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Resumen

En busca de soluciones a los urgentes desafios medioambientales, especialmente aquellos relacionados con contam-
inantes nocivos y gases de efecto invernadero, se han explorado diversos materiales por su potencial en aplicaciones
fotocataliticas. En este dmbito, los Marcos Metal-Organicos (MOFs) han captado considerable atencién en la tl-
tima década debido a su porosidad inherente y sus estructuras adaptables. UiO-66 ha surgido como un candidato
sobresaliente gracias a su sintesis, estabilidad y propiedades en numerosas aplicaciones.

Esta investigacion se centra en la exploracién computacional del MOF UiO-66, investigando la influencia de los
metales Ce y Ti en el nodo y la introduccién de defectos en el enlace orgdnico. El objetivo es mejorar su eficacia
en la divisién del agua y la reduccién del CO,. Para lograrlo, realizamos cdlculos de teoria de densidad ab initio
utilizando varios funcionales, incluyendo PBESol, 2SCAN, r.SCAN+rVV10 y HSEO06. Nuestros hallazgos revelan
que la estructura electrénica derivada de r>SCAN+rVV 10/HSE06 se ajusta estrechamente a los datos experimentales
informados para el MOF Ce-UiO-66. También analizamos propiedades como el volumen, el médulo de compre-
sibilidad y la banda de energias prohibidas, lo que indica el tamailo, la flexibilidad mecénica y las diferencias de
energia entre las bandas de valencia y conduccién. La combinacién de los elementos Ce y Ti dentro de un nodo
da como resultado tres estructuras distintas, cada una con una simetria tinica pero propiedades similares, lo que se
refleja en su densidad de estados parciales (PDOS) con una banda prohibida y una funcién de trabajo reducidas,
que disminuyen atin mds después de introducir defectos. Al alinear los niveles de energia con respecto al potencial
del vacio, hemos identificado a Ce-UiO-66-NH, como un prometedor fotocatalizador para la divisién del agua,
principalmente debido a su pequefia brecha de banda, que requiere menos energia para la transferencia de carga.
Investigaciones futuras se centrardn en la funcionalizacién de los enlaces organicos con yodo y bromo, asi como en
la exploracion de variaciones en las proporciones de metales dentro del nodo para descubrir nuevas oportunidades
para mejorar las propiedades fotocataliticas del MOF UiO-66.

Palabras claves: fotocatalisis, teorfa del funcional de densidad, vasp, funcionalizacion del ligando, funcién de

trabajo.
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Abstract

In pursuit of solutions to pressing environmental challenges, particularly those related to harmful pollutants and
greenhouses, various materials have been explored for their potential in photocatalytic applications. Within this
realm, Metal-Organic Frameworks (MOFs) have captured considerable attention over the last decade due to their
inherent porosity and adaptable structures. UiO-66 has emerged as an outstanding candidate due to its synthesis,
stability, and properties in numerous applications.

This research is centered on the computational exploration of UiO-MOF-66, investigating the influence of Ce
and Ti metals within the node and the introduction of defects in the organic linker. The goal is enhancing its
efficacy in water splitting and reducing CO,. To achieve this, we conducted ab initio density functional theory
calculations employing various functionals, including PBESol, r’SCAN,r?SCAN+rVV10 and HSE06. Our findings
reveal that the electronic structure derived from r’SCAN+rVV 10/HSE06 closely aligns with reported experimental
data for Ce-UiO-66 MOF. We also analyzed properties such as volume, compressibility modulus, and band gap,
indicating the size, mechanical flexibility, and energy differences between the valence and conduction bands. The
combination of Ce and Ti elements within a node results in three distinct structures, each with unique symmetry but
similar properties, which shows in their PDOS a reduced bandgap and work function, which further decreases after
introducing defects. By aligning energy levels with respect to the vacuum potential, we have identified Ce-UiO-66-
NH, as a promising photocatalyst for water splitting, primarily due to its small bandgap, which requires less energy
for charge transfer. Future research will focus on functionalizing the organic linkers with iodine and bromine and
investigating variations in the metal proportions within the node to uncover new opportunities for enhancing the
photocatalytic properties of the UiO-66 MOF.

Keywords: photocatalysis, density functional theory, vasp, linker functionalization, work function.
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Chapter 1

Introduction

Human development has been a continuous process marked by significant changes throughout history, motivated by
the primary objective of satisfying essential needs. One of these transformations focused on the mechanization of
production, which changed the economy and produced substantial technological advances. However, industrialization
has brought with it the mismanagement of its waste, seriously impacting the air, water, and soil. A clear example
is the presence of various dyes, fluoride anions, and heavy metals pollutants from textile, cosmetic, pharmaceutical,
and paper industries, which have been discovered in water sources®. These pollutants alter and affect ecosystems,
biodiversity, human well-being, and the quality of life in general.

In response, scientists have directed their efforts to find and propose solutions through a combination of com-
putational and experimental studies of materials and their properties. The notable advances in materials science
allow us to suggest a material supporting specific chemical reactions using solar energy as fuel, commonly known as
photocatalysis. Furthermore, its selectivity can be achieved through confined spaces and surfaces. This has sparked
increasing interest in porous materials, which provide reaction confinement and facilitate mass transfer from the
outer to the inner regions of a solid particle”.

Porosity was a term defined and proved while studying inorganic zeolites. Over time, the growing need to
integrate transition metal ions and organics compounds into their structure led to the introduction of Metal Organic
Framework (MOF)®. MOFs are seen as networks formed by a single metal ion or a polynuclear metal cluster
commonly known as Secondary Building Units (SBU) combined with an organic linker to build a crystalline
structure®. They become popular mainly for features like porosity and high surface, but some of their properties
are small density, tunable pore functionality, structural flexibility, and tunable functional groups'?. Thus making
those materials promising candidates for several applications, including not only gas storage but also small-molecule
separations, liquid phase separation, heterogeneous catalysis, drug delivery, sensing, proton conductivity, magnetism
and other applications '! 12,

Metal Organic Frameworks have been widely studied for catalysis due to Lewis acid or coordinatively unsaturated
sites that can be generated around the metal center or by defects. More recently, their photocatalytic activity resulting

from the intimate interaction between the organic linker and metal node has attracted attention for applications in



2 1.1. PROBLEM STATEMENT

hydrogen generation and CO, reduction . Efforts in their development would bring with it, in addition to pollutant
removal, the generation of environmentally friendly clean fuels, carbon-containing fuel production, and the recycling
of carbon dioxide from the environment.

Cerium is a desirable choice for our research due to its earth abundance, remarkable redox properties, and stable
+IV oxidation state attributed to its f orbitals. This stability ensures that chemical reactions can occur within the
resulting pores rather than just on their surface, thus enhancing the number of active sites within the material 4.
Cerium oxide is well-known for its application in the decomposition of NO, and the oxidation of CO, owing to
oxygen’s mobility and storage capacity. The node within the Ce-UiO-66 structure can even be regarded as the

smallest possible CeO, unit, with each metal atom exposed to the material’s poreslS.

Similarly, TiO, has been
extensively investigated and documented for its ability to enhance gas transport and material separation properties.
In particular, the presence of a titanium atom within the structure leads to a reduction in pore size, which, when
combined with the advantageous size-to-charge relationship exhibited by Ti** ions in polarized CO, molecules,
results in a notable improvement in the adsorption capacity of the material '.

Computational analysis, a theoretical approach, presents one of the two general avenues for predicting material
properties, the other being experimental exploration. The first is the most efficient in terms of cost and time, as
well as being a complement to experimental investigations. In materials science, Density Functional Theory (DFT)
offers a numerical approach to solving equations that describe the interactions between electrons and atomic nuclei.
While this method may not achieve absolute precision due to the unknown nature of the functional describing exact
density and energy, electronic structure calculations provide valuable quantitative insights into a system’s electronic

properties that may not be obtained through experimentation®.

1.1 Problem Statement

The growing global demand for sustainable energy production and the urgent need to combat environmental chal-
lenges, such as air and water pollution, have intensified research efforts in photocatalysis. Although conventional
semiconductors have been promising photocatalysts, their application is limited by efficiency, stability, and/or selec-
tivity '3. Organometallic structures have gained significant attention due to their distinctive properties and intriguing
metal-ligand interaction. Among these, UiO-66, initially synthesized at the University of Oslo, stands out. Compris-
ing a zirconium cluster ZrgO4(OH)4 connected to 1,4-benzene-dicarboxylate (BDC) linkers, it has garnered extensive
research interest for its scalable laboratory synthesis, stability, and catalytic properties. Moreover, it is reported that
modifying the metal within the node with elements, such as cerium, has shown excellent adsorption capacity and
potential to effectively remove toxic contaminants'”. As these materials’ properties result from their node and ligand
composition, exploring viable and stable configuration for specific applications has become a matter of great interest
in the scientific community. Consequently, this study aims to identify configurations with photocatalytic potential

through a computational electronic structure analysis.
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1.2 General and Specific Objectives

The purpose of this study is to perform Density Functional Theory (DFT) calculations to explore the changes in the
properties of a new system derived from Zr-UiO-66 that starts from the metallic modification of the MgO4(OH)4 node
with M = Ce, Ti. The functionalization of the 1,4-benzene-dicarboxylate (BDC) linker and the implementation
of defects seek to enhance the search for a material capable of enhancing chemical reactions with solar energy. In

pursuit of this objective, the following specific goals have been outlined:

* To describe the theoretical basis behind the density functional theory required for the development of this

work.

* To compare various functionals and the importance of their choice to ensure accuracy in the results in contrast
to the experimentally available data.

* To analyze the electronic structure of stable configurations.

» To align the energy with respect to the vacuum energy to find configurations that can be applied to specific
reactions.

* To study changes resulting from functionalization of ligand and defects.

* To conclude with selecting a promising candidate for photocatalytic applications in light of the results obtained.






Chapter 2

Theoretical Background

This chapter delves into the theories on which our research is based. We begin with the many-body Schrodinger
equation and explore how the approaches to solving form the basis of Density Functional Theory (DFT), along with

the computational tools commonly used for modeling material properties.

2.1 The Schrodinger Equation

A material is a system composed of particles that define its properties, requiring an adequate and precise description.
The modeling of materials is based on the development and use of mathematical models to describe and predict
their properties and potential applications '8. Quantum Mechanics is the most powerful model for this purpose, as it
describes the behavior of matter and energy at atomic and subatomic levels by representing quantum states through
evolving wavefunctions over time in an equation called Schrodinger Equation. Considering only stationary electronic
states, this equation becomes a time-independent Schrodinger Equation:

(K + Vyy = Ey, 2.1

where K + V = H is the Hamiltonian, K = % is the kinetic energy with 7 being the reduced plank constant,
m, the electron mass and v = ux% +u, % + uZ(;—’Z. V is the potential energy and E is the energy eigenvalue described
by the wavefunction ¢ depending on the position . The sum of the kinetic and potential energy gives the so-
called Hamiltonian H of the system. This equation is valid for a single particle, yet a material is formed by many
electrons(N) and nuclei(M) with coordinates ry, 5, ...ry and Ry, R;...Ry;, respectively. Then, the wavefunction will

depend on the position of each particle involved in the system:

¥ =Y¥(r, r2,..rn; R, Ry, o Riy) (2.2)

Therefore, eqn 2.1 will be rewritten as:
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(K + V)¥ = E,,,¥ (2.3)

Now with eigenvalue E,,, as the total energy of the system and the kinetic energy considering the N electrons
and M nuclei:

K=-

72 MR
TR IE AL 9
¢ I=1

with M;, 1 = 1,2... as the masses of the I-nuclei and v? as the Laplace operator acting on the coordinate of each
particle. Similarly, we have the potential energy present due to the charged particles involved in the system described

by three possible Coulomb interactions:

* Repulsion between pair of electrons:

v _ IZ 82 1 (2 5)
e oy drey |ri — 1l )

* Repulsion between pair of nuclei:
1 62 Z[ZJ
2 =7 471'6() IR[ —RJ|

Vien = (26)

¢ Attraction between electron and nuclei:

2.7)

e " 47(6() |r, R[l

Where e is the charge of electron, € the permittivity of vacuum and Z; denotes atomic numbers. All together
replaced into eqn 2.3 ends with the many-body Schrédinger equation.

1 e 1 1 e ZiZ; e 7
_ Z — + = - Y=E,¥Y, (238
Zme Z 2M; Vit 2 ; deylri—rjl 2 &4 dney IR — R/ ZJ: 4meo Ir; — Ryl wrts  (2.8)

with i, j and I, J being the sum indexes running from 1 to N and 1 to M respectively. This equation can be simplify
by using atomic units'®: 7 = 1.054572 x 10734 J - 5, m, = 9.109383 x 103! Kg, m, = 1.672622 x 107 kg,
e=1.602176 x 107'° C, & = 8.854188 x 10~'? F/m. In addition, considering the angular momentum in the ground

state of hydrogen in Bohr model, we can write & = m,vagy, where a is the Bohr radius, and incorporating Hartrees,

Epa = 4;6;0 = m,v* we have:
N M 2
1 1EHaao 2 1 a()EHa Z[Z_] Z
—Ey a - Vi + < aOEH aOEH —|¥Y=E ,‘“P
Z 2 He H2M/me 2 L= "2 Z “IR; = Ryl ZJ: “Iri =Ryl !

2.9)
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Dividing this equation by Ep,, using e = 1 and leaving it to Hartree atomic units, we obtain:

1 o2 ZiZ; Z;
_ _ ¥ = E,W 2.10
2 Vi 2M1 Zzlr - rjl 2 |R1 Ry| — lri = Ry ! ( )

2.1.1 Born-Oppenheimer Approximation

Obtaining a direct solution to equation 2.10 is only feasible for hydrogen, making it challenging for other systems.
Consequently, approximations are commonly employed. An important approach involves assuming nearly stationary
nuclei while electrons are in motion, a reasonable assumption given their considerable mass difference. This
approximation effectively divides the equation into two separate equations: one for electrons and another for the
nuclei. As result, the total wavefunction ¥ is expressed as the product of the electron-only W% and nuclear-only
x wavefunction both dependent in the nuclear coordinates R;, R, ...Ry. This separation of electron and nuclear

dynamics is known as Born-Oppenheimer Approximation (BO) or adiabatic approximation '8:

Yy, ....rn, Ry, L, Ry) = Pr(eq, oty (R, - Ry) (2.11)

As the nuclei are immobile, the kinetic energy can be neglected, and the Coulomb potential becomes constant
Z[Zj
IR1—Ry|

N1, 1 1
_szi +Zi:v”(ri)+5;|r;—

Here V,(r) = = = R:I The terms inside brackets are the many-electron Hamiltonian. So now, replacing
equation 2.11 and 2.12 into 2.10:

and we have:

storage in the right-hand side E = E,,; — % it

Y = Ex¥i 2.12)

1 1 ZZ
AR o+ EQRi, s R | X = Euonts (2.13)
2 2 IRi — R}l
%]
where E(Ry, ..., Ry), the total electronic energy serves as an effective potential governing the behavior of the nuclei.

2.2 Density Functional Theory

Computational materials modeling relies on theoretical and computational techniques based in DFT, an ab initio, a
quantum mechanics-based method for approximating material properties. Interactions between quantum particles
in a system are described by the many-body Schrddinger equation 2.8, which, when solved, provides insight into a
material’s equilibrium properties. However, solving this equation is exceptionally challenging due to its exponentially
growing complexity with system size 3.

Practical approaches to the Schrodinger equation based on the theorems established by Hohenberg-Kohn have
led to the development of the Kohn-Sham equations. These equations treat electrons as independent particles,

simplifying the process without sacrificing precision. Consequently, the results are accurate and closely match the
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experimental measurements with a small error percentage. This ability to directly compare theoretical predictions

with experimental data represents a significant advantage of DFT in materials research.

2.2.1 Hohenberg-Kohn Theorem

Starting from their name, DFT focuses on the electronic density n(r) of a molecule, solid, or quantum system. This
electronic density describes how the electrons are distributed around the nuclei of a material and can be seen as the
probability of finding an electron in a specific position. There are fundamental mathematics theorems behind DFT.
One of them is the Hohenberg-Kohn (HK) theorem with the statement that the total energy E of a many-electron

system is a function of the electron density F[n] supported by three premises 819,

E = F[n] 2.14)
1. Electron density in the system’s ground state allows to determine only the external potential of the nuclei.
2. The many-electron wavefunction is simply determined by the external potential V,,.

3. The system’s total energy is a function of the wavefunction.

Overall, it tells us that a one-to-one mapping exists between ground state wave function and ground state electron
density2°. Therefore, the total energy of a system with interacting electrons can be mathematically described as their

sum, including the external potential due to the interaction with the nuclei and surroundings.
E = (P|HY) = (V|T + W|¥) + f drV,(r)n(r) (2.15)

Being 7" the kinetic and W the Coulomb energy and 2.15 corresponding to the universal functional of the density
for all electrons in the system '

Hohenberg and Kohn Variational Principle

A second theorem derived from Hohenberg and Kohn enables us to find a solution with the lowest energy, corre-
sponding to the ground state, which represents the most stable configuration and fundamental behavior of the system.
This theorem states that the electronic density that minimizes the functional energy is in fact, the authentic electronic
density capable of providing a comprehensible solution to the Schrodinger equation?’. The function that minimizes
the total energy, E = F[n] is the ground state density,ny ' known as Variational principle described:

o0F[n]

on Ay,

=0 (2.16)

2.2.2 Kohn-Sham Theory

Although we understand that the total energy in the ground state is a functional of the electron density, the precise

form of this functional remains unknown. In 1965, Kohn and Sham?! presented an approximation by recognizing
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that one of the two terms in the equation 2.15 lacks explicit density dependence. As a result, their attention turned to
describing the kinetic and Coulomb energy by considering independent electrons and adding an extra term. Given
that E = F[n], we have:

2 ’
Fln] = fdrV,,n(r) - Z fdrﬁ(r)v?qﬁi(r) + % ffdrdr’% + E.[n] 2.17)

So, the first term corresponds to the external potential, followed by kinetic and Hartree energy. Until here, they
all give the system’s total energy in the independent electron approximation. The last term is called the exchange
and correlation energy and clusters everything unknown.

Reducing the functional to E, [n] allows us to focus on estimating the total energy of the fundamental state. The
challenge now lies in accurately determining the electronic density. For that, we will employ Hohenberg-Kohn’s
variational principle of energy (eq 2.16), which states that the energy of the fundamental state corresponds to the
function minimizing the total energy. Then, by deriving the functional, setting its derivative to zero, and ensuring
orthonormality, we can obtain pertinent equations for the wave function ¢;(r) that enables us to characterize the
density. This leads us to the following equation:

—%Vz + Vu(r) + Va(r) + Vie(1) | $i(X) = £ihi(r), (2.18)

with —%2, V., Vi denoting kinetic energy, external nuclear potential coming from the interaction between an
electron and a collection of atomic nuclei, the Hartree potential that describes the Coulombic repulsion between
electrons, the overall electron density, and the self-interaction contribution which includes the Coulomb interaction
of electrons with themselves that results in destabilized localized orbitals 2:

Vi(r) = & f ”f2,|d3r’. (2.19)

Ir

and finally, the V.. exchange and correlation potential accounts for both corrective and unphysical self-interaction
contributions within the single-electron equation?’:

OE,[n]
on

Vie(r) = (2.20)

n(r)

This unphysical interaction can be canceled if the exact functional were known. However, in its absence,
approximations lead to a self-interaction error that does not completely cancel the self-interaction energy, resulting
in destabilized localized orbitals, an issue than can be remedied by employing hybrid functionals with partial exact
exchange to partially correct the self-interaction®’. The equations derived from eq 2.18 are known as the Kohn-
Sham equations, forming the basis of density functional theory and serving as a potent tool for material property
calculations. This directs attention towards approximating the functional E,. to accurately approach the ground state
energy and density, as shown below.
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2.2.3 Self-consistent Calculations

The Kohn-Sham (KS) equations are used to calculate the total energy and density of electrons in their ground
state. Achieving self-consistency in these equations requires that the solutions for the electronic states, ¢;, coincide
throughout the iterative process. To do this, we initially calculate the nuclear potential by specifying the nuclear
coordinates, then guess the electron density based on isolated atomic positions to determine an approximation for
Vg and V. to solve for V,,,;, which will give new wavefunctions used to better estimate electron density. The iterative
process continues until it converges to a desired tolerance with respect to the initial assumption, which means
self-consistency. In Fig.2.1 is presented an adapted schematic flow chart from Giustino' describing the process for
self consistent solutions which begins with the calculations of the nuclear potential, a guessing of an initial electron
density based on isolated atoms arranged in materials position to determine Vg and V.. and therefore V;,,. In that
way the numerical solution will give new wavefunction to estimate the density. An iterative process that ends when
under a desired toleranced the new stimated density matches with the initial one.

2.2.4 Functionals

Following the establishment of the Kohn-Sham equations, extensive efforts were directed toward finding an exchange-
correlation functional that best approximates the ground state energy and, therefore, the density of a many-body
system. These efforts have led to the development of several approaches, which Perdew* organized into a hierarchy
known as Jacob’s Ladder, where functionals are categorized based on their requirements and computational resources,
as demonstrated in Table 2.1.

Table 2.1: Jacob’s ladder of density Functional approximation, adapted from Perdew and Schmidt?. Each rung
outlines the computational requirements and resources for each functional.

Chemical Accuracy ingredients
Beyond DFT
Hybrid n(r), vn(r), exact exchange
mGGA n(r), va(r), v n(r)
GGA n(r),vn(r)
LDA n(r)
Hartree World (Earth)

The initial step of this ladder involves the local density approximation (LDA). LDA was built assuming a uniform
distribution of a homogeneous electron gas within the material, where nuclear potentials remain constant, and
Coulomb repulsion among electrons is considered??. Then, the local exchange-correlation potential is described as
the exchange potential for a spatially uniform electron gas with the same density as the local electron density?’. In
the next level, the generalized gradient approximation (GGA) is found, which accounts for information about the
local electron density and its gradient when computing energy values, resulting in more accurate descriptions .
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_ Zr
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initial guest of n(r)
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Figure 2.1: Adapted schematic flowchart, based on Giustino', that describes the process for achieving self-consistent
solutions. This process begins with the calculation of the nuclear potential, followed by an initial guess for the
electron density based on isolated atoms arranged in the material’s positions, which allows us to determine Vg
and V,., and consequently, V;,,. The numerical solution provides new wavefunctions ¢; for estimating the electron
density. This iterative process continues until the new density estimated 7,(r) matches the initial one n;(r) at a desired

tolerance.
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Some functionals that can be found in this category Perdew-Burke-Ernzerhof (PBE) and Perdew-Burke-Ernzerhof
for solids (PBESol)%.

Following that, the meta-Generalized Gradient Approximation (mGGA) functionals introduce the orbital kinetic
energy density as an extra local property upon which E,, depends. And then, the hybrid functionals incorporate a
percentage of the exact Hartree-Fock exchange®. These hybrid functionals may also include a screened potential, as
in the case of HSEQ6. In general, incorporating progressively more information about the real behavior of electrons
provides more accurate results but has a higher computational cost. It is essential to emphasize that no functional can
precisely calculate the ground state energy of a system, as they do not provide an exact solution to the Kohn-Sham
equations.

PBESol

One of the most commonly used approximations to calculate the exchange-correlation energy is the PBESol .
A GGA that, as seen before, relies on the density and its gradient at each point in space. However, PBE tends
to underestimate equilibrium constants and associated properties such as bulk modulus, photon frequencies, etc.

1.23 proposed a function correction for solids by introducing a modified function that recovers the gradient

Perdew et a
expansion for exchange over a wide range of density gradients to address this limitation. This modification leads to

a significantly improved lattice constant when compared to PBE?* as well as excellent surface exchange energies.

From Strongly Constrained and Appropriately Normed (SCAN) to Restored, Regularized Strongly Con-
strained and Appropriately Normed (r>SCAN)

The development of functionals getting a balance between computational efficiency and accuracy in property
prediction has been a continuous effort. This is particularly evident in the evolution of mGGA functionals, starting
with the introduction of the SCAN functionals. SCAN is the first mGGA that successfully satisfied all known
constraints achievable by a semi-local?>. However, the practical application of SCAN has uncovered numerical
instability issues, particularly concerning the isoorbital indicator @, when compared to the more stable exchange-
correlation functional of GGA%.

In response, Barték and Yates? proposed a regularized version of the original SCAN functional known as
Regularized Strongly Constrained and Appropriately Normed (rSCAN). This modification not only preserves accu-
racy but also enhances stability by addressing issues with the SCAN isoorbital parameter used to connect various
approximations of the exchange-correlation energy based on the local environment. Furthermore, they describe a
modification that eliminates the unphysical divergence of the exchange-correlation potential from some free atoms
while preserving the isoorbital indicator’s proximity to the original expression in most regions?6. While rSCAN is
an improvement over previous functionals, it has limitations. It uses a soft polynomial within the chemically relevant
range, which introduces unwanted terms in the density gradient expansion that do not align with the exact expansion
that SCAN recovers?’. The r’SCAN mGGA functional was developed to address these deficiencies. This new
iteration fine-tunes the regularizations introduced in rSCAN to accomplish almost all the exact constraints satisfied
by SCANZ,
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More recently, functionals approaches seek to incorporate instantaneous dipole moments that contribute to Van
der Waals (vdW) or London dispersion interactions owing to quantum interactions. Despite being relatively weak
forces and long-range nature, these interactions have a significant influence, especially in surface and interfacial
reactions, such as catalytic and corrosion processes on the surface of materials?’?°. An illustration of this is the
VV10 functional, developed by Vydrov and Voorhis*’, a non-local van der Waals functional that speeds up the

computational process by only requiring the electron density and its first derivative as input parameters.

Heyd-Scuseria-Ernzerhof (HSE06)

While density functional theory predominantly relies on semilocal approximations such as PBE for exchange-
correlation energy, these methods frequently fall short in accurately predicting band gaps and electron delocalization
in materials containing d- and f- elements3!. Hybrid functionals, which incorporate Hartree-Fock (HF) exchange,
partially mitigate these problems and improve computational accuracy compared to the generalized gradient approx-
imation. However, they come with higher computational demands, mainly for periodic systems 3.

A highly efficient alternative can be found in the hybrid functionals proposed by HSE063!. These functionals
include HF, PBE, and PBE short- and long-range exchange-correlation energy components that speed up the decay
of HF exchange interactions by replacing its coulomb potential with a screened one3!. This substitution significantly
reduces computational costs, especially for extended systems. The analysis focuses on the Coulomb potential for
both short- and long-range components, enhancing the accuracy and versatility of these functionals 3.

This study used the PBESol, r’SCAN, r2 SCAN+rVV10 and HSE06 functionals. The initial three were employed
to identify that r’SCAN+rVV10 provides a relaxed structure with electronic properties closest to experimental
results. Then, the HSEO6 functional was employed to enhance the accuracy of the density further.

2.3 Vienna ab initio Simulation Package

Vienna ab initio Simulation Package (VASP) is a software designed for precise ab initio density functional simu-
lations. It uses plane waves and iterative techniques developed by Georg Kresse et al. to match the accuracy of
advanced all-electronic codes33. VASP employs a projector-augmented wave (PAW) method to model electron-ion
interactions, ensuring stability and accuracy when solving Kohn-Sham equations. This approach optimizes compu-
tational efficiency for systems of different sizes. Hafner mentions that one of the advantages of the PAW method
is its capability to account for the complex nodal characteristics of valence orbitals while preserving orthogonality

between valence and core wavefunctions.

2.3.1 Periodicity, Plane Waves and k-points

Approximating materials to perfect crystals is essential to characterize their properties, so a clear definition of the
concept is crucial®*. A crystal refers to an endless repetition of individual atoms or groups of atoms throughout
space. The smallest entity capable of generating a solid through translations is called primitive unit cell, it is defined
by the lattice vectors a;, a; and as in the real space with volume V,.; = |a; - a; X a3| and is mathematically written:
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R = nja; + ma; + n3a3, withn;, i = 1,2, 3 integers (2.21)

This vector describes the direct lattice. Now, as we look for the properties of the material, we must introduce the
reciprocal space that is defined by the reciprocal vectors:
a xa a; xa a; xa
by=2n—2" hy=2g— " py=p T2 (2.22)
a; - (a X a3) a - (a3 X ay) a3 - (a1 X ap)
that satisfy the condition a; - b; = 276;;, and represents the reciprocal lattice defined by:

G = mb; + myb, + m3bs, with m; i = 1,2, 3 integers (2.23)

One way to solve the Kohn-Sham equations is to use the periodic nature of the Fourier series to represent
wavefunctions. This representation can be expressed as a combination of a plane wave and a periodic function, a
concept formally known as Bloch’s theorem:

Pk (r) = e™®uy(r) (2.24)

Here uy(r) = u(r + R) corresponds to the periodic function while e*™ represent a plane wave, a wave with a
constant value across any plane perpendicular to a fixed position. The r and k denote the real space and the reciprocal
or k-space, respectively. This theorem enables the independent search for solutions to the Schrodinger equation for
each k-value.

Earlier, we introduced the notion of a primitive cell in real space, and its analog in reciprocal space is known as
the Brillouin Zone (BZ). The Brillouin zone is significant in band theory, particularly important at I" point, where
k = 0. The volume in the BZ is defined as Vg = %

2.3.2 Cut-off Energy

Another mathematical description of Bloch’s theorem can be provided by expressing the periodic function as a
summation of plane waves over all vectors defined by G, which is justifiable due to its periodic nature.

ue= ) Cae", gir) = ) Crg O (2.25)
G G

Although this approach introduces complexity in the calculations since the evaluation of a single point in k-space
means the sum over an infinite number of possible values of G, the interpretation of the solutions to these functions

allows the kinetic energy to be quantitatively described*:

h2
E = %u( +GJ)? (2.26)

For solutions with physical meaning, the sum is truncated to a value known as cutoff energy (E,,,), reducing eq

2.25 into:
2

h i
Eau = 5-Gour 0@ = > Cieg (2.27)
" 1GKI<Ges
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This cutoff energy is used to determine the range of plane waves that will be included in the calculation, with only
those plane waves having kinetic energies below the cutoff energy being considered, while the others are neglected.
This parameter is of paramount importance as it helps maintain a balance between computational cost and an accurate
representation of the electronic structure.

2.3.3 Pseudopotentials

Within an atom, both core and valence electrons coexist. Valence electrons are of particular significance because
they exhibit greater sensitivity to changes in chemical bonding environments compared to core electrons, which are
tightly bound to the nucleus. Consequently, only valence electrons actively participate in chemical bonding, while
core electrons remain inert. When discussing systems composed of multiple heavy atoms, it becomes essential to
employ the frozen core approximation '8.

According to Sholl and Steckel in their book Density Functional Theory: A Practical Introduction®, a pseudopo-
tential is an effective potential that substitutes the electron density from core electrons with a regularized electronic
charge density, designed to replicate the crucial physical and mathematical characteristics of actual ionic nuclei.
Its utilization allows us to allocate computational resources exclusively to valence electrons while conserving core
electrons in their isolated atomic states, simplifying calculations. An essential characteristic of pseudopotentials is
their transferability. This implies that once a pseudopotential is constructed for an isolated atom, it can be seamlessly
applied in diverse chemical environments without additional adjustments. The selection of a pseudopotential is
influenced by the minimum energy limit required for calculations. Pseudopotentials demanding high energy cutoffs
are commonly referred to as "hard", while those with lower cutoffs are termed "soft" 20 Among these, ultrasoft
pseudopotential (USPP) are prevalent due to their low energy cutoff values, although their construction involves

specifying several empirical parameters for each atom.

2.4 Density of States

In studying a material’s electronic structure, the electronic density of states (DOS) is of most significant importance
as it comprehensively describes the material’s electronic properties. The DOS refers explicitly to the density of
electronic states per unit of energy and per unit of volume when we talk about periodic systems, mathematically

written as>%:

p(E) d(E) = dE

) fd3k o(EKk) - E), (2.28)

with ¢ function as consequence of the derivative of the energy dE — 0.

In graphical representations of DOS, energy is typically measured in relation to the Fermi energy (Ey), which
represents the highest occupied electronic state at absolute zero temperature (T = 0K). To calculate it, one integrates
the electronic density derived from prior density functional theory (DFT) calculations across the k-space. This
information is then interpreted by identifying regions corresponding to the valence and conduction bands. The

valence band comprises all occupied electronic states, while the conduction band encompasses all unoccupied states
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(As shown in Fig.2.2). The presence or absence of a separation between these two bands defines what is commonly
referred to as the bandgap, and it contains no electronic states. Whether a material possesses a bandgap is a defining
factor in classifying it as a semiconductor, metal, or insulator. Furthermore, the properties of this bandgap often
dictate the practical applications of semiconductors in various technological fields.

PDOS (Projected Density o States) Gives the projection of particular orbital of particular atom on the density of
states. So, if you sum over all the projections, you will have the total density of state, or simple, the DOS

For a more precise understanding of localized states within a material, it is possible to decompose the electronic
density into components associated with specific orbitals. This decomposition is known as the Partial Density of
States (PDOS), defined as the number of electronic states with energies weighted by the fraction of the total electron

density corresponding to the volume surrounding a nucleus?’.
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Figure 2.2: Electronic density of states with respect to the Fermi energy (E) of our calculated Ce-UiO-66 metal-
organic framework presented in Section 4 with a clear differentiation of valence and conduction band and the presence

of a band gap that separates both bands for this particular case.
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2.5 Photocatalysis in MOF's

Photocatalysts, which facilitate chemical reactions upon absorbing light, can be solid semiconductors that must meet
specific criteria: efficient visible and/or UV light absorption, chemical stability, cost-effective and non-toxic?’. The
process involves exiting electrons from the valence band to the conduction band, leaving holes in VB, and forming
electron-hole pairs'3. These charge carriers migrate to the surface and participate in reactions with absorbed
substrates.

When light interacts with MOFs, it can generate charge separation states. MOFs exhibit four distinct frontier
orbital orientations, including ligand-ligand, ligand-metal, metal-ligand, and metal-metal excitations where the nature
of the band edge relies on MOFs composition®. Transitions between ligands and metals are of particular interest, as
they spatially separate electrons and holes, leading to prolonged exciton lifetimes thus prevents rapid recombination®,
a crucial factor for the photocatalytic activity of a material. To assess the efficiency of this charge transfer, it is
considered Ejycr, which measures the energy change during electron transfer from the excited bonding orbital to
the lowest unoccupied metal orbital’. An efficient photocatalytic MOF exhibits a lower energy level in the metal
orbital than the donor level (lowest unoccupied linker orbital), resulting in a negative E; yc7°>. This negative value
indicates the potential for long-lived charge-separated states, with the hole in the linker and the electron on the metal
ion?8,

Successful photocatalysis within metal-organic frameworks relies on extended carrier lifetimes, appropriate
redox potential for substrate reactions, efficient light absorption, rapid charge separation, and effective migration to

catalytic active sites for substrate interactions 3.

2.5.1 Ionization potential

Butler et al.*. have discovered an expression for understanding and explaining materials’ electrochemical, pho-
tocatalytic, and photovoltaic properties. This expression involves integrating the electrostatic potential, with @
representing the spherical average of the potential, r as the radius, and V as the volume. It calculates the spherical
average of the electrostatic potential at the pore center:

D, (r) = f o (2.29)
\%4

This approach enables us to compare electronic energy variations by aligning them with the vacuum level, a process
made possible after identifying the plateau potential. The plateau potential defines the region within the unit cell
where the potential consistently remains stable®. We can establish the positions of the edges of the valence (VB) and
conduction (CB) bands with respect to the vacuum level, thus facilitating comparisons with reaction potentials, such
as those governing water oxidation and hydrogen reduction. Therefore, for the desired electron transfer processes to
occur after irradiation, the edges of the conduction band must be situated above the reduction potential. In contrast,

the edges of the valence band remain below that of the desired reaction®.






Chapter 3

Methodology

This chapter provides a comprehensive overview of the methodologies and tools employed throughout this study
to analyze electronic structure. It covers the construction of metal-organic frameworks and the establishment of
optimal computational parameters for framework relaxation calculations. Additionally, it explains the management
of input and output files for VASP simulations, electrostatic potentials to determine vacuum potentials, and analytical
programs, including VESTA, Mathematica, and Python, to extract and interpret essential data.

3.1 Building the Structures

The construction of organometallic structures was performed computationally using Material Studio, with our
primary objective being the discovery of efficient photocatalytic materials. As a result, the main structure for most
calculations was based on the MgO4(OH)4 node, consisting of six cerium (Ce) metal ions and twelve 1, 4-benzene-
dicarboxylate (BDC) ligands, which gives rise to a unit cell formed by 114 atoms. This combination forms the
Ce-UiO-66 metal-organic framework (MOF), as illustrated in Fig.3.1.

After obtaining the cerium-based structure, subsequent modifications became more straightforward. In this study,
we build eight distinct structures: two of them were derived from altering the metal in the node (M = Ti, Ce), three
resulted from combinations of the previous metals (M = Ti3;Ces3), and the remaining three emerged through the linker
functionalization. The metal change within the node was done simply by selecting the atom and choosing the desired
metal. Introducing metallic mixtures was more complex since identifying the possible arrangements depended on
the resulting symmetry; a different symmetry indicated a new configuration. In Fig.3.2, the obtained SBUs during
the node modification are shown.

As mentioned above, the generated cells initially contained at least one hundred atoms. As modifications were
introduced, particularly in cases involving topological defects, this count increased to over four hundred atoms. To
handle these calculations computationally, we harnessed the processing power of a supercomputer at the University
of Gdansk in Poland.
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Figure 3.1: Building Metal-Organic Frameworks a) MOF’s node constructed with cerium metal ions b) 1, 4-benzene-
dicarboxylate (BDC) linker ¢) Ce-UiO-66 resulting structure.

Figure 3.2: Collections of the nodes or Secondary Building Units obtained with a) Titanium metal and mixed metals
ions differentiated by their symmetry b) Ti3Ces (Sym1) c) TizCes; (Sym8) d) TizCes (Sym160).
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3.1.1 Introducing Defects

Any defect in the MOF must be handled with care since any alteration in the node or the ligand affects the porosity,
catalytic activity, absorption capacity, and structure, enhancing some properties but decreasing stability . The
bandgap, defined as the difference in energy between the valence and conduction bands, plays a crucial role in
photocatalysts. It represents the minimum energy required for an absorbed photon to generate an electron-hole
charge carrier pair, which can then be directed to active sites, driving redox reactions*’. Since much of the solar
energy falls within the visible region, it is essential that the proposed materials have photoactivity within this
spectrum. A very effective method for this involves functionalizing the linker with specific substituents, such as
amino groups and amides, capable of absorbing visible light and increasing the number of occupied states near the
valence band*!.

Generally, the catalytic activity in MOFs originates mainly from unsaturated metal centers, although it may
depend on catalytic species within the pores. However, the functionalization of the ligands also modifies the catalytic
performance. Thus, we analyze the distribution of energy bands with amine functionalization of only one linker
shown in Fig.3.3.

a)

CelJOM H[] cENITE

Figure 3.3: Functionalizing the linker with an amine group: a) X denotes the amine’s position in forming the
2-aminobenzene- 1,4-dicarboxylate ligand. b) Depicts the primitive cell of the topological defect at single linker
functionalization (Ce-UiO-66-NH,), while ¢) corresponds to the unit cell of Sym8 after linker functionalization,
resulting in the Sym8-UiO-66-(NH,)
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3.2 Computational Parameters

In preparation for running VASP scripts, we initiated the process by determining essential parameters, including
cutoff values and k-point selections. Following this, we obtained an optimal volume to determine the optimal
configuration for electronic density and vacuum potential data.

3.2.1 Cutoff Energy (E.,)

In our previous discussion, we emphasized the significance of the cutoff energy (E.,,) in VASP calculations. Now,
let us delve into the process of selecting this parameter for different structures.
E.,. is chosen with reference to the highest kinetic energy in the system, typically that of a free electron*:

1
Eou > E|k +G) 3.1

It sets an upper limit for including plane waves in the calculation, ensuring accuracy. In systems with multiple atoms,
a specific cutoff energy is assigned for each element, and the highest assigned value within the cell becomes the
overall cutoff energy?’. We established the cutoff individually for each system, taking into account a convergence
criterion of 1 meV. The E,; employed for calculations of Ce-UiO-66 (See Fig.3.4), and Ti-UiO-66 MOF (See Fig.3.5
for convergence sampling) corresponds to 1050 and 950 eV, respectively . When both metals were mixed in a single
node, we used the higher value of 1050 eV for all subsequent calculations.

3.2.2 K-points Selection

For sampling k-points, the Monkhorst-Pack method was used, which generates a grid of points spaced uniformly
along the irreducible Brillouin zone. Thus, having a large cell, a single point, is enough to describe the properties in
this zone. The center point is known as I'-point (k=0). It is important because the real and reciprocal coordinates
coincide so that the wave functions are real, and no consideration is necessary for complex numbers. Using high
symmetry around this point further increases computational efficiency, reducing calculation time, with the choice
being advantageous for large-scale computations.

We selected the grid based on the total energy per atom with the set of k-points, using a gamma-centered
Monkhorst-Pack grid. It is important to note that the values of the analyzed k-mesh fall within the convergence range
of 1 meV. Therefore, a 1 x 1 x 1 grid is sufficient for the calculations with a separation of 6k = 0.07 A~".

3.2.3 Birch-Murnaghan Equation of States

It is time to describe how we determine the values for relaxing the structures. We will begin with the equation of
states, a mathematical expression used in condensed matter physics. It establishes a relationship between the system’s
volume V and the pressure P applied to it**. A general form of this relation is the third-order Birch-Murnaghan
equation of states, mathematically described as**:

(- - - of o)

3
P(V) = 530
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Figure 3.4: a) Selection of the plane wave cutoff energy b) Considering a range of 1 meV/atom, the convergence

starts with E.,, = 1050 eV for the Ce-system.
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Figure 3.5: a) Selection of the plane wave cutoff energy b) Considering a range of 1 meV/atom, the convergence

starts with E,, = 950 eV for the Ti-system.
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An expression for the pressure as a function of the volume where Vy, By and Bj, corresponds to the equilibrium
unit cell volume, the bulk modulus, and its first derivative with respect to the pressure, respectively or numerically

expressed®:
oP 0By
Bo= Voo, B = 220
°T gy T0T ap

Then, the theoretical ground state energy as a function of the unite cell volume E(V) can be easily evaluated

(3.3)

3
E(V)=Ey+ B+

using ab initio electronic techniques and fitting the data to Murnaghan equation*:
9V()BQ {

sl (2 o<

Thus, we have values for the properties of the structures studied in this work, especially By, a measure of the

material’s resistance under pressure and the volume that optimizes the energy for electronic density calculations.
It is important to mention that during relaxation, we allowed changes in volume, cell, and internal structure. The
equation of state also serves as an indicator of the accuracy of the chosen calculation parameters, such as k-points
and cutoff energy, based on the smoothness of the curve. Any dispersion of points would indicate that the parameter
base are not be solid.

3.3 VASP Implementation

Initial inputs are required to perform calculations in VASP: INCAR, KPOINTS, POSCAR, POTCAR (See Appendix.
A for detailed description). We start with the INCAR file, in which parameters such as cutoft energy and the
functional used to obtain the electronic structure are specified*®. We used Generalized Gradient Approximation:
PBESol, meta-GGA: r2SCAN and r2SCAN+rVV10 and hybrid functionals: HSEOQ6.

We followed with KPOINTS, which contains the k-points that describe the Brillioun Zone*’. For all the
calculations throughout this project, the Monkhorst-Pack method was used. The POSCAR file contains the cell
lattice vectors, atomic species, and ionic positions*®. Finally, the POTCAR has the pseudopotentials describing
atomic interactions for each species*’. To generate this file considering a system with more than one species like
our case, they must be arranged following the order described in POSCAR.

An executable is used that invokes the initial inputs and performs the calculation. As a result, various files are
generated, including:

* OUTCAR contains information on initial conditions, forces on atoms, local charges, magnetic moments, and

more Y.

» CONTCAR, with a format similar to POSCAR but written after each complete ion step>'.
» WAVECAR stores wave function coefficients in binary format>2.

» DOSCAR details the full and partial density of states>>.

Files like WAVECAR are essential for generating the density of states, whereas CONTCAR and DOSCAR enable
us to analyze the obtained density using Mathematica.
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Figure 3.7: The Birch-Murnaghan equation of state (represented by the solid blue line) is derived from fits to data
obtained with r2SCAN+rVV10 functional (represented as red dots) for the metal-organic framework (MOF) of
titanium. This analysis provides values for volume V = 2054.99 A® and bulk modulus By = 0.36 GPa
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3.4 Determining the Vacuum Potential

A major challenge in investigating porous structures for photocatalytic and photovoltaic applications was the need
for a reference scale for electronic energy levels. Butler et.al®. proposed a solution by accessing the potential of the
vacuum in the center of the pore, which establishes values for the binding of electrons in the material. Likewise, he
showed that the electrostatic potential at this same point can be used as a reference to locate electronic energy levels
on a scale.

Our research achieved this after optimizing the atomic structure, relaxing the atomic positions, and evaluating the
electron density, electrostatic potential, and bandgap obtained with the hybrid exchange functional method (HSE06).
A relevant part of our analysis was identifying the plane where the pore was located, whose distribution stabilizes as
it approaches the center and has the highest electrostatic potential value. To do this, the LOCPOT file was examined
in VESTA, followed by using the library SphericalAverage in python, which calculates the spherical average of the
electrostatic potential at the center point of the pore. In our study, we analyzed several planes, with the (1 0 -1) plane
yielding the highest electrostatic potential value.

Thus, we found spherical radii with dimensions ranging from 1 to 20 A, an electrostatic potential of 4.06 eV with
a variation of less than 1 x 1073V for the Ce-UiO-66 case. This potential value helped define the work function and
align the energy levels within our system.

Figure 3.8: A periodic representation of the Ce-UiO-66 structure with its electrostatic potential used to determine
the vacuum potential






Chapter 4

Results & Discussion

This section presents the results of our calculations performed using VASP. We provide the energy alignment of
each structure with respect to the vacuum level, which serves as a key parameter for comparing the photocatalytic

properties of these structures in the context of redox reactions.

4.1 PBESol, r’SCAN, r’SCAN+rVV10 and HSE06

We started this research by selecting the most suitable functional from among GGA (PBESol), MetaGGA (1> SCAN,
r?’SCAN+rVV10) and hybrid functionals (HSE06) to approximate the ground state energy and obtain an accurate
description of the electronic configuration in the system.

We compared different functionals using the experimental bandgap calculated with the ultra violet visible
(UV-Vis) spectra and Mott-Schottky (M-S) plot by Hu et al.>* of E, = 2.71 €V for the Ce-UiO-66 MOF. In our
computational analysis, we obtained bandgap estimates of 1.60 eV for PBESol, 1.73 eV for r?SCAN, 1.77 eV for
2SCAN+rVV10 and 2.78 eV for ’SCAN+rVV10/HSE06. The hybrid functional yielded the closest value to the
experimental result, with a small difference of only 0.07 eV. On the contrary, for ’SCAN+rVV10, r>’SCAN and
PBESol, the discrepancies increased to AE, = 0.94 eV, AE, = 0.98 eV and AE, = 1.78 eV, respectively. This
observation aligns with existing literature, which suggests that GGA functionals tend to underestimate bandgaps,
requiring the inclusion of exact exchange (Hartree-Fock)®. Overall, we observed lattice parameters ranging between
21.589-21.611 A (Table 4.1 provides the crystallographic data obtained by the functionals used). It is worth
noting that all the functionals overestimate the experimental value of the lattice parameter. However, among the
three, PBE and 2SCAN+rVV 10 yielded the lowest values, with a variation of Aa = 0.106 A. Since the bandgap of
r?’SCAN+rVV10 is the closest to the experimental value compared to PBE, we have opted to use the >’SCAN+rVV10
functional for future electronic calculations, taking into consideration the nature of the bonding within our structure.
Furthermore, our density of states analysis, as depicted in Fig.4.1, indicated minimal changes with GGA and meta
GGA functionals. However, the hybrid functional showed a notable shift in the conduction band, averaging 1.08 eV

higher than the other functionals and resulting in a E, closest to the experimentally observed.
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As a result, future electronic structure calculations will use 2ZSCAN+rVV 10, which offers computational effi-

ciency, and then refine the results using HSE06 due to its accurate estimation of band properties in these systems.

Table 4.1: Crystallographic and electronic structure data computed for Ce-UiO-66 with PBESol, r2SCAN,
r?’SCAN+rVV10 and r?’SCAN+rVV10/HSEQ06 functionals and Expt experimental values reported by Lammert
et al.*. Here a, b and c are the lattice parameters, a, 8 and y the angles, V,pi 18 the optimal volume, By the
bulk modulus, E.,, is the cutoff energy required for calculations and E, represents the bandgap. In the case of
r’SCAN+rVV10, the value of E, between brackets is the computed electronic structure using HSE06 with the
optimal structure yielded by r’SCAN+rVV10.

Property  PBESol r’SCAN r’SCAN+rVV10  Expt.

a=b=c(A) 21579 21611 21.580 21.4734
a=B=y(C) 60.00 60.00 60.00 60.00
Vopr (A%) 2509.61 2523.15 2512.27 2475.25*%
B, (GPa) 0.29 0.28 0.30
Ecu (V) 950 950 1050
E, (eV) 1.60 1.73 1.77 [2.78] 2.71%

4.2 Node Modifications

Our study focuses on modifying the nodes within the Zr-UiO-66 metal-organic framework to improve its photocat-
alytic properties. To begin, we replaced the original Zr metal nodes with Cerium (Ce) and Titanium (Ti) as our

initial step.

4.2.1 Ce-UiO-66
Electronic density analysis

After achieving convergence of the initial parameters (k-points and E,,,) with a total energy within 1 meV per atom,
we proceeded to compute the optimal relaxed structure using the > SCAN+rVV10 functional. Fig.4.2 a) the unit cell
presenting the arrangements of atoms in this optimal structure. A curve fitting analysis using the third-degree Birch-
Murnaghan equation was computed to extract essential material properties, including volume and bulk modulus.
The outcomes of this analysis are presented in Table 4.2, alongside the crystallographic data.

In pursuit of a more precise characterization of the electron density within the material, the HSE06 hybrid
functional was employed to the r’SCAN+rVV10 previous calculations. The result yields a DOSCAR file used for
plotting the Partial Density of States (PDOS). Fig. 4.3 illustrates the PDOS with the contribution of each atom to
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Figure 4.1: Computed Partial density of states corresponding to the Ce-UiO-66 system with the functionals:
a)PBESol, b)r2SCAN, ¢)r’SCAN+rVV10, and d) r?SCAN+rVV10/HSE06, with an energy difference between
valence and conduction band of 1.60 eV, 1.73 eV, 1.77 eV, and 2.78 eV, respectively.
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the electronic bands. In this PDOS plot, it is evident that a bandgap exists separating the valence and conduction
bands, with a measured value of E, = 2.78 eV. Additionally, we can distinguish the predominant contributions within
each band. The atoms constituting the linker (C, H, O) are notably predominant in the valence band, while in the
conduction band, the major contributions are coming from the metal in the node (Ce in this case).

Electrostatic and vacuum potential

While the DOSCAR file is being generated, a LOCPOT file is also created containing the electrostatic potential
values of the material. This LOCPOT file is then analyzed in VESTA to identify the maximum potential value at
the center of one of three distinct pores within this structure. This specific pore records a reference value of 4.06 eV
for electrostatic potential within the (1 O -1) plane, precisely at a quarter of the distance from the lattice vector, as
indicated in Fig.4.4 with a circle. Their corresponding vacuum potential or work function ® = 7.60 eV. Aligning the
electron density data with the vacuum potential allowed us to precisely determine the bandgap value E, = 2.78 V.
By analyzing Fig.4.5 a) that shows the band alignment with respect to the vacuum potential, it becomes apparent
that ligand-to-metal charge transfer (LMCT) phenomenon occurs similarly than in Zr-UiO-66 MOF>. From this
result, it is evident that the valence band, representing the highest unoccupied states, begins with the f orbital metal’s
contribution and exhibits an energy level lower than that of the lowest unoccupied linker orbital (See Appe