
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Calibration of mobility and traffic simulation
models through machine learning.

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en tecnoloǵıas de la información

Autor:

Franklin Steven De la Cruz Paucar

Tutor:

Tito Rolando Armas Andrade, PhD.

Co-tutor:

Manuel Eugenio Morocho Cayamcela, PhD.

Urcuqúı, noviembre 2023

Autoŕıa

Yo, FRANKLIN STEVEN DE LA CRUZ PAUCAR, con cédula de identidad
1727256057, declaro que las ideas, juicios, valoraciones, interpretaciones, consultas bib-
liográficas, definiciones y conceptualizaciones expuestas en el presente trabajo; aśı cómo,
los procedimientos y herramientas utilizadas en la investigación, son de absoluta respon-
sabilidad de el/la autor/a del trabajo de integración curricular. Aśı mismo, me acojo a
los reglamentos internos de la Universidad de Investigación de Tecnoloǵıa Experimental
Yachay.

Urcuqúı, noviembre 2023.

Franklin Steven De la Cruz Paucar
CI: 1727256057

ii

Autorización de publicación

Yo, FRANKLIN STEVEN DE LA CRUZ PAUCAR, con cédula de identidad
1727256057, cedo a la Universidad de Investigación de Tecnoloǵıa Experimental Yachay,
los derechos de publicación de la presente obra, sin que deba haber un reconocimiento
económico por este concepto. Declaro además que el texto del presente trabajo de titu-
lación no podrá ser cedido a ninguna empresa editorial para su publicación u otros fines,
sin contar previamente con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este
trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto
en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, noviembre 2023.

Franklin Steven De la Cruz Paucar
CI: 1727256057

iv

Dedication

I dedicate this work to the scientific community, whose unwavering dedication to the
pursuit of knowledge is a boundless source of inspiration. I hope that my efforts

contribute in some way to the progress of information technology.
To my beloved family, thank you for your unwavering support throughout this journey.

Without your love, encouragement, and sacrifice, I would not have achieved this success.
To Yachay Tech, my beloved university: Thank you for the education and opportunities

that have enabled my growth and learning. You are a beacon of knowledge and academic
excellence.

This work is the result of the dedication and effort of many people, and I dedicate it with
gratitude and appreciation to all those who have been part of my academic and personal

career.

Franklin Steven De la Cruz Paucar

v

vi

Acknowledgment

I want to express my sincere gratitude to those who played a fundamental role in the success
of my thesis. Their support, guidance, and encouragement were invaluable throughout the
process.

I would like to thank my exceptional thesis mentor, PhD. Rolando Armas, for your pro-
fessional assistance and unwavering devotion. His dedication and knowledge were essential
at every level of this thesis’ development.

I also like to thank my thesis co-tutor, PhD. Eugenio Morocho, whose thoughts and
experience served as a source of inspiration and collaboration even when the outcomes did
not match expectations. His insight and recommendations were essential.

I offer a special appreciation to my mother, Hirma Paucar, for her moral support and
unconditional affection. Her presence and support made the whole thing pleasant.

I want to thank my entire family for always believing in me and supporting me.
I am thankful to my buddy Saul Figueroa, who has been a constant companion through-

out my career, for his collaboration and unwavering support.
And to all my friends and my girlfriend, I thank you for your words of encouragement,

the time you spent listening to my development, and the helpful advice you gave me.

Franklin Steven De la Cruz Paucar

vii

viii

Resumen

La movilidad urbana es uno de los principales elementos del transporte inteligente, debido
a su importancia y avance tecnológico, los ingenieros de tráfico aprovechan los modelos
computacionales de movilidad y simulación de tráfico. Sin embargo, para obtener un
escenario similar a la vida real es necesario cambiar parámetros en el simulador. Este
proceso es iterativo y requiere mucho tiempo. Tradicionalmente se realiza de forma manual,
es decir, el ingeniero de tráfico va cambiando los parámetros del simulador hasta obtener
un escenario similar al observado. La importancia de las simulaciones radica en que ayudan
a mejorar el flujo de tráfico y predecir la congestión si algo cambia en la red.

Simulation of Urban Mobility (SUMO) es una herramienta muy popular en el mundo
de la simulación de tráfico. Este software es un paquete de tráfico microscópico y de código
abierto que simula el comportamiento de la red urbana. Sin embargo, estas simulaciones
son computacionalmente costosas debido a problemas en el tamaño del escenario y la can-
tidad de veh́ıculos. La cantidad de automóviles en un sistema puede llevar mucho tiempo
de procesamiento y calibración, por lo tanto esta investigación propone una metodoloǵıa
para calibrar automáticamente simulaciones de tráfico mediante el conteo de automóviles
en tiempo real para obtener datos precisos de entrada del simulador. Primero, se real-
izan muchas simulaciones para crear un extenso conjunto de datos de ejemplos utilizando
diferentes volúmenes de veh́ıculos en los carriles de entrada y probabilidades en los carriles
de intersección. Luego, los datos se intercambian de entrada/salida a salida/entrada para
entrenar los modelos. Se aplican diferentes técnicas de aprendizaje automático, como Re-
des Neuronales Artificiales, Bosque Aleatorio (RF) y k-Vecino más cercano (kNN) que son
capaces de estimar resultados de los parámetros de entrada para la simulación. Se presenta
otra opción de calibración que combina modelos de aprendizaje automático y un algoritmo
genético si el método propuesto no funciona bien. Se seleccionó la ciudad de Ibarra como
principal área para la calibración y dos escenarios alternativos con alta prevalencia en áreas
urbanas aśı como el hecho de que sus estructuras de red difieren entre śı.

Los resultados han demostrado que las redes neuronales tienen un mejor rendimiento en
el primer escenario para predecir valores de entrada al simulador. En el segundo escenario,
las redes neuronales también tuvieron un mejor rendimiento, sin embargo, los resultados
no fueron tan precisos. Es por ello que se realizó la alternativa que combina modelos de
aprendizaje automático con un algoritmo genético. kNN logró un mejor rendimiento al
predecir las salidas del simulador sin su ejecución. Una vez desarrollado un modelo con
alta precisión, se implementó un algoritmo genético para obtener los valores de entrada de
la simulación teniendo el conteo de automóviles en las intersecciones.

Palabras Clave:

ix

Redes Neuronales Artificiales, Bosque aleatorio, k- Vecino más Cercano, Aprendizaje Au-
tomático, Algoritmo Genético

x

Abstract

Urban mobility is one of the main elements of intelligent transportation. In this context,
computational mobility and traffic simulation models are harnessed by traffic engineers.
Nevertheless, to obtain a scenario similar to real life needs to change parameters in the
simulator, this process is iterative and time-consuming. It is traditionally done manually.
These simulations help to enhance the traffic flow and predict congestion if something in
the network changes.

Simulation of Urban Mobility (SUMO) is very popular in the world of traffic simulation.
This software is a package of microscopic traffic and open source that simulates urban
network behavior. However, these simulations are computationally expensive because of
problems in the size of the scenario and the number of vehicles. The number of cars
in a system can take a long processing time. This research proposes a methodology to
automatically calibrate traffic simulations by counting cars in real time to obtain precise
data of input of the simulator. First, many simulations are done to create an extensive
dataset of examples by using different volumes of vehicles in entry lanes and probabilities
in intersection lanes. Then data is interchanged from input/output to output/input to
train the models. It is applied different machine learning techniques, such as Artificial
Neural Networks, Random Forest (RF), and k-Nearest Neighbors (kNN) that are capable
of estimating simulation results. It is presented with another option for calibration that
combines machine learning models and a genetic algorithm if the proposed method does not
work well. Ibarra city was selected as the main for calibration and two alternative scenarios
with high prevalence in urban areas as well as the fact that their network structures differ
from one another.

Results have shown Neural Networks have better performance in the first scenario
to predict input values to the simulator. In the second scenario, Neural Networks also
had better performance, however, the results were not so accurate. That is why the
alternative that combines machine learning models with a genetic algorithm was performed.
kNN achieved better performance in predicting the outputs from the simulator without its
execution. Once a model with high precision was developed, a genetic algorithm was
implemented to obtain the input values of the simulation having the counting of cars in
intersections.
Keywords:
Artificial Neural Networks, k-Nearest Neighbors, Random Forest, Machine learning, Ge-
netic algorithm

xi

xii

Contents

Dedication v

Acknowledgment vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Objectives . 2

1.3.1 General Objective . 2
1.3.2 Specific Objectives . 2

2 Theoretical Framework 5
2.1 Traffic Simulation . 5
2.2 SUMO . 6

2.2.1 Network Building . 7
2.2.2 Demand Modelling . 9
2.2.3 TraCI . 12

2.3 Machine learning . 13
2.4 Neural Networks . 13

2.4.1 Neural networks architecture . 14
2.4.2 Single-layer neural networks . 14
2.4.3 Multi-layer neural networks . 14
2.4.4 Optimizers . 15

2.5 Random Forest . 16

xiii

2.6 k-Nearest Neighbors (kNN) . 18
2.7 Genetic Algorithm . 20

2.7.1 Genetic Algorithm Development . 20
2.8 Calibration . 21

3 State of the Art 23
3.1 Selection of parameters for calibration . 23
3.2 Concerning the calibration procedure . 24
3.3 On the use of machine learning to solve traffic problems 25
3.4 On SUMO calibration . 26
3.5 On measuring the accuracy of the model 27

4 Methodology 29
4.1 Phases of Problem-Solving . 29

4.1.1 Description of the Problem . 32
4.2 Model Proposal . 32

4.2.1 Parameters selection . 33
4.2.2 Customized JTRROUTER . 34
4.2.3 Selection of scenarios . 34
4.2.4 Assignment of the volume of vehicles and route decisions for each

scenario . 36
4.2.5 Machine learning models . 37

4.3 Analysis Method . 41
4.4 Experimental Setup . 43

5 Results and Discussion 47
5.1 First scenario results . 47

5.1.1 Neural Network . 49
5.1.2 Random Forest regression . 51
5.1.3 kNN regresssion . 52
5.1.4 Summary Results . 53

5.2 Second scenario results . 56
5.2.1 Neural Network . 58
5.2.2 Random Forest regression . 61
5.2.3 kNN regression . 62
5.2.4 Summary results . 63
5.2.5 Option 2: Machine learning model combined with genetic algorithm 64

6 Conclusions 71
6.1 Future works . 73

Bibliography 75

xiv

List of Tables

2.1 Parameters in a network file to be coordinated 7
2.2 Parameters for edges in network file . 8
2.3 Parameters for lanes in a network file . 8
2.4 Settings for junctions and intersections in a network file 8
2.5 Parameters for requests in network files . 9
2.6 Parameters for connections in a network file 9
2.7 Attributes behavior of vehicles in a route file 10
2.8 A route file’s depiction of a route . 11
2.9 Depiction of a vehicle in a route file . 11
2.10 Distance Functions and Formulas. Retrieved from [1] 19

4.1 Genetic algorithm parameters . 41
4.2 Error Formulas. Retrieved from [2] . 42

5.1 Summary results correlation and MSE of machine learning models 54
5.2 Neural Networks results part 1 . 54
5.3 Neural Networks results part 2 . 55
5.4 Neural Networks results part 3 . 56
5.5 Summary results correlation and MSE of machine learning models 64
5.6 Summary results correlation and MSE of machine learning models 68
5.7 Genetic algorithm results . 69

xv

xvi

List of Figures

2.1 SUMO Graphic User Interface. Retrieved from [3] 6
2.2 Traffic flow models: (a) Macroscopic,(b) Microscopic, (c) Submicroscopic,

(d) Mesoscopic. Retrieved from [4] . 6
2.3 Network representation in SUMO . 7
2.4 Route file representation . 10
2.5 JTRROUTER flowchart . 11
2.6 TraCI architecture. Retrieved from [5] . 12
2.7 Import TraCI in a Python script. 12
2.8 Basic TraCI script. 13
2.9 The perceptron model. 14
2.10 The multi-layer perceptron model. 15
2.11 Bootstrap aggregation process represented as decision trees 17
2.12 Example of kNN for a 3-class problem with k=5. Retrieved from [6] . . . 18
2.13 Popultion, Chromosomes, and Genes . 20

4.1 Training dataset creation . 30
4.2 Machine learning training and evaluation 30
4.3 If r > 0.8 . 31
4.4 If r < 0.8 . 32
4.5 Simulations with fixed and variable inputs. 33
4.6 Customized JTRROUTER. 34
4.7 Google Maps networks representation. 35
4.8 Ibarra city SUMO representation. 35
4.9 SUMO networks representation. 36
4.10 First scenario volumes and route decisions. 36
4.11 Second scenario volumes and route decisions. 37
4.12 Training and testing dataset split. 37
4.13 A portion of the training dataset is separated for validation. 38
4.14 Neural Network topology. 39
4.15 Plot of x and y variables with weak (a) and strong (b) correlations. 43
4.16 Dataset example. 44

5.1 First scenario volumes and route decisions. 47
5.2 First scenario volumes and route decisions dataset example. 48
5.3 Epochs before early-stopping for each optimizer in the first scenario. 49
5.4 Correlation for each optimizer in the first scenario. 50

xvii

5.5 Correlation for each variable in the first scenario by Neural Network. . . . 51
5.6 Correlation for each variable in the first scenario by Random Forest regression. 51
5.7 Correlation for each variable in the first scenario by kNN regression. 52
5.8 Correlation for each variable in the first scenario by each machine learning

model for the first scenario. 53
5.9 Second scenario volumes and route decisions. 57
5.10 Second scenario volumes and route decisions dataset example. 57
5.11 Epochs before early-stopping for each optimizer for the second scenario. . . 58
5.12 Average correlation by each optimizer for the second scenario 59
5.13 Correlation for each variable in the second scenario by Neural Network. . . 60
5.14 Correlation for each variable in the second scenario by Random Forest. . . 61
5.15 Correlation for each variable in the second scenario by kNN. 62
5.16 Correlation for each variable in the second scenario by each machine learning

model. 63
5.17 Second scenario volumes and route decisions dataset example. 65
5.18 Correlation for each variable in the second scenario by Neural Network. . . 66
5.19 Correlation for each variable in the second scenario by Random Forest. . . 66
5.20 Correlation for each variable in the second scenario by kNN. 67
5.21 Correlation for each variable in the second scenario by each machine learning

model. 67

xviii

Chapter 1

Introduction

1.1 Background
Nowadays, traffic congestion has become a recurrent challenge in cities, which affects in a
negative way the mobility. To tackle this problem some techniques and tools have been
developed, one of them is the simulation of vehicular traffic in urban environments [7]. As a
consequence, these tools can be used to simulate future conditions in existing transportation
systems. The simulation offers an effective platform to analyze and understand traffic
behavior in different conditions. It can be used to evaluate the effectiveness of different
transportation plans and policies, allowing traffic engineers to make decisions about traffic
management, such as the addition of new roads and intersections or the implementation of
new rules and regulations related to driver behavior [7]. As a result, traffic simulation has
the potential to save governments time and money by simulating different scenarios and
evaluating the impact of different strategies and conditions, cities can reduce the cost of
implementing new transportation projects and make more effective use of limited resources
[8].

Traffic simulation has been used for many years to analyze the impact of changes in
transportation infrastructure. For example, it can provide the consequences of the effects
of changes to the design of streets and highways and the routing of traffic through the
system [8]. Different types of traffic simulations have been created to accomplish this task.
In this project, a microscopic traffic simulator called SUMO [9] allows modeling traffic flow
in a network, having in count several factors, such as volume of vehicles, traffic density, and
different network topologies. This software was designed in 2001 by the German Center
for Aerospace (DLR, a German abbreviation). Sumo is an open-source traffic simulator
that includes a number of apps for planning and creating various simulations in realistic
situations. [10]. This tool works with networks in a very flexible way. They can be made
from scratch or modified from an existing map using Netedit. For its working a route
file needs to be generated, which contains some characteristics such as type of vehicle and
routes for all vehicles in the simulation. To obtain accurate results is essential to have
trusty and updated data that could describe the conditions in the real world. To obtain
optimal conditions it is necessary to modify the parameters in the simulator in an iterative
way until some of them match with the behavior observed, this is known as calibration[11].

1

Calibration is one important area in computer science that helps to ensure the accuracy
and reliability of calculations. To understand this concept, it is necessary to know about the
process of calibration and the different types of calibration that exist. It is also important to
understand the role that calibration plays in everyday computing and how it can be applied
in other fields of study. The process of calibration is about taking the measurements that
are essential to a task and then adjusting the computer or device in a way such that those
measurements are accurate and reliable [12]. There are different methods that can be used
to achieve the proper level of calibration. In mobility and traffic simulation models is an
important step in ensuring the accuracy and reliability of these models[13].

In this work, we present a machine-learning approach to calibrate mobility and traffic
simulation models.. We demonstrate that our approach, which uses datasets of simulated
traffic and mobility information, can improve the simulation models’ accuracy and predic-
tive power.

1.2 Problem statement
In modern cities, traffic congestion is a critical problem that affects urban mobility, quality
of air, and efficiency of transport systems. Successfully planning strategies to manage and
optimize vehicle flow is essential to reduce these problems. In this context, traffic vehicle
simulation has emerged as a valuable tool to understand and predict traffic behavior in
different scenarios [14].

Nevertheless, the precision of simulations in some models, such as SUMO depends on
the quality of used data as input. The results of simulations can not be enough close to
reality if the estimation of the volume of vehicles in entry lanes and exit route probabilities
are not well defined. One approach to this problem is to use vehicle count in the real
world as a base-calibrated scenario for the simulator. The idea is to take the simulation
performed by the counting data as the initial reference and adjust gradually the simulator
parameters of the simulator to have a scenario very close to the real world. This approach
not only can enhance the precision of simulations but also, can deliver a solid base to make
decisions related to traffic management.

1.3 Objectives

1.3.1 General Objective
This research proposes a methodology to train machine learning models to automatically
calibrate mobility and traffic simulation models.

1.3.2 Specific Objectives
• Automate the process for the creation of a dataset and execute a large number of

simulations based on the volume of vehicles and route probabilities.

2

• Identify the most common methods used to calibrate traffic simulators and the re-
search gap.

• Develop Artificial Neural Networks, Random Forest, and k-Nearest Neighbors that
reuse the information from the history of simulations to predict inputs (vehicle volume
and route decision) for the calibration in the simulator and validate the proposed
methodology.

• Develop a genetic algorithm that, in union with machine learning models, could
predict the volume of vehicles and route probabilities for different complex scenarios.

3

4

Chapter 2

Theoretical Framework

The principles required to comprehend this project are covered in this chapter, along
with an introduction, a thorough description of the fundamentals of traffic simulation, the
SUMO simulator interface, and components that generate scenarios for traffic flow simu-
lation with user-defined variables. It also explains the machine-learning models, Artificial
Neural Networks, Random Forest regression, k-Nearest Neighbors (kNN) regression, their
structure, and how they work. Finally, it is explained what a genetic algorithm is and how
it and machine-learning models worked together to develop this work.

2.1 Traffic Simulation
Traffic simulations make easier the evaluation of vial structure changes, the same as the
impact of new politics before being implemented in daily life [15]. Nowadays, mobility
is required for all human activities, whether they be social or commercial. The distance
and amount of time needed for travel between two locations have increased along with the
expansion of urban and rural areas. This time extension is caused by an increase in the
number of vehicles on the road worldwide each year [16].

All calculated parameters for all vehicles in the simulation, including locations, speeds,
and accelerations, are delivered as outputs by the simulator and are all recognizable and
traceable. But it is deemed unreasonable for the simulation to be entirely deterministic
[17], and as a result, the simulation injects some unpredictability into the computations.
The simulator enables the development of measurement tools for trip times, automobile
queue counts, and vehicle counts, among other outcomes. Practically speaking, these
aggregate data are regarded as the outputs of the simulator and are technically processed
as statistics.

One possible interpretation of the traffic simulator is that of a mathematical function
that takes all settings and parameter inputs, including the length of the simulation and
outputs the states of the road network at each simulation step, along with the output
metrics that were set by the user and refer to the entirety of the simulation, or to intervals
within the duration of the simulation (for example, measure vehicle counts on a road only
within a specific time interval).

5

2.2 SUMO
Simulation of Urban Mobility (SUMO) is a very powerful vehicle simulation package that
over the years has been adding a wide variety of tools that allow for increasingly realistic
simulation scenarios and conditions [18] [19] [20]. Starting in 2001, it was created by staff
members at the German Aerospace Center. The Graphic User Interface (GUI) of SUMO
is shown in Figure 2.1.

Figure 2.1: SUMO Graphic User Interface. Retrieved from [3]

Depending on the level of detail of the simulators, four traffic flow models are distin-
guished: (a) Macroscopic: the traffic flow is the basic entity. (b) Microscopic: the move-
ment of each vehicle is simulated. (c) Submicroscopic: Vehicles are considered microscopic
and divided into substructures. (d) Mesoscopic: the boundary between the microscopic
and macroscopic models. The models with a higher level of detail require longer calculation
times, which restricts the size of the network to be simulated [4].

Figure 2.2: Traffic flow models: (a) Macroscopic,(b) Microscopic, (c) Submicroscopic, (d)
Mesoscopic. Retrieved from [4]

6

2.2.1 Network Building
A directed graph is used in SUMO’s network representation. The nodes use a coordinate
from the map to represent a point in the network. In the map, a unidirectional street
is represented by the union of two nodes, which is described by the edges. For vehicles
to understand the direction of the roadway, edges must have a starting and ending node.
Each edge may have several parallel lanes. Each lane has fixed settings for its width, speed,
and other characteristics that control how a moving vehicle behaves in that lane. Figure
2.3 shows a network representation in SUMO.

Each network representation is contained in a file (*.net.xml). This file includes all the
previously described components as well as additional ones that permit accurate network
interpretation. These files can be created by users using programs like NETEDIT and
NETCONVERT. A command-line utility called NETCONVERT enables the importation
of networks from several sources, including OpenStreetMap (OSM) and other simulators,
including MATSim [21]. An editor called NETEDIT is used to create, review, and update
network files as well as to manually manipulate converted networks [22].

Figure 2.3: Network representation in SUMO

The key components of network files, which are encoded as XML files and contain
precise information about how a graph is represented, are the cartographic projection,
edges, junctions, and connections.

Coordinates

Cartesian projection is used in network files to represent the spatial distribution. The
bottom node is at y=0 while the leftmost node is at x=0. Such projections are represented
by the label location, and Table 2.1 lists their properties.

Table 2.1: Parameters in a network file to be coordinated

Attribute Description
netOffsset The distance needed to move the network to (0, 0).
convBoundary The present network’s perimeter.
origBoundary The original network’s original boundaries before projection.
projParameter Information about the projection of the network.

7

Edges and Lanes

An edge, as previously mentioned, is a union of two nodes (junctions), and each edge may
have a number of lanes, which are parallel, unidirectional representations of streets. Table
2.2 displays the properties of an edge, while Table 2.3 depicts a lane.

Table 2.2: Parameters for edges in network file

Attribute Description
id The edge’s ID.
from Node ID where it starts.
to Node ID where it finishes.
priority The significance of the edge.
function Edge purpose.

Table 2.3: Parameters for lanes in a network file

Attribute Description
id The lane’s ID.
index A running total that begins at 0.
speed The lane’s maximum speed is (m/s).
length The lane’s length is in meters.
shape Depiction of contours.

Junctions

The intersections between lanes are represented by the junctions, which can be thought of
as nodes in the directed graph. The traits of them are shown in Table 2.4. The junctions
may have a variety of demands. The requests list the streams that are more important for
each link’s streams. The requests’ characteristics are shown in Table 2.5.

Table 2.4: Settings for junctions and intersections in a network file

Name Description
id The intersection’s ID.
x The location of the x-axis intersection.
y The location of the y-axis intersection.
incLanes The group of lanes that come to an intersection’s end.
intLanes An inventory of the junction’s lanes.
shape Describes the junction’s boundaries.

8

Table 2.5: Parameters for requests in network files

Attribute Description
index The connection’s index.

response Bitstring indicating if it forbids passing
through the crossing without slowing down.

foes Bitstring describing conflicts between
alternative connections and the real connection.

cont Whether a car can proceed past the first stop
line and wait until no other cars have a higher priority.

Connections

The connections, or links, show the first route to take after passing the intersection and
specify which lane the vehicle can use from an oncoming lane. The properties of connections
are provided in Table 2.6.

Table 2.6: Parameters for connections in a network file

Attribute Description
from The incoming edge’s ID.
to The outgoing edge’s id.
fromLane The entering lane’s ID.
toLane The outgoing lane’s ID.
via The lane that is used first following the connection.
dir Connection direction.
state The connection’s state.

2.2.2 Demand Modelling
After network generation, traffic demand must be put in place. It has access to vehicles and
the details of each travel. There are various ways to represent traffic demand in SUMO,
including trips, flows, or routes [18]. The representation in routes is revealed in this study.
We may categorize several sorts of cars according to their various attributes, such as size,
behavior, and others. The creation of each vehicle that will feature in the simulation is
a crucial component of this file. Each of them will be represented as a set of edges that
move around the simulation and have a kind, a departure time, and a predetermined route.
Route files (*.rou.xml), which represent this traffic requirement.

We may make use of SUMO’s randomTrips tool to create a route file. It is a Python
script that makes use of a network file and creates a number of routes in a file based on
input from the user. These routes frequently lack balance, so the characteristics of the cars
will be random. Utilizing Origin and Destination (O-D) matrices is a distinct strategy [21].

9

The tools used by SUMO to create routes are as follows: (1) DUAROUTER, which lets
users import demand definitions and create routes based on the shortest path algorithm.
(2) JTRROUTER is used to statistically predict traffic utilizing turn rates at street inter-
sections and flow specifications. (3) OD2TRIPS allows OD matrices (origin/destination
matrix) to be transformed into driving trips. (4) DFROUTER can determine routes using
data collected from detectors placed along the map’s roads. (5) MAROUTER requires less
computer resources because it constructs the routes as vehicular flows and computes the
trips using macroscopic assignment.[18].

Typically, a route file includes comprehensive information about the traffic demand.
The representation of a route file is shown in Figure 2.4.

Figure 2.4: Route file representation

Vehicle type

The simulation’s first step defines one or more vehicle kinds (vType). Each type specifies
a number of variables that are used to define the shape and behavior of the vehicle during
the simulation. In Table 2.7, some of these traits are displayed.

Table 2.7: Attributes behavior of vehicles in a route file

Attribute Description
id The type of vehicle’s name.
accel This car’s ability to accelerate (m/s2).
decel The vehicle’s ability to decelerate (m/s2).
sigma The flaw in the car-flowing model’s driver.
length Vehicle length in meters.
maxSpeed The car’s top permitted speed.

Route

The route specifies the boundaries and other features that will make up a vehicle’s journey
within the simulation. To prevent simulation mistakes, the set of straight edges must be
connected. The features of the routes are shown in Table 2.8.

10

Table 2.8: A route file’s depiction of a route

Attribute Description
id The route’s name.
edges List of the edge identifiers that the car will go along.
color Route color

Vehicle

The simulated object that will go across the full simulation in the chosen network is defined
by the vehicle. The key traits of the vehicles are displayed in Table 2.9.

Table 2.9: Depiction of a vehicle in a route file

Attribute Description
id The vehicle’s name.
type User-specific type id for this vehicle.
route Id of the path that the vehicle will take, with explicitly stated edges.
color The vehicle’s color
depart The moment when the car first joins the network.

JTRROUTER

This tool generates vehicle routes based on flow demand and turn percentages at street
intersections [23]. Figure 2.5 shows the flowchart of this tool, where in addition to the road
network and traffic demand as vehicle flows, there is a description of the turning ratios at
each intersection.

Figure 2.5: JTRROUTER flowchart

11

2.2.3 TraCI
The Traffic Control Interface (TraCI) [5] gives users access to a running SUMO traffic
flow simulation, allowing them to retrieve simulation agent variables and control their
behavior. TraCI uses a TCP/IP-based framework to provide users control over SUMO.
A client/server topology is supported by the design. As a result, SUMO functions as a
server that initiates command-line actions using a TraCI script (often written in Python or
C++) and manipulates simulation objects in real time. Up until it runs the simulation step
function, TraCI supports many clients and executes the desired activities in the clients.
The TraCI architecture is shown in Figure 2.6.

The client application delivers commands to SUMO using the protocol depicted in
Figure 2.6 to control the simulation execution, a specific vehicle behavior, or to extract
values from simulation objects. SUMO responds to each command with a status response
and, depending on the request, with one or more additional values.

Figure 2.6: TraCI architecture. Retrieved from [5]

Python is the preferred language for creating scripts that use TraCI since it has thorough
documentation, supports all TraCI commands, and the community regularly tests this
library. TraCI libraries are supported by other languages including C++ and Matlab, but
their support isn’t entirely comprehensive. We need to import TraCI into the script in
order to connect SUMO and TraCI using Python. The Python load path must contain the
SUMO HOME/tools directory. Figure 2.7 illustrates how to do this.

Figure 2.7: Import TraCI in a Python script.

12

We begin our simulation and establish a connection to it using the constructed script
after loading TraCI into the Python load path. Figure 2.8 shows a simple Python script
that runs 1000 simulation steps using TraCI.

Figure 2.8: Basic TraCI script.

Several commands can be issued after connecting to the simulation, which will then
carry out a simulation step till needed. The simulation must be finished by closing it.

2.3 Machine learning
The field of artificial intelligence known as Machine Learning (ML) focuses on creating
algorithms and models that can recognize patterns and relationships in data [24]. Its use
in the calibration of simulators, like SUMO, has emerged as a viable strategy to raise the
accuracy of simulations of vehicle traffic [25]. In this context, models may understand
underlying patterns and correlations in data to generate predictions and judgments, which
is the foundation of ML. In order to learn from examples and generalize from them, machine
learning algorithms are trained using a set of input data and matching outputs. The
calibration of the simulator can make use of several ML algorithms. Relationships between
simulator settings and count data can be found using regression models, such as polynomial
and linear regression.

2.4 Neural Networks
Famous machine learning techniques that mimic the biological organisms’ learning mecha-
nisms include artificial neural networks [26]. Cells that function as neurons are incorporated
into the human nervous system. Dendrites and axons connect the neurons, and the areas
where dendrites and axons meet are known as synapses [27]. In this study, the term ”neural
networks” will be used to describe artificial neural networks rather than biological ones.
Weights, which have the same purpose as the potency of synaptic connections in biological
organisms, are used to connect computing units. Each bit of data that a neuron receives
is scaled with a weight, which has an impact on the function determined at that unit [28].

13

2.4.1 Neural networks architecture
Single-layer and multi-layer neural networks will be introduced. A set of inputs is quickly
mapped to an output in the single-layer network using a generalized linear function varia-
tion. The perceptron is another name for this basic neural network implementation [29]. In
multi-layer neural networks, the neurons are organized in layers with the input and output
layers being divided by a set of hidden layers. A feed-forward network is another name for
the neural network’s layer-wise architecture [30].

2.4.2 Single-layer neural networks
The simplest kind of neural network is a single layer, sometimes referred to as a perceptron.
They don’t have any hidden layers in between; they only have an input layer and an output
layer. All of the input layer’s neurons are coupled to every neuron in the output layer.
These linear models are typically applied to binary classification issues [29]. Perceptrons
were the starting point for the creation of deeper and more complicated neural networks,
despite their limited capacity to capture complex interactions. A layer’s perceptron can
be thought of as a linear function that receives inputs, combines them with weights and
biases, and outputs the result. Figure 2.9 shows the perceptron model.

Figure 2.9: The perceptron model.

2.4.3 Multi-layer neural networks
Multi-layer neural networks are more advanced and flexible models that include multiple
layers, including an input layer, one or more hidden layers, and an output layer. Hidden
layers allow the network to learn more complex, non-linear representations of the data.
Each neuron in one layer is connected to all the neurons in the layer before and after it,
forming a pattern of interconnected connections.[30]. It is illustrated in Figure 2.10. A
detailed explanation of its structure and operation follows:

Input layer

The input characteristics of the problem are sent to this layer. In this layer, each neuron
stands for a distinct trait. Neurons in the hidden layers receive and analyze the inputs

14

before being sent [31].

Hidden layers

These intermediary layers are in charge of teaching the data more complicated and abstract
representations. Every neuron in a hidden layer takes input from neurons in the layer above,
processes that input using weighted operations, and then passes the outcome through a
nonlinear activation function. [31].

Output layer

The model’s final outputs are produced by this layer. The hidden layer outputs are fed
onto the neurons in this layer, which then use weighted operations to produce the final
predictions or classifications [31].

Figure 2.10: The multi-layer perceptron model.

2.4.4 Optimizers
The goal of optimization approaches is to avoid settling for local minimum solutions. Gra-
dient descent (GD) optimization is a prominent approach in deep learning models. How-
ever, numerous GD approaches for deep networks are utilized to discover the optimal set
of parameters that minimize the loss function [32]. The following are some of the most
often-used optimizers:

Stochastic Gradient Descent (SGD)

SGD is an iterative optimization approach that tries to minimize a neural network’s loss
function (also known as the cost or objective function) during training by modifying the
model’s parameters (weights and biases). It is dubbed ”stochastic” because it acts in each
iteration on a randomly selected portion of the training data (a mini-batch) rather than
the complete dataset [33].

15

Adaptive Gradient Descent (AdaGrad)

It is designed to enable quicker convergence by decreasing the learning rate from big gra-
dient parameters and raising the learning rate from small gradient parameters. In other
words, this approach determines the learning rates based on the gradient scenario [34].

Adaptive Delta (AdaDelta)

It, like AdaGrad, adjusts the learning rate for each parameter. The primary difference is
that this approach is more stable since it employs the root mean square of the gradients.
It minimizes memory needs by using multiple fixed-size windows rather than collecting the
gradient [35].

Adaptive Moment Estimation (Adam)

It combines RMSProp and Momentum. The learning rates are determined by the first and
second moments of the gradients. One of the primary benefits of this optimizer is that it
decreases the computational cost and the execution memory [36].

Maximum Adaptive Moment Estimation (AdaMax)

In contrast to the Adam optimizer, AdaMax employs an infinity norm (L-infinity) rather
than the L2 norm. Furthermore, this optimizer employs the entire value of the second
momentum from the Adam approach, resulting in a more robust and stable solution [37].

Nesterov-accelerated Adaptive Moment Estimation (Nadam)

Nadam combines the benefits of both Nesterov Accelerated Gradient (rapid convergence)
and Adaptive Moment Estimation (adaptivity to varied learning rates), making it an ef-
fective optimizer for deep neural network training. In many cases, it converges quicker and
more consistently than classic optimizers like SGD and even Adam [38].

2.5 Random Forest
One of the most common machine learning regression models is the random forest regres-
sion. It is a tree-based ensemble learning algorithm that predicts numeric values [39].
Certainly, a random forest algorithm can be used for classification and regression. Clas-
sification problems are related to discrete labels or specific categories, while regression
predicts continuous values [40]. Then, random forest regressions can be considered as an
extension of the main random forest algorithm. To understand all the mechanisms involved
in random forest procedure, essential concepts, and sub-processes need to be known.

Ensemble Learning

Ensemble learning is a technique that combines multiple machine learning algorithms to
obtain a single prediction from many base model predictions. The idea of applying this

16

method is to avoid choosing a poor model for solving a particular problem [41]. Instead,
by combining results, a more accurate solution can be obtained. when referring to random
forest approach, parallel ensemble learning is needed.

Bootstrapping Bootstrapping is a probabilistic technique whose objective is to create
different subsets by extracting random samples from an original dataset [42]. The key
strategy of bootstrapping is that this extraction process is sequential. In other words, the
first subset is obtained by randomly selecting N observations from the original dataset, then
each observation is returned to the original dataset before extracting the next N sample for
the second subset [43]. This process is repeated for all the subsets to be created. Therefore,
one observation is not only contained in one subset, it has the chance to be in different
subsets. This mechanism makes the bootstrapping technique a robust one since it does
not depend on applying any distribution to the original data.

Bootstrap Aggregation Bootstrap Aggregation or Bagging is the basis of the random
forest algorithm. It consists of creating a training dataset from the original dataset through
the sampling with replacement technique (Bootstrapping) [44]. Indeed, bagging is used to
generate multiple versions of a predictor. Here is where aggregation comes up to get
this aggregated predictor based on those versions. In the case of regression problems, a
numerical output is expected. Hence, this new predictor is calculated by computing the
average among all the versions [45]. Figure 2.11 shows a representation of the bagging
process.

Figure 2.11: Bootstrap aggregation process represented as decision trees

17

Random Forest Algorithm for Regression

Due to the decision tree structures, and considering that random forest is based on a bag-
ging process, it is suitable to perform parallel training such as required by a bootstrapping
aggregation method. Then, it is possible to implement this technique by following the next
procedure:

1. Set k, the number of decision trees to be used (bootstrap set), set N , the number
of samples to randomly extract observations from the original dataset D, and set
F =

√
Number of features from D.

2. Create k subsets from D.

3. Split each decision tree by considering the best feature F that minimizes the loss.

4. For regression, computes the means by taking each prediction resulting from each
tree.

5. Evaluates the performance by using an appropriate error metric depending on the
problem studied. One of the commonly used error metrics for regression is the squared
error loss function L(Y, f(X)) = (Y − f(X))2 [39].

2.6 k-Nearest Neighbors (kNN)
It is an algorithm that saves all past (available) examples and utilizes them to anticipate
values based on a similarity measure. It predicts the values for test data/new data points
using ’feature similarity’. The new point’s value is determined by how closely it resembles
other training data samples [46]. This explanation is better represented in Figure 2.12.

Figure 2.12: Example of kNN for a 3-class problem with k=5. Retrieved from [6]

18

There are two techniques for kNN regression. The first step is to compute the average
of the target of the k-Nearest Neighbors. The second method involves calculating an
inverse distance weighted average of the k-Nearest Neighbors. The same distance functions
presented in Table 2.10 that are used in kNN classification are used in kNN regression:
Euclidean, Manhattan, and Minkowski[47]. Where p and q: They are vectors in an n-
dimensional space, r: It is a parameter that determines the distance between the vectors
“p” and “q”, n: It is the dimension of the space in which the vectors “p” and “q” are found.

Table 2.10: Distance Functions and Formulas. Retrieved from [1]

Name Formula

Euclidean dEuclidean(p, q) =
√√√√ n∑

i=1
(pi − qi)2

Manhattan dManhattan(p, q) =
n∑

i=1
|pi − qi|

Minkowski dMinkowski(p, q, r) =
 n∑

i=1
|pi − qi|r

 1
r

Stepy-by-step

• Definition of k: Begin by choosing a value for K, which represents the number of
nearest neighbors to consider when making a prediction. This K value is a hyperpa-
rameter that needs to be tuned based on the problem and the data.

• Distance measurement: To determine the K closest points to a query point (the
point you want to predict), a distance metric, commonly Euclidean distance, is used.
The square root of the sum of the squared differences between two locations in an
n-dimensional space is used to determine the Euclidean distance between them.

• Neighbor selection: The distance metric is used to identify the k nearest points
to the query point. ”Nearest neighbors” refers to these points.

• kNN Regression: In the regression context, the prediction is made by taking a
weighted average of the k nearest neighbors’ target values (labels). The closer a
neighbor is, the more influence it has on the prediction. Instead of class labels, the
target values are the values you want to forecast [6].

19

2.7 Genetic Algorithm
Genetic Algorithms are a sort of optimization algorithm that is influenced by biological
evolution and Darwin’s theory of natural selection. They were created to handle search and
optimization issues in a variety of applications. These algorithms use principles like popu-
lation, selection, crossing (crossover), mutation, and adaptation to simulate the process of
natural evolution [48].

2.7.1 Genetic Algorithm Development
The classical genetic algorithm is essentially based on starting with a collection of unopti-
mized random candidate solutions that reflect a solution to the optimization issue that we
wish to solve. When these solutions are run through the evolutionary algorithm, potential
solutions with improved features start to emerge [49]. When a solution is examined using
the fitness function, it is considered a possible candidate. The answer or group of solutions
might be maximal or minimal. The representation of the answers is critical since it influ-
ences the type of genetic operators utilized. In general, as defined by [50], the solutions’
representation might be scalar or bit strings. The genotype or chromosome refers to the
solution’s coding, which is subject to evolution [49].

Some special features or characteristics endure throughout time under Natural Selec-
tion. Genetic algorithms use this characteristic by drawing parallels with natural evolution.
GA is inspired by the natural selection mechanism, in which stronger individuals are more
likely to win in a competitive context [51].

The procedure starts with a group of individuals known as a Population. Each indi-
vidual is a solution to the situation at hand. An individual is defined by a set of factors
(variables) called as Genes. A Chromosome (solution) is formed by stringing together
genes. A genetic algorithm represents an individual’s set of genes as a string in terms of an
alphabet. Typically, binary values (strings of 1s and 0s) are utilized. We call this encoding
the genes on a chromosome. It is better represented in Figure 2.13.

Figure 2.13: Popultion, Chromosomes, and Genes

20

Step-by-step

• Initialization: The first step is to create a group of possible solutions called an
initial population. These solutions are encoded as chromosomes, which consist of
genes [52].

• Fitness evaluation:When evaluating each solution in the population, its fitness is
measured to determine its effectiveness in achieving the problem’s goal. The level of
fitness may vary depending on the problem, with some aiming to maximize it, while
others aim to minimize it [52].

• Selection: Solutions in the population are selected for breeding based on their
fitness. The fittest solutions have a higher probability of being selected, but some
less fit solutions may also be selected to maintain genetic diversity [52].

• Crossover: The selected solutions are combined to create new solutions called de-
scendants. This is done by exchanging parts of the chromosomes of the parent solu-
tions. Crossing simulates genetic recombination and may lead to promising solutions
[52].

• Mutation: Random modifications are sometimes made to descendant solutions to
introduce variability and prevent the algorithm from becoming trapped in local op-
tima [52].

• Replacement: Descendant solutions are incorporated into the population, often
replacing less fit solutions. This ensures that the population remains constant in size
[52].

• Stopping Criterion: The selection, crossing, and mutation process is repeated for
a set number of generations or until a predefined stopping criterion is met, such as
reaching a satisfactory solution [52].

• Results: Once the genetic algorithm has converged or has reached the stopping
criterion, the best solution found is reported as the result of the algorithm [52].

2.8 Calibration
Calibration has been regarded as one of the most difficult phases in the construction of
traffic simulation scenarios due to its repeated and time-consuming nature Chu et al.
[53]. Furthermore, automation and the understanding of calibration as an optimization
issue have resulted in favorable outcomes in terms of enhancing calibration task accuracy,
dependability, and repeatability. While genetic algorithms have been identified as the most
commonly used optimization methods for calibration, one drawback is that a large number
of simulations are performed throughout the iterations for the heuristic to achieve a small
set of highly specific solutions to the single scenario under calibration.

The goal of the research is to develop automatic calibration models that can be used for
different simulations of the same map but under different traffic conditions (for example,

21

the same avenue or intersection but with varying traffic demands, vehicle compositions,
and routing decisions).

We will use error functions to evaluate the calibration and convergence of machine
learning models. Mean Squared Error (MSE) was selected to be used in the experiments,
where the predictions of a model (represented by ŷi) are measured with the actual observed
values (represented by yi), n: It is the total number of observations.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (2.1)

The user can utilize the variables that were modeled with acceptable error while dis-
regarding the machine learning models’ suggestions for the variables that were modeled
badly.

The testing dataset is used to assess performance for each variable. The machine
learning models process the test inputs, and the outputs are compared to the intended
outputs from the dataset. Furthermore, the Pearson correlation between the network’s
predictions and the intended test outputs was chosen as the metric to quantify performance
in a normalized manner. The correlation serves as a score of the calibration’s quality for
each variable and is determined using Equation 2.2, where x and y are the expected and
desired output values [54].

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(2.2)

Once machine learning models are trained and tested, the calibration will be measured
with the results of Pearson correlation for each variable. It means that the manual calibra-
tion process done by a traffic engineer will be reduced for those variables with a correlation
close to 1. This explanation is expanded in Chapter 4 referred to the Methodology.

22

Chapter 3

State of the Art

Microsimulation has developed as a critical tool in traffic planning and management, pro-
viding dynamic and detailed insights into traffic system behavior. The careful calibration
of multiple factors is critical for the correct reproduction of real-world settings within mi-
crosimulators. The complexity of these simulation systems, combined with the enormous
parameter space, has made optimal calibration difficult. The following review presents an
in-depth examination of approaches and methodologies for identifying essential factors for
microsimulator calibration, with the goal of improving the accuracy and efficiency of traffic
modeling, and machine learning techniques for traffic problems.

3.1 Selection of parameters for calibration
The effective calibration of microsimulators is crucial for producing reliable simulation out-
comes. Various parameters such as driver behavior, vehicle interactions, and traffic flow
dynamics [55] are the more commonly used to achieve a good calibration. However, the
sheer number of parameters complicates calibration, often requiring substantial time and
computational resources. The identification of critical parameters, that have a significant
impact on simulation results, is essential to streamline the calibration process and en-
hance the reliability of simulation outcomes. Documentation from traffic engineers about
the process of traffic microsimulation calibration Llanque [56] and Miller [57] show that
parameters, such as the simulation configuration and the infrastructure construction are
considered constant or fixed. In addition, other authors make reference to the importance
of driving behavior parameters for calibration [58][59], especially in smaller road networks.

On the other hand, Fellendorf and Peter Vortisch [60] introduce the importance of
combining driving behavior, vehicle volume, and route decisions to have a good microscopic
traffic representation. Chu et al. [53] added that calibration models based only on driving
behavior do not work for larger or more complex networks, and to solve this use an Origin-
Destination (O-D) matrix as a reference. Then, the importance of determining the traffic
volume demand in networks is highlighted by Tettamanti et al [61] that uses a genetic
algorithm to determine the traffic volume on a group of roundabouts.

Conducting sensitivity analysis is a typical method for discovering key parameters.
This strategy comprises systematically changing individual parameters and observing the

23

changes in simulation outputs. Critical parameters are those that have a significant in-
fluence on model outputs and require careful calibration [62]. One-at-a-Time (OAT) and
Global Sensitivity Analysis (GSA) methodologies provide insights into parameter interac-
tions and their effects on simulation outcomes [63]. According to all authors, the literature
research revealed that there is no one set of parameters to be calibrated. Mkadziel [64],
Ciuffo, and Azevedo [65] explored parameter selection and the parametric sensitivity of the
simulations, respectively. The conclusion is that the subset of parameters (as well as the
other subset that can be left on the program defaults) varies by circumstance. In addition,
Punzo et al. [66] support the notion that a subset of parameters may be sufficient to deem
traffic microsimulation calibration satisfactory.

3.2 Concerning the calibration procedure
Microsimulator calibration can be thought of as an optimization problem. Because mi-
crosimulators have a plethora of characteristics that influence the behavior of simulated
traffic, determining the optimal combination of these parameters is analogous to locating a
sweet spot in a multidimensional space. The objective is to minimize the disparity between
the simulated and observed or desired data [67].

This optimization procedure entails searching for a solution that meets particular per-
formance requirements, such as average speed accuracy, traffic density, and journey times,
among others . However, due to various problems, such as the intricacy of the interactions
between the parameters and the results, the existence of multiple acceptable solutions, and
the possibility that some parameters interact with each other in a non-linear manner, this
search is not straightforward [68]. In practice, calibration as an optimization issue entails
iteratively altering parameter values and evaluating how they affect simulation outcomes.
This iteration process is repeated until a convergence is reached that yields simulated
results that satisfactorily fit the observed data or the desired goals.

The assessment of the squared error between the simulation results and the observed
data is a frequently used and theoretically validated technique for assessing the accuracy of
the calibration [69]. The squared difference between the simulated and genuine values for
several observations is measured by the mean square error (MSE). By minimizing the MSE,
one aims to discover the ideal parameter values that generate the best overall agreement
between the simulated and observed results [17].

Chu et al. [53], Balakrishna et al. [12] and, Jha et al. [70] are examples where
the iterations of calibration were not automated and, where traffic specialists manually
calibrate microsimulators by subjectively modifying the parameters based on their expertise
and knowledge. Due to the complexity and multidimensionality of the parameter spaces,
this can origin in unsatisfactory results and error proneness. This methodology is known
as manual iteration based on preliminary results.

Some research used semi-automated heuristic methods, in which genetic algorithms
or search methods were used to generate initial parameter combinations. For instance,
Henclewood et al. [71] offer a calibration approach based on simulation automation. The
procedure runs a large number of simulations with random parameters and calculates
squared errors; 1000 simulations were run to extract 93 and 34 calibrated models for noon
and evening periods in their testing location, respectively, demonstrating the calibration

24

differences between different time periods at the same location. In addition, Aghabayk et
al. [72] and Bethonico [73] automated calibration by applying Genetic Algorithms to tackle
an optimization problem. The Genetic Algorithm is a search heuristic that iterates through
generations of calibration sets; inspired by evolutionary theory, the new generations are
created from combinations of the most successful calibration sets from the previous gener-
ation, with a random element added [74]. Success is determined by maximizing a fitness
function (or, alternately, minimizing a cost function), and the method produces success-
ful calibration parameters after a huge arbitrary number of rounds. However, there is no
mathematical certainty that the method will eventually produce the best calibration set.

Shafiei and Saberi [75] proposed a methodology for calibrating traffic flow fundamental
diagrams in the dynamic traffic assignment (DTA) model that involves using a machine
learning-based technique. This technique utilizes 1-year worth of traffic data from 239
loop detectors across the network to calibrate the traffic flow fundamental diagrams. The
calibrated DTA model demonstrated reasonably high accuracy in simulating link volumes
and path travel times, considering the size of the network and its congestion level.

3.3 On the use of machine learning to solve traffic
problems

Machine learning is a rapidly expanding field that has the potential to transform the way
we address traffic challenges. Machine learning algorithms can be used to forecast traffic
patterns or optimize traffic signals. Both regression and classification difficulties have been
identified in the traffic engineering literature, and machine learning has been offered as
a solution [76]. The use of predictive analytics to forecast traffic patterns is one of the
most promising applications of machine learning to traffic concerns. Predictive analytics
forecasts future traffic conditions using historical data. This data can be used to optimize
traffic signals, schedule road building projects, and provide drivers with real-time traffic
updates [77].

The Artificial Neural Network (ANN), a family of computing models inspired by bio-
logical neurons and utilized for machine learning of regression and classification problems
[26], is one machine learning technique of relevance in this research. In the car-following
model of microsimulations, a recurrent ANN model was presented by Zhou and Li [78] to
forecast traffic oscillations. The recurrent ANN is a sort of network that is trained from
time-series sample data to predict future data. This model is used to replace car-following
models, which are typically sets of equations used to calculate the interaction of cars in the
same road lane. The recurrent ANN outperformed the classical models in forecasting the
trajectory of subsequent vehicles; the better the recurrent ANN outperformed the classical
models, the farther the succeeding vehicles were from the reference vehicle. Tang et al. [79]
used a type of network called fuzzy ANN to estimate travel times in the real world from
road loop detectors, thus the ANN implicitly computes a traffic simulation and delivers the
travel time outputs, if we consider loop detection counts and speeds as the inputs of this
hypothetical simulation. Chen et al. [80] employed a combination of Genetic Algorithms
and ANNs to construct a system to forecast rear-end crashes as another example of ANN
use outside of traffic calibration. Instead of training a single ANN to anticipate a collision

25

based on car-following patterns fed from the Vehicle-to-Infrastructure (V2I), Vehicle-to-
Vehicle (V2V), and Global Positioning System (GPS) infrastructures; their approach is to
train many ANNs and combine them with genetic algorithms.

On the other hand, Shi et al. [81] found to have better prediction accuracy compared
to other data-driven methods, such as Artificial Neural Networks (ANN), while requiring
lower computational resources. They used Random Forest to construct a car-following
model based on high-precision, high-refresh-rate, and large-scale vehicle trajectory data.
The RF model accurately described the car-following behavior by exploring the internal
connections of the data. The RF method’s random selection of samples and attributes
ensured high prediction accuracy and strong generalization ability, while its parallel train-
ing capability improved efficiency. Also, Saadi et al. [82] provide a method for predicting
origin-destination (O-D) matrices in transportation that are based on random forests (RF).
To boost accuracy, the RF technique employs disaggregated travel diary data and location
information as predictors. The RF approach mitigates mistakes and minimizes variation
by utilizing bagging and random subspace principles. The preliminary results show that
the RF technique provides intriguing O-D traffic flow estimates.

In addition to solving traffic problems, Katrakazas et al. [83] used the k-Nearest Neigh-
bors (kNN) algorithm to identify conflict-prone traffic conditions. The kNN is a nonpara-
metric approach that is widely applied in classification and regression tasks provides case-
based explanations for classification results and is easily transferrable without requiring
prior knowledge of any datasets. The effectiveness of the kNN algorithm for predicting
conflict-prone traffic conditions was demonstrated in previous studies, where it was shown
to be more accurate and transferable compared to other classifiers such as Neural Net-
works. Moreover, Yu et al. [36] used kNN to identify the similarities between current
and historical traffic states and integrate generations of the most similar k historical states
as prediction results. The most similar k historical states are referred to as k nearest
neighbors. kNN is implemented by defining the state series, selecting a distance metric,
and using a prediction function. kNN regression has been used successfully in road safety
analysis. Park et al. [84], for example, employed kNN regression to predict sight and safe
stopping distances in low visibility conditions. Scott et al. [85] used kNN regression to
examine the distribution of crashes in Miami-Dade County. Iranitalab and Khattak [86]
investigated the effectiveness of various data mining techniques for assessing the severity
of two-vehicle crashes and found that kNN classification performed best. kNN has been
used successfully in road safety analysis and short-term traffic situation prediction. It has
demonstrated encouraging results in predicting traffic situations during exceptional events
where data may be scarce or unevenly distributed.

3.4 On SUMO calibration
Manjunatha et al. [87], Ge and Menendez [88], Punzo and Ciuffo [89] agree that calibration,
the default values of each parameter are modified until the difference between the simulated
and actual measurements is reduced. Prior to calibration, it is critical to identify the
parameters that influence the model’s output. Many parameters influence SUMO’s driving
behavior and traffic flow. Calibrating SUMO for all of these parameters may not be
necessary because all of these aspects may not have a substantial impact on the driving

26

behavior of a specific model.
Bagheri et al. [90] present a model based on an artificial neural network (ANN) for

modeling automobiles’ gap acceptance behavior at unsignalized junctions. The simulation
package Simulation of Urban Mobility (SUMO) is used to create the model, then compared
to default and calibrated models. The simulation model is performed by using ground truth
data to accurately replicate the driver’s behavior, such as gap acceptance, lane changing,
car following, and route choice. The results reveal that the ANN-based model outperforms
the other models in terms of wait time and acceptable gap values.

Harth et al. [25] using real-world observations, calibrate a traffic flow simulation in
SUMO. The suggested calibration technique includes replicating realistic traffic light pro-
grams as well as adjusting simulated traffic flows. The calibration considers the comparison
of simulated measures to the equivalent real-world data, as well as the calibrated traffic
signals’ ability to handle the specified traffic demand.

Jayasinhe et al. [91], the calibration process was carried out utilizing the Simulta-
neous Perturbation Stochastic Approximation (SPSA) algorithm. SPSA is a stochastic
optimization approach that updates model parameters using a gradient approximation.
The approach is intended for use with noisy and computationally expensive objective func-
tions, making it appropriate for traffic simulation models. To reduce the Mean Absolute
Percentage Error (MAPE) between the simulated and observed speeds, the SPSA method
was applied. Iterative calibration was used until the MAPE was decreased to an acceptable
level. Scatter graphs of simulated traffic counts and speeds vs their observed equivalents
were used to evaluate the calibrated model.

3.5 On measuring the accuracy of the model
Calibration entails adjusting the unknown parameters until a good match between the
simulation results and the corresponding physical measurements for the response(s) of
interest is established. Calibration is frequently done inefficiently by trial and error [92].

Pool et al. [93] use Pearson correlation to evaluate the performance of Runoff models.
Where the Pearson correlation coefficient values for high discharge levels led to fewer
constrained simulations at low flows. The specified sensitivity of the Pearson correlation
coefficient and the usage of the FDC decreased the range in simulated hydrographs under
high-flow circumstances.

Wang et al. [94] provide this research to calibrate traffic flow scenarios in China by using
genetic algorithms. To evaluate the accuracy of the predictions it was assign a Pearson
correlation score to each variable. Thus, these parameters were adjusted to provide a
considerably greater correlation (Pearson correlation) between the frequency of simulated
conflicts and genuine conflicts. As a result, the majority of the findings in this study
were similar to earlier research such as Huang et al. [95]. Because both research focus
on replicating urban traffic flow in China, there appears to be a possibility of parameter
transferability for simulation. That is why Using the Pearson evaluation coefficient might
help you compare the results to other works or studies that utilize this measure to evaluate
models in similar scenarios. This is especially beneficial to compare models to existing
research or check the obtained results against earlier studies. On the other hand, Hoot et
al. [96] developed a computer simulation for the specific purpose of real-time forecasting

27

of stands for Emergency Department (ED) operating conditions and to validate the ability
of the simulation to forecast several measures of ED crowding. They used the Pearson
coefficient of correlation was used to measure the reliability of the simulation forecasts for
each continuous outcome measure in comparison with the reference standard. The Pearson
r measures the strength of linear association and, when squared, summarizes the fraction
of explained variation in the outcome.

28

Chapter 4

Methodology

4.1 Phases of Problem-Solving
This study suggests a way for automatically calibrating reusable models of traffic microsim-
ulations that are thought to be similar to one another. The methodology’s objective is to
complete all activities required to produce a reusable automatic calibration model from
a setup for an originally uncalibrated traffic microsimulation. In the validation tests of
this research, Artificial Neural Networks, Random Forest regression, k-Nearest Neighbors
regression, and genetic algorithm were used to develop the calibration model, which was
created using supervised learning, a branch of machine learning techniques.

As a result, the process is broken down into four steps: building a training dataset
with enough calibration input-output examples, training machine learning models to do
the task accurately, evaluating the “r” score (Equation: 2.2), and obtaining a machine
learning model for calibration, or retraining the machine learning model to work union
with genetic algorithm for calibration. The input/output order of the traffic simulator is
reversed in this novel approach, where a large number of traffic simulation results are used
to build the dataset. The simulation outputs are used as inputs for the machine learning
models, and the simulation inputs are the desired outputs

Training dataset creation

Several simulations are performed to build the dataset. The input/output order of the traf-
fic simulator is reversed in this novel approach, where a large number of traffic simulation
results are used to build the dataset. The simulation outputs are used as inputs for the
machine learning models, and the simulation inputs are the desired outputs as presented
in Figure 4.1.

29

Figure 4.1: Training dataset creation

Training machine learning models

Artificial Neural Networks, Random Forest regression, and k-Nearest Neighbors regression
are trained to evaluate their performance in the predictions of input parameters for the
simulation. This evaluation is carried on by a correlation analysis average of each variable
of the model. According to the Pearson correlation value, we must follow two different
options.

Figure 4.2: Machine learning training and evaluation

30

Option 1

The first path corresponds to the option where the Pearson correlation coefficient is greater
than 0.8. In this case, the model or models that belong to this group can already be used
to perform the calibration, now the model has the ability to take the number of vehicles
as input and return the simulator parameters for that count. Therefore, these parameters
can be simulated, thus obtaining a new vehicle count that will be contrasted with the one
given in the machine-learning model. Figure 4.3 shows the flow diagram for this section.

Figure 4.3: If r > 0.8

Option 2

The second path corresponds to the scenario where no model reached a Pearson correlation
coefficient greater than 0.8. For this section, a retraining of the machine learning models is
carried out, with the difference that the dataset will be used before being inverted, with the
aim that the models are capable of predicting the count values of the simulator without its
execution. This action is carried out in order to take advantage of the fact that the dataset
was created. Generally, this measure is adopted for those more complex scenarios where
the proposed model of inverting the dataset does not work as expected. This alternative
combines the machine learning model with the best performance with a genetic algorithm
whose objective is to iteratively find the best individual to obtain the real-world vehicle
count.

31

Figure 4.4: If r < 0.8

4.1.1 Description of the Problem
Traffic congestion is a major issue in modern cities, affecting urban mobility, air quality,
and the efficiency of transportation networks. It is critical to successfully create ways to
control and optimize vehicle flow in order to reduce these issues. In this respect, traffic
vehicle simulation has developed as a useful tool for understanding and forecasting traffic
behavior in various settings.

However, the precision of simulations in some models, such as SUMO, is dependent
on the quality of the data provided as input. If the number of cars in entrance lanes and
departure route probabilities are not adequately characterized, simulation results cannot
be sufficiently near to reality. One solution to this challenge is to utilize real-world vehicle
count as a base-calibrated scenario for the simulator. The goal is to start with the simula-
tion done by counting data and progressively altering the simulator parameters to create
a situation that is extremely near to reality.

4.2 Model Proposal
This work proposes machine learning models capable of calibrating a traffic scenario based
on the count of vehicles at intersections in the SUMO simulator. For this, we will use a
custom tool based on JTRROUTER made in Python with the Traci module for a con-
nection with SUMO. In addition, a method is proposed to automate the simulations in
order to obtain the greatest amount of variation in the input parameters and thus have a
richer dataset. Two different traffic scenarios will be used for its development. Finally, by
performing several simulations for each scenario and training the machine learning models
with the simulator outputs as their inputs, and the simulator inputs as their outputs, the

32

calibration will be carried out.

4.2.1 Parameters selection
As a preliminary step, it is crucial to define what simulations are regarded as similar. The
methodology that is proposed as the answer to the problem is used in the validation ex-
periments, which are created using SUMO as the preferred traffic simulator. Remembering
Chapter 2, SUMO (along with other simulators) conducts the simulation function by con-
verting the set of all simulator inputs (such as driving behavior parameters and network
inputs) into the set of all simulation outputs (such as simulation states at each step and
output aggregate metrics).

The suggested categories for simulation inputs are parameters for driving behavior,
network inputs, infrastructure development, and simulation configuration. In the context
of this study, comparable traffic simulations—which, practically speaking, are simulations
across the same road network map and with the same duration—share the same values and
parameters for simulation setup and infrastructure building. Similar simulations also share
a number of network inputs and parameters governing driving behavior. These variables’
values can change, nevertheless. The only practical outputs needed for calibration are the
aggregated data findings, which are shown in Figure 4.5 with the fixed and variable inputs
for SUMO.

Figure 4.5: Simulations with fixed and variable inputs.

Simulation configuration corresponds to the time of simulation, and infrastructure con-
struction to the network or scenario. Inputs from the network, such as vehicle volume and
route decisions, are used for our purposes. Consequently, the simulator’s default driving
behavior is maintained. The outcomes to be used from aggregated data results correspond
to the count of the number of vehicles that pass through intersections.

33

4.2.2 Customized JTRROUTER
Chapter 2 introduced JTROUTER, a traffic generation tool for SUMO. Its input parame-
ters include the network, vehicle flow, and turn probability. The output is the routes for the
vehicle flow, illustrated in Figure 2.5. This tool’s biggest drawback is that it only supports
straightforward pathways. For paths with just two edges to turn, that is. The tool won’t
operate if there are cutting edges before turning. Complex scenarios cannot be simulated
as a result. It has been modified to be able to execute spin probabilities independent of
the presence of intermediate edges, though, based on the design of this tool. Larger and
more intricate circumstances can thus be recreated. The rationale behind this change is
that the Python script already includes those middle edges.

Figure 4.6: Customized JTRROUTER.

4.2.3 Selection of scenarios
For the calibration, two alternative scenarios were used. The city of Ibarra was employed
in this instance. SUMO representation Figure 4.8.

Heleodoro Ayala Avenue and Mariano Acosta Avenue serve as the first calibration sce-
nario Figure 4.9a and the roundabout at ”La Madre” serving as the second calibration
scenario 4.9b. These scenarios were chosen because of their high prevalence in urban ar-
eas as well as the fact that their network structures differ significantly from one another.
Figure 4.7 shows the networks from Google Maps.

34

(a) Heleodoro Ayala Avenue and
Mariano Acosta Avenue. Re-
trieved from Google Maps (2023)

(b) Roundabout at ”La Madre”. Retrieved
from Google Maps (2023)

Figure 4.7: Google Maps networks representation.

Following the selection of the scenarios, the network was built using OpenStreetMap
and NETCONVERT in order to later have a controllable representation in SUMO. Figure
4.9 shows the result of the scenarios in SUMO GUI.

Figure 4.8: Ibarra city SUMO representation.

35

(a) Heleodoro Ayala Avenue and Mariano
Acosta Avenue. (b) Roundabout at ”La Madre”.

Figure 4.9: SUMO networks representation.

4.2.4 Assignment of the volume of vehicles and route decisions
for each scenario

For this section, the lanes that feed the network will be taken into account as the inputs for
the vehicle volumes, and the probabilities that they can take one route or another based
on how the network is designed. For our first scenario, there are four vehicle volumes and
six route decisions. Figure 4.10 provides a more detailed illustration.

Figure 4.10: First scenario volumes and route decisions.

For the second case, the same technique is employed, there are four vehicle volumes and
four route decisions. Figure 4.11 depicts a more accurate portrayal of the aforementioned.

36

Figure 4.11: Second scenario volumes and route decisions.

4.2.5 Machine learning models
The division of the learning dataset into a training dataset and a testing dataset is one of
the most basic methods for developing and testing machine learning models. The machine
learning models are then trained using only the training samples, and after training is
complete and no further model adjustments are needed, the testing samples are used to
assess how well the machine learning models perform in a deployment scenario (for example,
mean quadratic error in regression problems and accuracy in classification problems). In
order to remove bias from the models, it is crucial that the training phase be conducted
without knowledge of the instances that will be used for testing. In Figure 4.12, the
conventional dataset split is displayed.

Figure 4.12: Training and testing dataset split.

Because an overfitted model performs better for the training data than a model with
fewer epochs, but worse for a new batch of testing data, a portion of the training dataset

37

is isolated for blind validation at each training epoch, as shown in Figure 4.13.

Figure 4.13: A portion of the training dataset is separated for validation.

The validation dataset is essential to automatically split the training data into a training
set and a validation set during the training process. This helps monitor model performance
on unseen data and stop training early if overfitting is detected.

To train the models it will be done normalization of the inputs (subtraction of the
variable’s mean and division by its standard deviation) is, therefore, a step that reduces
the computational complexity of the iterations. While route decision variables are fractions
between zero and one, outputs with broader ranges (such as vehicle volume inputs ranging
from zero to thousands of vehicles/hour) may bias the training away from fitting the
outputs with smaller ranges. As a result, normalizing of the output samples is also preferred
to maintain the parity of importance of all the outputs in the calibration function modeling.

Artificial Neural Network

Since the input and output layers depend on the number of variables in the dataset,
feedforward networks are used in this study, and the layer configuration refers to the
hidden layers. As a consequence, the results notation indicates that, for instance, a 25-
25-25 topology denotes a neural network with three layers that are each 25 neurons wide.
To prevent the over-fitting problem an approach is to halt training after a predetermined
number of training epochs, which are equal to all rounds of iterations over the training
dataset. To prevent the Neural Network from being under or over-fit, the ideal number
of training epochs must be determined. Underfitting occurs when there are insufficient
training epochs for the network to reach a local minimum on the error function surface,
resulting in a high training error. On the other hand, overfitting refers to the network
memorizing the training samples rather than thoroughly learning the regression model from
the training data. Because neural network experiments can be flexible, Keras environment
was required for this purpose. The ability to automatically change the size of the Neural
Network layers is one of the benefits of utilizing Keras in Python programs. A collection
of networks with various depth and width configurations is trained and tested after the
dataset is ready for training.

38

The technique of early-stopping the training is already in place with Keras, along with
a number of widely used activation functions and optimizer algorithms. To ensure the
consistency of the findings that support the suggested methodology, these settings are
varied. The created neural networks were preserved with the default sigmoid function, one
of the non-linear continuous activation functions that is suitable for regression, as advised
in the Keras documentation, despite the large range of activation functions—eleven at the
time of writing of this project.

The Keras library, on the other hand, contains the implementation of multiple optimizer
algorithms for network training, and they had an effect on training times and the number
of epochs before the early-stopping trigger. The six tested optimizers are mentioned below,
from those recommended in the manual for usage in regression problems; all were left with
their default internal settings.

• Stochastic Gradient Descent

• Adagrad

• Adadelta

• Adam

• Adamax

• Nadam

Finally, the structure of this neural network will be a 50-50 hidden layer, a sigmoid
activation function, and 6 different optimizers for evaluating its performance in terms of
training and number of epochs before early stop. As is represented in Figure 4.14.

Figure 4.14: Neural Network topology.

39

Random Forest regression

Advanced methods to address the calibration of traffic microsimulators were investigated
during this algorithm design phase. The usage of Random Forest Regression, a potent
method discovered in assembly methods in the field of machine learning, was one of the
chosen strategies. Building numerous distinct decision trees, and then merging their out-
puts to provide more precise and reliable predictions, is how Random Forest Regression
functions. The diversity and resilience of the ensemble are enhanced by the fact that each
tree is trained using a random subset of the training data. Additionally, to avoid overde-
pendence on any particular attribute, splits are performed at the nodes of each tree using
a random subset of attributes (input variables).

To build Random Forest regression Scikit-learn, also known as sklearn will be used. It
is a Python machine-learning library that provides a wide range of tools and algorithms
for developing machine-learning models and performing data mining and predictive ana-
lytics. In the scikit-learn implementation, the “RandomForestRegressor” model was
instantiated with the following pair of parameters:

• n estimators: 100 to generate an ensemble of 100 decision trees. In general, the
accuracy and robustness of the model are improved with more trees.

• random state: Set to 0 to ensure the results are reproducible across different runs.

k-Nearest Neighbors (kNN) Regression

k-Nearest Neighbors (kNN) Regression was introduced as an additional method to handle
the calibration of traffic microsimulators during this stage of algorithm design. kNN is
a machine learning method that bases predictions on the closeness of data points and
employs a non-parametric approach. kNN runs in a straightforward but effective manner.
Regression, as it relates to this discussion, employs kNN to locate the k training points
that are the closest to a new location and use their average output values to generate a
forecast at the new point. In other words, the prediction is based on the k nearest points’
average outputs. “KNeighborsRegressor” model was instantiated with the following
pair of parameters:

• n neighbors: This parameter indicates the number of nearest neighbors to consider
when making predictions. In this case, 5 near neighbors were chosen.

Genetic algorithm

A genetic algorithm mixed with a machine learning model will be employed as part of
the alternative. The mix of vehicle volumes and route decisions is the composition of
chromosomes. The genetic algorithm will iterate till it finds the best individual for the real
vehicle count by using the parameters presented in Table 4.1

40

Table 4.1: Genetic algorithm parameters

Parameter Value Description
Population size 100 The number of chromosomes in each generation of the population.
Mutation probability 0.2 The probability that a chromosome will mutate after reproduction.
Number of Generations 500 The number of complete iterations of the evolution cycle.

Highlights:

• Fitness Evaluation Function (fitness(chromosome)): This function measures
how fit a chromosome is based on its performance. In this case, the inverse of the
mean square error between the ML model predictions (Best ML model) and the
desired outputs is used. A higher fitness indicates a more promising solution.

• Selection of the Best Chromosomes: Chromosomes with higher fitness are more
likely to be selected for reproduction. This reflects the principle of ”natural selection”,
whereby the fittest individuals have the best chance of passing their characteristics
on to the next generation.

• Reproduction and Mutation: Reproduction is the process of merging the fea-
tures of parent chromosomes to produce offspring. Mutation promotes variety in the
population, allowing for the development of new features and preventing premature
convergence to inferior solutions.

• Evolution over the Generations: Because of selection, reproduction, and muta-
tion, chromosomes tend to get more fit as generations pass. This depicts how the
algorithm strives to improve the population iteratively depending on fitness.

• Search and Optimization: The genetic algorithm seeks solutions that minimize
the machine learning model’s prediction error. The population evolves to get closer to
solutions that better suit the facts and are more likely to produce accurate forecasts.

4.3 Analysis Method
The analytical technique was developed to thoroughly assess the effectiveness of the genetic
algorithm and machine learning models. It explained how to compare various models and
approaches and the precise criteria used to rate the accuracy of the forecasts. This made
it possible to evaluate the approaches’ accuracy and dependability on a quantitative and
qualitative level.

To assess the adjustment and convergence of a machine learning model, a number of
error functions are used. Literature contends that the usage of quadratic errors, mean
quadratic errors, and root mean quadratic errors is appropriate for the specific application
of traffic microsimulations due to the stochastic character of traffic. Given that it was one
of the default options in Keras and Scikit-learn, the Mean Squared error from a list of
suitable error functions is supplied in Table 4.2 and will be utilized in the experiments.

41

Table 4.2: Error Formulas. Retrieved from [2]

Name Formula

Square Error
n∑

i=1
(yi − ŷi)2

Mean Squared Error 1
n

n∑
i=1

(yi − ŷi)2

Root Mean Squared Error
√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Root Mean Squared Normalized Error 1
n

√√√√ n∑
i=1

(
yi − ŷi

yi

)2

Where the predictions of a model (represented by ŷi) are measured with the actual observed
values (represented by yi), and n: It is the total number of observations.

In addition, the process suggests that the user (for instance, a traffic engineer) has the
knowledge to assess the trained model for each distinct calibration variable. Additionally,
the user can validate the variables that were modeled with acceptable errors and use them,
ignoring the machine learning models’ recommendations for the variables that were poorly
modeled.

The testing dataset is used to assess each variable’s performance. Machine learning
models process the test inputs, and the results are compared with the desired results from
the dataset. Additionally, the Pearson correlation between the model predictions and the
desired test outputs is the chosen metric to assess performance in a normalized manner.
Equation 4.1 is used to determine the correlation, which serves as a score for the accuracy
of the prediction for each variable. x and y represent the expected and intended output
values, respectively.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(4.1)

Variables with negative and tiny correlation values should be ignored by the user since
they indicate that the model’s predictions do not match the intended values with precision,
and therefore the model’s accuracy following deployment is suspect. On the other hand,
variables having correlation values near to 1 may be calibrated with precision by the
network upon deployment.

A plot of the x and y variables on the XY plane shows a poor connection when the
points are randomly distributed, but a significant association when the points are near the
x=y line, as shown in Figure 4.15a and 4.15b.

42

(a) (b)

Figure 4.15: Plot of x and y variables with weak (a) and strong (b) correlations.

Works made by Pool et al. [93], Wang et al. [94], and Huang et al. [95] use the Person
correlation to correlate input variables and the prediction’s models. They argue that when
there exists a linear relationship between two quantitative variables this metric is relevant
and provides valuable information about the quality of predictions based on the linear
relationships between variables. In addition, using the Pearson correlation coefficient we
can make the results comparable to these works that also use this metric to evaluate models
in similar situations.

In the context of the problem presented in this work, we remark that the nature of the
data waits to be predominantly linear, which means that as more vehicles are counted in
the network, more volume of vehicles are introduced in the network, and the same principle
for route decisions, while route probability for a specific route is greater, more number of
vehicles that route will have. This is why the Pearson correlation is an adequate metric to
evaluate the performance of the model.

4.4 Experimental Setup
The calibration function dataset is formatted as shown in Figure 4.16, which emphasizes
how the input and output roles change depending on whether the calibration function or
simulation is being used. The rows list the simulation runs, while the columns list the
input and output variables. For example, vehicle volumes are non-negative integers that
range from 0 vehicles/hour to the maximum theoretical capacity of the road, according
to a uniform distribution, and are set to a variety of randomly generated values within a
defined range that is appropriate to the application.

In the suggested methodology, after creating the infrastructure map and selecting the
relevant variables, the user specifies the value ranges and quantity of simulation runs.
The tables can be managed with Python libraries like NumPy or Pandas, which provide
optimized functions for operations on huge tables and random-value generation, but this
is not required to keep the scripts within the same programming environment. To quickly
generate the variable values, spreadsheet applications such as Microsoft Excel or other
open-source substitutes can be utilized.

43

Figure 4.16: Dataset example.

It is important to recall that for the sake of simplicity, route choices are always modeled
as pairs, and the sum of the routing possibilities (a) and (b) is always equal to 1. Since
just the value of option (a) needs to be estimated for each route decision, As a consequence
machine learning models need to estimate fewer parameters.

The traffic engineer can opt to disregard some of the recommendations from the cal-
ibration model since the software defines the performance metrics for each variable to
be calibrated during implementation. The list of tasks below explains the recommended
methodology presented in Section 4.1.

Start with: Simulation road network.

• Dataset creation

– Produce random values for the calibration inputs (volume of vehicles and route
decisions).

– Run a number of simulations.
– Exchanging simulation inputs and outputs will help you generate the calibration

function dataset.

• Machine learning models

– Separate datasets for training and testing.
– Training machine learning models
– Determine which inputs are appropriately estimated.

• Analysis of performance’s models

– If Person correlation is greater than 0.8; End with: machine learning model
for automatic calibration.

– Else incorporate genetic algorithm; End with: machine learning model com-
bined with genetic algorithm for automatic calibration.

44

An important aspect to consider in research and testing is the number of simulations
conducted to create the training dataset. It’s important to find a balance between enough
simulations to accurately represent the behavior of the simulator, while also ensuring that
it’s feasible to handle within a given time frame. These values serve as the minimum and
maximum limits for the number of simulations required.

45

46

Chapter 5

Results and Discussion

In order to validate the strategy suggested for the calibration of mobility and traffic simu-
lation models through machine learning, two significant experiments that were undertaken
are presented in this dissertation. SUMO program was used to execute the traffic sim-
ulations, and the Python, Keras, and Scikit-learn environments were used to create the
machine learning models. Due to their intricacy and regular traffic jams, the two road
networks used in the tests were of interest. Heleodoro Ayala Avenue and Mariano Acosta
Avenue Figure 4.10 and the roundabout at ”La Madre” Figure 4.11.

The network utilized machine learning models to adjust the number of vehicles that
enter the map’s edges and the percentage of cars that take each direction at every fork in
the road. All tests employed the same vehicle model to calculate volumes, with only car
entities presented in the simulation. Motorcycles were assumed to be less than one car,
while buses and trucks were considered to be more than one car.

5.1 First scenario results

Figure 5.1: First scenario volumes and route decisions.

47

The desired inputs for calibration are the 4 vehicle volumes that enter the edges of the
map, and the ratios of the 6 route decisions that are part of the road network. The output
performance metrics from SUMO that are used by machine learning models to calibrate
simulations on this map are 10 vehicle counts.

The setup given below was used to prepare the simulation runs.

• Number of simulations: 10.000. The number was chosen empirically. Training
and testing are split 80/20, with 20% of the training dataset used for validation.

• Inputs

– 4 volume of vehicles, following a uniform distribution between 0 and 1000 vehi-
cles per hour.

– 6 route decisions.

• Simulation duration: 3600 seconds, chosen empirically.

• Outputs: 12 vehicle counts at every fork in the road.

To train all the models the inputs/outputs will be inverted. It means that the outputs
from the simulator will be used as inputs to the models, and the output from the simulator
as inputs to the models to build the calibration function as it was presented in Chapter 4,
Section 4.1

Figure 5.2: First scenario volumes and route decisions dataset example.

To train the models it will be done normalization of the inputs (subtraction of the
variable’s mean and division by its standard deviation) is, therefore, a step that reduces
the computational complexity of the iterations. While route decision variables are fractions
between zero and one, outputs with broader ranges (such as vehicle volume inputs ranging
from zero to thousands of vehicles/hour) may bias the training away from fitting the
outputs with smaller ranges. As a result, normalizing of the output samples is also preferred
to maintain the parity of importance of all the outputs in the calibration function modeling.

The Pearson correlation between the model predictions and the desired test outputs is
the chosen metric to assess performance in a normalized manner. It is used to determine
the correlation.

48

5.1.1 Neural Network
Following the simulations and the development of the training dataset, a number of neural
networks were trained and put to the test, with the performance metric being the correla-
tion between the target values for calibrating the simulation and the estimations from the
neural networks. The training/testing dataset split was empirically calculated as 80/20 for
all trained networks across all experiments based on the custom in the examined literature.
The validation split was also 80/20 inside the training dataset.

Configuration for early-stopping is:

• monitor=’val loss’: This means that the callback is monitoring the loss metric in
the validation set (’val loss’). Training will stop if this metric does not improve.

• min delta=0: The min delta parameter specifies how much improvement is consid-
ered significant. A value of 0 means that no minimum improvement in the metric
is required for the callback to trigger. In other words, training will stop if the loss
metric on the validation set does not improve at all during the number of epochs
specified in patience.

• patience=2: The patience parameter indicates how many epochs the callback
should wait without improvement in the loss metric on the validation set before stop-
ping training. In this case, if the loss metric does not improve for two consecutive
epochs, training will stop.

To experiment with the six optimizer methods suggested for regression in Keras docu-
mentation, we fixed the structure of two hidden layers with 50 neurons each (noted as a
50-50 configuration). This configuration was necessary due to the large number of input
and output variables. Figure 5.3 displays the number of epochs required for training the
neural networks with each optimizer before implementing the early-stopping callback.

Figure 5.3: Epochs before early-stopping for each optimizer in the first scenario.

The Stochastic Gradient Descent (SGD) optimizer, which uses a fixed step size for
navigation on the error function’s surface, was discovered to require more epochs than
other optimizers. In comparison, the other five optimizer options use adaptive size steps

49

and require roughly 2000 epochs before the models have overfitted. In contrast to the
other four, Adam and Nadam required the fewest number of epochs before overfitting.
Both ”Nadam” and ”Adam” are gradient descent algorithms with various tweaks that can
make them more efficient in specific situations. One explanation could be that ”Adam”
and ”Nadam” include a momentum term in their weight updates.

Figure 5.4 depicts a comparison of the average correlation metrics for the six tested
optimizers. Because the fluctuation in performance is less than 1%, it has been concluded
that the optimizers influence the training duration of the Neural Networks but not their
performance in this experiment.

Figure 5.4: Correlation for each optimizer in the first scenario.

Figure 5.5 compares the calibration performance of each variable in SUMO by the
Neural Network.

In the case of the volume variables (Vol), we observe that the correlations are in
a relatively high range, ranging between 0.905 and 0.8609. This indicates that there is
a positive and moderately strong relationship between these volumes. That is, as one
volume increases, it is likely that another will also increase by a certain proportion. This
may indicate some consistency in the behavior of these variables.

On the other hand, the route decision variables (Rout) show correlations in a slightly
lower range, varying between 0.8174 and 0.7444. This suggests a positive relationship,
although less strong than in the case of volumes. Paths may influence other variables less
consistently, resulting in slightly weaker variance. Finally, all variables estimated by the
Neural Network can be used by a traffic engineer to calibrate and build a scenario based
on vehicle counting.

50

Figure 5.5: Correlation for each variable in the first scenario by Neural Network.

5.1.2 Random Forest regression
Figure 5.6 compares the calibration performance of each variable in SUMO by the Random
Forest regression.

Figure 5.6: Correlation for each variable in the first scenario by Random Forest regression.

The volume variables (Vol 1, Vol 2, Vol 3 and Vol 4) show very high correlations with
the simulation results, with values between 0.9109 and 0.9459. This indicates that the

51

volume of traffic in different sectors or points of the traffic network has been predicted
with high precision by Random Forest regression.

The route decision variables (Rout 1 to Rout 6) also have positive correlations with the
simulation results, although the correlations are generally lower than the volume variables.
The correlations vary between 0.3339 and 0.7341. This suggests that the routes chosen by
vehicles in different areas of the traffic network have not been ideally predicted. Therefore
the traffic engineer has more freedom to choose the parameters from Rout 3 to Rout 6,
but can take as reference the results from the Random Forest.

5.1.3 kNN regresssion

Figure 5.7: Correlation for each variable in the first scenario by kNN regression.

In this experiment represented in Figure 5.7, we looked at the relationship between the
input variables and the outcomes predicted by the kNN regression model. The variables
are divided into two categories: ”Vol ” represents the volume of cars at the crossings, and
”Rout ” represents the alternative routes in the scenario.

We see that all of the volume variables (”Vol ”) show high and positive correlations
with the results predicted by the kNN regression model. This implies that the model can
accurately capture and anticipate vehicle volumes at crossings. The variables ”Vol 1” and
”Vol 2” in particular have the strongest correlations, exceeding the value of 0.97. This
suggests that the actual volume values and the model predictions are quite similar.

The routing variables (”Rout ”), on the other hand, have smaller correlations than the
volume variables. This could be because routes are more complex and diversified than
simple volumes. The correlations between the routes range from 0.24 to 0.6455, indicating
that the kNN regression model has a more difficult time properly forecasting the likelihood
of taking one route or the other.

These findings illustrate the kNN regression model’s ability to estimate vehicle quan-
tities at crossings, with very strong correlations. However, the model has difficulty fore-

52

casting path probabilities, which results in lower correlations. These insights can help to
better understand the model’s strengths and limitations based on the different factors and
drive potential changes in future model iterations.

5.1.4 Summary Results

Figure 5.8: Correlation for each variable in the first scenario by each machine learning
model for the first scenario.

According to Figure 5.8 for volume variables, all three models show high and similar
relationships. This shows that the models, regardless of approach, accurately capture the
volumes of cars at crossings.

For route decision variables the correlations between the models show a greater degree
of variation. The strongest correlations are seen in the kNN Regression model, indicating
that it may be particularly good at capturing links between vehicle paths and other factors
in the scenario. The Random Forest model, on the other hand, performs well in some
pathways, while the Neural Network has slightly lower correlations.

The results of analyzing the correlations between variables and predictions of three
machine learning models (Neural Network, Random Forest, and kNN Regression) provide
valuable information about each model’s ability to capture patterns and relationships for
the prediction of traffic simulation inputs. In general, the Neural Network stands out by
having the highest correlations across the board. This constancy in correlations indicates
that the Neural Network is capable of modeling complicated and non-linear interactions
between input data and output predictions. Its greater performance may be due to your
capacity to recognize abstract patterns and learn deeper representations of the material.
Although the Random Forest and kNN Regression models exhibit substantial correlations

53

on numerous variables, such as volume variables, their performance on route decision vari-
ables is limited in comparison to the Neural Network. Random Forest, despite its ability
to capture complicated associations by mixing several decision trees, may struggle to cap-
ture abstract patterns. The kNN Regression, on the other hand, being a model closer to
the data and capable of recognizing local interactions, may be less effective in capturing
non-linear correlations in bigger data sets.

Table 5.1: Summary results correlation and MSE of machine learning models

Machine learning model Pearson correlation (r) MSE

Neural Networks 0.8189 0.2948
Random Forest 0.7049 0.3459
k-Nearest Neighbors 0.6541 0.4209

Finally, according to results in Table 5.1, Neural Networks is the machine learning
model that has a Pearson correlation greater than 0.8. As a consequence, following the
proposed methodology, we must follow Option 1 presented in Figure 4.3 to perform the
calibration.

To measure the capacity of the Neural Networks to find the optimal parameters input
in order to obtain the desired output (vehicle count) we performed four experiments. The
percentage error was calculated to evaluate the results as is shown in Table 5.2 where
column 1 corresponds to the scenario control and column 2 the results obtained by using
the best machine learning model. As a consequence, column 3 has the quality of the
simulation using the percentage error.

Table 5.2: Neural Networks results part 1

Vehicle count (expected) Vehicle count (obtained) Percentage error (%)
Count 1 = 200 Count 1 = 170 15%
Count 2 = 120 Count 2 = 150 25%
Count 3 = 95 Count 3 = 125 31.58%
Count 4 = 340 Count 4 = 310 8.82%
Count 5 = 50 Count 5 = 45 10%
Count 6 = 75 Count 6 = 90 20%
Count 7 = 125 Count 7 = 105 16%
Count 8 = 200 Count 8 = 175 12.5%
Count 9 = 300 Count 9 = 330 10%
Count 10 = 150 Count 10 = 190 26.67%
Count 11 = 250 Count 11 = 225 10%
Count 12 = 100 Count 12 = 130 30%

54

Table 5.3: Neural Networks results part 2

Vehicle count (expected) Vehicle count (obtained) percentage error (%)
Count 1 = 250 Count 1 = 215 14%
Count 2 = 150 Count 2 = 175 16.67%
Count 3 = 110 Count 3 = 140 27.27%
Count 4 = 380 Count 4 = 350 7.89%
Count 5 = 55 Count 5 = 65 18.18%
Count 6 = 85 Count 6 = 105 23.53%
Count 7 = 130 Count 7 = 150 15.38%
Count 8 = 190 Count 8 = 170 10.53%
Count 9 = 240 Count 9 = 220 8.33%
Count 10 = 135 Count 10 = 160 18.52%
Count 11 = 180 Count 11 = 210 16.67%
Count 12 = 75 Count 12 = 100 25%
Count 1 = 300 Count 1 = 285 5%
Count 2 = 180 Count 2 = 198 10%
Count 3 = 80 Count 3 = 110 37.5%
Count 4 = 420 Count 4 = 400 4.76%
Count 5 = 60 Count 5 = 72 20%
Count 6 = 95 Count 6 = 85 10.53%
Count 7 = 140 Count 7 = 160 14.29%
Count 8 = 220 Count 8 = 240 9.09%
Count 9 = 260 Count 9 = 280 7.69%
Count 10 = 120 Count 10 = 130 8.33%
Count 11 = 190 Count 11 = 180 5.26%
Count 12 = 70 Count 12 = 90 28.57%

55

Table 5.4: Neural Networks results part 3

Vehicle count (expected) Vehicle count (obtained) percentage error (%)
Count 1 = 180 Count 1 = 210 16.67%
Count 2 = 110 Count 2 = 140 27.27%
Count 3 = 70 Count 3 = 85 21.43%
Count 4 = 320 Count 4 = 350 9.38%
Count 5 = 45 Count 5 = 55 22.22%
Count 6 = 65 Count 6 = 80 23.08%
Count 7 = 100 Count 7 = 120 20%
Count 8 = 140 Count 8 = 160 14.29%
Count 9 = 180 Count 9 = 200 11.11%
Count 10 = 95 Count 10 = 110 15.79%
Count 11 = 120 Count 11 = 140 16.67%
Count 12 = 50 Count 12 = 70 28.57%

As it is presented in Table 5.2, Table 5.3, and Table 5.4 Most of the findings have an
absolute inaccuracy larger than 20%, which may be due to the fact that the chosen model
(Neuronal Networks) in general has a correlation value of 0.8189, indicating that this model
would aid in simulator calibration by 81%. This is why the findings remain within that
margin of error. As a result, this model’s calibration quality is as expected. As a result, the
traffic engineer will have to tweak the correction settings, starting with a 20% inaccuracy,
substantially simplifying his task and saving him time. Furthermore, this model may assist
you in the same way for other traffic conditions on the same network. The traffic engineer
might also utilize the Pearson correlation coefficients of each variable to determine the
weakest ones and start the calibration procedure from there. In the situation of Neuronal
Networks, where the compensation coefficients for Rout 5 and Rout 6 are smaller than
0.76.

5.2 Second scenario results
The desired inputs for calibration are the 4 vehicle volumes that enter the edges of the
map, and the ratios of the 4 route decisions that are part of the road network. The output
performance metrics from SUMO that are used by machine learning models to calibrate
simulations on this map are 4 vehicle counts.

The setup given below was used to prepare the simulation runs.

• Number of simulations: 10.000. The number was chosen empirically. Training
and testing are split 80/20, with 20% of the training dataset used for validation.

• Inputs

56

Figure 5.9: Second scenario volumes and route decisions.

– 4 volume of vehicles, following a uniform distribution between 0 and 1000 vehi-
cles per hour.

– 4 route decisions.

• Simulation duration: 3600 seconds, chosen empirically.

• Outputs: 4 vehicle counts at every fork in the road.

To train all the models the inputs/outputs will be inverted. It means that the outputs
from the simulator will be used as inputs to the models, and the output from the simulator
as inputs to the models to build the calibration function as it was presented in Chapter 4,
Section 4.1

Figure 5.10: Second scenario volumes and route decisions dataset example.

To train the models it will be done normalization of the inputs (subtraction of the
variable’s mean and division by its standard deviation) is, therefore, a step that reduces

57

the computational complexity of the iterations. While route decision variables are fractions
between zero and one, outputs with broader ranges (such as vehicle volume inputs ranging
from zero to thousands of vehicles/hour) may bias the training away from fitting the
outputs with smaller ranges. As a result, normalizing of the output samples is also preferred
to maintain the parity of importance of all the outputs in the calibration function modeling.

The Pearson correlation between the model predictions and the desired test outputs is
the chosen metric to assess performance in a normalized manner. It is used to determine
the correlation.

5.2.1 Neural Network
Following the simulations and the development of the training dataset, a number of neural
networks were trained and put to the test, with the performance metric being the correla-
tion between the target values for calibrating the simulation and the estimations from the
neural networks. The training/testing dataset split was empirically calculated as 80/20 for
all trained networks across all experiments based on the custom in the examined literature.
The validation split was also 80/20 inside the training dataset. First, was tested each op-
timizer to measure the number of epochs that each one needs before early stopping. The
rules are displayed in the Figure 5.11

Figure 5.11: Epochs before early-stopping for each optimizer for the second scenario.

Looking at the findings, one can see that the number of epochs required before each
optimizer hits the early stopping threshold varies significantly. The ”Adam” and ”Nadam”
optimizers require the fewest epochs before stopping training, with 26 and 25 epochs,
respectively. This could be attributable to the optimizers’ ability to swiftly adapt learning
rates and converge toward optimal solutions.

The ”SGD” and ”Adagrad” optimizers, on the other hand, require a greater number
of epochs before stopping training, with 9564 and 4548 epochs, respectively. This could

58

imply that these optimizers are less efficient in terms of convergence speed and loss function
adaption.

Figure 5.12: Average correlation by each optimizer for the second scenario

The number of epochs before stopping early training (early stopping) for different op-
timizers, combined with the average correlations obtained with each optimizer, provides
a more complete picture of the performance of machine learning models under different
conditions. Some interesting trends can be detected by comparing the number of epochs
required for training with the average correlations obtained in Figure 5.12. Not only do the
”Adam” and ”Nadam” optimizers require a small number of epochs before terminating,
but they also achieve remarkable average correlations of 0.6435 and 0.6579, respectively.
This implies that these optimizers are not only efficient in terms of convergence but also
in terms of correlation with the vehicle count to be predicted.

The ”Adadelta”, ”Adagrad”, ”SGD”, and ”Adamax” optimizers, on the other hand,
exhibit a similar trend in terms of the number of epochs required and average correlations.
Although these optimizers may require more epochs to complete training, their average
correlations are close to 0.6432 and 0.6513. This suggests that, despite taking longer to
converge, they get fairly strong outcomes in terms of correlation to forecast the values
related to vehicle count.

59

Figure 5.13: Correlation for each variable in the second scenario by Neural Network.

The volume variable correlations are weaker than in the first case, suggesting that the
Neural Network may struggle to capture the complicated interactions between inputs and
volume predictions in this more complex scenario. This could be because the inputs are
more dimensional and there are more interactions between the characteristics. In contrast,
the route decisions have relatively strong correlations, showing that the Neural Network is
successful in capturing the links between input attributes and path probabilities. The high
correlation indicates that the Neural Network is capable of modeling how traffic conditions
at intersections influence vehicle routing decisions.

In general, while the correlations for volume factors are smaller in this second case, they
are relatively strong for route variables. This implies that the Neural Network is critical in
anticipating and modeling vehicle routing decisions, which is required for an accurate and
realistic traffic simulator. Users can take as a reference for calibration the values given for
volume vehicles.

60

5.2.2 Random Forest regression

Figure 5.14: Correlation for each variable in the second scenario by Random Forest.

The traffic volumes (Vol 1, Vol 2, Vol 3, Vol 4) have low to extremely poor correlations
with the model’s expected departures. This could imply that the Random Forest model in
this scenario does not well reflect traffic patterns and linkages between entry and vehicle
volumes.

The routes (Rout 1, Rout 2, Rout 3, Rout 4), on the other hand, exhibit greater cor-
relations with the model’s projected outputs. This implies that the model may be better
at capturing the correlations between inputs and the likelihood of taking specific routes.
Higher correlations may suggest that the model has discovered data patterns that efficiently
relate input properties to outputs. This second scenario looks to be more difficult for the
model than the first, where correlations with the Random Forest were higher. The lower
correlations for the volume could be attributed to greater complexity in traffic interactions
and a greater number of number outputs, making it difficult to predict with few inputs.

61

5.2.3 kNN regression

Figure 5.15: Correlation for each variable in the second scenario by kNN.

The traffic volumes (Vol 1, Vol 2, Vol 3, Vol 4), like the Random Forest results, have
minimal correlations with the departures predicted by the kNN model. This could imply
that the model in this scenario is not successfully capturing the linkages between vehicle
entry and volumes.

As in Random Forest and Neural Networks, the route decisions (Rout 1, Rout 2,
Rout 3, Rout 4) present higher correlations with the outputs predicted by the model.
This could indicate that the kNN model is capturing patterns related to route probabili-
ties based on the input features. Also, the overall correlations appear to be lower compared
to the first scenario and also to the Random Forest results.

62

5.2.4 Summary results

Figure 5.16: Correlation for each variable in the second scenario by each machine learning
model.

Compared to the first scenario, the results in the second scenario had weaker correlations.
This shows that the linkages between inputs and outputs in this environment may be more
complex or less direct. In general, the Neural Network and Random Forest models show
stronger correlations than the kNN model. This could imply that the Neural Network and
Random Forest are more effective at capturing non-linear relationships and complicated
patterns in data.

Even though the correlations are smaller in the second case than in the first, the Neural
Network is still the best-performing model in terms of volume prediction. Its reasonably
strong correlations imply that it can capture the relationships between inputs and traffic
volumes even in more complex contexts.

The results from the second scenario show that all models had difficulty accurately
linking inputs to outputs. However, when compared to kNN, the Neural Network and
Random Forest models seemed to perform better in this scenario. These differences in
performance could be attributed to the variations in the datasets. The first scenario had
12 inputs and 10 outputs, while the second scenario had only 4 inputs and 8 outputs. This
meant that the models had to predict more parameters with fewer inputs.

63

Table 5.5: Summary results correlation and MSE of machine learning models

Machine learning model Pearson correlation (r) MSE

Neural Networks 0.6579 0.5409
Random Forest 0.5504 0.4799
k-Nearest Neighbors 0.5185 0.4398

Finally, according to results in Table 5.5, Neither machine learning model has a Pearson
correlation greater than 0.8. As a consequence, following the proposed methodology, we
must follow Option 2 presented in Figure 4.4 to perform the calibration.

5.2.5 Option 2: Machine learning model combined with genetic
algorithm

Because the results of Scenario 2 were not so good, the traditional way to train machine
learning models is suggested. This means that inputs from the traffic simulator will be the
inputs to machine learning models, and outputs from the simulator will be the outputs
of machine learning models. The objective is to obtain the outputs from the simulator
without its execution. Once models have been trained to predict simulator outputs. The
machine learning model with the best performance will be chosen as a fitness function in a
genetic algorithm defined in Table 4.1 that predicts simulator inputs based on the outputs
(vehicle counts).

The setup given below was used to prepare the simulation runs.

• Number of simulations: 10.000. The number was chosen empirically. Training
and testing are split 80/20, with 20% of the training dataset used for validation.

• Inputs

– 4 volume of vehicles, following a uniform distribution between 0 and 1000 vehi-
cles per hour.

– 4 route decisions.

• Simulation duration: 3600 seconds, chosen empirically.

• Outputs: 4 vehicle counts at every fork in the road.

This approach does not require inverting the dataset. Instead, we use the dataset
to train machine learning models and generate simulator outputs without executing the
simulator. The contrast with the first approach is presented in Figure 5.17. The objective
is to find the best machine learning model to be combined with a genetic algorithm as a
fitness function.

To train the models it will be done normalization of the inputs (subtraction of the
variable’s mean and division by its standard deviation) is, therefore, a step that reduces
the computational complexity of the iterations. While route decision variables are fractions

64

Figure 5.17: Second scenario volumes and route decisions dataset example.

between zero and one, outputs with broader ranges (such as vehicle volume inputs ranging
from zero to thousands of vehicles/hour) may bias the training away from fitting the
outputs with smaller ranges. As a result, normalizing the output samples is also preferred
to maintain the parity of importance of all the outputs in the calibration function modeling.

The Pearson correlation between the model predictions and the desired test outputs is
the chosen metric to assess performance in a normalized manner. It is used to determine
the correlation.

Neural Network

Based on the results obtained before, we fixed the structure of two hidden layers with 50
neurons each (noted as a 50-50 configuration), and ”Nadam” optimizer to train this model.

65

Figure 5.18: Correlation for each variable in the second scenario by Neural Network.

Random Forest

Figure 5.19: Correlation for each variable in the second scenario by Random Forest.

66

kNN regression

Figure 5.20: Correlation for each variable in the second scenario by kNN.

Summary Results

Figure 5.21: Correlation for each variable in the second scenario by each machine learning
model.

The analysis of the results obtained for the variables (Vehicle count1, Vehicle count2, Ve-
hicle count3, and Vehicle count4) reveals interesting patterns in terms of the correlations

67

established by different machine learning models: Neural Networks, Random Forest, and
k-Nearest Neighbors (kNN).

To begin, it is evident that all of the models achieved high correlations for the variables
in question. Correlations for Neural Networks range from 0.8806 to 0.8877, for Random
Forest from 0.9436 to 0.9455, and for kNN from 0.9517 to 0.9575. These substantial correla-
tions show that the models understood the underlying relationship between vehicle volume
and route decisions in order to anticipate counting results. In terms of model comparison,
the three models achieve very close correlations with each other in all variables. In terms
of model comparison, it is discovered that the three models attain very close correlations
with each other in all variables. This suggests that all three models perform similarly in
forecasting counting results based on entry volume and routing decisions, implying that
the data is informative and representative of each model.

Table 5.6: Summary results correlation and MSE of machine learning models

Machine learning model Pearson correlation (r) MSE

Neural Networks 0.8879 0.2329
Random Forest 0.9434 0.1903
k-Nearest Neighbors 0.9556 0.1038

When we look at the findings presented in Table 5.6, we can see that the correlations
for kNN are much greater than the correlations for the other two models (Neural Network
and Random Forest). This implies a stronger association and consistency between the
input variables (Vehicle count1, Vehicle count2, Vehicle count3, Vehicle count4) and the
kNN outputs. The highest average correlation of kNN (0.9556) demonstrates a strong
association between the model’s anticipated inputs and outputs, implying that kNN is
capable of accurately and consistently capturing the underlying patterns and relationships
in the data. This constancy in precision might be traced to the inherent nature of kNN,
which makes predictions based on the closeness and similarity of data. Furthermore, while
the Neural Network and Random Forest correlations are impressive, kNN outperforms
them. Higher correlations with kNN suggest that the model can produce results that are
closer to the outputs of the traffic simulator, that is why this model will be selected to be
part of the fitness function of the genetic algorithm.

To measure the capacity of the genetic algorithm to find the optimal parameters input
in order to obtain the desired output (vehicle count) we performed four experiments. The
percentage error was calculated to evaluate the results as is shown in Table 5.7 where
column 1 corresponds to the scenario control and column 2 the results obtained by using
the best individual given by the genetic algorithm. As a consequence, column 3 has the
quality of the simulation using the percentage error.

68

Table 5.7: Genetic algorithm results

Vehicle count (expected) Vehicle count (obtained) Percentage error (%)
Count 1 = 200
Count 2 = 120
Count 3 = 95
Count 4 = 340

Count 1 = 201
Count 2 = 107
Count 3 = 103
Count 4 = 330

0.5%
10.83%
8.42%
2.94%

Count 1 = 400
Count 2 = 100
Count 3 = 300
Count 4 = 23

Count 1 = 405
Count 2 = 125
Count 3 = 294
Count 4 = 41

1.25%
25%
2%
78.26%

Count 1 = 290
Count 2 = 87
Count 3 = 149
Count 4 = 367

Count 1 = 298
Count 2 = 121
Count 3 = 141
Count 4 = 346

2.76%
38.97%
5.37%
5.73%

Count 1 = 98
Count 2 = 475
Count 3 = 239
Count 4 = 139

Count 1 = 130
Count 2 = 465
Count 3 = 170
Count 4 = 138

32.65%
2.11%
28.87%
0.72%

In general, we can see that the values obtained are pretty near to the expected values in
certain cases, while there is a wider disparity in others. The percentage errors in experiment
1 for Count 1 and Count 3 range from 0.5% to 8.42%. This shows that the numbers
obtained are quite near to the expected values for these car counters. In experiment 2,
there is a percentage error of 78.26% for the vehicle counter Count 4. This indicates a
significant discrepancy between the expected value and the value obtained for this case.
In experiment 4, the vehicle counter Count 2 has a percentage error of 38.97%. This is
also a major discrepancy and might require further review. Overall, these findings provide
preliminary insight into how the genetic algorithm works in comparison to expected values.

69

70

Chapter 6

Conclusions

The current work has focused on a single essential goal: calibrating a traffic simulator
(SUMO) through machine learning in order to provide an efficient and accurate solution
for traffic engineers. The acquired results and analysis give useful information to support
this goal by demonstrating how alternative models and optimization tactics affect both
calibration performance and predictability of input simulator values. This was possible
because of the accomplishment of the proposed objectives.

Customized JTRROUTER helped to automate the process for the creation of a dataset
and execute a large number of simulations based on the volume of vehicles and route
probabilities (route decisions). This was possible thanks to the Traci library that can be
implemented in Python and allows a connection with the SUMO traffic simulator. The
simulations are carried out without a graphical interface, so their execution time is shorter.
Because the processes were carried out by scripts throughout all experiments, one of the
validated hypotheses in the proposed approach is that they can be automated in a future
software implementation.

The analysis of the literature revealed a trend toward the employment of genetic al-
gorithms for traffic simulator calibration. However, because of their capacity to capture
non-linear correlations between variables, fresh contributions have delved into the appli-
cation of neural networks. As a result, its usage was critical for the creation of this work,
and it was supplemented by the use of Random Forest and k-nearest neighbors because
each of these models has its own set of strengths and shortcomings. Random Forest is
good at maintaining features and dealing with noisy input, but kNN is easy to construct
and works well on problems involving local data structures. Using various models enabled
these strengths to be harnessed and flaws to be minimized, thereby enhancing project
performance.

Patterns and trends have been observed while examining and exploring the results pro-
duced by using several machine learning models in two different scenarios, shedding light
on the influence of numerous elements on the performance of these models. These discover-
ies not only lead to a better understanding of the behavior of machine learning algorithms
in realistic and complex circumstances, but they also help with the thesis project. Due
to their intricacy and regular traffic jams, the two road networks used in the tests were
of interest. Heleodoro Ayala Avenue with Mariano Acosta Avenue, and the roundabout
at ”La Madre”. Three machine learning models (Neural Networks, Random Forest, and

71

kNN) were used to build the calibration function, Neural Network was tested with different
optimizers. ”Adam” and ”Nadam” were the best ones for the two scenarios in terms of the
number of epochs needed before early stopping. Random Forest was set in 100 decision
trees and kNN with 5 near neighbors.

In the first scenario, with 12 input and 10 output variables, the neural network models
established greater correlations than the Random Forest and k-Nearest Neighbors (kNN)
models. These findings imply that neural networks are better suited to capturing com-
plicated and non-linear interactions in information-rich, multidimensional data. The in-
creasing number of inputs and outputs may allow models to modify their parameters more
precisely, allowing neural networks to adapt to complicated patterns.

In the second situation, where the number of input variables was lowered to 4 and
the number of output variables was increased to 8, the overall correlations decreased in all
models. This reduction in dimensionality could have resulted in the loss of critical informa-
tion and the simplification of the data’s fundamental linkages. Furthermore, the difference
in model performance between the two scenarios may show that the problem’s complexity,
in terms of the linkages between inputs and outputs, has a direct influence on the effec-
tiveness of each model. Concerning the specific models, it was found that the kNN models
demonstrated an unusual behavior by providing high correlations in certain variables, par-
ticularly route decisions. This shows that kNN may be a viable option in instances when
relationships are more direct and local. Random Forest and neural networks, on the other
hand, have proven to be more ideal for more complicated and multidimensional situations
due to their ability to model non-linear relationships and capture information at multiple
levels. It has been argued that the machine learning model development process produces
metrics for individual variables, giving traffic engineers the opportunity to assess if the
findings are satisfactory and should be used in their work. The methodology has been
confirmed on those grounds. Because of bad results for metrics related to the volume of
vehicles in scenario 2, the implementation of a combination of a genetic algorithm with
a machine learning model was done. The results obtained from the experiments using
the genetic algorithm have significant value in the context of the main purpose of this
work: calibrating the SUMO traffic simulator through machine learning. In some cases,
the values obtained were remarkably close to the expected values, with absolute errors
ranging between 0.5% and 8.42%. This highlights the promise of using genetic algorithms
to simplify and speed up the calibration process, freeing traffic engineers from manual and
repetitive work.

This extensive examination of various machine learning models in two opposing sce-
narios demonstrates the necessity of taking into account the dimensionality of the data,
the complexity of the problem, and the inherent capabilities of each model when deciding
on the best strategy. The results illustrate neural networks’ versatility and greater perfor-
mance in more complicated scenarios, while also identifying areas where kNN and Random
Forest shine. This knowledge provides a solid foundation for informed decision-making in
the selection and deployment of machine-learning models in real-world scenarios, and it
greatly contributes to the growth of knowledge in this research area.

The adoption of machine learning models has significantly improved the repetitious
manual calibration procedure traditionally undertaken by traffic engineers. To carry out
this procedure, Neural Networks, Random Forest, and kNN algorithms have proven to be
an effective and efficient alternative. The combination of genetic algorithms with machine

72

learning has proved also to be efficient for those scenarios where machine learning models
do not work well. Traffic engineers can rely on a more automated and precise process by
using these models, which saves time and resources by eliminating much of the manual
intervention required in traditional calibration.

This study may be used to complement Yangali [3] earlier research, which aims to
develop smart cities in Ecuador. Because a critical component of his study is the simulation
of traffic that is comparable to real traffic, the implementation of the approach described
in this project would contribute to more exact and realistic outcomes of the surroundings
of the smart cities that are intended to be developed.

6.1 Future works
Setting criteria to identify variables that would have a weak connection in the regression
model ahead of time is one avenue for future research, and one way is to undertake sen-
sitivity analysis. Another avenue for advancement is to investigate how many measuring
entities on the road network (e.g., vehicle counters, time counters, queue counters, and
speed measures) are required for the regression models to provide appropriate calibration
performance. Finally, because the calibration of this group is also a study topic, a third
area of development is the extension of the suggested methodology to macrosimulations.

73

74

Bibliography

[1] S. Zhang, J. Li, and Y. Li, “Reachable distance function for knn classification,” IEEE
Transactions on Knowledge and Data Engineering, 2022.

[2] S. B. Thompson, “Simple formulas for standard errors that cluster by both firm and
time,” Journal of financial Economics, vol. 99, no. 1, pp. 1–10, 2011.

[3] Mathematical and computational modeling for the design of smart cities in ecuador.
https://repositorio.yachaytech.edu.ec/handle/123456789/496. [Accedido: 20 de sep-
tiembre de 2023].

[4] DLR Institute of Transportation Systems. (2023) Sumo traffic simulations documenta-
tion. [Online]. Available: https://sumo.dlr.de/docs/Theory/Traffic Simulations.html

[5] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P. Hubaux,
“Traci: an interface for coupling road traffic and network simulators,” in Proceedings
of the 11th communications and networking simulation symposium, 2008, pp. 155–163.

[6] S. Raschka, “Stat 479: Machine learning lecture notes (2018),” URL
https://sebastianraschka. com/pdf/lecture-notes/stat479fs18/07 ensembles notes. pdf.
Citado na pág. viii, vol. 38.

[7] W. Burghout, H. N. Koutsopoulos, and I. Andreasson, “Hybrid mesoscopic–
microscopic traffic simulation,” Transportation Research Record, vol. 1934, no. 1, pp.
218–225, 2005.

[8] I. Vladisavljevic, J. M. Cooper, P. T. Martin, and D. L. Strayer, “Importance of
integrating driving and traffic simulations: case study of impact of cell phone drivers
on traffic flow,” Tech. Rep., 2009.

[9] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–simulation of ur-
ban mobility: an overview,” in Proceedings of SIMUL 2011, The Third International
Conference on Advances in System Simulation. ThinkMind, 2011.

[10] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation
using sumo,” in The 21st IEEE International Conference on Intelligent Transportation
Systems. IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/

75

https://repositorio.yachaytech.edu.ec/handle/123456789/496
https://sumo.dlr.de/docs/Theory/Traffic_Simulations.html
https://elib.dlr.de/124092/

[11] Y. Sashank, N. A. Navali, A. Bhanuprakash, B. A. Kumar, and L. Vanajakshi, “Cal-
ibration of sumo for indian heterogeneous traffic conditions,” in Recent Advances in
Traffic Engineering: Select Proceedings of RATE 2018. Springer, 2020, pp. 199–214.

[12] R. Balakrishna, C. Antoniou, M. Ben-Akiva, H. N. Koutsopoulos, and Y. Wen, “Cal-
ibration of microscopic traffic simulation models: Methods and application,” Trans-
portation Research Record, vol. 1999, no. 1, pp. 198–207, 2007.

[13] J. Hourdakis, P. G. Michalopoulos, and J. Kottommannil, “Practical procedure for
calibrating microscopic traffic simulation models,” Transportation research record, vol.
1852, no. 1, pp. 130–139, 2003.

[14] T. Alghamdi, S. Mostafi, G. Abdelkader, and K. Elgazzar, “A comparative study
on traffic modeling techniques for predicting and simulating traffic behavior,” Future
Internet, vol. 14, no. 10, p. 294, 2022.

[15] F. Malik, H. A. Khattak, and M. A. Shah, “Evaluation of the impact of traffic con-
gestion based on sumo,” in 2019 25th International Conference on Automation and
Computing (ICAC). IEEE, 2019, pp. 1–5.

[16] J. Dargay, D. Gately, and M. Sommer, “Vehicle ownership and income growth, world-
wide: 1960-2030,” The energy journal, vol. 28, no. 4, 2007.

[17] Y. Hollander and R. Liu, “The principles of calibrating traffic microsimulation mod-
els,” Transportation, vol. 35, pp. 347–362, 2008.

[18] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation us-
ing sumo,” in 2018 21st international conference on intelligent transportation systems
(ITSC). IEEE, 2018, pp. 2575–2582.

[19] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “Sumo (simulation of urban
mobility)-an open-source traffic simulation,” in Proceedings of the 4th middle East
Symposium on Simulation and Modelling (MESM20002), 2002, pp. 183–187.

[20] D. Krajzewicz, M. Bonert, and P. Wagner, “The open source traffic simulation package
sumo,” RoboCup 2006, 2006.

[21] K. W Axhausen, A. Horni, and K. Nagel, The multi-agent transport simulation MAT-
Sim. Ubiquity Press, 2016.

[22] A. A. Zafer, “Netedit: A collaborative editor,” Ph.D. dissertation, Virginia Tech, 2001.

[23] jtrrouter documentation. https://sumo.dlr.de/docs/jtrrouter.html. Last access: Au-
gust 17 of 2023.

[24] P. P. Shinde and S. Shah, “A review of machine learning and deep learning applica-
tions,” in 2018 Fourth international conference on computing communication control
and automation (ICCUBEA). IEEE, 2018, pp. 1–6.

76

https://sumo.dlr.de/docs/jtrrouter.html

[25] M. Harth, M. Langer, and K. Bogenberger, “Automated calibration of traffic demand
and traffic lights in sumo using real-world observations,” in SUMO Conference Pro-
ceedings, vol. 2, 2021, pp. 133–148.

[26] X. Liu, S. Tian, F. Tao, and W. Yu, “A review of artificial neural networks in the
constitutive modeling of composite materials,” Composites Part B: Engineering, vol.
224, p. 109152, 2021.

[27] S. A. Korai, F. Ranieri, V. Di Lazzaro, M. Papa, and G. Cirillo, “Neurobiological
after-effects of low intensity transcranial electric stimulation of the human nervous
system: from basic mechanisms to metaplasticity,” Frontiers in Neurology, vol. 12, p.
587771, 2021.

[28] M. G. Abdolrasol, S. S. Hussain, T. S. Ustun, M. R. Sarker, M. A. Hannan, R. Mo-
hamed, J. A. Ali, S. Mekhilef, and A. Milad, “Artificial neural networks based opti-
mization techniques: A review,” Electronics, vol. 10, no. 21, p. 2689, 2021.

[29] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” in Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
215–223.

[30] A. A. Heidari, H. Faris, S. Mirjalili, I. Aljarah, and M. Mafarja, “Ant lion optimizer:
theory, literature review, and application in multi-layer perceptron neural networks,”
Nature-Inspired Optimizers: Theories, Literature Reviews and Applications, pp. 23–
46, 2020.

[31] S. Walczak, “Artificial neural networks,” in Advanced methodologies and technologies
in artificial intelligence, computer simulation, and human-computer interaction. IGI
global, 2019, pp. 40–53.

[32] S. H. Haji and A. M. Abdulazeez, “Comparison of optimization techniques based on
gradient descent algorithm: A review,” PalArch’s Journal of Archaeology of Egypt/-
Egyptology, vol. 18, no. 4, pp. 2715–2743, 2021.

[33] P. Netrapalli, “Stochastic gradient descent and its variants in machine learning,” Jour-
nal of the Indian Institute of Science, vol. 99, no. 2, pp. 201–213, 2019.

[34] N. Zhang, D. Lei, and J. Zhao, “An improved adagrad gradient descent optimization
algorithm,” in 2018 Chinese Automation Congress (CAC). IEEE, 2018, pp. 2359–
2362.

[35] M. Zeiler, “Adadelta: An adaptive learning rate method. arxiv: 12125701 [cs]. 2012,”
arXiv preprint ArXiv:1212.5701, 2017.

[36] H. Yu, N. Ji, Y. Ren, and C. Yang, “A special event-based k-nearest neighbor model
for short-term traffic state prediction,” Ieee Access, vol. 7, pp. 81 717–81 729, 2019.

[37] D. Yi, J. Ahn, and S. Ji, “An effective optimization method for machine learning
based on adam,” Applied Sciences, vol. 10, no. 3, p. 1073, 2020.

77

[38] Z. Luo, Y. Chen, and C. Jing, “An enhanced ica based on minimum ber criterion
and nesterov-accelerated adaptive moment estimation,” Wireless Personal Communi-
cations, pp. 1–17, 2022.

[39] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” Ensemble machine
learning: Methods and applications, pp. 157–175, 2012.

[40] M. Bicego, “K-random forests: a k-means style algorithm for random forest cluster-
ing,” in 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–8.

[41] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,”
Frontiers of Computer Science, vol. 14, pp. 241–258, 2020.

[42] R. Wehrens, H. Putter, and L. M. Buydens, “The bootstrap: a tutorial,” Chemomet-
rics and intelligent laboratory systems, vol. 54, no. 1, pp. 35–52, 2000.

[43] J. Fox and S. Weisberg, “Bootstrapping regression models,” An R and S-PLUS
Companion to Applied Regression: A Web Appendix to the Book. Sage, Thousand
Oaks, CA. URL http://cran. r-project. org/doc/contrib/Fox-Companion/appendix-
bootstrapping. pdf, 2002.

[44] K. Kirasich, T. Smith, and B. Sadler, “Random forest vs logistic regression: binary
classification for heterogeneous datasets,” SMU Data Science Review, vol. 1, no. 3,
p. 9, 2018.

[45] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, pp. 123–140, 1996.

[46] Y. Song, J. Liang, J. Lu, and X. Zhao, “An efficient instance selection algorithm for
k nearest neighbor regression,” Neurocomputing, vol. 251, pp. 26–34, 2017.

[47] S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, “Learning k for knn classification,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 3, pp.
1–19, 2017.

[48] S. Forrest, “Genetic algorithms,” ACM computing surveys (CSUR), vol. 28, no. 1, pp.
77–80, 1996.

[49] M. M. Soares and G. E. Vieira, “A new multi-objective optimization method for mas-
ter production scheduling problems based on genetic algorithm,” The International
Journal of Advanced Manufacturing Technology, vol. 41, pp. 549–567, 2009.

[50] S. Sivanandam, S. Deepa, S. Sivanandam, and S. Deepa, Genetic algorithms. Springer,
2008.

[51] S. Mirjalili and S. Mirjalili, “Genetic algorithm,” Evolutionary Algorithms and Neural
Networks: Theory and Applications, pp. 43–55, 2019.

[52] L. J. Eshelman, “Genetic algorithms,” in Evolutionary computation 1. CRC Press,
2018, pp. 102–118.

78

[53] L. Chu, H. X. Liu, J.-S. Oh, and W. Recker, “A calibration procedure for micro-
scopic traffic simulation,” in Proceedings of the 2003 IEEE International Conference
on Intelligent Transportation Systems, vol. 2. IEEE, 2003, pp. 1574–1579.

[54] T. J. Cleophas, A. H. Zwinderman, T. J. Cleophas, and A. H. Zwinderman, “Bayesian
pearson correlation analysis,” Modern Bayesian statistics in clinical research, pp. 111–
118, 2018.

[55] R. Dowling, A. Skabardonis, J. Halkias, G. McHale, and G. Zammit, “Guidelines for
calibration of microsimulation models: framework and applications,” Transportation
Research Record, vol. 1876, no. 1, pp. 1–9, 2004.

[56] R. J. Llanque Ayala, “Procedimento para identificação dos principais parâmetros dos
microssimuladores a serem considerados no processo de calibração,” 2013.

[57] D. M. Miller, “Developing a procedure to identify parameters for calibration of a
vissim model,” 2009.

[58] J. Rong, K. Mao, and J. Ma, “Effects of individual differences on driving behavior
and traffic flow characteristics,” Transportation research record, vol. 2248, no. 1, pp.
1–9, 2011.

[59] M. Ben-Akiva, H. N. Koutsopoulos, T. Toledo, Q. Yang, C. F. Choudhury, C. Anto-
niou, and R. Balakrishna, “Traffic simulation with mitsimlab,” Fundamentals of traffic
simulation, pp. 233–268, 2010.

[60] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator vissim,” Fundamen-
tals of traffic simulation, pp. 63–93, 2010.

[61] T. Tettamanti, A. Csikós, I. Varga, and A. Eleőd, “Iterative calibration of vissim
simulator based on genetic algorithm,” Acta Technica Jaurinensis, vol. 8, no. 2, pp.
145–152, 2015.

[62] E. Borgonovo et al., “Sensitivity analysis,” An Introduction for the Management Sci-
entist International Series in Operations Research and Management Science Cham,
Switzerland: Springer, 2017.

[63] D. Hamby, “A comparison of sensitivity analysis techniques,” Health physics, vol. 68,
no. 2, pp. 195–204, 1995.

[64] M. Mkadziel, “Vehicle emission models and traffic simulators: A review,” Energies,
vol. 16, no. 9, p. 3941, 2023.

[65] B. Ciuffo and C. L. Azevedo, “A sensitivity-analysis-based approach for the calibra-
tion of traffic simulation models,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 3, pp. 1298–1309, 2014.

[66] V. Punzo, M. Montanino, and B. Ciuffo, “Do we really need to calibrate all the
parameters? variance-based sensitivity analysis to simplify microscopic traffic flow
models,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp.
184–193, 2014.

79

[67] F. Safranyik, I. Keppler, and A. Bablena, “Dem calibration: a complex optimization
problem,” in 2017 international conference on control, artificial intelligence, robotics
& optimization (ICCAIRO). IEEE, 2017, pp. 198–201.

[68] X. Ros-Roca, L. Montero, and J. Barceló, “Notes on using simulation-optimization
techniques in traffic simulation,” Transportation Research Procedia, vol. 27, pp. 881–
888, 2017.

[69] H. Wang, M. Zhu, W. Hong, C. Wang, G. Tao, and Y. Wang, “Optimizing signal
timing control for large urban traffic networks using an adaptive linear quadratic
regulator control strategy,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 1, pp. 333–343, 2020.

[70] M. Jha, G. Gopalan, A. Garms, B. P. Mahanti, T. Toledo, and M. E. Ben-Akiva,
“Development and calibration of a large-scale microscopic traffic simulation model,”
Transportation Research Record, vol. 1876, no. 1, pp. 121–131, 2004.

[71] D. Henclewood, W. Suh, M. O. Rodgers, R. Fujimoto, and M. P. Hunter, “A calibra-
tion procedure for increasing the accuracy of microscopic traffic simulation models,”
Simulation, vol. 93, no. 1, pp. 35–47, 2017.

[72] K. Aghabayk, M. Sarvi, W. Young, and L. Kautzsch, “A novel methodology for evolu-
tionary calibration of vissim by multi-threading,” in Australasian Transport Research
Forum, vol. 36, no. 1, 2013, pp. 1–15.

[73] F. C. Bethonico, “Calibração de simuladores microscópicos de tráfego através de me-
didas macroscópicas,” Ph.D. dissertation, Universidade de São Paulo, 2016.

[74] O. Kramer and O. Kramer, Genetic algorithms. Springer, 2017.

[75] S. Shafiei, Z. Gu, and M. Saberi, “Calibration and validation of a simulation-based
dynamic traffic assignment model for a large-scale congested network,” Simulation
Modelling Practice and Theory, vol. 86, pp. 169–186, 2018.

[76] Z.-H. Zhou, Machine learning. Springer Nature, 2021.

[77] J. Rzeszótko and S. H. Nguyen, “Machine learning for traffic prediction,” Fundamenta
Informaticae, vol. 119, no. 3-4, pp. 407–420, 2012.

[78] M. Zhou, X. Qu, and X. Li, “A recurrent neural network based microscopic car fol-
lowing model to predict traffic oscillation,” Transportation research part C: emerging
technologies, vol. 84, pp. 245–264, 2017.

[79] J. Tang, Y. Zou, J. Ash, S. Zhang, F. Liu, and Y. Wang, “Travel time estimation
using freeway point detector data based on evolving fuzzy neural inference system,”
PloS one, vol. 11, no. 2, p. e0147263, 2016.

[80] C. Chen, H. Xiang, T. Qiu, C. Wang, Y. Zhou, and V. Chang, “A rear-end collision
prediction scheme based on deep learning in the internet of vehicles,” Journal of
Parallel and Distributed Computing, vol. 117, pp. 192–204, 2018.

80

[81] H. Shi, T. Wang, F. Zhong, H. Wang, J. Han, and X. Wang, “A data-driven car-
following model based on the random forest,” World Journal of Engineering and
Technology, vol. 9, no. 3, pp. 503–515, 2021.

[82] I. Saadi, A. Mustafa, J. Teller, and M. Cools, “A bi-level random forest based approach
for estimating od matrices: Preliminary results from the belgium national household
travel survey,” Transportation research procedia, vol. 25, pp. 2566–2573, 2017.

[83] C. Katrakazas, M. Quddus, and W.-H. Chen, “A simulation study of predicting
conflict-prone traffic conditions in real-time,” 2017.

[84] H. Park, S. Jung, and C. Oh, “Proactive identification of hazardous traffic conditions
caused by reduced visibility using road weather information,” Tech. Rep., 2017.

[85] M. Chance Scott, S. Sen Roy, and S. Prasad, “Spatial patterns of off-the-system traffic
crashes in miami–dade county, florida, during 2005–2010,” Traffic injury prevention,
vol. 17, no. 7, pp. 729–735, 2016.

[86] A. Iranitalab and A. Khattak, “Comparison of four statistical and machine learning
methods for crash severity prediction,” Accident Analysis & Prevention, vol. 108, pp.
27–36, 2017.

[87] P. Manjunatha, P. Vortisch, and T. V. Mathew, “Methodology for the calibration of
vissim in mixed traffic,” in Transportation research board 92nd annual meeting, vol. 11.
Transportation Research Board Washington, DC, United States, 2013.

[88] Q. Ge and M. Menendez, “Sensitivity analysis for calibrating vissim in modeling the
zurich network,” in 12th Swiss transport research conference, vol. 5, 2012.

[89] V. Punzo and B. Ciuffo, “How parameters of microscopic traffic flow models relate
to traffic dynamics in simulation: Implications for model calibration,” Transportation
Research Record, vol. 2124, no. 1, pp. 249–256, 2009.

[90] M. Bagheri, B. Bartin, and K. Ozbay, “Simulation of vehicles’ gap acceptance decision
at unsignalized intersections using sumo,” Procedia Computer Science, vol. 201, pp.
321–329, 2022.

[91] T. Jayasinghe, T. Sivakumar, and A. Kumarge, “Calibration of sumo microscopic
simulator for sri lankan traffic conditions,” Proceedings of the Eastern Asia Society
for Transportation Studies, Tokyo, Japan, pp. 12–15, 2021.

[92] M. Rackl and K. J. Hanley, “A methodical calibration procedure for discrete element
models,” Powder technology, vol. 307, pp. 73–83, 2017.

[93] S. Pool, M. Vis, and J. Seibert, “Evaluating model performance: towards a non-
parametric variant of the kling-gupta efficiency,” Hydrological Sciences Journal,
vol. 63, no. 13-14, pp. 1941–1953, 2018.

[94] C. Wang, C. Xu, J. Xia, Z. Qian, and L. Lu, “A combined use of microscopic traffic
simulation and extreme value methods for traffic safety evaluation,” Transportation
Research Part C: Emerging Technologies, vol. 90, pp. 281–291, 2018.

81

[95] F. Huang, P. Liu, H. Yu, and W. Wang, “Identifying if vissim simulation model and
ssam provide reasonable estimates for field measured traffic conflicts at signalized
intersections,” Accident Analysis & Prevention, vol. 50, pp. 1014–1024, 2013.

[96] N. R. Hoot, L. J. LeBlanc, I. Jones, S. R. Levin, C. Zhou, C. S. Gadd, and D. Aronsky,
“Forecasting emergency department crowding: a discrete event simulation,” Annals
of emergency medicine, vol. 52, no. 2, pp. 116–125, 2008.

82

	=Dedication
	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Traffic Simulation
	SUMO
	Network Building
	Demand Modelling
	TraCI

	Machine learning
	Neural Networks
	Neural networks architecture
	Single-layer neural networks
	Multi-layer neural networks
	Optimizers

	Random Forest
	k-Nearest Neighbors (kNN)
	Genetic Algorithm
	Genetic Algorithm Development

	Calibration

	State of the Art
	Selection of parameters for calibration
	Concerning the calibration procedure
	On the use of machine learning to solve traffic problems
	On SUMO calibration
	On measuring the accuracy of the model

	Methodology
	Phases of Problem-Solving
	Description of the Problem

	Model Proposal
	Parameters selection
	Customized JTRROUTER
	Selection of scenarios
	Assignment of the volume of vehicles and route decisions for each scenario
	Machine learning models

	Analysis Method
	Experimental Setup

	Results and Discussion
	First scenario results
	Neural Network
	Random Forest regression
	kNN regresssion
	Summary Results

	Second scenario results
	Neural Network
	Random Forest regression
	kNN regression
	Summary results
	Option 2: Machine learning model combined with genetic algorithm

	Conclusions
	Future works

	Bibliography

		2023-11-14T21:22:27-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2023-11-14T21:24:42-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

