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Resumen

El aprendizaje profundo y la visión por computadora se utilizan para crear aplicaciones

que faciliten una mejor interacción entre humanos y máquinas. En el ´ámbito educativo,

obtener información sobre el lenguaje de señas es sencillo, pero encontrar una plataforma

que permita una interacción intuitiva es todo un desaf́ıo. Se ha desarrollado una aplicación

web para abordar este problema mediante el empleo de aprendizaje profundo para ayudar

a los usuarios a aprender el lenguaje de señas. En este estudio, se probaron dos modelos de

reconocimiento de gestos con las manos, utilizando 20.800 imágenes; Los modelos probados

fueron AlexNet y GoogLeNet. Durante el entrenamiento de estos modelos se ha consider-

ado el problema de sobreajuste que se encuentra en las redes neuronales convolucionales.

En este estudio se han empleado varias técnicas para minimizar el sobreajuste y mejorar

la precisión general. AlexNet logró una tasa de precisión del 87% al interpretar gestos con

las manos, mientras que GoogLeNet logró una tasa de precisión del 85%. Estos resultados

se incorporaron a la aplicación web, cuyo objetivo es enseñar el alfabeto de la lengua de

signos estadounidense de forma intuitiva.

Palabras Clave:

Aprendizaje profundo, visión computacional, reconocimiento de gestos, educacion, lenguaje

de señas, clasificación de imágenes
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Abstract

Deep learning and computer vision are used to create applications that facilitate a better

interaction between humans and machines. In the educational domain, obtaining infor-

mation about sign language is simple, but finding a platform that allows for intuitive

interaction is quite challenging. A web app has been developed to address this issue by

employing deep learning to assist users in learning sign language. In this study, two models

for hand-gesture recognition were tested, utilizing 20,800 images; the models tested were

Alexnet and GoogLeNet. The overfitting problem encountered in convolutional neural net-

works has been considered while training these models. Several techniques to minimize the

overfitting and improve the overall accuracy have been employed in this study. AlexNet

achieved an 87% of accuracy rate when interpreting hand gestures whereas GoogLeNet

achieved an 85% accuracy rate. These results were incorporated into the web app, which

aims to teach the alphabet of American sign language intuitively.

Keywords:

Deep learning, computer vision, gesture recognition, education, sign language, image clas-

sification
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Chapter 1

Introduction

Deep learning (DL) is a subset of machine learning (ML) that uses algorithms inspired

by the brain’s ability to learn. DL algorithms can learn from unstructured or unlabeled

data, making them well suited for image recognition and natural language processing tasks.

However, it could present a problem of overfitting that consists in learning the training

data too well and not generalizing to new data. Overfitting appears when a model trained

with little data learns the noise instead of the signal. This happens because the model

tries to know the data set too deeply. The model attempts to find a pattern in the data

set that does not exist.

In recent years, ML has been a powerful tool for detecting and classifying signals in the

presence of noise. In particular, neural networks are successful in this task [1]. In the daily

day, ML is used in various applications such as facial and speech recognition, handwriting

recognition, and machine translation.

ML has many applications that help reduce problems in every field, such as medicine,

finance, media, etc. There are many different types of neural networks, each with advan-

tages and disadvantages. In general, however, neural networks are well-suited for tasks that

are too difficult for traditional methods, such as pattern recognition and classification.

Sign language (SL) is a natural language with grammar, syntax, and vocabulary. It is

not a code or pidgin. SL is used by people who are deaf or hard of hearing. It is a visual

language that uses hand gestures, body language, and facial expressions to communicate.

SL is not a universal language, and each country has its SL. The American Sign Language

(ASL) is the most popular SL known [2]. Indeed, most countries use ASL characteristics
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to create their SL.

It makes it really hard to practice if you do not have another person practicing ASL

in your life. There are a few ways to learn ASL online. One way is to find a website that

offers lessons, such as ASL University. Another way is to find a video tutorial on YouTube.

But the best and most effective way to learn ASL is practicing every day with another

person who knows the language and is willing to help you learn.

1.1 Problem Statement

DL is a powerful tool that can automatically extract features from data. However, The

model should be observed when it displays values “too well” because this could be a

symptom of overfitting. Techniques like the regularization, dropout, and weight decay are

used to reduce overfitting,

Most systems that recognize hand gestures apply computer vision (CV) to get the

information, but the Microsoft Kinect device is the primary tool. However, this tool is

unavailable to every possible user. The standard system that everyone can use is using

tools present in at least every laptop, like a webcam. The system needs to be available for

all, and one solution is to build a progressive web app that lets people access and use the

proposed app.

Progressive web apps are web applications that use modern web capabilities to deliver

a user experience similar to that of mobile apps. They are designed to be responsive to the

device of the user and network conditions, making them reliable and fast, even on slow or

unreliable connections.

The Covid-19 pandemic has had a significant impact on the education sector. Many

schools and universities have had to close their doors, and students have had to learn

remotely. The pandemic has also put a strain on educators, who have had to adapt to

new teaching methods and technologies, finding some challenges and opportunities. One

of the biggest challenges facing educators is the digital divide. Many students do not have

access to the internet or a computer at home, making it difficult for them to participate in

online learning. Schools and universities have had to provide devices and internet access

to those who need it, but it is not always possible. The pandemic has also forced educators
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to rethink the way they teach. Many have had to rely on technology to deliver lectures

and assignments, which has been a learning curve for teachers and students. [3] But it has

also opened up new possibilities for how education can be delivered.

A web app platform was built that allows learning ASL online using the DL model,

implementing the new technologies, and the experience obtained in the last pandemic.

That makes the knowledge easier for everyone, even if the user doesn’t have a good internet

connection.

1.2 Objectives

1.2.1 General Objective

Reduce overfitting in a deep neural network image classifier that recognizes ASL based on

the posture of the hand.

1.2.2 Specific Objectives

• Design a model using regularization techniques that learn to classify the different

hand-pose from the ASL dataset.

• Validate the overfitting reduction of our model by comparing the performance with

previous architectures.

• Build a web platform that enables people to learn ASL using our optimized architec-

ture.

1.2.3 Contribution

The investigation gives us a model that performs a good ASL classification with an overfit-

ting reduced, and this model is implemented in a web app open to every user who wants to

study ASL online. The model was trained using a solid database and implementing good

techniques to avoid overfitting.
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Chapter 2

Theoretical Framework

The chapter explores SLR, delves into the principles of Convolutional Neural Networks,

and discusses the unique attributes of AlexNet and GoogLeNet in the context of computer

vision and sign language recognition.

2.1 Sign Language

According to the World Health Organization, about 466 million people, adults and children,

have disabling hearing loss caused by various factors such as genetics, chronic infections,

trauma, work-related chemicals, or loud sounds, among others [4]. There are communica-

tion barriers for this group of people, who use SL as their primary means of communication.

However, interaction with those who cannot understand this language is a limitation in

daily life [5].

SL is a type of visual communication where information flows through multiple optical

channels, such as hand gestures, body postures, and facial expressions [6]. It is the art of

spreading ideas and emotions non-verbally [7].

According to the World Federation of the Deaf, it is estimated that around the world,

about 300 variations of SL are used [7], and they are composed of gestures of 1 or 2 hands

representing words, alphabetic characters, and numbers [5]. Likewise, each SL varies in its

execution according to region, age, and level of hearing impairment [7].
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2.1.1 American Sign Language

ASL is an EEUU language used as communication media for people who have hearing and

speech problems. It is expressed through hand movement and gestures [2]. The use of the

hands and the movements oriented contains essential information. Also, It includes body

and face movements as part of the communication that complements the expression [8].

The origin of ASL is unclear, but its analysis said it has been arising with the merging

of several SLs. One of the most influential is the Langue des signes Frnaçaise (LSF), which

has similar symbols, although they are different languages [2].

Like any language, ASL is structured with its standards and norms, which may differ

from other SLs since they may contain similar symbols but have different interpretations

[9] due to their dialect and place of origin [10]. As other languages use different tonalities

to express exclamation or question marks, ASL users can express their ideas as questions

or statements by changing their gestures [2].

As Figure 2.1 shows. ASL contains 26 letters, expressed with the movement of the

hands, and there are 19 forms in different orientations of the hands that help make up

this alphabetical group. These expressions aim to symbolize different words from the

English dictionary, some of the hand shapes being the same but allowing another idea to

be conveyed simply by changing the orientation of these [11].
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Fig. 2.1: ASL alphabet [12].

As there is a significant number of people with hearing impairments, efforts are being

made to develop technology that can interpret SL. This technology uses images, artificial

intelligence, mathematical models, and the internet to provide a fast and efficient service

[13].

2.1.2 Sign Language Recognition

Sign language recognition (SLR) plays a significant role in deaf communication, education,

and human-machine interaction, representing the real-time translation of SL [14]. Integrate

society with people who have some hearing loss [7]

Due to the considerable number of hearing-impaired people worldwide, developing prac-

tical tools for SL translation is necessary [15].

SLR belongs to an area of artificial vision, and its research is in evolution. Mainly,

you can find solutions based on two techniques: computer vision models and sensor-based

systems.
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Computer Vision Models

CV-based models work with images. Therefore, they require a camera to acquire informa-

tion and characteristics of hands, gestures, and body postures [14]. The effectiveness of

this method is linked to factors such as light, shadows, camera position, and different back-

ground conditions. These conditions are challenging to regulate in environments outside

of a laboratory [5].

Through this method, the hands of the user must always be in frontal view towards the

camera due to the two-dimensional nature with which the information is collected. This

presents a significant challenge since many gestures vary slightly from each other [5].

Generally, this method is based on detecting the target or hand within the visual field,

following its movement, and recognizing the sign based on this. For the collection of a more

significant amount of information, there is the possibility of using specialized cameras and

depth sensors to determine the location of the hand concerning the camera. However, this

results in a higher economic cost for the device and computational due to the generation of

larger files of information to be processed [5]. This limits its adaptability for deployment

on mobile devices.

The first system based on CV was carried out in 1988 and was related to Japanese

SL. The invention of convolution networks and DL in CV have represented a benefit in

applying this tool for SLR [7].

Sensor-based Systems

These systems are based on using different types of sensors, such as tension, surface elec-

tromyography, touch, pressure, and inertial sensors, such as accelerometers and gyroscopes.

Environmental conditions do not influence the sensors and allow for storing large amounts

of information in portable systems. Currently, thanks to technological advances, small and

cost-effective microcontrollers, and sensors have been developed [5].

The most common application is gloves with sensors, through which information on

the orientation of the wrist, hand movements, and degrees of flexion can be obtained.

The information collected through this method is usually sent to mobile applications for

processing with an accuracy between 85% and 99% [16].
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The advantage of this system’s application is the reaction speed and the precision that

can be obtained. However, the high cost that it can have for the sensors makes it an

inaccessible solution for people with limited resources [7].

The main drawback of these systems can be the discomfort of the user with the glove

and the movement restrictions that this can generate. Even so, glove design has been

achieved with the ability to identify between 5 and 22 degrees of freedom for SLR [5]. The

first system was developed in 1983, based on ASL [7].

2.2 Deep Learning for American sign language

2.2.1 Convolutional Neural Network for Computer Vision

Computer Vision

CV is a branch of artificial intelligence that emulates the visual ability to obtain information

from objects through images using detection devices such as a camera and interpreting

devices such as a computer. It is focused on interpreting the real world a machine perceives

as information, which pretends to have a significant similarity to the perception of the

human. CV uses image processing, ML, and statistical analysis techniques to detect and

recognize patterns in images and videos to determine the importance of the information

obtained. CV is used to automate tasks that humans can do using the vision to obtain

information to get a high level of understanding [17] [18] [19].

CV has been used in different tasks, like:

• Object detection: consists of detecting objects of different classes, like cars, dogs,

or humans, in digital images. A typical process is the creation of classifiers that allow

deciding through specific characteristics whether or not an image contains a specific

object [20].

• Face recognition: It is one of the most significant commercial interest applica-

tions. Face recognition systems are based on extracting specific facial characteristics

to formulate classification models, through which even predictive models can be im-

plemented [20].
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• Gesture recognition: human actions and activities are a relevant research topic,

and in recent years, several works have been proposed through DL techniques for

detecting complex events. The most representative characteristics of specific events

are extracted, and classification models are made for their identification [20].

• Pose estimation: determining the position of human joints is a topic that has been

used in many applications, such as human-machine interaction, motion analysis, and

augmented reality [20].

Image processing is the set of techniques that allow preparing the database to be used

in the neural network, making training and computational processing easier [19]. Some

image processing techniques are:

Normalization

A large number of factors from capture devices or the same optics from the environment

cause the variation of characteristics in an image. This topic becomes one of the main

issues to be addressed in CV to achieve optimal results. Normalization is a technique

applied in data processing to obtain a standard scale in the numerical values of the data

obtained without losing information [21].

Data Augmentation

It is a pre-processing technique aiming to augment the data set with altered versions of

the existing image. These alterations can be rotations, scaling, and other typical trans-

formations to expose the neural network to a great diversity of new instances that allow

the algorithm to obtain a more significant amount of training data and thus make a more

robust model [19].

When the training error is decreased, the validation error of a model is also reduced.

Therefore, data augmentation is an important technique that addresses overfitting from

the training dataset [22]. Validated as an effective technique in image processing, sound

classification, and object recognition research by representing performance improvements

in neural networks [23].
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Fig. 2.2: An example of data augmentation applied to an image.

Deep Learning

DL is a ML concept based on artificial neural networks that deal with creating algorithms

that can learn and make predictions on data. DL algorithms can learn from data in a way

similar to the way humans learn. They can identify patterns and make predictions based

on those patterns. DL is mainly used for analyzing unstructured or semi-structured data

like images and natural language processing [24].

The neurons are organized into networks with different layers, with the input layer,

which refers to the raw or processed data, and the output layer, which is the final result.

Between both, one or more hidden layers responsible for learning a non-linear mapping are

found. This model needs some hyperparameters that make it possible to learn in a different

way than traditional learning algorithms, which must be set manually or determined by

an optimization routine [24].

Activation Function

The activation function, also known as the transfer function or non-linearities, aims to

introduce non-linearity in the neural network and restrict the output value to a finite value

[19] [25].
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Softmax Function is commonly used in DL when you have more than two classes.

It is used to force the outputs of the neural network to be in the range between 0 and

1, (0 < output < 1), and the sum of these values is 1, It is used to predict a single class

among several options [19] [26]. The following equation gives the softmax function:

fj(z) = ezj∑n
k=1 ezk

(2.1)

Where z is the generated output vector of the neural network, j and k represent the j-th

and k-th vector; and n is the number of classes of the model [26].

ReLU is an activation function whose objective is the activation of a node only when

the input is more significant than zero. Otherwise, the output will always be zero with an

input below zero. If the input is above zero, it has a linear relationship with the output

variable [19]. The following expression defines the ReLU activation function:

ReLU(x) = max(0, x) =


x if x ≥ 0

0 if x < 0
(2.2)

Where x is the value to be processed by the ReLU function.

Loss Function

The loss function is used to validate and evaluate models and the uncertainty of the

predictions resulting from these [27]. It is known as the error function or cost function

and allows quantifying the error that the neural network prediction has with the correct

solution [19].

The lower the error function, the better the work done by the model, and if the error

function is high, it means that the model needs optimization of its parameters to reach the

minimum error [19].

Categorical Cross-entropy also known as softmax cross-entropy [28], it is a type of

error function that allows quantifying the difference between two probability distributions

for a sample. It is designed to be used in multiclass classification tasks where a sample can

belong to only one of several possible categories [27] [19].
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CE = − log
(

ezp∑j=1
n ezj

)
(2.3)

Where z is the generated output vector of the neural network, Zp is the correct class

value, j = 1, 2, 3, ..., n, and n is the number of classes the model has.

Optimizer

When calculating the loss function of a model, it becomes an optimization problem

for which algorithms are required that frame and minimize the error produced. These

algorithms are known as optimizers. The objective of the optimizer will be to find the

values of the optimal weights to produce the minimum error [19].

Stochastic gradient descent (SGD) is an optimizer that randomly picking up an

instance in the training set and computes the gradient based on only that single instance

for each iteration [19].

Convolutional neural network (CNN) is one of the most popular deep neural net-

works. Its name comes from the linear mathematical operation between matrixes called

convolution. [29]

CNN is based on neurons that are organized in layers. Convolutional layers include

multiple optimizable filters that transform the input data or preceding hidden layers. The

number of filters defines the depth of convolutional layers. Kattenborn et al [30] comment

that the components of a CNN are:

• Convolutions Layers: The convolution is the sliding of the filter over the layer and

the calculation of the dot product of the filter and the values of the layer. Using this

operation, the main patterns are iteratively learned, and the result is a new layer of

dot-products for each filter, also called a feature map. In CV, the convolution layer

reduce the image input into a form easier to process, without losing principal features

for getting a good prediction [30].

• Pooling layers: Pooling describes the transformation of multiple cells into one cell.

This feature has some advantages, such as reducing the data size while preserving
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discriminant information. Max pooling is a filter that extracts the maximum value

from the filter. Other filters used in the pooling layers are average and minimum

pooling [30].

• Normalization Layers: Normalizing the outputs of a layer helps to reduce the

internal covariate shift and improve optimization and stabilization of training [30].

2.2.2 AlexNet

The CNN called AlexNet was the winner in 2012 in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), with a primary and functional structure [31]. Created

by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever, which at the time promoted

the application of convolutional networks in studies related to machine vision with greater

impetus [19].

The Figure 2.3 display the architecture of AlexNet. This model is made up of 650,000

neurons, and its architecture is divided into eight layers with different dimensions. Five of

them are convolutional, some of them followed by max-pooling layers, while the remaining

three are fully-connected layers [32]. In its output layer are 1000 neurons connected with

a softmax activation function [31].

Fig. 2.3: AlexNet architecture.

Being a CNN, they contain fewer connections and parameters, giving the advantage of

ease when training their neurons and achieving considerable performance [32].
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2.2.3 GoogLeNet

GoogLeNet is a CNN that won the ILSVRC in 2014. It was developed by a team of Google

researchers, including Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott

Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich,

this 22-layer deep CNN uses 12 times fewer parameters than the AlexNet neural network

and this is significantly more precise [33].

The input size of this neural network is 224x224x3 and its architecture is formed by con-

volutional layers, max-pooling layers and Inception module with dimensionality reduction

as shown in the Figure 2.4.

Fig. 2.4: GoogLeNet architecture [33].

The inception module combines several layers with their banks of output filters con-

catenated in a single output vector that will become the next stage’s input. This module

uses 1x1, 3x3, 5x5 convolutions and max-pooling layers, as shown in the Figure 2.5.
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Fig. 2.5: Inception module [33].
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Chapter 3

State of the Art

The development of tools and methodologies that facilitate the communication of people

with hearing and speech difficulties shortens the gap in mutual understanding and social

relations. For this reason, it has become a significant subject of study and has presented

essential advances in recent years, some of which are presented in this chapter.

3.1 Dataset for American sign language

There are several databases comprising images of the ASL alphabet. Morocho-Cayamcela

et al. [34] published one of these databases in their research work called “Fine-tuning a

pre-trained Convolutional Neural Network Model to translate American Sign Language

in Real-time”. This data set was made up of 78,000 color images (RGB), whose size is

647x511x3. An example of this dataset is shown in Figure 3.1.
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Fig. 3.1: Instance of dataset presented by Morocho-Cayamcela et al. [34].

In 2011, Barczak, A.L.C., et al., in their research paper ”A new 2D static hand gesture

color image dataset for ASL gestures.” presented the database called MU HandImages ASL.

This database was made up of 2425 images that were taken from 5 individuals with different

light conditions [35]. The Figure 3.2 shows a sample of the database.

Fig. 3.2: Sample of ASL letter with segmented image [35].
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Another database generated and accessible in Kaggle is called SL MINST, see Figure

3.3. This database contains images of 24 of the 26 ASL alphabet letters. The excluded

letters are J and Z. SL MINST is composed of a training set containing 27455 images and

an evaluation set comprising 7172 images. Each image has a dimension of 28x28x3 [36]

[37].

Fig. 3.3: Images samples from the SL MINST database [38].

3.2 Convolutional neural network for sign language

Al-Qurishi, Khalid, and Souissi published different automated SL recognition based on ma-

chine/deep learning methods and techniques between 2014 and 2021 [15]. They proposed

that SLR can be classified into two major groups. One group depends on external sensors

to collect insights about the actions of the signer. The other group focus on the use of

vision-based methods. This group relies on images, video, and depth data to determine

the semantic content of hand signs.

Current advances in this area have been largely fueled by the use of DL models, which

are presently being perfected and will only become more widely received in the future

years. Over the past decade, multiple original and highly clever suggestions had been used

to build SLR tools by extracting features from sensor data or visual streams and feeding

them into neural classifiers [15].
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Morocho-Cayamcela and Lim presented a system to recognize a real-time ASL hand

gesture recognizer based on an artificial intelligence [34]. The system presented the uses

of CNN that was trained using a dataset with 78,000 images, and each picture had a

resize into 227x227x3 to train in AlexNet and 224x224x3 to train GoogLeNet. The model

proposed had components like loss function, which evaluates the predicted label of the class

to comply with the labels from the ground-truth data and optimized weight and biases to

increase the classification accuracy. Deep learning models that have been trained before on

a different dataset applying fine-tuning were used. They used the AlexNet model, which

contains five convolutional layers and three fully connected layers. The last set of fully-

connected layers was replaced with a new one that classified the 26 letters of the alphabet.

The result presented a fast convergence using AlexNet with a 99.39% accuracy, and using

GoogLeNet they got an accuracy of 95.52%. The paper expose that use data augmentation

in the dataset applying random reflection on the horizontal axis, translation on a 30-pixel

range over the x and y-axis to reduce the overfitting [34].

Bin, Huann and Yun [12] presented a convolutional neural network model for ASL

prediction with 4800 images used to train and validate the model. The data set was

generated from 200 pictures for each gesture, considering different backgrounds and lighting

conditions and focusing only on the first 24 gestures since the remaining 2 ASL requires

movement. That is, the proposed model was developed for static gestures and was proposed

to establish a basis for future studies [12].

The architecture of the proposed model was composed of an output layer with the

Softmax function. The complete model was implemented in multiple layers. See Figure

3.4.
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Fig. 3.4: The architecture of the proposed CNN model [12].

The training was developed using the ADAM optimizer, a categorical cross-entropy

loss function, and the following parameters: a learning rate of 0.003 and iterations of

100. Through the experiment, they obtained a precision of 95% in 24 ASL gestures and

demonstrated the effectiveness of the model for static alphabet gestures [12].

Bantupulli and Xie [13] created a computer vision application to communicate by trans-

lating ASL into text. They implemented an Inception-type convolutional neural network

to extract partial features in videos, which, by using transfer learning, makes it possible

to take advantage of previous training and use a small amount of data. The videos were

divided into frames, and the data corresponding to each gesture was increased by applying

data augmentation. The data set created was divided into 1800 images for training and

600 images for evaluation data. Gesture detection was 99% accurate on the training sets.

An ADAM optimizer was used in conjunction with a softmax layer for prediction classifi-

cation. The drawback presented by this model was the loss of precision when performing

tests on different skin tones and types of clothing [13].

Saravanan, Retnaswamy, and Selva [39], explain in their research how a webcam cap-

tures the hand gestures corresponding to the ASL alphabet to transform them into text by

applying a modified CNN AlexNet architecture in its final layers, including classification

and softmax layers, with which the architecture is formed for 25 layers, see Figure 3.5
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Fig. 3.5: Modified CNN AlexNet, proposed by Saravanan et al. [39].

A database taken from Kaggle used with 110 images of 200 x 200 pixels for each ASL

alphabet, which were divided so that 80% serve as a training database and 20% for evalu-

ation. The proposed neural network uses the optimizer for its training: stochastic gradient

descent with momentum (SGDM), an initial learning rate: of 0.001, and a maximum num-

ber of epochs or iterations: 10. As a result of the model obtained, there is an accuracy

of 100% with the images of the evaluation data set, however, in tests with live images of

hand gestures captured by a computer camera, an accuracy of 76.92% was achieved, due

to the inability of the model to recognize the letters. R, S, T, U, V, and X. This limitation

can be attributed to the short time given to the training model due to machine restrictions

and the similarity of the descriptor vectors of these letters [39].

Liu et al. [40], presented an improved AlexNet-based gesture recognition algorithm

using four convolutional kernels of 3x3 instead of 11x11, followed by a clustering layer (see

Figure 3.6).
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Fig. 3.6: (a) Original AlexNet layer, (b) Modified layer proposed model [40].

Among the data sets tested in the experiment was the ASL, with a total of 65774 images

for 24 gestures. The original convolutional network was compared with the improved one

from AlexNet, and an accuracy of 98.3% was obtained compared to 95.9% of the original

convolutional network. They concluded that by using the improved AlexNet algorithm, it

was possible to receive more information during feature extraction by reducing the step of

the convolutional layers [40].

23



24



Chapter 4

Methodology

Ensuring the success of deep learning models in computer vision tasks requires paying

attention not only to the neural network’s architecture and design but also to the system

structure and hyperparameters. This chapter focuses on discussing the system structure,

experiment setup, metrics used in the experiments, and the web application.

4.1 System Structure

4.1.1 Dataset

The dataset was divided into three sections. The first section was the test training. It

contained 20,800 images with 26 classes. The second section was the test data, with 2,600

images. Finally, the last section was the validation data which had 2,600 images with the

26 different types of hand gestures. The division of this data was 8:1:1 and was the base of

the experiment. Every image data was normalized to allow the machine to perform better

calculations.

4.1.2 Hyperparameters

Epoch

It is the number of the times the neural network train. In AlexNet, The model reached

a good stabilization around the 20 to 30 epoch. With 50 epochs, the results was clear to

interpret. On the other hand, GoogLeNet started to stabilize around the 50 epoch, and

with 70 epochs, the results had a good point to complete the analysis.
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Learning rate

Learning rate (LR) is a hyperparameter of the neural network that influences its behavior

[41]. LR is the magnitude of each step that the neural network takes when descending

the loss function, i.e., the percentage of change updates the values of the weights in each

iteration to find the optimal values of the weights to minimize the error.

If the LR is vast, it speeds up the learning, but it does not guarantee to find the

minimum error, while if the value of the LR is minimal, the error was minimal; however,

the time it takes to train the network was considerable (weeks or months) [19].

4.2 Experiment setup

4.2.1 Hardware

The experiments were conducted in a workstation with a processor Intel(R) Core(TM)

i7-6500U CPU @ 2.50GHz, 2601 Mhz, 2 Core(s), 4 Logical Processor(s), and 16 GB of

RAM.

4.2.2 Training

Once the preprocessed data stage was completed, these go to the training stage. At this

stage, the images entered the AlexNet and GoogLeNet networks, which were built with

different layers. At the end of the training, they could infer between the 26 classes in the

database.

4.3 Experiments

4.3.1 Experiment 1

In the first experiment, The AlexNet and GoogLeNet models were trained using the data

augmentation method. This method was expected to reduce overfitting and increase vali-

dation accuracy compared to the regular model.
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4.3.2 Experiment 2

AlexNet and GoogLeNet models did not use regularization in the base architecture. Ap-

plying this method, both models presented a better training and validation accuracy per-

formance. The regularization method to use was the L2.

4.3.3 Experiment 3

The dropout is a method to reduce the overfitting used in AlexNet and GoogLeNet. The

accuracy was reduced if the architecture did not present dropout. The results had a

significant change from the standard data obtained.

4.3.4 Experiment 4

The last experiment involved training the models using methods that reduce overfitting

and improve accuracy. AlexNet and GoogLeNet architectures implemented data augmen-

tation, regularization, and dropout. The performance showed a considerable improvement

in comparison to the regular training.

4.4 Classifier Evaluation Metrics

4.4.1 Accuracy

Accuracy is one of the most used measurements for evaluating classification models. The

accuracy formula is as follows:

Accuracy = Number of correct prediction

Total number of predictions
(4.1)

The following formula can also be applied:

Accuracy = TP + TN

TP + TN + FP + FN
(4.2)

In this context, TP stands for true positive, TN represents true negative, FP indicates

false positive, and FN stands for false negative [42].
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4.5 Web Application

For the development of the website, the following development tools were used:

• Reactjs: A library that allows to develop user interface (UI) for websites around

components. A component is a UI with its own logic and appearance [43].

• Nextjs: it is a framework developed by Vercel which allows us to build web pages

using tools like Reactjs [44].

• Mediapipe: It is a library that allows us to apply artificial intelligence and ML

in our applications. This library helps us recognize hands in real-time in our web

application [45].

• Tensorflowjs is a library that helps us to use ML in JavaScript. This tool is vital

to assemble our trained model and put it to work on our web page [46].

4.5.1 Workflow

Nextjs and Reactjs were used to create the foundation of the website. Figure 4.1 illustrates

the process our website uses to identify SL.

Fig. 4.1: Workflow of the recognition of hand pose in the webpage.

To detect hand gestures, the process involved using the webcam to capture the image

of the user. Then, the Mediapipe library was utilized to identify the hand on the screen

and draw a box around it. Once the hand data was collected, the image was introduced

into the model to determine the gesture type. This entire process happened in real-time,

and Figure 4.2, 4.3 and 4.4 showcases the appearance of the webpage during operation.
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Fig. 4.2: Capture of the webpage recognizing the letter “i”.

Fig. 4.3: Capture of the webpage identifying the user with the hand.
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Fig. 4.4: Capture of the webpage recognizing the hand gesture to form a word.
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Chapter 5

Results and Discussion

This chapter will discuss the extensive results obtained, divided into three sections. The

first section will focus on the results obtained with the AlexNet model; the second section

will discuss the training results with GoogLeNet, and the last section will compare the

results obtained with AlexNet and GoogLeNet.

5.1 AlexNet

The results obtained in experiment 1 using the AlexNet model can be seen in Figure 5.1.

The values obtained in epoch 10 showed the validation of the data by going through the

trained model, showing us a difference of 0.013 between the model using standard data and

the model using data augmentation. The use of regular data was more effective. However,

in epoch 20, the difference between these methods was reduced to 0.006. The most effective

model, in this case, was the one that uses the data method augmentation.
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Fig. 5.1: Experiment 1 results: AlexNet with data augmentation.

Thanks to the representation of Figure 5.2, It was more understandable to visualize the

difference between periods. From epoch 20 onwards, the trend stabilized, and the results

obtained using data augmentation were slightly better than not using it. These results also

helped us to understand that implementing data augmentation reduced overfitting since

when training using data augmentation, the model classified better the newly entered

images. Using data augmentation generally gave us better performance in the AlexNet

model.

Fig. 5.2: AlexNet Normal model vs model with data augmentation. VA = validation
accuracy; DA = data augmentation.

In the second experiment, the regularization method was implemented to reduce over-
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fitting, as with data augmentation. As shown in Figure 5.3, the difference was not as

noticeable as expected. However, when it was analyzed by epochs, the model showed a

slight increase in precision when using regularization.

Fig. 5.3: Experiment 2 results: AlexNet with regularization.

The graph of Figure 5.4 showed that at epoch 10, using the standard model had an

advantage of 0.009% compared to the regularization model. When the experiment went

further for example the epoch 20, both models had a similar accuracy. On this occasion,

the model with regularization had significant growth by recognizing the values compared

to the regular one despite giving us a similar result. It was in epoch 30 that it continued

to be appreciated that the model with regularization has an upward trend concerning

accuracy. Now difference of 0.02 appeared, being the lower regular model. In the following

periods, there was a stabilization where the model with regularization was slightly higher.

Regularization did not make a big difference in precision improvement. Still, it could help

to reduce overfitting by giving insurance when implementing it in the AlexNet model.
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Fig. 5.4: AlexNet Normal model vs model with regularization. VA = validation accuracy.

The data obtained in experiment 3 shown that the regular model uses dropout by

default. This was to reduce overfitting. Still, the difference in improvement compared

to the model without dropout could be better, as shown in Figure 5.5. However, using

dropout ensured the model reduced the overfitting problem in training.

Fig. 5.5: Experiment 3 results: AlexNet without dropout.

Finally, in experiment 4, the previously tested methods were applied. This meant that

the dropout, data augmentation, and regularization are implemented in a model. Figure

5.6 shows the results obtained from this training. There was a slight improvement in

accuracy, but it was not as big as expected.
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Fig. 5.6: Experiment 4 results: AlexNet with data augmentation, regularization, and
dropout.

The Figure 5.7 shows that the data at epoch ten shown that the standard model had

better precision than the model with all the tools applied. Here was a pattern where the

regular model outperforms the modified model in all the experiments at epoch ten. How-

ever, it was not the optimum value, so training with more periods improved the precision.

Epoch 20 shown that both models had a similar result. The difference could be more sig-

nificant. However, the modified model had a better growth trend than the regular model.

Finally, epoch 30 gave us a better view than the modified model tends to continue growing.

Although the growth difference was slight compared to the regular model, it was higher.
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Fig. 5.7: AlexNet Normal model vs model with data augmentation, regularization and
dropout. VA: Validation accuracy; DA: Data augmentation.

5.2 GoogLeNet

In Figure 5.8 the results obtained from experiment 1. The GoogLeNet model presented

an unexpected behavior. Despite showing a slight difference in precision between the base

model and the model with data augmentation, the base model being better, the distance

with the training was less when using data augmentation. This result may mean that data

augmentation was closer to the training accuracy than not.

Fig. 5.8: Experiment 1 results: GoogLeNet with data augmentation.
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Analyzing experiment 1 by section, as shown in Figure 5.9, demonstrated that the base

model performs better when discussing accuracy. Since in the epochs number 40, 50, and

60, it slightly outperforms the data augmentation model. Applying data augmentation in

this particular model did not present an improvement in accuracy. However, it was not

significantly different from not using it either.

Fig. 5.9: GoogLeNet normal model vs model with data augmentation. VA = validation
accuracy; DA = data augmentation.

In Experiment 2, the regularization was used to prevent overfitting. As shown in

Figure 5.10, both models behave similarly. However, the model with regularization offered

an additional method to ensure overfitting was reduced.

Fig. 5.10: Experiment 2 results: GoogLeNet with regularization.

The data obtained in experiment 3 shown us that the dropout stabilized the precision.
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As shown in Figure 5.11, the model without dropout had a better accuracy at epoch 20.

However, since epoch 30, this model did not tend to increase in accuracy, and it could

be seen that it had downward peaks at certain times, unlike the regular model, where it

shown better stabilization and exceeds the proposed model, confirming that the dropout

had a positive influence when reducing overfitting since it recognized new images.

Fig. 5.11: Experiment 3 results: GoogLeNet without dropout.

The outcome of experiment 4 was displayed in Figure 5.12. The model suggested in this

experiment utilized data augmentation, regularization, and dropout techniques. In contrast

to the earlier outcomes, this model’s performance improved when all these methods were

combined, with a tendency to increase accuracy.
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Fig. 5.12: Experiment 4 results: GoogLeNet with data augmentation, regularization, and
dropout.

Looking at the values in Figure 5.13, when compared by epochs, it was evident that the

proposed model outperforms the regular model. However, similar to previous experiments,

the difference between these values was slight.

Fig. 5.13: AlexNet normal model vs model with data augmentation, regularization and
dropout. VA: validation accuracy; DA: data augmentation.

5.3 AlexNet vs GoogLeNet

Each experiment using the AlexNet took an estimated 18 hours to train, compared to the

GoogLeNet, which took around 24 hours to complete training. After analyzing all the data
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obtained in both models, it was time to make a direct comparison and shown a general

analysis of the results.

Table 5.1 shows the average validation accuracy. These results were calculated as

follows:

• The AlexNet model uses only 50 training epochs because the results became stable

from epoch ten onwards, allowing for optimal results from season 10. Thus, the

accuracy average was calculated for each experiment from season 10 to season 50.

• The GoogLeNet model underwent 70 epochs of training. This was necessary because,

unlike AlexNet, the model required a minimum of 30 epochs for optimal results.

However, after the 40th epoch, the validation accuracy stabilized. Therefore, an

average of 40 to 70 epochs was taken from each experiment.

AlexNet (%) GoogLeNet (%)
Base Model 87 83
Experiment 1 88 81
Experiment 2 87 83
Experiment 3 85 79
Experiment 4 87 85

Table 5.1: Average validation accuracy on AlexNet and GoogLeNet.

In Experiment 1, the model used data augmentation to improve the results. It was found

that it improved the accuracy of AlexNet by 1%. However, it decreased the accuracy of

GoogLeNet by 2%. Therefore, data augmentation could sometimes improve the accuracy

of new data, but not always.

Experiment 2 utilized the regularization method. It was anticipated that this would

lead to a notable enhancement in the inference of new data. However, the results indicated

that performance was the same between implementing this method and not. Despite the

theoretical reduction in overfitting, practical outcomes had no noticeable impact.

The dropout was removed from the models used in experiment 3, which decreased

validation accuracy. However, the decrease was not significant. In AlexNet, the reduction

was only 2%, and in GoogLeNet, it was 4% compared to the base model. Despite this,

dropout could still improve the inference of new data, although the improvement may not

be very significant.
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After conducting various experiments on AlexNet and GoogLeNet models using data

augmentation, regularization, and dropout techniques, it was found that the AlexNet model

remained unchanged. However, the GoogLeNet model showed a 2% improvement. It is

important to note that despite this improvement, the GoogLeNet model still needed to

catch up to the AlexNet model, which did not require additional epochs to stabilize. The

GoogLeNet model, on the other hand, required 20 more epochs to stabilize.
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Chapter 6

Conclusions

6.1 Conclusions

AlexNet achieved an 87% accuracy rate, stabilizing its results after 50 epochs, while

GoogLeNet required 70 epochs to reach 85%. Despite the 2% difference, AlexNet demon-

strates superior performance. However, applying techniques like data augmentation, regu-

larization, and dropout does not dramatically enhance the prediction of new data. Never-

theless, it guarantees that the model has the overfitting reduced.

Based on the results, AlexNet is more effective at analyzing new data than GoogLeNet.

Furthermore, the AlexNet model requires less training time to stabilize validation accuracy.

Therefore, it is optimal for implementing SLR on a webpage.

Although AlexNet outperformed GoogLeNet initially, both networks achieved up to

90% accuracy since they were trained from scratch. These methods were easy to implement,

and the weights obtained were exclusively designed to recognize the hand’s pose. However,

limitations were encountered during the training execution.

To achieve higher accuracy, it would be ideal to train using all the images in the

database. However, technical limitations only allowed for the use of 33.33% of the database

in this study. Despite these limitations, the results were still impressive, with AlexNet

achieving 87% accuracy and GoogLeNet achieving 85% accuracy. This demonstrates the

effectiveness of the SLR system.
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6.2 Limitation

One of the main challenges of this project was the lack of sufficient memory for training.

The machine used for model training had a RAM of only 16 GB, while the entire database

requires at least 50 GB of RAM to train the models. As a result, The dataset had to be

limited to a smaller portion to overcome this memory constraint.

Another of the project’s limitations was the inadequate availability of graphics cards.

As a result, the training process for Alexnet took roughly 18 hours per experiment. In

comparison, Googlenet’s training lasted about 24 hours per experiment with only one

GPU. This shortage of resources resulted in significant delays.

6.3 Future work

Future work can involve training the two models with the entire database to improve the

accuracy of hand gesture recognition. Expanding the research area and training a network

to recognize hand movements can enhance the ASL learning experience. Applying the

model to the web page can make the platform more interactive for the user.

The web page can use other databases to improve its training and teach not just ASL

but other SLs like Ecuadorian SL. This will expand the resources available to teach people

ASL.
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