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Resumen

Los semiconductores de perovskita de haluro de plomo y metilamonio, MAPbX3 (MA =
CH3NHj3, X=1, Br, Cl), se han convertido en el foco de los esfuerzos de investigacién en el
campo de la energia fotovoltaica. La investigacién de procesos en un nivel de nanoescala se
puede lograr a través de la teoria funcional de densidad dependiente del tiempo en tiempo
real y la dindmica molecular de Ehrenfest. En un trabajo de primeros principios basado
en la teoria funcional de densidad dependiente del tiempo en tiempo real, investigamos la
dindmica ultrarrdpida del portador de carga de MAPbI;. Este trabajo también incluye cél-
culos ab initio de la teoria funcional de la densidad (DFT) sobre la estructura electrénica del
uso de funcionales de tdltima generacion, incluidas las aproximaciones HSEO6 y GW. Los
resultados de la estructura electrénica confirman una alta localizacién del componente in-
organico de la perovskita cerca del nivel de Fermi. Se encontré que los cationes CH3NH;3™"
no contribuyen a la absorciéon 6ptica, sino que acttian como un relleno estructural y asegu-
ran la neutralidad de carga de la celda unitaria. La dindmica ultrarrapida de las perovskitas
de haluro de plomo de metilamonio (X =I) se analiz6 siguiendo la evolucién de la poblacién
de portadores de carga utilizando el formalismo de la teoria funcional de densidad dependi-
ente del tiempo en tiempo real (TDDFT). El espectro de absorcién calculado bajo el enfoque
de aproximacién de densidad local adiabatica (ALDA) reproduce dos excitaciones de alta
energia, que son consistentes con los resultados experimentales. Al incidir en el sistema
con un pulso de femtosegundo coherente y con intensidades variables, se encontré una re-
spuesta pronunciada dependiente de la intensidad, que se manifiesta en la generacién de
armonicos altos. De esta forma, se puede interpretar la dindmica del portador de carga en
términos de estimadores simples, como el niimero de electrones excitados.

Palabras clave: DFT, methylammonium lead triiodide perovskites, ultrafast dynamics, time-
dependent density functional theory
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Abstract

Methylammonium lead halide perovskite semiconductors, MAPbX3 (MA = CH3NHj3, X=
I, Br, Cl), have become the focus of research efforts in the field of photovoltaics. Investi-
gating processes on a nanoscale level can be achieved through real-time time-dependent
density functional theory and Ehrenfest molecular dynamics. In a first-principles work
based on real-time time-dependent density-functional theory, we investigate the ultrafast
charge-carrier dynamics of MAPbIz. This work also includes ab initio density-functional
theory (DFT) calculations on the electronic structure of using state-of-the-art functionals,
including HSE06 and GW approximations. The electronic structure results confirm a high
localization of the inorganic component of the perovskite near the Fermi level. It was found
that the CH3NH;3™" cations do not contribute to the optical absorption but instead act as a
structural filler and ensure the charge neutrality of the unit cell. The ultrafast dynamics of
methylammonium lead halide perovskites (X = I) were analyzed by following the evolution
of the charge-carrier population using the formalism of real-time time-dependent density-
functional theory (TDDFT). The absorption spectrum calculated under the adiabatic local
density approximation (ALDA) approach reproduces two high-energy excitations, consis-
tent with experimental results. By irradiating the system with coherent femtosecond pulses
at varying intensities, a pronounced intensity-dependent response was observed, mani-
fested through high-harmonic generation. In this way, one can interpret the charge-carrier

dynamics in terms of simple estimators, such as the number of excited electrons.

Keywords: DFT, methylammonium lead triiodide perovskites, ultrafast dynamics, time-
dependent density functional theory
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Chapter 1

Introduction

Because of the high absorption coefficients, low carrier recombination at the interfaces, low-
cost fabrication processes!, high short circuit current density (90% of internal quantum
efficiency)?, long-range carrier-diffusion lengths (100-100nm)>, the photovoltaic absorber
materials based on the CH3NH;3Pblz perovskite (MAPDbI3) of the organo-lead halide type
have proven to be strong candidates to construct highly efficient solar cells.

The potential applications of hybrid organic-inorganic perovskites in photovoltaics have
been motivated by the continuous increase in high-efficiency rates*®. The first demonstra-
tion of the operation of a hybrid perovskite solar cell was first shown by Kojima et al. using
methylammonium lead iodide in 2009”. Theoretical investigations on the fundamental elec-
tronic properties of halide perovskites were done even before the first perovskite solar cell
was reported®’. Density-functional theory (DFT) is a computational modeling method to
investigate many-body systems’ electronic structure. This theory enables us to explore the
properties of many-electron systems by employing various functionals, among which the
exchange-correlation functional is an approximated quantity.

Describing the photoconversion properties and mechanisms is relevant for establishing
high-performance solar cells. Based on various optical measurements, there is a strong con-
sensus that band-to-band interactions predominantly govern photoabsorption and photoe-
mission processes. Typically, the energy of incident photons equals the energy gap of an
electron transition, resulting in a linear process. However, significantly higher energies can
induce linear and nonlinear electronic and optical properties.

The transfer of energy via light irradiation with solid materials is one of the most fun-
damental interactions of great technological relevance [10]. Studying light induced electron
dynamics in solids provides a microscopic idea of the highly-nonlinear phenomena, such
as high order harmonic generation!!. The capability of real-time time-dependent density
functional theory (RT-TDDFT) to simulate the dynamics of charge carriers on their natural
femtosecond timescale is a truly powerful technique for better understanding how these
behaviors contribute to the formation of photoexcited electrons.

1.1 Problem Statement

Understanding the dynamic processes involved in laser perturbations in this material could

enhance our comprehension of excitation processes in the femtosecond regime, which can
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now be revealed by the latest laser technologies. However, the successful manipulation
of the MAPbI3 perovskite through laser irradiation requires knowledge of the electronic
structure and the microscopic mechanisms governing the coherent response of the system
to the external ultrafast perturbation.

1.2 General and specific objectives

The general objective of this work is to perform ab initio simulations to uncover and analyze
the relevant features in the electronic properties of the material. The initial analysis aims
to establish a foundation for the subsequent examination of optical absorption. Following
these calculations and the analysis of optical transitions, our goal is to derive specific ob-
servables that quantify the effects of an applied electric field on the system, including the
number of excited electrons and the induced electric current density.

1.3 Overview

We conducted several simulations involving VASP and the Octopus codes in this research
work. Details concerning each of these codes will be provided throughout the development
of this thesis. Within the VASP calculations, we utilized hybrid and GGA functionals to
reproduce some of the most fundamental properties of the methylammonium lead triiodide
perovskite. On the other hand, Octopus allowed us to incorporate real-time time-dependent
DFT within the adiabatic local density approximation, enabling us to excite the system with
various perturbations. In this case, we considered two types of perturbations: a Gauge Field
Kick and an x-polarized time-dependent electric field with a Gaussian envelope.



Chapter 2

Theoretical Background

The following section is intended to offer an in-depth theoretical overview to introduce the
computational methods used throughout our work.

2.1 The time-independent Schréodinger equation

Understanding the physical properties of a solid is strongly correlated with the electronic
structure of a N interacting nonrelativistic electrons system. Then, to solve the many-body
problem of finding the ground state energy of this system, we solve the eigenvalue problem,

HT(I‘L ., IN; R1, ceey RM) = ET(I‘l, ., IN; Rl, ceey RM) (21)

to obtain the lowest eigenvalue for the Hamiltonian I = T + V that includes the kinetic
energy T and potential energy V of the system . The many body wavefunction considers N
electrons with coordinates rq, 15, ..., ry and M nuclei with coordinates R1, Ry, ..., Rj;. Further-

more, the probability of finding any electron at position ris given by |¥(ry, ..., tn; Ry, ..., Ry) %,
and the electronic charge density within the material:
n(r) =N / |¥(r,12,...,e8; Ry, ..., Ry [2dry ... drydRy ... dRy (2.2)

The contributions to the kinetic energy of the many atoms system come from the kinetic
energy of the electrons T, and the nuclei T,,'%:

T—T+T——i hzvz—fh—zw (2.3)
e =2om, ' H=2Mp '

where M1, My, ..., M), are the masses of the nuclei and m, is the mass of the electron. The
contribution to the potential energy V comes from the interaction between the electrically
charged particles: the Coulomb repulsion interactions between pairs of electron W,, and
nuclei W,,,, and the electron-nucleus W,, attractive interaction:

A . . 1Y 1 1M ZiZ
V:Wee‘FWnn‘*’Wen:Ewa‘{‘ adl

Zy
- Wr——o— — Y W— (2.4)
i# |rz_r]| 217&] |RI_R]| Z

7 Ry
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where w = ¢?/47e). The e constant represents the electron charge, € is the vacuum permit-
tivity, and Z;; represents the atomic numbers. Combining all the described contributions,
one can construct the full many-body Schrédinger equation:

v ¥ o Ly Zw
=2m, ' 2M — r]\
2.5)
27
+= w——— | ¥ = Ef t‘II
1;] IR; — Ry| ; R1| ’

where a rigorous description would also include relativistic corrections, external perturba-
tions, and time dependence. The value of any physical observable A can be calculated from
the expectation value A; = (¥;|A|¥;). For instance, we are interested in finding the lowest
energy of an eigenstate in the system, which can be described by Eg = (¥o|H|¥o). The wave
function can accurately describe the state of the system and the outcomes of any physical
observables A. However, obtaining the solution of the many-body Schrédinger equation is
a numerical problem that grows exponentially with the size of the system!. Special cases
exist in which solutions can be found for one and two-electron systems but with numer-
ous conditions'#!°. The following sections will show that several physical properties can be
obtained without finding the exact solution to eqn 2.5.

2.1.1 Solution schemes

Several approximations have been developed since the 1920s (Fermi, 1927; Thomas, 1927;
Hartree, 1928a, 1928b; Slater, 1929; Fock, 1930) in order to obtain a solution of eqn 2.5.
Among these methods are the first quantitative cellular calculations done by the statisti-
cal description of the atomic properties based on the electronic density n(r) done by the
Born-Oppenheimer Approximation, the mean-field approximation, and the Hartree Fock
theory.

Adiabatic Approximation

In solids, nuclei are located at approximate definite positions, and that causes the electrons
to have a higher ratio of kinetic energy to potential energy. Furthermore, a significant differ-
ence of mass between the electrons and nuclei'® (the mass of the proton is 1836 times bigger
than the mass of the electron) indicates immediate re-adjustment of the low-energy state of
the electrons!”. These several ideas lead us to the conclusion that a good strategy might be
decoupling the total wavefunction by including the only-electron, ¥, and the nuclear-only

wavefunction yx :

1Y(1'1,...,I‘N;Rl,...,RM) :TR (rl,...,I'N)X(Rl,...,RM), (26)

where one must remember that Yy is defining a complete set of states for the electrons at
each nuclear coordinate R. Then, we can rewrite 2.5 by explicitly including the nuclear
coordinates and neglecting the kinetic energy of the nuclei:
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[ 2 Y.l E ,r Yr = Er¥r (2.7)

i=1 17&]
On the other side, in order to find x, use eqn 2.6 into 2.7 to obtain:

+ E Wen (ri; R)
i

1|

717
Z ZMI Z IR — R

217

ER‘YRX + ‘{IRX = Etot‘FRX (28)

Then, let us multiply each side of the equation by Yy , and integrate over the electron
variables r to find the many-body Schrédinger equation of the nuclei'®:

717
+ERy,...,R
[ZZMI I;]|RI—R]| Ry M)

X = EtotX (29)

in which the effect of the electron is taken into account by acting as a potential. The decou-
pling of eqn 2.5 introduces the notion of the adiabatic electron-nuclear dynamics where no
energy transfer occurs between the electrons and the nuclei'®.

Mean Field Approximation

The wave function of the N-electron system can be written as a product of N single-electron
functions ¢;:

lF(I‘1,I‘2,...,I‘N) = 471(1‘1)...(1)]\](1'1\]), (210)

where the electrons have individual probabilities |¢;|?, and each ¢; satisfies the Schrodinger
equation. This approximation implies a non-interaction regime between the electrons where
each electron occupies an eigenstate starting from the lowest eigenvalue. Equation 2.12
must obey Pauli’s exclusion principle, and that can only be satisfied by the introduction
of a more complex expression that considers the determinant of such functions, the "Slater

20

Determinants"~". Under this approximation and considering nuclei of infinite mass M = oo,

the electron density becomes 7(r) = ¥, |¢;(r)|>. The Hamiltonian for each electron,
1 "
Ao(r) = =5 7% + Weu (1) (2.11)

where W,, (r) considers an overall Coulomb potential experienced by the electrons. Then,
the Schrodinger equation for each electron i becomes:

HQ(I‘)(PZ'(I‘) = 61'4)1'(1‘) (212)

The basic idea of the mean-field approximation is introducing a classical potential to step
into a somewhat interactive regime between the electrons?!. Any distribution of electronic
charge 1(r) can generate an electrostatic potential p:

V2p(r) = 4mn(r), (2.13)
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where we can define the "Hartree Potential" Wy (r) = —p(r), which is the energy of the elec-
trons within the electrostatic potential p(r). Considering that Wy (r) must satisfies V2Wp (1) =
—47mn(r) , the solution of this equation is:

V2Wy(r) = —47n(r) (2.14)

Now that the system also experiences a new potential component Wy (r), the full Schrodinger
equation for each electron i becomes:
vZ

Y + Wen (I‘) + WH(I') cpi(r) = eiqbi(r) (2.15)

The reason behind naming this "mean-field approximation" is that each electron experi-
ences an average potential. However, there has been a reduction in the complexity of the
original eqn 2.5, the consequences of introducing a classical approach are the coupling of
2.15 with the electron density, and the difficulty of accurately predicting physical properties

of material?!.

Hartree-Fock equations

The introduction of this approximation converges to the use of the product wave function
(eqn 2.6), and the variational approach to tackle very complex systems?’?2. Implementing
the "variational principle” and considering the lowest energy quantum state ®, the energy
of this state is:

thisE = /dr1 Y = (Y|A]Y) (2.16)
Then, the variational of the energy concerning the functions ¢;

o _
op;

where orthonormality is considered for each ¢;. Then, the Hartree-Fock equations:

0, (2.17)

AVRIN A
—5 + Wen () + WH(r)} ¢i(r) + /dr’VX(r, v)gi(r') = €ip;i(x), (2.18)
n(r) =} |¢i(x)%, (2.19)
V2Wy(r) = —47n(r) (2.20)

Several approximate solutions have been developed for the "Hartree-Fock” (Self-consistent-
field) approximationm'24 ; however, the nature of the exchange term and the issues for the
calculations truly resembles the difference with the previously introduced approximations
in terms of complexity?. Introducing this nonlocal potential requires a selfconsistent itera-
tion, in which an initial guess of the total, "Hartree’, and exchange potential, and the states
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¢; is proposed. Each iteration begins by calculating the ¢; of the potentials, and then the
potentials are updated from those ¢;. The objective is to stop the iteration process once an
accuracy criterion has been achieved to determine a reasonable approximation of the ground
state.

2.2 The formal framework of density-functional Theory

2.2.1 The Hohenberg-Khon Theorem

The Hohenberg-Khon (HK) theorem represents the starting point for describing a theory of
many-body systems characterized by the ground state density?. The ground state density
is:

no(r) = (Po[A(r)|¥o)

2.21
=N 2 /d31’2 7N| 101,1207 . rN‘7N|<I”0>|2 ( :

where the ; is the spin projection of the i particle along the z-direction. The statements that
justify the HK theorem:

1. Let’s consider the set of external potentials V, the set of resulting ground states G, and
the set N of all ground state densities obtained through eqn 2.21. Considering the map
A:V — G, and the map M : G — N, it can be stated that there is a one-to-one
correspondence between the external potential W,y, the ground state |®p), and the
ground state density no:

Wext (1) <= [Yo) <> no(r) (2.22)

and the electron density determines uniquely the external potential W, in the ground
state. Therefore, the external potential is an unique functional of the ground-state
density, denoted as ¥|[n].

2. Any physical property of the many-body system for ground and excited states is a
density functional:
O[n] := (¥[n]|O¥[n]) (223)

For the ground state, the energy functional:
Eln] i= (Y[ | A¥[n)) = Fln) + [ d*Wene(x (2.24)

which has been described in terms of the density n(r) and any external potential W,y;.

3. For any particular potential, we can define a global minimum for E|[n]

E[no] < E[ng] < Ep = rréiI{}E[n] (2.25)

where the domain of this functional is restricted to ground state densities in N. In other

words, the functional has been minimized by the ground state density ny(r) only.
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Formal proof can be done on the first statement by reductio ad absurdum, leading to a con-
tradiction. This can be done by assuming that [¥y) is the ground state for two different
potentials W,y>.

2.2.2 The Khon-Sham equations

The Hohenberg-Khon theorem leaves a new framework to obtain the total energy of the
many-body system through a functional; however, the exact expression of this functional is
still unknown, but many approximations have been developed throughout the years. Let us
consider eqn 2.24 to split the functional F[n] that is accounting for the kinetic and Coulomb

energy, and an extra term E,.[n] which is called the exchange and correlation energy:

2 n(r)n(r
E=F[n = /drn(r)Vn(r) — Z/drcp;‘(r)vzzpi(r) + ;//drdr’w + Exc[n], (2.26)

where the equation includes the external potential, the kinetic energy, the Hartree energy,
and the exchange-correlation energy. Then, considering the global minimum energy for the
energy functional E[n] and the variational principle, the exchange-correlation potential can
be defined as:

OEqc[n]
Vielr) = =5 - (2.27)
Then, the Khon-Sham equations:
vZ oo N
—5 + Wen (r) + WH(r)] ¢i(r) + /dr’VxC(r, v)pi(r) = eipi(x), (2.28)

which are the equations that define the basis of the Kohn-Sham theory.

2.2.3 Functionals

Although the several approximations and the introduction of the exchange-correlation en-
ergy set up the basis of the most successful and robust calculations that we do today, there
are still many challenges to overcome regarding the different approximate functionals that
have been developed (range of interactions, self-interaction errors (SIEs), numerical accu-
racy). This section introduces the main characteristics, theory, and considerations for the
widely-used functionals?. It will be seen that as we go to a high-accuracy regime, the com-
putational cost increases. This can be visually represented as rungs on Jacob’s ladder of
sophistication?”. The attention of this section will be focused on the adiabatic local density
approximation (ALDA)?, the 2SCAN functional®®, and the HSE06 hybrid functional®.

The local density approximation (LDA)

The basic idea behind this approximation is that at every point r in space, it considers the
exchange-correlation energy density ey, that we would obtain if we consider a homogeneous

electron liquid with a n(r) everywhere, in which we are considering an unpolarized system
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that considers the density of the spin densities as n(r)/2:

ELDA[n] = /d%’eﬁﬁ(n) (2.29)
n=n(r)
Then, the exchange-correlation potential becomes.
ho (37
oLDA () — Bexe() (2.30)
dn 7=n(r)

The approximate description fails when the many-body system presents non-uniform den-
sity regions. In other words, having slow changes in the density allows the LDA approxi-
mation to work better. This approximation works surprisingly better than other approxima-
tions (such as HF) and has provided accurate predictions of many physical properties. These
approximations also present shortcomings, such as SIEs®!. One would usually consider the
spin densities within the local spin density approximation (LSDA), in which:

EEPAfy my] = [ dreleny(6),m, (1) @31)

This approximation locates on the first rung of Jacob’s ladder, and its validity will be de-
termined if the electron density of an electron liquid is enough to capture the complexity of
many of the physical behaviors a system could present. Because the proposed local potential
satisfies the sum rules and scaling properties, the approximation can find accurate predic-
tions of the properties of materials, which would explain the success of this approach®2.

The generalized gradient approximation (GGA)

Let us now consider the next by removing the locality approach and consider a functional
of the magnitude of the gradient of the density | V1’| and the value of n at each point. Then,
the energy density at a point r can be expressed as the following functional:

EGAI) = [ dreSoA(n,|Vn7)), (2.32)

where the objective is not to construct full analytical expressions but rather to find an ap-
proximation to the gradie