements that the proposed

blockchain voting system must meet in order to be deemed successful. This will serve as

the foundation for the design and development of the system and ensure that it meets the

needs of all stakeholders involved.

4.1.1 Stakeholder Analysis

Stakeholder analysis is important in an Agile methodology. It helps to identify and prior-

itize the stakeholders, understand their needs and interests, and determine their level of

influence and impact on the system. This information is used to make informed decisions,

communicate effectively with stakeholders, and manage their expectations. Stakeholder

analysis also helps to ensure that all stakeholders are considered and that the end product

meets their needs and requirements [54]. In the context of the decentralized voting system

for the creation and voting over initiatives, the stakeholders can be analyzed as follows:

Information Technology Engineer 34 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Members/Users: They are the primary users of the system and play a crucial role in

decision-making and voting. It is essential to understand their needs and expectations

to design a user-friendly and efficient system.

• Leadership/Governing Body: They have a significant influence on the direction and

implementation of the initiatives. It is important to involve them in the requirements-

gathering process and understand their expectations to align the system with the

organization’s objectives.

• Technical Staff: They will be responsible for maintaining and updating the system,

and it is important to consider their expertise and limitations in the design and

development of the system.

• Regulators/External Auditors: They play a crucial role in ensuring the accuracy and

integrity of the voting results. It is important to consider their requirements and

regulations in the design and implementation of the system.

• Wider Community/Public: They may be impacted by the initiatives and could po-

tentially be members of the same organization. It is important to understand their

expectations and requirements to design a system that meets their needs and ensures

their involvement in decision-making.

By conducting a comprehensive stakeholder analysis, this thesis can identify the key

stakeholders, understand their interests, and prioritize their needs to design an effective

decentralized voting system.

A stakeholder analysis matrix is a tool that allows you to categorize and prioritize

stakeholders based on their level of interest, power, and influence in a particular situation

or system [55].

In the case of the given stakeholders, a stakeholder analysis matrix is the following

Table 4.1.

In this matrix, the columns represent the level of interest, power, and influence of each

stakeholder. The rows represent each of the stakeholders.

• Interest: This column reflects the level of interest each stakeholder has in the system,

Information Technology Engineer 35 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Stakeholder Influence Interest Impact Engagement
Members/Users High High High High

Leadership/Governing Body High High High High
Technical Staff Medium Medium High High

Regulators/External Auditors Low Medium Medium Medium
Wider Community/Public Low Low Low Medium

Table 4.1: Stakeholder Analysis Matrix

with high interest meaning they have a direct and significant interest in the outcome

of the system.

• Impact: This column is used to rate the degree of impact that a particular stake-

holder has on the system or system. This column is a subjective measurement of the

stakeholder’s level of influence or power to affect the outcome of the system. The

impact of a stakeholder can be either positive or negative, and it can be measured

on a scale of high, medium, or low. This column helps to identify key stakeholders

and prioritize their needs, and it helps to ensure that the system meets the needs of

the stakeholders who impact its success most.

• Influence: This column reflects the level of influence each stakeholder has over others

in the system, with high influence meaning they have the ability to shape the opinions

and decisions of others.

• Engagement: This column refers to the level of involvement and interaction that the

stakeholder has with the system. It indicates the degree to which a stakeholder is

engaged in the development and implementation of the initiative, as well as their

level of participation and contribution. The engagement level can range from low,

where the stakeholder has minimal involvement or influence, to high, where they have

a significant impact on the system and are actively engaged in decision-making and

implementation. The engagement level helps to determine the level of resources and

attention that should be devoted to each stakeholder and their priority in terms of

communication and engagement.

Based on this analysis, it is clear that the Members/Users and Leadership/Governing

Body are the most important stakeholders as they have high levels of interest and influence

Information Technology Engineer 36 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

in the system. Regulators/External Auditors and the Wider Community/Public have a

lower level of power but still significantly impact the system’s outcome. Technical Staff

has a moderate level of interest, and influence over the system.

4.1.2 Functional Requirements

These requirements are a key aspect of the design process and ensure that the system will

be able to effectively and efficiently support the voting and decision-making process within

an organization. In this section, we will detail the key functionalities and features of the

system, along with any constraints or limitations that must be taken into consideration

during the development process.

The functional requirements for the system are derived from the stakeholders analysis

and the defined objectives. The stakeholders analysis helped identify the different parties

interacting with the system and their individual needs and expectations. The objectives

set for the system provided the overall direction and purpose for the thesis. The specific

actions that the system must perform to meet the objectives and fulfill the needs of the

stakeholders. These requirements provide a clear understanding of what the system must

do, and form the basis for the design and development of the system as depicted in Table

4.2.

Limitations and constraints in the functional requirements section refer to any restric-

tions or boundaries that impact the system’s ability to meet the specified functional re-

quirements. These may include technological limitations, budget constraints, regulatory

limits, performance limitations, and others. Identifying these limitations and conditions

early in the requirements-gathering process is essential so that the design and develop-

ment teams can consider them when building the system. This helps ensure that the final

solution meets the stakeholders’ needs while being feasible and realistic to implement [56].

This thesis aims to deliver a minimum viable product within a specified time frame.

However, it is important to note that the resulting product may not be compatible with

all operating systems, and it cannot be deployed on multiple blockchains due to current

technological limitations.

Also for the same reason, the system may pose a challenge in providing continuous

maintenance and support, which could result in unresolved bugs and technical issues.

Information Technology Engineer 37 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Principle Description

User authentication and
authorization

A secure system should be in place to ensure that only
eligible users can participate in voting.

Initiative creation and
management

Users should be able to create and submit initiatives
for voting.

Ballot creation and voting The system should create ballots for each initiative and
allow users to vote electronically while ensuring that
each user can only vote once.

Result calculation and pre-
sentation

The system should calculate and present the voting
results in real time, ensuring that they are accurate
and transparent.

Security and privacy The system should provide secure storage and protec-
tion of all voting data, including the anonymity of each
user’s vote.

Reporting and auditing The system should generate detailed reports of the vot-
ing results and provide the ability to audit the voting
process.

User management The system should allow for the management of user
accounts and voting privileges to ensure that only eli-
gible voters can participate.

Table 4.2: Functional requirements of proposal voting system

All of these limitations and constraints must be considered when designing and devel-

oping the proposed electronic decentralized voting platform to ensure that the system is

secure, reliable, and meets the needs of the stakeholders.

4.1.3 Non-functional requirements

Non-functional requirements are the qualities and characteristics of a system that are not

related to specific tasks or functions. The non-functional requirements for the system that

allows the creation and voting on initiatives using blockchain have been derived from the

stakeholder analysis and the objectives. The stakeholder analysis helps to understand the

needs and expectations of the different stakeholders such as members, leadership, technical

staff, regulators, and the wider community. These expectations have been used to deter-

Information Technology Engineer 38 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

mine the non-functional requirements that the system must fulfill to meet the needs of

the stakeholders. The objectives of the system also play a crucial role in defining the non-

functional requirements. For example, the objective to ensure security and transparency in

the voting process may lead to the requirement for the system to have robust security mea-

sures such as encryption and blockchain technology. The combination of stakeholder anal-

ysis and objectives has provided a comprehensive and well-rounded list of non-functional

requirements that must be fulfilled by the system as depicted in Table 4.3.

Principle Description

Accessibility and usability System should be user-friendly and accessible with a
simple and intuitive interface

Scalability System should be able to handle a growing number of
users and initiatives

Decentralization System must rely on a distributed ledger managed by a
network of nodes

Transparency System must provide a clear and transparent record of
all voting activities and initiatives

Privacy System must allow users to cast anonymous votes to
protect their privacy

Reliability System must be reliable and consistent with high avail-
ability and minimal downtime

Performance System must have fast and efficient processing times to
tally votes quickly and accurately

Table 4.3: Nonfunctional requirements for a proposal voting system

4.1.4 User Requirements

User requirements are focused on the needs and expectations of end-users. These require-

ments describe the desired outcomes and benefits that the end-users expect to receive from

using the product. User requirements are often expressed in terms of the tasks or activities

that the end-users need to perform, and the features or functions they need to access.

User requirements for an electronic decentralized proposal voting platform based on

blockchain are the following:

Information Technology Engineer 39 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Users should be required to securely log in with a unique identification.

• Users should have a user-friendly interface that makes it easy for them to participate

in voting processes.

• Users should be able to create, submit, and vote on proposals.

• Users should be provided with real-time updates on the status of proposals and the

voting process.

• Users should be allowed to view the details of each proposal and the results of each

vote.

• Users should be able to flag inappropriate content and report it to moderators.

4.1.5 Technical Requirements

Technical requirements are a set of specific, technical capabilities, characteristics, and

features that a product, system, or service must possess in order to fulfill its intended

purpose or meet a specific set of customer or end-user needs.

Technical requirements may include hardware and software specifications, performance

and capacity requirements, data management and security requirements, and other factors

that are critical to the successful operation and implementation of a product or system.

Technical requirements are used to guide the development, design, and testing of prod-

ucts and systems, and are typically documented and agreed upon between stakeholders

before development begins.

The following technical requirements are proposed in this thesis:

• Compatibility with popular web browsers and operating systems.

• Integration with blockchain technology to ensure immutability and transparency of

voting data using the Ethereum network.

• Secure user authentication and authorization using the MetaMask browser extension.

• High availability and robustness to handle heavy usage and potential malicious at-

tacks deploying the network on the Internet.

Information Technology Engineer 40 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Use of open-source software to ensure accessibility and flexibility for future develop-

ment.

• Automated testing and continuous integration/delivery processes to ensure quality

and speed of delivery

• Adherence to industry standards and best practices for software development and

security.

• Scalability to accommodate growth in user numbers and data volume.

4.2 Architecture Design

This section provides a comprehensive overview of the system’s components, their inter-

relationships, and the underlying structure of the software application. This section out-

lines the overall architecture, including high-level design decisions, technologies and tools

to be used, and the relationships between components. The architecture design serves as

a blueprint for the development, implementation, and deployment of the system, ensuring

that all the functional and non-functional requirements are met. This section is essential

for the project’s success, as it provides a clear understanding of the system’s components,

their interactions, and how they work together to deliver the desired results.

The visual representation provided in Fig. 4.1 clarifies that each individual who par-

ticipates in the voting activities of the system operates as a node on the foundational

blockchain. This is facilitated through the usage of a web application developed using Re-

act, Bootstrap, and Web3.js, which may be hosted on a centralized or decentralized server.

During the course of their interaction with the web application, the voter will be prompted

by their digital wallet. This digital wallet acts as the authorized signer of the relevant

transaction and possesses pertinent information regarding the authentication of the voter,

as well as their associated credentials, such as their respective address. As a result of this

transaction, it is then recorded on the blockchain in perpetuity.

Information Technology Engineer 41 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.1: Descentralized Voting System Architecture

4.2.1 UML Diagrams for modeling the proposed system

Following the work present in [57], they noticed similarities between object-oriented pro-

gramming languages and smart contracts (SCs) mainly because they have internal vari-

ables, and public and private functions able to access these variables. However, Solidity

has no true classes, only smart contracts, and two defined data collection mappings and

arrays.

To address these limitations and to represent the structure and relationships of SCs,

the article recommends using a subset of UML diagrams, particularly the Class diagram

and Sequence diagram, with the addition of specific stereotypes to capture Solidity-specific

concepts. The Class diagram can effectively model the multiple inheritance, messaging,

and data structure relationships among SCs and structs. Meanwhile, the Sequence diagram

is useful in modeling messaging interactions among SCs and external actors, particularly

transactions and calls of public functions.

Following this reasoning Table 4.4 presents the stereotypes used to define the Class

Information Technology Engineer 42 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

diagram (see Fig. 4.2).

Figure 4.2: UML Class Diagram for SC for an Electronic Decentralized Proposal Voting
System

A user story diagram is a visual representation of the user stories and their relationships

within a system. The user story diagram in Fig 4.3 in the development of a proposal voting

system can help validate the requirements of the system, facilitate collaboration between

stakeholders, prioritize user stories based on their importance, and provide a basis for

testing the system. Overall, a user story diagram is a useful tool in the development of any

system, as it helps to ensure that all user stories are complete, consistent, and understood

by all stakeholders.

4.3 Introduction to tools for development

In this section, we will describe the tools used to develop a Blockchain-based Electronic

Voting System. For blockchain development, frontend development, testing, and deploying.

Blockchain development tools used in this project:

Information Technology Engineer 43 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Stereotype Position Description
«contract» Class symbol - upper com-

partment
Denotes a SC. May also be
«abstract contract»

«interface» ditto A kind of contract holding
only function declarations

«enum» ditto A list of possible values,
assigned to some variable.
The values are listed in
the middle compartment.
There is no bottom com-
partment (holding opera-
tions).

«struct» ditto A record, able to hold het-
erogeneous data. The fields
are listed in the middle
compartment. There is no
bottom compartment.

«event» Class symbol, middle com-
partment

An event that can be raised
by an SC’s function, signal-
ing something relevant to
external observers.

«modifiers» Class symbol, bottom com-
partment

A particular kind of guard
function, called before an-
other function

«mapping» [data type] ditto The multiple variable, or
the 1:n relationship, is im-
plemented using a generic
mapping.

Table 4.4: Addition stereotypes for UML Diagrams

Information Technology Engineer 44 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.3: UML User Story Diagram for an Electronic Decentralized Proposal Voting
System

4.3.1 Git

Git is a free and open-source distributed version control system that is widely used in

software development. It allows developers to collaborate on a project by keeping track of

changes made to code over time. With Git, developers can work on separate copies of the

code, make changes, and merge those changes back into a shared repository. This makes

it easier to manage multiple versions of the codebase, track bugs, and roll back changes

if necessary. Additionally, Git provides features like branching and tagging, which allow

developers to work on new features and experiment with different versions of the code

without affecting the main codebase [58].

4.3.2 Truffle Framework

Truffle is an open-source tool for blockchain development that operates on the Ethereum

Virtual Machine (EVM). It offers a set of tools aimed at simplifying the development

Information Technology Engineer 45 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

process for blockchain applications. The platform features built-in smart contract com-

pilation, linking, deployment, and binary management capabilities. Additionally, it offers

advanced debugging tools like breakpoints, variable analysis, and step-by-step execution

to streamline the development process [59].

4.3.3 Ganache CLI

Ganache is a tool for quickly developing and testing Ethereum-based applications. It

provides a safe and deterministic environment for the creation, deployment, and testing of

these applications [60].

This thesis uses the command line interface of ganache to start a local development

blockchain with a determined number of users.

4.3.4 MetaMask

MetaMask is a browser extension and a mobile app designed to provide secure management

of Ethereum private keys. It serves as a wallet for Ether and other tokens and enables

interaction with decentralized applications (dApps). MetaMask prioritizes user privacy by

not storing personal information, including email addresses, passwords, or private keys.

The user has complete control over their crypto-identity [61].

This thesis uses the MetaMask browser extension to manage transactions and authen-

tication through the blockchain

4.3.5 Node

Node.js is a JavaScript runtime environment. It is an open-source, cross-platform plat-

form for running web applications beyond the client’s browser. The use of Node.js by

developers is mainly for developing server-side web applications. It excels in data-intensive

applications because of its asynchronous, event-driven architecture. As a result, Node.js

has become ubiquitous in web development.

Node.js is crucial in building modern web applications, particularly front-end develop-

ment. Many popular front-end tools and libraries that this thesis uses, such as Webpack

and Truffle, rely on Node.js to operate.

Information Technology Engineer 46 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.3.6 React

React is a JavaScript framework created by engineers at Facebook to simplify the process

of developing complex user interfaces. The goal of React was to create a scalable and

maintainable framework, able to handle the demands of a large platform like Facebook.

React introduces new paradigms and best practices in web development and comes with a

rich set of features that make it accessible to developers of all skill levels. The framework’s

virtual DOM, JSX, and Flux concepts are some of the unique features that set it apart

from other frameworks and enable developers to create sophisticated user interfaces. It is

used for creating single page applications [62].

JSX is a way of writing HTML inside Javascript, React addresses this relationship by

using components, which are self-contained units that incorporate both markup and logic.

While it is not required, many developers find using JSX helpful for visually organizing

their UI within the JavaScript code. The use of JSX also enables React to provide more

detailed error and warning messages [63].

The UI of this thesis will be created using React as it is a robust and modern framework

it will be used for rendering logic and UI interactions and will help me keep the code

organized and maintainable through the use of components.

4.3.7 Typescript

TypeScript is an open-source programming language developed by Microsoft. It is a strict

syntactical superset of JavaScript that adds optional type annotations and provides im-

proved type checking, which helps to catch bugs before runtime and improve maintainabil-

ity. TypeScript is also designed to be backward compatible with JavaScript and can be

compiled to produce clean and efficient JavaScript code [64].

This thesis uses Typescript for its strong typing system, which helps to prevent type

errors in your code and increases overall code quality. Additionally, TypeScript has features

such as Interfaces, Classes, and Generics, which allow you to write modular, reusable,

and maintainable code. Furthermore, TypeScript is a statically typed language that is a

superset of JavaScript, which means it can transpile to clean and simple JavaScript that

can run in any JavaScript environment. With its features and compatibility, TypeScript

Information Technology Engineer 47 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

makes it easier to develop and scale large and complex applications. This will be the

programming language used for React.

4.3.8 Webpack

Webpack is a popular open-source module bundler for modern web applications. It allows

developers to organize and bundle different types of files, such as JavaScript, CSS, and

images, into a single package that can be loaded efficiently by a web browser.

The purpose of using Webpack is to optimize the performance and efficiency of web

applications. It can help to minimize the number of requests made to the server, reduce

the size of the files that need to be loaded, and ensure that the code is executed in the

correct order. Webpack also supports features such as code splitting and tree shaking,

which further improve the performance of web applications.

In addition, Webpack provides a range of plugins and loaders that can be used to

customize the bundling process and add additional functionality to a web application.

This can help to simplify the development process and improve the quality of the final

product.

In the case of the thesis, the contracts ABI will also be served by Webpack, facilitating

the main communication between the frontend and the blockchain.

4.3.9 Bootstrap

Bootstrap is a popular front-end web development framework that provides pre-built

HTML, CSS, and JavaScript components to help developers quickly create responsive and

mobile-friendly websites.

Bootstrap and Bootstrap React are web development libraries that provide pre-built

components and layouts for creating responsive and modern websites and web applica-

tions. Using these libraries can save developers time and effort, as well as provide a highly

customizable foundation for building visually appealing designs. Both libraries have active

communities that contribute new features and knowledge, making it easier for developers

to stay up-to-date with best practices.

Information Technology Engineer 48 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4.3.10 Docker

Docker is an open-source platform designed to create, deploy, and manage containerized

applications. It enables developers to package an application with all its dependencies into

a container, making it easy to move between environments and deploy consistently.

This thesis uses Docker to facilitate the creation and deployment of the electronic voting

platform, simplify the development environment, and improve reproducibility. Utilizing

Docker, we can standardize the development and deployment process without worrying

about system configuration issues.

4.3.11 Web3.js

Web3.js is a JavaScript library that provides developers with a way to interact with the

Ethereum blockchain. It enables them to write applications that can communicate with

the blockchain, allowing them to access data, send transactions, and interact with smart

contracts.

In this thesis, we will be using this library so users can interact with the smart contract

through an API. This API helps us communicate the smart contract and Metamask browser

extension.

4.4 User Interface Design

In terms of the User Interface, the objective was to create a straightforward interface that

would offer accessibility and easy navigation for all users. The design drew inspiration

from Single Page Applications (SPAs) such as Netflix and other streaming platforms, which

demonstrate a seamless browsing experience without the need for server communication to

provide HTML content. Rather, the HTML content is generated reactively in response to

user input.

Then, we used an online tool Figma to design a SPA with this principle in mind as seen

in Fig. (4.4).

The system’s underlying design principle is characterized by its straightforwardness.

Specifically, the interface is divided into two distinct regions, each serving a different pur-

pose. On the left side of the interface, information pertaining to the currently logged-in

Information Technology Engineer 49 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.4: User Design Mockup: Proposal List

account is provided, accompanied by a form below that enables users to create new pro-

posals. Conversely, the right side of the interface displays a list of all created proposals

and is equipped with a set of buttons that facilitate specific actions, such as Starting,

Registering, Voting, and Ending the proposals. Upon clicking these buttons, a modal is

displayed to confirm the corresponding action on the blockchain. Additionally, when a

proposal reaches the Ended state, a new button is generated to showcase the results on a

modal, as illustrated in Fig. (4.5).

As this thesis is still a work in progress and lacks access to actual users for usability

testing, alternative methods can be explored, including heuristic evaluation of the system.

4.4.1 Heuristic Evaluation

A heuristic evaluation can be conducted by employing a set of established usability princi-

ples or heuristics to assess the interface, a heuristic evaluation can help identify potential

usability issues and improve the overall user experience. This evaluation aims to assess the

electronic voting system against commonly recognized usability heuristics to identify areas

for improvement and provide recommendations [65].

The following assessment was made to the system in order to improve usability. The

Information Technology Engineer 50 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.5: User Design Mockup: Results View

next iterations of the system should accomplish passing these tests. The test is based on

a literature review of electronic voting systems [66].

The heuristic evaluation of the electronic voting system highlighted several areas for

improvement to enhance its usability and user experience. Recommendations include im-

proving feedback mechanisms, aligning the system’s terminology with users’ mental models,

providing more user control and flexibility, ensuring consistency in design and interaction

patterns, preventing and guiding users through errors, and offering accessible help re-

sources. By addressing these recommendations, the electronic voting system can improve

its usability, resulting in a more efficient and satisfying experience for voters.

Information Technology Engineer 51 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Test Result
Ensure that the system provides clear and timely feedback to users about
the current status of their actions, such as confirming vote submission
or indicating errors

✓

Display appropriate progress indicators or notifications to keep users
informed about the progress of the voting process

✓

Use language, terminology, and concepts familiar to voters to minimize
confusion and ensure a clear understanding of the voting process

✓

Provide clear instructions and guidance to help users navigate the system
and make informed choices

✗

Allow users to easily correct errors or change their votes before final
submission

✓

Provide clear options for users to exit or cancel the voting process without
unintended consequences

✗

Ensure consistent design and interaction patterns throughout the system
to reduce cognitive load and make the system more intuitive

✓

Adhere to established design conventions and standards to ensure famil-
iarity and ease of use for users

✓

Implement mechanisms to prevent common voting errors, such as pre-
venting users from submitting multiple votes or invalid selections

✗

Provide clear error messages and guidance to help users rectify any mis-
takes or issues

✗

Minimize the need for users to remember complex instructions or previ-
ous steps in the voting process

✓

Clearly present options and choices to users at each step to reduce re-
liance on memory

✓

Design the system to accommodate a range of user abilities and prefer-
ences, allowing both novice and experienced users to interact with the
system effectively

✓

Provide shortcuts or advanced features for experienced users to expedite
their interaction with the system

✗

Strive for a visually pleasing and clutter-free interface, focusing on es-
sential information and minimizing distractions

✓

Use appropriate visual hierarchy, typography, and colors to guide users’
attention and enhance the overall aesthetics

✓

Clearly communicate error messages in plain language, avoiding technical
jargon

✗

Provide actionable guidance to help users understand and resolve errors ✓

Table 4.5: Assessing system usability through Heuristic Evaluation

Information Technology Engineer 52 Graduation Project

Chapter 5

Results and Discussion

This chapter introduces several sections on the development, testing, and deployment of the

system. As the results of this thesis are a proof-of-concept implementation of the proposed

system, it is important to detail the development process, including the technologies used

and the design decisions made. Additionally, testing played a crucial role in ensuring

the quality and reliability of the system. In this chapter, we discuss the various testing

approaches used, including unit testing, integration testing, and system testing. Finally,

we address the deployment of the system and the challenges and considerations involved in

deploying a blockchain-based application. The sections provide a comprehensive overview

of the development, testing, and deployment phases of the project and serve as a guide for

future researchers or developers who may be interested in building on this work.

1. Development Process: General steps and processes followed throughout the agile

development cycle. It also addresses any challenges or obstacles faced during the

development process and the methods used to overcome them.

2. Implementation: Description of the steps taken to implement the system.

3. Deployment: Explanation of the process of deploying the system, including any chal-

lenges faced and the methods used to overcome them.

4. Testing: Explanation on tests implemented to accomplish a Test Driven Develop-

ment(TDD).

53

School of Mathematical and Computational Sciences Yachay Tech University

5.1 Development Process

The development process of this thesis followed the agile approach to development focus-

ing on a minimum viable product that let users create and vote on initiatives. The agile

approach consists in having these ceremonies such as sprint planning, daily meeting, sprint

review, and retrospectives. As a one-person team, one person had to take on the respon-

sibilities typically assigned to multiple roles, such as product owner, scrum master, and

developer. So given that we defined what the backlog was following the user story principle

for the tasks that needed to be performed (see Fig. 5.1).

Once the backlog was defined, the next steps were to divide the work into sprints that

we set up to be short, time-boxed periods of two weeks to finish the tasks. An example of

how a sprint looked like (see Fig. 5.2)

The whole project took about 12 sprints to complete following the attached Grantt

diagram (see Fig. 5.3). As a one-person team, it was not required to have a daily sync

but sprint reviews and retrospectives were most important. The tutor of this thesis served

the role of a product owner on a weekly meeting to report development progress as well

as provide meaningful insights into the development of this project. In the sprint review

meeting, we would refine the backlog as well as add more user stories as we started to get

more knowledge about the technologies used and the application design.

Initially, the process of estimating the work presented challenges due to the lack of

prior experience. However, after obtaining a better understanding of the project’s scope

and requirements, the sprint reviews proved to be instrumental in accurately estimating

user stories on the backlog. Through ongoing grooming, we were able to incorporate

additional acceptance criteria and consider edge cases that were not initially identified.

The same issue of no prior experience led to the accumulation of technical debt, which

was necessary as we had a functional product but identified areas for improvement, such

as the use of Docker for development. This issue became apparent when we had to switch

to a different environment, which proved to be a time-consuming task that hindered our

progress toward the minimum viable product. Nonetheless, this obstacle helped us to

recognize the importance of identifying and prioritizing tasks that would streamline the

development process and promptly add them to the backlog for future iterations.

Information Technology Engineer 54 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The main pressurizing challenge was the lack of input from other stakeholders as the

one-person team had to take the role of the developer, the elected official, and the com-

munity. We struggled to develop a platform that would satisfy all the requirements these

roles would have in a real-life scenario. Nonetheless, the constant iterative nature of agile

helped us to realize areas of improvement for users to make the application easier to use.

For example, the process of setting up a node is complex but rewarding. As it is a key

pillar of blockchain technology improvements would have to be done for the next iterations

of the product.

Figure 5.1: User story about results view

5.2 Implementation

5.2.1 Setting up the Development Environment

This section will provide a detailed overview of how we set up the development environment

for the blockchain voting system, including the installation and configuration of Ganache

and Truffle.

To facilitate development, we created a monorepo that holds the code for both the smart

contracts and the front end of the application. To start up the development environment,

we provided two approaches: Local Development and Docker Development.

Local Development involves setting up the development environment on the local ma-

chine. This approach requires installing and configuring the necessary software compo-

nents, including Ganache and Truffle, and running the application locally.

Information Technology Engineer 55 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.2: Sprint 4 - Developing smart contract

Information Technology Engineer 56 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Fi
gu

re
5.

3:
G

an
tt

D
ia

gr
am

of
th

e
D

ev
el

op
m

en
t

Pr
oc

es
s

Information Technology Engineer 57 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

On the other hand, Docker Development utilizes Docker containers to create a self-

contained development environment. This approach allows for easier setup and configu-

ration of the development environment and ensures consistency across different machines

and operating systems.

In the following subsections, we will provide detailed instructions on how to set up the

development environment using both approaches.

For Local Development:

1. First to utilize Ganache as a local Ethereum network, it is necessary to install the

software. This can be accomplished by downloading it from the official website1 to

use the Graphical User Interface (GUI) version, or by installing the package through

the use of the following command:
1 npm install -g ganache

2. Next it is necessary to install truffle in the local environment to be able to compile,

migrate and test the contracts in the local Ethereum network.
1 npm install -g truffle

3. In order to develop the frontend part of the project, a subdirectory was created. To

ensure that the dependencies required for this subdirectory are installed.
1 cd frontend && npm install

This command does two things:

• It changes the current directory to the “frontend” subfolder, which is where the

frontend development is being done.

• It installs the necessary dependencies listed in the package.json file, which is a

file that contains information about the project and its dependencies.

4. We now have all the requirements installed the next step is to run the ganache

network with this command:
1https://trufflesuite.com/ganache/

Information Technology Engineer 58 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1 ganache -h 0.0.0.0 -p 8545

It launches an instance of the Ganache blockchain emulator with the following pa-

rameters:

• -h 0.0.0.0: This sets the host IP address that Ganache listens on to 0.0.0.0. This

means that Ganache is accessible from any device on the network.

• -p 8545: This sets the port number that Ganache listens on to 8545. This is

the default port number used by Ethereum clients to communicate with the

blockchain.

5. We will have to set up the truffle configuration file truffle-config.js with the follow-

ing configuration:
1 module . exports = {

2 networks : {

3 local_development : {

4 host: " 127.0.0.1 ",

5 port: 8545 ,

6 network_id : "1",

7 },

8 development : {

9 host: "ganache -cli",

10 port: 8545 ,

11 network_id : "1",

12 },

13 testing : {

14 host: " 127.0.0.1 ",

15 port: 8546 ,

16 network_id : "2",

17 },

18 production : {

19 host: " 0.0.0.0 ",

20 port: 8548 ,

21 network_id : "100",

22 },

23 },

24
25 compilers : {

26 solc: {

27 version : "0.8.9",

Information Technology Engineer 59 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

28 },

29 },

30 };

The file exports a JavaScript object with two main sections, networks which section

defines the various networks that the smart contract can be deployed to, along with

their configuration options. local_development, development, testing and production.

compilers section defines the compiler version used to compile the smart contracts.

6. Once truffle is configured we are able to run the migrations to the network with this

command:
1 truffle migrate --network local_development

This command first compiles our contracts and then performs the migrations to the

network specified after the network flag. It will generate the contract’s ABI which

will be used to interact with the network.

7. Finally, we can boot up the frontend which can be done with the following command

inside the frontend/ subfolder:
1 npm run dev

This command tells Webpack to compile all our frontend and assets and serve them

on the development server on port 8080.

This is the process to start developing smart contracts and the frontend of the application.

For Docker Development, it gets simpler all this previous configuration gets ab-

stracted from the developer in a single docker-compose.yml file. This file simplifies the

process of defining a complex multi-container application by allowing me to declare all the

necessary components and their dependencies in a single file. This file looks as follows:
1 version : ’3’

2
3 services :

4 ganache -cli:

5 image: trufflesuite /ganache -cli

6 container_name : ganache_cli

7 command : ganache -cli -h 0.0.0.0 -p 8545 -i 1

Information Technology Engineer 60 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

8 ports:

9 - " 8545:8545 "

10 truffle :

11 container_name : truffle

12 build:

13 context : .

14 dockerfile : truffle . Dockerfile

15 depends_on :

16 - ganache -cli

17 tty: true
18 ports:

19 - " 8080:8080 "

20 command : npm run dev

This configuration defines two services: ganache-cli and truffle.

The first service, ganache-cli, uses the trufflesuite/ganache-cli image from Docker Hub

to run a local Ethereum blockchain. It also exposes port 8545 to the host machine and

starts the ganache-cli command with specified options.

The second service, truffle, builds an image from a Dockerfile located in the current

directory. This image was described with the same steps performed previously. This service

depends on the ganache-cli service to be running first. The service opens port 8080 for

external access and starts a command that runs the starts development server for the web

application.

Then a simple command builds the containers from the images and runs the services,
1 docker - compose up

5.2.2 Smart Contract Development

The smart contract manages the rules and procedures for conducting the voting process and

ensures the integrity of the results. The section provides an overview of the development

process for the smart contract, written in Solidity, the programming language for writing

smart contracts in Ethereum. Solidity is specifically designed for writing smart contracts

and is well-suited for developing decentralized applications on the Ethereum blockchain.

We also provide a detailed description of the smart contract’s code structure and the

functions it has.

Information Technology Engineer 61 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The contract code has the following key features:

• It defines a public struct called VotingProposal to store information about each pro-

posal, such as the creator’s address, proposal name, description, date created, and

status.

• It defines a private struct called Voter to store information about each registered

voter, such as their address, name, and whether they have voted.

• It defines a private struct called Vote to store information about each vote, including

the proposal ID and the voter’s choice (in favor or not in favor).

• It defines an enum called State to represent the current status of each proposal, which

can be Created, Voting, or Ended.

• It defines several modifiers to restrict access to specific functions based on the pro-

posal’s state or the voter’s status.

• It defines several events to notify interested parties when a new proposal is created,

a voter is added, a vote is cast, or a proposal is ended.

• It defines several functions which will be examined in the following paragraph.

The functions defined in the contract allow for the creation of proposals, the registration

of voters, the deletion of proposals, the start and end of the voting process, and the casting

of votes.

In Fig. (5.4) there is a graphical representation of the main data flow of the smart

contract. This flowchart illustrates the various functions and operations involved in the

execution of the contract, as well as the interactions between different entities such as the

contract itself, external data sources, and the users of the system.

The main functions are the following:
1 function createProposal (

2 string memory _officialName ,

3 string memory _description

4) public {

5 proposalCounter ++;

6 proposals [proposalCounter] = VotingProposal (

Information Technology Engineer 62 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Figure 5.4: User Flow

Information Technology Engineer 63 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

7 msg.sender ,

8 proposalCounter ,

9 _officialName ,

10 _description ,

11 block.timestamp ,

12 State. Created

13);

14 helperCounters [proposalCounter] = HelperCounter (0, 0, 0);

15 emit ProposalCreated (

16 proposalCounter ,

17 msg.sender ,

18 _officialName ,

19 _description ,

20 block.timestamp ,

21 State. Created

22);

23 }

The code is designed to create a new proposal, it takes two arguments, the officialName of

the proposal and the description of the proposal. Then stores the proposal, including the

sender’s information, current timestamp, and status as ”Created,” in the proposals map-

ping. It also creates a HelperCounters entry for the proposal and emits a ProposalCreated

event that includes information about the proposal.
1 function addVoter (uint256 _proposalId , string memory _voterName)

2 public

3 inState (State.Created , _proposalId)

4 hasNotRegistered (_proposalId)

5 hasNotVoted (_proposalId)

6 {

7 helperCounters [_proposalId]. totalRegisteredVoters ++;

8 voterRegistry [msg. sender][_proposalId]. voterAddress = msg. sender ;

9 voterRegistry [msg. sender][_proposalId]. voterName = _voterName ;

10 voterRegistry [msg. sender][_proposalId]. hasVoted = false ;

11 emit VoterAdded (_proposalId , msg.sender , _voterName);

12 }

This function takes two arguments - proposalId, which is the ID of the proposal to which

the voter is being added, and voterName, which is the name of the new voter being added.

The function also contains three modifiers - inState, hasNotRegistered, and hasNotVoted.

These modifiers are used to ensure that the voter being added is eligible to vote on

Information Technology Engineer 64 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

the proposal. And also the proposal is in the correct state. If the voter satisfies all three

modifiers, then the function executes and performs the following tasks. These modifiers

are useful instead of if/else chains inside the function code.

1. It increments the totalRegisteredVoters counter in the helperCounters mapping as-

sociated with the given proposal ID.

2. It creates a new entry in the voterRegistry mapping, which stores the voter’s address,

name, and whether they have voted or not.

3. It emits a VoterAdded event, which contains information such as the proposal ID,

and the voter’s address.

1 function deleteProposal (uint256 _id)

2 public

3 inState (State.Created , _id)

4 onlyOfficial (_id)

5 {

6 delete proposals [_id];

7 }

This is a descriptive function it requires the ID of the proposal as an argument and

removes that proposal if the two modifiers are correct, the executor of this function is the

one that created the proposal and the proposal must be in state Created.
1 function startVote (uint256 _id)

2 public

3 inState (State.Created , _id)

4 onlyOfficial (_id)

5 {

6 VotingProposal memory _proposal = proposals [_id];

7 _proposal . status = State. Voting ;

8 proposals [_id] = _proposal ;

9 emit VotingStarted (_id);

10 }

This function starts the vote on the given proposal ID. It changes the status from Created

to Voting. It also emits an event called VotingStarted, with the ID of the proposal such

that the frontend can handle the state change of the blockchain in real-time.

Information Technology Engineer 65 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

1 function doVote (uint256 _id , bool _choice)

2 public

3 hasRegistered (_id)

4 hasNotVoted (_id)

5 inState (State.Voting , _id)

6 {

7 voterRegistry [msg. sender][_id]. hasVoted = true;

8 Vote memory v;

9 v. proposalId = _id;

10 v. choice = _choice ;

11 if (_choice) {

12 countResult [_id]++;

13 }

14 votes[_id][helperCounters [_id]. totalVotesCast ++] = v;

15 helperCounters [_id]. totalVotesCast ++;

16 emit VoteDone (_id);

17 }

This function requires that the proposal is in the state Voting, that the voter has been

registered as a voter in the given proposal, and that the voter has not cast a vote before.

Then the function reads the vote and increments the private variable countResult if the

vote was in favor of the proposal. If not then just saves the ballot in a mapping. Finally,

increments the helper counter of the totalVotesCast.

After all, it emits a VoteDone event on that proposal.
1 function endVote (uint256 _id)

2 public

3 inState (State.Voting , _id)

4 onlyOfficial (_id)

5 {

6 VotingProposal memory _proposal = proposals [_id];

7 _proposal . status = State.Ended;

8 proposals [_id] = _proposal ;

9 helperCounters [_id]. totalVotesInFavor = countResult [_id];

10 emit VotingEnded (_id , countResult [_id]);

11 }

Lastly, this function performs the counting of the results and publishes them in the helper

Counters mapping that is publicly accessible.

It requires that the proposal is in the Voting state. And the executor of the function is

the one that created the proposal.

Information Technology Engineer 66 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Finally, it emits the VotingEnded event.

5.2.3 Front-End Development

The core library that would help me achieve the desired page reactivity is React. To

interact with the Ethereum blockchain, we used the Web3.js library, which provided a

simple API for interacting with smart contracts deployed on the blockchain.

5.3 Testing

The proposed e-voting platform was evaluated through various tests and experiments. The

system was developed using test-driven development (TDD), which is a way of creating

software that involves writing tests before code. TDD follows a cycle of writing a test, run-

ning it, and writing code to pass it. This cycle is repeated for each feature or requirement

until the software is complete.

TDD helps to make sure that the code is well-tested and meets the expected require-

ments before it is released. By writing tests first, developers can specify what the software

should do and how it should work. This way also helps to find and fix errors early in the

development process, which makes it easier and cheaper [67].

TDD also helps developers to write code that is modular, easy to maintain, and easy to

test. With TDD, each test checks that previous features still work when the code changes.

This way can lead to faster development, better code quality, and lower costs related to

bug fixes and maintenance.

Following the agile approach, the electronic voting system is built and tested incre-

mentally. Each non-trivial function of the contracts written so far must be provided with

Unit and Acceptance Tests. Truffle framework makes available two methods for testing

Ethereum smart contracts: Solidity test and JavaScript test. For the sake of brevity,

here we report just a fragment of the Javascript unit test written to verify “addVoter()”,

“doVote()” and “endVote()” and functions of the BallotContract contract:
1 describe ("Add Voters ", () => {

2 it("adds voters to the proposal ", async () => {

3 // Add a voter to the proposal

Information Technology Engineer 67 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

4 const tx = await ballotContract . addVoter (proposalCount , "Voter 1

", {

5 from: accounts [1],

6 });

7 // Check if the voter has been added

8
9 truffleAssert . eventEmitted (tx , " VoterAdded ", (ev) => {

10 return (

11 ev. proposalId . toNumber () === proposalCount . toNumber () &&

12 ev. voterAddress === accounts [1] &&

13 ev. voterName === "Voter 1"

14);

15 });

16 });

17
18 it(" should fail if the proposal is not in the created state",

async () => {

19 // Start the voting on the proposal

20 await ballotContract . startVote (proposalCount , { from: accounts

[0] });

21
22 // Try to add a voter to the proposal

23 try {

24 await ballotContract . addVoter (proposalCount , "Voter 1", {

25 from: accounts [1],

26 });

27 } catch (error) {

28 assert . strictEqual (

29 error. message . includes (

30 "Error: The proposal is not in the state required to

perform this action "

31),

32 true
33);

34 }

35 });

36 it(" should fail if the voter has already been registered ", async
() => {

37 // Add a voter to the proposal

38 await ballotContract . addVoter (proposalCount , "John Doe", {

39 from: accounts [2],

40 });

41 // Try to add the same voter again

42 try {

Information Technology Engineer 68 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

43 await ballotContract . addVoter (proposalCount , "John Doe", {

44 from: accounts [2],

45 });

46 } catch (error) {

47 assert . strictEqual (

48 error. message . includes (

49 "Error: You are already registered as a voter for this

proposal "

50),

51 true
52);

53 }

54 });

The provided test case aims to check the functionality of the “Ballot Contract” by sim-

ulating the addition of voters to a proposal. The test case includes three scenarios; the

first one checks whether a voter can be added successfully to the proposal, the second test

case checks whether the system prevents adding voters when the proposal is not in the

“Created” state, and the third test case ensures that the system prevents adding the same

voter twice to the proposal.
1 describe (" doVote function ", () => {

2 let ballotContract ;

3 let proposalCount ;

4 let voterAddress ;

5
6 before (async () => {

7 ballotContract = await BallotContract . deployed ();

8 voterAddress = accounts [1];

9 // Add a proposal to the contract

10 await ballotContract . createProposal (

11 " Proposal Title",

12 " Proposal Description ",

13 { from: accounts [0] }

14);

15 proposalCount = await ballotContract . proposalCounter ();

16 await ballotContract . addVoter (proposalCount , "Voter 1", {

17 from: accounts [1],

18 });

19 await ballotContract . startVote (proposalCount , { from: accounts

[0] });

20 });

21 beforeEach (async () => {

Information Technology Engineer 69 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

22 ballotContract = await BallotContract . deployed ();

23 voterAddress = accounts [1];

24 });

25 it(" should allow a registered voter to cast a vote", async () => {

26 // Cast a vote for the proposal

27 const choice = true;

28 await ballotContract . doVote (proposalCount , choice , {

29 from: accounts [1],

30 });

31
32 // Check that the vote has been recorded

33 const counters = await ballotContract . helperCounters (

proposalCount);

34 assert .equal(counters . totalVotesCast , 1, "Total votes cast is

incorrect ");

35 });

36
37 it(" should not allow a voter to cast multiple votes for the same

proposal ", async () => {

38 // Try to cast another vote for the same proposal

39 const choice = false ;

40 try {

41 await ballotContract . doVote (proposalCount , choice , {

42 from: accounts [1],

43 });

44 assert .fail(" Expected doVote to throw an error");

45 } catch (error) {

46 assert . strictEqual (

47 error. message . includes (

48 "Error: You have already cast your vote on this proposal

or you are not registered as a voter"

49),

50 true
51);

52 }

53 const counters = await ballotContract . helperCounters (

proposalCount);

54 assert .equal(counters . totalVotesCast , 1, "Total votes cast is

incorrect ");

55 });

56 });

The “doVote” function’s test suite allows registered voters to vote for a particular

proposal. The test suite contains two test cases.

Information Technology Engineer 70 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

The first test case checks if the “doVote” function allows a registered voter to cast a

vote for a proposal. It casts a vote for a proposal and then checks if the vote has been

recorded by verifying the “totalVotesCast” counter.

The second test case checks if the “doVote” function prevents a registered voter from

casting multiple votes for the same proposal. It first casts a vote for the proposal, then

tries to cast another vote for the same proposal, and expects the function to fail with an

error message indicating that the voter has already cast their vote. The test then checks

that the “totalVotesCast” counter has not been incremented.

One peculiarity of this test suite is that the voter registry is a private variable, so the

tests cannot directly check whether a voter has already cast their vote. Instead, they expect

the “doVote” function to fail if voters have already cast their vote. Another peculiarity is

that the test suite does not check the final results of the voting, but only verifies that the

votes have been cast. This is because the final result is only made publicly available once

a proposal is in the Ended state.
1 describe (" endVote function ", () => {

2 it(" should end a proposal ’s voting period and emit a VotingEnded

event", async () => {

3 await ballotContract . endVote (proposalCount , { from:

officialAddress });

4 const proposal = await ballotContract . proposals (proposalCount);

5 assert .equal(proposal .status , 2, " Proposal status should be

Ended");

6 const counters = await ballotContract . helperCounters (

proposalCount);

7 assert .equal(

8 counters . totalVotesInFavor ,

9 1,

10 "Total votes in favor is incorrect "

11);

12 const events = await ballotContract . getPastEvents (" VotingEnded ",

{

13 fromBlock : 0,

14 toBlock : " latest ",

15 });

16 assert .equal(

17 events .length ,

18 1,

19 " VotingEnded event should have been emitted once"

Information Technology Engineer 71 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

20);

21 assert .equal(

22 events [0]. args. proposalId . toNumber (),

23 proposalCount ,

24 " VotingEnded event has incorrect proposalId "

25);

26 assert .equal(

27 events [0]. args. votesInFavor . toNumber (),

28 1,

29 " VotingEnded event has incorrect result "

30);

31 });

32
33 it(" should revert if called by a non - official ", async () => {

34 await ballotContract . createProposal (" Proposal ", " Description ", {

35 from: officialAddress ,

36 });

37 proposalCount = await ballotContract . proposalCounter ();

38 await ballotContract . startVote (proposalCount , {

39 from: officialAddress ,

40 });

41 try {

42 await ballotContract . endVote (proposalCount , { from:

voterAddress });

43 assert .fail(" Expected endVote to revert ");

44 } catch (error) {

45 assert (

46 error. message . includes (

47 "Error: You are not the official who created this proposal

. Only the official can call this function "

48),

49 " Unexpected error message "

50);

51 }

52 const proposal = await ballotContract . proposals (proposalCount);

53 assert .equal(

54 proposal .status ,

55 1,

56 " Proposal status should not have changed "

57);

58 });

59
60 it(" should revert if called when the proposal is not in the Voting

state", async () => {

Information Technology Engineer 72 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

61 await ballotContract . createProposal (" Proposal ", " Description ", {

62 from: voterAddress ,

63 });

64 proposalCount = await ballotContract . proposalCounter ();

65 try {

66 await ballotContract . endVote (proposalCount , { from:

officialAddress });

67 assert .fail(" Expected endVote to revert ");

68 } catch (error) {

69 assert (

70 error. message . includes (

71 "Error: The proposal is not in the state required to

perform this action "

72),

73 " Unexpected error message "

74);

75 }

76 const proposal = await ballotContract . proposals (proposalCount);

77 assert .equal(

78 proposal .status ,

79 0,

80 " Proposal status should not have changed "

81);

82 });

83 });

This test suite is testing the functionality of the endVote function. The first test in the

suite checks that the function correctly ends the voting period for a proposal and emits a

VotingEnded event with the correct data. The second test ensures that the function reverts

if called by someone other than the official who created the proposal. The third test verifies

that the function reverts if called when the proposal is not in the Voting state. The test

suite uses the assert function to check that the results of the function calls are as expected,

and it uses the try...catch statement to catch any errors that may occur and check that

the error messages are as expected.

5.4 Deployment

This section presents the deployment of the decentralized blockchain-based electronic vot-

ing platform for self-governance in organizations. The deployment consists of three main

Information Technology Engineer 73 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

components: frontend, blockchain setup, and smart contract deployment. The blockchain

setup is the process of creating and configuring a private Ethereum network that hosts

the voting platform. Smart contract deployment is the process of deploying the code that

implements the voting logic and rules on the blockchain. Each component will be described

in detail in this section, along with screenshots and code snippets to illustrate the steps

involved.

The establishment of a private blockchain network is being considered to enable the

completion of tasks that were unattainable with the ganache test network during the

development of the smart contract.

First is an environment similar to production when many nodes are participating in

the network; second, it provides a more controlled environment to test the contract’s

performance, security, and scalability. Furthermore, the private network is particularly

suitable for the proposed voting system use case since it is likely that only members of the

organization would be eligible to vote. Using a private network allows for more granular

control over who has access to the network, ensuring that only authorized members can

participate in the voting process. This enhances the security and privacy of the system,

reducing the risk of unauthorized access and ensuring that the voting results are accurate

and reliable.

5.4.1 Front-End Deployment

For the deployment of the front end, we created a build using Webpack with bundles all

my assets and code into a single file the build is then served through an Express.js server

on a port. This can be then uploaded to a cloud hosting platform, such as Netlify, to make

it accessible to users via the Internet. Environment variables are set with the HTTP URL

and port that is used to communicate with the blockchain node.

5.4.2 Private Blockchain Setup

In this project, we used Hyperledger Besu, an Ethereum client designed for businesses

using Ethereum for public and private permissioned networks. Among its several consensus

algorithms, we chose QBFT for our private blockchain network to serve as an electronic

Information Technology Engineer 74 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

voting platform due to its security, reliability, and performance advantages. QBFT is a

federated consensus algorithm based on the Byzantine Fault Tolerance (BFT) algorithm

that uses quorums within federations to confirm transactions and provide fast finality.

We designed a four-node blockchain, communicating virtually in the same machine us-

ing docker. The nodes communicate through a peer-to-peer network using the Ethereum

wire protocol and the Devp2p protocol, allowing secure and reliable communication. Trans-

actions are validated and added to the blockchain, with a malicious node needing to com-

promise multiple quorums to manipulate the election outcome, becoming more challenging

with more nodes. In the case of an electronic voting blockchain, it may not be appropriate

to charge voters for casting their votes this is the reason this private blockchain network has

a 0 gas fee. In this regard, setting the gas fee to 0 ensures that voters can cast their votes

without incurring any additional costs. This is crucial in an electronic voting blockchain

as it should be accessible to everyone, regardless of their financial status. Additionally,

eliminating the gas fee reduces the possibility of vote buying, a scenario where voters are

paid to cast their votes for a particular candidate.

The steps to setup a private blockchain network as mentioned above is as follows. It is

important to mention that the whole setup code is uploaded in a public repository on the

appendix so it is easier to reproduce.

1. Setup a configuration file for the blockchain. In this configuration file, we can set up

important properties of the blockchain such as the chain Id, the consensus algorithm,

the gas fee, the complexity of the math puzzle, a nonce, the initial block count, some

initially allocated accounts, and some other configurations.

2. Generate the genesis block file from the provided configuration file. This block will

contain configurations of the blockchain.

3. Generate private and public key pairs for each one of the nodes that we are trying

to set up. Copy these to each container. They will be used to start peer-to-peer

communication in the blockchain.

4. Copy the genesis block file to each node container and create a node configuration

file. In this node configuration file, we can set up the peer-to-peer networking con-

Information Technology Engineer 75 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

figuration, data storage location, HTTP network configuration, and logging settings.

5. With all nodes set up and running, the private blockchain network is ready to operate.

The private blockchain will start communicating with each node and interchange in-

formation about the nodes. They will connect and the network will be up and running, as

can be seen in Fig. 5.5. The next step is to deploy our smart contract to the blockchain

network.

Figure 5.5: Private blockchain network running on Docker

5.4.3 Smart Contract Deployment

To accomplish this we can use the Truffle framework we used to develop the smart contract,

we would just need to create an entry in the truffle-config.js file with the configuration

of the private network. Mainly, the private key of one of the account nodes, a name for

the network, and the network host as this network is local, localhost should suit us. Then

we can run the command:
1 truffle migrate --<networkName >

This command will look for the networkName we described in the config file and pack

the compilation of the smart contract into a transaction. Once deployed, it will allow us

Information Technology Engineer 76 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

to interact with the smart contract through one of the node’s HTTP ports, which we set

up on the node configuration files.

Information Technology Engineer 77 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 78 Graduation Project

Chapter 6

Conclusions

This chapter provides an overview of the entire process involved in completing this thesis,

beginning with a comprehensive literature review, continuing with the design and concep-

tualization of the system, followed by the development of a minimum valuable product,

and concluding with testing and deployment of the application. The chapter culminates

with an overall summary of the results and suggestions for future development.

6.1 Conclusions

The purpose of this project was to create a prototype of an electronic voting platform that

effectively dealt with the issues of transparency, privacy, correctness, and integrity. To

achieve this goal, we utilized agile methodologies that allowed us to develop a minimum

viable product in a short period of time. The first step to creating such a platform was to

review what was done in the literature about blockchain voting systems and what the main

challenges and advantages were. Considering these factors, it was clear that the optimal

choice for the blockchain network was Ethereum, as it boasts the largest community. This

would ensure a wealth of available documentation, as well as potentially reach a wider

audience with the electronic voting platform. Then began the process of creating the

MVP of the platform, at the end of the development cycle the MVP provided a secure

system that allows users to create and vote on proposals, all of which are deployed on a

private blockchain that is accessible to every registered user on the platform. This approach

effectively mitigated potential system failures, ensuring the reliability of the platform.

The use of blockchain technology was crucial to achieving specific goals that focused on

79

School of Mathematical and Computational Sciences Yachay Tech University

maintaining the integrity, privacy, and accessibility of the platform. This feature ensures

that the system is tamper-proof and that every vote and proposal is immutable, allowing

for a fair and secure election process. Furthermore, the development of a user-friendly

interface played a vital role in ensuring accessibility, as it made the platform easy to use

and facilitated the reading of results.

Developing such a platform is essential to promote fair and secure elections while em-

powering people to have more control over their representatives. This kind of platform

encourages participation in the electorate, which is fundamental to the healthy functioning

of any democracy.

In order to evidence that this thesis aligns with the proposed objective the following

summary of the task performed for each objective is as the following:

1. To program an electronic decentralized voting platform using agile methodologies to

create a minimum valuable product:

• Documentation of requirements gathering and analysis process.

• Implementation of an agile project management approach with clear sprints,

user stories, and backlog management.

• Deployment of a robust backend system, validated through unit testing, and

integration testing.

• Development of a user-friendly frontend interface to communicate with the back-

end

• Delivery of a functional minimum viable product within the specified timeline,

showcasing the successful implementation of agile methodologies.

2. To ensure the integrity, privacy, and reliability of the system using blockchain tech-

nology:

• Research and select a suitable blockchain platform that aligns with the security

requirements of the electronic voting system.

• Design and implement smart contracts on the chosen blockchain platform to

handle the voting process, ensuring immutability and transparency.

Information Technology Engineer 80 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

• Implement consensus mechanisms within the private blockchain network to en-

sure the reliability and validity of the voting results.

• Documenting the implemented blockchain technology, including details of the

selected platform, smart contracts, and consensus mechanisms employed.

3. To guarantee the accessibility of the system:

• Designing an intuitive and visually appealing (GUI) that accommodates various

accessibility requirements, such as color contrast, font size, and screen reader

compatibility.

• Test usability by using heuristic evaluation of the user interface. While it does

not replace user testing it sets the ground for focusing usability first.

• Implementing user-friendly navigation and interaction patterns within the GUI

to ensure ease of use and seamless navigation.

• Incorporating accessibility features, such as alternative text for images, key-

board navigation support, and adjustable text size options.

4. To mitigate possible system failure:

• Selecting a reliable and scalable web server infrastructure that meets the per-

formance requirements of the electronic voting platform.

• Configuring the web server to host the electronic voting web application securely.

• Comprehensive documentation of the web server configuration and private blockchain

network configuration

Although there remains much work to be done, this project lays the foundation for the

development of blockchain applications with a focus on purposes other than finances. This

project offers a blueprint for future endeavors in this field of governability, serving as a

guide for those looking to achieve similar objectives. With this technology at our disposal,

it is crucial to shift our focus toward prioritizing the interests of people and improving

their quality of life.

Information Technology Engineer 81 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

6.2 Future Work

This section outlines several potential areas for improvement in the blockchain e-voting

platform, which could enhance the system. These areas include security enhancements,

accessibility enhancements, usability enhancements, and technical enhancements.

Security Enhancements

We can implement two-factor authentication to comply with the latest security standards.

This would require voters to provide two forms of identification, such as a password and

a unique code sent to their phone or their preferred vault application, before accessing

the platform. This would significantly increase the platform’s security and protect against

fraudulent voting. Additionally, conducting regular security audits is necessary to identify

and fix any vulnerabilities in the system. To accomplish this, we will need to set up an

auditor role with access to the blockchain logs to check that system is working as expected.

Accessibility Enhancements

To make the platform accessible to all voters, it is recommended to introduce an accessibil-

ity feature for disabled voters. This could include providing alternative options for voters

who are visually or hearing impaired, such as audio or visual aids. Developing a mobile

application would also improve accessibility, allowing voters to access the platform easily

and conveniently from their mobile devices. This would increase the platform’s accessibility

and make it more user-friendly for voters who prefer mobile devices.

One important aspect to improve is how a user can add himself as part of the network,

right now the process consists of a user getting his private key from the system adminis-

trator and setting up the node. In the future, we would like to use Docker Compose to

set up nodes on a private network. They could simply download the Docker Compose file

and run the command to set up their own node. This would allow new users to join the

network quickly and easily, without requiring special technical knowledge or assistance.

Information Technology Engineer 82 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Usability Enhancements

To improve the user experience, it is recommended to provide a user-friendly interface for

easy navigation. This would make the platform more intuitive and easy to use, allowing

voters to easily navigate and understand the platform’s features.

Creating manuals to easily create a private blockchain network with its nodes would

help increase the adoption and use of the e-voting platform. This would allow more organi-

zations and institutions to establish private blockchain networks and integrate the e-voting

platform into their existing systems.

Technical Enhancements

Introducing biometric verification for voter identification would also improve security and

prevent fraudulent voting. This would involve using biometric data such as fingerprints or

facial recognition to verify a voter’s identity before they can access the platform.

Adding a maintainer role that can approve and review a proposal and allowing users to

flag proposals for maintainers to review would also enhance usability. This would improve

the quality of proposals and prevent inappropriate or fraudulent proposals from being

approved.

Furthermore, allowing users to make suggestions to improve a proposal, which can

gather votes to improve the proposal, would increase voter engagement and improve the

quality of proposals. A time-out function could also be created to end a proposal instead

of manually ending the voting period, increasing security and usability by ensuring that

voting ends at a predetermined time.

Information Technology Engineer 83 Graduation Project

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 84 Graduation Project

Bibliography

[1] J. Brennan, Against Democracy. Princeton: Princeton University Press, 2017.

[Online]. Available: https://doi.org/10.1515/9781400888399

[2] D. Altman, Direct democracy worldwide. Cambridge University Press, 2010.

[3] P. G. Neumann, “Security criteria for electronic voting,” in 16th National Computer

Security Conference, vol. 29, 1993, pp. 478–481.

[4] P. C. Schmitter and T. L. Karl, “What democracy is... and is not,” Journal of democ-

racy, vol. 2, no. 3, pp. 75–88, 1991.

[5] K. M. Khan, J. Arshad, and M. M. Khan, “Secure digital voting system based on

blockchain technology,” International Journal of Electronic Government Research

(IJEGR), vol. 14, no. 1, pp. 53–62, 2018.

[6] A. Mugica, “The case for election technology,” European View, vol. 14, no. 1, pp.

111–119, 2015. [Online]. Available: https://doi.org/10.1007/s12290-015-0355-5

[7] M. M. Sarker and T. M. N. U. Akhund, “The roadmap to the electronic voting system

development: a literature review,” International Journal of Advanced Engineering,

Management and Science, vol. 2, no. 5, p. 239465, 2016.

[8] J. P. Gibson, R. Krimmer, V. Teague, and J. Pomares, “A review of e-voting: the

past, present and future,” Annals of Telecommunications, vol. 71, no. 7, pp. 279–286,

2016.

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business

Review, p. 21260, 2008.

85

https://doi.org/10.1515/9781400888399
https://doi.org/10.1007/s12290-015-0355-5

School of Mathematical and Computational Sciences Yachay Tech University

[10] H. Wu, “The hash function jh,” Submission to NIST (round 3), vol. 6, 2011.

[11] U. Jafar, M. J. A. Aziz, and Z. Shukur, “Blockchain for electronic voting sys-

tem—review and open research challenges,” Sensors, vol. 21, no. 17, p. 5874, 2021.

[12] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” in Con-

currency: the works of leslie lamport, 2019, pp. 203–226.

[13] E. Kapengut and B. Mizrach, “An event study of the ethereum transition to proof-of-

stake,” arXiv preprint arXiv:2210.13655, 2022.

[14] S. Joshi, “Feasibility of proof of authority as a consensus protocol model,” arXiv

preprint arXiv:2109.02480, 2021.

[15] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review on consensus

algorithm of blockchain,” in 2017 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), 2017, pp. 2567–2572.

[16] H. Sheth and J. Dattani, “Overview of blockchain technology,” Asian Journal For

Convergence In Technology (AJCT) ISSN -2350-1146, Apr. 2019. [Online]. Available:

https://asianssr.org/index.php/ajct/article/view/728

[17] S. Tikhomirov, “Ethereum: state of knowledge and research perspectives,” in Inter-

national Symposium on Foundations and Practice of Security. Springer, 2017, pp.

206–221.

[18] D. Vujičić, D. Jagodić, and S. Randić, “Blockchain technology, bitcoin, and ethereum:

A brief overview,” in 2018 17th international symposium infoteh-jahorina (infoteh).

IEEE, 2018, pp. 1–6.

[19] C. Feng and J. Niu, “Selfish mining in ethereum,” in 2019 IEEE 39th International

Conference on Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 1306–1316.

[20] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”

Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

Information Technology Engineer 86 Graduation Project

https://asianssr.org/index.php/ajct/article/view/728

School of Mathematical and Computational Sciences Yachay Tech University

[21] S. Rouhani and R. Deters, “Performance analysis of ethereum transactions in private

blockchain,” in 2017 8th IEEE international conference on software engineering and

service science (ICSESS). IEEE, 2017, pp. 70–74.

[22] “Ethereum wallets,” https://ethereum.org/en/wallets/, accessed: 2022-11-04.

[23] K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain-based decentralized

applications,” Software: Practice and Experience, vol. 51, no. 10, pp. 2033–2050, 2021.

[24] M. McCormick, “Waterfall vs. agile methodology,” MPCS, N/A, vol. 3, 2012.

[25] M. Fowler, J. Highsmith et al., “The agile manifesto,” Software development, vol. 9,

no. 8, pp. 28–35, 2001.

[26] A. Srivastava, S. Bhardwaj, and S. Saraswat, “Scrum model for agile methodology,”

in 2017 International Conference on Computing, Communication and Automation

(ICCCA). IEEE, 2017, pp. 864–869.

[27] K. Schwaber and M. Beedle, Agile software development with scrum. Series in agile

software development. Prentice Hall Upper Saddle River, 2002, vol. 1.

[28] E. Ries, “Minimum viable product: a guide,” Startup lessons learned, vol. 3, p. 1,

2009.

[29] “Front end vs back end of your website: Everything you need to know,” https://lets

godojo.com/front-end-vs-back-end/, accessed: 2022-11-04.

[30] F. Wessling and V. Gruhn, “Engineering software architectures of blockchain-oriented

applications,” in 2018 IEEE International Conference on Software Architecture Com-

panion (ICSA-C). IEEE, 2018, pp. 45–46.

[31] R. Hanifatunnisa and B. Rahardjo, “Blockchain based e-voting recording system de-

sign,” in 2017 11th International Conference on Telecommunication Systems Services

and Applications (TSSA). IEEE, 2017, pp. 1–6.

[32] J.-H. Hsiao, R. Tso, C.-M. Chen, and M.-E. Wu, “Decentralized e-voting systems based

on the blockchain technology,” in International Conference on Ubiquitous Information

Information Technology Engineer 87 Graduation Project

https://ethereum.org/en/wallets/
https://letsgodojo.com/front-end-vs-back-end/
https://letsgodojo.com/front-end-vs-back-end/

School of Mathematical and Computational Sciences Yachay Tech University

Technologies and Applications, International Conference on Computer Science and its

Applications. Springer, 2018, pp. 305–309.

[33] S. A. Adeshina and A. Ojo, “Maintaining voting integrity using blockchain,” in

2019 15th International Conference on Electronics, Computer and Computation

(ICECCO). IEEE, 2019, pp. 1–5.

[34] X. Yang, X. Yi, S. Nepal, and F. Han, “Decentralized voting: A self-tallying vot-

ing system using a smart contract on the ethereum blockchain,” in Web Information

Systems Engineering – WISE 2018, H. Hacid, W. Cellary, H. Wang, H.-Y. Paik, and

R. Zhou, Eds. Cham: Springer International Publishing, 2018, pp. 18–35.

[35] A. Young and S. Verhulst, “Self sovereign identity for government services in zug,

switzerland,” 2018.

[36] N. Naik and P. Jenkins, “uport open-source identity management system: An assess-

ment of self-sovereign identity and user-centric data platform built on blockchain,” in

2020 IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2020,

pp. 1–7.

[37] Agora, “Agora: Bringing our voting systems into the 21st century [whitepaper

version 0.2],” Tech. Rep., 2020. [Online]. Available: https://static1.squarespace.com/

static/5b0be2f4e2ccd12e7e8a9be9/t/5f37eed8cedac41642edb534/1597501378925/Ago

ra Whitepaper.pdf

[38] R. Bulut, A. Kantarcı, S. Keskin, and Ş. Bahtiyar, “Blockchain-based electronic voting

system for elections in turkey,” in 2019 4th International Conference on Computer

Science and Engineering (UBMK). IEEE, 2019, pp. 183–188.

[39] S. Anjan and J. P. Sequeira, “Blockchain based e-voting system for india using uidai’s

aadhaar,” Journal of Computer Science Engineering and Software Testing, vol. 5,

no. 3, pp. 26–32, 2019.

[40] Y. M. Wahab, A. Ghazi, A. Al-Dawoodi, M. Alisawi, S. S. Abdullah, L. Hammood,

and A. Y. Nawaf, “A framework for blockchain based e-voting system for iraq.” Inter-

national Journal of Interactive Mobile Technologies, vol. 16, no. 10, 2022.

Information Technology Engineer 88 Graduation Project

https://static1.squarespace.com/static/5b0be2f4e2ccd12e7e8a9be9/t/5f37eed8cedac41642edb534/1597501378925/Agora_Whitepaper.pdf
https://static1.squarespace.com/static/5b0be2f4e2ccd12e7e8a9be9/t/5f37eed8cedac41642edb534/1597501378925/Agora_Whitepaper.pdf
https://static1.squarespace.com/static/5b0be2f4e2ccd12e7e8a9be9/t/5f37eed8cedac41642edb534/1597501378925/Agora_Whitepaper.pdf

School of Mathematical and Computational Sciences Yachay Tech University

[41] J. Budurushi, R. Jöris, and M. Volkamer, “Implementing and evaluating a software-

independent voting system for polling station elections,” Journal of information se-

curity and applications, vol. 19, no. 2, pp. 105–114, 2014.

[42] K. Teja, M. Shravani, C. Y. Simha, and M. R. Kounte, “Secured voting through

blockchain technology,” in 2019 3rd international conference on trends in electronics

and informatics (ICOEI). IEEE, 2019, pp. 1416–1419.

[43] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.”, 2015.

[44] F. Hjálmarsson, G. K. Hreiarsson, M. Hamdaqa, and G. Hjálmtýsson, “Blockchain-

based e-voting system,” in 2018 IEEE 11th International Conference on Cloud Com-

puting (CLOUD), 2018, pp. 983–986.

[45] G. Keirns, “Local government in south korea taps blockchain for community vote,”

Sep 2021. [Online]. Available: https://www.coindesk.com/markets/2017/03/07/loca

l-government-in-south-korea-taps-blockchain-for-community-vote/

[46] R. Taş and Tanrıöver, “A systematic review of challenges and opportunities

of blockchain for e-voting,” Symmetry, vol. 12, no. 8, 2020. [Online]. Available:

https://www.mdpi.com/2073-8994/12/8/1328

[47] S. T. Alvi, M. N. Uddin, and L. Islam, “Digital voting: A blockchain-based e-voting

system using biohash and smart contract,” in 2020 Third International Conference on

Smart Systems and Inventive Technology (ICSSIT). IEEE, 2020, pp. 228–233.

[48] A. Alam, S. M. Zia Ur Rashid, M. Abdus Salam, and A. Islam, “Towards blockchain-

based e-voting system,” in 2018 International Conference on Innovations in Science,

Engineering and Technology (ICISET), 2018, pp. 351–354.

[49] M. Pawlak, J. Guziur, and A. Poniszewska-Marańda, “Voting process with blockchain

technology: auditable blockchain voting system,” in International Conference on In-

telligent Networking and Collaborative Systems. Springer, 2019, pp. 233–244.

Information Technology Engineer 89 Graduation Project

https://www.coindesk.com/markets/2017/03/07/local-government-in-south-korea-taps-blockchain-for-community-vote/
https://www.coindesk.com/markets/2017/03/07/local-government-in-south-korea-taps-blockchain-for-community-vote/
https://www.mdpi.com/2073-8994/12/8/1328

School of Mathematical and Computational Sciences Yachay Tech University

[50] G. Sun, M. Dai, J. Sun, and H. Yu, “Voting-based decentralized consensus design

for improving the efficiency and security of consortium blockchain,” IEEE Internet of

Things Journal, vol. 8, no. 8, pp. 6257–6272, 2021.

[51] G. Xu, Y. Liu, and P. W. Khan, “Improvement of the dpos consensus mechanism in

blockchain based on vague sets,” IEEE Transactions on Industrial Informatics, vol. 16,

no. 6, pp. 4252–4259, 2019.

[52] Y. Liu, G. Wang, and L. Feng, “A general model for transforming vague sets into

fuzzy sets,” Transactions on computational science II, pp. 133–144, 2008.

[53] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for boardroom voting

with maximum voter privacy,” in Financial Cryptography and Data Security, A. Ki-

ayias, Ed. Cham: Springer International Publishing, 2017, pp. 357–375.

[54] S. Dhir, D. Kumar, and V. Singh, “Requirement paradigms to implement the soft-

ware projects in agile development using analytical hierarchy process,” International

Journal of Decision Support System Technology (IJDSST), vol. 9, no. 3, pp. 28–41,

2017.

[55] B. Crosby, Stakeholder analysis: a vital tool for strategic managers. USAID’s Imple-

menting Policy Change Project, 1992.

[56] R. Malan, D. Bredemeyer et al., “Functional requirements and use cases,” Bredemeyer

Consulting, 2001.

[57] L. Marchesi, M. Marchesi, and R. Tonelli, “Abcde –agile block chain dapp engineer-

ing,” Blockchain: Research and Applications, vol. 1, p. 100002, 12 2020.

[58] D. Spinellis, “Git,” IEEE software, vol. 29, no. 3, pp. 100–101, 2012.

[59] “What is truffle?” [Online]. Available: https://trufflesuite.com/docs/truffle/

[60] Trufflesuite, “Trufflesuite/ganache: A tool for creating a local blockchain for fast

ethereum development.” [Online]. Available: https://github.com/trufflesuite/ganach

e#readme

Information Technology Engineer 90 Graduation Project

https://trufflesuite.com/docs/truffle/
https://github.com/trufflesuite/ganache#readme
https://github.com/trufflesuite/ganache#readme

School of Mathematical and Computational Sciences Yachay Tech University

[61] “Getting started with metamask.” [Online]. Available: https://metamask.zendesk.c

om/hc/en-us/articles/360015489531-Getting-Started-With-MetaMask

[62] C. Gackenheimer and C. Gackenheimer, “What is react?” Introduction to React, pp.

1–20, 2015.

[63] “Introducing jsx.” [Online]. Available: https://reactjs.org/docs/introducing-jsx.html

[64] G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,” in ECOOP

2014 – Object-Oriented Programming, R. Jones, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014, pp. 257–281.

[65] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceedings of

the SIGCHI conference on Human factors in computing systems, 1990, pp. 249–256.

[66] B. B. Bederson, B. Lee, R. M. Sherman, P. S. Herrnson, and R. G. Niemi, “Electronic

voting system usability issues,” in Proceedings of the SIGCHI conference on Human

factors in computing systems, 2003, pp. 145–152.

[67] D. Arnyndiasari, R. Ferdiana, and P. I. Santosa, “Software practices for agile de-

velopers: A systematic literature review,” in 2022 1st International Conference on

Information System Information Technology (ICISIT), 2022, pp. 238–243.

Information Technology Engineer 91 Graduation Project

https://metamask.zendesk.com/hc/en-us/articles/360015489531-Getting-Started-With-MetaMask
https://metamask.zendesk.com/hc/en-us/articles/360015489531-Getting-Started-With-MetaMask
https://reactjs.org/docs/introducing-jsx.html

School of Mathematical and Computational Sciences Yachay Tech University

Information Technology Engineer 92 Graduation Project

Appendices

93

School of Mathematical and Computational Sciences Yachay Tech University

.1 Appendix 1. Code Repository for the Electronic
Voting System

The code repository for the electronic voting system can be accessed at the following URL:

https://github.com/FranzGB/e-voting-contract.

.2 Appendix 2. Code Repository for the
Private Blockchain Network

The code repository for the private blockchain network can be found at the following URL:

https://github.com/FranzGB/blockchain-private-network.

.3 Appendix 3. Project Management Utilities

The project management utilities utilized for this project include the following:

Kanban Board: The Kanban board for tracking project tasks and progress can be

accessed at: https://trello.com/b/Ylwqyy5r/electronic-voting-platform.

Backlog: The project backlog, which lists pending tasks and requirements, can be

accessed at the following URL: https://docs.google.com/spreadsheets/d/1H48 z9g

MDu6WoTyKcgeuYV 3N7bDXQSiROiN3gHspu8/edit?usp=sharing.

Information Technology Engineer 95 Graduation Project

https://github.com/FranzGB/e-voting-contract
https://github.com/FranzGB/blockchain-private-network
https://trello.com/b/Ylwqyy5r/electronic-voting-platform
https://docs.google.com/spreadsheets/d/1H48_z9gMDu6WoTyKcgeuYV_3N7bDXQSiROiN3gHspu8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1H48_z9gMDu6WoTyKcgeuYV_3N7bDXQSiROiN3gHspu8/edit?usp=sharing

	=Dedication
	=Acknowledgments
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Electronic Voting Systems
	History of alternative voting systems
	Measures to develop an electronic voting system

	Blockchain
	Characteristics of blockchain architecture
	Byzantine General's Problems and consensus mechanisms
	Types of Blockchain
	Ethereum
	Smart Contracts
	Digital Wallets
	Decentralized Application (dApp)

	Software Engineering Concepts
	Agile Methodology
	SCRUM
	Minimum Value Product
	Tech Stacks

	State of the Art
	Decentralized Voting System Proposals
	Real-life examples of decentralized voting systems
	Criticism on Blockchain voting systems
	Improving security on decentralized voting systems

	Methodology
	Requirements gathering
	Stakeholder Analysis
	Functional Requirements
	Non-functional requirements
	User Requirements
	Technical Requirements

	Architecture Design
	UML Diagrams for modeling the proposed system

	Introduction to tools for development
	Git
	Truffle Framework
	Ganache CLI
	MetaMask
	Node
	React
	Typescript
	Webpack
	Bootstrap
	Docker
	Web3.js

	User Interface Design
	Heuristic Evaluation

	Results and Discussion
	Development Process
	Implementation
	Setting up the Development Environment
	Smart Contract Development
	Front-End Development

	Testing
	Deployment
	Front-End Deployment
	Private Blockchain Setup
	Smart Contract Deployment

	Conclusions
	Conclusions
	Future Work

	Bibliography
	Appendices
	Appendix 1. Code Repository for the Electronic Voting System
	Appendix 2. Code Repository for the Private Blockchain Network
	Appendix 3. Project Management Utilities

		2023-08-14T16:35:58-0500
	Urcuquí

		2023-08-14T16:37:05-0500
	Urcuquí

