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Resumen
Los semiconductores de perovskita de haluro de plomo y metilamonio, MAPbX3 (MA =
CH3NH3, X= I, Br, Cl), se han convertido en el foco de los esfuerzos de investigación en el
campo de la energía fotovoltaica. La investigación de procesos en un nivel de nanoescala se
puede lograr a través de la teoría funcional de densidad dependiente del tiempo en tiempo
real y la dinámica molecular de Ehrenfest. En un trabajo de primeros principios basado
en la teoría funcional de densidad dependiente del tiempo en tiempo real, investigamos la
dinámica ultrarrápida del portador de carga de MAPbI3. Este trabajo también incluye cál-
culos ab initio de la teoría funcional de la densidad (DFT) sobre la estructura electrónica del
uso de funcionales de última generación, incluidas las aproximaciones HSE06 y GW. Los
resultados de la estructura electrónica confirman una alta localización del componente in-
orgánico de la perovskita cerca del nivel de Fermi. Se encontró que los cationes CH3NH3

+

no contribuyen a la absorción óptica, sino que actúan como un relleno estructural y asegu-
ran la neutralidad de carga de la celda unitaria. La dinámica ultrarrápida de las perovskitas
de haluro de plomo de metilamonio (X = I) se analizó siguiendo la evolución de la población
de portadores de carga utilizando el formalismo de la teoría funcional de densidad dependi-
ente del tiempo en tiempo real (TDDFT). El espectro de absorción calculado bajo el enfoque
de aproximación de densidad local adiabática (ALDA) reproduce dos excitaciones de alta
energía, que son consistentes con los resultados experimentales. Al incidir en el sistema
con un pulso de femtosegundo coherente y con intensidades variables, se encontró una re-
spuesta pronunciada dependiente de la intensidad, que se manifiesta en la generación de
armónicos altos. De esta forma, se puede interpretar la dinámica del portador de carga en
términos de estimadores simples, como el número de electrones excitados.

Palabras clave: DFT, methylammonium lead triiodide perovskites, ultrafast dynamics, time-
dependent density functional theory
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Abstract
Methylammonium lead halide perovskite semiconductors, MAPbX3 (MA = CH3NH3, X=
I, Br, Cl), have become the focus of research efforts in the field of photovoltaics. Investi-
gating processes on a nanoscale level can be achieved through real-time time-dependent
density functional theory and Ehrenfest molecular dynamics. In a first-principles work
based on real-time time-dependent density-functional theory, we investigate the ultrafast
charge-carrier dynamics of MAPbI3. This work also includes ab initio density-functional
theory (DFT) calculations on the electronic structure of using state-of-the-art functionals,
including HSE06 and GW approximations. The electronic structure results confirm a high
localization of the inorganic component of the perovskite near the Fermi level. It was found
that the CH3NH3

+ cations do not contribute to the optical absorption but instead act as a
structural filler and ensure the charge neutrality of the unit cell. The ultrafast dynamics of
methylammonium lead halide perovskites (X = I) were analyzed by following the evolution
of the charge-carrier population using the formalism of real-time time-dependent density-
functional theory (TDDFT). The absorption spectrum calculated under the adiabatic local
density approximation (ALDA) approach reproduces two high-energy excitations, consis-
tent with experimental results. By irradiating the system with coherent femtosecond pulses
at varying intensities, a pronounced intensity-dependent response was observed, mani-
fested through high-harmonic generation. In this way, one can interpret the charge-carrier
dynamics in terms of simple estimators, such as the number of excited electrons.

Keywords: DFT, methylammonium lead triiodide perovskites, ultrafast dynamics, time-
dependent density functional theory
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Chapter 1

Introduction

Because of the high absorption coefficients, low carrier recombination at the interfaces, low-
cost fabrication processes1, high short circuit current density (90% of internal quantum
efficiency)2, long-range carrier-diffusion lengths (100-100nm)3, the photovoltaic absorber
materials based on the CH3NH3PbI3 perovskite (MAPbI3) of the organo-lead halide type
have proven to be strong candidates to construct highly efficient solar cells.

The potential applications of hybrid organic-inorganic perovskites in photovoltaics have
been motivated by the continuous increase in high-efficiency rates4–6. The first demonstra-
tion of the operation of a hybrid perovskite solar cell was first shown by Kojima et al. using
methylammonium lead iodide in 20097. Theoretical investigations on the fundamental elec-
tronic properties of halide perovskites were done even before the first perovskite solar cell
was reported8,9. Density-functional theory (DFT) is a computational modeling method to
investigate many-body systems’ electronic structure. This theory enables us to explore the
properties of many-electron systems by employing various functionals, among which the
exchange-correlation functional is an approximated quantity.

Describing the photoconversion properties and mechanisms is relevant for establishing
high-performance solar cells. Based on various optical measurements, there is a strong con-
sensus that band-to-band interactions predominantly govern photoabsorption and photoe-
mission processes. Typically, the energy of incident photons equals the energy gap of an
electron transition, resulting in a linear process. However, significantly higher energies can
induce linear and nonlinear electronic and optical properties.

The transfer of energy via light irradiation with solid materials is one of the most fun-
damental interactions of great technological relevance [10]. Studying light induced electron
dynamics in solids provides a microscopic idea of the highly-nonlinear phenomena, such
as high order harmonic generation11. The capability of real-time time-dependent density
functional theory (RT-TDDFT) to simulate the dynamics of charge carriers on their natural
femtosecond timescale is a truly powerful technique for better understanding how these
behaviors contribute to the formation of photoexcited electrons.

1.1 Problem Statement

Understanding the dynamic processes involved in laser perturbations in this material could
enhance our comprehension of excitation processes in the femtosecond regime, which can
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now be revealed by the latest laser technologies. However, the successful manipulation
of the MAPbI3 perovskite through laser irradiation requires knowledge of the electronic
structure and the microscopic mechanisms governing the coherent response of the system
to the external ultrafast perturbation.

1.2 General and specific objectives

The general objective of this work is to perform ab initio simulations to uncover and analyze
the relevant features in the electronic properties of the material. The initial analysis aims
to establish a foundation for the subsequent examination of optical absorption. Following
these calculations and the analysis of optical transitions, our goal is to derive specific ob-
servables that quantify the effects of an applied electric field on the system, including the
number of excited electrons and the induced electric current density.

1.3 Overview

We conducted several simulations involving VASP and the Octopus codes in this research
work. Details concerning each of these codes will be provided throughout the development
of this thesis. Within the VASP calculations, we utilized hybrid and GGA functionals to
reproduce some of the most fundamental properties of the methylammonium lead triiodide
perovskite. On the other hand, Octopus allowed us to incorporate real-time time-dependent
DFT within the adiabatic local density approximation, enabling us to excite the system with
various perturbations. In this case, we considered two types of perturbations: a Gauge Field
Kick and an x-polarized time-dependent electric field with a Gaussian envelope.
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Chapter 2

Theoretical Background

The following section is intended to offer an in-depth theoretical overview to introduce the
computational methods used throughout our work.

2.1 The time-independent Schrödinger equation

Understanding the physical properties of a solid is strongly correlated with the electronic
structure of a N interacting nonrelativistic electrons system. Then, to solve the many-body
problem of finding the ground state energy of this system, we solve the eigenvalue problem,

ĤΨ(r1, ..., rN ; R1, ..., RM) = EΨ(r1, ..., rN ; R1, ..., RM) (2.1)

to obtain the lowest eigenvalue for the Hamiltonian Ĥ = T̂ + V̂ that includes the kinetic
energy T̂ and potential energy V̂ of the system . The many body wavefunction considers N
electrons with coordinates r1, r2, ..., rN and M nuclei with coordinates R1, R2, ..., RM. Further-
more, the probability of finding any electron at position r is given by |Ψ(r1, ..., rN ; R1, ..., RM)|2,
and the electronic charge density within the material:

n(r) = N
∫
|Ψ(r, r2, . . . , rN ; R1, . . . , RM)|2dr2 . . . drNdR1 . . . dRM (2.2)

The contributions to the kinetic energy of the many atoms system come from the kinetic
energy of the electrons T̂e and the nuclei T̂n

12:

T̂ = T̂e + T̂n = −
N

∑
i=1

h̄2

2me
∇2

i −
M

∑
I=1

h̄2

2MI
∇2

I , (2.3)

where M1, M2, ..., MM are the masses of the nuclei and me is the mass of the electron. The
contribution to the potential energy V̂ comes from the interaction between the electrically
charged particles: the Coulomb repulsion interactions between pairs of electron Ŵee and
nuclei Ŵnn, and the electron-nucleus Ŵen attractive interaction:

V̂ = Ŵee + Ŵnn + Ŵen =
1
2

N

∑
i ̸=j

w
1

|ri − rj|
+

1
2

M

∑
I ̸=J

w
ZI ZJ

|RI −RJ |
−∑

i,I
w

ZI

|ri −RI |
, (2.4)
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where w = e2/4πϵ0. The e constant represents the electron charge, ϵ0 is the vacuum permit-
tivity, and ZI,J represents the atomic numbers. Combining all the described contributions,
one can construct the full many-body Schrödinger equation:[

−∑
i=1

h̄2

2me
∇2

i −∑
I=1

h̄2

2MI
∇2

I +
1
2 ∑

i ̸=j
w

1
|ri − rj|

+ . . .

+
1
2 ∑

I ̸=J
w

ZI ZJ

|RI −RJ |
−∑

i,I
w

ZI

|ri −RI |

]
Ψ = EtotΨ,

(2.5)

where a rigorous description would also include relativistic corrections, external perturba-
tions, and time dependence. The value of any physical observable Â can be calculated from
the expectation value Ai = ⟨Ψi|Â|Ψi⟩. For instance, we are interested in finding the lowest
energy of an eigenstate in the system, which can be described by E0 = ⟨Ψ0|Ĥ|Ψ0⟩. The wave
function can accurately describe the state of the system and the outcomes of any physical
observables Â. However, obtaining the solution of the many-body Schrödinger equation is
a numerical problem that grows exponentially with the size of the system13. Special cases
exist in which solutions can be found for one and two-electron systems but with numer-
ous conditions14,15. The following sections will show that several physical properties can be
obtained without finding the exact solution to eqn 2.5.

2.1.1 Solution schemes

Several approximations have been developed since the 1920s (Fermi, 1927; Thomas, 1927;
Hartree, 1928a, 1928b; Slater, 1929; Fock, 1930) in order to obtain a solution of eqn 2.5.
Among these methods are the first quantitative cellular calculations done by the statisti-
cal description of the atomic properties based on the electronic density n(r) done by the
Born-Oppenheimer Approximation, the mean-field approximation, and the Hartree Fock
theory.

Adiabatic Approximation

In solids, nuclei are located at approximate definite positions, and that causes the electrons
to have a higher ratio of kinetic energy to potential energy. Furthermore, a significant differ-
ence of mass between the electrons and nuclei16 (the mass of the proton is 1836 times bigger
than the mass of the electron) indicates immediate re-adjustment of the low-energy state of
the electrons17. These several ideas lead us to the conclusion that a good strategy might be
decoupling the total wavefunction by including the only-electron, ΨR, and the nuclear-only
wavefunction χ :

Ψ (r1, . . . , rN ; R1, . . . , RM) = ΨR (r1, . . . , rN) χ (R1, . . . , RM) , (2.6)

where one must remember that ΨR is defining a complete set of states for the electrons at
each nuclear coordinate R. Then, we can rewrite 2.5 by explicitly including the nuclear
coordinates and neglecting the kinetic energy of the nuclei:
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[
−∑

i=1

∇2
i

2
+

1
2 ∑

i ̸=j

1
|ri − rj|

+ ∑
i

Ŵen(ri; R)

]
ΨR = ERΨR (2.7)

On the other side, in order to find χ, use eqn 2.6 into 2.7 to obtain:

ERΨRχ +

[
−∑

I=1

∇2
I

2MI
+

1
2 ∑

I ̸=J

ZI ZJ

|RI −RJ |

]
ΨRχ = EtotΨRχ (2.8)

Then, let us multiply each side of the equation by Ψ∗R , and integrate over the electron
variables r to find the many-body Schrödinger equation of the nuclei18:[

−∑
I=1

∇2
I

2MI
+

1
2 ∑

I ̸=J

ZI ZJ

|RI −RJ |
+ E(R1, . . . , RM)

]
χ = Etotχ (2.9)

in which the effect of the electron is taken into account by acting as a potential. The decou-
pling of eqn 2.5 introduces the notion of the adiabatic electron-nuclear dynamics where no
energy transfer occurs between the electrons and the nuclei19.

Mean Field Approximation

The wave function of the N-electron system can be written as a product of N single-electron
functions ϕi:

Ψ(r1, r2, . . . , rN) = ϕ1(r1) . . . ϕN(rN), (2.10)

where the electrons have individual probabilities |ϕi|2, and each ϕi satisfies the Schrödinger
equation. This approximation implies a non-interaction regime between the electrons where
each electron occupies an eigenstate starting from the lowest eigenvalue. Equation 2.12
must obey Pauli’s exclusion principle, and that can only be satisfied by the introduction
of a more complex expression that considers the determinant of such functions, the "Slater
Determinants"20. Under this approximation and considering nuclei of infinite mass MI = ∞,
the electron density becomes n(r) = ∑i |ϕi(r)|2. The Hamiltonian for each electron,

Ĥ0(r) = −
1
2
∇2 + Ŵen(r) (2.11)

where Ŵen(r) considers an overall Coulomb potential experienced by the electrons. Then,
the Schrödinger equation for each electron i becomes:

Ĥ0(r)ϕi(r) = ϵiϕi(r) (2.12)

The basic idea of the mean-field approximation is introducing a classical potential to step
into a somewhat interactive regime between the electrons21. Any distribution of electronic
charge n(r) can generate an electrostatic potential ρ:

∇2ρ(r) = 4πn(r), (2.13)
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where we can define the "Hartree Potential" ŴH(r) = −ρ(r), which is the energy of the elec-
trons within the electrostatic potential ρ(r). Considering that ŴH(r) must satisfies∇2ŴH(r) =
−4πn(r) , the solution of this equation is:

∇2ŴH(r) = −4πn(r) (2.14)

Now that the system also experiences a new potential component ŴH(r), the full Schrödinger
equation for each electron i becomes:[

−∇
2

2
+ Ŵen(r) + ŴH(r)

]
ϕi(r) = ϵiϕi(r) (2.15)

The reason behind naming this "mean-field approximation" is that each electron experi-
ences an average potential. However, there has been a reduction in the complexity of the
original eqn 2.5, the consequences of introducing a classical approach are the coupling of
2.15 with the electron density, and the difficulty of accurately predicting physical properties
of material21.

Hartree-Fock equations

The introduction of this approximation converges to the use of the product wave function
(eqn 2.6), and the variational approach to tackle very complex systems20,22. Implementing
the ’variational principle’ and considering the lowest energy quantum state Φ, the energy
of this state is:

thisE =
∫

dr1 . . . drNΨ∗ĤΨ = ⟨Ψ|Ĥ|Ψ⟩ (2.16)

Then, the variational of the energy concerning the functions ϕi

δE
δϕi

= 0, (2.17)

where orthonormality is considered for each ϕi. Then, the Hartree-Fock equations:[
−∇

2

2
+ Ŵen(r) + ŴH(r)

]
ϕi(r) +

∫
dr′VX(r, r′)ϕi(r′) = ϵiϕi(r), (2.18)

n(r) = ∑
i
|ϕi(r)|2, (2.19)

∇2ŴH(r) = −4πn(r) (2.20)

Several approximate solutions have been developed for the ’Hartree-Fock’ (Self-consistent-
field) approximation23,24; however, the nature of the exchange term and the issues for the
calculations truly resembles the difference with the previously introduced approximations
in terms of complexity23. Introducing this nonlocal potential requires a selfconsistent itera-
tion, in which an initial guess of the total, ’Hartree’, and exchange potential, and the states
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ϕi is proposed. Each iteration begins by calculating the ϕi of the potentials, and then the
potentials are updated from those ϕi. The objective is to stop the iteration process once an
accuracy criterion has been achieved to determine a reasonable approximation of the ground
state.

2.2 The formal framework of density-functional Theory

2.2.1 The Hohenberg-Khon Theorem

The Hohenberg-Khon (HK) theorem represents the starting point for describing a theory of
many-body systems characterized by the ground state density25. The ground state density
is:

n0(r) = ⟨Φ0|n̂(r)|Ψ0⟩

= N ∑
σ1,...,σN

∫
d3r2 . . . d3rN |(rσ1, r2σ2 . . . rNσN |Φ0⟩|2

(2.21)

where the σi is the spin projection of the i particle along the z-direction. The statements that
justify the HK theorem:

1. Let’s consider the set of external potentials V, the set of resulting ground states G, and
the set N of all ground state densities obtained through eqn 2.21. Considering the map
A : V −→ G, and the map M : G −→ N, it can be stated that there is a one-to-one
correspondence between the external potential Wext, the ground state |Φ0⟩, and the
ground state density n0:

Wext(r)⇐⇒ |Ψ0⟩ ⇐⇒ n0(r) (2.22)

and the electron density determines uniquely the external potential Wext in the ground
state. Therefore, the external potential is an unique functional of the ground-state
density, denoted as Ψ[n].

2. Any physical property of the many-body system for ground and excited states is a
density functional:

O[n] := ⟨Ψ[n]|Ô|Ψ[n]⟩ (2.23)

For the ground state, the energy functional:

E[n] := ⟨Ψ[n]|Ĥ|Ψ[n]⟩ = F[n] +
∫

d3rWext(r)n(r) (2.24)

which has been described in terms of the density n(r) and any external potential Wext.

3. For any particular potential, we can define a global minimum for E[n]

E[n0] < E[n′0]⇐⇒ E0 = min
n∈N

E[n] (2.25)

where the domain of this functional is restricted to ground state densities in N. In other
words, the functional has been minimized by the ground state density n0(r) only.
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Formal proof can be done on the first statement by reductio ad absurdum, leading to a con-
tradiction. This can be done by assuming that |Ψ0⟩ is the ground state for two different
potentials Wext

25.

2.2.2 The Khon-Sham equations

The Hohenberg-Khon theorem leaves a new framework to obtain the total energy of the
many-body system through a functional; however, the exact expression of this functional is
still unknown, but many approximations have been developed throughout the years. Let us
consider eqn 2.24 to split the functional F[n] that is accounting for the kinetic and Coulomb
energy, and an extra term Exc[n] which is called the exchange and correlation energy:

E = F[n] =
∫

drn(r)Vn(r)−∑
i

∫
drϕ∗i (r)

∇2

2
ϕi(r) +

1
2

∫ ∫
drdr′

n(r)n(r′)
|r− r′| + Exc[n], (2.26)

where the equation includes the external potential, the kinetic energy, the Hartree energy,
and the exchange-correlation energy. Then, considering the global minimum energy for the
energy functional E[n] and the variational principle, the exchange-correlation potential can
be defined as:

Vxc(r) =
δExc[n]

δn

∣∣∣∣
n(r)

(2.27)

Then, the Khon-Sham equations:[
−∇

2

2
+ Ŵen(r) + ŴH(r)

]
ϕi(r) +

∫
dr′Vxc(r, r′)ϕi(r′) = ϵiϕi(r), (2.28)

which are the equations that define the basis of the Kohn-Sham theory.

2.2.3 Functionals

Although the several approximations and the introduction of the exchange-correlation en-
ergy set up the basis of the most successful and robust calculations that we do today, there
are still many challenges to overcome regarding the different approximate functionals that
have been developed (range of interactions, self-interaction errors (SIEs), numerical accu-
racy). This section introduces the main characteristics, theory, and considerations for the
widely-used functionals26. It will be seen that as we go to a high-accuracy regime, the com-
putational cost increases. This can be visually represented as rungs on Jacob’s ladder of
sophistication27. The attention of this section will be focused on the adiabatic local density
approximation (ALDA)28, the r²SCAN functional29, and the HSE06 hybrid functional30.

The local density approximation (LDA)

The basic idea behind this approximation is that at every point r in space, it considers the
exchange-correlation energy density exc that we would obtain if we consider a homogeneous
electron liquid with a n(r) everywhere, in which we are considering an unpolarized system
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that considers the density of the spin densities as n(r)/2:

ELDA
xc [n] =

∫
d3reho

xc(n)
∣∣∣∣
n=n(r)

(2.29)

Then, the exchange-correlation potential becomes.

vLDA
xc (r) =

deho
xc(n)
dn

∣∣∣∣
n=n(r)

(2.30)

The approximate description fails when the many-body system presents non-uniform den-
sity regions. In other words, having slow changes in the density allows the LDA approxi-
mation to work better. This approximation works surprisingly better than other approxima-
tions (such as HF) and has provided accurate predictions of many physical properties. These
approximations also present shortcomings, such as SIEs31. One would usually consider the
spin densities within the local spin density approximation (LSDA), in which:

ELSDA
xc [n↑, n↓] =

∫
d3reho

xc(n↑(r), n↓(r)) (2.31)

This approximation locates on the first rung of Jacob’s ladder, and its validity will be de-
termined if the electron density of an electron liquid is enough to capture the complexity of
many of the physical behaviors a system could present. Because the proposed local potential
satisfies the sum rules and scaling properties, the approximation can find accurate predic-
tions of the properties of materials, which would explain the success of this approach32.

The generalized gradient approximation (GGA)

Let us now consider the next by removing the locality approach and consider a functional
of the magnitude of the gradient of the density |∇nσ| and the value of n at each point. Then,
the energy density at a point r can be expressed as the following functional:

EGGA
xc [n] =

∫
d3reGGA

xc (n, |∇nσ|), (2.32)

where the objective is not to construct full analytical expressions but rather to find an ap-
proximation to the gradient expression series. Although the GGA could behave worse than
LDA because it does not satisfy the sum rules33, and the expansion can not characterize
the large gradients in real materials. Within the gradient expansion approximation, one can
construct density functionals in powers of gradients using a reduced gradient density:

s(r) =
∇n(r)

2n(r)kF(r)
, (2.33)

where kF(r) is the local Fermi wave vector. A common approach to construct eGGA
xc is to

propose functions that could satisfy most of the properties of exc[n], and several GGAs with
several improvements and corrections have been proposed throughout the years, such as
PBEsol34 resulting in accurate lattice parameters with overestimated absorption energies,
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and BLYP35 and PBErev36 with large enhancement factors. The exchange functional of Becke
(B88-1998)35can be introduced as:

EB88
x [n↑, n↓] = ELSDA

x [n↑, n↓]− β ∑
σ

∫
d3rn4/3

σ

x2
σ

1 + 6βxσsinh−1(xσ)
(2.34)

where xσ = |∇nσ(r)|/n[
σ4/3](r) and β is an empirical parameter. Structuring a strategy to

define which functional can truly contribute to predicting the properties of a material is a
difficult task that can even require some experience37. Many of the efforts previously done
are combined within the PBE functional38:

EPBE
x [n] =

∫
d3reh

x(n)
[

1 + κ − κ

1 + βπ2s2/3κ

]
(2.35)

Although PBE offers high accuracy in determining the structural properties of materials, it
might fail to predict electronic properties.

The r²SCAN functional

Beyond the GGA approximation, it comes to the meta-GGA functionals that include orbital
kinetic energy densities and particle density. Then, the exchange-correlation energy in meta-
GGAs includes:

EPBE
x [n] =

∫
d3reMGGA

xc (n↑(r), n↓(r),∇n↑(r),∇n↓(r),∇2n↑(r),∇2n↓(r), τ↑, τ↓) (2.36)

Therefore, the next rung on the ladder of approximations includes the kinetic energy
densities, which can be written as:

τσ(r) =
1
2

N

∑
i=1
|∇ψσ

i (r)|2, (2.37)

where the spin σ has been included explicitly. Considering that there is no unique expression
for τσ,

τσ(r) = τσ
n (r) + τσ

x (r), (2.38)

one can separate it into two expressions, where τσ
x (r) expresses the relative kinetic energy

of the pair of electrons, and the nonuniqueness coming from the τσ
n (r) represents a more

physical quantity because it involves the density nσ(r) and its derivatives.
The strongly constrained and appropriately normed (SCAN) functional has been highly

successful in determining constraints (uniform and slowly varying densities, jellium surface
energy, the Z −→ ∞ limit of the two-electron ion) from empirical considerations compared
to the already introduced PBE functional36. The SCAN functional can be constructed in
terms of the following variable:

α(r) =
τσ

x (r)
τuni f (n(r))

(2.39)
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where τuni f (n(r)) is the kinetic energy density of the electron gas with density n(r). This
meta-GGA functional has proven to be highly successful among different systems, such as
metal oxides39, in silicon phases40, and in high-temperature semiconductors41.

The HSE06 functional

The next level of sophistication incorporates an explicit orbital functional, similar to the one
introduced in eqn 2.37:

eexact
x (r) = −1

2 ∑
σ

Nσ

∑
i,j=1

∫
d3r′

ϕ∗iσ(r
′)ϕjσ(r′)ϕiσ(r)ϕ∗jσ(r)

|r− r′| , (2.40)

where the xc functionals that depend on eexact
x are known as hyper-GGAS. The basic idea

behind the hybrid functionals is to mix the exact exchange functional with a standard GGA,
in the following way:

Ehybrid
xc = aEexact

x + (1− a)EGGA
x + EGGA

c , (2.41)

where many hybrid functionals have been developed42. For instance, the B3LYP functional
uses the Becke35 exchange functional and the LYP43 correlation:

EB3LYP
xc = (1− a)ELDA

x + aEexact
x + bEB88

x + cELYP
x + (1− c)aELDA

c (2.42)

This functional is extremely popular because it surpasses other GGAs and meta-GGAs when
predicting molecule properties. In solids, it fails to describe the homogeneous electron gas
exactly44. The Coulomb interaction can be divided into two main contributions to treat
different regions of the electron density with higher accuracy. Then, the short-range and
long-range parts:

1
r− r′

=
f (µ|r− r′|)

r− r′
+

1− f (µ|r− r′|)
r− r′

, (2.43)

where the function f satisfies that f (µx → 0) = 1 and f (µx → ∞) = 0, and µ is usually
called the range parameter. Then, the range-separated hybrid xc functional can have the
following form:

Exc = EDFT
XC + a(EHF−SR

x − EDFT−SR
x ) + b(EHF−LR

x − EDFT−LR
x ) (2.44)

One of the most popular options for solids is the Heyd–Scuseria–Ernzerhof range-separated
hybrid functional HSE0645, where the range parameter is chosen to be 0.11/a.

2.3 The basic formalism of time-dependent DFT

This section introduces the basic principles of time-dependent density functional theory
(TDDFT), which has emerged as a powerful theory to understand the time evolution of
electronic many-body systems46. To approach the problem of resolving the time-dependent
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nature of processes involving the excited states of a system, the eqn. 2.5 must be transformed
to the time-dependent Schrödinger equation in order to consider N interacting nonrelativis-
tic fermions in an external potential v̂ext(t). Then, the total Hamiltonian is:

Ĥ(t) = T̂ + V̂(t) + Ŵee(t) (2.45)

Similar to eqns. 2.3 and, the kinetic energy and the particle-particle interaction terms are,
respectively:

T̂ = −1
2

N

∑
i=1
∇2

i , and Ŵee =
1
2

N

∑
i ̸=j

1
|ri − rj|

(2.46)

The time-dependent potential is given by

V̂ext(t) =
N

∑
i=1

vext(ri, t), (2.47)

where this expression represents the attraction of the electrons with the nuclei and the per-
turbation applied due to any field. Then, the time evolution of the system is governed by
the time-dependent Schrödinger equation,

i
∂

∂t
Ψ(x1, . . . , xN ; t) = Ĥ(t)Ψ(x1, . . . , xN ; t) (2.48)

which has to be solved for a given initial state at t0. The following sections shall put the most
important aspects of the TD theory on a firm footing to understand many of the calculations
that were done in this work.

2.3.1 Fundamental Theorems

The Runge-Gross Theorem

The theorem that forms the basis for the theory of TDDFT was first developed by Runge and
Gross in 198446, and it states:

• There is a one-to-one correspondence between the set of all TD external potentials
vext(r, t), and the time-dependent densities n(r, t) from a fixed initial state Ψ0:

vext(r, t)
Ψ0−−−−−−→

i∂tΨ=Ĥ(t)Ψ
Ψ(t)

⟨Ψ(t)|n̂|Ψ(t)⟩−−−−−−−→ n(r, t), (2.49)

within the time interval t0 < t < t′. In principle, if one can determine the time-dependent
density of the system, the external potential and the Hamiltonian can be determined,
and all the properties of the system can be obtained by solving the TD Schrödinger
equation. The proof of this theorem should show that the density n(r, t) is a variable
that can determine the system’s dynamics. In other words, it can be shown that two
densities n(r, t) and n′(r, t) under the influence of two different potentials vext and v′ext

will always become different later than t0 if the two different potentials differ by more
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than a time-dependent function v(r, t)− v(r′, t) ̸= a(t). Then, considering a fixed ini-
tial state Ψ0:

n(r, t)←→ vext(r, t) + Ψ(t) (2.50)

where Ψ(t) is an unique functional of n(r, t) up to some phase.

• Considering Frenkel’s variational principle, the exact TD density can be found:

A[n] =
∫ t1

t0

dt⟨Ψ[n](t)|ih̄∂t − Ĥ′(t)|Ψ[n](t)⟩, (2.51)

where Ĥ′ can be obtained by considering v′ext(r, t) = vext(r, t) + ∂tα(t), with the global
phase α(t). Equation 2.51 becomes stationary for the correct td density n(r, t), and we
can consider the variational equation:

δA[n]
δn(r, t)

= 0 (2.52)

can be a relation equivalent to the TD Schrödinger equation, which comes from the
equivalence with eqn. 2.27.

2.3.2 The time-dependent Kohn-Sham equations

Considering section two of the Runge and Gross Theorem47, one can define the time-dependent
Schrödinger equation of the form:

ih̄
∂|Φ[n](t)⟩

∂t
, (2.53)

where Φ is a functional of the density. Let us construct a noninteracting system with initial
state ϕ0. In order to measure the non-interactive system that will have the same evolution
as the interactive one. Then the time-dependent density of the noninteracting system:

n(r, t) = ∑
j

f j|ϕj(r, t)|2, (2.54)

where f j is the orbital occupation, and the phi0
j N Kohn-Shan orbitals can construct the

total initial noninteracting wave function Φ0. These orbitals represent a self-consistent solu-
tion of the time-dependent Khon-Sham equations:

ĤKS[n](t)ϕj(r, t) = ih̄∂tϕj(r, t) (2.55)

The Kohn-Sham Hamiltonian ĤKS[n](t) includes the noninteracting kinetic energy, the
time-dependent external potential of the system v(r, t), the time-dependent Hartree poten-
tial vH(r, t), and the time-dependent xc potential vxc[n](r, t), respectively:

ĤKS[n](t) = −∇
2

2
+ v(r, t) +

∫
d3r′

n(r′, t)
|r− r′| + vxc[n](r, t) (2.56)
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These TDKS equations set up a formalism to obtain the exact density of the many-body
system from a ground state associated with v0(t). Several approaches, considerations, and
approximations have to be made in order to solve these equations48,49, but we will focus on
the linear response theory in the adiabatic local density approximation (ALDA).

2.3.3 The adiabatic local density approximation (ALDA)

Accurate approximations must be made to the vxc[n](r, t) to get suitable descriptions of a
system and one of these methodologies is to consider the description of xc functionals in
stationary DFT with the actual td density of the system50,51. Then, in the ALDA approxima-
tion, the time-dependent xc potential is:

vALDA
xc (r, t) =

δAALDA
xc [n]

δn(r, t)
=

deHEG
xc (n)

dn

∣∣∣∣
n=n(r,t)

, (2.57)

where eHEG
xc is the xc energy of a homogeneous electron liquid of particle of density n. We are

limited by the information contained in n(r, t) at a specific time t. Then, by considering ef-
fects coming from causal evolution only, we are restricted in a way with no memory effects52.
The accuracy of the ALDA approximation has been questioned; however, it remains a pow-
erful method to predict the behavior of many-body systems to TD perturbations.

2.3.4 Time-dependent current-DFT

The Runge-Gross Theorem sustaining the formalism of TDDFT is applicable to capture the
response of systems like isolated atoms or molecules. However, the existence theorems
do not hold when applied to periodic solids53,54. This comes from the fact that it is a re-
quirement for the currents to vanish at infinity, and unfortunately, this does not apply to
uniform electric fields in periodic systems. Additionally, since we are restricted to time-
dependent scalar potentials, one can not consider vector potentials like time-dependent
magnetic fields or the interaction of electromagnetic waves with matter. However, one can
eliminate these requirements if the framework of time-dependent current-DFT (TDCDFT) is
invoked55. Then, taking into account the formalism proposed by Vignale55, let us consider
the following Hamiltonian

Ĥ(t) =
N

∑
j=1

{
1
2

[∇j

i
+ A(rj, t)

]2

+ v(rj, t)

}
+

1
2

N

∑
i,j ̸=i

w(ri − rj), (2.58)

where v(r, t) and A(r, t) are particle-particle interactions of the system. Analogous to
this system, let us consider a second system with potentials v′(r, t) and A′(r, t):

Ĥ′(t) =
N

∑
j=1

{
1
2

[∇j

i
+ A′(rj, t)

]2

+ v′(rj, t)

}
+

1
2

N

∑
i,j ̸=i

w′(ri − rj), (2.59)

Considering a Taylor expansion of A′, we can prove the system from eqn. 2.62 produces
equal time-dependent particle and current densities n(r, t) and j(r, t) as the system from
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eqn. 2.58. In this way, we can consider up-to-gauge transformations to uniquely determine
the potentials v′(r, t) and A′(r, t). Considering two possibilities, the theorem of TDCDFT
states:

• If both systems are equal (Ψ(0) = Ψ′(0)). There is a one-to-one mapping between the
pair of scalar and vector potential and the particle and current densities:

{
v(r, t), A(r, t)

}
⇐⇒

{
n(r, t), j(r, t)

}
, (2.60)

• If w′ is set to vanish in the second system, the particle and current densities of an
interacting system can be obtained in a noninteracting system by the Hamiltonian

Ĥs(t) =
N

∑
j=1

{
1
2

[∇j

i
+ As(rj, t)

]2

+ vs(rj, t)

}
. (2.61)

Then, the TDKS equation in the TDCDFT framework:

i
∂

∂t
ϕj(r, t) =

(
1
2

[
∇
i
+ As(r, t)

]2

+ vs(r, t)

)
ϕj(r, t) (2.62)

2.3.5 Linear response theory in TDDFT

One of the approaches to solve the TD Khon-Sham equations 2.55 is within the framework
of real-time time-dependent DFT in the adiabatic approximation46. A trendy approach to
consider Casida first derived the linear-response TDDFT56, in which the time-dependent
density can be defined as:

n(r, t) = 2
occ

∑
i
|ϕi(r, t)|2, (2.63)

where a spin-unpolarized system is being considered. The coupling of a TD system with
an external electric field can be defined in the dipole approximation:

E(t) = n̂κδ(t), (2.64)

where n̂ defines the polarization direction, κ is the kick strength, and the δ(t) is the Dirac
delta function. Then, the effect of perturbing the system,

ϕi(r, 0+) = eiκn̂·rϕi(r, 0−), (2.65)

then, the wavefunctions of the system are propagated by a finite time, and the induced
dipole moment of the system is:

d(t) = −
∫

d3rr[n(r, t)− ng(r)] (2.66)
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The absorption spectrum can be calculated by taking the imaginary part of the Fourier trans-
form the dipole moment d(t)57 to obtain the dynamic polarizability α(w):

α(w) =
1
κ

∫
dteiwt[d(t)− d(0)]. (2.67)

To calculate the absorption spectrum, the imaginary part of this function is taken:

S(w) =
2w
π
ℑ(α(w)) (2.68)

Applying the "f-sum rule", the dipole oscillator strength distribution function can pro-
vide a direct connection with the number of electrons N, given by the integral:

N =
∫

dwS(w) (2.69)

which is the integral form of the Thomas-Reiche-Khun (TRK) sum rule58 for the interac-
tion of light with solids. This described approach will later be used to analyze absorption
spectra. To probe the linear response, the strength of the excitation should be low, and the
propagation should run for a long interval.

2.3.6 Laser Dynamics

Let us consider the time-dependent KS equation in the velocity-gauge formalism:

i∂tϕj(r, t) =

(
1
2

(
−i∇+

A(t)
c

)2

−∑
i

Zi

|Ri − r| +
∫

d3r′
n(r′, t)
|r− r′| + vxc[n(r, t)]

)
ϕj(r, t),

(2.70)
which has been an extremely successful formulation when considering molecules59 and
non-periodic systems; however, several extensions have also been made to consider solids60,61.
Then, in order to calculate the response of the material to an ultrafast laser pulse, one should
consider an electric field of the form:

E(t) = −1
c

dA(t)
dt

(2.71)

Having the time-dependent KS orbitals, one can describe the macroscopic current:

J(t) =
∫

η
d3r

1
2 ∑

j

[
ϕ∗j (r, t)

(
−i∇+

A(t)
c

)
ϕj(r, t) + c.c.

]
, (2.72)

where the integration is considering the unit cell volume η. In order to probe high-harmonic
generation, the harmonic emission spectrum can be expressed as:

H(w) = |
∫

dt∂tJ(t)e−iwt|2 (2.73)

A last calculation regarding the laser-induced dynamics, where the number of excited
electrons at a certain time t, can be defined as:
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Nex(t) = Ntotal − ∑
n,n′,k

Pn′,k(t)|⟨ϕnk(t = 0)|ϕn′k(t)⟩|2, (2.74)

where Pn′,k(t) is the population of the "n’-th" state at k and time t.

2.4 The Vienna ab initio Simulation Package (VASP)

Simulations ab initio have become an essential aspect of material science areas for predict-
ing and reproducing physical properties (atomic and electronic structure, optical, magnetic,
and mechanical properties) of many types of systems. This section will introduce some
vital computational details to carry on several simulations in this work. The ab initio sim-
ulation package (VASP) is a plane-wave code that uses the projector-augmented-wave ap-
proach (PAW)62 to describe electron-electron interactions accurately. Since its development
by Georg Kreese and his coworkers63–65, VASP has acquired all the DFT levels, including
Green’s functions and many-body perturbation theory.

In order to accurately predict the valence orbitals, charge densities, and potentials, the
VASP code uses plane-wave methods because it offers many advantages: (i) one can always
control the convergence of the basis set66. (ii) To obtain the forces and stress on the material,
one can rely on the Hellman-Feynman theorem to calculate the expectation value of the
Hamiltonian67.

To treat the bound inert core electrons, one can use pseudopotentials that consider local-
basis set methods in exchange for the calculation’s computational effort. To make calcula-
tions on solid systems possible, VASP uses PAW pseudopotentials. However, this is some-
times a disadvantage because of the need to include nonlinear corrections to treat valence-
core interactions68. However, Kreese and Joubert’s adapted and implemented correction65

does not require these nonlinearity core-electron considerations because of the reached ac-
curacy of the all-electron density.

2.5 The Octopus Code

All the RT-TDDFT calculations in this work were performed with the real-space grid code
Octopus69–72. The study of nonlinear phenomena in solids has been prevalent since the ad-
vent of femtosecond laser pulses which can yield information about the electronic states of a
system within these ultrafast-timescales that are relevant for several technological applications73.
Solving the time-dependent KS equations can open the door to these processes in the lin-
ear and nonlinear-regime. Octopus is a pseudopotential real-space package to simulate
electron-ion dynamics of systems under the perturbation of time-dependent electromag-
netic fields. The represented quantities in the code are in a uniform grid in real space. One
can use a simulated region with the shape of a sphere, a cylinder, or a parallelepiped. This
work used the latter case considering different spacings in each orbital direction. However,
a few disadvantages exist of using a real-space implementation, i.e., a calculated energy
lower than the actual energy74.
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2.6 Methylammonium Lead Triiodide Perovskites

Perovskites are usually expressed with the formula ABX3 in which a high symmetric cubic
structure (α phase) can be maintained with a tolerance factor t → 1, where t = (RA +

RX)/(
√

2(RB + RX)), and RX are the ionic radii of the corresponding ions. A value of t < 1
can lead to the formation of tetragonal or orthorhombic structures. At low temperatures, the
fixed alignment of the CH3NH3

+ molecule causes this structure to be the most stable one,
with low variation of the lattice constants and a more straightforward determination of the
location of the CH3NH3

+ cations throughout experiments75.

FIGURE 2.1: Atomic structure of the orthorhombic CH3NH3PbI3 perovskite
crystals. (a) The orthorhombic phase (space group Pnma) with optimized lat-
tice parameters (experimental values in parentheses76): a = 9.21 (8.86) Å,
b = 8.86 (8.58) Å, c = 13.15 (12.66) Å. (b) A side view of the δ phase of the

CH3NH3PbI3 perovskite.

This semiconductor material exhibits a direct transition at the R point or the Γ for the
cubic and tetragonal structures in the Brillouin zone, respectively. An assignment of two
prominent peaks is usually attributed to this structure: one narrow absorption peak near
1.64 eV and a second broad peak that comes from different transitions appearing within the
range of 2.5 and 3.4 eV for an experimental absorption spectrum of a single crystal at 4 K77.
Several already reported characteristics in DFT-calculated optical properties and experimen-
tal results can be made: (i) Usual range for the appearance of the prominent absorption peak
is for values between 2.5 and 3.5 eV. (ii) High anisotropic behavior in the dielectric function
of the tetragonal and orthorhombic phases, and (iii) the discrepancies of the dielectric func-
tion behavior between DFT calculations and experiments are evident. The main focus of
this work is the orthorhombic phase of this material ( the Pnma group), the analysis of the
absorption spectrum of this material, and the ultrafast charge-carrier dynamics under the
influence of incident pulses at different intensities.
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Chapter 3

Methodology

The following chapter is devoted to introducing the two principal methodologies used in
this work: the calculations using VASP with all-electron projected augmented wave (PAW)
method65,78, to describe structural and electronic properties of the material, and the calcu-
lations using the Octopus code under the framework of RT-TDDFT to induce the charge-
carrier dynamics of the material under laser pulses at different intensities. When doing
these simulations, one must always ensure that all the parameters the code uses converge
in terms of the overall energy. This ensures that the computed properties are resolved con-
sistently. In VASP, one must always look for cutoff energy and k-point mesh convergence.
In Octopus, one should look for the spacing and k-point mesh convergence. Electron-ion
interactions were described using ultrasoft pseudopotentials with a kinetic energy of 698.2
eV. Then, the procedure follows the variation of the cell parameters to ensure convergence
of the cell volume and the total energies of the unit cell. Having all these values optimized,
one can analyze the obtained electronic structure. During the simulations, valence states
included Pb 6s, 6p, and 5d states, I 5s and 5p states, N 2s and 2p states, C 2s and 2p states,
and the H 1s state. The MAPbI3 perovskite structure is represented in a supercell containing
48 atoms (see fig. 2.1).

3.1 Optimization of parameters

3.1.1 VASP

The orthorhombic structure of the MAPbI3 structure can be retrieved from numerous databases.
The lattice parameters’ values are usually very close to the experimental values75,79. The su-
per cell with 48 atoms of this perovskite is shown in (see fig. 3.1), which was obtained from
XCrySDen80.
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FIGURE 3.1: Crystal structure of the orthorhombic phase (space group Pnma)
CH3NH3PbI3 perovskite crystal used as an initial input for the VASP calcula-

tions.

As a starting point, we must ensure convergence of the cutoff energy of the system to
ensure that the number of plane waves is enough to resolve the properties of the system.
It can be seen in figure 3.2 that the energy of the system starts to converge from within
an energy window of 1 meV/atom. Then, an appropriate energy cutoff for this system
Ecut = 850 eV.

FIGURE 3.2: Convergence of the total energy with respect to the cutoff energy
of the bulk structure in which a 1 mev/atom is achieved for a Ecut = 850 eV.

Another parameter that requires convergence is the number of k−points within the
Monkhorst-Pack method implemented in the VASP code81. Within a convergence window
of 1 meV/atom, the system reaches convergence for a 4 × 3 × 4 k-points mesh which is
equivalent to a separation ∆k = 0.028 Å

−1
and a total energy of 850 eV.
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FIGURE 3.3: Energy convergence with respect to the k-poins mesh. The gray
area represents the 1 meV/atom convergence range criteria. A 3× 2× 3

k-mesh already starts to reach convergence.

Structural relaxation

This sets up the method to start calculations on this material. Thought out the work done
in VASP, the functionals used were the r²SCAN+rVV10 functional82, and the hybrid Heyd-
Scuseria-Ernzerhof (HSE06) functional30. The objective now is to reach relaxation of the
system’s spatial configuration and find the optimal lattice parameters for the proposed unit
cell. The equation of state to consider the direct dependence of the total energy of the system
and the volume V, optimal volume V0, the bulk modulus B′, and the bulk modulus pressure
derivative B′0 is the Birch-Murnaghan equation of state:

E(V) = E0 +
9V0B0

16

{[(
V0

V

) 2
3

− 1

]3

B′0 +

[
6− 4

(
V0

V

) 2
3
]}

. (3.1)

In this framework, the following equation can be proposed to enable the fitting of our com-
puted volumes:

E(V) = k1 + k2V−2/3 + k3V−4/3 + k4V−2 (3.2)

where, for this case, the values were k1 = −6643.12, k2 = 6.05× 109, k3 = −1.80× 108, and
k4 = 1.79× 106. The bulk modulus can be defined as:

B0 =

[
V

∂2

∂V2 E(V)

]
V→V0

(3.3)

Finally, B′0 is computed in the following way:
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B′0 =
∂B0

∂P
|V→V0

= − V
B0

∂

∂V

[
V

∂2

∂V2 E(V)

]
V→V0

(3.4)

For a range of volumes, the computed optimal fitted volume is V0 = 995.3518Å
3

with a
total energy of −700.19792 eV (see fig. 3.4), and a summary of the crystallographic data is
compared with experimental data (see table 3.1). The computed values for the bulk modulus
B0 = 21.1 GPa , and the bulk modulus pressure derivative B′0 = −8.2. It has to be mentioned
that this optimization motivated the analysis of the density of states calculated with the
HSE06 functional with the lattice parameters from the r²SCAN calculations.

FIGURE 3.4: Computed 3th order Birch-Murnagham EOS using
r²SCAN+rVV10.

TABLE 3.1: Computed r²SCAN+rVV10 crystallographic data for the optimal
unit cell of the CH3NH3PbI3 perovskite and experimental data.

Property r²SCAN+rVV10 Experimental75,83

Space Group Pnma Pnma (no. 62)
a (Å) 9.21 8.86, 8.83
b (Å) 13.15 12.66, 12.58
c (Å) 8.86 8.58, 8.55

V (Å3) 995.35 962.54, 951.01

3.1.2 Octopus

Spacing and k-points

Several methodologies and optimization procedures will be introduced to ensure a proper
workflow toward the dynamical calculations performed with the real-space grid code Oc-
topus. We worked in the adiabatic local density approximation (ALDA) to approximate
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the exchange-correlation functional31, and the Hartwigsen-Goedecker-Hutter (HGH)84 LDA
pseudopotentials as an approximation of the core electrons. In Octopus, we specify every
system characteristic in only one input. Therefore, we will specify each block that deter-
mines critical parameters for our calculations:

• Calculation mode: This specifies the run mode. In the case of a ground state calcu-
lation, the run mode is specified to be "gs". However, several other modes, such as
"unocc" and the "td" modes, will be used through our calculations.

• Coordinates: This block presents the atomic species and positions in our structure.
This variable is defined as a block of variables. The strategy used in this work was to
define an alternate .xyz file within this block.

• Spacing: It defines the spacing between points in a real-space cubic mesh.

• KPointsGrid: This variable defines the k-point grid used in the calculation. One can
also define the reciprocal-space mesh by explicitly setting the position of each k-point.

Now, determining an appropriate value for the spacing of two points in each Cartesian
direction is a key parameter for the convergence study. We display the MAPbI3 structure
results in fig. 3.5.

FIGURE 3.5: Energy convergence of the MAPbI3 perovskite with respect to
the spacing. The system reaches a converged value starting from 0.18Å.

In order to sample the Brillouin zone, one must always have to ensure the use of an
appropriate k-mesh. Similar to the previous procedure in VASP, the system converges when
we use a 5× 3× 5 set of k-points.
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FIGURE 3.6: Energy convergence of the MAPbI3 perovskite with respect to the
k-points. The system reaches a converged value starting from the 5× 3× 5 k-

points mesh.

TD calculations

To perform a time-dependent propagation, the "td" calculation has to be defined. Another
set of essential values are the "TDTimeStep" and the "TDMaxSteps" parameters. Considering
the propagation length T, and ∆t length of the time step, the "TDMaxSteps" variable can be
defined as a number of iterations T/∆t. Without a perturbation, the system’s energy shall
remain unchanged. Our TD calculations begin by calculating the absorption spectrum in
different directions using the delta kick approach48. Then, the objective is to calculate linear
properties of the MAPbI3 perovskite by following the system’s evolution under the influence
of a laser treated in the dipole approximation. Then, the harmonic emission spectrum can
be calculated from the acceleration of the dipole moment:

H(w) ∝
∣∣∣∣ ∫ dteiwt d2

dt2 d(t)
∣∣∣∣2 (3.5)

As a result of the propagation, charge density is absorbed at the boundaries of the simulated
region, either by an imaginary potential or a mask function. In the case of the imaginary
absorbing potential, a term should be added to the Khon-Sham potential:

Ve f f (r, t) = VKS(r, t)− iVabs(r), (3.6)

where this extra term rises from zero in the inner regions up to the limits of the simulated
region.
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Results and Discussion

The results in this section will involve the calculations regarding electronic properties and
key descriptors of the dynamical behavior of the charge carriers in the system.

4.1 Electronic structure analysis

4.1.1 Density of states

This section will report several results obtained from Octopus and VASP to compare the
computed properties and their behaviors concerning each functional. Once the structural
relaxation of the system is acquired, the objective is to study the electronic properties of
MAPbI3. We plotted the total and the projected density of states (DOS and PDOS) of the
structures calculated with the HSE06 (see fig. 4.1 (a)) functional and the r²SCAN+rVV10
(see fig. 4.1 (b)), where only minor differences between these calculations can be resembled.
A closer look at the partial density of the valence band maximum (VBM) can show a more
significant contribution from Pb 6s and I 5p states and a more significant contribution to the
conduction band minimum (CBM) coming from a Pb state. The organic CH3NH3

+ organic
molecule is far from the Fermi energy level region. Since C, N, and H bands locate in another
region of energy from -4.8 eV; no covalent interaction can exist between the Pb-I structure
and the organic cation.

FIGURE 4.1: Total density of states and partial density of states (PDOS) of an
orthorhombic CH3NH3PbI3 structure using the HSE06 functional (a) and the

r²SCAN+rVV10 functional (b).
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4.1.2 Band structure

The CH3NH3PbI3 perovskite is a semiconductor material with a direct band gap at the
Γ point (tetragonal and orthorhombic structure)75,85,86 or the R point (cubic structure)75,86

in the Brillouin zone. We report here the band structure of the MAPbI3 perovskite calcu-
lated within the LDA approximation (Egap = 1.47 eV), and the r²SCAN+rVV10 functional
(Egap = 2.10 eV). It has to be mentioned that to acquire an Egap very close to the absorption
edge in the 1.6 eV region; one must account for spin-orbit coupling (SOC). Even though the
SOC effect is not included, we can still obtain a good description of the system’s electronic
structure and band character.

FIGURE 4.2: Calculated band structure of orthorhombic supercell of the
CH3NH3PbI3 perovskite along the high-symmetry lines in the first Brillouin
zone using the LDA approximation (a) and the r²SCAN+rVV10 functional (b).

The fact that the bands are broad near the VBM indicates that the states are non-local,
and it explains why this material exhibits long-range carrier-diffusion lengths87. Conversely,
these fluctuations within the CBM indicate faster transport of photoelectrons from experi-
mental studies88. From the results of the density of states and the band structure, it can
already be concluded that the electronic states corresponding to the molecule are highly
localized in space, preventing substantial interaction with the inorganic component of the
perovskite. The analysis done for the DOS and band structure already tells us that to pho-
toexcite electrons, a perturbation with sufficient energy will photoexcite I 5p electrons to Pb
6p empty states. However, more precise information regarding the type of excitation and
the charge carriers’ behavior is necessary, especially in real-time.
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4.2 Linear Absorption Spectrum

Numerous reported results on the optical of MAPbI3 can be found89–91, but most of these
resources present discrepancies between their obtained optical data. The main reason for
this discrepancy is the influence of surface roughening and structural non-uniformity in
the growth direction. We report here the absorption spectrum of our material within the
framework of RT-ALDA (see fig. 4.3(a)). It can be noticed that the system exhibits a high
peak in the high-energy region at 3.14 eV, which is consistent with several reported optical
transitions reported in experiments89, which usually report two high energy peaks at E1 =

2.53 ± 0.01 eV and E2 = 3.24 ± 0.01 eV. We also report the presence of E0=1.47 eV, E1=2.54 eV,
and E2=3.19 eV, these values show excellent agreement with the experimental results, and
all the fine absorption features observed experimentally in these perovskites are reproduced
reasonably well. Our reported peak at 3.1 eV has been reported in several experiments to be
caused by excitonic transition92.

FIGURE 4.3: Absorption spectra of the MAPbI3 perovskite structure for x̂ po-
larization direction (a), where we report two high energy peaks at E1 and E2.
Absorption spectra (b) assuming different polarization directions along the x,

y, and z axes.

The next objective in our calculations was to test the dependency of the obtained ab-
sorption spectrum with the direction of the perturbation. The results in fig 4.3(b) show that
the variation of the polarization direction produces minor variations in the main peaks. A
summary of the main peaks according to the polarization direction change of the absorption
spectrum can be seen in table 4.1.

n̂ E0 (eV) E1 (eV) E2 (eV)

x̂-dir 1.59 2.54 3.19

ŷ-dir 1.38 2.42 3.23

ẑ-dir 1.54 2.58 3.16

TABLE 4.1: Summary of the main peaks appearing in the absorption spectrum
of MAPbI3 when varying the polarization direction of the Gauge field kick.
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4.3 Ultrafast charge-carrier dynamics

4.3.1 Induced electric current density

In this section, we will investigate the electron dynamics of the MAPbI3 perovskite within
a time window of 20 fs after the laser is switched off. We report the electric current density
J(t) (eqn 2.72) to monitor the response of the system to the time-dependent perturbation of
varying peak intensities. It can be seen in fig. 4.4 that the current starts to build up when
the laser is turned on, exhibiting an oscillatory behavior similar to the applied field. Con-
sider a 20 fs time window after the perturbation is switched off. A residual weaker, almost
constant behavior of the density is a signature of the remaining coherence between ground-
and-excited-states. Considering that no dissipation channels exist, the system’s response
will not decay over time. On the other side, under the action of stronger pulses (see fig.
4.4(d)), the response of the system does not show a periodic pattern anymore. This behav-
ior of the system is associated with a nonlinear response. Baikie, T.; Fang, Y.; Kadro, J. M.;
Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Journal of Materials Chem-
istry A 2013, 1, 5628–5641.Under the weaker pulse, the system reacts to create a coherent
oscillation from energetically similar states.

FIGURE 4.4: Time evolution of the induced electric current density, J(t), at
varying intensities of the laser pulse, represented in black in the background:
(a) I = 6× 109 W/cm2, (b) I = 1× 1010 W/cm2, (c) I = 1× 1011 W/cm2, and

(d) I = 1× 1012 W/cm2.
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To confirm the nonlinear nature response of the system, we report here the results of
calculating the harmonic spectrum H(ω) (eqn 3.5). The spectrum shows that the appear-
ance of extra carrier frequencies (ω1, and ω2) only occurs at high intensities. Conversely,
weaker pulses only reveal the fundamental harmonic corresponding to the natural carrier
frequency, ω0 = 3,12 eV. When a I = 1× 1012 W/cm2, maxima are present at ω1 = 9.21 eV,
and at ω2 =15.70 eV. Multiple side peaks near the harmonics are a signature of multiphoton
absorption. This confirms the nonlinear regime of the interaction.

FIGURE 4.5: High-harmonic spectrum, H(ω), for the MAPbI3 perovskite gen-
erated by pulses of increasing intensities. We displayed the fundamental car-

rier frequency (ω0) and its overtones (ω1 and ω2).

4.3.2 Excitation energy

Finally, we proceed to monitor the excitation energy, ∆Eex(t) = E(t)− E(t = 0), calculated
as the difference between the electronic energy at a certain time t > 0 and in the ground
state93,94. We report these results in fig. A.1 following the corresponding color code, and the
evolution can be seen in fig. A.1(b) displayed up to 40 fs. The relation between the excitation
energy and the laser intensity suggests linear response for I = 1 × 1011 W/cm2, where
∆Eex(t = 40 f s) = 0.09 eV/atom; for I = 1× 1010 W/cm2, where the ∆Eex(t = 40 f s) = 0.007
eV/atom; and for I = 6× 109 W/cm2, where the ∆Eex(t = 40 f s) = 0.001 eV/atom. The
time evolution of the excitation energy difference (fig. A.1(b)) indicates that, after 20 fs, this
quantity forms a plateau that does not change because of the absence of dissipation effects.
This behavior has already been reported in the literature for insulators95, semiconductors96,
graphite thin films97, and dielectrics98.

Then, we analyze the response of the perovskite by collecting information regarding the
number of excited electrons within the 40 fs time window. The behavior is very similar to
∆Eex(t), in which the value of this quantity increases steeply when the pulse is present and
reaches a maximum of about 12 fs.
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FIGURE 4.6: Excitation energy ∆Eex(t) = E(t) − E(t = 0) as a function of
the laser intensity (a) with t = 40 fs and (b) within the entire temporal range.
Number of excited electrons, Nex(t) (c) with t=40 fs and (d) within the entire

temporal range.
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Chapter 5

Conclusions and future work

We have investigated several structural and electronic properties of the CH3NH3PbI3 per-
ovskite using density-functional theory with and without time dependency. The band gap
and electronic localization description agree with previous simulations made on this per-
ovskite. Furthermore, the reported results about the localization of atoms served as a basis
for understanding several of the light-induced processes proposed later.

This work was able to report the absorption spectra of the system in the ALDA regime,
where the predicted main peaks are very similar to the ones reported in the literature. These
results show a small non-anisotropy dependence on the optical properties of the material.
Within the framework of RT-TDDFT, we have investigated the laser-driven charge-carrier
dynamics of the CH3NH3PbI3 perovskite orthorhombic structure. Inducing a laser excita-
tion of intensities 6 to 1000 GW/cm² in the system shows the intensity-dependence in the
nonlinear behavior of the number of excited electrons and in the induced electric current
density behavior at later times. Our main objective was to present calculations of several
descriptors that can help us understand the physics of the ultrafast dynamical processes in
this type of perovskites. Even though the TD calculations are based on the ALDA approach,
we can capture the nature and some of the main properties of the system. This is confirmed
by several of the electronic properties we calculated, where the band gap and band behavior
prediction is very close to results obtained using even more robust approaches. The compu-
tational analysis of this semiconductor material’s ultrafast and nonlinear optical responses
can give insights into the carrier generation and dynamics of novel semiconductor materials
in a femtosecond timescale. Further in-depth analysis of the charge transfer that occurs in
the material during the time window of the simulations is essential to understand the effect
of the perturbation in electron localization clearly.
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Appendix A

Data analysis

A.1 Density of states

FIGURE A.1: Partial densoty of states of atoms in orthorhombic CH3NH3PbI3
perovskite structures using the r²SCAN+rVV10 functional.
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