
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

A decentralized-based blockchain framework for scientific
manuscript peer-review

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor:

Julio Rogers Cajas Guncay

Tutor:

Manuel Eugenio Morocho Cayamcela, Ph.D.

Urcuqúı, Octubre de 2023

Autoŕıa

Yo, Julio Rogers Cajas Guncay, con cédula de identidad 0931505994, declaro que las
ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones y concep-
tualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y herramientas
utilizadas en la investigación, son de absoluta responsabilidad de el autor del trabajo de
integración curricular. Aśı mismo, me acojo a los reglamentos internos de la Universidad
de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Octubre 2023.

Julio Rogers Cajas Guncay
CI: 0931505994

ii

Autorización de publicación

Yo, Julio Rogers Cajas Guncay, con cédula de identidad 0931505994, cedo a la Uni-
versidad de investigación de Tecnoloǵıa Experimental Yachay, los derechos de publicación
de la presente obra, sin que deba haber un reconocimiento económico por este concepto.
Declaro además que el texto del presente trabajo de titulación no podrá ser cedido a
ninguna empresa editorial para su publicación u otros fines, sin contar previamente con la
autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este tra-
bajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto en el
Art. 144 de la Ley Orgánica de Educación Superior.

Urcuqúı, Octubre 2023.

Julio Rogers Cajas Guncay
CI: 0931505994

iv

Dedication

This work is dedicated to the child I once was, the one who dreamt big and viewed the
future with eyes full of hope. To the teenager who, with a mix of nervousness and

excitement, first stepped through the gates of Yachay Tech, brimming with dreams and
aspirations. And to my future self, for whom I hope to meet the expectations and make

all the people I mentioned in the Acknowledgments section proud.

v

vi

Acknowledgments

I would like to express my gratitude to my father, a sir for whom I hold great admiration.
He has continually provided everything a son needs during his university journey: love,
support, trust, and opportunities. My mother Rosa also deserves my heartfelt thanks
for her unwavering care and love, and for nurturing my academic growth from an early
age. I also appreciate my siblings, Shirley, Alex, and Lurdes, for their valuable advice,
encouragement, and confidence. To my cherished nephews, Lussiana, Alyssa, and Julian,
you are the source of my daily joy, motivation and love. My heartfelt gratitude extends
to the close-knit circle of friends I formed during this phase of my life, namely Harvey,
Franz, Genesis, Ricardo, Maily, Kevin, Steven, Danna, Anthony, Hector, Ivan, Dayana,
and Esther. Your friendship and support have been invaluable. However, there are dozens
of other people whose friendships have been vital to my journey. They have enriched my
experience with their advice, support, and companionship. I am grateful to my peers
from my generation, my housemates, especially those from I-33, my companions from
Memes Yachay Tech who brought smiles to my face and occasionally led me into trouble.
I also appreciate the people and friends I met through the clubs I joined, especially the
“Club de Ciencias Computacionales”. My heartfelt appreciation goes to “Los Bandidos de
la 27.” With them, I found a sense of belonging and deep affection; Mariu, Tati, Salpi,
Emilio, Sam, Carlos, Nando, and Maithe - your companionship made our shared moments
truly memorable. Nevertheless, several people are missing, people I met through other
circumstances, I mean those friends with whom I shared very few moments, but they were
significant. On the other hand, I haven’t forgotten those I once considered special, with
whom I shared memorable moments. Due to various circumstances, they’re no longer part
of my life. Yet, their influence and contribution to my life remain. I would also like to
thank the person who appeared at the end of my university journey, but who has quickly
earned a very special place in my life and in these acknowledgments, Diana, thank you for
your trust and support. Now, I would like to express my gratitude to those who have been
instrumental in my academic development—my teachers. I hold a special appreciation
for those who guided me, believed in me, and sparked my interest in the subjects they
taught. This includes Israel Pineda, Alexandra Jima, Manuel Morocho, Freddy Cuenca,
Juan Mayorga, Simone Belli, Erick Cuenca, Zenaida Castillo, Juan Lobos, and Kamil
Makowski. Despite my shortcomings as a student, in one way or another they helped me
a lot. I conclude this section by once again acknowledging Manuel Morocho, my thesis
advisor, Juan Riofrio, my unofficial co-advisor, and Alexandra Jima, Franz Guzman and
Nicolas Serrano. Their guidance, shared knowledge, and insightful recommendations have
been pivotal in the completion of my degree.

PS: I also extend my gratitude to my lifelong love, the Barcelona Sporting Club.

vii

viii

Abstract

The peer-review is the traditional process that a scientific journal implements prior to the
publication of a research. The purpose of this procedure is for other experts to carry out
a rigorous and consistent review of the submitted manuscript, and in this way they verify
the veracity of the results. However, this review technique has received various criticisms
throughout its existence. Including concerns about the low quality of the reviews, the
high cost of publication, the lack of transparency of the review, the non-remuneration
of reviewers, among others. Several alternatives proposals have been raised to provide
a solution or improvement to these challenges. However, these solutions have not been
transcendental. In recent years, proposals using blockchain technology and the benefits
that a decentralized system offers have appeared. The problem with these proposals is
that they tend to be theoretical, simple, or limited. This graduation project is presented
as a better blockchain alternative that encompasses more qualities around the peer-review.
This work propose a decentralized system that houses scientific journals that wish to use a
peer-review infrastructure with different types of protocols. These protocols take advantage
of the benefits of blockchain technology to solve or improve the challenges of the existing
peer-review. Through the use of smart contracts, the interoperability of the proposal is
evaluated. As well as the execution and transaction time, the computational costs and
the real cost in ethers and dollars. These metrics are compared with the ones obtained by
other proposals based on blockchain. The results show that the costs of this proposal tend
to be higher due to the fact that it incorporates more functionalities, which allows a better
operability and quality of the process of each magazine.

Keywords: Peer-review, blockchain, decentralized science, decentralized sys-
tems, decentralized journals.

ix

x

Resumen

La revisión por pares, es el proceso tradicional que una revista cient́ıfica implementa pre-
vio a la publicación de una investigación. Este procedimiento tiene por objetivo que otros
expertos realicen una revisión rigurosa y consistente del manuscrito presentado, y de esta
manera puedan constatar la veracidad de los resultados. Sin embargo, esta tecnica de
revisión ha recibido diversas cŕıticas a lo largo de su existencia entre ellas están la pre-
ocupación por la baja calidad de las revisiones, el alto costo de publicación, la falta de
transparencia de la revisión, la no remuneración a los revisores entre otros. Debido a esto,
se han planteado varias propuestas de alternativas para dar una solución o mejora a estos
retos. Sin embargo estas soluciones no han sido trascendentales. En los últimos años han
aparecido propuestas usando la tecnoloǵıa blockchain y los beneficios que un sistema de-
scentralizado ofrece, pero estas propuestas tienden a ser teoricos, simples o limitadas. Es
por ello que este proyecto de graduación se presenta como una mejor alternativa blockchain
que engloba mas cualidades entorno a la revision por pares. Se propone un sistema descen-
tralizado que aloja revistas cient́ıficas que deseen ocupar una infraestructura de revision
por pares con diferentes tipos de protocolos que sacan provecho de los beneficios de la
tecnoloǵıa blockchain para mejorar y/o solucionar los retos que tiene la actual revision por
pares. Mediante el uso de smart contracts, se evalúa la interoperabilidad de la propuesta,
aśı como el tiempo de ejecución y transacción, los costos computacionales y costo real
en ethers y dólares. Estos parámetros son comparados con otras propuestas basadas en
blockchain, en donde se obtiene como resultados que los costos de esta propuesta tienden a
ser mayores debido a que acopla más funcionalidades lo que permite una mejor operatividad
y calidad del proceso de cada revista.

Palabras Clave: Cadena de bloques, revision por pares, ciencia descentral-
izada, sistemas descentralizados.

xi

xii

Contents

Dedication v

Acknowledgments vii

Abstract ix

Resumen xi

Contents xiii

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 1
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 2

2 Theoretical Framework 5
2.1 Academic and Scientific Environment . 5

2.1.1 Scientific Article . 6
2.1.2 Scientific Journals, Congresses, Conferences. 7
2.1.3 Academic Publishing Process . 8

2.2 The Decentralized System . 9
2.2.1 Distributed Ledger Technology . 10
2.2.2 The Blockchain System . 10
2.2.3 Ethereum . 12
2.2.4 Smart Contracts . 13
2.2.5 DApp . 14
2.2.6 Tokens . 16

xiii

3 State of the Art 17

4 Methodology 25
4.1 Theoretical Design . 25

4.1.1 Proof of Concept . 25
4.1.2 Proposal . 26
4.1.3 Community Network . 27
4.1.4 Journal Peer-Review Infrastructure(JPRI) 29

4.2 Practical Design . 35
4.2.1 Tools . 36
4.2.2 Smart Contracts . 38

4.3 Testing . 52
4.3.1 Manual Testing . 52
4.3.2 Automated Testing . 52
4.3.3 Testing Tools . 53
4.3.4 Testing Process . 53

5 Results and Discussion 57
5.1 Gas Cost Analysis . 57
5.2 Statistical Data on the Functions Gas Cost 64

6 Conclusions 69

Bibliography 71

xiv

List of Tables

3.1 Peer-review systems proposal comparison 22

5.1 Transaction and execution cost of the CommunityNetwork smart contract
functions in terms of gas and dollars. 59

5.2 Transaction and execution cost of the JPRI smart contract functions in
terms of gas and dollars. 61

5.3 Transaction and execution cost of the CommunityNetwork and JPRI smart
contracts in terms of gas and dollars. 63

5.4 Descriptive statistics of RandomSelection and RatingSelection functions. . 64
5.5 Descriptive statistics of AcceptOrRejectReview and Submition functions of

the JPRI. 65
5.6 Descriptive statistics of AnalyzeSGDecisions and FinalizeReview functions

of the JPRI. 66
5.7 Comparison table of the gas cost of similar functions by each proposal. . . 67

xv

xvi

List of Figures

2.1 Traditional academic publishing process. 8
2.2 Comparison of the structure of centralized, decentralized and distributed

systems . 10

4.1 Phases that contemplate the development of the project. 26
4.2 Process that has to pass a journal to be created. 28
4.3 General steps of the peer-review process. 30
4.4 General steps of the manuscript submission. 33
4.5 General steps of the 1st peer-review stage. 33
4.6 General steps of the 2nd peer-review stage. 34
4.7 General steps of the final stage of the process. 35

xvii

xviii

Chapter 1

Introduction

1.1 Background
In the academic area, scientific publications or literature are a great contribution for re-
search advances in different topics of science. These contributions are generated either by
students, proffesors or researchers which in most of the cases are published in academic
books or scientific journals. To publish in this last one, the manuscripts written by re-
searchers must go through a process to be considered a publishable scientific article. This
process is a review of the manuscript content, which in most of the cases is a peer-to-peer-
review method, which is a review by external fellow researchers who are close to the area
covered by the research. They will be responsible for verifying that the manuscript meets
certain journal requirements. Likewise, that the arguments presented in the investigation
have consistency, reliability, replicability, reproducibly and scientific validity.For example,
reviewers should ensure that the manuscript describes sufficient detail. In this manner,
an independent researcher can replicate the experiment or calculation performed and thus
verify the results obtained in the submitted research. In this process, journals typically do
not pay or compensate authors or reviewers.

On the other hand, in the technological and internet-based world, blockchain technology
has taken a great leap forward. It has captured the interest and enthusiasm of millions
of people [1]. Therefore, a large number of applications have been developed, with those
in the financial field having the greatest impact. This is due to the main properties that
characterize this technology such as decentralization, immutability, transparency, high-
availability, and anonymity.

1.2 Problem Statement
The system or process used by most scientific journals for the review of scientific articles has
been used for around 3 centuries [2]. However, this system has received several criticisms.
A part of the scientific community that has participated in the peer-review process, either
as a reviewer or as an author, has considered that this process has certain weaknesses and
problems. Among the problems that exist, and that often occur, is the bias that may

1

exist at the time of the review by the reviewers, either in favor of or against the author or
research topic. An example of this is the bias that can be generated when an author and
a reviewer are from the same country [3].

Other problems that is usually related to the current peer-review system, is the slowness
of the process to receive a response from the review. Regardless of the journal, it is
considered that the time that authors have to wait is extremely high [4]. This problem can
generate negative consequences for the author, an example of this is the fact that while
they wait for a response from their reviewers, research with similar results or processes
may be published first by other researchers [5].

On the other hand, we must also talk about the cost of publishing an article, which has
a term known as “article processing charge” (APC). This charge or cost is an amount used
to finance the review process and research publication. However, the problem around this
is generated due to the high cost that publishing represents in certain magazines, charging
values close to 4000 US dollars [6]. In addition to this problem, there is another nearby
one. Although journals or publishers charge authors a high fee for publishing their research,
in the review process, fellow scientists who serve as reviewers do not receive any reward
for their work. This can be indirectly associated with the fact that on several occasions
the reviewers perform low quality reviews. Due to this mechanism that magazines use, it
is estimated that the free work done by the reviewers is equivalent to a donation of one
billion dollars [7]. In 2020, the time employed in this labor were around 100 Million hours.
The monetary value of time spent reviewing manuscripts by US reviewers is estimated
to be over $1.5 billion, Chinese reviewers are estimated to be over $600 million, and UK
reviewers are estimated to be nearly $400 million [8].

1.3 Objectives
The objectives that are expected to be obtained from the completion of the project are
presented below:

1.3.1 General Objective
The main objective of this thesis is to offer the scientific world a proposal that could
improve the characteristics of the review processes of scientific articles. In this way, it
is contemplated to provide a blockchain-based system which can be used as a basis to
solve certain problems that currently occur in the peer-review process. In this way, it is
sought that either current journals can implement this proposed base in their processes,
or a totally decentralized system managed by the scientific community that uses this base
can be created.

1.3.2 Specific Objectives
• Investigate and analyze the different proposals that have been created as an alterna-

tive solution for the current challenges of the traditional peer-review process.

2

• Structure the characteristics and main components of the proposed system, such as
consensus protocols, system tokenization and connections between smart contracts.

• Present an infrastructure for the peer-review process that allows journals to customize
that process according to the variety of protocols to choose from.

• Build and demonstrate the interoperability of the proposed system using smart con-
tracts.

• Analyze the execution and transaction time, the computational and transactional
cost in terms of gas, ethers and dollars.

• Perform a comparative analysis of this proposal with other similar proposals.

• Present proposals for implementations that could be added to this base proposal for
future work.

3

4

Chapter 2

Theoretical Framework

In this section, we focus on two main areas, which are necessary knowledge to understand
this project. The first is the environment that encompasses the traditional publication
review system. In which the publishing companies are the regulatory entity. They are in
charge of managing the process of reviewing and publishing scientific articles. Regarding
this, we will analyze the process, as well as the key and most essential concepts for a good
understanding of this system. While the second area is the environment of decentralized
systems, focusing directly on blockchain technology and related. Blockchain has been one of
the most outstanding technologies in the last decade and promises to be a great revolution
for the Internet. Various projects and companies from areas such as financial services,
games, supply chains, and others have implemented this technology in their development.
Being the “Bitcoin” project in the financial services field, the most outstanding and the
one that started the heyday of the Blockchain. This project deals with a decentralized
and purely electronic cash system that allows making payments online without needing
a financial institution [9]. Regarding this second field, we will exhaustively analyze the
most relevant and necessary concepts for developing applications and projects using this
technology.

2.1 Academic and Scientific Environment
The scientific environment is a vast network that involves researchers, scholars, profession-
als, and institutions. They work together to develop the advancement of knowledge. In
addition, they understand and explain various factors regarding the different disciplines
that science encompasses. The main elements of the scientific community may vary de-
pending on the area or science subject field. However, several critical components are
essential to the functioning of this community. These include:

• Researchers and Scholars: They are the most important component of this ecosys-
tem. They conduct scientific research, develop new theories, and publish their results
in academic journals. These individuals are commonly highly educated and specialize
in a particular study field.

5

• Academic Institutions: This component includes universities and research insti-
tutions. They are essential in this community because they provide resources and
support for researchers, as well as opportunities for collaboration and networking.

• Peer-Review: An essential component on which this thesis focuses. Peer-Review
focuses on quality control, legitimization, and self-regulation of scientific research.
Peer-Review involves the work evaluation by experts peers in the same field [10].
They review and provide feedback on the work prior to publication.

• Scientific Journals: They are a vital component of the scientific community. They
are a means for researchers to publish and share their work with the world. This
component also provides a platform for researchers to receive feedback and criticism
of their work from their peers.

• Scientific Conferences and Meetings: These components provide researchers
and scholars with a space to present their work, learn about the latest developments
in their field, and network with other professionals. These events are essential for
promoting collaboration and advancing knowledge within the community.

• Funding Agencies: This component includes government institutions and private
foundations. They play an essential role in supporting scientific research and inno-
vation. These agencies provide financial resources and support for research develop-
ment.

• Ethics and Integrity: Crucial components are Ethics and integrity. In this ecosys-
tem, it is necessary to conduct research responsibly and ethically. The community
must follow ethical standards in all aspects that involve the development of research,
as well as in the interaction and collaboration with their colleagues and institutions.

2.1.1 Scientific Article
A scientific article is a document that clearly and precisely presents new research results
on a specific topic or field. A scientific article intends to contribute to the advancement of
knowledge and science. Researchers, scientists, and scholars write these articles to present
their research results, theories, or proposals to their peers and the larger scientific commu-
nity. This manuscript must offer all the necessary information so readers and reviewers can
understand and replicate the research and its results. Also, it mentions the contribution
it represents, the improvement and comparison with other articles, among other qualities
[11]. After creating and writing an article, the author(s) sends it to an academic journal,
congress, conference, or another specialized publication media. These articles go through a
rigorous peer-review process. In this way, the authors accomplish their goal of contributing
to the advancement of science. Scientific articles generally follow a specific format, which
typically includes the following sections:

1. Abstract: This is a summary of the article, usually 250 words or less. This provides
an overview of the motivation, problem statement, approach, methodology, results,
and discussions [12].

6

2. Introduction: This section provides the background and context of the problem
and the question that the research answers [13]. In addition, we can find here the
research objectives and hypotheses.

3. Methodology: This section describes the methods and procedures used to develop
the research. It must include all rigorous details in order to allow peers to reproduce
the results [14].

4. Results: This section presents the research findings. The results must be quickly,
clearly visible, and understandable [15]. Therefore, they are typically presented
through tables, graphs, or other visual aids.

5. Discussion: This section analyzes and interprets the results. It also discusses any
limitations or implications of the research. In addition, it suggests areas for future
research [16].

6. Conclusion: This section provides a summary of the essential findings and their
implications, and emphasizes the significance of the research.

2.1.2 Scientific Journals, Congresses, Conferences.
Journals, congresses, and conferences are all critical components in the academic and
scientific environment since they are how articles are shared with the community. Each
serves a different purpose in advancing knowledge and promoting collaboration among
scholars and researchers. Since centuries ago, they have been in charge of the management
and organization of the process that involves the publication of scientific articles. They
differ in the demand standards and processes each of them has. Most of these entities
charge the research authors a certain amount of money to publish their articles. In the
same way, they charge the readers of said articles. While most of the scientists who carry
out the review are not paid any economic value, their work is altruistic.

• Academic Journals: Academic journals are publication means that focus on spe-
cific subjects or scientific areas. Their goal is to disseminate the latest research
findings and insights in their focus fields. These journals often require rigorous peer-
review of submitted manuscripts to verify the quality of the article to be published.
Examples of well-known academic journals include Nature, Science, and The Lancet.

• Congresses: A scientific congress gathers scholars, researchers, and professionals
in a particular academic field. These events are usually held once or twice a year.
These provide a space for their participants to present their latest research findings.
In addition, we can find discussion panels, presentations of academic works, and
networking opportunities at congresses.

• Conferences: Conferences are similar to congresses but are often smaller in scale
and more focused on specific topics. Universities, professional associations, or private
organizations may hold them. Like congresses, conferences provide an opportunity
for the scientific community to share their work, learn about the latest developments
in their field of interest and collaborate with peers.

7

In summary, academic journals, congresses, and conferences play an essential role in
advancing knowledge and promoting collaboration among individuals in the scientific com-
munity. Each has a different purpose and offers unique benefits to the academic community.

2.1.3 Academic Publishing Process

Figure 2.1: Traditional academic publishing process.

The traditional process of publishing an article is a strict system that guarantees that
research results are analyzed and evaluated by experts in the research field. The process
consists of several stages: manuscript preparation, submission, peer-review, revisions, and
publication. It tends to have a structure like the one seen in Figure 2.1.

1. Manuscript preparation: The first step in the academic publishing process is
the preparation of a manuscript. Researchers usually write everything that pertains
to their research in a formal paper. They should follow the structure described in
subsection 2.1.1. Likewise, they must comply with the guidelines set by the specific
journal.

2. Submission: Once the manuscript is complete, it is submitted to a considered
academic publisher. The author must follow the submission guidelines, including
formatting requirements, word limits, and instructions for submitting supplementary
material [17]. After this step, The Editor-in-Chief may consider manuscript rejection
in case of detection of a significant or large number of errors in a prior verification
stage. If the above does not happen, the editor-in-chief proceeds to send the paper
to an associated editor with the required knowledge in the manuscript area. The
associated editor is in charge of finding a team of experts who will perform the role
of peer-reviewers.

8

3. Peer-Review: This is the step where the peer-reviewers evaluate the manuscript
based on the quality, clarity, originality, and rigor of the research [10]. The reviewers
provide feedback and criticism about the manuscript to the author, who then has
the opportunity to revise and improve the manuscript. Finally, they send the results
of their review to the associate editor. There are four well-known peer-review types:
a single-blind, double-blind, open, and post-publication review. [18].

4. Associated Editor Decision: After receiving the results from the peer-reviewers,
the associated editor decides to reject the manuscript, approve it, or reject it until
the next submission, where the author considers and makes the changes that the
reviewers suggested.

• Feedback Revision If the manuscript was not accepted but received feedback,
the author should revise the manuscript accordingly. This may involve changing
the writing style, research design, or data analysis. Once the revision and the
improvements are complete, the author can resubmit the manuscript to the
journal or publisher for further review.

• Acceptance: If the manuscript meets the quality parameters and guidelines
requested by the journal, The publisher will accept the research for publica-
tion. The editor will work with the author to finalize the manuscript, including
formatting, editing, and proofreading.

5. Publication: Once all corrections, enhancements, and additions of details are fin-
ished, the academic journal will publish the manuscript. The publication may be
available in print or online and may be subject to copyright restrictions.

Ethics is a fundamental characteristic of this process. Authors, reviewers, and editors
must adhere to ethical standards at every process step. Researchers must ensure that their
work is original, authentic, accurate, and well-cited.

2.2 The Decentralized System
A decentralized system does not depend on a central unit as the control and management
authority of the network, as opposed to centralized networks. A decentralized network
replaces the central unit with a set of units that exercise the coordination and control of the
network. However, there is one more type of network, the distributed system. It is different
from the conventional (centralized) system. Because it is characterized by not having
control units for the network, but rather all the computers or nodes are interconnected
[19]. Since control does not depend on any node in particular, it eliminates the existing
problems in the other two types of networks where if the control node fails, its dependents
also fail. On the contrary, in a distributed system, if a node fails, it does not affect the rest
of the network. Figure 2.2 shows the differences in the structures of the recently mentioned
models.

9

Figure 2.2: Comparison of the structure of centralized, decentralized and distributed sys-
tems

2.2.1 Distributed Ledger Technology
A distributed ledger technology (DLT) is a system based on a distributed system used for
storing, exchanging, registering, and distributing data between the nodes that belong to
the network. This enables us to have a complete history of all the changes in the data.

2.2.2 The Blockchain System
The blockchain system could be considered a type of DLT since it is an extensive list
of information blocks connected through cryptographic hashes. Blocks are a set of data
about transactions within the blockchain. Each block contains information about the
cryptographic hash of the previous block; it also contains a timestamp and the stored
data. The number of transactions stored in a block is usually based on a set time. In
this way, a connected chain of blocks is formed whose information cannot be modified. If
there is an alteration in the block information, its cryptographic hash will be altered, and
therefore it will not match with the one registered in the successor block. This feature
makes the system cryptographically secure and immutable, allowing participants to trust
the stored information. On the other hand, this system has consensus rules to maintain
consistency in the information in each network node. From another point of view, the
blockchain system is also considered a linked list that uses hash pointers that refer to the
previous block [20].

All these registers or blocks are stored and distributed to the network nodes. Therefore,
each participant with a node has a copy of the complete ledger.

These data will be updated or changed through transactions, representing any move-
ment, operation, or change of state of data in the network. Each node can carry out a
transaction. However, the rest of the nodes must validate and accept this transaction.
Blockchain uses a consensus mechanism that allows credibility and consistency in the in-
formation stored in the network. Consensus mechanisms allow the system to ensure that

10

the new blocks added are legitimate and do not contain falsified information. Some of these
mechanisms are proof-of-work (PoW), proof-of-stake (PoS), and delegated proof-of-stake
(DPOS), among others. The work of the nodes will be to generate a cryptographic hash
for the legitimate block. Consensus protocols focus on the steps before hash generation.
PoW is essentially about reaching certain computational effort requirements to generate
a cryptographic hash [21]. Consequently, once a node generates a hash, the rest of the
nodes check if the generated hash is correct and approve it. Since all the nodes compete
simultaneously to generate the hash, the system is not energy-efficient.

Due to the inefficient use of energy that characterizes PoW, other alternatives were cre-
ated, such as Proof of Stake (PoS). Which requires less energy since there are no limitations
that hinder the creation of the hash; therefore, it is easier to generate one [22]. The node
selected to generate the hash is randomly chosen from the nodes with the highest number
of coins. This is because if the system suffers an attack, this will cause a devaluation of the
currency. Consequently, wealthy stakeholders do not want any attack or vulnerability of
the network. On the other hand, the DPOS is similar to the previous proof; the difference
is that the stakeholders with more currencies delegate the mining work to another chosen
node [22].

These consensus algorithms offer cryptocurrency as a reward to the nodes that have
validated the blocks. Besides, charge a fee to the nodes that have sent a transaction to be
validated.

Types of Blockchain

Four main types of blockchain are known: public, private, consortium and hybrid.
1. Public

A public blockchain is a decentralized network open to anyone who wants to partic-
ipate. This means no access restrictions exist; anyone can have a node and mine.
This Permissionless blockchain usually offers economic incentives for those who work
on its development and security. Public blockchains are highly transparent, and all
transactions are recorded on a public ledger that anyone can access. In addition,
public blockchains rely on a distributed network of nodes to validate transactions
rather than a central authority [23]. Furthermore, public blockchains are highly se-
cure, but it also makes them slower and more resource-intensive than other types of
blockchains. The best-known and most outstanding blockchain projects are of this
type, such as Bitcoin [9] or Ethereum [24].

2. Private
A private blockchain is a closed system with access restrictions to join or interact
with the network. A single entity or a group of entities controls the system. Due
to these features, the system becomes more secure than public blockchains but less
transparent [25]. Private blockchains can be faster and more efficient than public
blockchains as they do not require as much computational power to validate transac-
tions. Generally, users need to receive an invitation from the network administrators
to participate.

3. Consortium
A consortium blockchain is also called a federated blockchain. It is a kind of private

11

blockchain where multiple individuals work together to control the network [23]. De-
pending on the needs of the participants, consortium blockchain can be permissioned
or unpermissioned. They offer a balance between the security of private blockchains
and the transparency of public blockchains.

4. Hybrid
A hybrid blockchain is a system that combines the features of public and private
networks [25]. The blockchain features depend on the authorities or participants.
Therefore, this mixed blockchain is customized depending on the specific needs and
the purpose or reason why the blockchain is created.

2.2.3 Ethereum
Ethereum is a decentralized platform based on blockchain technology created by Vitalik
Buterin [26]. Unlike Bitcoin, Ethereum was born as a disruptive perspective to create
an instrument for the generation of decentralized applications that are managed through
smart contracts.

• Ethereum Virtual Machine
An essential piece in the Ethereum blockchain is its virtual machine, ‘Ethereum
Virtual Machine’ (EVM), which stores all Ethereum accounts and transactions [24].
It also executes smart contracts to improve or incorporate functionalities or projects
into the platform. Each participating node in the ethereum network has a copy of
the state of this machine. Participants can send a request for the use of this machine
to perform certain computations according to their interests. Given this, the rest of
the community of participants will verify, validate and execute the request. When
the computation is performed, a change in the state of the EVM is generated, which
is updated throughout the network. These computational requests are known as
transaction requests; they are stored on the blockcha in along with the state of the
machine [27]. The EVM uses its own programming language called Solidity.

• Ether Ether (ETH) is the native cryptocurrency of Ethereum. Ether is used to
pay transaction fees on the Ethereum network, as well as for the execution of smart
contracts and gas fees. Any participant who advertises a group action request must
supply a certain amount of ETH to the network as a bounty. The network can offer
this bounty to anyone who eventually performs the task of substantiating the group
action request, imposing corporal punishment, committing it to the blockchain, and
transmitting it to the network [28]. The amount of ETH paid corresponds to the
resources needed to try and do the computation. These bounties additionally fore-
stall malicious participants from deliberately clogging the network by requesting the
execution of infinite computation or different resource-intensive scripts, as these par-
ticipants should obtain computation resources. Ether is similar to Bitcoin in that it
is a digital currency that is stored and transferred electronically. Therefore, another
use of Ether is as a medium of exchange or investment. Like other cryptocurrencies,
the price of Ether is determined by supply and demand on cryptocurrency exchanges.
Investors can buy and hold Ether in the hopes that its value will increase over time,

12

or they can trade Ether for other cryptocurrencies or fiat currencies. Its versatil-
ity and potential for use in a wide range of applications have made it a popular
cryptocurrency among developers and investors.

• Gas
Gas is an essential component in the ethereum network. It is considered the fuel
needed for the operability of the network. Gas becomes a unit of measurement that
helps us to count the amount of computational effort that the Ethereum network
requires to execute a transaction or a smart contract [29]. Gas is used as a fee to pay
for three things on the Ethereum network:

– Smart contract execution: When the EVM executes a smart contract, the con-
tract developer has to pay a gas fee to compensate the miners who execute the
transaction. The cost of gas depends on the complexity of the smart contract
and the amount of computational effort required to execute it.

– Transaction processing: When a user sends a transaction on the network, he
or she must also pay a gas fee to the miners who validate and process the
transaction. Like the execution of a contract, the complexity of the transaction
and the amount of computational effort required determines the gas fee.

– Storage: In addition to smart contract execution and transaction processing,
storage on the Ethereum network requires a gas fee. Each piece of data (byte-
code) stored on the EVM requires a payment for the computational space and
effort.

2.2.4 Smart Contracts
A smart Contract is a self-executing programming code containing the program logic and
state data. It is executed as part of the transaction, assigned an address, and displayed
on the blockchain [30]. Essentially, it is a computer program that automatically enforces
the terms of a contract, eliminating the need for intermediaries [31]. Smart contracts are
an integral part of the blockchain ecosystem, as they enable the creation of decentralized
applications (dApps); this term will be explained in detail later. Smart contracts are
typically written in a programming language designed explicitly for creating them. The
best known is Solidity for the Ethereum network.

Smart contracts are automatically executed when certain conditions are met. For ex-
ample, if a seller and buyer enter into a smart contract that stipulates that the sale of an
artifact will be released once certain conditions for sale are met. Therefore, the payment
and delivery of the device will be released automatically once compliance with the condi-
tions is verified [32]. This eliminates the need for a third-party intermediary to oversee the
transaction.

Smart contracts, like the information stored on the network, are immutable. Therefore,
no one can perform corrections or improvements to the code. For this reason, before
deploying a smart contract on the ethereum network, it is first tested on the test net,
which are test networks that simulate the execution of the network for free.

Besides, participants do not write new code whenever they need to request a compu-
tation process on the EVM. Instead, application developers transfer programs (reusable

13

snippets of code) into the EVM state, and users build requests to execute these code
snippets with varied parameters.

Writing codes using smart contracts allows these programs to have the features that a
smart contract represents [32], such as the following:

• Decentralization: Since a decentralized network stores smart contracts, their fea-
tures can be inherited towards smart contracts. Among these characteristics is de-
centralization, where a central entity does not execute smart contracts but instead
by blockchain.

• Transparency: Smart contracts are visible to all participants on the blockchain
network, meaning they are fully transparent. This feature makes it easy to track the
progress of a contract.

• Immutability: Once a blockchain executes or stores a smart contract, it cannot be
changed. This feature ensures that the contract terms are followed as written and
eliminates the risk of fraud or manipulation.

• Self-executing: Smart contracts are programmed to execute automatically when
the conditions are fulfilled, eliminating the need for intermediaries to supervise the
fulfillment of the conditions.

• Programmability: Smart contracts are codes made by using a specific program-
ming language. Depending on the project, smart contracts can be adaptable for
different purposes. This feature makes them very versatile in various real-life situa-
tions.

• Trustlessness: Smart contracts are designed to offer the correct fulfillment of con-
ditions without the need for trust between the participants. This feature means that
they can be used to carry out transactions between two or more parties that do not
know or trust each other.

• Security: Smart contracts are very secure as they have protection by advanced
cryptography and decentralized blockchain network features. Consequently, this al-
lows them to be highly resistant to hacking and cyberattack threats. In addition, as
mentioned above, they are immutable. However, security also depends on the correct
writing of the smart contract code.

2.2.5 DApp
A decentralized application (Dapp) is a type of software application established in a de-
centralized network such as Ethereum [33]. In other words, it is an application that does
not depend on central servers like conventional applications. Its users interact with each
other directly without the need for intermediaries such as servers or middlemen. On the
front-end, Dapps use the same technologies as traditional Apps. However, on the back-end,
they differ by using smart contracts.

Since decentralized apps are developed through smart contracts, dapps inherit its char-
acteristics, such as decentralization, open-source, trustless, and transparent.

14

• Decentralized: There is no central authority that controls the application. Instead,
the network is maintained and validated by a distributed network of nodes. This
feature ensures that the app is highly resistant to censorship and hacking.

• Open-source: dApps are usually open source, which means their source code is pub-
licly available for anyone to inspect, modify, or contribute. This feature generates a
collaborative and transparent development community where anyone can participate
in the development, contribute an improvement to the application, or solve challenges
that the app presents [34].

• Trustless: dApps are designed to be trustless, meaning that users can interact with
the app and each other directly without the need for trusted third parties. This
is possible thanks to the self-executability of smart contracts that automate the
execution of transactions on the blockchain.

• Transparent: Transparency is due to the fact that all transactions and data stored
in the blockchain are publicly visible and auditable. This fact generates a high level of
responsibility and trust among users since all actions are recorded on the blockchain
and cannot be altered.

Some examples of dApps include:

• Decentralized Finance (DeFi) dApps: These are applications that provide fi-
nancial services, such as lending and trading, on a decentralized blockchain network.
Examples of DeFi dApps include Aave, Oasis, PWN, Uniswap, and Compound.

• Gaming dApps: These are applications that enable decentralized gaming experi-
ences. They use blockchain technology to ensure fairness, transparency, and in-game
asset ownership. Examples of gaming dApps include decentraland, cryptovoxels, dark
forest, and Axie Infinity.

• Supply Chain Management dApps: These applications provide end-to-end vis-
ibility and transparency for supply chain processes. They use blockchain technology
to track the journey of goods from production to distribution, ensuring authenticity
and preventing possible information loss. Examples of supply chain management
dApps include Provenance, VeChain, and OriginTrail.

• Social Media dApps: This kind of apps give users more control over their data
and content. These dApps aim to remove the centralized control of traditional social
media platforms and provide greater privacy and security to their users. Examples
of social media dApps include Steemit, Minds, and Memo.

• Identity Management dApps: These are applications that aim to provide secure,
decentralized identity verification solutions. These dApps use blockchain to create
immutable identity records, ensuring greater privacy and security for users. Examples
of identity management dApps include uPort, Civic, and SelfKey.

These are just a few examples of the most popular types of dApps out there. However,
blockchain technology continues to evolve, so we can expect many dApps to emerge across
various industries and use cases.

15

2.2.6 Tokens
In the blockchain ecosystem, a token is a widely used and very confusing term. Since it
is commonly confused with the term cryptocurrency, we can start by simplifying the term
token as a representation of an exchangeable digital asset. This asset can represent a par-
ticular value or utility in a decentralized network. Tokens are created and managed within
a blockchain, allowing for secure and transparent tracking of ownership and transactions.
The use given to this asset may vary depending on the purpose of each project.

Several different types of tokens can exist on a blockchain network, including:

• Currency tokens: These are tokens that serve as a digital currency. They allow
users to transact and store value on a blockchain network. Examples of these tokens
include Bitcoin, Ethereum, and Litecoin.

• Security tokens: These are tokens representing ownership or investment in an
underlying asset, such as a company or real estate. Securities laws regulate security
tokens and are subject to compliance with securities regulations.

• Utility tokens: These are tokens that provide access to a particular product or ser-
vice on a blockchain network. Utility tokens are not designed to be used as currency
but to provide a specific function or utility within the network.

• Non-fungible tokens (NFTs): These are tokens that represent a unique, one-of-
a-kind asset, such as artwork, collectibles, or virtual real estate. NFTs are often used
in gaming and digital art applications [35].

These are just a few definitions of known token types; however, many others exist, either
derivatives or similar to those above or entirely different. Tokenization is the process of
token creation, which is about creating a digital asset backed by a particular security
or utility. Tokens can be transferred between users on a decentralized network through
transactions; they are validated and recorded on the blockchain. This fact ensures that
the ownership and transaction history of the tokens are secure and transparent. In recent
years, tokens have become increasingly popular due to their ability to enable new forms of
value exchange and economic gain. In the coming years, more tokens belonging to different
types of decentralized projects may emerge.

16

Chapter 3

State of the Art

The first academic journal, called Journal des Scavans and Philosophical Transactions,
appeared in January 1665 [36]. Since then, the emergence of means for the publication
of scientific research began. In 1733, Medical Essays and Observations belonging to the
Medical Society of Edinburgh appeared, which became the first journal to be peer-reviewed
[2]. Over time, many other journals have emerged with different standards and focused on
various areas, some of which had a significant impact, such as Nature or Science. At the
beginning of the 90s, electronic journals emerged, like the Adonis journal that appeared in
1991 [37]. In those times, the movement of open-access journals also began, allowing the
public to read scientific articles without paying for them. Therefore, since its inception,
the environment of scientific publications has gone through different essential moments,
such as the use of peer-review, digitization, and open access. However, despite hundreds
of years, the system still in use is basically the same as the one implemented hundreds of
years ago. Due to its lack of updating, several problems characterize it, including slowness,
costs, inconsistencies, and biases, among others [38]. Faced with this scenario, various
proposals for improvement have emerged over the years; Next, we will present and analyze
a few recent and interesting proposals.

In 2020 a work was presented that focuses on combating three challenges. Among
them is that reviewers seek to be assigned to particular articles to provide positive or
negative reviews. For this, they have created a (randomized) algorithm for the assignment
of reviewers, which optimally solves the problem of assignment of reviewers, taking into
account the probability of assignment for any pair of reviewer-paper [39]. Secondly, in 2021,
Researchers from Carnegie Mellon University proposed the Peerreview4all system, which
they describe as an assignment algorithm based on an incremental max-ow procedure. This
project focuses on retrieving manuscripts that should have been accepted [40]. In the same
year, another proposal seeks to improve the performance and effectiveness of the process
using a parallel model built via the Monte Carlo method in a distributed manner [41].

Distancing ourselves a bit from this recent discussion in the previous paragraph. In the
last decade, several proposals, companies, and systems have emerged that use new technol-
ogy to solve particular problems in their environments; this technology is the blockchain.
The field that has used this technology the most is the financial field, with bitcoin [9] as
an outstanding project. The scientific ecosystem is no exception because, in recent years,
several projects have emerged focused on solving challenges or proposing improvements in

17

the scientific area through blockchain technology. Including the environment for scientific
article reviews.

In 2019, Leible et al. [42] researched open-science projects that use blockchain tech-
nology. This paper contains a specific section around projects focused on the publication
process. In this review, we found that the first projects of this kind have been carried
out since 2017, with proposals such as CryptSubmit, among other proposals such as those
presented by Spearpoint and Avital.

CryptSubmit is a system that addresses problems occurring during article reviews,
such as plagiarism and dissemination, due to technical problems. Their solution is a de-
centralized system that automatically creates verifiable timestamps around the submitted
manuscript [43]. To accomplish this, they use the Bitcoin blockchain and tools such as
OriginStamp. Gipp et al. tell us that their project does not prevent academic plagiarism
but that their system may deter some plagiarists. In their writing, they do not provide us
with a results section. Likewise, they mention that they integrated their conceptual pro-
posal into an open-source manuscript submission system. However, they do not provide
further information about the code, pseudocode, or repository link.

The proposal by Spearpoint focuses directly on an economic system that charges a price
to submit an article and review it[44]. This paper only has a theoretical proposal since it
does not present a prototype. However, it presents exciting ideas, such as using ORCID
for the registration of authors and reviewers. Spearpoint also mentions other ideas, like a
payment for the reviewer’s work. The payment amount depends on the review’s delivery
time—likewise, he proposes a payment to the authors according to the citations of their
articles. In a certain way, this article focuses on the financial aspect of the system and the
qualities that a system should have around the use of the token it has.

Avital’s proposal is similar to the previous one because it uses tokens to develop a
market-based peer-review payment system [45]. This paper considers that this proposal
can solve the congestion problem in the article review pipeline. In addition, the author
considers that the market regulation mechanisms allow controlling the quality and fairness
of the reviews. This system contemplates that the author pays with the system token,
which would be redistributed to the reviewers and to the system, where the reviewers
receive the highest amount for the work done.

As of 2019, a more significant number of proposals appear. They contain the same pat-
tern, but they differ in details. Among the proposals, we have PubChain [46], which deals
with a decentralized open-access platform for scientific publications which uses Blockchain
and IPFS technologies to share files between peers. In this way, they seek to solve a severe
problem, such as paid access to scientific research. They also believed peer-review tends to
be ineffective because reviewers do not receive a considerably adequate incentive for high-
quality reviews. This project has among its features to encourage authors, readers, and
reviewers through credits and rewards. This proposal performs a simulation with which
they evaluate the soundness of the incentive structure. In addition, they implemented a
prototype to demonstrate the critical characteristics proposed.

There is also a proposal [47], which focuses on the problems considered to have of
significant impact on the peer-review system. One of these problems is the slow and
expensive system, in addition to the fact that there is an unresolved bias. To solve this
problem, the proposal deals with a double-blind review system to preserve the anonymity
of authors and reviewers. It also addresses issues such as paying reviewers and inconsistent

18

and biased review metrics. That is why this project proposes a system that uses the
Hiperledger Fabric Blockchain and the interplanetary file system(IPFS). This proposal
presents a cryptocurrency called AcadCoin, which is used for financial transactions between
editors and reviewers. At the same time, access control serves to keep the reviews double-
blind. This system architecture distributes nodes between the blockchain and the IPFS.
This project used the Hyperledger Composer Playground environment to implement the
system.

Another exciting proposal [48] criticizes the current academic publication procedure
due to a lack of transparency in the review process—and no reviewers incentives. There
is also criticism that the scientific community has to pay to access scientific articles while
the same community performs the reviewing of the manuscripts for free. That is why they
propose Open-Pub, a decentralized academic publication scheme that is transparent but at
the same time preserves privacy using Blockchain technology. This proposal uses a double-
blind review to protect the identity of authors and reviewers. This project implements the
system in the Ethereum blockchain, with which the authors carried out performance and
efficiency tests.

In the same way as some previous proposals, we have another article [49] that also
presents an idea about using the token as an incentive for reviewers. They present their
proposal as an autonomous incentive system through the use of tokens, adding economic
and cryptographic mechanisms. They use a concept called TCR (Token-curated registry),
which is based on the idea of the free market and the material interest of individuals. With
this mechanism, they encourage reliable work and discourage unreliable work of reviewers.
The proposed system comprises 3 participants: the author, the reviewers, and the readers.
Where there is an incentivization for reviewers by being paid with tokens. The value of
these tokens depends directly on the journal’s credibility, which is why they stipulate that
if the work carried out by the reviewers is low-quality, then there would be less interest
in said journal. Consequently, the token’s value would be low, quite the opposite if the
quality of the reviews is high, in which case the token’s value would be high. So, through
this mechanism, it is sought that the reviews are of good quality for the own interests of
the reviewers.

One more proposal to consider is a blockchain application that empowers researchers,
publishers, and others to integrate and access peer-review information in a decentralized
data structure, such as blockchain [50]. In this way, they use the benefits of incorporating
this technology, such as immutability, decentralization, cryptography, and autonomy for
data security and privacy. This proposal presents an application integrating an open-access
peer-review journal such as F1000Research.

Another proposal is this paper [51] that focuses on presenting a self-organizing peer-
review in preprint. The authors added techniques, such as the concept of token economy
and blockchain technology, to the peer-review process. The first technique was used in an
incentive and penalty mechanism design for peer-reviewers; in this way, they seek to ensure
the quality of the publications. Regarding blockchain technology, they use its decentraliza-
tion characteristics for its implementation. However, they detail that the proposal cannot
guarantee a successful future due to negative traits such as problems with scalability, which
consequently has a lower performance of blockchain-based applications.

A proposal that encompasses more than scientific publications is the work presented
in the article [52], which seeks to combat centralization around the current systems that

19

manage conferences and journals specialized in scientific research. Likewise, it aims to con-
front specific negative characteristics, such as the lack of transparency. This is the reason
why they propose a decentralized alternative for the management of scientific conferences
and publications through decentralized technologies such as Blockchain and IPFS. This
proposal has a prototype portal where the authors can share articles with the organizers
of a scientific research event. Also, they implemented symmetric key encryption of the
articles to guarantee the confidentiality and authenticity of the intellectual property.

Among other exciting proposals, “Decentralized Science” (DecSci) [53] seeks to decen-
tralize the system around scientific publications. Their system uses distributed technolo-
gies such as blockchain and IPFS to create a decentralized peer-review system based on
an open-access infrastructure together with processes of transparent government. Unlike
other proposals, this one does not seek to reward reviewers with cryptocurrency but instead
enables a decentralized reviewer and review reputation system. Around this proposal, its
authors have created a proof of concept prototype, a minimum viable product, and a cost
analysis regarding the operations executed in the blockchain.

AntReview [54] is a project that offers a blockchain-based solution to address the draw-
backs of the peer-review process, which is time-consuming, unrecognized, and unremu-
nerated. To address these issues, Trovo and Massari propose an incentive protocol that
rewards scientists for their contributions to the work of other scientists. Additionally, they
implement a reputation system. This protocol allows authors to issue a call for peer-review,
and if there is a fulfillment of the requirements, the reviews will be audited and paid for
by the issuer. The system also implements a quadratic funding model to promote ethical
behavior. Unlike the other projects, the authors include their project repository link in the
paper.

Among the current proposals, one seeks to address the waiting time problem between
the submission for review and the first resolution [55]. Likewise, it aims to increase the
objectivity of the reviews, ensuring that there are no biases or human errors. To do so, they
propose a framework in the cloud based on blockchain technology, the latest technology
mentioned as a method to improve anonymity between authors and reviewers. This pro-
posal takes the exact structure of the current submission system but adds a decentralized
solution (blockchain) developed in a Java-based system.

An article [56] published in 2023 highlights problems with the traditional scientific
publishing system, such as high costs, slow review processes, and a lack of rewards for
contributors. To address these issues, the authors propose a blockchain-based decentralized
platform that uses Ethereum smart contracts to speed up the publication process, reduce
costs, and improve the quality of studies. The proposed system rewards cited editors,
reviewers, and authors and makes scientific articles available worldwide for a small fee. The
system was implemented using the Ethereum Virtual Machine and consists of a front-end,
a middleware, and a back-end. The system automatically finds the appropriate editors and
reviewers for related fields and rewards contributors with a token-based cryptocurrency.
The proposed platform aims to make scientific publications more accessible, traceable, and
decentralized.

Throughout this chapter, we review various investigations or system proposals with
similar objectives to this thesis project. However, most of these scientific articles are only
theoretical proposals, do not provide results, do not provide the code or project repository,
or do not have a prototype. So this limits us to making qualitative comparisons regarding

20

beneficial ideas and proposals that focus on different challenges, except for the AntReview
project [54], which provides the link to the project’s GitHub repository. Also, the DeSci
[53] project presents a code repository link and an evaluation table of the computational
cost of executing the system’s primary functions, expressing the cost in terms of gas, ethers,
and US dollars. These last two projects allow us to make a comparison with our proposal.

For qualitative analysis, we will consider the last four proposals analyzed, which are
the most recent. We will also take into account the traditional system for the comparison.
The parameters are the network type, economic incentive or tokenization, code availability,
IPFS usage, the type of system they have implemented, and their consensus mechanism.

21

Sy
st

em
T

yp
e

of
N

et
w

or
k

T
ok

en
iz

at
io

n
C

od
e

A
va

ila
bi

lit
y

IP
F

S
U

sa
ge

Sy
st

em
T

yp
e

T
ec

hn
iq

ue
s/

P
ro

to
co

ls
ad

di
ti

on

Tr
ad

iti
on

al
C

en
tr

al
iz

ed
N

o
N

o
N

o
Jo

ur
na

lP
ee

r-
R

ev
ie

w
Sy

st
em

N
o

D
eS

ci
[5

3]
Et

he
re

um
N

o
Ye

s
Ye

s
Jo

ur
na

lP
ee

r-
R

ev
ie

w
Sy

st
em

R
ep

ut
at

io
n

Sy
st

em

A
nt

s-
R

ev
ie

w
[5

4]
Et

he
re

um
N

o
Ye

s
Ye

s
Jo

ur
na

lP
ee

r-
R

ev
ie

w
Sy

st
em

St
an

da
rd

Bo
un

tie
s

G
az

is
et

al
.

[5
5]

Pr
op

os
al

D
ec

en
tr

al
ise

d
C

lo
ud

-b
as

ed
N

o
N

o
N

o
M

an
us

cr
ip

t
Su

bm
iss

io
n

Sy
st

em
C

lo
ud

-B
as

ed

Be
st

as
et

al
.

[5
6]

Pr
op

os
al

Et
he

re
um

Ye
s

N
o

N
o

Jo
ur

na
lP

ee
r-

R
ev

ie
w

Sy
st

em
To

ke
n

In
ce

nt
iv

e

O
ur

Pr
op

os
al

Et
he

re
um

Ye
s

Ye
s

Ye
s

Jo
ur

na
ls

Pe
er

-R
ev

ie
w

Ec
os

ys
te

m

Jo
ur

na
ls

N
et

wo
rk

.
To

ke
n

In
ce

nt
iv

e.
R

ew
ar

d
an

d
Pe

na
lty

pr
ot

oc
ol

.
R

ep
ut

at
io

n
Sy

st
em

.

Ta
bl

e
3.

1:
Pe

er
-r

ev
ie

w
sy

st
em

s
pr

op
os

al
co

m
pa

ris
on

22

In the table 3.1, we can see how each project differs in terms of characteristics. How-
ever, all of them are a peer-review system for a journal except our proposal. This project
contemplates a network of journals that use our peer-review infrastructure. Our infras-
tructure is characterized by offering various options of techniques and protocols for the
consideration of each journal, such as the incentive through payment with tokens like [56],
reward and penalty protocol that some oracle blockchain-based projects use like [57], or
a reputation system like [53]. In addition, journals will also be able to customize other
secondary features that are part of the peer-review system. In this way, our proposal differs
significantly from other proposals. Since our proposal not only seeks to present an alter-
native system that combats the shortcomings of the traditional system but also creates
an ecosystem for the scientific community. All of these features will be explained more
specifically in the methodology section.

23

24

Chapter 4

Methodology

The development or methodology of this proposal has 3 phases, theoretical design, practical
design, and testing. In the first segment, we will contemplate the initial idea and the
development of its main characteristics, such as the system design, workflow, operability,
interactivity scheme, and description of functions and protocols. On the other hand, in the
practical development, we describe the mechanisms and tools necessary to implement the
system proposed in the previous phase. Also, we specify the distribution of the functions
in different smart contracts and explain the pseudocode for each primary function. In this
way, the necessary process for the replication of the algorithm of this project is detailed.
The final section of the methodology involves testing. In this last phase, we will develop
unit tests to evaluate the correct functioning of the functions implemented in the previous
phase. Figure 4.1 summarizes structurally the phases of the project development, where
phase one simulates being the base of the creation. At the same time, the peak is the
testing of the application.

4.1 Theoretical Design

4.1.1 Proof of Concept
Several successful cases of ideas/projects implemented with the blockchain infrastructure
have generated significant results. Among them is the case of the most outstanding plat-
form using Blockchain technology, bitcoin. Bitcoin [9], as mentioned above, is the first
cryptocurrency created. Cryptocurrencies are digital assets used to exchange value just
like traditional money; it differs by using cryptography as a means of security for exchange
[58]. Bitcoin is currently the most used cryptocurrency with the greatest support globally.
Among the reasons why this project was born is to present a better alternative for the
finance environment. Where there is no central banking entity or trusted parties, thus pre-
senting decentralization as the basis of the project. Likewise, it takes banks off the map,
proposing a viable and scalable project for the community through proof-of-work protocols
and consensus systems. After more than a decade of its creation, this project has become
highly innovative and is an excellent alternative to traditional money; its acceptance is
growing every year.

25

Figure 4.1: Phases that contemplate the development of the project.

Taking into account the situation of the Bitcoin project, which presented a disruptive
alternative to the financial environment. This project proposal is similar in being a dis-
ruptive alternative in the scientific-academic environment. This project seeks to present a
proposal using a decentralized infrastructure within the web3 where the scientific commu-
nity can make use of the tools and benefits offered by blockchain technology. In that way,
the process of publishing and reviewing scientific articles will be improved. This project
expects that decentralized scientific journals will be managed by the scientific community
and not by publishers. However, thanks to the system’s design, existing journals with a
centralized hierarchy can also be hosted. In this way, regardless of the type of journal,
they will be able to use our peer-review mechanism.

4.1.2 Proposal
This project aims to offer a tool for peer-review, which different journals can use. We create
a system for adding centralized or decentralized journals to accomplish this. The tool offers
different protocols so journal developers can customize the peer-review model according to
each journal’s standards. Therefore, the project proposes the creation of a general system
for the community where users (scientists) can register and, at the same time, journals can
also join. When a journal is created, it will be able to choose the necessary features for the
peer-review model they wish to use. In this way, journals and users become the prominent
participants in the overall community system, which we will call the “community network”.
As for journals, they will have their own system for their peer-review process, which we

26

will call “journal peer-review infrastructure” or “JPRI”.

4.1.3 Community Network
This first system is not very complex; it is a simple system that aims to accommodate
users belonging to the scientific community, who will take on the role of reviewers, research
authors, or journal editors. It also seeks to host new or existing journals that wish to create
a JPRI. Additionally, the system will have its own token, which the different journals will
use for payment purposes in their peer-review processes. Therefore, for the design of this
system, we will focus on the creation of the structures and functionalities of the three
mentioned components in the following order:

1. Token

2. Journals

3. Users

Token

The system token is a transactional token; its functionality is essential since it will be used
for the system’s interoperability between participants and smart contracts, specifically for
publication payment, peer-review, and journal creation. We call the token of this project
“ThesisCoin” with its abbreviation “TSC”. We implement the standard functionalities that
an ERC20 token must have [59], such as:

• TotalSupply(): provides information about the total token supply.

• BalanceOf(): provides the account balance of the owner’s account.

• Transfer(): executes transfers of a specified number of tokens to a specified address.

• Approve(): allow a spender to withdraw a set number of tokens from a specified
account

• TransferFrom(): executes transfers of a specified number of tokens from a specified
address done by a spender.

These five functions will allow system users to transfer the token for payments, pur-
chases, or subscriptions, among other functions, securely. In the practical design section,
we can find a detail of each function, including the pseudocode for its implementation.

Journals

The journals are the most complex component of the Community Network section since,
at the time of their registration, the system will grant a specific Smart Contract for their
JPRI. In this section, we will discuss the functions prior to its creation, as well as the
declaration of the characteristics of its JPRI.

27

• RequestJournalCreation(): Request the creation of a JPRI for a magazine.

• SeeRequests(): Provides the list of Journals creation requests.

• VoteRequest(): Allows voting regarding creating a journal.

• SeeRequestStatus(): Allows visualizing the status of a journal creation request.

• CreateJournal(): Allows the creation of a JPRI for a magazine.

• SeeJournals(): Provides the list of existing journals.

Figure 4.2: Process that has to pass a journal to be created.

These are the main functions that are necessary for the process of creating a journal.
As can be seen in figure 4.2, to create one, journal developers must request permission for
its creation. Subsequently, the community will decide to approve or reject the request. In
consequence, a consensus protocol is necessary, which is described below:

In an established time, the consensus protocol used to approve or reject a request to
create a journal is by voluntary vote. In this way, the community decides which journals
could be created according to their analysis and perspectives. The journals with more than
50% of in favor votes will be approved. On the contrary, it will be rejected. In this way,
it is sought that predators or pseudo-real journals cannot enter to be part of the system
since the community will not allow it.

After the community has approved a journal for its creation, the journal’s developers
will be able to execute the proper functions for its creation, which also involves the creation
of a JPRI, whose structure will be analyzed later. In addition, the details of each function
belonging to this segment of creating a journal will be explained in the smart contracts
section of practical design.

28

Users

Users are fundamental to this system since they will be the community that makes this
project have a large scale and impact. This system will store the personal and academic
information of the users, as well as the research or reviews carried out in the various
journals indexed to the system. This information may be viewed or used by journals for
their peer-review processes. The functions that a user can perform are:

• UserRegister(): Allow registering as a user in the system.

• UpdateData(): Allows the user to update their personal data.

• BuyTokens(): This function was already explained in the Token section.

• SeeJournals(): This function was explained in the Journals section.

• VoteRequest(): This function was already explained in the previous section.

• Interact in the Peer-Review process: As such, the user will be able to perform many
more functions while interacting with the JPRI smart contract, where its functions
explanation will be in later sections.

This segment is short in terms of functions since it only involves user registration and
updating data functions. However, this does not mean that users have little relevance.
On the contrary, they are the ones who will execute many of the public functions of this
system. We already explained these functions in previous segments concerning tokens and
journals. Likewise, users will execute certain functions corresponding to the JPRI segment.

4.1.4 Journal Peer-Review Infrastructure(JPRI)
The JPRI is the system designed for a journal to implement its Peer-Review process with
blockchain technology’s features. As mentioned before, in order for a journal to have its
own peer-review tool, it must first request its creation in the Community Network system.
After the acceptance of the application, the journal can implement the generated JPRI
smart contract. The Peer-Review process proposed in this project consists of 4 general
steps, which are found in figure 4.3. There are two peer-review steps. The first has the
objective of being the review stage of the received manuscript, while the second has the
objective of reviewing the revision made in the first peer-review. Besides, the characteristics
of each stage may vary since the system offers to customize those stages according to the
parameters considered by each journal.

Before starting the peer-review process, in other words, to upload an article to a journal
or to be a reviewer for a journal, the user must first enroll in the journal. In order to enroll,
the system will check the address of the function performer if he/she is part of the users
of the Community Network system. Therefore, before the peer-review process, a journal
has an enrollment function. In addition, there is another function to change the status of
the reviewer role in the journal.

• Enrol(): Allows the user to enroll in a journal to participate in its peer-review process.

29

Figure 4.3: General steps of the peer-review process.

• ReviewerState(): Allows the user to update the reviewer role status.

On the other hand, the system must also consolidate certain functions around the
journals, specifically functions regarding the protocols and characteristics that the journals
chose at the time of their creation. Since the features of the JPRI model are according to
the selected parameters of a journal, we must establish a good structure and distribution
of those features in this step.

First Group Selection Protocols:

The system needs to establish the appropriate functions to choose the reviewers for the
first peer-review group. The system offers four selection options:

• RandomSelection(): picks reviewers at random.

• DesignationSelection(): allows a journal editor to choose reviewers.

• PostulationSelection(): allows reviewers to apply to review a manuscript.

• RatingSelection(): picks reviewers according to reputation and availability.

In this way, the system will choose the group of reviewers according to the chosen
protocol and the number of integrants established in the creation process of the journal.

Second Group Selection Protocols:

As in the previous selection segment, the system needs to establish the appropriate func-
tions to choose the reviewers that will conform to the second group of peer-reviewers.
However, there is also the possibility that this thread is performed directly by an editor
and not by a group of reviewers. Therefore, we established four selection functions:

• RandomSelection(): picks reviewers at random.

• EditorSelection(): picks a editor from the editor list.

• PostulationSelection(): allows reviewers to apply to review a manuscript.

• RatingSelection(): picks reviewers according to reputation and availability.

30

Incentive Protocols:

Finally, the system provides extra protocol options such as incentives and penalties. These
protocols are used in various real projects, such as financial projects or blockchain architec-
tures where miners carry out proof of stake. If the miner does a good job, he or she receives
an incentive, while if they seek to take advantage of the system dishonestly or by doing
a lousy job, then he receives a penalty. In this project, we implement protocol options
similar to those described above. The focus of these protocols is on the work performed
by the reviewers. However, these protocols can be controversial in this area. That is why
they are optional, and each journal will decide whether or not to add them according to
their parameters and visions.

• Token Incentive - Penalty Protocol: This protocol seeks to optimize reviews,
giving reviewers a greater incentive to do a good job. However, the question of
having a monetary incentive can result in fraudulent actions by reviewers. In these
cases, there is the counterpart of the incentive, which is the monetary penalty. The
determination of a good review is subject to the second review. The reviewers of
the second batch are specifically responsible for reviewing the first review. In this
protocol, the monetary value of the system token is at stake because, in a hypothetical
case where the reviewers carry out a dishonest job in the reviews, and despite this,
they receive an economic incentive. This situation would result in the journal losing
prestige and decreasing its users. Therefore the token’s value would be affected.

– TIPP(): receives payment and executes an incentive or penalty at the end of
the process.

A journal can implement this protocol in its JPRI infrastructure. However, to do so,
it must make certain clarifications, such as the necessary parameters to consider a
well-done review. In this way, there is no possibility of ambiguity.

• Rating Incentive - Penalty Protocol: This protocol is similar to the previous one.
However, it does not involve tokens but rather the reviewer’s reputation. In this way,
the incentive is for the reviewer to have greater recognition through positioning in a
ranking. At the same time, the penalty could also fall on the reputation, suspension,
or even exclusion from the system. Like the previous protocol, the journals must
provide the necessary clarifications for no ambiguities in the decisions.

– RIPP(): increases or decreases a reviewer’s rating according to the results of
their work.

• Payment Incentive Protocol: The system allows journals to choose economic
protocols, whether the journal charges a fee for the publication process or no fee. It
may also be the case that it is optional; an example of its use would be that the
process does not have a cost; however, there is an optional payment alternative for a
faster review and publication process. Therefore the payment alternatives are:

– PIP(): makes a payment to the reviewers.

31

Blind Peer-Review Protocol:

Blind peer-review is a common method used in academic publishing to ensure an impartial
and unbiased evaluation of research papers. Among the existing methods, we have:

• Single-blind review: In a single-blind review, reviewers do not know the identity of
the author(s) of the manuscript. Nevertheless, the reviewers’ identities are known to
the authors.

• Double-blind review: In a double-blind review, the authors and the reviewers conceal
their identities from each other.

• Triple-blind review: In a triple-blind review, the identities of the authors, reviewers,
and editors are all concealed from each other. This method is less common but is
used in some journals to ensure maximum impartiality and minimize bias.

This last method, Triple-blind review, is used in this project to respect the objectives
of this work about providing a system that allows for improving the characteristics of a
peer-review process.

In this segment, we describe all the protocols that involve the system. The details of
each function described in this segment will be specified in the smart contract development
section of the practical design.

Manuscript Submission

This is the first step of the process, where a user uploads a manuscript of research they have
carried out. We can assume that the primary function of this segment is only uploading
a file and the respective data associated with the research. However, the truth is that in
this segment, there are other necessary functions, such as those designed to execute the
functions corresponding to the reviewer group selection protocols. These functions are the
following:

• UploadManuscript(): allows the user to upload a manuscript.

• 1stReviewersSelection(): executes the function under the protocol that the journal
stipulated for the first reviewers group.

• 2ndReviewersSelection(): executes the function under the protocol that the journal
stipulated for the second reviewers group.

• IncentiveSelection(): executes the function under the protocol that the journal stip-
ulated for the incentive to reviewers.

The process that transcends the first stage consists of an internal process such as the
one seen in figure 4.4. The UploadManuscript function executes internally the rest of the
functions corresponding to the protocols.

32

Figure 4.4: General steps of the manuscript submission.

First Peer-Review

This is the second station of the process, where the selected reviewers must accept or reject
the assigned review; if accepted, the reviewer must continue to review the paper. In case
the journal has a token incentive-penalty protocol (TIPP), the reviewer must stake tokens.
After having carried out the review, the reviewer must upload the result and the respective
feedback or justification. If a reviewer does not agree to perform the review, the system
will select a replacement.

Figure 4.5: General steps of the 1st peer-review stage.

For the correct execution previously described, several functions will be needed, such
as:

• CheckPendingsReviews(): allows a reviewer to see their pending reviews.

• AcReReview(): allows a reviewer to accept or reject a review.

• OtherReviewer(): choose a new reviewer for a review process.

• UploadReview(): allows uploading the review result and its attachment.

33

Second Peer-Review

In this third part of the process, the system addresses the second review round, where
another selected reviewer group will evaluate the previous review. The objective of this
stage is to there a quality process. For this, the group of selected reviewers or the selected
editor must accept or reject the assigned work. In the editor’s case, it will simply upload
its result and the respective justification for its evaluation. The same happens for the
group of reviewers. However, the result will be according to the calculation regarding the
verdicts of each member of the group of reviewers.

Figure 4.6: General steps of the 2nd peer-review stage.

• CheckPendingsReviews(): allows a reviewer to see their pending reviews.

• AcReReview(): allows a reviewer to accept or reject a review.

• OtherReviewer(): choose a new reviewer for a review process.

• OtherEditor(): choose a new editor for a review process.

• UploadReview(): allows uploading the review result and its attachment.

• See1PRResult(): allows the second reviewers to see the work done by the first re-
viewers group.

Result

This is the last step of the process, where the manuscript can have three types of results,
either accepted, rejected, or needs changes. Therefore, the research author will be able to

34

review the result. If the manuscript neejeeds changes, the author can start the process by
re-uploading the manuscript. Likewise, in this step, the execution of the corresponding
incentive protocol is completed.

Figure 4.7: General steps of the final stage of the process.

• SeePRResults(): allows the author to see the peer-review result.

• ReuploadManuscript(): allows the author to reupload the manuscript.

• IncentiveProtocolExecution(): executes the incentive or penalty to the author ac-
cording to the protocol used by the journal.

4.2 Practical Design
In this section of the project, the objective is to present the procedure and the necessary
tools to implement a system that meets the fundamental characteristics of the project
detailed in the theoretical design. To perform this, we use different types of tools and
technologies to achieve the development of this project. We also present a segment where
we explain and provide a pseudo-code.

35

4.2.1 Tools
The necessary tools for the development of the project vary between those that are focused
on the backend and blockchain.

Backend Tools

• Solidity is the programming language that allows us to create smart contracts for
the Ethereum network [60]. It is a high-level language whose main objective is to
implement contracts simply and easily. Therefore, its syntax is very similar to that
of other high-level languages, such as JavaScript. This language would carry out all
the necessary logic for storage and operability within the blockchain. We use this
language to implement our system in smart contracts.

Blockchain Tools

• Remix is an open-source web-based Integrated Development Environment by the
Ethereum Foundation. Developers use Remix to write, test and deploy smart con-
tracts on the Ethereum blockchain or in a TestNet. It has a user-friendly interface,
a built-in Solidity compiler, a debugger, and a testing framework [61]. Remix has
become an essential tool for Ethereum developers and has been used to build a wide
range of decentralized applications (DApps) on the Ethereum blockchain. We will
use this IDE to write the code and connect it with other tools, such as Ganache and
Metamask.

• TestNet or Ethereum testnet is a network that imitates the Ethereum mainnet
without using real Ether [28]. Developers use testnets to test their smart contracts
without incurring the fees of the real Ethereum blockchain. Popular Ethereum test-
nets include Goerly, Sepolia, Ropsten, Rinkeby, and Kovan, providing a simulated
environment that closely reaches the actual EVM features for testing purposes. Using
testnets, developers can identify and fix bugs or issues before deploying their smart
contracts on the real Ethereum mainnet. So, it allows developers to ensure that their
smart contracts work as expected and minimizes the chance of losing real funds. Due
to this, we will use a test network to simulate the operation of the smart contract
without fee charges.

• Etherscan is a web-based tool that operates as a block explorer for the Ethereum
network or Testnets block explorer [62]. It allows users to explore transactions,
addresses, and smart contracts. Etherscan provides real-time updates on the latest
blocks, transactions, gas prices, and recorded data on past transactions and blocks.
Etherscan is widely used by Ethereum users and developers to explore and interact
with the Ethereum blockchain, providing a wealth of details and data for monitoring
and analyzing activity on the network. We use this tool to check the details of the
smart contract transactions, such as the gas used and the running time.

• Truffle Suite is an open-source development framework for building decentralized
applications and smart contracts. It simplifies the developing, testing, and deploy-
ing of smart contracts by providing a suite of tools, including a testing framework,

36

build pipeline, and automated contract deployment [63]. Truffle supports Solidity
programming language and blockchain platforms like Hyperledger Fabric and Corda.
We use the helpful Truffle tools to efficiently develop, test, and deploy the system’s
smart contracts.

• Ganache is a program belonging to the Truffle Suite. It is a personal blockchain
that facilitates the development of a blockchain environment locally [63]. This lo-
cal blockchain imitates the Ethereum network behavior. It deploys by default on
the user’s computer and provides a simple user interface for managing. It provides
accounts addresses with fictitious ethers to simulate transactions and interact with
smart contracts. It also supplies various testing tools and features that support de-
velopers in debugging and troubleshooting their smart contracts. We choose this
Truffle Suite component to test and deploy the project’s smart contracts locally.

• MetaMask is a digital wallet and a browser extension that allows netizens to connect
personal accounts and securely interact with decentralized applications [63]. In this
way, users integrate their browsers with the Ethereum blockchain technology. It
allows users to access and manage their Ethereum-based assets(tokens). Therefore,
they can easily send and receive cryptocurrency, swap, lend, borrow, and trade tokens.
We will use this application to test the token system’s operability using test accounts.

Complementary Tools

• Github is a web-based cloud service platform for version control using the Git version
control system to let teamwork create and merge code branches [64]. It also enables
multiple developers to store, share and work on the same codebase simultaneously.
For this reason, it is a good place for open-source software projects. GitHub provides
various features for collaboration, such as issue tracking, code reviews, and pull
requests. We use GitHub to host our code and share it with project-interested people.

• Visual Studio Code or VS Code is a free and open-source code editor [65]. It sup-
ports many programming languages and provides several features and functionalities
that help developers improve their work. It also has a large extension marketplace
that allows developers to customize and enhance their development environment with
additional tools and features. VS Code is known for its lightweight design, fast and
efficient development, and built-in terminal that allows developers to execute com-
mands and run scripts without leaving the editor. We use this code editor because
it allows us to plug in blockchain tools.

• InterPlanetary File System or IPFS is a distributed file system for storing and
sharing files in a peer-to-peer network [63]. A content-addressed hash identifies files,
and no central server is required. IPFS uses a Distributed Hash Table (DHT) to
manage the network and ensure that files are distributed and replicated across the
network, making them available and accessible. IPFS offers improved efficiency,
security, and resilience compared to traditional centralized file storage systems and
has a wide range of potential applications, including hosting decentralized websites
and providing a more secure and efficient way to share large files. We use this

37

platform to store large files such as manuscript pdfs. This method allows us to
reduce the Ethereum gas fee for data storage. So, we only attach the large files’
IPFS Content Identifier(CID) in the blockchain.

4.2.2 Smart Contracts
Using smart contracts, we implement all logic and necessary functions established in the
theoretical design stage. Following that steps, we create three smart contracts.

1. Contract for the creation of the Project Token.

2. Contract for the Community Network.

3. Contract for the Journal Peer-Review Infrastructure.

Token Smart Contract

In the theoretical design section, we established the token as a component of the Commu-
nity Network. At the time of code development, it is better to separate it into a specific
smart contract and focus only on the token. In this way, we can improve the readability,
consistency, and understanding of the distribution and development of our smart contracts.

For the development of the functionalities of the project token(THESIS), it is necessary
to define specific structures, variables, and functions such as the following:

1 variable t o ta lSupp ly = 10000 ;
2

3 #Here the amount o f tokens that each account (address) has w i l l
be saved .

4 dictionary ba l ance s [address] = int ;
5

6 #This d i c t i o n a r y w i l l have as i t s key a l i s t that w i l l s t o r e
two addresses , the f i r s t concern ing the ”owner” and the
second f o r the ” spender ” , whi l e the d i c t i o n a r y key value i s
the amount the owner a l l ows the spender to t r a n s f e r to a
th i rd account .

7

8 dictionary a l l owance s [l i s t]= int ;
9

10 function Sender . Address () {
11 #This func t i on r e tu rn s the address o f the account execut ing

the func t i on ; in the case o f s o l i d i t y , the cor re spond ing
func t i on i s ”msg . sender ” .

12 }

Now that we have declared some fundamental components, we can start with developing
the pseudo-code of the functions detailed in the theoretical section.

38

1. TotalSupply() is a simple function that does not contain input parameters; it sim-
ply returns the value assigned to the variable “ totalSupply”, as can be seen in the
following pseudocode:

1 function TotalSupply () {
2 return t o ta lSupp ly } ;
3 }

2. BalanceOf() It is a function that receives an input argument which is “address”
type; the objective of this function is to return the balance or number of tokens that
an account has. So inside the function, it is searched in the “ balances” dictionary
using the input argument as the key. In this way, the function returns the respective
value to the given key.

1 function BalanceOf (address account) {
2 return ba l ance s [account] ;
3 }

3. Transfer(), this function takes two input arguments, an address, and an integer. The
first is the address of the user who will receive the tokens. The second argument is
the number of tokens to be transferred. For this function, it is necessary to check that
the user has more tokens in his account than the amount indicated in the argument.
Then the account tokens amount will be updated in the dictionary.

1 function Trans fe r (address to , int amount) {
2 address From = Sender . Address () ;
3 i f (ba l ance s [From] >= amount) {
4 ba l ance s [From] −= amount ;
5 ba l ance s [t o] += amount ;
6 }
7 }

4. Approve(), This function takes two input arguments, an address, and an integer.
The first is the address of a user(spender) that will be allowed to use the tokens of
another user(owner) who runs the function. The second argument is the number of
tokens to be approved. The dictionary called “ allowances” stores these two input
arguments. The dictionary key is the list containing the addresses of the ‘ owner’
and the ‘ spender’, while the value is the ‘ amount’.

39

1 function Approve (address spender , int amount) {
2 address Owner = Sender . Address () ;
3 a l l owance s [Owner , spender]= amount ;
4 }

5. TransferFrom(), this function is similar to Transfer. The difference is that whoever
executes the function does not directly participate in the transfer of the token but
is a third party that was approved to transfer someone else’s tokens. This function
receives three parameters, the address of the owner of the tokens, the address of
the user who will receive the tokens., and the number of tokens to be transferred.
Within the function, there is a segment that verifies that whoever executes the func-
tion has the necessary permissions to carry out the transfer. Then the balances of
the owner and receiver addresses are updated. At the same time, the function mod-
ifies the“ allowances” dictionary, decreasing the number of tokens approved for the
performer(Spender).

1 function TransferFrom (address from , address to , int
amount) {

2 address Spender = Sender . Address () ;
3 i f (a l l owance s [from , Spender] >= amount) {
4 i f (ba l ance s [from] >= amount) {
5 ba l ance s [from] −= amount ;
6 ba l ance s [t o] += amount ;
7 a l l owance s [from , Spender] −= amount ;
8 }}}

Community Network Smart Contract: Journals

The Smart Contract will have components that represent the journals and the users. In
this section, we will focus on developing functions that correspond to journals. For the
development of the journal functions, it is necessary to define specific structures, variables,
and functions such as “journalrequest”, which is a structure where its components are the
necessary data for a request. We also have “ JournalRequests” which is a dictionary that
stores the journal creation requests. In addition, we have “Journal”, which is a structure
that contains the necessary data for the journal creation. We continue with the “NewId”
function, which aims to return an ID for a new request. Finally, we have the “TimeNow”
function, which aims to return the value of the current time.

1 Struc ture j o u r n a l r e q u e s t [address Requester , string Name ,
string AboutLink , time Time , string State , int UpVotes ,
int DownVotes] ;

2

3 d i c t Journa lRequest s [int] = j o u r n a l r e q u e s t ;

40

4

5 Struc ture j o u rn a l [string Name , string ReviewersProtoco l ,
string ReviewProtocol , int Cost , int Reviewers1 , int
Reviewers2] ;

6

7 d i c t Journa l s [address] = j o u r n a l ;
8

9 function NewId () {
10 i f (l ength (Journa lRequest s) >0){
11 return Journa lResques t s [−1] . i d + 1 ;
12 } else {
13 return 0 ;}
14 }
15

16 function TimeNow() {
17 #This func t i on r e tu rn s the va lue o f the ins tantaneous time

in which the func t i on i s executed .
18 }

Now that we have declared some fundamental components, we can start with developing
the pseudo-code of the functions detailed in the theoretical section.

1. RequestJournalCreation(), this function receives as parameters the necessary
data to generate a journal creation request structure and subsequently stores it in
the “ JournalRequests” dictionary.

1 function RequestJournalCreat ion (string name , string
about l i nk) {

2 j o u r n a l r e q u e s t NewJournalRequest = j o u r n a l r e q u e s t [Sender .
Address () , name , about l ink , TimeNow() , in
p r o g r e s s , 0 , 0] ;

3 address i d r e q u e s t = NewId ()
4 Journa lRequest s [i d r e q u e s t] = NewJournalRequest ;
5 return i d r e q u e s t ;
6 }

2. SeeRequests(), this is a simple function since it does not receive parameters; it
simply returns the dictionary of existing requests.

1 function SeeRequests () {
2 return Journa lRequest s ;
3 }

41

3. VoteRequest(), this function allows community users to vote for or against the
creation of a journal within an established time. Therefore, two parameters are
received. First, the ID of the request to which a user wants to cast their vote, and
the second one is the vote either “in favor” or “against”. Before saving the vote, the
function verifies that the function is running at the established voting time. If the
condition is fulfilled, the function continues to save the vote received.

1 function VoteRequest (int id , string vote) {
2 i f (TimeNow() − Journa lRequest s [i d] . Time < 604800) {
3 i f (vote == in f a v o r) {
4 Journa lRequest s [i d] . UpVotes+=1;
5 } else i f (vote == against) {
6 Journa lRequest s [i d] . DownVotes+=1;
7 } else {
8 return the time to vote i s over . }
9 }

4. SeeRequestStatus(), the purpose of this function is to display the status of a re-
quest. For this, the parameter is the request identifier. Subsequently, the function
checks if the voting time is over. If the time is up, the function returns the option
with the most votes. If the voting time is not over yet, it returns that the voting is
still in progress.

1 function SeeRequestStatus (int i d) {
2 i f (TimeNow() − Journa lRequest s [i d] . Time >= 604800

and Journa lRequest s [i d] . S ta t e == in p r o g r e s s
) {

3 i f (Journa lRequest s [i d] . UpVotes > Journa lRequest s [
i d] . DownVotes) {

4 Journa lRequest s [i d] . S ta t e = accepted ;
5 } else {
6 Journa lRequest s [i d] . S ta t e = rejected ;}}
7 return Journa lRequest s [i d] . S ta t e ;
8 }

5. CreateJournal(), to develop this function, a previous function is needed, which is
“GenerateJournalContract”, that will receive the JPRI template contract address as
an argument.

1 function GenerateJournalContract (address owner) {

42

2 #This func t i on aims to generate an address o f a Smart
Contract f o r the j o u r n a l that r e q u i r e s i t and meets
the requ i rements . The address generated w i l l be a
template o f the smart cont rac t (we w i l l c a l l i t ‘ ‘
J P R I C o n t r a c t) conta in ing the journa l ’ s Peer−Review

i n f r a s t r u c t u r e . The d e t a i l s o f t h i s template are in
the JPRI s e c t i o n .

3 return new JPRIContract (owner) ;
4 }

CreateJournal function receives as an argument the characteristics of the JPRI. First,
the function performs a verification of the journal creation approval. Subsequently,
the function generates a “journal” structure with the features data. Then, the func-
tion generates the respective JPRI contract for this journal. Finally, the function
stores all in the “ Journals” dictionary.

1 function CreateJournal (string name , string
r e v i e w e r s p r o t o c o l , string r ev i ewpro toco l , int cos t ,

int r ev i ewer s1 , int r e v i e w e r s 2 l) {
2 i f (Journa lRequest s [i d] . Requester == Sender . Address ()

and Journa lRequest s [i d] . S ta t e == accepted) {
3 j ou r na l NewJournal = jo u rn a l [name , r e v i e w e r s p r o t o c o l ,

r ev i ewpro toco l , co s t , r ev i ewer s1 , r e v i e w e r s 2) ;
4 address JournalAddress = GenerateJournalContract (sender

. address ()) ;
5 Journa l s [JournalAddress] = NewJournal ;
6 return JournalAddress ;
7 }
8 }

6. SeeJournals(), this is a simple function that does not contain parameters; it simply
aims to return the dictionary with the journals stored in the system.

1 function SeeJourna l s () {
2 return Journa l s ;
3 }

Community Network Smart Contract: Users

Users are the second component of this smart contract. In this section, we will focus
specifically on the development of user-related functions. For the development of these
functions, it is necessary to create a structure for the users where the essential data of the
users would be stored. In the same way, a dictionary is necessary where we will store the
created users.

43

1

2 Struc ture user [string FullName , string Email , string
Unive r s i ty , string AcademicField , string CV , bool
RevisorRol , l i s t Journa l s , l i s t A r t i c l e s , l i s t Reviews]

3

4 d i c t User s [address]= user ;

Now that we have declared some fundamental components, we can start with developing
the pseudo-code of the functions detailed in the theoretical section.

1. UserRegister(), this function receives six parameters; four of them are personal
information, another is the curriculum vitae, a link that redirects to the file stored
in IPFS will be stored here, and the last parameter is about the decision to have a
reviewer role. A “user” structure will store this information, and the “Users” dictio-
nary will store the “user” structures.

1

2 function UserReg i s t e r (string fu l lname , string emai l ,
string u n i v e r s i t y , string academic f i e l d , string cv ,
bool r e v i s o r r o l) {

3 user NewUser [fu l lname , emai l , u n i v e r s i t y ,
a cademic f i e l d , cv , r e v i s o r r o l , [empty] , [empty] , [

empty]] ;
4 Users [Sender . Address ()]= NewUser ;
5 }

2. UpdateData(), this function receives five of the six parameters of the previous
function since the objective of this function is to update the data if the user so
requires it.

1 function UpdateData (string emai l , string u n i v e r s i t y ,
string academic f i e l d , string cv , bool r e v i s o r r o l) {

2 Users [Sender . Address ()] . Email = emai l ;
3 Users [Sender . Address ()] . U n i v e r s i t y = u n i v e r s i t y ;
4 Users [Sender . Address ()] . AcademicField = a c a d e m i c f i e l d

;
5 Users [Sender . Address ()] . CV = cv ;
6 Users [Sender . Address ()] . Rev i sorRol = r e v i s o r r o l ;
7 }

44

JPRI Smart Contract

Unlike the previous ones, this smart contract implements a more complex system, so it is
necessary to distribute the code in the best way. This section will establish certain variables
and structures necessary for constructing this smart contract. Subsequent sections will
focus on the functions according to each step of the peer-review process.

As mentioned above, prior to the Peer-Review process, it is necessary to establish these
two recently described functions. In addition, it is also necessary to establish a constructor
of the smart contract that would receive the parameters that the journal creators estab-
lished for the operation of the JPRI.

1 Constructor { string name , string r e v i e w e r s p r o t o c o l , string
r ev i ewpro toco l , int cos t , int r ev i ewer s1 , int r e v i e w e r s 2

} ;
2

3 Struct member [l i s t A r t i c l e s , l i s t Reviews , bool RevisorRol ,
l i s t Art i c l e sPend ing , l i s t ReviewsPending] ;

4

5 d i c t S u b s c r i p t i o n s [address]=member ;
6

7 l i s t Reviewers [] ;
8

9 l i s t Ed i t o r s [] ;

1. Enroll(), this function receives only one argument that deals with whether the user
wants to be considered a reviewer in some peer-review process. The function creates
a structure to store user information, such as their articles and reviews.

1

2 function e n r o l l (bool r e v i s o r r o l) {
3 i f (addres . sender () in CommunityNetwork . User s) {
4 i f (address . sender () not in S u b s c r i b e r s) {
5 member NewMember = member [[empty] , [empty] ,

r e v i s o r r o l , [empty] , [empty]] ;
6 CommunityNetwork . User s [address . sender ()] . Jou rna l s .

push (j o u rn a l . name) ;
7 S u b s c r i b e r s [address . sender ()]= NewMember ;}
8 }

2. UpdateReviewerState(), this is a simple function that receives an argument to
update the reviewer role status of the user executing the function.

1

2 function UpdateReviewerState (bool r e v i s o r r o l) {

45

3 S u b s c r i b e r s [address . sender ()] . Rev i sorRol = r e v i s o r r o l
;

4 }

JPRI Smart Contract: Manuscript Submission

For a correct functioning of these functions, it is necessary to declare several lists, dictio-
naries, variables, and structures concerning the manuscript and reviewers.

1

2 Struct manuscript [address autor , string t i t l e , string
l i nkpaper , string campo , l i s t rev iewers1L , l i s t
d e c i s i o n s t a t e 1 , l i s t d e c i s i o n l i n k 1 , l i s t rev iewers2L

, l i s t d e c i s i o n s t a t e 2 , l i s t d e c i s i o n l i n k 2 , string
Sta t e]

3

4 d i c t Manuscr ipts [string]= manuscript ;

1. RandomSelection this function will randomly choose a specific number of review-
ers; the journal established this amount in its creation. The way to choose these
reviewers is by the timestamp and a nonce.

1 int randNonce = 0 ;
2

3 function RandomSelection (int num) {
4 randNonce+= 1 ;
5 int modulus = length (Reviewers) ;
6 l i s t rev iewersR ;
7 for (i =0; i< num ; i++){
8 rev iewersR . push (Reviewers [uint (keccak256 (abi .

encodePacked (block . timestamp , msg . sender , randNonce))) %
modulus] ;)

9 }
10 return rev iewersR ;
11 }

2. DesignationSelection this function is part of a centralized protocol alternative
since the system does not choose the reviewers but rather an editor who is part of
the journal.

46

1

2 function Des ignateEd i tor s (address e d i t o r) {
3 i f (address . sender () == address . owner ()) {
4 Ed i t o r s . push (e d i t o r) ;
5 }
6 }
7

8 function D e s g i n a t i o n S e l e c t i o n (l i s t Reviewers []) {
9 i f (address . sender () in Ed i t o r s) {

10 return Reviewers ;
11 }
12 }
13

14 function De sg ina t i onS e l e c t i on Ed i t o r () {
15 randNonce+= 1 ;
16 int modulus = length (Ed i t o r s) ;
17 return Reviewers [uint (keccak256 (abi . encodePacked (block .

timestamp , msg . sender , randNonce))) % modulus] ; }

3. PostulationSelection this function allows a user to apply as a reviewer for the
review of a manuscript that does not have reviewers.

1 function P o s t u l a t i o n S e l e c t i o n (i d) {
2 i f (Manuscripts [i d] . S ta t e == Pending) {
3 i f (l ength (Manuscripts [i d] . r ev i ewer s1L)< r e v i e w e r s 1) {
4 Manuscripts [i d] . r ev i ewer s1L . push (address . sender ()) ;
5 i f (l ength (Manuscripts [i d] . r ev i ewer s1L)== r e v i e w e r s 1) {
6 Manuscripts [i d] . S ta t e = In Process ;
7 }
8 }
9 }

10 }

4. ReviewerSelectionthis function redirects to the function corresponding to the pro-
tocol selected in the creation of the journal.

1

2 function Reviewers1Elec t ion () {
3 i f (r e v i e w e r s p r o t o c o l == RandomSelection) {
4 return RandomSelection (num) }
5 else i f (r e v i e w e r s p r o t o c o l == Designation S e l e c t i o n

) {
6 return D e s i g n a t i o n S e l e c t i o n () }

47

7 }
8

9 function Rev i ewer s2Se l e c t i on (int num) {
10 i f (r e v i e w e r s p r o t o c o l == RandomElection) {
11 return RandomElection (num) }
12 else i f (r e v i e w e r s p r o t o c o l == Designation E l e c t i o n)

{
13 return Des i gna t i onE l e c t i onEd i to r () }
14 }

5. UploadManuscript() this function takes the manuscript data as a parameter and
stores it in the respective variables. It also ensures that the attached protocols are
complied with and initialized.

1

2

3 function NewIdM() {
4 i f (l ength (Manuscr ipts) >0){
5 return Manuscr ipts [−1] . i d + 1 ;
6 } else {
7 return 0 ;}
8 }
9

10

11 function UploadManuscript (string t i t l e , string l i nkpaper
, string campo) {

12 autor = address . sender ()
13 l i s t r ev i ewer s1L = r e v i e w e r s E l e c t i o n 1 () ;
14 l i s t r ev i ewer s2L = r e v i e w e r s E l e c t i o n 2 () ;
15 bool pago = 0 ;
16 int idM = NewIdM() ;
17 for (int i =0; i< l ength (r ev i ewer s1L) ; i++){
18 s u b s c r i b e r s [r ev i ewer s1L [i]] . pend ingrev i ews . push ((id

, 1)) ;
19 s u b s c r i b e r s [r ev i ewer s2L [i]] . pend ingrev i ews . push ((id

, 2)) ;
20 }
21 s t a t e = Pending ;
22 i f ba lanceo f (address . sender ())>= c o s t) {
23 t r a n s f e r (cont rac t . address () , c o s t) ;
24 pago = 1 ;
25 }
26 i f (pago and length (r ev i ewer s1L)== r e v i e w e r s 1 and

length (r ev i ewer s2L)== r e v i e w e r s 2) {
27 s t a t e = In p r o c e s s ;

48

28 }
29 manuscript NewManuscript = manuscript [autor , t i t l e ,

l i nkpaper , campo , rev iewers1L , [empty] , [empty] ,
rev iewers2L , [empty] , [empty] , s t a t e] ;

30 Manuscr ipts [idM]= NewManuscript ;
31 }

JPRI Smart Contract: 1st Peer-Review

In this section, the necessary functions were constructed to assign reviewers, as well as the
functions required by reviewers to upload their findings.

1. CheckPendingsReviews() this function is straightforward as it only returns the
number of pending reviews for an individual.

1 CheckPendingsReviews () {
2 return s u b s c r i b e r s [address . sender ()] . pend ingrev i ews }

2. AcReReview() this function is used for a reviewer to present the decision made
regarding the review conducted.

1 AcReReview (int id , string d e c i s i o n) {
2 i f (address . sender () in Manuscr ipts [i d] . rev iewers1L) {
3 i f d e c i s i o n == reject {
4 OtherReviewer (id , address . sender ()) ;
5 } else {
6 i f (r e v i e w p r o t o c o l == TIPP) {
7 t r a n s f e r (cont rac t . address () , s t a k e c o s t) ;}
8 return Manuscr ipts [i d] . l i n k p a p e r ;
9 }

10 }}

3. OtherReviewer() this function is employed to assign another reviewer in the event
that a previously chosen reviewer is unable to perform their task.

1 OtherReviewer (int id , address norev i ewer) {
2 Manuscr ipts [i d] . rev iewers1L . pop (norev i ewer) ;
3 Manuscr ipts [i d] . rev iewers1L += r e v i e w e r s E l e c t i o n 1 (1) ;
4 }

49

4. UploadReviewer() this function allows reviewers to upload their decision and the
corresponding report that supports the decision.

1 UploadReview (int id , string d e c i s i o n , string
d e c i s i o n l i n k) {

2 i f (address . sender () in Manuscr ipts [i d] . rev iewers1L) {
3 manuscr ipts [i d] . d e c i s i o n s t a t e 1 . push (d e c i s i o n) ;
4 manuscr ipts [i d] . d e c i s i o n l i n k 1 . push (d e c i s i o n l i n k) ;
5 }}

JPRI Smart Contract: 2nd Peer-Review

This section repeats several functions used in the previous section; however, certain func-
tions have specific differences, as in this segment, the decision can be made by the same
group of reviewers or by an editor of the journal.

1. CheckPendingsReviews() this function is straightforward as it only returns the
number of pending reviews for an individual.

1 CheckPendingsReviews () {
2 return s u b s c r i b e r s [address . sender ()] . pend ingrev i ews }

2. AcReReview2() this function is used for a reviewer or editor to present the decision
made regarding the review conducted.

1

2 AcReReview2 (int id , string d e c i s i o n) {
3 i f (address . sender () in Manuscr ipts [i d] . rev iewers2L) {
4 i f d e c i s i o n == reject {
5 OtherReviewer (id , address . sender ()) ;
6 } else {
7 i f (r e v i e w p r o t o c o l == TIPP) {
8 t r a n s f e r (cont rac t . address () , s t a k e c o s t) ;}
9 return Manuscr ipts [i d] . l i n k p a p e r ;

10 }
11 }}

3. OtherReviewer() function is employed to assign another reviewer in the event that
a previously chosen reviewer is unable to perform their task.

50

1 OtherReviewer (int id , address norev i ewer) {
2 Manuscr ipts [i d] . rev iewers2L . pop (norev i ewer) ;
3 Manuscr ipts [i d] . rev iewers2L += r e v i e w e r s E l e c t i o n 2 (1) ;
4 }

4. OtherEditor() this function is employed to assign another editor in the event that
a previously chosen editor is unable to perform their task.

1 OtherEditor (int id , address n o e d i t o r) {
2 Manuscr ipts [i d] . rev iewers2L = e d i t o r E l e c t i o n () ;
3 }

5. UploadReview() this function allows reviewers or editors to upload their decision
and the corresponding report that supports the decision.

1 UploadReview (int id , string d e c i s i o n , string
d e c i s i o n l i n k) {

2 i f (address . sender () in Manuscr ipts [i d] . rev iewers2L) {
3 manuscr ipts [i d] . d e c i s i o n s t a t e 2 . push (d e c i s i o n) ;
4 manuscr ipts [i d] . d e c i s i o n l i n k 2 . push (d e c i s i o n l i n k) ;
5 }}

JPRI Smart Contract: Result

In this segment, the author of a research study receives the outcomes of the review process
of their manuscript.

1. seePRResults() this function assists an author in verifying the status of the review
of the submitted manuscript.

1 seePRResults () {
2 i f (address . sender () == Manuscr ipts [i d] . auto r) {
3 return manuscr ipts [i d] . S ta t e }}

2. ReuploadManuscript() this function allows an author to re-upload a corrected
manuscript after having received suggestions for changes.

1 ReuploadManuscript (int id , string l i n k p a p e r) {
2 i f (address . sender () == Manuscr ipts [i d] . auto r) {
3 i f (manuscr ipts [i d] . S ta t e = ‘ Changes ’) {
4 manuscr ipts [i d] . l i n k p a p e r = l i n k p a p e r ;}}}

51

4.3 Testing
After the project’s development, we must evaluate the functionalities that are part of
the smart contracts, which, as mentioned above, are autonomous codes executed on the
blockchain. This section is of great importance for this project. The tests will verify that
the contracts meet their objectives and have a correct operation, thus guaranteeing secu-
rity before their execution in the blockchain. Unlike traditional software, smart contracts
are immutable after being implemented in a public blockchain; that is, they are complexly
upgradeable or improvable after their launch, so it is indispensable to carry out stringent
tests for optimal implementation in a network like Ethereum. For this, we need to rigor-
ously analyze and evaluate the quality of the written source code. Through testing, we
can identify errors and vulnerabilities, thereby reducing the possibility that the software
presents errors that could lead to costly consumption of Ethereum gas or massive and
irrecoverable losses for system users.

There are two categories for these tests: automated and manual.

4.3.1 Manual Testing
Programmers or auditors carry out this kind of testing. They will execute the steps to follow
in the program operation manually. This section includes audits where the developer or
an external expert in the subject evaluates or audits each line of the contract code to find
a possible vulnerability [66]. That is why this type of testing requires excellent skill and
experience on the part of the auditor, as well as time and effort. However, this does not
offer us plenty of security since it is susceptible to human error. On the other hand, among
the positive points of these tests is that human intelligence could contribute by finding
defects in the code that could go unnoticed in an automated testing process. Likewise,
this type of testing can find vulnerabilities outside the code, problems, or errors that could
arise in the user and program interaction.

4.3.2 Automated Testing
This type of testing involves automated tools focusing on executing written code tests
repeatedly to find defects in smart contracts. This test category is efficient since it uses a
few resources and offers more coverage than manual analysis. In addition, test data can be
used in these tests, allowing us to visualize behaviors close to or equal to those expected
to have in the real use of the project.

Among the different types of automated tests, we can consider the following:

1. Functional Testing: This type of test verifies the contract’s functionality and en-
sures the correct operation of each function part of the code. For this, it is necessary
to understand the correct behavior of the contract in different conditions. Subse-
quently, the functions’ evaluation consists of comparing the expected values with the
output received. Functional testing has three methods: Unit Test, Integration Test,
and System Test.

• Unit Testing: This test explicitly implies the correct functioning of each of
the components [67] of the smart contract. It consists of testing the written

52

functions one by one. This test gives us a clear and concise idea of where an
error can be located. Since a developer can check that the behavior of each
function execution is as expected. For this type of test, the auditors make
assertions, thereby verifying that the output is as expected.

• Integration Testing: This testing, unlike unit testing, focuses on running a
test of all components together [68]. This test seeks to find errors or vulnerabil-
ities during the interactions between the different functions of the contract or
between multiple contracts.

4.3.3 Testing Tools
Various tools and platforms are available for automated testing on smart contracts, such as
Truffle, Mocha, or Chai. These tools allow developers to write specific test cases covering
different scenarios and situations where a user would use the smart contract. In addition,
these tools also provide detailed reports on the performance and functionality of the smart
contract, making it easy to identify and resolve potential bugs or vulnerabilities. These
test environments are run separately from the main blockchain, allowing developers to
test their contracts without worrying about the costs associated with transactions on the
blockchain. Among the most popular tools we have:

• Testing frameworks: such as Mocha, Chai, and Truffle, which provide a framework
and a set of functions for writing and running tests.

• Automated testing tools: such as Ganache, which allows you to create a test
network and simulate transactions in real-time.

• Code review tools: such as Mythril, Listener, and Securify, which analyze contract
code to identify potential vulnerabilities and bugs.

• Real-time monitoring tools: such as Remix Debugger, which allows you to trace
and debug contracts while they are running on a network.

Different testing tools will be used for testing the current project, prioritizing the tools
Truffle and Remix offer.

4.3.4 Testing Process

Functional Testing Process

We performed the functional testing process following the next steps:

1. Write unit tests for each function of smart contracts to verify the expected behavior
of the contract in different situations.

2. Set up a test environment, in our case Ganache, to run the tests.

3. Run the unit tests in the test environment and verify that the results are as expected.

53

4. Analyze the tests’ results to proceed with a correction or improvement in case of
identifying any error or problem in the code.

5. Write and perform integration tests to verify the interaction between the different
contracts and the implemented inheritance.

It is important to note that this testing process is iterative. Performing several multi-
step iterations is necessary until the contract is error-free. We carry out the test cases in
this project using the javascript programming language. For a specific example of the type
of test we perform, here is the test pseudocode for the UserRegistration() function:

1 I n i t i a l i z e CommunityNetworkContract and cha i . expect
2

3 Create a cont rac t t e s t for CommunityNetworkContract with
accounts

4 Declare variable CommunityNetworkContractInstance
5 Declare variable userAccount as accounts [1]
6

7 Create a beforeEach block
8 Deploy a new i n s t ance o f CommunityNetworkContract and

a s s i g n i t to CommunityNetworkContractInstance
9

10 Create a t e s t case "correct registration test"
11 Def ine user d e t a i l s
12 fu l lname <− "Harvey Marin"
13 emai l <− "harvey.marin@yachaytech.edu.ec"
14 u n i v e r s i t y <− "Yachay Tech University"
15 academi c f i e l d <− "Computer Science"
16 cv <− "https://ipfs.filebase.io/ipfs/exampleCID"
17 r e v i s o r r o l <− true
18

19 Cal l UserReg i s t e r function with user d e t a i l s and
userAccount

20

21 Retr i eve r e g i s t e r e d U s e r from the cont rac t using Users
(userAccount)

22

23 Ver i fy user d e t a i l s
24 Check i f r e g i s t e r e d U s e r . fu l lname i s equal to

fu l lname
25 Check i f r e g i s t e r e d U s e r . ema i l i s equal to emai l
26 Check i f r e g i s t e r e d U s e r . u n i v e r s i t y i s equal to

u n i v e r s i t y
27 Check i f r e g i s t e r e d U s e r . a c a d e m i c f i e l d i s equal to

a cademi c f i e l d
28 Check i f r e g i s t e r e d U s e r . cv i s equal to cv

54

29 Check i f r e g i s t e r e d U s e r . r e v i s o r r o l i s equal to
r e v i s o r r o l

30 Check i f r e g i s t e r e d U s e r . j o u r n a l s . l ength i s equal
to 0

31 Check i f r e g i s t e r e d U s e r . a r t i c l e s . l ength i s equal
to 0

32 Check i f r e g i s t e r e d U s e r . r ev i ews . l ength i s equal
to 0

55

56

Chapter 5

Results and Discussion

This chapter presents the gas cost results of each smart contract and its primary functions.
We focus on the gas cost of each function for different reasons. such as each operation
executed in the blockchain has an associated cost. The user who executes the function pays
the transaction fee, so the transaction cost must be as cheap as possible. Furthermore,
the Ethereum blockchain has established gas limits. So the amount of gas required by a
function must be below the limit. For this study, we use Remix VM (merge fork) to analyze
the gas that each function requires. Even though we use a work environment replicating
the main environment, it is still a separate network with its own computational resources
and limitations. Moreover, the gas limit is determined by the nodes in the network. So,
while the gas cost for a transaction may be similar between the testnet and the mainnet,
the gas limit on each network may differ. That is why the results obtained in this section
should be considered indicative and serve only to establish references.

We have decided that the parameters to evaluate are the values that Remix IDE gives us
when executing a function. These values are transaction gas and execution gas in terms of
Gwei. Gwei is equal to 0.000000001 ETH or 109 Wei; Wei is the smallest unit of Ethereum.
One Ether (ETH) is equal to 1018 Wei. The price of gas can vary depending on network
congestion and other factors. For this reason, in the following gas analysis tables, we will
find columns referring to the dollar price, which varies around the gas price. For example,
the price of gas in the Ethereum network is 31 Gwei at the time of the data gathering,
whose date was March 12, 2023. Likewise, on that day, the price of Ether, the currency
of Ethereum, was 1590.83 US dollars. These gas and Ether prices vary depending on the
date, so the values present in the tables will be different depending on the day of value
analysis.

5.1 Gas Cost Analysis
In table 5.2, we can see the analysis of the six primary functions of the CommunityNet-
work smart contract. The first five functions have fair values because the process within
each function is nothing more than the creation of structures, data statements, and a few
conditionals. However, in the case of the CreateJournal function, its amount of gas is much
higher than the other functions, 20 times higher than the UserRegister function. This hap-

57

pens because the CreateJournal function deploys a JPRI smart contract, which requires a
high computational cost. The cost of gas for these two smart contracts is analyzed in the
table 5.3.

58

Fu
nc

ti
on

T
ra

ns
ac

ti
on

G
as

E
xe

cu
ti

on
G

as
D

ol
la

r
(1

G
w

ei
)

D
ol

la
r

(3
1

G
w

ei
-

E
th

er
eu

m
)

D
ol

la
r

(3
G

w
ei

-
B

SC
)

D
ol

la
r

(0
.1

G
w

ei
-

A
rb

it
ru

m
O

ne
)

U
se

rR
eg

ist
er

:
12

48
28

10
16

80
0,

20
6,

14
0,

60
0,

02
U

pd
at

e
D

at
a:

39
20

2
16

79
8

0,
06

1,
93

0,
19

0,
01

R
eq

ue
st

Jo
ur

na
lC

re
at

io
n:

21
16

83
18

87
39

0,
34

10
,4

1
1,

01
0,

03
Vo

te
R

eq
ue

st
:

72
10

5
50

40
9

0,
11

3,
54

0,
34

0,
01

Se
eR

eq
ue

st
St

at
us

:
37

84
7

16
65

5
0,

06
1,

86
0,

18
0,

01
C

re
at

eJ
ou

rn
al

:
26

07
18

2
25

83
59

0
4,

15
12

8,
16

12
,4

4
0,

41

Ta
bl

e
5.

1:
Tr

an
sa

ct
io

n
an

d
ex

ec
ut

io
n

co
st

of
th

e
C

om
m

un
ity

N
et

wo
rk

sm
ar

t
co

nt
ra

ct
fu

nc
tio

ns
in

te
rm

s
of

ga
s

an
d

do
lla

rs
.

59

Table 5.2 analyzes 15 functions that we consider to be the main ones in the JPRI smart
contract. Where seven functions are of low computational cost, these are:

• UpdateReviewerState

• Postulation

• EditorSelection

• Assignation

• GetManuscriptFile

• Get1gReviewFile

While the other five functions present higher gas values, unlike the previous seven
functions, these here have a more complex process. As is the use of for loops, however, the
executed iterations are few, which causes only a slight increase in gas. These functions are:

• RandomSelection

• AcceptOrRejectReview

• SubmitFirstGroupReview

• SubmitSecondGroupReview

• AnalyzeSGDecisions

• FinalizeReview

Finally, the RatingSelection and UploadManuscript functions have high gas costs. In
the case of the UploadManuscript function, this is because it presents the execution of other
functions inside it, such as the one that assigns reviewers to a manuscript. In comparison,
the Rating Selection function presents a for loop that iterates through the list of reviewers
belonging to the journal. This list can be extensive, which would generate a high cost in
gas consumption. That is why the value found in the table is an average value obtained
from the different gas costs that this function produced. In the tables 5.4, ?? and 5.6, we
can find descriptive analyzes of the executions of the functions presented by for loops.

60

Fu
nc

ti
on

T
ra

ns
ac

ti
on

G
as

E
xe

cu
ti

on
G

as
D

ol
la

r
(1

G
w

ei
)

D
ol

la
r

(3
1

G
w

ei
-

E
th

er
eu

m
)

D
ol

la
r

(3
G

w
ei

-
B

SC
)

D
ol

la
r

(0
.1

G
w

ei
-

A
rb

it
ru

m
O

ne
)

U
pd

at
eR

ev
ie

we
rS

ta
te

65
86

2
44

65
8

0,
10

3,
24

0,
31

0,
01

ad
dE

di
to

r
90

38
5

68
95

3
0,

14
4,

44
0,

43
0,

01
R

an
do

m
Se

le
ct

io
n

22
81

37
20

66
56

0,
36

11
,2

1
1,

09
0,

04
Po

st
ul

at
e

77
09

4
55

38
7

0,
12

3,
79

0,
37

0,
01

R
at

in
gS

el
ec

tio
n

94
68

87
92

54
25

1,
51

46
,5

5
4,

52
0,

15
Ed

ito
rS

el
ec

tio
n

98
30

0
76

45
9

0,
16

4,
83

0,
47

0,
02

D
es

ig
na

tio
n

77
60

9
55

94
1

0,
12

3,
81

0,
37

0,
01

U
pl

oa
dM

an
us

cr
pt

58
99

53
56

86
64

0,
94

29
,0

0
2,

82
0,

09
A

cc
ep

tO
rR

ej
ec

tR
ev

ie
w

24
01

84
21

87
37

0,
38

11
,8

1
1,

15
0,

04
Su

bm
itF

irs
tG

ro
up

R
ev

ie
w

17
34

62
15

19
68

0,
28

8,
53

0,
83

0,
03

G
et

M
an

us
cr

ip
tF

ile
40

73
5

18
88

7
0,

06
2,

00
0,

19
0,

01
Su

bm
itS

ec
on

dG
ro

up
R

ev
ie

w
16

85
72

14
71

15
0,

27
8,

29
0,

80
0,

03
G

et
1g

R
ev

ie
w

Fi
le

41
43

3
19

84
8

0,
07

2,
04

0,
20

0,
01

A
na

ly
ze

SG
D

ec
isi

on
s

23
33

40
21

18
50

0,
37

11
,4

7
1,

11
0,

04
Fi

na
liz

eR
ev

ie
w

39
28

70
37

13
56

0,
62

19
,3

1
1,

87
0,

06

Ta
bl

e
5.

2:
Tr

an
sa

ct
io

n
an

d
ex

ec
ut

io
n

co
st

of
th

e
JP

R
Is

m
ar

t
co

nt
ra

ct
fu

nc
tio

ns
in

te
rm

s
of

ga
s

an
d

do
lla

rs
.

61

Apart from the functions, the cost of gas presented by the smart contract JPRI and
CommunityNetwork was also analyzed. In the table 5.3, we can see that the smart contract
community network is twice as expensive as the jpri smart contract. This is because the
community network inherits the JPRI smart contract for the creation of the magazines and
uses the Openzepellin ERC20 smart contract for the creation and use of a token for the
system. This leads to the cost of gas being relatively high. On the other hand, the JPRI
smart contract has a high gas value because it has a large number of functions. This is
because a transaction for the deployment of contracts has a fixed cost of 31,000 gas units,
to which 200 gas units must also be added for each octet that makes up the bytecode.
Therefore, the greater the length of the contract, the greater its bytecode will be when
compiled, and therefore, it will need more gas for its deployment.

62

Fu
nc

ti
on

T
ra

ns
ac

ti
on

G
as

E
xe

cu
ti

on
G

as
D

ol
la

r
(1

G
w

ei
)

D
ol

la
r

(3
1

G
w

ei
-

E
th

er
eu

m
)

D
ol

la
r

(3
G

w
ei

-
B

SC
)

D
ol

la
r

(0
.1

G
w

ei
-

A
rb

it
ru

m
O

ne
)

C
om

m
un

ity
N

et
wo

rk
52

19
36

3
47

93
06

3
8,

30
25

6,
57

24
,9

1
0,

83
JP

R
I

24
34

05
6

22
04

33
2

3,
87

11
9,

65
11

,6
2

0,
39

Ta
bl

e
5.

3:
Tr

an
sa

ct
io

n
an

d
ex

ec
ut

io
n

co
st

of
th

e
C

om
m

un
ity

N
et

wo
rk

an
d

JP
R

Is
m

ar
t

co
nt

ra
ct

s
in

te
rm

s
of

ga
s

an
d

do
lla

rs
.

63

RandomSelection RatingSelection
Transaction Gas Execution Gas Transaction Gas Execution Gas

Mean: 228137,14 206656,02 946887,56 925425,49
Std: 33991,47321 34003,35702 270570,1309 270575,4899
CV: 14,89957891 16,45408492 28,5746843 29,23795517
Min: 167871 146691 475798 454701
25%: 198784,25 177187,5 726343,5 705039,5
50%: 230677,5 209137,5 960154,5 938609
75%: 259251,5 237918,75 1167363 1146137,25
Max: 283061 261138 1390721 1369181

Table 5.4: Descriptive statistics of RandomSelection and RatingSelection functions.

5.2 Statistical Data on the Functions Gas Cost
We previously mentioned that our code has functions whose computational cost may vary
due to the number of iterations that the function performs. Given this, we take a sample of
100 executions for each function. The objective was to obtain a range of gas consumption
for each function. In addition, obtain statistical data such as the mean, the standard
deviation, the coefficient of variation, minimums, quartiles, and maximums. In this way,
to have a more exact vision of the consumption that the execution of each function can
have.

The first functions to be analyzed were selection by randomness and rating. The first
function has an average of 228137 gas consumption and a coefficient of variation of 14.89%,
which allows us to interpret that there is not a significant difference regarding consumption.
This is because this function iterates low numbers relative to the number of reviewers a
specific review process has. In comparison, the RatingSelection function has a coefficient
of variation of 28.57%. This function is alarming because it iterates the list of reviewers as-
sociated with a journal, which can be a long list that would cause a lot of gas consumption.
The number of registered reviewers was not exaggerated in our sample for this function.
However, if it were, alternatives would have to be sought, such as using better ordering
algorithms or using other off-chain means to carry out the respective calculation. The rest
of the descriptive values of these functions are described in the table 5.4.

In the 5.5 table, we find three functions that reviewers execute. The first is the function
that allows a reviewer to accept or reject the assigned review. This function has a high
coefficient of variation because the gas consumption when the reviewer accepts is low, but
when the review is rejected, the gas consumption is high. This is because if the review is
rejected, the function executes an internal function to assign a replacement reviewer. The
Submission functions for the first and second groups have a for loop that iterates through
the list of reviewers assigned in a peer review process, which is why their computational
cost also varies. However, the coefficient of variation is low.

64

A
cc

ep
tO

rR
ej

ec
tR

ev
ie

w
Su

bm
it

F
ir

st
G

ro
up

R
ev

ie
w

Su
bm

it
Se

co
nd

G
ro

up
R

ev
ie

w
T

ra
ns

ac
ti

on
G

as
E

xe
cu

ti
on

G
as

T
ra

ns
ac

ti
on

G
as

E
xe

cu
ti

on
G

as
T

ra
ns

ac
ti

on
G

as
E

xe
cu

ti
on

G
as

M
ea

n:
24

01
84

,9
21

87
37

,4
7

23
33

40
,8

9
21

18
50

,3
3

16
85

72
,4

6
14

71
15

,0
2

St
d:

87
58

7,
11

53
9

87
43

4,
88

22
8

11
89

9,
07

83
2

11
92

0,
15

99
6

11
35

7,
19

50
9

11
31

0,
54

72
2

C
V

:
36

,4
66

53
69

8
39

,9
72

52
15

3
5,

09
94

39
84

5
5,

62
66

89
35

1
6,

73
72

77
89

9
7,

68
82

34
16

2
M

in
:

92
25

8
75

42
3

21
38

82
19

26
14

14
78

36
12

65
88

25
%

:
16

85
91

14
67

85
,7

5
22

32
81

,7
5

20
17

41
,2

5
15

88
93

,7
5

13
78

59
,2

5
50

%
:

24
20

70
,5

22
04

95
23

42
39

,5
21

27
78

16
76

94
14

64
02

,5
75

%
:

31
86

77
,5

29
73

36
,7

5
24

35
69

,5
22

19
56

,2
5

17
78

69
,2

5
15

60
84

,7
5

M
ax

:
37

90
00

35
76

47
25

36
04

23
18

64
18

81
28

16
65

58

Ta
bl

e
5.

5:
D

es
cr

ip
tiv

e
st

at
ist

ic
s

of
A

cc
ep

tO
rR

ej
ec

tR
ev

ie
w

an
d

Su
bm

iti
on

fu
nc

tio
ns

of
th

e
JP

R
I.

65

AnalyzeSGDecisions FinalizeReview
Transaction Gas Execution Gas Transaction Gas Execution Gas

Mean: 233340,89 211850,33 392870,06 371356,04
Std: 11899,07832 11920,15996 21540,07309 21534,05315
CV: 5,099439845 5,626689351 5,482747422 5,798762059
Min: 213882 192614 355407 333649
25%: 223281,75 201741,25 375805,5 354075,5
50%: 234239,5 212778 389012 367666
75%: 243569,5 221956,25 410458,75 388747,25
Max: 253604 231864 431831 410812

Table 5.6: Descriptive statistics of AnalyzeSGDecisions and FinalizeReview functions of
the JPRI.

The last two functions to be analyzed belong to the final peer review process. The
AnalyzeSGDecision function determines whether a manuscript is accepted, rejected, or
requires changes. This function varies in its computational cost because it must iterate
between the decisions given by the reviewers. In comparison, the FinalizeReview function
contains the AnalyzeSGDecision function and other operations to be performed.

In the table 5.7, we can see how the computational costs of the functions of this proposal
have a significant difference concerning the others. This is because this proposal presents
functions that involve complex processes, such as the execution of internal functions. As is
the case with “SendPaper”, in our case, it would be “UploadManuscript” which executes the
assignment of the reviewers automatically and does not have an external function that must
be executed by a third party to perform an assignment. In addition, our functions present
require statements as security protocols, which consume more gas but offer greater security
for the system. Therefore, the other proposals have functions with lower computational
costs. However, their functions are simpler, basic, and limited, in addition to the fact
that they need security standards. Compared to our smart contract that presents security
standards and a complete process.

66

Function DeSci AntsReview BloxBerg Proposal
SendPaper() 114812 98393 - 568664

AssignReviewers() 58707 - - 76469
AcceptForReview() 23971 24239 21403 218737

UploadReview() 149760 132938 110599 151968
Publish() - 19380 19843 -

UnPublish() - 19,292 19,829 -
UploadChanges() - 97349 - 44658

SeeReview() - 14,593 17,329 18,384
Contract Deployment - 1630257 1469931 2204332

Table 5.7: Comparison table of the gas cost of similar functions by each proposal.

67

68

Chapter 6

Conclusions

Scientific publications have a highly relevant mechanism such as the peer-review process,
serving as a quality control mechanism by allowing peers to scrutinize and critique work
before it is published. However, traditional peer-review processes are fraught with several
challenges. These include issues of bias, low quality, lack of transparency, time consump-
tion, expensive costs, potential for manipulation, and the recognition of the work involved.
However, the advent of blockchain technology presents a unique opportunity to transform
this space.

As a distributed ledger technology, blockchain offers a potential solution to these chal-
lenges. Its features of immutability, transparency, security and decentralization make it a
suitable candidate to enhance the peer-review process. The immutability of the blockchain
ensures that once data is stored on the blockchain, it cannot be changed. This provides
a robust mechanism for protecting intellectual property and ensuring the integrity of the
review, with a transparency feature that enhances the accountability and openness of the
review process. The security of blockchain technology also prevents tampering or fraud,
while its decentralization enables a more democratic and fair process, leading to better
recognition of reviewers’ work. By setting specific processes and protocols, we can create
the right environment for a robust and reliable peer review process.

In this proposal, we presented a peer-review system that leverages blockchain tech-
nology to revamp the traditional peer-review process. This system introduces a novel,
decentralized approach to academic publishing processes. This system offers an environ-
ment for the scientific community, with its participants being individual academics and
academic journals. A central element of this system is a framework for the peer review
process, called JPRI (Journal Peer Review Infrastructure). This infrastructure is versa-
tile and customizable providing a flexible solution that caters to a wide range of needs,
by offering different protocols. The objective achieved is that the journals can adapt and
personalize their own review process according to the agreements, guidelines and funda-
mentals that each journal has. In addition, this system has its own token that is used for
publication payment and remuneration for reviewers.

This decentralized system reduces the potential for collective bias, manipulation, or
coercion, as it adheres to the principles of anonymity and immutability. By doing so,
it can be sure to maintain the integrity of the review process and keep the quality of
published content. Proposed features include a transparent review process, security against

69

fraud, immutable comments, and approval of reviewers. The system also allows for a more
democratic review process, with power distributed among peers rather than concentrated
in the hands of a few. Alternatively, the use of smart contracts can automate several
aspects of the process, reducing administrative burden and speeding up publication time.
By implementing solid programming, the system has robust features such as manuscript
submission, reviewer selection and decision-making. These features are designed in a way
that mirrors the real-world peer review process.

After the development of the system’s smart contracts, we conducted an in-depth anal-
ysis of the system’s computational cost, focusing on the gas cost of each function, and its
equivalent in ethers, and dollars. In this way, providing a comprehensive overview of the
system’s performance metrics. On comparing our proposal with existing alternatives, it
emerges that our system incurs higher costs as expected. However, this is a direct conse-
quence of the system’s complex and extensive feature set, which offers a more complete and
refined peer-review process compared to other proposals. With the information provided
from performance metrics of each function, the implementation of the smart contract was
further optimized and refined.

This project, despite its relative novelty, stands poised to make a substantial and far-
reaching impact. It presents a viable solution to the challenges that plague traditional peer-
review processes. Therefore it has the potential to revolutionize the peer-review process.
By offering a transparent, decentralized, and secure solution, we can reshape the landscape
of scientific publications, facilitating a peer-review process that truly upholds the principles
of scholarly integrity and robust academic discourse.

However, the system is not without challenges. The complexity of some features can
present challenges. In addition, due to usage dependencies of each journal, the value of
the system token may fluctuate, which may cause disagreements among the community.
Ethereum’s transaction costs and reliance on network speed affect the efficiency of the
system. Furthermore, widespread acceptance and use of such systems requires a paradigm
shift in academia towards blockchain technology. These are important factors that must
be considered to ensure the viability and sustainability of the system. To alleviate these
limitations, we recommend implementing some logic code on the frontend to reduce gas
costs and blockchain dependencies. We also recommend exploring off-chain alternatives
and external databases to store large amounts of data, thereby optimizing the efficiency of
the system. Another recommendation would be to allow each magazine to generate its own
token for its own purposes and independence. Future work includes continuing to refine
and optimize the system, especially presenting this project to the Ethereum community for
further enhancement. We aim to encourage the community to contribute by adding new
functions, protocols, and paradigms. In addition, we hope to scale up to a comprehensive
system that integrates front-end and back-end components, along with databases, to make
this system more robust and efficient. Another avenue we’re considering is to present the
project for grants offered by various blockchain network projects. This approach would
allow us to work with mentors and experts in the field, thereby promoting the project
more effectively. In closing, this project serves as a pioneering step towards harnessing
the power of blockchain technology in the realm of academic publishing, opening up new
possibilities for the future of the peer-review process.

70

Bibliography

[1] A. Thakur and R. Verma, “An empirical three phase analysis of crypto market,” 03
2022.

[2] B. Mudrak, “Scholarly publishing: A brief history,” AJE Expert Edge, 2020.

[3] M. Thelwall, L. Allen, E.-R. Papas, Z. Nyakoojo, and V. Weigert, “Does the use of
open, non-anonymous peer review in scholarly publishing introduce bias? evidence
from the f1000research post-publication open peer review publishing model,” Journal
of Information Science, vol. 47, no. 6, pp. 809–820, 2021. [Online]. Available:
https://doi.org/10.1177/0165551520938678

[4] V. M. Nguyen, N. R. Haddaway, L. F. G. Gutowsky, A. D. M. Wilson, A. J.
Gallagher, M. R. Donaldson, N. Hammerschlag, and S. J. Cooke, “How long is
too long in contemporary peer review? perspectives from authors publishing in
conservation biology journals,” PLOS ONE, vol. 10, no. 8, pp. 1–20, 08 2015.
[Online]. Available: https://doi.org/10.1371/journal.pone.0132557

[5] J. Velterop, “Peer review–issues, limitations, and future development,” ScienceOpen
Research, 2015.

[6] D. J. Solomon and B.-C. Björk, “A study of open access journals using
article processing charges,” Journal of the American Society for Information Science
and Technology, vol. 63, no. 8, pp. 1485–1495, 2012. [Online]. Available:
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.22673

[7] B. Aczel, B. Szászi, and A. Holcombe, “A billion-dollar donation: estimating the cost
of researchers’ time spent on peer review,” Research Integrity and Peer Review, vol. 6,
11 2021.

[8] B. Aczel, B. Szaszi, and A. O. Holcombe, “A billion-dollar donation:
estimating the cost of researchers’ time spent on peer review,” Research
Integrity and Peer Review, vol. 6, no. 1, p. 14, Nov 2021. [Online]. Available:
https://doi.org/10.1186/s41073-021-00118-2

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[10] J. P. Tennant, “The state of the art in peer review,” FEMS Microbiology letters, vol.
365, no. 19, p. fny204, 2018.

71

https://doi.org/10.1177/0165551520938678
https://doi.org/10.1371/journal.pone.0132557
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.22673
https://doi.org/10.1186/s41073-021-00118-2
http://www.bitcoin.org/bitcoin.pdf

[11] V. B. Shidham, M. B. Pitman, and R. M. DeMay, “How to write an article: Preparing
a publishable manuscript!” Cytojournal, vol. 9, 2012.

[12] P. Koopman, “How to write an abstract,” 1997.

[13] I. D. Cooper, “How to write an original research paper (and get it published),” Journal
of the Medical Library Association: JMLA, vol. 103, no. 2, p. 67, 2015.

[14] V. B. Shidham, M. B. Pitman, and R. M. DeMay, “How to write an article: Preparing
a publishable manuscript!” Cytojournal, vol. 9, 2012.

[15] L. M. Arrom, J. Huguet, C. Errando, A. Breda, and J. Palou, “How to write an
original article,” Actas Urológicas Españolas (English Edition), vol. 42, no. 9, pp.
545–550, 2018.

[16] I. C. of Medical Journal Editors et al., “Uniform requirements for manuscripts sub-
mitted to biomedical journals: writing and editing for biomedical publication,” 2004.

[17] K. Mullane, S. Enna, J. Piette, and M. Williams, “Guidelines for manuscript submis-
sion in the peer-reviewed pharmacological literature,” pp. 225–235, 2015.

[18] P. A. Ali and R. Watson, “Peer review and the publication process,”
Nursing Open, vol. 3, no. 4, pp. 193–202, 2016. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nop2.51

[19] J. Vergne, “Decentralized vs. distributed organization: Blockchain, machine learning
and the future of the digital platform,” Organization Theory, vol. 1, no. 4, 2020.
[Online]. Available: https://doi.org/10.1177/2631787720977052

[20] I. Bashir, Mastering blockchain. Packt Publishing Ltd, 2017.

[21] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Advances
in Cryptology—CRYPTO’92: 12th Annual International Cryptology Conference Santa
Barbara, California, USA August 16–20, 1992 Proceedings 12. Springer, 1993, pp.
139–147.

[22] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain technol-
ogy: Architecture, consensus, and future trends,” in 2017 IEEE international congress
on big data (BigData congress). IEEE, 2017, pp. 557–564.

[23] H. Sheth and J. Dattani, “Overview of blockchain technology,” Asian Journal For
Convergence In Technology (AJCT) ISSN -2350-1146, Apr. 2019. [Online]. Available:
https://asianssr.org/index.php/ajct/article/view/728

[24] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[25] S. S. Sarmah, “Understanding blockchain technology,” Computer Science and Engi-
neering, vol. 8, no. 2, pp. 23–29, 2018.

72

https://onlinelibrary.wiley.com/doi/abs/10.1002/nop2.51
https://onlinelibrary.wiley.com/doi/abs/10.1002/nop2.51
https://doi.org/10.1177/2631787720977052
https://asianssr.org/index.php/ajct/article/view/728

[26] V. Buterin et al., “A next-generation smart contract and decentralized application
platform.”

[27] “Ethereum virtual machine (evm).” [Online]. Available: https://ethereum.org/en/
developers/docs/evm/

[28] A. M. Antonopoulos and G. Wood, Mastering ethereum: building smart contracts and
dapps. O’reilly Media, 2018.

[29] “Gas and fees.” [Online]. Available: https://ethereum.org/en/developers/docs/gas/

[30] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, “Recent advances in smart
contracts: A technical overview and state of the art,” IEEE Access, vol. 8, pp. 117 782–
117 801, 2020.

[31] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,” Future
Generation Computer Systems, vol. 105, pp. 475–491, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X19316280

[32] P. Catchlove, “Smart contracts: a new era of contract use,” Available at SSRN
3090226, 2017.

[33] “Introduction to dapps.” [Online]. Available: https://ethereum.org/en/developers/
docs/dapps/

[34] C. Gacek and B. Arief, “The many meanings of open source,” IEEE Software, vol. 21,
no. 1, pp. 34–40, 2004.

[35] U. W. Chohan, “Non-fungible tokens: Blockchains, scarcity, and value,” Critical
Blockchain Research Initiative (CBRI) Working Papers, 2021.

[36] D. Banks, “Starting science in the vernacular. notes on some early issues of the
philosophical transactions and the journal des sçavans, 1665-1700,” ASp. la revue
du GERAS, no. 55, pp. 5–22, 2009.

[37] A. Keefer, “Electronic journals, scholarly communication and libraries,” BiD: textos
universitaris de biblioteconomia i documentació, 2001, junio, núm. 6, 2001.

[38] R. Smith, “Peer review: a flawed process at the heart of science and journals,” Journal
of the royal society of medicine, vol. 99, no. 4, pp. 178–182, 2006.

[39] S. Jecmen, H. Zhang, R. Liu, N. B. Shah, V. Conitzer, and F. Fang, “Mitigating
manipulation in peer review via randomized reviewer assignments,” in Advances
in Neural Information Processing Systems, vol. 2020-December, 2020, cited By :11.
[Online]. Available: www.scopus.com

[40] I. Stelmakh, N. Shah, and A. Singh, “Peerreview4all: Fair and accurate reviewer
assignment in peer review,” Journal of Machine Learning Research, vol. 22, 2021,
cited By :5. [Online]. Available: www.scopus.com

73

https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/gas/
https://www.sciencedirect.com/science/article/pii/S0167739X19316280
https://ethereum.org/en/developers/docs/dapps/
https://ethereum.org/en/developers/docs/dapps/
www.scopus.com
www.scopus.com

[41] L. Liu, Z. . Tan, C. DIao, and N. Cai, “Parallel analysis on novel peer review system
for academic journals,” in Proceedings of the 33rd Chinese Control and Decision
Conference, CCDC 2021, 2021, pp. 2514–2519. [Online]. Available: www.scopus.com

[42] S. Leible, S. Schlager, M. Schubotz, and B. Gipp, “A review on blockchain technology
and blockchain projects fostering open science,” Frontiers in Blockchain, p. 16, 2019.

[43] B. Gipp, C. Breitinger, N. Meuschke, and J. Beel, “Cryptsubmit: Introducing securely
timestamped manuscript submission and peer review feedback using the blockchain,”
in 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2017, pp. 1–4.

[44] M. Spearpoint, “A proposed currency system for academic peer review payments using
the blockchain technology,” Publications, vol. 5, no. 3, p. 19, 2017.

[45] M. Avital, “Peer review: Toward a blockchain-enabled market-based ecosystem,” Com-
munications of the Association for Information Systems, vol. 42, no. 1, p. 28, 2018.

[46] T. Wang, S. C. Liew, and S. Zhang, “Pubchain: A decentralized open-access
publication platform with participants incentivized by blockchain technology,” 2019.
[Online]. Available: https://arxiv.org/abs/1910.00580

[47] I. Zhou, I. Makhdoom, M. Abolhasan, J. Lipman, and N. Shariati, “A blockchain-
based file-sharing system for academic paper review,” in 2019 13th International Con-
ference on Signal Processing and Communication Systems (ICSPCS), 2019, pp. 1–10.

[48] Y. Zhou, Z. Wan, and Z. Guan, “Open-pub: A transparent yet privacy-preserving
academic publication system based on blockchain,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.03915

[49] A. Kosmarski and N. Gordiychuk, “Token-curated registry in a scholarly journal: Can
blockchain support journal communities?” Learned Publishing, vol. 33, no. 3, pp.
333–339, 2020.

[50] J. Lawton, K. Uzdoğan, and P. Cox, “Peer review aggregation utilizing blockchain
technology,” in 2021 3rd Conference on Blockchain Research Applications for Inno-
vative Networks and Services (BRAINS), 2021, pp. 8–11.

[51] Y. He, K. Tian, and J.-R. Fu, “An incentive mechanism-based framework to assure
the quality of self-organizing peer review in preprint,” Data Technol. Appl., vol. 55,
pp. 609–621, 2021.

[52] L. Medury and S. Ghosh, “Decentralized peer-review research solution,” in 2021 12th
International Conference on Computing Communication and Networking Technologies
(ICCCNT), 2021, pp. 1–7.

[53] Ámbar Tenorio-Fornés, E. P. Tirador, A. A. Sánchez-Ruiz, and S. Hassan,
“Decentralizing science: Towards an interoperable open peer review ecosystem
using blockchain,” Information Processing Management, vol. 58, no. 6, p.
102724, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0306457321002089

74

www.scopus.com
https://arxiv.org/abs/1910.00580
https://arxiv.org/abs/2007.03915
https://www.sciencedirect.com/science/article/pii/S0306457321002089
https://www.sciencedirect.com/science/article/pii/S0306457321002089

[54] B. Trovò and N. Massari, “Ants-review: A privacy-oriented protocol for incentivized
open peer reviews on ethereum,” in European Conference on Parallel Processing.
Springer, 2021, pp. 18–29.

[55] A. Gazis, G. Anagnostakis, S. Kourmpetis, and E. Katsiri, “A blockchain
cloud computing middleware for academic manuscript submission,” WSEAS
TRANSACTIONS ON BUSINESS AND ECONOMICS, vol. 19, pp. 562–572, feb
2022. [Online]. Available: https://doi.org/10.373942F23207.2022.19.51

[56] M. Beştaş, R. Taş, E. Akin, M. Ozkan-Okay, Aslan, and S. S. Aktug, “A novel
blockchain-based scientific publishing system,” Sustainability, vol. 15, no. 4, p. 3354,
Feb 2023. [Online]. Available: http://dx.doi.org/10.3390/su15043354

[57] S. Woo, J. Song, and S. Park, “A distributed oracle using intel sgx for blockchain-based
iot applications,” Sensors, vol. 20, no. 9, p. 2725, 2020.

[58] L. Tredinnick, “Cryptocurrencies and the blockchain,” Business Information Review,
vol. 36, no. 1, pp. 39–44, 2019.

[59] OpenZeppelin, “Erc20.” [Online]. Available: https://docs.openzeppelin.com/
contracts/4.x/erc20

[60] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol. 1.

[61] X. B. Wu, Z. Zou, and D. Song, Learn ethereum: build your own decentralized appli-
cations with ethereum and smart contracts. Packt Publishing Ltd, 2019.

[62] Etherscan, “Etherscan—the ethereum blockchain explorer,” 2023. [Online]. Available:
https://etherscan.io/

[63] D. Mohanty, “Ethereum for architects and developers,” Apress Media LLC, California,
pp. 14–15, 2018.

[64] GitHub, “Github,” Website, 2023, accessed: January 10, 2023. [Online]. Available:
https://github.com/

[65] Microsoft, “Visual studio code,” Website, 2023, accessed: January 10, 2023. [Online].
Available: https://code.visualstudio.com/

[66] J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers do it? an exploratory
study on manual testing practices,” in 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009, pp. 494–497.

[67] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 23, no. 4, pp.
22–29, 2006.

[68] S. K. Singh and A. Singh, Software testing. Vandana Publications, 2012.

75

https://doi.org/10.373942F23207.2022.19.51
http://dx.doi.org/10.3390/su15043354
https://docs.openzeppelin.com/contracts/4.x/erc20
https://docs.openzeppelin.com/contracts/4.x/erc20
https://etherscan. io/
https://github.com/
https://code.visualstudio.com/

	Dedication
	Acknowledgments
	Abstract
	Resumen
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Academic and Scientific Environment
	Scientific Article
	Scientific Journals, Congresses, Conferences.
	Academic Publishing Process

	The Decentralized System
	Distributed Ledger Technology
	The Blockchain System
	Ethereum
	Smart Contracts
	DApp
	Tokens

	State of the Art
	Methodology
	Theoretical Design
	Proof of Concept
	Proposal
	Community Network
	Journal Peer-Review Infrastructure(JPRI)

	Practical Design
	Tools
	Smart Contracts

	Testing
	Manual Testing
	Automated Testing
	Testing Tools
	Testing Process

	Results and Discussion
	Gas Cost Analysis
	Statistical Data on the Functions Gas Cost

	Conclusions
	Bibliography

		2023-11-06T10:40:20-0500

		2023-11-06T10:41:11-0500

