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Abstract 
 
 

Intrusion detection into computer networks is a topic tightly related to hacking attacks, 
becoming one of the most important issues to take account in cybersecurity since attackers 
remain always researching to discover new vulnerabilities to break the information security 
systems, thus these systems must be updated daily using the most powerful tools and 
techniques to perform the work of avoiding damages from hackers in an optimal way. 
Starting with this premise, this research focuses on the design and implementation of an 
intrusion detection system based on Deep Learning architectures. As a starting point, a 
shallow (three layers) network is trained with labelled log-in [into a computer network] data 
taken from the Dataset CICIDS2017. The internal behavior of this network is carefully 
tracked and tuned by using plotting and exploring routines until it reaches a functional peak 
in intrusion prediction accuracy.  As a second step, an autoencoder, trained with big 
unlabeled data, is used as a middle processor which feeds compressed information and 
abstract representation to the original shallow net. It is proven that this resultant deep 
architecture has a better performance than any version of the shallow net alone. The 
resultant functional code routines, written in MATLAB, represents a re-trainable system 
which has been proved in real time producing good precision and fast response. 
 

Key Words: 

Artificial Neural Networks, intrusion detection, hacking attacks, Deep Learning, 
cybersecurity. 

 

  



 
 

 
 
 
 

Resumen 
 
 

La detección de intrusiones en redes de computadoras es un tema estrechamente relacionado 
con ataques informáticos, convirtiéndose en uno de los asuntos más importantes a tomar en 
cuenta en ciberseguridad, ya que los atacantes se mantienen siempre investigando para 
descubrir nuevas vulnerabilidades para romper los sistemas de seguridad informática, por lo 
tanto dichos sistemas tienen que ser actualizados día a día utilizando las herramientas y 
técnicas más poderosas para realizar el trabajo de evitar daños por parte de los hackers de la 
manera más óptima. Partiendo de esta premisa, este trabajo de investigación se enfoca en el 
diseño e implementación de un sistema de detección de intrusiones basado en arquitecturas 
Deep Learning. Como punto de partida, una red no profunda (de tres capas) es entrenada con 
datos de entradas [a una red de computadoras] etiquetados, tomados de la base de datos 
CICIDS2017. El comportamiento interno de esta red es cuidadosamente observado y calibrado 
usando gráficos y explorando rutinas hasta alcanzar un pico funcional en la precisión de 
detección de intrusiones. Como segundo paso, un autoencoder, entrenado con una gran 
cantidad de datos no etiquetados, es usado como un procesador intermedio el cual suple de 
información comprimida y representaciones abstractas a la red no profunda original. Se 
prueba que esta arquitectura profunda tiene un mejor rendimiento que cualquier versión de 
la red no profunda en solitario. Las rutinas funcionales de código resultantes, escritas en 
MATLAB, representan un sistema re-entrenable que puede ser probado en tiempo real 
produciendo una gran precisión y respuestas inmediatas. 
 

Palabras Clave: 

Redes Neuronales Artificiales, detección de intrusiones, ataques de hacking, Deep Learning, 
ciberseguridad. 
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Chapter 1

Introduction

T
alking about information security leads us to talk about hacking attacks, security failures/warnings,

threats, sensible information thief and a lot of terms that may cause scare to systems and business

administrators when they are not properly trained to counteract this kind of problems.

Internet-connected networks and devices increase at incredible rates and at the same time increase

the threats that imply being connected to the great world network, one of the main threats are hacking

activities which are performed daily and hourly. The fight against the malicious hackers, hacktivists

or even script-kiddies1 is not easy and never stops by the fact of they (mainly the first two) are always

developing and implementing new attack techniques that go from being simple warnings in the system

until serious sensible information engages, leaving, in most of cases, significant losses of money.

To counteract and prevent any kind of hacking attacks, a large number of software and techniques have

been developed through the years such as firewalls, demilitarized zones (DMZs) and Intrusion Detection

Systems/Intrusion Prevention Systems (IDS/IPS), being these last two tools the main concern of this

work. IDS/IPS use to be stand-alone systems that observe the traffic into a network connected to internet

in real-time, comparing each single event with a labeled database and, depending on the similarity of a

real-time event with a known attack [1], the system raises an alarm and warns to the respective personal

for attacking situations. In some cases, the system responds against the attack by itself depending on

its sophistication and degree of intelligence. The final product of these systems is typically a program

which analyzes the parameters of a single event trying to label it as an attack (within a range of possible

attacks) or a normal (friendly) operation. Modern anti-hacking systems incorporate advanced techniques

such as Artificial Neural Networks.

Artificial Neural Networks (ANNs) approaches have come gaining strength in the last years because

of their incredible power to predict results in different science/researching fields such as Engineering,

Medicine, Biology, Geology, Physics and Economics [2]. These useful tools are processing data structures

inspired on the human brain functionality [3]: human senses receive external information, nervous system

carries this information to the brain where neurons share information between them by synapses [4]

to interpret this information and turn it into impulses immediately. ANNs perform a similar work:

processing units, called artificial neurons, receive input data obtained from the outside to be shared

between these neurons and processed by means of mathematical operations obtaining a final result

[3]. Another point that human brains and ANNs share is the fact that both learn by experimenting: in

case of humans, the brain catches all kind of information in the childhood stage and replicates similar

1This term is applied by many authors referring to people whom uses programs already developed by skilled community
to perform basic hacking activities such as sniffing and port scan/mapping (see Subsection 2.2.2 and Subsection 2.2.6 in
Chapter 2: Theoretical Framework).
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synapses almost pragmatically performing a human activity; ANNs effectuate training stages to ‘learn’

about input data and then return an acceptable result when new patterns are inserted [5]. The great

difference is the ability to reason in humans [6] (from a determined age, obviously), an aptitude impossible

to constitute in machines at this moment; while a human is able to contemplate a reasonable answer to

face a threatening and/or unknown situation, the ANN just will execute its mathematical operations

systematically outputting an answer resulting from said operations, it does not matter how trained the

ANN is. Although it is a mystery for the science nowadays, it could be said that the thinking ability

in humans are just more advanced and adapted synapses acquired during a complex evolution process

across the time.

There are a lot of ANN architectures going from simply one-single neurons structures to record few

patterns, passing by various neurons linearly connected by levels to cluster inputs by its similarity, until a

lot of neurons organized in fully-connected layers performing giant matrix operations between thousands

of data and values to classify very similar but different patterns. Some of these implementations perform

their training operations over and over again using the same training data with the purpose of getting an

optimal training decreasing its error, each round where a complete dataset is processed is called iteration

or epoch [7]. When more than one single process of data is repeated and/or an ANN have at more than

10 layers2, some authors have named this approach as “Deep Learning” [8], [9] and [10].

Deep Learning is a relatively recent term that was born with the intention of covering a definition

for any learning method in ANNs with neurons/layers-of-neurons containing information hide to our

visualization applying a high level of abstraction [8]. Deep Learning is related to multi-epochs and multi-

layer architectures; if it is taken the output from a random hidden layer in any epoch, the result looks like

it has nothing to do with the input parameters (or with the final outputs) then a Deep Learning approach

is present. Sometimes, Deep Learning architectures (and ANNs in general) are considered ‘black boxes’

where a number is inserted and another one is waited for. Although the developer says how the ANN

will work, operations inside it (especially in hidden layers) are so many and so large that a person would

not have any clue what is really going on and the idea of tracking the results turns into an impossible

task after a few operations.

The main objective of this work is to develop a particular design and implementation of an intrusion

detector using a Deep Learning Architecture based on Artificial Neural Networks and train it by using a

large dataset previously created by a Cybersecurity Laboratory in which they have been registered and

labelled normal operations and different kinds of hacking attacks by hostile intruders. Finally, after the

ANN is successfully trained, hacking intrusions will be automatically detected by taking randomly, from

the dataset, events never before evaluated by the ANN, which will process each event individually and

returns a statically correct answer about the transaction nature (friend or foe). The ANN’s accuracy will

be obtained by observing its ability to classify every single event as benign or attack, from which it is

performed an analysis of false positives and false negatives. It is expected a percentage greater than 95%

in successfully classified events. In this text are documented all theoretical definitions and mathematical

issues necessary to put in context the implemented programs and performed experiments as well as the

respective results, analysis and conclusions.

2This number is not strictly defined, it depends on the author, like any other feature of an ANN implementation.
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Chapter 2

Theoretical Framework

In consideration of the non-existence of a complete consensus about some terminology used for this work,

this chapter goes about the explanation, in a technical and an easy way at the same time, of the most

of important definitions to understand this work properly. These definitions go from hacking/hackers,

kind of hacking attacks, passing by IDS/IPS and finally clarifying terms used for the practice part of this

work such as Artificial Neural Network structures, the Backpropagation Algorithm and autoencoders.

2.1 Hacking and Information Security Terminology

Hacking jargon and related terminology have been used from immemorial time by people, media and

popular culture, but, in general, these terms are applied wrong and distorted. This section is intended

to explain, in the most understandable way, some terms that may be a confusion to some readers. Below

is presented the definition of some of these terms:

2.1.1 Hacker

This term does not have a strict definition (being this is one of the main reasons for confusing) and it

will depend on the author and applications. Also, this concept has been changing along to the time.

According to Pandey [11] and his colleagues the original definition of a hacker is:

“A person who enjoys learning the details of computer systems and how to stretch their capabilities-as

opposed to most users of computers, who prefer to learn only the minimum amount necessary. One who

programs enthusiastically or who enjoys programming rather than just theorizing about programming.”

From this point of view, the hacker definition is kind of passive and even it is referred to helpful

people, who enjoyed use the intelligence, common sense and natural skills to “look around” to please

their curiosity and fun-oriented challenges. In fact, the first hacking attacks were benign and used just

to look for limitations/bugs into the system. Some years later, when computers and internet spread to

home-people leaving the laboratories and business exclusiveness, the definition of this community was

changing and increasing. In some cases, files were broken causing damages onto the systems given by

hackers with lack of preparation or umbrage when they were discovered and system administrators thrown

them out. The second case is the reason why both, the hackers’ purposes and thus its definition start to

take a different course [11].

Driven by wicked objectives, some people begging to break security systems illegally to perform

intentional damages or information theft. Some of them were vengeful people who were fired out from

7
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his work, people interested on money stealing from banks and business, credit cards or any kind of

lucrative items and classified information, leaving catastrophic amounts of monetary losses to business

and natural people. To differentiate them from any kind of benign hackers it is necessary to use the term

malicious hackers [12]. Some authors call them crackers [13]. On the other hand, there exist professional

and academically well-skilled people who perform penetration tests3, fight against malicious hackers and

defend computer systems using their professional preparation and well-developed techniques/tools. They

are called ethical hackers, people with permission to intrude into the systems in a legal way to locate any

kind of vulnerability for the correspondent patching [11].

Then, to avoid any distortion and confusion this concept will be divided into two main groups:

malicious hackers (black hat) and ethical hackers (white hat). Any hacker could use all levels of

knowledge, reasoning, tools and skills to operate, what sets them apart is the pursued objectives and, the

legality and conferred permissions on them to perform the hacking activities. The first group is in which

this research will focuses on to fulfill its purposes and they will be referred as ‘hackers’ from this point.

Another class of hackers are the gray hat hackers, whom are over the line between black and

white, acting illegally like a black hat hacker but with benign and useful intentions in the middle as a

white hat hacker. Hacktivist is the noun assigned to hackers whom have political motivations to exploit

vulnerabilities of governments and important enterprises. In general, their objectives are focused on

getting sensitive information for showing to the world the obtained information without any profit [14],

they are considered black/gray hat hackers, depending on the situation. A notable current case is the

WikiLeaks4 organization with Julian Assange as one of the most important activists whom have hacked

and filter classified information from important world-power countries and business.

2.1.2 Hacking

Given and cleared the hacker definition above, it is necessary to remove the idea that hacking are only

illicit activities but is any performing of computer skills to achieve a determined objective. The Pandey

[11] description that says

“the term hacking was used to describe the rapid crafting of a new program or the making of changes to

existing, usually complicated software.”

is compatible with his own description of ‘hacker’ then compatible with the description redacted here (at

the start of the paragraph). Nevertheless, for the interests of this work, it is used the term ‘hacking’ to

refer to any activity that compromise the integral security of a computer system.

2.1.3 Penetration Testing

Penetration Test, also referred by its trade name ‘pentesting ’ for short, is the term used professionally by

ethical hackers to describe, briefly, the process of researching, attacking5 and patching potential security

vulnerabilities into a determined system. To perform optimal pentestings, professionals use to apply the

same malicious attack techniques and dedicated software developed by security business [11].

3See Subsection 2.1.3: Penetration Testing.
4Wikileaks official site: https://wikileaks.org/.
5The term ‘attack’ is used explicitly for malicious actions, being the reason for which professionals have included the

term ‘pentesting’ in their lexicon. In this case, the verb ‘attack’ means perform an activity to test a vulnerability into a
computer system.
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2.1.4 The CIA Triad

It is a definition usually used in Information Security to describe three concepts as the most important

to keep data safe to the fullest. These concepts are Confidentiality, Integrity and Availability.

Confidentiality is assuring that information is known just by sender and receiver that have special

credentials to gain access to this information; to get this objective it is necessary the use of techniques to

encrypt and decrypt data (cryptography) using combinations of alphanumerical characters, called keys, to

keep data hidden to third parties independently of the used channel to transmit the information. When

the sender and the receiver uses two different private keys mixed with a different public key to encrypt

and decrypt the information respectively, the system is called asymmetric or public key cryptography.

On the other hand, when the two parts use the same key, it will always be private and the cryptographic

implementation is called symmetrical or private key. Confidentiality also involves the information saved

on servers/computers which not necessarily will be sent to a destination. Integrity refers that data is

received as it was sent, without any change nor being corrupted in the way; there exist techniques such as

hashing to make sure data has not been affected before arriving at the destination. Keeping stored data

integral is important too. The last concept is Availability, which means that legitimate users are able

to access data whenever they need it, it is in general achieved by using different methods that include

physical assurance and constant maintenance of the equipment. [15] These three terms must be applied

together to constitute appropriately the CIA triad; as you may have noticed the first letter of each term

articulate this abbreviation.

2.2 Kind of Hacking Attacks

This section covers some of the most harmful, known and launched attacks: DoS/DDoS, sniffing, Man-

in-the-Middle, phishing, SQL injection, even viruses may be considered hacking attacks6 depending on

the use, but this is not the target of this study then it is not needed to focus on them.

2.2.1 DoS (Denial of Service)

These attacks are those which to be executed affect directly the availability of a network connection,

disabling specific required services by the users and dropping those temporary. Depending on the scope

[of the attack], some DoS attacks affect the system files integrity, destroying them or causing irreversible

damage. These attacks are performed making thousands or millions of requests to a specific service on a

computers network. When the attack is performed concurrently by several devices is called DDoS that

means Distributed Denial of Service. Whether or not the service is actually affected by the attack

depends on its capacity of requests at the same time and the number of requests sent by the attacker.

Then, in both cases if the service is enough potent or the attack is not well-prepared, the system will

not have problem with this kind of attacks, in the opposite case, the service will drop. Nowadays, some

servers are even provided with tools to detect these attacks and avoid them. If a system does not count

with these tools and it is already affected by a DoS/DDoS attack, the solution is to detect the attackers

to eject them from the system and restart the service. When the problem persists it is necessary to add

the affecting addresses to a black-list to prohibit them from entering at the moment and in the future. In

general, the targets are websites or web-servers. Affecting the site availability could cause serious money

losses since a lot of people could require the services at the moment, services which people are paying

6Viruses may perform any kind of hacking activities and their power just depends on the script of code programmed to
be executed once the virus explodes.
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for using [16]. For example, if the web-site of a store is disrupted by this attack, until the system is

recovered, people will not be able to buy and will search for another store leaving monetary losses to the

attacked store.

2.2.2 Sniffing

Or eavesdropping attack is the action of intercepting the traffic for catching continuously the

packets on TCP ports7 into a network [18]. For this attacks, it is used specialized software, such as

Wireshark8 and Ettercap9 which require waiting for until the desired information is caught or looking for

it among all captured information once the attack is stopped. To execute the attack the sniffer must be

connected to the network. Because the TCP flow is accessed and able by all connected devices [17], there

is no way to avoid a sniffing attack by a connected part. Then, the consequences for the affected network

are given by the level of packets encryption in the traffic: when the packets are strong-encrypted, the

sniffer is able to see the traffic but it may be an impossible task to decipher the packets; in cases that the

encryption be weak, the use of basic decryption software/techniques will be enough to get the authentic

information; and, finally, if directly does not exist an encryption mechanism, the sniffing techniques

will get the data easily and even files can be caught and downloaded by the sniffer [19], since files are

interactive-transferred via FTP (Files Transfer Protocol) which is connected via TCP ports [17].

2.2.3 Man in the Middle (MITM)

MITM attack is the scenario where a third part gets control over data flow between two users (end-

points) who are interchanging information through a network channel, without the two users noticing

the attack. In general, this kind of attacks are performed in the next way: the attacker intercepts the

victims’ messages and keys, ciphering and deciphering the messages whatever the attacker wants. MITM

attackers generally do not interrupt the data flow, convincing the victims that they are into a secure

environment free of hackers. The MITM attacks damages are not limited only to the theft of plane

information (confidentiality) but involves loss of them and a direct threat to data integrity because data

can be manipulated by the attacker before to send it to the receptor and even the availability of data may

be compromised if the attacker so requires [20], thus breaking totally the CIA triad. Since the attacker

first must get access to the communication channel, the way to prevent this kind of attacks is avoiding

the entrance of these third parts or expelling them in the case they already gained access breaking down

the security tools. Another solution10 for this problem is the use of advanced cryptographic techniques

for sending and receiving the messages [20]. The term “Man in the Middle” comes from the basketball

case when two players are trying to pass the ball among them and there exist a rival player between them

trying to possess the ball [21].

2.2.4 SQL Injection

They are attacks explicitly oriented explode database security gaps being webpages the main affected

targets. The objective of these attacks is retrieving the database content injecting (hence its name)

7TCP (Transmission Control Protocol) ports are the via to create communications paths to transfer integral and complete
information between devices into a network [17].

8Wireshark official web: https://www.wireshark.org/
9Ettercap official web: https://www.ettercap-project.org/

10It would be more like a contingency plan against these attacks because the implementation of this solution assumes
that the MITM attacker have already gained access into the communication channel, but at the same time, the implemen-
tation of a strong encryption system must be mandatory into any communication system to avoid any issue related to any
kind of attack.
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or introducing “malicious”11 commands into a database program to change the behavior of a SQL

query and then the database behavior. In general, the SQL injection techniques exploit the incorrect

implementation of input/output data validation, for example one of the first points that an attacker

tests is the response of an incorrect12 user/password validation. The consequences of these attacks go

from a simple illicit access to sniff into a system until the theft of high valuable information from the

affected databases. To avoid this kind of attacks, it may be used Graphical User Interfaces (GUI’s) with

text-boxes that limit the range of characters to be used into them, for example removing the option to

use the equal symbol (=) which is one of the main symbols at the moment to execute a SQL query and so

is the case with other special symbols. Another way (that would be stronger putting it together the first

one) to do not become a victim of these attacks is showing correct messages in the GUI’s and perform

clear responses by the database to face any kind of event [22].

2.2.5 Brute-Force Attacks

Brute-force attacks occur when an attacker uses systematical and automatic tools/programs to get access

into a system which needs user/password authentication, basically stealing the authentication credentials

of an existent user. These techniques consist of trying every random combination of characters to gain

access to a system. When pre-combined strings of characters are used, such as proper names or well-

known typical combinations, the attack is called Dictionary attack [23], existing all kind of dictionaries

for all kind of systems, even there exist software that helps with this work, being The Harvester13 one

of the best examples. Once a valid user/password is caught, the attacker will have access to the system

using that credentials until these are modified or removed from the system. The dangerous of this attack

lies in the fact that licit credentials are used to access into the system then there is no way to know

when credentials have been stolen and an attacker is using it to gain access. Several techniques are used

to avoid this kind of attacks, for example, the limitation of tries for each device every so often, since

Brute-Force attacks generally need a lot of tries to discover valid credentials and, having a black list for

users with anomaly behavior. Social networks such as Facebook and Twitter and, services providers such

as Google have implemented advising via e-mail or cellphone messages each time a new device is trying

to get access with your account, giving the option to terminate the sessions and change the password

at the moment. Secure Shield Protocol (SSH), FTP and Telnet (remote access) are the services mainly

attacked by using Brute-Force techniques [24].

2.2.6 Port Scan/Mapping

This activity consists on footprinting and scanning a network, device or service looking for vulnera-

bilities into the attacked system deduced from information gathered during the scan by sending packets

to retrieve another packets. In general, these attacks look for open ports to get a back door where to

enter into the system and initiate a determined attack. If the scan is performed in a coarse way, without

targeting a determined port and launching packets continuously it is called Brute Force Scan. In the

opposite case, when a full-connection is not established, single packet with a particular flag14 is sent and,

the scan is dedicated to a determined port, the scan is known as Stealth Scan [25]. Since Port Scans

11There not exist malicious commands per se, what turn a command into a malicious one is the way in which they are
injected and executed and, the objectives for what they are used.

12Incorrect not only in the sense that what happens when a non-existent user is trying to get access but what happens
if it is inserted, into the text-box, a random string using any symbol or what if it is inserted a SQL query command.

13The Harvester GitHub repository: https://github.com/laramies/theHarvester.
14The flag is a portion of the packet that will retrieve specific information to be analyzed, depending on that response it

is concluded if the port is open or not [25].
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are one of the first phases of a Penetration Testing [26] it can be understood that their dangerousness

lies in the fact that once a vulnerable port is discovered by attacker, it can be exploded with other kind

of attacks [25] that could bring more catastrophic consequences. Nevertheless, a scan is not always con-

sidered as an attack as such, because it may be performed easily by script-kiddies using basic tools like

Metasploit Framework15 without representing a real threat.

2.2.7 Phishing

They are the kind of attacks where some of the social engineering is applied, it means the human factor

is involved too [27] in the sense of it is necessary that the victim “collaborates” with the attacker.

Phishing attacks are in general performed online via webpages or e-mails; the attacker cheats the victim

using false webpages, e-mails via re-direction links that look like confidential and trustful sources. The

aim of these attacks is stealing personal information [27] given meekly by the victim, causing significant

damages and losses depending on the case. For example, the classical case in which an advertisements

banner into a website advises that the user has won a free gift and then it link to a website asking for credit

card data to reclaim the suppose gift; it is obvious the only gift the victim receives is an indebtedness with

the bank caused by the theft of the credit card information. The way to avoid becoming a phishing victim

is installing programs/browser-plugins to detect phishing-webpages patterns to advise to the user about

it [28]. Major of banks and financial business recommend checking the veracity of the online services

accessed by the users just following easily distinguishable features.

2.2.8 Bots

Bots are programs, computers or computers networks working automatically to perform a determined

activity. Some bots are used to propagate itself into a computer network for its later execution [24] to

steal and/or damage information. Some bots are made to perform multiple entrances into a system with

the aim of cause overflow, send spam [29] or to make a post/topic a trend in social networks although

these tools are used for benign and useful tasks too, for example sending automatic reminders, news and

updates [30]. To protect a system against bots, they are used sophisticated solutions to detect them based

on the behavior of a connected device [30]. Another practice solution is the use of advanced CAPTCHA’s

(Completely Automated Public Turing Tests to Tell Computers and Humans Apart) to detect bots and

forbid them for the entrance.

2.3 IDS and IPS

IDS and IPS are the abbreviations that correspond to Intrusion Detection System and Intrusion

Prevention System respectively, being them a set of computer techniques and software/programs used

by computer systems for defense purposes. The objectives of these tools are to detect anomalies, log events

and report to security managers about malicious activities [1]. Depending on the implemented technology

these systems could proceed in an automatic way, deploying activities such as session termination that

means expelling the suspicious user or, in critical cases, forcing to terminate sessions for all users and

reboot the system. It can be done by using dynamic reconfiguration (re-configuring networks parts/devices

such as firewalls or blocking the potential source/destination attack) or attack content manipulation

(removing any infected file that allows the malicious connection) [31].

15Metasploit official web: https://www.metasploit.com/.
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Even though IDS and IPS implementations can be merged and used as a single tool called Intrusion

Detection/Prevention Systems (IDPS) [31], each one of them has particularities and differences and

can be used separately. The main difference between them is that an IDS just detects anomalies or

inappropriate entrances once the attackers are inside the system and warn about it, but an IPS can

prevent these entrances and, in case these entrances occur, it is able to take actions against the attackers,

for example removing the connection attacker-network in real-time. In general, IDS/IPS tools are like

collector that have several parameters to recognize malicious from benign connections in a brute way,

using information about previous attacks to detect a new one of them (rule-based analysis), without

having a true learning and without increasing its level of recognizing [32]. By its attack identification

techniques, IDS/IPS have been classified into two groups: misuse and anomaly. The first one technique

is based on the idea of comparing the involved event with a previously assembled database with different

kind of attacks classified depending on the parameters of each event. On the other hand, the anomaly

technique takes as attack any unknown and abnormal activity, compares it with benign and normal

activities saved on a database and gives us a classification to each event [33].

Some IDS/IPS implementations are already using Machine Learning and Artificial Neural Networks

approaches [34], [35], [36], [37] and [10]. These articles will be analyzed to contrast their results with

those presented in this work.

2.4 Artificial Neural Networks

An Artificial Neural Network (ANN) is a processing data architecture conformed by artificial neurons

which take a dataset to learn about it by the action of capturing and isolating data features during a

prolonged training period. After training, the network accepts inputs which are analyzed by the neurons

to produce a final predictive output, quite useful for the underlying data processing system. One critical

step is to study the performance of the ANN when it learns from patterns [2], previously sampled in

clusters of data, to adjust their structure operating mathematically this data and, later be ready to

process new patterns never seen before. ANNs are used for classification, clustering and prediction [2]

and their neural connections are based on the human brain model that consists on neural synapses in

which neurons send, receive and process electrical impulses (data) between them [3].

Each kind of neural network has its own singularities and each of these features could be borrowed

by any implementation depending on the application, but in general, they have some components in

common:

2.4.1 Artificial Neurons

An artificial neuron or simply a ‘neuron’ or ‘node’ is the basic processing unit into an ANN [38]. A

neuron receives as input a value obtained from the previous level of processing16, performing operations

between it, the weights, the activation function and the learning rate to get another value17, being this

value the output of the neuron.

16It will be called ‘level of processing’ to any structure returning outputs or providing values that could be used as inputs
by another processing structure (a single neuron or a layer of neurons). A level of processing could be both: a previous
neuron/layer or the input data.

17This output number is not necessarily different than the input, depending on the applications neurons can return infinity
sets of numbers as well as just two different values. For example, certain NN’s return a value into the continuous range
between [0 - 1], but other NN’s return 0 or 1.
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2.4.2 Layers of neurons

It is important to clear this concept since a lot of useful ANN’s are conformed by this architecture. A

layer is a set of neurons at the same level of processing in which, in general, each neuron receives each

output returned from the last level of processing [7]. If the neurons of a layer receive the input data, the

current layer is called Input layer, if the neurons receive outputs from other layer as inputs but they do

not return the final output, these layer is called Hidden layer and, the last case, if the neurons return

the final output of the ANN, the layer is called Output layer. There not exists a criterion to prohibit a

layer being the input/output layer at the same time, in this case, it would have a one-layer ANN without

hidden layers and, and there is no problem with a layer containing one single neuron, it just will depend

on the implementation requirements. In fact, there not exist strict rules for the layers, each one of them

may has any number of neurons, learning rate, transfer function and any other independent value.

2.4.3 Weights

Sets of numbers, generally organized in vectors/matrices. Each one of them represents the strength of

a neuron signal [39] which ‘saves’ the learning between neurons or layers. These matrices are modified

each time an input is processed to accommodate the network learning. Weights are generally initialized

randomly in the range determined for the ANN functionality, being [0 - 1] one of the most used.

2.4.4 Learning rate (LR)

It is a constant value18, generally between [0 - 1], that determines the learning speed of the ANN giving

a change-ratio to the weights in each epoch [2]. For example, in an ANN to classify animals, if the

learning rate is higher than the necessary, when recognizing a cat (for instance) from a set of different

animals, the ANN would take any feline animal as if it were a cat or even worse, the ANN will consider

any four-footed animal as a cat. In the opposite case, when the learning rate is very low, the ANN will

separate all cats with different colors and sizes as different animals. In the ideal case, when LR is optimal,

all cats will be classified as cats and the other animal species will be classified properly. For this reason,

the learning rate should be correctly calibrated during the ANN validation phase19.

2.4.5 Transfer/activation function

A non-linear mathematical function that processes the synaptic potential20 to transforms it into the

neuron’s output [40]. More used functions as transfer functions are the sigmoid, the arc tangent, the

hyperbolic tangent and ReLU21 [36], functions which returns values between [-1 - 1] (excepting the

last one), although these functions may be manipulated at convenience to return results in a different

range22. In some cases, this function is two combined functions, the first one process normally the synaptic

potential and the second one process the result of the first to return the neuron’s output. Sometimes

it is used a beta (β) value as a gradient regulator for the transfer function. For the first layer y(1) this

function g looks like:

18It might be variant in some Unsupervised ANNs.
19See Section 2.6: Artificial Neural Networks Learning Phases.
20Also called ‘activation level of the neuron’, it is the product resultant from the operations between the neuron inputs,

its weights and, the learning rate.
21The Rectified Linear Unit (ReLU) function defined as f(x) = max(0, x) or softly approximated by f(x) = log(1 + ex)

[41] returning values in the range [0 - 1].
22For this work, it is used a function returning results between [0 - 1], see Chapter 4: Methodologies.
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y(1) = g
(
W (1)x+ b(1)

)
(2.1)

, where

W (1) = the weights of the first layer,

x = the inputs,

b = the bias of the layer, which is a value that adds a freedom degree to the ANN.

2.4.6 Data normalization

Because most of data is parameterized in arbitrary ways and measures, it is necessary to give them a

tractable and standardized shape to avoid severe fluctuations and unexpected behaviors by our ANN.

Normalizing is a linear transformation of data [42], re-arranging it into a correspondent shorter range.

The range of normalization applied in the experiments of this work is [0 - 1] and each parameter of the

set of patterns is normalized individually.

2.4.7 Input data

It is the final data (previously refined) to be processed by the ANN obtained from a dataset. It consists

on normalized data divided into patterns that are each one of the examples or samples taken for the

ANN. Every pattern has a constant number of parameters23 (which may be a disadvantage when using

ANN implementations since not always all these data could be retrieved because not existence or fails in

the used tools) which must always be passed in the same order; these parameters are inserted into the

neurons for their later processing. It is worth to say that it is practically sure that variations in patterns

change the ANN behavior and performance. In general, ANN’s match every input neuron to every input

parameter.

2.4.8 Output data

These data are the final output obtained from the NN using the aforementioned parameters, which later

is treated to deduce a final result depending on the kind of ANN used. Sometimes it is applied the term

‘output’ just to refer the result returned by a single processing structure.

2.4.9 Epochs

To adjust the weights optimally, some ANNs perform the calculations repeated times, each one of these

times is called epoch [7]. An epoch is a complete round of performing all calculations for all inputs in

the training and validation phases, but it is not applied in the testing phase. To improve the results, the

inputs used to be randomized for each different epoch. The number of epochs must be minutely selected

since some ANN approaches might be over-trained having a critical number of epochs where learning

begins to get worse giving as result an increase in the error and therefore a decrease in the performance.

There not exists a fixed number of epochs to have a better accuracy of an ANN, in fact, all parameters

are fixed by the developer performing a lot of executions with different values, according to what the

developer thinks it is the best choice.

23If not the case, the pattern could be suppressed from the input data or should be defined a default value, although it
is not secure since it could affect the ANN’s performance, then the first option use to be the most applied.
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2.5 Classification of Neural Networks

By learning methods, ANNs are divided into two large groups: Supervised Neural Networks and

Unsupervised Neural Networks [7], having each one different and unique applications. Furthermore,

several ANNs can be mixed to form a new one. The first one method is what this work is focused on.

2.5.1 Supervised Neural Networks

These ANNs have a target output which is compared with the ANN final output. Depending on the

similarity between the target and the output it will be concluded the goodness of the NN. Some examples

of Supervised ANNs are detailed next:

Perceptron. This is the particular case where the network is formed by a single neuron. All param-

eters are connected to the perceptron to be processed. This implementation carries to the Multi-layer

perceptron: single perceptrons connected between them in different and separated sections of processing

[34]. These networks are in general fully-connected, it means all inputs parameters are connected to all

neurons.

Convolutional Neural Networks. Its name comes from the mathematical function called con-

volution, because one of its elements is the fact of reducing the number of parameters that the ANN

process. Another important point of these ANNs is the extraction of hidden details in processed data [9]

that could be relevant in the performance at the time of obtaining the results.

Deep Learning. Being maybe one of the most applied ANN implementations, it does not have a

precise definition which nowadays depends on the author and its application. The definition applied in

this work to differentiate any ANN implementation from Deep Learning will be a mix of the next concepts:

the use of different ANN approaches in which there exist totally separated epochs/iterations and data

representations. The fact of using different layers of neurons and data representations makes the ANN’s

learning deeper and more powerful in terms of processing capacities [8]. Each one of the approaches does

know nothing about the others, they just share data already processed by them. In this work, two specific

different kind of ANNs are used to be trained and handled separately: 1.- an autoencoder to process

and compress the original data for giving it as input to 2.- a classifier consisting of on a tree-layers

ANN, both using the Backpropagation Algorithm24 as the training tool. Merging these two concepts, it

is accomplished the final Deep Learning Architecture seen in detail in Chapter 4: Methodology.

2.5.2 Unsupervised Neural Networks

These NNs are generally used for clustering and they do not need a target to be compared with the

output, they just return the result and the author decides how to judge the useful of the results which in

general recognize patterns difficult to detect with a naked eye [7]. Another difference is that the learning

rate is not fixed, it varies with an equation that changes in each iteration depending on the last calculated

LR and the total number of iterations which makes the LR smaller after each iteration. A practical way

to test the reliability of an Unsupervised ANN is to compare the result with another one obtained for

applying another class of techniques with the same dataset. Two specific Unsupervised ANNs are:

Competitive Neural Networks. As the name implies, in these NN’s, all neurons ‘fight’ one against

the other between all of them to appropriate the input pattern, being the winner the physically closest

neuron to the pattern and it will be influenced by the neighbor neurons too [43]. There exist different

24The definitions of ‘Backpropagation Algorithm’ and ‘Autoencoder’ are extended in Section 2.7: Backpropagation and
Section 2.8: Autoencoder respectively.
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kind of architectures for these NN’s: not-connected where are the patterns which are changing its position

and the neurons are fixed and, connected networks, where neurons are moving towards the pattern.

Self-organized maps or Kohonen Maps, named so by its creator Teuvo Kohonen, in 1990. In this

ANN, patterns are auto-clustered not necessarily into divided groups, but they are mapped depending

on the hidden and abstract similarities of their attributes [44]. Clustering countries depending on their

economics, social status, levels of poverty, education, illiteracy percentage and other parameters is a nice

example to apply this kind of ANN.

There exist some examples of ANNs with a kind of learning independent from these two seen above:

Hopfield Networks are those which are trained to storage patterns and then recognize a new pattern

and match it with one of the stored before, this is one of the first compact ideas and was developed by

J.J. Hopfield in 1982 [45].

2.6 Artificial Neural Networks Learning Phases

To get a final Supervised ANN ready to face totally new patterns and work with them properly consists

on a process given by the next stages:

2.6.1 Training

This is the initial phase. It consists on fitting the weights, performing all ANN calculations, to optimize

the ANN learning. This phase is executed by epochs in which the learning is expected to improve, i.e.

the error must decrease. If the improvement does not occur, then the input data used for training should

be changed or being reduced the number of epochs to avoid over-training.

2.6.2 Validation

It is executed into the same epochs number than the training phase. In each training epoch, the weights

are fit by validation immediately using a different dataset, generally smaller than the training dataset.

The error of this phase should be lower than the training to show a real improvement, since this is the

objective of the validation phase.

2.6.3 Testing

This final phase is the fireproof for the ANN. It is not executed by epochs because the objective of this

step is to prove the performance of the ANN with unique weights and a new portion of the dataset, in

general, larger than validation dataset and smaller than training dataset. Weights selected for this phase

are those which showed the better performance in the validation phase and, they are fixed for all samples

in this phase.

2.7 Backpropagation Algorithm

Backpropagation is an algorithm as old as the ANN idea. If one goes back to the eighties decade could

find works explaining the theoretical framework of this algorithm. Le Cun [46] in 1988 and Hecht-Nielsen

[47] in 1989 already mentioned the Backpropagation Algorithm as the most used indisputably for ANN

implementations. Nowadays, this algorithm is quite used and its essence has not changed for more than

30 years of application.
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The Backpropagation Algorithm is divided into two main stages: forward and backward which are

executed sequentially in each epoch. In the forward process it is calculated an output for each neuron in

all layers: the inputs together the weights from the first layer are processed to calculate a value called

synaptic potential. For the rest of layers, the correspondent weights (for each layer) and the outputs of the

previous layer are taken to get the synaptic potential. Each synaptic potential is processed individually

by the transfer function to get the output of each layer. On the other hand, in the backward process, the

targets, the ANN’s outputs and their derivatives are processed in the output layer to get a value called

delta (δ); for calculating δ in the rest of layers, the derivatives of the outputs in the next layer, the deltas

in the next layer and the respective weights are handled. Finally, weights in the first layer are updated

using the learning rate, the deltas for the first layer and the inputs patterns. For updating the weights

in the rest of layer, the learning rate, the rest of deltas and the outputs are taken.

The ANN general error (E) is calculated using the Mean Square Error (MSE) equation in each

epoch:

E =
1

2

P∑
k=1

M∑
i=1

(
zi(k)− yi(k)

)2
(2.2)

, where

P = total of epochs,

M = total of patterns,

z = the target of an i pattern,

y = the output of the ANN of an i pattern.

The accuracy is equal to

accuracy =
well classified patterns

total patterns
(2.3)

2.8 Autoencoder

Autoencoders are data predictors divided into two fundamental parts: the encoder and the decoder

[48]. The encoder contains an input layer, which takes the parameters of each pattern (one neuron per

parameter) to process them along the hidden layer; since this hidden layer is (in our case) smaller than

the input layer, it contains compressed parameters based on the original data. Because the information

generated in the hidden layer can be used to reconstruct the initial dataset it may be considered abstract

representations of the input data [49], like a DNA of the input patterns: dimensionality reduction

and data featuring extraction of each individual pattern are being executed. The second part, the

decoder, converts the DNA data of the hidden layer back into the original input data. Autoencoders are

a form of Unsupervised Learning and due to its data compression and feature detection capacities are a

common way of assembling Deep Architectures [48]. Learning is unsupervised because its main objective

is to replicate the input data as it is, and no labelling or targeting is required [48], in fact the expected

value would be the same inputs, but several iterations to encode and compress the data into the hidden

layer has to be carried out.

One of the most used autoencoder is the Sparse Autoencoder which handle the sparsity of the

prediction by using a regularizer (ρ̂) in the training, which averages the output of a neuron [50]. For an

individual i-neuron in the input layer, the regularizer is defined by:
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ρ̂i =
1

n

n∑
j=1

z1(i)
(
xj
)

=
1

n

n∑
j=1

g
(
w

(1)T
i xj + b

(1)
i

)
(2.4)

, where

n = the number of patterns,

xj = the j-th pattern,

g = the transfer function,

w
(1)T
i = the i-th row of the weights matrix,

b
(1)
i = the i-th element of the bias vector.

Another important factor in this kind of autoencoders is the Sparsity Regularization which restricts

the output of a hidden layer (this process is applied in hidden layers only) by adding a regularization

which takes a large value when the regularizer (ρ̂) and its expected value (ρ) are very different [50]. The

Kullback-Leibler divergence25 (KL) could be applied to get this regularization:

Ωsparsity =

D(1)∑
i=1

KL
(
ρ||ρ̂i

)
=

D(1)∑
i=1

ρ log

(
ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ
1− ρ̂i

)
(2.5)

, where

D = a hidden layer.

When training this kind of autoencoder, the Sparsity Regularizer may decrease, increasing the value

of the weights and decreasing the value of the output. It is added the L2 Regularization in the weights

to avoid it [50], defined by:

Ωweights =
1

2

L∑
l

n∑
j

k∑
i

(
W

(l)
ji

)2
(2.6)

, where

L = the number of hidden layers,

n = the number of input patterns,

k = the number of neurons in the l layer.

The last important function for these kind of autoencoders is the Cost/Loss Function (E) which is

an adaptation of the MSE:

E =
1

N

N∑
n=1

K∑
k=1

(xkn − x̂kn)
2

︸ ︷︷ ︸
MSE

+ λ ∗ Ωweights︸ ︷︷ ︸
L2 regularization

+ β ∗ Ωsparsity︸ ︷︷ ︸
sparsity regularization

(2.7)

, where

λ = the coefficient of L2 Regularization,

β = the coefficient of Sparsity Regularization26.

25This funciton returns 0 when ρ and ρ̂ are equal or, a value which diverges depending on the difference between them.
26λ and β are manually handled by the developer.
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Chapter 3

Related Works

This chapter is intended to analyze five different works, developed in different years, implementing Intru-

sion Detection Systems together Artificial Neural Network approaches. It is important to announce that

in this chapter may be appear some terms that have not been explained in the last chapter, because they

are never used for the purposes of this work, then, the explanation of these works tries to be the most

summarized and understandable. The recommendation to the reader is to analyze in detail the articles

presented in this chapter to acquire a solid interpretation of them.

3.1 Cannady (1998)

This kind of works have been studied from the last century being Cannady [34], in 1998, who presented

his work emphasizing the importance of using systems to protect network computers to avoid loss of

clients by lack of trust after being a victim of an attack. He gives some important definitions about

Intrusion Detection Systems which were based on rule-based analysis or expert systems which takes away

the idea of flexibility at the time of evaluating an individual event. In the same way, he discloses the

Artificial Neural Networks implementations which would allow characterize flexibly each incoming event

by learning about its features. The disadvantage that the author punctuates is the fact of the ANNs need

always correct characterized data and the strictness of the network to learn properly.

His implementation consists of a Multi-Layer Perceptron with layers of neurons adapted by trial and

error, using the sigmoid function described as 1 / (1 + exp(-x)), with an output layer with two neurons

that returns [0.0, 1.0] for benign events and [1.0, 0.0] when an attack is detected. He used labelled data

analyzed by Real SecureTM network monitor from Internet Security Systems, Inc that includes more than

360 kinds of attacks to classify, adding the Internet ScannerTM from ISS, Inc, and the Satan Scanner.

A dataset of 10000 events was collected by using these tools in which approximately 30% of them was

hacking attacks. The preparation of data was divided into three sequential processes: 1.- taking the most

relevant parameters of each event (data compression), 2.- converting three of these nine parameters into

a single normalized numeric value and 3.- the last phase is querying all parameters of the event to create

a unique ASCII comma-delimited value to introduce into the ANN, including the value 1 (for attacks) or

0 (for benign events).

Once executed his implementation he obtained a performance at 98.2% and 97.6% of correlation for

training and testing respectively after apply the Mean Squared Error.
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3.2 Sammany, Sharawi, El-Beltagy and Saro (2007)

In that year, Sammany, et al. [35] analyze seriously the consequences of lack of protection in information

systems, noting the importance of a powerful Intrusion Detection System being, according to them, the

rule-based approaches the most implemented. They take the two established detection techniques: misuse

(different kind of known hacking attacks) and anomaly (irregular events).

For their approach, they have used the 1999 MIT Lincoln Laboratory – DARPA (Defense Advanced

Research Projects Agency) Intrusion Detection Data which consists of more than 450000 individual con-

nection events from which were taken 13000 properly selected and normalized events with 35 parameters

by each one which in turn was divided into three subsets: training (10400 inputs), validation (20% of

training inputs) and testing (2600 inputs). It was used a Multi-Layer Perceptron using Backpropagation

algorithm with three layers: the input layer taken each pattern parameter, two hidden layers with 50 and

30 neurons and, the output layer with three neurons, since they just had three kinds of events: [1 0 0] for

normal connections, [0 1 0] for Neptune attacks (DoS) and [0 0 1] for Satan attacks (Port Scan). They

have chosen a high value for the learning rate between the input and hidden layers and, a small value for

the second hidden and output layer.

Using this setup, they performed different tests from 100 epochs, reaching a break-point at 1000

epochs given by the increasing of Cross Validation Error (CVE) checked by the Mean Square Error,

obtaining a maximum correct classification at 93.4% for the testing set.

3.3 Y. Liu, S. Liu, Zhao (2017)

These authors [36] explain us that nowadays already exist intelligent implementations to get a high

capacity of detection, using tools such as Genetic Algorithms (GA), decision-making trees and fuzzy logic

which are part of flexible and robust Soft Computing (SC) techniques.

In this work, authors apply an ANN technique have not seen in the works before: Convolutional

Neural Networks. For training and testing, they use the 10% of the KDD Cup 1999 dataset assembled by

DARPA which has more four million of events with 41 parameters by each one, divided into 22 different

attack denominations.

After a complex process of pre-processing data and training the network, they reached a 97.7% of

accuracy to detect attacks and a 10% of benign events classified as an attack category (false positive).

3.4 Biswas (2018)

Biswas [37] performs a comparative study of different Machine Learning approaches, for which they are

chosen different features selectors (these algorithms will compress the input parameters by taking the

most relevant characteristics of the inputs): Correlation based Feature Selection method (CFS), Princi-

pal Component Analysis (PCA), Information Gain Ratio (IGR) based feature selection and Minimum

Redundancy Maximum Relevance. Likewise, they are used several classifier models, which catalogue

each individual pattern with a class (normal or suspect traffic) depending on its features: Nave Bayes,

Support Vector Machine, Decision Tree, Neural Network, k- nearest neighbor algorithm (k-NN). Each

one of these algorithms has different characteristics and way of work. Every feature selector is tested

with every classifier.

NSL-KDD (a variant of KDD99) dataset has been used that consists of approximately 10000 patterns

with more than 40 parameters, for the final work they have been selected 10000 patterns. The higher
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accuracy was obtained from the combination of k-NN with IGR: >99%.

3.5 Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat

and Venkatraman (2019)

In this work [10] the authors highlight the relevance to have a well-prepared Intrusion Detector showing

some values of monetary losses caused by hacking attacks. Their application is treated by them as a Deep

Learning approach (by the use of several hidden layers) that use a Multi-Layer Perceptron with a Feed

Forward algorithm between layers and using the ReLU function as activation function, although sigmoid

and hyperbolic tangent are used too in some tests. Different portions of the dataset have been selected

and pre-processed to perform different tests. Also, the implementation is tested using a different number

of hidden layers (from 1 to 5) in each test. After a huge batch of tests, they obtain results at values

greater than 99% of accuracy, depending on the dataset. They explain that the dataset configuration

influence the results very much because some of them are not characterized in the correct way.

Well, different points of view about advances in the studied field have been acquired, it is obvious

that hacking attacks evolve then requirements to counterattack them do it too, then the older works

might be obsolete nowadays although they were novel and worked at their time and, in that sense, newer

implementations must be trained constantly to avoid become useless along the time. It is sure that there

exist a lot of researches in this topic using different approaches, but it is enough to us with the analyzed

studies to have a clear idea of how to handle our own development. Now, it is time to check how effective

and different our implementation is with respect to these works.
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Chapter 4

Methodologies

The aim of this chapter is to provide a clear idea to the reader about the procedures followed to obtain the

results and therefore achieving the planned objectives. It is going to explain the software tools selected

to code our ANN structure, then the database extracting and pre-processing to be entered into the ANN.

Finally, it is examined the theoretical architecture of the ANN explaining the selected parameters and

mathematical equations used for it.

4.1 MATLAB

MATLAB is a mathematical processor developed by MathWorks R©27 which uses its own programming

standard named M language for developing the scripts to be run into the software. In this case, it is

used the MATLAB2015b version. ANN automatic approaches can be meet in MATLAB but it is used

just for the ease that this software provides to work with large matrices and their respective operations.

All commands and functions mentioned in this chapter come from MATLAB software. It is worth to

say that all scripts developed by us on MATLAB28 have been checked meticulously to avoid fake/wrong

results. All results showed in this work have been documented (in this handwritten) and saved to be

replicated in case revisers and/or readers require it.

4.2 Dataset

First of all, it is necessary to get a large amount of data (Big Data) to be processed by any deep ANN

architecture. This data could be created using dedicated tools to catch the traffic of a network or download

created data from Information-Security-Research Laboratories, being this second the chosen option for

this research.

The used dataset was developed in 2017 by the Canadian Institute for Cybersecurity (CIC)

from the University of New Brunswick and was named by them as ‘Intrusion Detection Evaluation

Dataset (CICIDS2017)’29. This dataset consists of eight different Comma Separated Values (CSV) files

which collect network traffic events with 79 parameters by each event, being the first 78 the values with

the information in real-time about the event and last one the label of the event: benign or attack. The

78 informational parameters include true real-world data (PCAPs) such as network traffic analysis with

27MathWorks official web: https://www.mathworks.com/.
28MATLAB scripts of this project are stored online in

https://github.com/cheo2322/Neural-Network-for-hacking-attacks-detection.
29Official site for dataset download: https://www.unb.ca/cic/datasets/ids-2017.html.
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CICFlowMeter, flows based on time stamp, source/destination IP’s, ports and protocols. All parameters

of this dataset are specified in Appendix A.

4.2.1 Dataset Reading and Normalization

Once the CSV files are obtained, they are able to be read and manipulated by using MATLAB. First,

these files are loaded and it is created a script to read the data and then generate a .mat file30 with a half

of benign inputs and the other half of attack inputs. It is necessary to save this .mat file and then it is

just called using the function load(). Random inputs have been selected to create three different input

sets: the first one with 150 inputs for small tests, another one with 6000 inputs to verify a trustworthy

functionality of the ANN and finally a 2000 inputs dataset to perform the final tests.

For practical issues, the normalization has been performed into the same MATLAB script where it is

executed the ANN, normalizing each x column (parameter) and adopting the next equation to normalize

them in the range [0 - 1]:

ni =
xi −min(x)

max(x)−min(x)
(4.1)

, where:

i = 1, 2, 3, . . . , number of patterns in the dataset,

n = the resultant column after normalization.

Figure 4.1: Parameter 3, left: original distribution, right: normalized distribution.

Applying the equation 4.1 in each parameter separately gives us as a result an identical distribution of

data but in a new range: [0 - 1]. Figure 4.1 shows us an example of normalization in the 150 inputs dataset,

30The CSV files could be read directly in the ANN implementation, but the pre-processing performed in the MATLAB
script to create the .mat files makes easy the data reading and guarantees freedom of errors related with data at runtime,
for example Not a Number error, the most common in this kind of datasets.

Information Technology Engineer 24 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

the only difference in the parameter 3 (“Total Forwarded Packets”) before and after the normalization is

the range of its distribution, all inputs have a correspondent normalized value. It will be the same case

for any parameter.

Note 1

From this point, it will be called ‘original data’ or ‘input data’ to normalized data. It does not matter

the not-normalized data anymore.

The last value (the target of the event) is the only value that is not normalized, a different process is

performed for this value: since this value is a string of characters, a 0 is used to replace the benign target

and a 1 otherwise. In this way, it is obtained a practical way to perform operations with this value, such

as the subtraction of the output with the target.

It is important to mention that not all patterns in the dataset had all parameters correctly character-

ized, for this reason, a very small portion of the dataset was omitted at the time of reading the patterns

and normalize them.

4.3 Deep Learning Architecture

For the experiments of this work, two neural architectures have been designed to test the learning al-

gorithms, being the ultimate goal to learn from the data and get predictive results with solid statistical

advantages. The first learning architecture is a three layers Autoencoder, which through industrious

training with unlabeled data, learns to reproduce as output the data presented as input. Under con-

trolled conditions, the hidden layer of the autoencoder capture important features of the unlabeled data

and these features prove to be useful for other downstream processors. The second network is a three-

layer network which never sees the real data but only neural representations provided by the hidden layer

of the trained autoencoder. It is proved that this deep learning architecture can be trained to become a

reliable online intrusion detector. The specifications of the mentioned architectures are shown below.

4.3.1 Backpropagation in a shallow architecture

Pattern
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Input

layer

Hidden

layer

Output

layer

Pattern

label

i1

i2

i3

i78

...

ni 1

ni 2

ni 3

ni 78

...

nh 1

nh 2

nh 11

...

no 1

i79

i79 Result

Weights

W
eights

Figure 4.2: First architecture: Shallow backpropagation topology.
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As a first step, a shallow architecture has been trained (shown in Figure 4.2), where the inputs are the

normalized 78 parameters of the dataset and the target is the labelled information of ‘benign’ and ‘attack’

events (these parameters are bounded by a red rectangle, labelled with i’s), taken in a balanced way

which is approximately the same amount of each label. The input layer is configured to take all input

patterns, each neuron takes a different parameter; a hidden layer composed by 11 neurons and finally

an output layer with a single neuron that returns 1 when an attack is detected and 0 when the ANN

consider the event as benign. Then, it starts to be executed the Backpropagation algorithm performed in

the input layer, the hidden layer and the output layer. Finally, the result of the output layer is compared

with the label corresponding to each pattern to give us the final result shaped like error and accuracy

values.

Below are described other features of this architecture:

• Learning rate: 0.1.

• β = 1.

• Initial weights for an a layer:

W a
i,j = rand([-1:1])

, where

a = number of the layer,

i = number of values returned by the last level of processing,

j = number of neurons in an a layer.

• Transfer function g: logistic sigmoid function

g(h) =
1

1 + e−βh
(4.2)

, where

h = the synaptic potential.

The synaptic potential is calculated using different equations depending on the needs, which are

specified in equations 4.3, 4.4. Figure 4.3 shows the function plotting with β = 1.

Figure 4.3: Transfer function with β = 1.
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• Output neurons calculation in forward phase (S): For neurons from the first layer:

S1 = g(h) = g

 L∑
j=1

W 1
i,j ·Xi

 (4.3)

For neurons from an a layer:

Sa = g(h) = g

 L∑
j=1

W a
j,i · Sa−1i

 (4.4)

, where

X = input data,

a = number of layer, ∀a = 2, . . . , n,

L = number of total neurons in a,

g = equation 4.2,

h = the synaptic potential.

• Output neurons calculation in backward phase (δ): For neurons from the last layer n:

δnl = (Snl )′ · [Zl − Snl ] (4.5)

For neurons of a b layer:

δb = (Sb)′ ·

 M∑
i=1

W b
i,j · δb+1

 (4.6)

, where

l = the number of outputs in the final layer / target of each parameter,

Z = the targets for an l input pattern,

b = number of layer, ∀b = 1, 2, 3, . . . , n− 1,

S′ = the derivative of S, calculated by using

S′ = g′(h) =
βe−βh

(1 + e−βh)2
(4.7)

• Calculation of weights update:

∆W 1
i,j = η · δ1j ·Xi (4.8)

∆W a
i,j = η · δaj · Sa−1i (4.9)

, where

η = learning rate.

• Calculation of testing error (Et): It is taken the best weights (those in whose epoch it was obtained

the lowest error) for all the layers and then it is applied the MSE equation in the next way:
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Et =
1

N

N∑
i=1

(Yi − Zi)2 (4.10)

, where

N = the total number of input patterns in the testing set,

Y = the output of the network for a i pattern,

Z = the target of the network for a i pattern.

4.3.2 Autoencoder architecture

For this work, the implemented autoencoder trainer from MATLAB has been used with the next param-

eters:

• 78 neurons for the input layer (one neuron per parameter).

• 1200 iterations.

• 19 neurons for the hidden layer.

• L2 weights regularization: 1x10−5.

• Encoder/decoder function: logistic sigmoid function (equation 4.3).

The rest of the values not specified are the default values given by MATLAB. Figure 4.4 shows the

autoencoder topology:

Figure 4.4: Autoencoder architecture. W = weights, b = bias. In the autoencoder 78 inputs are
taken, input 79 (the label of the pattern) is not processed here, it does not matter because it is not
performed a prediction of the nature of the patterns but just extracting information from their
features.

4.3.3 Ultimate Deep Learning Architecture

Our final step is to train a deep network where a second shallow net learns from labeled abstract neural

representations provided by the hidden layer of the autoencoder. Figure 4.5 describes the topology of

this architecture: the red square contains the normalized parameters that are the inputs: the features

and the label of each pattern. The orange square is the autoencoder, in which the first layer takes all

parameters of each pattern (one parameter per neuron) to encode it in the hidden layer (of the encoder)

which is taken as new inputs of the intrusion detector, this hidden layer extract the DNA of inputs, it is

assumed that this DNA data is rich in features; the decoder is forgotten since it returns the same initial
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values. The green square is the detector which takes these new inputs in a smaller layer than in the fist

architecture (remember data is compressed from 78 to 19 parameters), the process is normally executed

here by the backpropagation algorithm and then the outputs are compared with the target to get the

errors (black square). Notice that here, the shallow network never sees the real data coming from the

outside world, just the features extracted by the encoder. Finally, after performing this process for all

patterns in each epoch, it is obtained the accuracy which means the final result (blue square).
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Figure 4.5: Ultimate architecture: Final deep network topology.

Information Technology Engineer 29 Final Grade Project



Chapter 5

Results

In this chapter, a set of tests performed by different architecture deepness are presented. It starts trying

a simple one-hidden-layer Backpropagation classifier, making possible to test the overall performance of

the system and polish the graphic-plotting routines used in the developed implementation. Then, it is

checked the performance of the final Deep Learning Architecture. Finally, the results from a fully-trained

stand-alone system are showed to verify the quantitative efficiency of this work.

During this stage, a set of graphics, tables and statistics are generated to improve the interpretation

of the results, together with explicit paragraphs and values which reflects the real results of all tests. The

comparisons between all independent results are performed to prove the advance of each approach to get

a final optimized ANN architecture.

5.1 One hidden layer shallow network

These tests were performed just to try the functionality of the main structure: the shallow backpropa-

gation classifier, the autoencoder is not used yet. It was divided into two parts: in the first one, it has

been used the 150 inputs dataset and the second one using the 6000 inputs dataset.

5.1.1 150 inputs

Using 1000 epochs, an error of 0.0434 is reached. It looks like good and goes according to our objectives

achieving an accuracy at 95.66%. But, these results are misleading and in Section 6.3 will prove it.

Also, Figure 5.1 is not trustworthy, it looks weird, enough errors graphics have been checked in the works

studied before to know this behavior is not normal. Another point that does not convince is the fact

of the error is very fluctuating using the same values, going from 0.1 to values in scales of 10−4, these

fluctuations are impossible to justify just by the random initialization of the weights.

5.1.2 6000 inputs

Now, it is time to test our ANN using more data. First, a test with 300 epochs has been performed.

Figure 5.2 shows some points of over-training, with an error at 0.0961, accuracy equal to 90.39%. None

of these are good enough results to achieve our objectives.

30



School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.1: Epochs vs errors for training and validation phases: 1000 epochs, 150 inputs.

Figure 5.2: Epochs vs errors for training and validation phases: 300 epochs, 6000 inputs.

Using 1000 epochs, an error of 0.0873 is obtained, corresponding an accuracy of 91.27%, that is

our trained network can detect real intrusion activity in 91.3 out of 100 cases. Figure 5.3 presents over-

training fluctuations in many points of the training epochs. It is not a common behavior in ANNs of

this type, there are two options to explain this particular conduct: the ANN cannot process properly the

data with its current parameters arrangement or, the ANN is not designed correctly. It is expected that
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the first one option is happening.

Figure 5.3: Epochs vs errors for training and validation phases: 1000 epochs, 6000 inputs.

It has been tried out the one hidden layer classifier for our intrusion detector and all its operations

are working well. The 91% accuracy seems to be the limit of the learning capacity of the shallow network

when it processes the 6000 inputs dataset. Let’s see now what will happen if our detector network is fed

with abstract representations of data coming from the hidden layer of the autoencoder. Will this deep

arrangement improve our prediction accuracy?

5.2 Autoencoder and Shallow Backpropagation Architecture

In this case, the autoencoder is used as a way to use features of the data and not the data itself as

an information source. Thus, after being trained the autoencoder outputs are neglected and its hidden

outputs are given as inputs to the new three-layers learning network. This arrangement has three advan-

tages: 1.- the number of parameters to the ANN inputs is reduced. 2.- the data has been compressed

3.- the autoencoder performance is a good data reconstruction, then the autoencoder hidden layer must

be good in data feature processing.

In Figure 5.4 the next is showed: in blue, 4 inputs taken randomly to plot the value of their features

and, in red, the respective data reconstructed by the autoencoder is plotted. The reconstruction almost

overlaps the original input, then it can be concluded that the hidden layer contains important compressed

information and features from which the autoencoder output layer decodes the resultant reconstructed

data. The great performance of the autoencoder is not only graphical but also it is proved numerically

with a Mean Square Error equal to 4.7670x10−4 31 between the original data and the reconstruction.

31It was the MSE obtained for this single test, this value could change for each different test, but the results from our
autoencoder are always in the order of 10−4.
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Figure 5.4: 4 random inputs (blue) and its respective autoencoder reconstruction (red). Inputs
parameters in x -axis, normalized values in y-axis.

Figure 5.5: Encoder values: new data taken as inputs. Neurons in x -axis vs their respective output
in y-value.
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From these results, it looks promising to use the compressed data of the autoencoder hidden layer

as input for the next trainable ANN and convert 78 to 19 parameters (without the targets), reducing

by almost 25% the number of parameters. Red graphics from Figure 5.4 is data which would have been

taken if predicted data by autoencoder is required as inputs, but it is not the case, because it is almost

the same that taking the original data. Encoded data for the inputs in Figure 5.4 is represented in Figure

5.5, being this last the values taken as the new inputs for the ANN.

It has been already checked that the two architectures work very well, then the mix of these two

approaches will be tested directly with the 6000 inputs dataset. Once the data have been compressed

by the autoencoder, this data is inserted into the intrusion detector, obtaining an error of 0.0084 which

results in an accuracy of 99.16% in the test phase. Figure 5.6 shows the progress of the ANN accuracy

for training and validation phases with only 300 epochs.

Figure 5.6: Epochs vs errors for training and validation phases: 300 epochs.

Let’s see what happens when the number of epochs is increased to 500. Figure 5.7 shows us a similar

behavior of the network which was shown in the two first phases with 300 epochs. The real difference

here is performed by the testing phase where is achieved 0.0068 of error, corresponding to 99.32% of

accuracy. Nice!

Now, the ANN is tested directly to 1000 epochs. It is showed an error equal to 0.0068 that corresponds

to 99.32% of accuracy, a totally equal result to the last one, with a similar behavior in the two first

phases as shown in Figure 5.8.

Our last try using this approach is using 5000 epochs, just to check if our ANN behaves weird or in

an unexpected way. Figure 5.9 shows us the same behavior by the ANN. Even the testing error does not

decrease so much with respect to five times less than this test, returning an error at 0.0060 equivalent

to 99.40% of accuracy.
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Figure 5.7: Epochs vs errors for training and validation phases: 500 epochs.

Figure 5.8: Epochs vs errors for training and validation phases: 1000 epochs.

Until now, only the number of epochs has been manipulated. An interesting issue is what would

happen when one of the most important factors in the ANN, the learning rate, is manipulated? Well,

let’s see. If it is decreased 10 times: LR = 0.01, the ANN will require more epochs to get good results

as seen in Figure 5.10 and it is proved by the error equal to 0.0165 that corresponds to an accuracy of

98.35%. It is not necessary to perform more tests to insist on this LR.
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Figure 5.9: Epochs vs errors for training and validation phases: 5000 epochs.

Figure 5.10: Epochs vs errors for training and validation phases: 300 epochs, LR=0.01.

What about increasing the learning rate? Using a LR = 0.5 (increased five times) it does not look

bad with an error at 0.0090 and an accuracy at 99.10%, but it is not good the fluctuations in the phases

showed in Figure 5.11. It looks like the optimal learning rate has been chosen: 0.1.

Information Technology Engineer 36 Final Grade Project



School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.11: Epochs vs errors for training and validation phases: 300 epochs, LR=0.5.

All these results are summarized in Table 5.1. The best performance is highlighted in green color,

results which could be selected with an acceptable performance are highlighted in yellow color and the

worst results are in red, being parameters Performance and Stability the main considerations for this

classification. The last parameter ‘Stability’ refers to the capacity of the ANN to keep a performance

into a range where Performance does not vary by more than 1% and/or, the fact of having a regular

training without severe fluctuations.

N. # patterns Epochs LR Autoencoder Error Performance(%) Stability
1 150 1000 0.1 No 0.0434 95.66 No
2 6000 300 0.1 No 0.0961 90.39 No
3 6000 1000 0.1 No 0.0873 91.27 No
4 6000 300 0.1 Yes 0.0084 99.16 Yes
5 6000 500 0.1 Yes 0.0068 99.32 Yes
6 6000 1000 0.1 Yes 0.0068 99.32 Yes
7 6000 5000 0.1 Yes 0.0060 99.40 Yes
8 6000 300 0.01 Yes 0.0165 98.35 Yes
9 6000 300 0.5 Yes 0.0090 98.10 No

Table 5.1: ANN’s results summary.

5.3 False positives and false negatives (stand-out system)

For this experiment, it will be used the best performance test features of the ANN given by the Test

7 in the Table 5.1 and the 2000 inputs dataset. The test began taking the best performance weights,

which are the same for the testing phase, these weights will be used in the transfer function. Then the

input dataset is taken to pass the patterns one each one with the next procedure: Take the 78 first

parameters of the pattern (not-labelled data) and compress it to 19 parameters using the autoencoder;
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for this work, it is necessary to take the 6000 inputs dataset to get the features of the new pattern, if this

phase is not performed in this way, it will be obtained a poor accuracy. Once the input is compressed,

the transfer functions and the selected weights are used to compare the output with the target. In this

case, the output is rounded to the nearest integer value using the function round()32. This process is

repeated for all the input patterns and finally it is checked the accuracy of the ANN by using the equation

2.3. Also, two other measures were obtained, for which two terms used in Biology and Medicine have

been borrowed: sensibility and specificity [51], adapted to our applications. Sensibility indicates the

capacity of detect the attacks as such (true positive) and it is measured by

Sensibility =
TP

TP + FN
(5.1)

, where

TP = true positive events,

FN = false negatives events.

The specificity is the fact of classify correctly the benign cases as such (true negative), measured by

Specificity =
TN

TN + FP
(5.2)

, where

TN = true negative events,

FP = false positive events.

The results are reflected in the Table 5.2:

Total patterns Well-classified False positives
2000 1870 130

True Positive True Negative False Negatives
1000 870 0

Sensitivity Specificity Accuracy
1 0.87 93.5%

Table 5.2: False positives and false negatives: first results.

Well, these results look good, to finish this set of tests the last one is going to be performed: re-training

the autoencoder using the 6000 inputs and adding more epochs (3500)33, then the new inputs (the same

2000 inputs used before) will pass by this new trained autoencoder to get its respective result. Table 5.3

summarize this test:

Total patterns Well-classified False positives
2000 1915 85

True Positive True Negative False Negatives
1000 915 0

Sensitivity Specificity Accuracy
1 0.915 95.75%

Table 5.3: False positives and false negatives: second results.

32As any other function of this type, this MATLAB function turns into 1 the values greater or equal to 0.5 and to 0 in
another case.

33This is the approximately maximum value that MATLAB allows us to train its autoencoder, with an own implementation
it could be observed what would happen if the autoencoder is re-trained with any number of epochs.
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An additional interesting result is the next: the accuracy does not change whether the 2000 input

patterns are processed by the autoencoder as a single dataset or each pattern is processed one by one.

The most important variation here is the taken execution time for these two different approaches. Table

5.4 shows this result:

Time execution 1st test (sec.)

All inputs as a single dataset Inputs taken one by one
Total time Average time by input

0.127289 0.0000636445
Total time Average time by input
119.316180 0.05965809

Time execution 2nd test (sec.)

All inputs as a single dataset Inputs taken one by one
Total time Average time by input

0.156625 0.0000783125
Total time Average time by input
127.861567 0.0639

Table 5.4: Execution time (in seconds) for false positives/negatives tests.
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Chapter 6

Discussion

Once showed and explained images and tables in Chapter 5: Results, resulting from the execution of

the implemented scripts of code with varied attributes, this chapter is designed to analyze and compare

those results in the most detailed way to get an interpretative mean of them and achieve a complete

understanding of the present work.

For the 150 patterns dataset, it was performed only one single experiment with 1000 epochs, it was just

to warm up our ANN. The result of this test looks like there is a good approximation to our objectives,

nothing is further from reality. The problem with this experiment is as follows: if it is reproduced, very

fluctuating performances with variations from 85% to 99% will be found, which means that the ANN is

not learning in a stable way. Nonetheless, thanks to this experiment it is already known that there are no

failures in our ANN, but still not sure whether the architecture will fulfill the expectations changing the

parameters. It is worth to remember that this experiment was performed without using the autoencoder.

Well, it continues with a pair of examples without using the encoded patterns generated by the

autoencoder just to study the behavior of our ANN. In this case, it will be changed the length of the

input set using now the 600-patterns dataset. First, the ANN is tried out using 300 and then 1000 epochs,

the behavior of the network does not present changes (rather it does not present improvements). The

same instability with signals of over-training in some points of training and validation epochs. Will it be

a failure in the dataset?

Then, it is time to pass from testing the complete deep architecture by using the autoencoder to

capture data features and reduce the dimensionality of the patterns from 78 to 19 parameters. In these

experiments the scenario starts to change and looks better, returning results more acceptable and easy

to analyze. From this point, all results present great performances and stability in the behavior of the

ANN, without variations bigger than 1% in each test performed under the same conditions. By the way,

for this architecture it was used the 6000-patterns dataset, being the changes executed in the epochs and

learning rate.

With a learning rate fixed to 0.1, the first test was performed using 300 epochs with a performance

at 99.16% and given its stability this configuration of the ANN could be already considered to be used to

execute the final experiments. Next, the number of epochs was incremented to 500 with an improvement

of 0.12%, it results in 99.32% of performance, the same value presented with 1000 epochs. Applying an

increasing 5 times bigger than the same test, the improvement starts to be very small, obtaining 0.08%

which means 99.40% of performance, becoming the final test taken to value our ANN with respect to

the accuracy with false positives and false negatives. From this point the small improvements may not

compensate the time of execution when running the training and validation phases, it will be interesting
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observing the behavior of the ANN by performing a lot of epochs in a more powerful computing equipment.

An interesting point in these experiments is that the error decrease abruptly in the first 10 epochs of

training, it could be said that the rest of epochs are just for optimizing the weights and keep the stability

of the ANN.

Now, decreasing the LR value to 0.01 stability is maintained with an admissible performance at

98.35%, smaller than in the other tests but it is still good. This is a nice try but this experiment is not

used to perform the final test because better performances have been obtained.

The last case is performing a test increasing the learning rate to 0.5. It is appreciated a similar ANN’s

behavior as in the other tests, but there exist small peaks (but bigger than in the other tests) in the

error corresponding to the training and validations phases; these peaks reach variations near to 0.04%

and although it looks very small, since the ANN will face a serious problem, it is not convenient a wrong

classification in a real-world implementation. Then, this is not the desired result. It is enough reason to

consider not increasing the learning rate, it is possible the existence of a LR value between [0.1 - 0.5] but

testing more values in this range is pending for future works.

All results discussed until now are qualitative, the quantitative accuracy of our ANN are those pre-

sented in the Section 5.3: False positive and false negative in the Results chapter. An interesting issue to

analyze here before to observe the results, is the compression of every pattern parameters using the 6000

inputs dataset added to our new input to encode it; although without using this dataset, the autoencoder

will predict correctly the input, as seen before, it does not matter, the importance of the autoencoder

lies in the extraction of characteristics in its hidden layer, therefore it is performed the encoding process

in this way to take advantage of the features of the data already processed to train the autoencoder,

to perform a better featuring to our new input compressed patterns which will be introduced into the

shallow network. On the other hand, the results showed in Tables 5.2 and 5.3 are clear: the ANN clas-

sify totally the attacks as such, the problem is caused by some benign events that look like attacks for

our ANN. This behavior could be corrected by training constantly the ANN with new events since they

could present totally unknown features as the used in this last test. The invariable accuracy given in

the tests using the dataset to be compressed, by the autoencoder, on the whole and compressing pattern

by pattern, means that the autoencoder is not learning from the new patterns but it is just compressing

them according to the given inputs because it is already trained (with the 6000 inputs).
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Chapter 7

Conclusions

Artificial Neural Networks have been applied in a lot of fields of researching and science; this work has

demonstrated the useful and effectiveness of these interesting and advanced tools in a very important

field in Computer Science: cybersecurity by carrying out, efficiently, an intrusion detection system,

based on deep learning architectures.

The used tools do not have fixed parameters and characteristics (such as the learning rate, training/-

validation epochs, transfer function, weights fitting). Many trial and error executions has been performed

to achieve an optimal architecture according to the required problems. It can be observed that although

weights are initialized randomly, it does not affect significantly the training of the ANN since the fast

descent of error just later a few epochs of training.

The introduction of an autoencoder as a middle processor has worked well giving stability to the

ANN and raising the overall performance and accuracy of the intrusion detector to a respected 99.4%

and 95.75%, respectively, from an unstable initial performance of 95% without using the autoencoder.

This confirms the assumption that a well-trained autoencoder develops good feature detectors in its

hidden layer and is ready to pass this valuable information to other downstream networks. Also proves

that deep architectures, with separate training with unlabeled and labelled data, yield improved neural

processors.

Finally, it has been obtained a robust, trainable, fast program capable of work as an online intrusion

detector which will improve its capacity of correct characterization by training using each incoming

event, winning more flexibility to perform this activity. It is evident the need for more processing power

equipment, for example, if the autoencoder is required to be re-trained each time a new event is processed

(or even re-training the complete ANN) in the stand-out system, in the opposite case the process would

be slow, removing robustness to the system. Since the accuracy does not change whether the inputs

are compressed in sets or individually and the execution time of the first approach is approximately

1000 times better, the detector could be implemented not to process each event individually but take a

determined amount of patterns every so often into a dataset and then process them by the system.
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Chapter 8

Future Works

Given the time and the available resources, not all desired tests could be performed for this topic that

has a scope of implementations bigger than one could think. More powerful computers, equipment with

parallel and multi-GPU/CPU34 interfaces, hardware/software for catching and analysis traffic network

are some of the tools needed to focus on more advanced goals in the future. Below are shown some

interesting activities pending for our next works:

8.1 Use of different datasets

There are many cybersecurity laboratories and institutes creating data from their networks and events

and, they upload these valuable datasets to be accessible by everybody. The main problem when down-

loading these datasets is the lack of a target, that is knowing when an event is or not an attack. This data

is used to analyze and obtain own conclusions (not related with the objectives of this work) and this kind

of data is not needed in this occasion. Since the number of parameters and the parameters are variables,

it will be interesting study and analyze how the ANN’s behavior changes too. Also, the changes would

be seen in the ANN’s parameters such as the training epochs and the hidden layer of encoding into the

autoencoder.

8.2 Creation of a dataset of its own

It could be an easy and fast solution to the problem of lack of targeting in the patterns, it could be

created a simple network connected to the internet with different computers and devices using different

operative systems. For this implementation, it is necessary the use of specialized tools to catch and track

each individual event in each machine, installed in a common point of the network such as the router or

switch used for internet connection or in a computer with manager permission over all the network. Even

a virtual network could be created using virtual machines which will require a powerfully-featured single

computer to install the virtual machines. The attacks could be performed by ourselves using pentesting

tools going from simple and basics attacks until advanced and distributed attacks from different points,

it technique gives the advantage of having always the control of the attacks and any event in the network

traffic and it is not necessary to be connected to the internet but just using an internal network. The

attacks could also be performed by third parties from other points in the world publishing our network

34Graphics Processing Unit and Central Process Unit respectively. A multi-GPU/CPU approach allows parallel computing
performances.
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to be attacked on internet which could give us more and more sophisticated different attacks but the loss

of control over them.

8.3 Coupling the system into a real-time IDPS

It would be a remarkable project in which at the same time data is collected to other researches, real-time

attacks could be detected to take the correct decisions. It would be installed a trained ANN ready to

process any event with the determined parameters, process it and then warn to the network managers.

Also, it will be a complement of an IDS/IPS already installed like an additional layer of protection for

which entrance events must be analyzed.

8.4 Training network using several GPUs

Parallel computing is a technique in which researches don not have just high expectations but also have

good results. It will be interesting the use of High-Performance Computing (HPC) techniques in this

ANN to process millions of patterns to train the ANN. Using these techniques, performance could better

or not, it is nothing sure about how it will change the performance and accuracy of the ANN but it is

guaranteed that good results for new researches could be reached. It could be analyzed what happens

when using millions of data performing millions of epochs with an ANN formed by hundreds of layers and

computing more complex operations and functions. Could it be possible to obtain a 100% of accuracy

training the ANN applying the characteristics mentioned before? Will it affect the performance in an

unknown way the fact of calculating the ANN’s parameters in parallel? This kind of questions can just

be answered putting in practice HPC techniques to train the ANN.

8.5 Researching about new Artificial Neural Network features

The selection of each single feature for an ANN implementation just depends on the developers, thus

the setup is configured whatever they want. Improving and optimizing transfer functions and process

algorithms (logical sigmoid and backpropagation, respectively, for our case) is the work of some researches

in Computing Science and Mathematics and it has been made a lot of investigation in this topic such

that there exist a lot of these functions and algorithms, some are news and others are variants from an

existent one and, this is the reason why there exist a lot of ANN architectures. Using an optimal transfer

function and process algorithm according to our needs would be like our perfect ANN. In fact, making

subtle changes in the current parameters could be a topic for another work, analyzing the general changes

in the ANN with all permutations of hundreds of infinitesimally variations in each individual parameter.

8.6 Researching about Deeper Artificial Neural Network

In theory, the process of data autoencoding can be repeated many times over, that is the output of the

first autoencoder hidden layer being used to train a second autoencoder whose hidden layer will create

new data representation. It is expected that this new data is richer in data features and will eventually

produce better predictions, and so on.
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Appendix A

CICIDS2017 dataset

This is a summary from the official website of Canadian Institute for Cybersecurity from the University

of New Brunswick from where the used dataset for this work has been downloaded. All this information

has been retrieved from https://www.unb.ca/cic/datasets/ids-2017.html.

CICIDS2017 have most typical hacking attacks and benign activities into a computers network in

a controlled environment consisting on 25 users in 12 different machines operating on HTTP, HTTPS,

FTP, SSH, and email protocols. Attacks detected to build this dataset were: Brute Force FTP, Brute

Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS. The traffic of the network has

been monitored in specific hours during 5 days, giving as result CSV files.

These files shows thousands of individual patterns divided into 79 parameters, being the first 78 the

informational parameters and the last one the label of each pattern. The informational parameters are:

1. Destination port: Port in which connection was established.

2. Flow Duration: Connection time in seconds.

3. Total Fwd Packets: Number of total packets in the forward direction.

4. Total Backward Packets: Number total of packets in the backward direction.

5. Total Length of Fwd Packets: Length in bytes of total packets in the forward direction.

6. Total Length of Bwd Packets: Length in bytes of total packets in the backward direction.

7. Fwd Packet Length Max: The largest value in bytes of the packet(s) length in the forward

direction.

8. Fwd Packet Length Min: The smallest value in bytes of the packet(s) length in the forward

direction.

9. Fwd Packet Length Mean: Average of the total packets length in the forward direction.

10. Fwd Packet Length Std: Standard Deviation of the total packets length in the forward direction.

11. Bwd Packet Length Max: The largest value in bytes of the packet(s) length in the backward

direction.

12. Bwd Packet Length Min: The smallest value in bytes of the packet(s) length in the backward

direction.

13. Bwd Packet Length Mean: Average of the total packets length in the backward direction.

14. Backward Packet Length Std: Standard Deviation of the total packets length in the backward

direction.

15. Flow Bytes/s: The number of bytes per second in the flow.

16. Flow Packets/s The number of packets per second in the flow.

17. Flow IAT Mean: Average of the Inter-Arrival Time in the flow.
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18. Flow IAT Std: Standard Deviation of the Inter-Arrival Time in the flow.

19. Flow IAT Max. The largest value of the Inter-Arrival Time in seconds in the flow.

20. Flow IAT Min: The smallest value of the Inter-Arrival Time in seconds in the flow.

21. Fwd IAT Total: The total value of the Inter-Arrival Time in seconds in the forward direction.

22. Fwd IAT Mean: Average of the Inter-Arrival Time in the forward direction.

23. Forward IAT Std: Standard Deviation of the Inter-Arrival Time in the forward direction.

24. Fwd IAT Max: The largest value of the Inter-Arrival Time in the forward direction.

25. Fwd IAT Min: The smallest value of the Inter-Arrival Time in the forward direction.

26. Bwd IAT Total: The total value of the Inter-Arrival Time in seconds in the backward direction.

27. Bwd IAT Mean: Average of the Inter-Arrival Time in the backward direction.

28. Bwd IAT Std: Standard Deviation of the Inter-Arrival Time in the backward direction.

29. Bwd IAT Max: The largest value of the Inter-Arrival Time in the backward direction.

30. Bwd IAT Min: The smallest value of the Inter-Arrival Time in the backward direction.

31. Fwd PSH Flags: The number of times the packets in the flow had the Pushing Flag bit set as 1

in the forward direction.

32. Bwd PSH Flags: The number of times the packets in the flow had the Pushing Flag bit set as 1

in the backward direction.

33. Fwd URG Flags: The number of times the packets in the flow had the Urgent Flag bit set as 1

in the forward direction.

34. Bwd URG Flags: The number of times the packets in the flow had the Urgent Flag bit set as 1

in the backward direction.

35. Fwd Header Length: The header length of the packets flow in the forward direction.

36. Bwd Header Length: The header length of the packets flow in the backward direction.

37. Fwd Packets/s: The number of packets per second in the forward direction.

38. Bwd Packets/s: The number of packets per second in the backward direction.

39. Min Packet Length: The smallest value of the length of the packets.

40. Max Packet Length: The largest value of the length of the packets.

41. Packet Length Mean: Average of the packets length.

42. Packet Length Std: Standard Deviation of the packet length.

43. Packet Length Variance: Variance of the packets length.

44. FIN Flag Count: The number of times the packets in the flow had the Finish Flag bit set as 1.

45. SYN Flag Count: The number of times the packets in the flow had the Synchronize Flag bit set

as 1.

46. RST Flag Count: The number of times the packets in the flow had the Reset Flag bit set as 1.

47. PSH Flag Count: The number of times the packets in the flow had the Pushing Flag bit set as 1.

48. ACK Flag Count: The number of times the packets in the flow had the Acknowledged Flag bit

set as 1.

49. URG Flag Count: The number of times the packets in the flow had the Urgent Flag bit set as 1.

50. CWE Flag Count: The number of times the packets in the flow had the Congestion Window

Reduced Flag bit set as 1.

51. ECE Flag Count: The number of times the packets in the flow had the Explicit Congestion-

Notification Echo Flag bit set as 1.

52. Down/Up Ratio: Download and upload ratio.

53. Average Packet Size: Average of packets header size in the flow.

54. Avg Fwd Segment Size: Average of the segment size in the forward direction.
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55. Avg Bwd Segment Size: Average of the segment size in the backward direction.

56. Fwd Header Length: The header length of the packets flow in the forward direction.

57. Fwd Average Bytes/Bulk: Average of the bytes/bulk ratio in the forward direction.

58. Fwd Avg Packets/Bulk: Average of the packets/bulk ratio in the forward direction.

59. Fwd Avg Bulk Rate: Average of the bulk rate in the forward direction.

60. Bwd Avg Bytes/Bulk: Average of the bytes/bulk ratio in the backward direction.

61. Bwd Avg Packets/Bulk: Average of the packets/bulk ratio in the backward direction.

62. Bwd Avg Bulk Rate: Average of the bulk rate in the backward direction.

63. Subflow Fwd Packets: Average of the number of packets in the sub-flows of the flows in the

forward direction.

64. Subflow Fwd Bytes: Average of the number of bytes in the sub-flow in the forward direction.

65. Subflow Bwd Packets: Average of the number of packets in the sub-flows of the flows in the

backward direction.

66. Subflow Bwd Bytes: Average of the number of bytes in the sub-flow in the backward direction.

67. Init Win bytes forward: Number of bytes in the initial window in the forward direction.

68. Init Win bytes backward: Number of bytes in the initial window in the backward

69. act data pkt fwd: Number of packets with at least one byte of TCP payload in the forward

direction.

70. min seg size forward: The smallest segment size in the forward direction.

71. Active Mean: Average of active flow time (before becoming IDLE).

72. Active Std: Standard Deviation of active flow time.

73. Active Max: The largest time a flow was active.

74. Active Min: The smallest time a flow was active.

75. Idle Mean: Average of idle flow time.

76. Idle Std: Standard deviation of idle flow time.

77. Idle Max: The largest time a flow was idle.

78. Idle Min: The smallest time a flow was idle.

And finally, the 79th parameter is the label of the pattern: ‘benign’ or ‘attack’ (0 or 1).
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