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Resumen

Recientemente se ha descubierto un fenómeno denominado simetría inducida por asimetría en redes de elementos
dinámicos que interactúan. Aparece cuando el estado colectivo del sistema puede ser simétrico sólo cuando los
elementos del sistema no lo son; la simetría se refiere principalmente a un estado de sincronización. Esta situación puede
interpretarse como la inversa del fenómeno conocido de ruptura de simetría, en el que el estado colectivo tiene menos
simetría que los elementos. En esta Tesis, ampliamos la investigación de los procesos inducidos por asimetría a la
aparición de otras formas de comportamientos colectivos en redes dinámicas, además de la sincronización. En particular,
estudiamos el fenómeno del comportamiento colectivo no trivial -donde la periodicidad colectiva surge del caos local-
inducido por la heterogeneidad en los parámetros locales. Investigamos un sistema de mapas globalmente acoplados
como modelo de una red dinámica. Se emplean varios mapas locales que poseen caos robusto en un intervalo de sus
parámetros. Definimos un parámetro de asimetría para caracterizar el grado de heterogeneidad del sistema.
Comprobamos que la heterogeneidad de los parámetros de los elementos locales puede inducir una serie de
comportamientos colectivos ordenados, periódicos y no triviales, distintos de la sincronización, en situaciones donde
tales comportamientos no existen si el sistema es homogéneo. Nuestra investigación es relevante en muchos sistemas,
como los sistemas sociales y biológicos, donde la diversidad y la heterogeneidad de los elementos ocurren comúnmente.
Palabras clave: Sistemas complejos, redes de mapas acoplados, comportamiento colectivo no trivial, simetría inducida
por asimetría, sistemas heterogéneos.



Abstract

Recently, a phenomenon called asymmetry-induced symmetry has been discovered in networks of interacting dynamical
elements. It appears when the collective state of the system can be symmetric only when the elements of system are not;
symmetry mainly referring to a state of synchronization. This situation can be interpreted as the converse of the well
known phenomenon of symmetry breaking, where the collective state has less symmetry than the elements. In this
Thesis, we extend the investigation of asymmetry-induced processes to the emergence of other forms of collective
behaviors in dynamical networks, besides synchronization. In particular, we study the phenomenon of nontrivial
collective behavior –where collective periodicity arises from local chaos– induced by heterogeneity in the local
parameters. We investigate a system of globally coupled maps as a model for a dynamical network. Several local maps
possessing robust chaos on an interval of their parameters are employed. We define an asymmetry parameter to
characterize the amount of heterogeneity in the system. We find that heterogeneity in the parameters of the local elements
can induce a variety of ordered, periodic nontrivial collective behaviors, other than synchronization, in situations where
such behaviors do not exist if the system is homogeneous. Our research is relevant in many systems, such as social and
biological systems, where diversity and heterogeneity of the elements commonly occur.
Keywords: Complex systems, Coupled map networks, Nontrivial collective behavior, asymmetry-induced symmetry,
heterogeneous systems.
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Chapter 1

Introduction

In recent years there has been much interest in the study of the collective behavior of networks of coupled dynamical
units as models of complex systems. A complex system is a system of interactive elements whose collective behavior is
not likely to be derived from the knowledge of the behavior its isolated constituent elements1,2. The concept of complex
system has become a new paradigm for the search for an unified interpretation of the mechanisms of emergence of
structures, patterns, and functionality in a variety of natural and technological systems. Complex systems have been
found to possess universal characteristics, regardless of their context. The investigation of the interrelationships between
the constituent elements in complex systems has revealed the existence of underlying networks of connectivity which also
have universal properties3.
Synchronization is the simplest and more abundant form of collective behavior arising in systems of interacting elements.
Synchronization occurs when all the elements in the system share the same state sustained in time, i.e., the elements
reach a common time evolution. Spontaneous or autonomous synchronization can take place without the presence of
external fields or driving forces. Synchronization is widely observed in nature, ranging from coupled pendulum clocks,
firing of fireflies, the motion of schools of fish, flying flocks, swarms of birds, bees evading predators, in the periodic
clapping of hands of people in a stadium, people walking on wobbly bridges, or in epileptic seizures. It has also been
artificially designed for technological applications, including wind turbines, satellite clocks, or electrical grid lines4.
It has generally been assumed that individual entities are more likely to exhibit the same behavior if they are similar to
each other, such as animals using the same gait, lasers pulsing together, birds singing the same notes, and social agents
reaching consensus. Remarkably, a recent study by Takashi Nishikawa and Adilson Motter5 demonstrated that this
assumption is in fact false for some networks of coupled dynamical units. The mechanism underlying this finding is an
instance of a new network phenomenon that has been called asymmetry-induced symmetry, in which the collective state
of the system can be symmetric only when the elements of system are not.
In their article, Nishikawa and Motter5 consider the emergence of spontaneous synchronization in a network of N

identically-coupled oscillators as a convenient model process to illustrate the core idea of asymmetry-induced symmetry.
In this process, the oscillators synchronize by reaching a stable state in which they all exhibit the same dynamics:
x1(t) = x2(t) = · · · = xN(t) for all asymptotic times t. The state of the network then has maximum symmetry, since any
two nodes can be swapped without changing the collective synchronized state. It might be intuitive to assume that
complete synchronization would require that the oscillators themselves be identical. The rationale for this is that if the
oscillators have identical couplings, collective synchronization of the entire network is a macroscopic state inheriting the
symmetry of the system only if all of the oscillators are identical. However, Nishikawa and Motter showed the existence
of scenarios in which all oscillators synchronize and have identical states if and only if the oscillators themselves are not
identical.
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Asymmetry-induced symmetry can be interpreted as the converse of the well known phenomenon of symmetry breaking,
where the collective state has less symmetry than the elements. Symmetry breaking underlies, for example, the
phenomenon of superconductivity, the mechanism through which some elementary particles acquire mass, and various
patterns of network dynamics; it also describes several forms of pattern formation, in which initially symmetric or
homogeneous structures evolve into asymmetric ones.

1.1 Research problem

The mechanism of asymmetry-induced symmetry has been mainly applied to study synchronization in dynamical
systems, since synchronization has long been considered as a paradigm for emergent uniform collective behavior. There
are several other collective behaviors that have been studied both theoretically and experimentally in complex dynamical
systems, such as generalized synchronization, dynamical clustering, chimera states, and nontrivial collective behavior6.
We may expect that other forms of collective behaviors may also be related to the existence of heterogeneity or
asymmetry in a system. In particular, nontrivial collective behavior consists of the coexistence of ordered evolution of
macroscopic variables with chaotic local variables in a system7. The research problem in thesis has been motivated by
the basic assumption that a process of asymmetry-induced symmetry may be relevant for the emergence of other types of
collective behaviors, besides synchronization. A central hypothesis of the present thesis is that the phenomenon of
nontrivial collective behavior in chaotic dynamical networks –where collective periodicity arises from local chaos– can
be induced by heterogeneity in the constitutive elements of the system.

1.2 Objectives

1.2.1 General objective

Extend the mechanism of asymmetry-induced symmetry, previously investigated in synchronization, to other types
of collective behaviors emerging in networks of interacting dynamical elements.

1.2.2 Specific objectives

1. To consider a network of globally coupled maps possessing robust chaos as a simple mathematical model for
studying the emergence of nontrivial collective behavior.

2. To define an asymmetry parameter to characterize the degree of heterogeneity in the local parameters on the
system.

3. To investigate the occurrence of nontrivial collective behavior as a function of the asymmetry parameter for
various systems.

4. To numerically investigate the generality of the phenomenon nontrivial collective behavior induced by asym-
metry in a dynamical networks by considering several local maps possessing the property of robust chaos.

In Chapter 2, we present the paper by Nishikawa and Motter and discuss its implications. We provide a short review of
the growing literature on this fascinating field. We also briefly describe a recent experimental demonstration of
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asymmetry-induced symmetry in a network of coupled electronic circuits. Chapter 3 describes the phenomenon of
nontrivial collective behavior in homogeneous systems possessing the property of robust chaos. Chapter 4 contains our
model of coupled robust chaos map with heterogeneity. We define a heterogeneity parameter and investigate the
emergence of collective behaviors as this parameter is varied for several map networks. We report the observation of
nontrivial collective behaviors for some ranges of heterogeneity in several systems having different local robust chaos
dynamics. We find that nontrivial collective behavior is induced by heterogeneity for values of parameters where the
phenomenon does not exist if the system is homogeneous or symmetrical. Conclusions are presented in Chapter 5.
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Chapter 2

Theoretical framework: Synchronization
induced by asymmetry

In recent years, synchronization has been extensively studied as an emergent collective property in complex systems4,8.
Synchronization is a phenomenon in which two or more dynamical elements interact with each other resulting in a
common evolution of some of their state variables. In many situations, systems are capable of adjusting their pace
spontaneously through mutual interactions, showing the same behaviour over time, without external influences.
Synchronization phenomena pervades our daily lives. Many of our bodies physiological functions are synchronized to
the day-night cycle (circadian rhythm); thousands of pacemaker cells in the sinoatrial node, fire at unison in order to
maintain the regular beats of our hearts; thousands of fireflies reunite at night along riverbanks and synchronize their
flashes in an amazing spectacle that has been noticed and reported for over three centuries; laser beams are also examples
of perfect synchronization of trillions of atoms.
The phenomenon of synchronization can also occur when two or more chaotic systems are coupled. Because of the
exponential divergence of trajectories of chaotic systems, having two chaotic systems evolving in synchrony might appear
surprising. However, synchronization of autonomous or driven chaotic oscillators is a phenomenon well established both
theoretically and experimentally4.
Synchronization has been observed in networks of interacting homogeneous or symmetrical elements. Synchronization
can be considered as collective state of symmetry in a system. It has been long assumed that interacting entities are more
likely to exhibit the same behavior if they are identical or very similar, such as pulsating lasers at the same frequency,
animals using the same gait, or dynamical systems sharing the same parameters.
In 2016, Takashi Nishikawa and Adilson Motter published a pioneering article titled "Symmetric states requiring system
asymmetry" where they demonstrated that this assumption is not necessary5. Nishikawa and Motter studied a system
where the interacting elements were non-identical. They consider a network of N two-dimensional oscillators, whose
dynamics is described by the equations

θ̇i = ω + ri − 1 − γri

N∑
j=1

sin
(
θ j − θi

)
, (2.1)

ṙi = biri (1 − ri) + εri

N∑
j=1

Ai j sin
(
θ j − θi

)
, (2.2)

where θi y ri are the angular and amplitude variables for oscillator i = 1, 2, . . . ,N, respectively. The parameters ω and
bi > 0 characterize the individual dynamics of each oscillator, while the parameters γ > 0 and ε > 0 represent the
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coupling strength, and A =
(
Ai j

)
1≤i, j≤n

, with Ai j ≥ 0, is the adjacency matrix that encodes the structure of the network.
The influence on a particular oscillator is the sum of the influences from the other oscillators. In particular, they
considered the class of uniform networks for which the nodes are arranged in a one-dimensional ring, and each node is
coupled to its neighbors. For a given parameter δ, each node i receives an input from node i − 1 with a coupling strength
of 1 − δ and from node i + 1 with a strength of 1 + δ. Figure 2.1 illustrates the case for N = 7.

Figure 2.1: 7-node network. The numbers in red and blue are the values of bi, taken in the simulation, for the cases of
homogeneous and heterogeneous distribution in that parameter, respectively.

Nishikawa and Motter found that, for identical values of bi, the synchronized state
(
θ1(t) = · · · = θN(t), r1(t) = · · · = rN(t)

)
is unstable. However, when non-identical values of bi are allowed, the synchronized state can be stable. This type of
behavior was called symmetry induced by asymmetry. As Figure 2.2 shows, after changing to a combination of
inhomogeneous values of bi for t ≥ 75, the oscillators spontaneously reach a synchronized state. Nishikawa and Motter
point out that while they only considered uniform networks to avoid confounding factors (for example, the differences
between oscillators are used to compensate for the differences between their couplings), the conclusion that heterogeneity
may be necessary to achieve a common state is general and also valid for non-uniform networks.

(a)

(b)

Figure 2.2: Trajectories of the oscillators (n = 7). (a) Angular variable θi (relative to its average ⟨θi⟩
)

vs t. (b) Amplitud
variable ri vs t. There is a desynchronized state with homogeneous values of bi = b∗ for t < 75, followed by spontaneous
synchronization with heterogeneity in bi when t ≥ 75.

The phenomenon of induced symmetry by asymmetry is a counterintuitive result that challenges the common assumption
that identical or similar entities tend to synchronize more easily. Instead, in many systems heterogeneity among
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interacting entities may be necessary for synchronization to occur. This has important implications for understanding
synchronization in natural and engineered systems, and for developing strategies to control synchronization in such
systems. Furthermore, it is not just the existence of a collective symmetric state for an asymmetric system that draws the
most attention, but rather the fact that such a state can only be stable when the system is asymmetric.
Y. Zhang, T. Nishikawa, and A. E. Motter have shown experimentally that the asymmetry in the coupling can actually
enhance synchronization in a network of coupled Chua’s circuits, leading to more symmetric states9. An illustration of
the experiment is shown in Figure 2.3 from Ref.10. This reveals that asymmetry can play a key role in inducing symmetry
in networks of non-identical oscillators.

Figure 2.3: Chaos synchronization induced by random oscillator heterogeneity. (a) Double-scroll chaotic attractor
constructed from the experimental time series of the voltages Vx and Vy of a single uncoupled oscillator, and the time series
for Vx shown separately. (b),(c) Corresponding experimental time series for oscillators in a directed ring for k = 8.18 (k
controls the coupling strength). (b) and in a random network for k = 5. (c). Left: network structures and synchronization
errors Z, where each node is labeled with its timescale τi. Right: time series after the initial transient (colored by oscillator)
for initial conditions close to the synchronous state, showing that chaos synchronization is stable in the heterogeneous
system but not in the homogeneous one. In particular, the heterogeneous systems both achieve low synchronization error
and preserve qualitative properties of the original chaotic attractor.

Further studies of synchronization in asymmetric and heterogeneous systems has led to significant discoveries in this
field. Y. Zhang and A. E. Motter found that the asymmetry-induced symmetry can also play a crucial role in the

7



emergence of chimera states11. Motter and collaborators have shown synchronizing chaos with imperfections10. Other
authors have found the phenomenon of asymmetry-induced order in multilayer networks12. They found that the
asymmetry of the network can induce synchronized behavior in the system. Palacios investigated the stability of the
synchronization state in networks with homogeneous oscillators that are coupled in an asymmetric manner13. It was
found that, regardless of whether the network contains homogeneous or heterogeneous oscillators, the synchronization
state is stable. Gu et al.14 demonstrated that the heterogeneity in the properties of neurons can induce synchronized
behavior in the brain. These results suggest that the synchronization of oscillators in asymmetrically coupled networks is
a robust phenomenon that can arise even in the presence of an asymmetry in the system.
In summary, in recent years it has been revealed that synchronization is an emergent property of complex systems that
can be induced by both symmetry and asymmetry in the system. This phenomenon have significant implications for
various fields such as neuroscience, biology, physics, engineering, and social sciences. The understanding of
synchronization in complex systems is crucial for the development of new technologies and the advancement of
interdisciplinary science. Furthermore, synchronization in neural networks plays an important role in the functioning of
the brain and has been extensively studied in neuroscience, highlighting the importance of this research in the field.
Asymmetry-induced symmetry may have implications in other collective behaviors. For example, it offers a mechanism
for convergent forms of pattern formation where an asymmetric structure develops into a symmetric one, such as in the
development of fivefold radial symmetry in starfish from bilateral symmetry in starfish larvae. A can also have
implications for social dynamics, potentially yielding scenarios in which interacting agents only reach consensus when
they are different from each other; this means that diversity may facilitate, and even be required for, consensus of opinions.
The discovery of synchronization induced by asymmetry has motivated the present investigation: the search for other
collective behaviors, besides synchronization, that may be induced by the presence of asymmetry or heterogeneity in a
dynamical system.
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Chapter 3

Nontrivial collective behaviour in globally
coupled map networks

There exist systems in nature that exhibit collective behaviors that are not susceptible of being inferred from the behavior
of their isolated constituent elements. The collective behavior is said to emerge from the interactions between the
elements. These systems have been denoted as complex systems. Emergent properties, sharing the same characteristics,
arise in physical, chemical, biological, and social systems. In networks of dynamical elements, the investigation of
collective behavior has fundamental implications for the understanding of universal properties observed in complex
systems. An interesting collective phenomenon consists of an ordered evolution of macroscopic variables of the system
arising out of local chaos. This phenomenon is known as nontrivial collective behavior7,15–17.
Nontrivial collective behavior can be observed in simple dynamical systems such as coupled map networks. Coupled
map lattices or coupled map networks are spatiotemporal dynamical systems where space and time are discrete, but the
state variables are continuous. They consist of a set of maps, or iterative functions, considered as nodes interacting on a
lattice or on a general network18–21. Coupled map networks have provided useful models for the study of diverse
spatiotemporal processes in spatially extended systems, with the advantage of being computationally efficient and, in
some cases, mathematically tractable.
In this context, globally coupled map networks, where each element interacts with each other in the system, constitute
paradigmatic models for the current research of complex systems that possess global interactions22. A global interaction
occurs when all the elements in the system are subject to the same influence or share the same information. Many
physical, chemical, biological, social, and economic systems are subject to global interactions. Global interactions can
provide useful descriptions in networks possessing highly interconnected elements or long-range interactions. The origin
of a global interaction can be either external, as in a forcing field; or autonomous, such as a mean field or a feedback
coupling function that depends on the elements of the system23,24. Global interactions appear, for example, in parallel
electric circuits, coupled oscillators25,26, charge density waves27, Josephson junction arrays28, multimode lasers29, neural
networks, evolution models, ecological systems2, social networks30, economic exchange31, mass media influence32–34,
and cultural globalization35. A complete graph, where any node can interact each each other, can be seen as a global
interaction. Diverse collective behaviors have been observed experimentally in globally coupled oscillators, such as
complete and generalized chaos synchronization, dynamical clustering, nontrivial collective behavior, chaotic itinerancy,
quorum sensing, and chimera states36–41. A globally coupled map system that can be defined as follows16,42,

xi
t+1 = (1 − ϵ) f (xi

t) +
ϵ

N

N∑
j=1

f (x j
t ) (3.1)
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where xi
t, i = 1, 2, . . . ,N , is the state of the ith element at discrete time t = 0, 1, 2, . . ., N is the size of the system; ϵ is a

parameter expressing the strength of the coupling, and the function f (xi
t) describes the local dynamics that may depend

on some parameters. The global interaction occurs through the mean field of the system, however other forms of coupling
functions can be employed, as long as they are shared by all the elements. The coupling scheme in Eqs. (3.1) is called
diffusive, because it corresponds to the discrete form of the Laplacian operator in a diffusion equation. Figure (3.1)
illustrates a globally coupled network system.

Figure 3.1: Schematic representation of a globally coupled map network described by Eqs. (3.1).

As an example of the phenomenon of nontrivial collective behavior, consider, as local dynamics, the logarithmic map16

xt+1 = f (xt) = b + ln |xt |, (3.2)

where b is a real parameter. This map exhibits robust chaos, with no periodic windows, on the interval b ∈ [−1, 1]. A
chaotic attractor is said to be robust if, for its parameter values, there exist a neighborhood in the parameter space with
absence of periodic windows and the chaotic attractor is unique. Robustness is an important property in applications that
require reliable operation under chaos, in the sense that the chaotic behavior cannot be destroyed by arbitrarily small
perturbations of the parameters of the system. Figure (3.2) shows the bifurcation diagram of xt as a function of b for the
logarithmic map (From Ref.16).

Figure 3.2: Bifurcation diagram of the logarithmic map Eq. (3.2) as a function of the parameter b. Robust chaos occur for
b ∈ [−1, 1]. x∗1 for b < −1 and x∗2 for b > 1 are fixed points. For each value of b, 100 iterates are shown, after discarding
1000 transient points.
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As a statistical quantity characterizing the collective behavior for the system Eq. (3.1), we consider the mean field

ht =
1
N

N∑
j=1

f (x j
t ). (3.3)

Figure (3.3) shows the evolution in time of both, the quantity ht and one local map in the globally coupled system
Eqs. (3.1) for given values of parameters b and ϵ. We observe a periodic motion (period two) of the macroscopic variable
ht coexisting with the local chaotic dynamics. This is an instance of nontrivial collective behavior.

Figure 3.3: Top: Time-evolution of the mean field ht, Eq. (3.3), for the globally coupled system Eqs. (3.1), showing period
two motion. Bottom: Time-evolution of the local map x1969 in the system Eqs. (3.1 exhibiting chaotic dynamics. Random
initial conditions on the maps, uniformly distributed on the interval xi

0 ∈ [−8, 4] are used for the globally coupled system
Eqs. (3.1). Parameters for the system Eqs. (3.1) are b = −0.7, ϵ = 0.2, N = 105.

Nontrivial collective behavior can occur for a range of parameters in a system. Figure (3.4) (from Ref.16) shows the
bifurcation diagram of the mean field ht as a function of the parameter b, with a fixed value of the coupling ϵ. For values
of the parameter b in the interval [−1, 1], the elements xi

t are locally chaotic and desynchronized. However, the mean field
ht displays a collective periodic behavior coexisting with local chaos.

Figure 3.4: Bifurcation diagram of the mean field ht, Eq. (3.3), for the globally coupled system Eq. (3.1) as a function of
the parameter b with fixed coupling ϵ = 0.25. Size of the system N = 105. For each value of b, ht is calculated for 100 time
steps during a run starting from random initial conditions on the maps, uniformly distributed on the interval xi

0 ∈ [−8, 4],
after discarding 1000 transients.
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Figure (3.5) from ref.16 shows the bifurcation diagram of the mean field ht as a function of the coupling parameter ϵ, with
a fixed value of the parameter b of the local maps. Again, collective periodic orbits (period 2, 4, 8) appear for some
intervals of the coupling parameter ϵ.

Figure 3.5: Bifurcation diagram of the mean field ht, Eq. (3.3), for the globally coupled system Eqs. (3.1) as a function of
the coupling parameter ϵ, with a fixed value of the parameter b = −0.7 for the local maps. Size of the system N = 105.
Random initial conditions are used for each value of ϵ, as in Fig. (3.4).

Note that the periodic behavior in the macroscopic quantity ht appears for values of the parameter b where the isolated
logarithmic maps possess robust chaos. The mean field ht displays orbits of periods 2, 4, 8, 16, as a function of the
coupling parameter ϵ, similar to the period-doubling bifurcation characteristic of smooth unimodal maps (possessing a
single maximum or minimum). However, the local logarithmic map is singular, it does not possesses any periodicity on
the interval b ∈ [−1, 1], and it does not belong to the universal class of smooth unimodal maps. Thus, the mean field ht

has acquired properties that are not present in the local logarithmic maps. The periodicity arising in the mean field of the
system cannot be attributed to the existence of stable periodic orbits in the local maps. Therefore, the periodic, ordered
behavior of the mean field is a emergent nontrivial collective property of the system Eqs. (3.1).
In next chapter, we investigate globally coupled networks of coupled heterogeneous logarithmic maps, as well as several
other networks possessing heterogeneous local maps. Heterogeneity is added to those systems through an asymmetry
parameter that we introduce in this thesis.
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Chapter 4

Heterogeneous dynamical networks: Results

4.1 Heterogeneity/Asymmetry parameter

In this Chapter, we present the model proposed in this thesis to investigate other manifestations of collective behavior that
may be induced by asymmetry in dynamical networks, besides the phenomenon of asymmetry-induced synchronization
discovered by Nishikawa and Motter.
We introduce asymmetry in parameters of the local elements that constitute a network. As a simple model, we shall
consider a globally coupled map model with heterogeneous parameters for the local maps, in the form

xi
t+1 = (1 − ϵ) f (xi

t, ri) +
ϵ

N

N∑
j=1

f (x j
t , r j), (4.1)

where f (xi
t, ri) is a function that represents the local dynamics that can take different parameter values ri ∈ [R1,R2] for

each element i, i = 1, 2, . . . ,N. Here we consider intervals [R1,R2] where the map f (xt) exhibits robust chaos. Then, any
occurrence of nontrivial collective behavior in the heterogeneous system Eqs. (4.1) may not be attributed to the presence
of local windows of periodicity in the local dynamics. As in the previous chapter, the parameter ϵ expresses the intensity
of the coupling between the elements. Here we consider that the coupling strength is homogeneous; heterogeneity occurs
only in the local dynamics.
When the local map parameters ri are all identical, the system is homogeneous or symmetrical, i.e., ri = r j, ∀i, j, which
corresponds to the globally coupled systems that have been extensively studied before. Instead, here the parameter ri can
be in the robust chaos interval [R1,R2] of the map f , so that in general, ri , r j. We introduce a control parameter
A ∈ [0, 1] to characterize the amount of asymmetry or heterogeneity in the system, by assigning the individual parameters
ri according to the rule

ri = R1 + A ξ (R2 − R1), (4.2)

where ξ = random[0, 1] is a random number generated between 0 and 1 with uniform probability. There are many
random number generators available that fulfill this statistical property. Then, when A = 0, we have ri = r j, ∀i, and the
elements are homogeneous. When, A = 1, the parameter ri can take any value in the interval [R1,R2] and we have
maximum heterogeneity. In this way, for a given value of A, the parameters ri will be distributed uniformly at random in
the sub-interval

ri ∈ [R1,R1 + A(R2 − R1)], ∀i. (4.3)

Thus, the quantity A defines the width of the sub-interval in [R1,R2] where the parameters ri are distributed. Therefore,
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we call A the asymmetry parameter that measures the degree of heterogeneity of the system. In Eq. (4.2), heterogeneity is
defined as a deviation from the parameter value R1 considered as homogeneous, but any other value of r in the interval
[R1,R2] can be considered as the homogeneous value about which a random distribution of the parameters ri can be
performed.
In addition, synchronization in a coupled map network at time t can be characterized by the instantaneous standard
deviations of the distributions of the state variables, defined as

σt =

 1
N

N∑
i=1

(
xi

t − x̄
)2

1/2

, (4.4)

where

x̄ =
1
N

N∑
j=1

x j
t . (4.5)

We define the mean standard deviation ⟨σ⟩ as a statistical quantity to characterize a collective synchronization state in a
coupled map network, by the asymptotic time average

⟨σ⟩ =
1
T

τ+T∑
t=τ

σt, (4.6)

where τ is a number of discarded transients and T is a sufficient large iteration step. Synchronization in a system at time t

happens when xi
t = x̄, ∀i. Then, a stable collective synchronization state arises when ⟨σ⟩ = 0. For numerical calculations

we shall consider ⟨σ⟩ < 10−8 as a synchronization condition.

4.2 Non-trivial collective behaviour induced by heterogeneity

4.2.1 Heterogeneous network of logarithmic maps

We recall the dynamics of a single, uncoupled logarithmic map, given by

xt+1 = f (xt) = ln |xt | + b. (4.7)

For values of the parameter b ∈ [−1, 1] = [R1,R2], this map exhibits robust chaos16. Figure 4.1 shows the bifurcation
diagram f (xt) as a function of b for the logarithmic map Eq. (4.7)
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Figure 4.1: a) Bifurcation diagram logarithmic map Eq. (4.7) showing robust chaos in b ∈ [−1, 1]. For each value of b,
200 iterations are plotted after discarding 104 transients. b) Time series for 50 iterations, after discarding 104 iterations,
for the logarithmic map with b = 0.5.

Homogeneous parameters

We first consider a globally coupled map network

xi
t+1 = (1 − ϵ) f (xi

t, b) +
ϵ

N

N∑
j=1

f (x j
t , b), (4.8)

with homogeneous local dynamics given by the logarithmic map Eq. (4.7) with b = bi = −0.7. The collective behavior of
the homogeneous network Eq. (4.8) is shown through the mean field ht and the mean standard deviation ⟨σ⟩ as functions
of the coupling ϵ in Fig. (4.2).

Figure 4.2: Globally coupled Logarithm maps. a) Bifurcation diagram for the mean field of the homogeneous network ht

as a function of the coupling parameter ϵ. b) Time average standard deviation ⟨σ⟩ vs. ϵ. In both graphs, initial conditions
are uniformly distributed on the interval xi

0 = [−8, 4], system size N = 105, and local parameters were fixed at b = −0.7.
For each value of ϵ, 102 iterates are shown after discarding 103 transients. The vertical blue line signals the value ϵ = 0.85.

Figure (4.2)a reveals the emergence of nontrivial collective behavior on an interval of ϵ in the form of periodic orbits for
the mean field ht. Figure (4.2)b shows that the homogeneous network Eq. (4.8) reaches collective synchronization
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characterized by ⟨σ⟩ = 0 above some critical value of the coupling parameter ϵ.

Asymmetry-induced nontrivial collective behavior

As an application of our heterogeneous model, we consider a globally coupled map network

xi
t+1 = (1 − ϵ) f (xi

t, bi) +
ϵ

N

N∑
j=1

f (x j
t , b j), (4.9)

with local dynamics given by the logarithmic maps,

f (xi
t) = ln |xi

t | + bi, (4.10)

where the local parameters bi are distributed in the interval [R1,R2] with R1 = −1,R2 = 1, according to Eq. (4.2) as

bi = −1 + 2A ξ. (4.11)

Figure (4.3)a shows the bifurcation diagram of the mean field ht as a function of the asymmetry parameter A for the
heterogeneous network Eq. (4.9) with a fixed coupling parameter value ϵ = 0.85. For A = 0 we have a homogeneous
network of logarithmic maps with bi = −1, ∀i, where no collective periodicity exists and the system is synchronized
(⟨σ⟩ = 0). As A increases, periodic windows emerge. As A→ 1, a period-3 windows appears. Thus, nontrivial collective
behavior is induced by asymmetry in the parameters. Note that increasing the asymmetry A increases the
desynchronization in the system as seen in Fig. (4.3)b. Nontrivial collective behavior emerges when the system is
desynchronized.

Figure 4.3: a) Bifurcation diagram for the mean field of the network ht vs. the asymmetry parameter A. b) Mean standard
deviation ⟨σ⟩ as a function of the asymmetry parameter A. Fixed parameters are ϵ = 0.85, size N = 105. For each value
of A, 102 iterates are shown after discarding 103 transients. Initial conditions xi

0 ∈ [−8, 4].

Maximum heterogeneity

Figure (4.4) shows the bifurcation diagram of the mean field ht and the quantity ⟨σ⟩ as functions of ϵ for the
heterogeneous network system Eq. (4.9) with maximum asymmetry parameter value A = 1. We see in Fig. (4.4)a that
heterogeneity in the local parameters does not destroy the periodic collective behavior. Furthermore, the asymmetry in
the parameters produce windows of periodic collective behavior that were not present in the homogeneous system,
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Figure (4.2)a. Note that the heterogeneous system does not synchronize in Fig. (4.4)b, in contrast to the homogeneous
case Fig. (4.2)b.

Figure 4.4: a) Bifurcation diagram ht vs ϵ for the mean field of the maximum heterogeneous logarithmic map network,
Eq. (4.9). b) ⟨σ⟩ vs ϵ. In both graphs, initial conditions are uniformly distributed on the interval xi

0 = [−8, 4], system size
N = 105, and local parameters are uniformly distributed at random bi ∈ [−1, 1] corresponding to A = 1. For each value of
ϵ, 102 iterates are shown after discarding 103 transients. The vertical blue line signals the value ϵ = 0.85.

Remarkably, the mean field ht of the fully heterogeneous network exhibits a period-3 collective motion on a range of ϵ.
As far as we know, nontrivial collective orbits with odd periods have not been reported before. Figure (4.5) shows the
time evolution of ht for the coupling parameter value ϵ = 0.85, showing the collective period-3 motion, although the local
maps have parameters in the robust chaos range [−1, 1].

Figure 4.5: Time series of the mean field ht shows period three for the value ϵ = 0.85 marked in Fig. (4.4). 50 iterations
are shown after discarding 104 steps.

These results provide evidence that asymmetry can induce collective behaviors in dynamical networks, other than
synchronization.
In order to explore the generality of this phenomenon, in the following we shall investigate coupled map networks with
different heterogeneous local dynamics possessing robust chaos.
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4.2.2 Heterogeneous network of singular maps

Next, consider the globally coupled network with heterogeneous maps given by

xi
t+1 = (1 − ϵ) f (xi

t, µi) +
ϵ

N

N∑
j=1

f (x j
t , µ j), (4.12)

with local dynamics given by the singular maps43,

f
(
xt, µi
)
= µi − |xt |

z , (4.13)

with |z| < 1, where the local parameters are distributed on an interval µi ∈ [µ−(z), µ+(z)] that depends on z, as shown in
Fig4.7, according to

µi = µ−(z) + A ξ (µ+(z) − µ−(z)). (4.14)

For |z| < 1, these maps possess a positive Schwarzian derivative44 and thus they do not belong to the family of unimodal
maps with |z| > 1 that show period-doubling. The exponent z describes the order of the singularity at the origin. These
maps are unbounded and exhibit robust chaos on a single interval of the parameter µ that depends on z. These maps were
employed to characterize the transition to chaos via intermittency in Ref.43. The logarithmic map belongs to this family
of singular maps.
Figure (4.6)a shows the bifurcation diagram of a single singular map with z = −0.25. There exist robust chaos, with no
periodic windows, in the interval µ ∈ [0.98, 1.64] = [R1,R2] for this value of z. The time series of the map corresponding
to the parameter value µ = 1.1 is shown in Fig (4.6)b.

Figure 4.6: a) Bifurcation diagram of a singular map with z = −0.25 as a function of the parameter µ. For each value of
µ, 100 iterations are shown after discarding 104 iterates . b) Chaotic time series of xt for z = −0.25 and fixed µ = 1.1 after
discarding 104 iterates.

Figure (4.7) from ref43 shows the dynamical properties of the family of singular maps on the space of parameters (µ, z),
with |z| < 1.
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Figure 4.7: Critical boundaries µ−(z) and µ+(z) of the robust chaos region for the singular maps on the space of parameters(
µ, z
)
.

Homogeneous parameters

A symmetric, homogeneous network of coupled singular maps Eqs. (4.12) is obtained when µi = µ, ∀i. We choose a
singularity exponent fixed at z = −0.25 and a homogeneous local parameter µ = 1.1, where there exist robust chaos.
Figure (4.8) shows the mean field ht and mean standard deviation ⟨σ⟩ as functions of the coupling strength ϵ.

Figure 4.8: Globally coupled homogeneous singular maps Eqs. [4.12] with z = −0.25 and µi = 1.1. a) Bifurcation diagram
ht vs ϵ. b) Mean standard deviation ⟨σ⟩ vs ϵ. In both graphs, initial conditions are uniformly distributed on the interval
xi

0 = [−8, 2], system size N = 105. For each value of ϵ, 102 iterates are shown after discarding 103 transients. The vertical
blue line signals the value ϵ = 0.82.

In Fig.(4.8)a, we see that, despite the chaotic behavior of the local maps, for a range of values of the coupling parameter
ϵ, the dynamics of the mean field is periodic. Nontrivial collective behavior occurs when the system is desynchronized.
Figure (4.8)b shows that the homogeneous system synchronizes (⟨σ⟩ = 0) above some critical value of the coupling ϵ.
Figure (4.9)a shows the time series of the mean field ht exhibiting period two, while a local map in the network follows a
chaotic behavior as seen in Fig.(4.9)b. Then, the homogeneous system of coupled singular maps shows nontrivial
collective behavior for some range of parameters.
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Figure 4.9: a) Time evolution of the mean field ht for the homogeneous system Eqs. [4.12] with z = −0.25 and µ = 1.1
and the coupling value ϵ = 0.1 displaying period-two collective behaviour. b) Time evolution of one map in the network
displaying chaotic dynamics coexisting with the collective periodic behavior.

Asymmetry-induced nontrivial collective behavior

Consider the network of coupled singular maps Eqs. (4.12) with fixed coupling ϵ = 0.82, local maps with z = −0.25 and
parameters µi distributed in the robust chaos range [R1,R2] = [0.98, 1.64] according to Eq. (4.14) as

µi = 0.98 + A ξ (1.64 − 0.98). (4.15)

Figure (4.10)a shows the bifurcation diagram of the mean field ht as a function of the asymmetry parameter A. When
A = 0, the system is homogeneous with the uniform local parameter value µi = 0.98, ∀i. In this case, no periodic
collective behavior exists in the system. As A is increased, nontrivial periodic windows are induced in the mean field ht.
For A→ 1, the system is fully heterogeneous. Figure (4.10) shows that increasing the asymmetry parameter A takes the
system away from synchronization.

Figure 4.10: a) Bifurcation diagram for the mean field ht as a function of the asymmetry parameter A for the network
of coupled singular maps Eqs. (4.12) with fixed coupling ϵ = 0.82 and local maps with z = −0.25. b) Mean standard
deviation ⟨σ⟩ vs. A. In both graphs, initial conditions are uniformly distributed on the interval xi

0 = [−8, 2], system size
N = 105. For each value of A, 102 iterates are shown after discarding 103 transients.
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The heterogeneity/asymmetry parameter A allows for the exploration of collective dynamics that can lead to nontrivial
emergent behavior that does not occur in when the system is homogeneous. It is important to note that, due to the
different collective dynamics that arise as a function of A, the asymmetry parameter can be treated as a bifurcation
parameter for the network collective field dynamics, providing a new way to study collective behavior from homogeneous
to heterogeneous complex networks. It should be noted that robust chaotic domains are used, so the non-trivial collective
behavior cannot be attributed to periodic windows that may occur in any of the elements, leaving heterogeneity or
asymmetry in the parameters as the direct cause of this phenomenon.
As we have mentioned, collective periodic dynamics with odd-periods have not been reported before, as far as we have
investigated. Thus, it is interesting to find that the mean field ht exhibits period-five behavior when the asymmetry
parameter takes the value of A = 0.609, as depicted in Fig.(4.11)a. Note that the system is not synchronized in Fig.(4.11).

Figure 4.11: a) Bifurcation diagram for the mean field ht as a function of the asymmetry parameter A for the network of
coupled singular maps Eqs. (4.12) with fixed coupling ϵ = 0.82 and local maps with z = −0.25. System size N = 105. b)
Period-five collective behavior of ht when A = 0.609, calculated over 20 iterations after discarding 104 transients.

Similarly, Fig. (4.12)a shows the bifurcation diagram of the mean field ht as a function of the asymmetry parameter A for
the network of coupled singular maps Eqs. (4.12) with fixed coupling ϵ = 0.89 and local maps with z = −0.25. Both, the
homogeneous system with A = 0 and the fully heterogeneous system with A = 1, exhibit collective chaotic dynamics.
Now a window of period-three collective behavior emerges on an intermediate range of the asymmetry parameter A.
Figure (4.12)b shows the period-three time series of the mean field ht for the asymmetry parameter value A = 0.809.
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Figure 4.12: a) Bifurcation diagram for the mean field ht as a function of the asymmetry parameter A for the network of
coupled singular maps Eqs. (4.12) with fixed coupling ϵ = 0.89 and local maps with z = −0.25. The blue line signals the
value A = 0.809. System size N = 105. b) Time series period-three collective behavior of ht for the asymmetry parameter
A = 0.809, calculated over 20 iterations after discarding 104 transients.

Maximum heterogeneity

Figure (4.13) shows the bifurcation diagram of the mean field ht and the mean standard deviation ⟨σ⟩ as functions of ϵ for
the network of coupled singular maps Eqs. (4.12) with z = −0.25 with maximum asymmetry parameter value A = 1. The
mean field shows nontrivial collective behaviour with a period-doubling window and a period-six window, as showed in
Fig.(4.13)a.

Figure 4.13: Globally coupled singular maps Eqs. [4.12] with z = −0.25 and maximum heterogeneity A = 1, corresponding
to the local parameters distributed in the robust chaos range µi ∈ [0.98, 1.64]. a) Bifurcation diagram ht vs ϵ. b) Mean
standard deviation ⟨σ⟩ vs ϵ. In both graphs, initial conditions are uniformly distributed on the interval xi

0 = [−8, 2], system
size N = 105. For each value of ϵ, 102 iterates are shown after discarding 103 transients. The vertical blue line signals the
value ϵ = 0.82.

Other singular exponents z

Next, we explore the influence of the exponents of the singular maps, Eq. (4.13). Figure (4.14)a shows the bifurcation
diagram of a single singular map with exponent z = 0.5 as a function of µ. Robust chaos appears in the interval
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µ ∈ [0.25, 0.75], with two chaotic bands. Figure (4.14)b shows the time series of xt for the parameter value µ = 0.5.

Figure 4.14: a) Bifurcation diagram of a singular map with z = 0.5 as a function of µ. For each value of µ, 100 iterates are
shown, after discarding 105 transients iterations. b) Time series of xt for the parameter value µ = 0.5, calculated over 50
iterations after discarding 104 transients.

Figure (4.15) shows bifurcation diagrams of the mean field ht and the mean standard deviation ⟨σ⟩ for the homogeneous,
fully heterogeneous, and asymmetry-dependent network of coupled singular maps Eqs. (4.12) with z = 0.5.
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Figure 4.15: Network of globally coupled singular maps Eqs. (4.12) with z = 0.5. a)-b) Homogeneous parameters
µi = 0.5, ∀i; bifurcation diagram for the mean field ht vs. ϵ and ⟨σ⟩ vs. ϵ. c)-d) Maximum heterogeneity µi ∈ [0.25, 0.75];
bifurcation diagram for the mean field ht vs. ϵ and ⟨σ⟩ vs. ϵ. The blue line signals the value ϵ = 0.788. e)-f) Fixed
coupling ϵ = 0.788; bifurcation diagram for the mean field ht vs. A and ⟨σ⟩ vs. A. In all graphs, initial conditions are
uniformly distributed on the interval xi

0 = [−8, 2], system size N = 105. For each value of ϵ and A, 102 iterates are shown,
after discarding 103 transients.
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4.2.3 Heterogeneous network of pincers maps: bounded robust chaos

In this section we explore the globally coupled network, Eqs. (4.1), for the local dynamics known as pincers map45,
which has been proposed for a model of neuronal network with robust chaos dynamics. It is given by the function

xt+1 = f (xt) =
∣∣∣tanh(s(xt − c))

∣∣∣ . (4.16)

For some ranges of the parameters c and s, the map Eq. (4.16) possesses robust chaos. In particular, for the value s = 1.3,
there is a robust chaos interval for c ∈ [0.1, 0.38] according to Ref.45. The pincers map is singular at x = c, but its iterates
are bounded, so that it may represent realistic systems. The corresponding bifurcation diagram as a function of c is
displayed in Fig. (4.16)a and the time series of the map for a value of c in the robust chaos interval is shown in
Fig. (4.16)b.

Figure 4.16: a) Bifurcation diagram for the pincer map Eq. (4.16) as a function of c, with fixed value s = 1.3, calculated
over 200 iterations for each value of c, after discarding 104 iterations. b) Time series for s = 1.3, c = 0.25.

Homogeneous parameters

The network of homogeneous coupled pincers maps is constructed by using Eqs. (4.1) with the local dynamics Eq. (4.16)
with uniform parameters s and c. We use the fixed parameter s = 1.3 and ci = 0.1, ∀i. Figure (4.17) shows the bifurcation
diagram of the mean field ht and the mean standard deviation ⟨σ⟩ as a function of the coupling ϵ.

Figure 4.17: Globally coupled homogeneous pincers maps with s = 1.3, ci = 0.1. a) ht vs. ϵ. For each value of ϵ, 102

iterates are shown after 103 transients. b) ⟨σ⟩ vs. ϵ. Initial conditions are uniformly distributed xi
0 ∈ [−0.3, 0.78], N = 105.
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Asymmetry induced nontrivial collective behavior

Consider the network of globally coupled pincers maps Eqs. (4.1) with local dynamics Eq. (4.16) having fixed value
s = 1.3 and parameters ci distributed in a robust chaos range ci ∈ [0.1, 0.38] according to Eq. (4.2) as

ci = 0.1 + A ξ (0.38 − 0.1). (4.17)

Figure (4.18)a shows the bifurcation diagram of the mean field ht as a function of the asymmetry parameter A. For A = 0,
the system is homogeneous with parameters ci = 0.1, ∀i, and ht displays two chaotic bands. As A increases, periodic
windows appear in ht. For A→ 1, the system is fully heterogeneous and ht exhibits a period-four orbit, while the system
is desynchronized.

Figure 4.18: Globally coupled heterogeneous pincers maps with s = 1.3, ϵ = 0.47 (blue line in Fig, (4.17)a), and
asymmetry parameter A according to Eq. (4.17). a) Bifurcation diagram of ht vs. A, . b) ⟨σ⟩ vs. A. Initial conditions are
xi

0 ∈ [−0.3, 0.78]. Both graphs were calculated over 102 iterations after discarding 103 transients. Size N = 105.

Maximum heterogeneity

Figure (4.19) shows the bifurcation diagram of the mean field ht and the mean standard deviation ⟨σ⟩ as functions of the
coupling ϵ for the fully heterogeneous system with A = 1, ci ∈ [0.1, 0.38]. A beautiful period-doubling sequence emerges
in the collective behavior of system Fig. (4.19)a.

Figure 4.19: Heterogeneous network of pincers maps with A = 1, size N = 105. a) ht vs. ϵ. b) ⟨σ⟩ vs ϵ. Initial conditions
xi

0 ∈ [−0.3, 0.78]. Both graphs were calculated over 102 iterations after neglecting 103 iterates.
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Other parameters for the pincers map

The robust chaos region and the fixed points on the parameter c of the pincers map Eq. (4.16) depend on the value of s.
Figure (4.20) shows the pincer map function f (x).

Figure 4.20: Pincers map function f (x) =
∣∣∣tanh(s(x − c))

∣∣∣ as a function of x. The map is singular at the value x = c.

Figure (4.21) shows the bifurcation diagram of the pincer map as a function of c for fixed value s = 1.7. Robust chaos
occurs in the interval c ∈ [0.25, 0.43] according to Ref.45, which we can see in Fig. (4.21)a. The chaotic time series of the
map for the parameter c = 0.25 is shown in Fig.(4.21)b.

Figure 4.21: a) Bifurcation diagram for the pincers map Eq. (4.16) with fixed parameter s = 1.7 as a function of c Robust
chaos occurs in the interval c ∈ [0.25, 0.43]. For each value of c, 200 iterates are plotted, after discarding 103 transient
iterations. b) Time series of the pincers map Eq. (4.16) with fixed s = 1.7, c = 0.25. 50 iterations are plotted after
discarding 104 transients.

In Figure (4.22) we show bifurcation diagrams of the mean field ht and the mean standard deviation ⟨σ⟩ for the
homogeneous, fully heterogeneous, and asymmetry-dependent globally coupled network Eqs. (4.1) with pincers maps
given by Eq. (4.16) with fixed local parameter s = 1.7 and varying c.
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Figure 4.22: Network of globally coupled maps Eqs. (4.1) with pincers maps given by Eq. (4.16) with fixed local parameter
s = 1.7. a)-b) Homogeneous parameters ci = 0.25, ∀i; bifurcation diagram for the mean field ht vs. ϵ and ⟨σ⟩ vs. ϵ.
c)-d) Maximum heterogeneity ci ∈ [0.25, 0.43]; bifurcation diagram for the mean field ht vs. ϵ and ⟨σ⟩ vs. ϵ. The blue
line signals the value ϵ = 0.99. e)-f) Fixed coupling ϵ = 0.99; bifurcation diagram for the mean field ht and ⟨σ⟩ vs. the
asymmetry parameter A. In all graphs, initial conditions are uniformly distributed on the interval xi

0 = [−0.19, 0.87],
system size N = 105. For each value of ϵ and A, 102 iterates are shown, after discarding 103 transients.
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Period-five collective dynamics induced by asymmetry

In Fig (4.23)a we report an odd-period collective behavior observed in the bifurcation diagram of the mean field ht of the
pincers map network induced by asymmetry. A zoom-in version is shown in Fig (4.23)b. This five-period orbit is seen in
the time series of ht (bottom). As we have mentioned, odd periods in the collective dynamics of coupled map networks
have not been reported previously to this work.

Figure 4.23: a) Bifurcation diagram for the mean field ht and ⟨σ⟩ vs. the asymmetry parameter A with fixed coupling
ϵ = 0.99. b) Magnification of the region of A where collective period five emerges. Blue line signals the value A = 0.328.
c) Time series of the mean field ht for the asymmetry value A = 0.328.
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4.2.4 Heterogeneous network of smooth maps with robust chaos

So far, we have studied the collective behavior of heterogeneous networks when the local robust chaos maps are
discontinuous or have a discontinuous derivative. Here we consider a local map given by46

f (xt) = sin2
[
r arcsin(

√
xt)
]
. (4.18)

This map is bounded in the interval xt ∈ [0, 1] and possesses robust chaos for r > 1, as the bifurcation diagram of
Figure (4.24)a shows. The chaotic time series of the map for r = 2 is plotted in Fig. (4.24)b.

Figure 4.24: a) Bifurcation diagram of the map Eq. (4.18) as a function of r. b) Time series dynamics for r = 2 over 50
iterations. Both graphs were obtained after discarding 104 transients.

Homogeneous parameters

We consider a globally coupled map network Eqs. (4.1) with the local maps Eq. (4.18) having homogeneous parameters
ri = 3, ∀i. Figure (4.25) shows the bifurcation diagram of the mean field ht and the mean standard deviation ⟨σ⟩ as a
functions of the coupling ϵ.
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Figure 4.25: a) Bifurcation diagram for the mean field ht vs ϵ for the homogeneous coupled map network, Eqs. (4.1),
with local maps Eq. (4.18) and ri = 3, ∀i. The blue vertical line signals the onset of synchronization. b) Mean standard
deviation ⟨σ⟩ vs. ϵ. Initial conditions are in the interval xi

0 = [0, 1]. For each value of ϵ, 200 iterations are taken after
discarding 103 transients. System size N = 105.

Different types of synchronization states, including dynamical clusters and chimeras, have been found in the
spatiotemporal patterns of this homogeneous system6. In particular, for r = 3 and ϵ = 0.235 a chimera state with two
clusters and a coexisting chaotic subset has been observed6.

Asymmetry-induced non-trivial collective behaviour

We consider the globally coupled map network Eqs. (4.1) with the smooth local maps Eq. (4.18) having parameters
ri ∈ [1.1, 4] distributed in the robust chaos range according to Eq. (4.2) as

ri = 1.1 + A ξ (4 − 1.1). (4.19)

Figure (4.26) shows the bifurcation diagram of the mean field ht and the mean standard deviation ⟨σ⟩ as a functions of the
asymmetry parameter A for the fixed value of coupling ϵ = 0.7.
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Figure 4.26: Globally coupled Smooth maps with ϵ = 0.7: a) Bifurcation diagram for the mean field of the network
ht vs A heterogeneity parameter. Initial condition in xi

0 ∈ [0, 1] and all local parameter values varies from Symmetry
state parameters µ = 1.1 to heterogeneous state parameters in µ ∈ [1.1, 4]. b) Time average standard deviation <σ> vs
A heterogeneity parameter. Both graphs were calculated over 102 iterations after neglecting 103 iterates in a system size
N = 105 nodes.

Figure (4.26)a shows the rich dynamical collective behavior induced by the asymmetry: period-doubling and bubble
bifurcations emerge which are not present in the collective behavior of the homogeneous system. Such nontrivial
collective behavior cannot be inferred from the dynamics of an individual smooth map seen in Figure (4.24).
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Chapter 5

Conclusions

In this Thesis we have studied the effects that heterogeneity has on the emergence of collective behavior in dynamical
networks, other than the synchronization induced by asymmetry discovered by Nishikawa and Motter5 in 2016.
As dynamical networks, we have investigated coupled map systems globally coupled through their mean field. We have
employed two classes of maps possessing robust chaos on a finite interval of their parameters as local dynamical units of
the network, unbounded maps (logarithmic, singular) and bounded maps (pincers, smooth). In particular the pincers map
has served as model to study neural dynamics45. The existence of robust chaos in the constitutive elements means that
the emergence of ordered collective behavior in the system cannot be attributed to the presence of stable windows of
periodicity in the local dynamics. Thus, any emergent collective behavior must be the product of interactions, which is a
characteristic property of complex systems. In addition, the use of maps with bounded robust chaos dynamics represent
more realistic systems in contrast to unbounded maps.
An important contribution of this thesis has been to characterize diversity by using an asymmetry control parameter that
measures the degree of heterogeneity on a scale from zero (homogeneity) to one (maximum heterogeneity). It should be
noted that Nishikawa and Motter5, in their papers about the phenomenon of asymmetry-induced symmetry with coupled
oscillators, do not characterize heterogeneity as a function of an equivalent parameter. The asymmetry parameter A can
be treated as a continuous bifurcation parameter for the mean field of the system, providing a way to study the emergence
of collective behavior from a homogeneous to a fully heterogeneous complex network. We emphasize that the
asymmetry parameter A characterizes the size of the domain where local robust chaos parameters are randomly
distributed, so the observed nontrivial collective behavior cannot be attributed to periodic windows that may occur in any
of the elements, leaving heterogeneity or asymmetry in the parameters as the direct cause of this phenomenon.
Another relevant finding of this thesis has been the observation of several odd periods (period three, period five) in the
nontrivial collective behavior as indicated by the mean field. Period three orbits are typical of unimodal maps47. To our
knowledge, such behaviors have not been observed before∗

In the case of logarithmic and singular maps, heterogeneity in the local parameters does not destroy the periodic
collective behavior present in the homogeneous system. The mean field ht displays orbits of periods 2, 4, 8, 16, as a
function of the coupling parameter, similar to the period-doubling bifurcation characteristic of smooth unimodal maps
possessing a single maximum or minimum. However, these maps do not possess any periodic orbits on the interval
considered, and they do not belong to the universal class of smooth unimodal maps. Thus, the mean field ht has acquired
properties that are not present in the local maps. Therefore, the period-doubling behavior observed in the mean field is a
emergent nontrivial collective property of these systems. Furthermore, heterogeneity can induce complex collective
behavior, such as the bubble bifurcations in the mean field of the smooth robust chaos map.

∗H. Chaté, private communication to M. Cosenza.
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In summary, our results reveal that heterogeneity in the parameters of the local elements of a dynamical network can
induce a variety of ordered, periodic nontrivial collective behavior, other than synchronization, in situations where such
behavior does not exist if the system is homogeneous. Our research is relevant in many systems where heterogeneity and
diversity of the elements are inherent or very common, such as social and biological systems.
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Appendix A

Python code for Asymmetry parameter

The following code is made in python. The globally coupled map network Eqs.(4.1) with The local dynamics considered
for Eq.(4.18):

"""@author: KARG"""

import matplotlib.pyplot as plt

import numpy as np

import time

#--------------------------timer start---------------------------------

start=time.time()

#--------------------------Functions-----------------------------------

def f(x,r):

return np.sin(r*(np.arcsin(np.sqrt(x))))**2 #Local map

def Xn(fxn):

mean_fxn = fxn.mean()

return (1-e)*fxn + (e*mean_fxn) #Globally coupled maps

#---------------------------Initial conditions-------------------------

N=10000 #System size

it=200 #iterations

drop=1000 #dropped terms

e=.7 #coupling parameter

R1,R2=1.1,4 #Robust Chaos interval

a=np.linspace(0,1,1000) #Asymmetry parameter A

xpoints=[]

hpoints=[]

V=[]

#-------------------------Initialization--------------------------------

for A in a :

vpoints=[]
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xold=np.random.uniform(0,1,N)

R=np.random.uniform(0,1,N)

ri=R1+A*R*(R2-R1)

for t in range (0,drop+it):

if t>=drop:

xpoints.append(A)

hpoints.append(np.mean(xold)) #h_t

vpoints.append(np.std(xold))

fxn=f(xold,ri)

xold=Xn(fxn)

V.append(np.mean(vpoints)) #<sigma>

#--------------------------NTCB Plots-----------------------------------

plt.plot(xpoints,hpoints, ’,k’,linewidth=.61, alpha=.90)

plt.xlabel(’$A$’,fontsize=16)

plt.ylabel(r’$h_{t}$’,labelpad=10,rotation=0,fontsize=15)

#plt.savefig(’Asymmetry_Unimodal.eps’, format=’eps’)

#----------------------Synchronization Plots----------------------------

"""

plt.plot(A,V,ls=’-’,color=’k’,linewidth=.61, alpha=1)

plt.xlabel(’A’,fontsize=16)

plt.ylabel(’<\sigma>’,labelpad=10,rotation=0,fontsize=14)

plt.savefig(’STD_Asymmetry_Unimodal.eps’, format=’eps’)

"""

#---------------------------timer end------------------------------------

end=time.time()

codetime=(end-start)/60 #expressed in min

print("code t ime",round(codetime,2),"min")
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