
UNIVERSIDAD DE INVESTIGACIÓN DE
TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Genetic Algorithms for Hyperparameter Tuning
of a DC-UNet Model for Medical Image Segmentation

Trabajo de integración curricular presentado como requisito para la
obtención del t́ıtulo de Ingeniero en Tecnoloǵıas de la Información

Autor:

Román Eras Krishna Gautama

Tutor:

Ph.D. - Armas Andrade Tito Rolando

Co-tutor:

Ph.D. - Morocho Cayamcela Manuel Eugenio

Urcuqúı, Noviembre de 2023

Autoŕıa

Yo, Krishna Gautama Román Eras, con cédula de identidad 2300776594, declaro

que las ideas, juicios, valoraciones, interpretaciones, consultas bibliográficas, definiciones

y conceptualizaciones expuestas en el presente trabajo; aśı cómo, los procedimientos y

herramientas utilizadas en la investigación, son de absoluta responsabilidad de el/la autor/a

del trabajo de integración curricular. Aśı mismo, me acojo a los reglamentos internos de

la Universidad de Investigación de Tecnoloǵıa Experimental Yachay.

Urcuqúı, Noviembre de 2023.

Krishna Gautama Román Eras

CI: 2300776594

ii

Autorización de publicación

Yo, Krishna Gautama Román Eras, con cédula de identidad 2300776594, cedo a la

Universidad de Investigación de Tecnoloǵıa Experimental Yachay, los derechos de pub-

licación de la presente obra, sin que deba haber un reconocimiento económico por este

concepto. Declaro además que el texto del presente trabajo de titulación no podrá ser ce-

dido a ninguna empresa editorial para su publicación u otros fines, sin contar previamente

con la autorización escrita de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este

trabajo de integración curricular en el repositorio virtual, de conformidad a lo dispuesto

en el Art. 144 de la Ley Orgánica de Educación

Urcuqúı, Noviembre de 2023.

Krishna Gautama Román Eras

CI: 2300776594

iv

Dedication

Dedicado con mucho cariño para mi familia, que me ha brindado su apoyo incondicional

en todas las etapas de mi vida. Cada logro alcanzado ha sido y será el suyo también.

Krishna Gautama Román Eras

v

vi

Acknowledgment

Quiero comenzar agradeciendo a mis padres, la educación y los valiosos consejos de vida

que he recibido de ellos han sido fundamentales en mi crecimiento y desarrollo personal.

Les debo ser la persona que soy en la actualidad. Asimismo, quiero extender mi gratitud

a mis hermanos mayores, quienes han desempeñado un papel crucial al mantener unida a

nuestra familia durante los momentos más dif́ıciles.

Por otro lado, no puedo dejar de agradecer a las personas que me han acompañado en

esta etapa universitaria. A mis amigos y compañeros de largas jornadas de estudio, como

David, Jerry, Gilda, Stadyn, Carlos, Stalyn y Andy, les agradezco su constante apoyo, no

solo en lo académico. También, quiero destacar a mis hermanos Horus y Osiris, quienes

siempre han estado a mi lado.

Aśı mismo a personas que han compartido conmigo grandes momentos durante mis

últimos años de estancia en la universidad, especialmente Nelly y Kenia, mi vida en el

campus no hubiese sido la misma sin su valiosa compañ́ıa.

Agradezco a mis tutores Rolando Armas, Manuel Morocho y Paola Quiloango quienes

han aportado mucho en este trabajo con sus valiosos consejos y retroalimentación. Además,

quiero reconocer la labor de los profesores que han dejado una huella significativa en mi

crecimiento académico. Entre ellos puedo mencionar a Rasha Mohamed, Eusebio Ariza,

Franklin Camacho, Josephine Javens, Isidro Amaro, Francisco Hidrobo, Cédric Campos,

Israel Pineda, Fredy Cuenca, Saba Infante y Erick Cuenca.

Una vez más, gracias a todos por su contribución en mi camino por este mundo de la

investigación, ciencia y tecnoloǵıa. Somos Yachay Tech!

Krishna Gautama Román Eras

vii

viii

Resumen

La visión por computador es una rama de la inteligencia artificial que permite a las

máquinas extraer información de imágenes y realizar tareas como la segmentación de

imágenes, que implica dividir una imagen en múltiples regiones para identificar diferentes

elementos. La segmentación de imágenes se aplica en el área médica para ayudar al personal

de la salud en el diagnóstico de enfermedades de los pacientes basándose en información

visual, y se requiere que tengan la mayor precisión posible. En este trabajo, se utiliza un

modelo de visión por computador llamado dual channel U-Net (DC-UNet) para la seg-

mentación de imágenes médicas. Espećıficamente nos enfocamos en el área de la detección

de pólipos que son lesiones que pueden variar en tamaño desde unos pocos miĺımetros hasta

varios cent́ımetros, y la importancia de esta aplicación radica en la identificación temprana

para la prevención del cáncer colorrectal. Para entrenar el modelo de segmentación se

empleó uno de los conjuntos de datos públicos más desafiantes en este campo, llamado

CVC-ClinicDB. Estas imágenes médicas corresponden a fotogramas extráıdos de v́ıdeos

de colonoscopia, cuyas imágenes de referencia consisten en una segmentación binaria en-

tre el pólipo y el fondo. Además, para aumentar el rendimiento del modelo DC-UNet

en este desafiante conjunto de datos, proponemos un algoritmo genético que encuentra la

combinación de hiperparámetros óptima para esta aplicación en espećıfico. Finalmente,

utilizamos diferentes configuraciones genéticas para estudiar el rendimiento de algunos op-

timizadores en el estado del arte basados en el gradiente con respecto a esta tarea.

Palabras Clave:

Segmentación de imágenes médicas, ajuste de hiperparámetros, algoritmos genéticos, visión

por computador, optimización.

ix

x

Abstract

Computer vision is a branch of artificial intelligence that enables computers to extract

information from images and perform tasks such as image segmentation, which involves

identifying multiple elements as image regions. Then, the application of image segmenta-

tion in the medical area is used to assist physicians in disease diagnosis from patients based

on visual information, and they are required to have the best possible accuracy. In this

work, a computer vision model called dual channel U-Net (DC-UNet) is used for medical

image segmentation. Specifically, we focus on the area of polyp detection which are lesions

that can vary in their size from a few millimeters to several centimeters, and the importance

of this application relies on the early identification for colorectal cancer prevention. One

of the most challenging public datasets in this field called CVC-ClinicDB was employed

to train the segmentation model. These medical images correspond to colonoscopy video

frames, whose ground truth images consist of a fully annotated binary segmentation be-

tween polyp and background. Furthermore, to increase the performance of the DC-UNet

model on this challenging dataset, we propose a genetic algorithm that finds the optimal

hyperparameter combination for this specific application. Finally, we use different genetic

configurations to study the performance of some state of the art gradient-based optimizers

regarding this task.

Keywords:

Medical image segmentation, hyperparameter tuning, genetic algorithms, computer vision,

optimization.

xi

xii

Contents

Dedication v

Acknowledgment vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 3

1.3 Objectives . 4

1.3.1 General Objective . 4

1.3.2 Specific Objectives . 4

2 Theoretical Framework 5

2.1 Artificial Neural Networks and Optimization 5

2.1.1 RMSProp . 7

2.1.2 Adam . 7

2.1.3 Nadam . 8

2.1.4 AMSGrad . 9

2.2 Medical Image Segmentation . 10

xiii

2.2.1 Convolutional Neural Networks . 11

2.2.2 CNN-based Semantic Segmentation 12

2.2.3 U-Net Architecture . 13

2.2.4 DC-UNet . 13

2.3 Genetic algorithms . 16

2.3.1 Sampling . 16

2.3.2 Selection . 16

2.3.3 Crossover . 17

2.3.4 Mutation . 17

2.3.5 Fitness . 18

3 State of the Art 19

4 Methodology 25

4.1 Description of the Problem . 25

4.1.1 Dropout Layers . 25

4.1.2 Loss Function . 25

4.1.3 Performance Metric . 26

4.1.4 Dataset Description . 26

4.1.5 Data Preprocessing . 27

4.2 Model Proposal . 27

4.2.1 Sampling . 27

4.2.2 Selection . 28

4.2.3 Crossover . 28

4.2.4 Mutation . 30

4.2.5 Fitness function . 31

4.3 Experimental setup . 32

4.3.1 Hardware and Software . 32

4.3.2 Hyperparameter Tuning . 32

5 Results and Discussion 35

5.1 Population size of 25 with 20 generations 35

5.2 Population size of 50 with 10 generations 38

xiv

5.3 Overall analysis . 41

6 Conclusions 45

6.1 Future works . 46

Bibliography 47

xv

xvi

List of Tables

3.1 Medical image segmentation related works 22

3.2 Optimizers’ related works . 23

4.1 Experiment configurations. 33

4.2 Parameters’ lower and upper bounds. 33

5.1 Optimum hyperparameters for population size of 25. 37

5.2 Hyperparameters’ standard deviation for population size of 25. 38

5.3 Hyperparameters’ mean for population size of 25. 38

5.4 Optimum hyperparameters for population size of 50. 39

5.5 Hyperparameters’ standard deviation for population size of 50. 40

5.6 Hyperparameters’ mean for population size of 50. 41

xvii

xviii

List of Figures

2.1 Convolution operation example. 11

2.2 Max pooling operation example. 12

2.3 U-Net architecture. 14

2.4 Dual channel block. 15

2.5 Res-Path. 15

2.6 DC-UNet architecture. 16

2.7 One-point crossover example. 17

4.1 CVC-ClinicDB dataset examples. 27

4.2 Crossover with ηc = 1. 29

4.3 Crossover with ηc = 10. 29

4.4 Polynomial mutation with ηc = 20. 30

4.5 5-Fold cross validation. 31

5.1 Optimizers maximum accuracy for population size of 25. 36

5.2 Optimizers average accuracy for population size of 25. 37

5.3 Optimizers maximum accuracy for population size of 50. 39

5.4 Optimizers average accuracy for population size of 50. 40

5.5 Segmentation on image 29. 42

5.6 Segmentation on image 385. 42

5.7 Segmentation on image 514. 43

xix

xx

Chapter 1

Introduction

1.1 Background

Image segmentation is a branch of computer vision that consists of extracting information

and minimizing the region of interest to recognize particular areas that need to be analyzed

for any kind of purpose. One advantage is that it can remove undesired features and

isolate them from the image. The fact of doing it manually would be time-consuming in

addition to the need of an expert in the area where it is applied. However, the use of

artificial intelligence allows these kinds of repetitive tasks to be done automatically by

models that are getting more accurate. Most of the first segmentation models were based

on machine learning. Region-based methods find groups of pixels with similar properties

while edge segmentation consists of finding abrupt property changes in the image, which

will be the boundaries between regions, and segmentation based on the threshold is based

on big contrasts between the background and the object [1]. However, these are traditional

methods that can not overcome challenging problems like the CVC-ClinicDB dataset. So,

that is why currently, it is usually done by deep learning as it has been at the center of

attention since some years ago. The segmentation could be simply to classify each single

pixel of the image. Then, one particular application of image segmentation in the realm

of medical imaging is medical image segmentation. The analysis of medical images has

been playing an important role in supporting medical staff to diagnose diseases efficiently.

In the field of medical imaging, there are a variety of ways it can be obtained such as

x-ray, computed tomography (CT), magnetic resonance imaging (MRI), etc. This kind of

1

data is usually used to identify and segment different organs or anomalies such as tumors,

liver, prostate, knee cartilage, and the brain [2]. Its main purpose is to assist radiologists

and physicians in the diagnosis or treatment of illnesses or diseases from their patients

based on the visual information presented in the images [3]. For instance, having a more

thorough understanding of the anatomy and physiology of a patient’s body can help medical

practitioners plan and carry out therapies more successfully. Additionally, medical image

segmentation can be used to highlight certain structures or areas of interest in real-time

images, providing real-time assistance during procedures like minimally invasive surgeries.

Due to its importance, researchers have been dealing with a lot of challenges regarding

medical image segmentation, and some of them are related to deep learning models such as

overfitting and training time [4]. Overfitting occurs when a model is trained to memorize

the patterns and regularities in the training data, but fails to generalize to new unseen

data, resulting in poor performance compared with the training data [5]. Furthermore,

reducing the training time is another topic of study because has a lot of benefits regarding

efficiency.

Some deep learning models like U-Net [6] and its variants are the most popular convolu-

tional neural network architectures related to medical image segmentation. However, this

kind of model has some parameters that can not be learned during the training process, and

those are called hyperparameters because they are fixed previously by the experimenter.

It is important to select the correct set of hyperparameters as the impact they have on

the performance of the model is significant. The process of finding the best hyperparame-

ter configuration could be difficult to approximate. There are some brute force approach

methods to solve this task such as grid search or random search. They are usually used

because of their ease of implementation, but these do not help either to converge to a

locally optimal solution.

On the other hand, genetic algorithms are optimization algorithms inspired by the pro-

cess of natural selection. In genetic algorithms, potential solutions—a collection of hyper-

parameters—are produced at random and iteratively improved by using genetic operators

like crossover and mutation to create children with better characteristics [7]. Therefore,

genetic algorithms are a good choice to do hyperparameter tuning of a deep learning model.

The population eventually evolves towards a set of hyperparameters that perform well on

2

the task. The fitness of each solution is determined by evaluating the performance of the

deep learning model on a validation set. The process continues until a desirable solution

is found or a stopping criterion is reached.

Genetic algorithms are an optimization method well suited for hyperparameter tunning

in deep learning because they can handle complex and high-dimensional search spaces and

are easy to parallelize [8]. It is helpful because the search space in this case is not finite as it

has some real values such as dropout and learning rate. Also, as hyperparameter tunning is

a time-consuming task it could be tackled by using high-performance computing techniques

to considerably reduce the training time.

1.2 Problem statement

Some challenges regarding medical image segmentation are scarcity of data, class imbalance

in the ground truth, high memory demand, and datasets with a limited number of images

[9]. The problem to solve in this work is the image segmentation of the dataset CVC-

ClinicDB which consists basically of endoscopy images to detect polyps. In total, 612

images correspond to 29 video frames. The architecture to be used in this work is DC-

UNet [1] which is a variant of the known U-Net [6]. Then, genetic algorithms will be used

to find the best configuration of the hyperparameters in this case batch size, dropout, and

optimizer learning rate. Grid search is not considered because there are a lot of values to

try in every hyperparameter, and that would be computationally expensive as it requires

evaluating every single combination to know which is the best. Genetic algorithms mimic

the process of evolution and select the solution based on natural selection. Soon, there

will be a performance analysis of some optimizers to figure out which performs better for

this specific model and dataset. The optimizers used in this work are RMSProp, Adam,

Nadam, and AMSGrad.

3

1.3 Objectives

1.3.1 General Objective

Find the best hyperparameter combination in medical image segmentation with DC-UNet

model and CVC-ClinicDB dataset using optimization based on genetic algorithms.

1.3.2 Specific Objectives

1. Find the optimal optimizer algorithm which outcomes the best performance for this

specific task.

2. Provide great segmentation results using a state of the art medical image segmenta-

tion model with a challenging dataset.

3. Analyze the effectiveness of genetic algorithms for the hyperparameter tuning chal-

lenge.

4

Chapter 2

Theoretical Framework

In this chapter, key concepts of deep learning, medical image segmentation, and genetic

algorithms are introduced. These topics provide a better understanding of how the hyper-

parameter tuning works with the use of genetic algorithms.

2.1 Artificial Neural Networks and Optimization

Artificial neural networks (ANNs) are inspired by the human brain which is composed

of interconnected neurons that receive and transmit electrochemical signals from other

neurons across a synapse. With some attempts to give computers the capacity of learning,

McCulloch and Pitts place the idea that some computational elements inspired in biological

neurons can perform complex computations, simplifying them to binary on/off activation

based input signals [10]. After that, Frank Rosenblatt made a significant contribution

by designing the perceptron, which was developed to learn and identify patterns through

supervised learning [11]. The perceptron algorithm updated the weights to make accurate

predictions based on the input patterns, however, one of its limitations was the inability to

solve non-linearly separable problems. After that, Minsky and Papert propose the idea of

multilayer perceptrons, introducing the concept of multiple layers of neurons between the

input and output layers, and they call them hidden layers [12]. Although they discussed

the potential of multilayer perceptrons, they did not provide an algorithm for training this

kind of network. Some years later, the idea of the backpropagation algorithm came to the

scene by multiple contributions of several researchers in the 1980s using the chain rule of

calculus to adjust weights in a neural network by calculating the gradient.

5

ANNs have many architectures based on connection patterns, and the most common is

the feed-forward neural network. In this architecture, its neurons and connections in the

hidden layers can be seen as graphs with no loops or cycles, so the information is transferred

in a unidirectional way. Each neuron receives multiple inputs that have associated weights.

The weighted sum of inputs is passed to an activation function that will be the output for

that neuron. The sigmoid activation function is often used because this function and its

derivative are continuous. So, the output of each neuron is calculated by:

O = f

(
n∑

i=1
wixi

)
(2.1)

where f is an arbitrary activation function while x and w are the input and weight vectors

respectively [13].

The problem to solve by applying supervised learning through artificial neural networks

is to optimize a loss function by adjusting the weights for all neurons. To formalize the

inference problem, it can be mathematically described as follows:

w∗ = argmin
w∈Rn

{
1
|X|

∑
x∈X

L(x, w)
}

, (2.2)

where w∗ is the optimum value, w is the weight vector to be optimized with dimension n,

and L(x, w) is the computed loss from samples in the training set x ∈ X [14].

In deep learning, the optimization problems are usually defined over a large training

set, which requires high computational resources. Several optimizing algorithms allow us

to solve this task, and the most popular ones are stochastic gradient descent (SGD) and

its variants. These gradient-based algorithms select a random mini-batch of the training

set at each iteration to evaluate the loss function and its gradient. Small batch sizes tend

to be untrustworthy, while calculating gradients for full-batch computations is frequently

challenging, resulting in a balance between stability and effectiveness. Then, if we take a

random mini-batch Bt, the weights are updated at each iteration t by the following rule:

wt = wt−1 − αt

(
1
|Bt|

∑
x∈Bt

∇L(x, wt)
)

, (2.3)

where αt and |Bt| are the learning rate and batch size hyperparameters [15]. In gradient-

6

based optimization algorithms, the learning rate is the step size when adjusting the weights

at each iteration. For a better understanding of how neural networks are optimized, let’s

talk about all the optimization algorithms we use in this work.

2.1.1 RMSProp

The root mean squared propagation algorithm, which is best known as the RMSProp

algorithm, is an effective method for optimizing deep neural networks. Inspired by SGD,

it is designed in such a way it easily converges in non-convex settings. This optimizer uses

an exponentially weighted moving average of the squared gradient to update the weights.

During training, the exponential decaying average ignores history from far away past to

quickly converge after identifying a convex area [16]. This process considers all different

weights separately accelerating the step sizes in small gradients while slowing down the big

ones. So, this algorithm speeds up the optimization at the same time avoids overshooting

the minima. The RMSProp algorithm is illustrated in Algorithm 1 in its standard form.

Algorithm 1: RMSProp optimizer algorithm
Require: Global learning rate α, discounting factor for past gradients β
Require: Initial parameter w
Require: A small constant ϵ for numerical stability, by default 10−7

1 r ← 0 /* Initialize accumulative squared gradient variable */;
2 while stopping criterion not met do
3 Sample a mini-batch of size n from the training set {x1, ..., xn};

4 g ← 1
n
∇w

∑
i L(xi, w) /* Compute gradient */;

5 r ← βr + (1− β)g ⊙ g /* Accumulate squared gradient */;
6 ∇w ← − α√

ϵ + r
⊙ g /* Compute update parameter */;

7 w ← w +∇w /* Apply update */;
8 end while

2.1.2 Adam

The Adam optimizer, whose name comes from adaptive moments, is considered an up-

graded algorithm that combines the advantages of RMSProp and SGD with momentum

[16]. This fact, uses the exponential moving average of the gradient and the squared gradi-

ent to update the weights, making the method more robust [17]. Additionally, it introduces

7

a correction method for the first and second order moments estimates to deal with the mov-

ing average variables initialized as zero vectors. By rescaling the gradient, the start of the

process is not limited by the exponential decay B1 and B2. Finally, Adam optimizer is

presented in Algorithm 2.

Algorithm 2: Adam optimizer algorithm
Require: Global learning rate α
Require: Exponential decay rates for moment estimates B1 and B2 in [0, 1), by

default 0.9 and 0.999 respectively
Require: A small constant ϵ for numerical stability, by default 10−8

1 m← 0, v ← 0 /* Initialize 1st and 2nd moment vectors */;
2 t← 0 /* Initialize time-step */;
3 while stopping criterion not met do
4 Sample a mini-batch of size n from the training set {x1, ..., xn};

5 g ← 1
n
∇w

∑
i L(xi, w) /* Compute gradient */;

6 t← t + 1;
7 m← β1m + (1− β1)g /* Update biased 1st moment estimate */;
8 v ← β2v + (1− β2)g ⊙ g /* Update biased 2nd moment estimate */;
9 m̂← m

1− βt
1

/* Correct bias in 1st moment estimate */;

10 v̂ ← v

1− βt
2

/* Correct bias 2nd moment estimate */;

11 ∇w ← − αm̂√
v̂ + ϵ

/* Compute update parameter */;

12 w ← w +∇w /* Apply update */;
13 end while

2.1.3 Nadam

Nadam optimizer can be seen as Adam with Nesterov momentum, known as Nesterov

accelerated gradient. What the Nesterov momentum does is evaluate the gradient after

the current velocity of the past iterations is applied. This type of momentum is sometimes

superior to the classical momentum used in SGD based optimizers. However, when trying

Nesterov momentum to be combined with Adam, the mathematical operations behind this

are not intuitive. Additionally, they establish the notion of the variable µ (in our notation

β1) to be indexed by time-step µ1, ..., µT because it often helps to gradually increase or

decrease this value over iterations [18]. The pseudocode for the Nadam optimizer algorithm

is included in Algorithm 3, considering a constant value for β1 for simplicity.

8

Algorithm 3: Nadam optimizer algorithm
Require: Global learning rate α
Require: Exponential decay rates for moment estimates B1 and B2 in [0, 1), by

default 0.9 and 0.999 respectively
Require: A small constant ϵ for numerical stability, by default 10−8

1 m← 0, v ← 0 /* Initialize 1st and 2nd moment vectors */;
2 t← 0 /* Initialize time-step */;
3 while stopping criterion not met do
4 Sample a mini-batch of size n from the training set {x1, ..., xn};

5 g ← 1
n
∇w

∑
i L(xi, w) /* Compute gradient */;

6 t← t + 1;
7 m← β1m + (1− β1)g /* Update biased 1st moment estimate */;
8 v ← β2v + (1− β2)g ⊙ g /* Update biased 2nd moment estimate */;
9 m̂← m

1− βt+1
1

/* Correct bias in 1st moment estimate */;

10 v̂ ← v

1− βt
2

/* Correct bias in 2nd moment estimate */;

11 m̄← (1− β1)
(1− βt

1)
g + β1m̂ /* Nesterov trick */;

12 ∇w ← − αm̄√
v̂ + ϵ

/* Compute update parameter */;

13 w ← w +∇w /* Apply update */;
14 end while

2.1.4 AMSGrad

AMSGrad is considered a variant of Adam that incorporates the property of non-increasing

step size which is missing in some optimizers, and it improves the convergence properties

in some scenarios. Specifically, those optimizers are the exponential moving average based,

like RMSProp and Adam. In AMSGrad work, researchers show that when the variance

of the gradients concerning time is large, Adam can not converge to an optimal solution

[19]. So, they propose an algorithm that does not lose the advantages of an exponential

moving average optimizer relying on long-term memory for the past gradients. Then, this

optimizer requires a smaller learning rate because of the slow decay concerning the previous

gradients. The AMSGrad optimizer is illustrated in Algorithm 4, considering fixed values

for hyperparameters α and β1.

9

Algorithm 4: AMSGrad optimizer algorithm
Require: Global learning rate α
Require: Exponential decay rates for moment estimates B1 and B2 in [0, 1), by

default 0.9 and 0.999 respectively
Require: A small constant ϵ for numerical stability, by default 10−8

1 m← 0, v ← 0 /* Initialize 1st and 2nd moment vectors */;
2 v̂ ← 0 /* Initialize the maximum 2nd moment vector */;
3 t← 0 /* Initialize time-step */;
4 while stopping criterion not met do
5 Sample a mini-batch of size n from the training set {x1, ..., xn};

6 g ← 1
n
∇w

∑
i L(xi, w) /* Compute gradient */;

7 t← t + 1;
8 m← β1m + (1− β1)g /* Update 1st moment estimate */;
9 v ← β2v + (1− β2)g ⊙ g /* Update 2nd moment estimate */;

10 v̂ ← max(v̂, v) /* Applied element-wise */;
11 V̂ ← diag(v̂);

12 ∇w ← − αm̄√
v̂ + ϵ

/* Compute update parameter */;

13 w ← argmin
w∈Rn

||V̂ 1/2(w +∇w)|| /* Update via projection operation */;

14 end while

2.2 Medical Image Segmentation

In computer vision, image segmentation involves to group pixels of an image into differ-

ent and separate classes called sections, and these sections are meant to depict different

elements of the image such as the foreground, background, or an item [20]. There are

numerous ways to complete this task that come from manual segmentation by radiolo-

gists or other clinicians with the appropriate training to automated segmentation using

various computational techniques. In recent years, machine learning as well as deep learn-

ing methods, have become effective ways for medical image segmentation, and they have

produced state-of-the-art outcomes in numerous applications. As these techniques lay the

groundwork for understanding the evolutionary algorithm approach to hyperparameter

tuning that we are applying in this research, we will explore these approaches in this sec-

tion, along with their benefits and drawbacks. Before explaining some image segmentation

techniques, let’s introduce convolutional neural networks as it is one of the most popular

methods used in computer vision.

10

2.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) have demonstrated outstanding results in a variety

of computer vision and machine learning challenges. They were born as an improvement

of how ANNs deal with images. As we know, ANN models receive one-dimensional vectors

as input, so images need to pass through a flattening process. This process destroys the

spatial distribution of pixels in the image. To preserve that information after the flattening

process, CNNs use convolutional and pooling layers which increment the receptive field in

the subsequent feature maps.

Convolutional layer

The convolutional layer applies multiple feature detectors to the input data. A feature

detector is a convolution matrix that computes an element-wise product with a region of

the same size in the input, and it results in a single number by summing these products

together [21]. The previous process is repeated for every position from the top left to

the bottom right corner of the input sliding a predetermined amount of pixels named as

stride. Single units are connected with local receptive fields on the input, that extract

elementary visual features such as edges, corners, or textures [22]. Then, the resulting

output of applying a feature detector is called a feature map, and it is typically followed by

a rectified linear unit (ReLU) function to add non-linearity to learn complex relationships.

Finally, the convolution operation for a 3× 3 input and 2× 2 feature detector is shown in

Figure 2.1 with a stride of 1.

4

8 5

11

3

7

2 1 13

2 1

1 0

8 7

5 0

22 4

8 0

16 5

2 0

10 3

1 0

34 20

23 14
*

Figure 2.1: Convolution in a 3× 3 image with 2× 2 feature detector and stride of 1.

11

Pooling layer

In pooling layers, the most common operations are max pooling and average pooling. These

operations transform a subregion into an nxn window into a pixel which is represented by

a number. Similar to convolutions, this process is done by covering all regions of the

image with steps predefined by the stride, but this operation needs no parameters. In max

pooling the resulting number is the maximum value from that subregion while average

pooling takes the average. With these layers, spatial invariance is achieved in the feature

maps with a lower resolution, ignoring its exact position [23]. Additionally, features can

be detected even if they are not the same, detecting small changes. We can see the max

pooling operation in Figure 2.2 for a 6× 4 image with a 2× 2 sliding widow and stride of

2.

16

1216 31

15 8

16

13 7

1

20

31

4 15 8

6

8 11

11

12

3

2 1 9

5 2 4

167 3

Figure 2.2: Max pooling in a 6× 4 image with a 2× 2 sliding window and stride of 2.

2.2.2 CNN-based Semantic Segmentation

Segmentation models based on deep learning are a good option to solve this task because

they considerably increase the accuracy of results with CNN structures. The backbone of a

CNN-based image segmentation model is the CNN architecture. The architecture should be

selected by the particular task and dataset, and it can be modified for better performance.

Some approaches like [24] construct a classifier by patches in the input image through a

sliding window, so that each pixel is classified by the context of surrounding pixels. Their

final prediction is based on fully connected layers after convolutional blocks. However,

the limitation of this method is the restriction of learning global features, especially when

the patch size is relatively small. In [25], fully convolutional networks were proposed by

replacing fully connected layers with 1× 1 convolutions. Their 1× 1 convolutions have one

12

channel per class so that each one contains a class score prediction. This model applies

deconvolutions as a method to backward-strided convolutions and pooling layers. Finally,

it returns the full segmented image at once.

2.2.3 U-Net Architecture

U-Net [6] is a neural network architecture that uses convolutional layers to perform the

segmentation. Indeed, this architecture is based on the fully convolutional network [25]

mentioned before, so it does not have fully connected layers. The structure of U-Net is

almost symmetric where on one side we have the encoder and on the other the decoder,

and it is depicted in Figure 2.3. The encoder is used to extract spatial features. It has four

convolution blocks each of them representing 3 × 3 convolutions and 2 × 2 max pooling

with a stride of 2. After each convolution block, the down-sampling operation performed

by max pooling reduces the size of the feature maps by half, so the number of filters is

doubled in the next block. Then, the decoder is in charge of obtaining the segmentation

map from the features extracted by the encoder. It performs up-sampling operations to

the feature maps with 2×2 transposed convolutions increasing the size of the feature maps

by double. Then, the number of feature channels is reduced to half after each up-sampling

operation. The decoder uses 3× 3 convolutions as the encoder.

Next, the final segmentation map is generated by a 1× 1 convolution. This final con-

volution uses the sigmoid activation function in contrast to the others which use ReLU

activation. Last but not least, this architecture uses skip connections which directly con-

nect the encoder with the decoder in order not to lose the spatial features in the pooling

operations. It is concatenated with the output of the transposed convolutions and is prop-

agated to the next layers. This concatenation is accomplished to by truncating the encoder

feature maps by centering them as they are slightly greater than the encoder ones.

2.2.4 DC-UNet

Some challenging datasets require segmenting objects into regions which can vary a lot in

size for the same class. So, approaches explained before poorly segment them because they

have to deal with a trade-off between reducing kernel sizes and learning higher resolution

13

Two 3x3 conv blocks, ReLU

Skip connection

2x2 max pooling

2x2 transposed conv

1x1 conv

OutputInput

Figure 2.3: U-Net architecture representation, based on fully convolutional networks.

features. This problem can be solved by the use of convolutions with the use of different

kernel sizes in parallel so that feature maps can learn features at different scales. Then,

the model for this section, called dual channel U-Net (DC-UNet) [1], is inspired by U-Net

and MultiResUNet [26] architectures, introducing the idea of dual channel blocks. A dual

channel block is an effective way to obtain a considerable number of different scaled spatial

features, and its representation can be seen in Figure 2.4. This block creates multiple

feature maps whose receptive fields have sizes of 3× 3, 5× 5, and 7× 7, where the two last

are built from consecutive 3×3 convolutions. An addition operation between the resulting

matrices from each channel is then carried out to provide more spatial features. Moreover,

this model uses batch normalization layers after each DC-Block, which provides faster and

better convergence [27].

Another important detail in this architecture is the replacement of skip connections in

U-Net [1] with Res-Paths proposed in [26]. It consists of successive 3×3 convolutions which

are added to 1 × 1 convolutions called residual connections [28]. It concatenates encoder

features with the decoder as skip connections, but its additional operations reduce the

semantic gap between them. At each level of depth, the number of 3× 3 convolutions with

residual connections is reduced by one, starting from 4 to 1. An illustration of a Res-Path

14

Input

3x3 convolution 3x3 convolution

3x3 convolution 3x3 convolution

3x3 convolution 3x3 convolution

Concatenation Concatenation

Add

Figure 2.4: Dual channel block graphical representation, which captures multiple scale
features.

in the first level is shown in Figure 2.5. It is important to mention that the number of filters

used in DC-UNet for each DC-Block is reduced by half in comparison with MultiResUNet

[26]. This drastically reduces the number of trainable parameters, making the model less

time-consuming during training. In Res-Paths, the number of filters for each 3 × 3 and

1 × 1 convolution are {32, 64, 128, 256} for Res-Path {1, 2, 3 4} respectively. At last,

DC-UNet architecture is shown in Figure 2.6.

Encoder

3*3

1*1

Decoder

3*3

1*1

3*3

1*1

3*3

1*1

Max Pooling Transposed Convolution

Figure 2.5: Res-Path connections with 4 successive 3×3 convolutions and its conrrespond-
ing residual connections.

15

DC Block 1

DC Block 2

DC Block 3

DC Block 4

DC Block 5

DC Block 9

DC Block 8

DC Block 7

DC Block 6

Res Path 3

Res Path 2

Res Path 1

Input Output

3x3 Conv (ReLU)

2x2 Max Pooling

2x2 Transposed Conv

1x1 Conv (Sigmoid)

Res Path 4

Figure 2.6: DC-UNet architecture based on U-Net to capture multiple scale features for
medical image segmentation.

2.3 Genetic algorithms

Genetic algorithms are heuristic search algorithms inspired by biological evolution, and

their purpose is to optimize a fitness function which usually is multivariate. Each solu-

tion candidate is called an individual, and the process of evolution makes a population

adapt better to the environment to have more chances to pass their features to the next

generation. The solution representation in an individual is called chromosome [29], which

contains the values for each variable usually as an array. In this section, we introduce some

important genetic operators which are sampling, selection, crossover, and mutation that

are explained next.

2.3.1 Sampling

Sampling is the first step in genetic algorithms, it is the initialization of the population. Is

important to make a good initialization as it will define the variability of the population.

A bad initialization could lead to increased time towards a solution to prevent convergence

to the global optimum solution [30].

2.3.2 Selection

This operation simulates the process of natural selection, or in other words the survival

of the fittest. Almost all selection techniques are based on the fitness function, where the

fittest solutions have more chances to survive and reproduce. This is an important step

16

for evolution where the new generation is likely to be better than previous ones. Some

selection algorithms are based on random probabilities, giving the fittest individuals more

chance of being selected, and one classic algorithm with this approach is the Roulette wheel

selection explained in [31].

2.3.3 Crossover

It is an operator that is in charge of combining the chromosomes from two or more parent

solutions. This operation mimics the mating between parents to generate offspring solu-

tions that inherit similar features from both. The purpose is to try to outperform their

parents which would have successful parts of chromosomes. For bit string representation,

one of the most known crossover algorithms is the n-point crossover, which splits parents

in n random positions and mixes them alternatively by their splitting points [29]. We can

see an example of one-point crossover in Figure 2.7.

10 10 10 11 11 11 11 11 10 00 00 00 00 00

10 10 10 11 11 11 1111 10 0000 00 00 00

Parent 1 Parent 2

Offspring 1 Offspring 2

Figure 2.7: One-point crossover for bit string representation, where two parental solutions
generate two offsprings by mixing their chromosomes.

2.3.4 Mutation

Mutation operators alter a solution by disrupting it, and random alterations in the chro-

mosome are what cause mutation. In this operation, we have a parameter that indicates

the probability of individuals mutating, and it is called mutation rate [31]. The value of

this parameter is that generates a disturbance among the population. Additionally, every

point in the solution space must be accessible from an arbitrary point because there must

be at least a minimum chance to access to every part of the solution space. If not, there

is a low likelihood that the best solution will be discovered.

17

2.3.5 Fitness

The fitness function evaluates the phenotype of the solution, measuring the quality of

individuals produced by the reproduction of the previous generation. The choice of the

fitness function is an important part of the process, and it can guide the search for the

genetic algorithm. Thus, this function is the objective to be optimized by the genetic

operators. Many times, the bottleneck is in evaluating the fitness function, so the genetic

algorithm must be designed in such a way as to minimize the number of function calls [29].

That is our case in which the fitness function envelops a deep learning model training.

18

Chapter 3

State of the Art

In the field of medical image segmentation, there are some public challenges and datasets

that envelop the segmentation of brain tumors, ischemic stroke lesions, and multiple scle-

rosis, among others. In Table 3.1, we summarize some recent medical image segmentation

related works with metrics and datasets used. Most of them consist of CT and MRI, com-

monly used in brain analysis. Brain imaging studies some metrics, where some well known

ones are true positive rate, dice similarity coefficient, Hausdorff distance, and average sym-

metric surface distance [32]. Additionally, other works also include intersection over union

as well to evaluate performance [33]. In some research regarding lung segmentation, one

of the best known datasets is the lung image database consortium. Specifically, in recent

research using this dataset [34], authors consider precision, sensitivity, and mean intersec-

tion over union as evaluation metrics. Finally, concerning this work in polyp segmentation,

some well known datasets are the Kvasir-SEG (1000 images), ETIS (196 images), CVC-

ColonDB (380 images) and Endotec (1000 images), which were used in [35].

Apart from the deep learning optimization methods used in this work, there are several

optimizers to adjust the weights in these models, and the most influential ones are shown in

Table 3.2. After the backpropagation algorithm became well known, several gradient-based

algorithms were developed to optimize those models. The regular SGD was the inspiration

for most gradient-based algorithms today, which update weights in the opposite direction

of the gradient. One of them is SDG with momentum, which was introduced in [36].

This optimizer adds the notion of updating the weights based on past weight changes to

speed up the SGD optimization. Then, Adagrad establishes the idea of using the historical

19

squared values of the gradient, which is helpful to converge after falling in a convex area

[16]. As those approaches, some breakthroughs have developed state of the art optimization

methods such as Adadelta, Adam, Adamax, and others.

In the history of hyperparameter tuning methods, the first ones are grid search and ran-

dom search. Those methods are still very popular because of their ease of implementation.

Nowadays some medical applications use these methods to optimize deep learning models

such as emboli detection [37], heart disease prediction [38], medical image segmentation

[39], and others. Nevertheless, we can consider them as brute force approaches as they

do not consider the performance of previous evaluations to predict better configurations,

so these methods need to evaluate the model several times to find a good hyperparameter

configuration.

Other methods outperform grid search and random search like Bayesian optimization.

This is one of the state of the art methods which constructs a probabilistic model for

the objective function, considering previous evaluations to compute the next points to try

[40]. This approach helps to reduce the number of evaluations, and it can even optimize

non-convex functions. Genetic algorithms based optimization is another approach that is

on the state of the art methods which perform well. Additionally, both approaches can be

parallelized to run several function evaluations asynchronously. This allows the efficient

use of the hardware to reduce the optimization time, as the bottleneck is the function

evaluation most of the time.

According to research works with genetic algorithms to optimize deep learning models

in medical imaging problems, there exist some that are focused on tuning hyperparameters

that change the network structure as proposed by [41]. They use a single objective genetic

algorithm whose genes represent components of a CNN such as the number of layers, the

number of neurons for each layer, activation functions, optimizers, and loss functions. The

optimized model is used for medical image denoising, so their fitness function is based on

the restored image quality measure for each individual. However, other works use single

objective genetic algorithms to tune only hyperparameters of the model instead of changing

the network structure itself. It is the case of the work developed by [42] which compares

Bayesian optimization algorithms with the covariance matrix adaptation evolution strategy

(CMA-ES). This genetic algorithm is friendly to parallel the evaluation of the solutions

20

to speed up the optimization, as the number of evaluations reaches up to 2000. In this

case, the hyperparameters they use are batch size, alpha & epsilon for batch normalization,

dropout rates in different layers, and optimizer’s learning rates, among others.

Additionally, multi-objective algorithms have been used to tune hyperparameters in

machine learning models because in some cases is necessary to consider optimizing a model

through more than one metric at a time. That is the case of [43], they used a multi-objective

genetic algorithm to optimize the parameters of a support vector machine classifier to deal

with imbalanced data. As accuracy is not a suitable measure for imbalanced data, they

also use the G-mean and average cost metrics with a 10-fold cross-validation. Thus, they

have 3 fitness functions to be used in the NSGA-II algorithm. The NSGA-II algorithm

that is based on crowding distance sorting has been used in hyperparameter tunning in

classifiers for disease diagnosis by [44]. In this work, the models are based on decision trees,

and the fitness functions used are sensitivity and specificity. They define 20 generations as

stopping criteria and select the best non-dominated solutions as the set of hyperparameter

configurations.

According to the literature review, medical image segmentation datasets are charac-

terized by having very few images with unbalanced data. In addition, there are a lot

of evaluation metrics that can be considered when performing this task. Besides that,

the choice of optimizers has an important role for deep learning where it is important to

consider them according to the current state of the art. Finally, related works have demon-

strated the potential use of different kinds of genetic algorithms for medical purposes, so

we would study its performance on a specific case in medical image segmentation with one

of the most challenging datasets.

21

A
ut

ho
rs

T
itl

e
D

at
as

et
s

Ev
al

ua
tio

n
m

et
ric

s

K
ar

im
i,

D
.&

Sa
lc

ud
ea

n,
E.

(2
01

9)

R
ed

uc
in

g
th

e
H

au
sd

or
ff

di
st

an
ce

in
m

ed
ic

al
im

ag
e

se
gm

en
ta

tio
n

w
ith

co
nv

ol
ut

io
na

ln
eu

ra
l

ne
tw

or
ks

[3
9]

2D
pr

os
ta

te
ul

tr
as

ou
nd

,3
D

pr
os

ta
te

M
R

I,
3D

liv
er

C
T

,
an

d
3D

pa
nc

re
as

C
T

D
ic

e
sim

ila
rit

y
co

effi
ci

en
t,

H
au

sd
or

ff
di

st
an

ce
,a

nd
sy

m
m

et
ric

su
rfa

ce
di

st
an

ce

Li
,G

.e
t

al
.

(2
02

3)

IB
-T

ra
ns

U
N

et
:

C
om

bi
ni

ng
In

fo
rm

at
io

n
Bo

tt
le

ne
ck

an
d

Tr
an

sfo
rm

er
fo

r
M

ed
ic

al
Im

ag
e

Se
gm

en
ta

tio
n

[3
3]

Sy
na

ps
e

m
ul

ti-
or

ga
n

se
gm

en
ta

tio
n,

an
d

br
ea

st
ul

tr
as

ou
nd

im
ag

e

H
au

sd
or

ff
di

st
an

ce
,d

ic
e

sim
ila

rit
y

co
effi

ci
en

t,
an

d
in

te
rs

ec
tio

n
ov

er
un

io
n

Zh
i,

L.
et

al
(2

02
3)

D
ee

p
ne

ur
al

ne
tw

or
k

pu
lm

on
ar

y
no

du
le

se
gm

en
ta

tio
n

m
et

ho
ds

fo
r

C
T

im
ag

es
:

Li
te

ra
tu

re
re

vi
ew

an
d

ex
pe

rim
en

ta
lc

om
pa

ris
on

s
[3

4]

Lu
ng

im
ag

e
da

ta
ba

se
co

ns
or

tiu
m

,i
m

ag
e

da
ta

ba
se

re
so

ur
ce

in
iti

at
iv

e,
an

d
lu

ng
no

du
le

an
al

ys
is

16

D
ic

e
sim

ila
rit

y
co

effi
ci

en
t,

pr
ec

isi
on

,
se

ns
iti

vi
ty

,a
nd

m
ea

n
in

te
rs

ec
tio

n
ov

er
un

io
n

N
ac

hm
an

i,
R

.e
t

al
(2

02
3)

Se
gm

en
ta

tio
n

of
po

ly
ps

ba
se

d
on

py
ra

m
id

vi
sio

n
tr

an
sfo

rm
er

s
an

d
re

sid
ua

lb
lo

ck
fo

r
re

al
-t

im
e

en
do

sc
op

y
im

ag
in

g
[3

5]

Kv
as

ir-
SE

G
,E

T
IS

,
C

V
C

-C
ol

on
D

B,
C

V
C

-C
lin

ic
D

B,
En

do
te

c

In
te

rs
ec

tio
n

ov
er

un
io

n,
di

ce
sim

ila
rit

y
co

effi
ci

en
t,

pr
ec

isi
on

,
re

ca
ll,

an
d

F2

Ta
bl

e
3.

1:
M

ed
ic

al
im

ag
e

se
gm

en
ta

tio
n

re
la

te
d

wo
rk

s

22

O
pt

im
iz

er
A

ut
ho

rs
T

itl
e

Ye
ar

SG
D

R
ob

in
s,

H
.,

&
M

on
ro

,S
.

A
st

oc
ha

st
ic

ap
pr

ox
im

at
io

n
m

et
ho

d
[4

5]
19

51

SG
D

w
hi

t
m

om
en

tu
m

Ru
m

el
ha

rt
,D

.e
t

al
Le

ar
ni

ng
in

te
rn

al
re

pr
es

en
ta

tio
ns

by
er

ro
r

pr
op

ag
at

io
n

[3
6]

19
85

A
da

gr
ad

D
uc

hi
,J

.,
et

al
.

A
da

pt
iv

e
su

bg
ra

di
en

t
m

et
ho

ds
fo

r
on

lin
e

le
ar

ni
ng

an
d

st
oc

ha
st

ic
op

tim
iz

at
io

n
[4

6]
20

11

R
M

SP
ro

p
T

ie
le

m
an

,T
.,

&
H

in
to

n,
G

.
R

m
sp

ro
p:

D
iv

id
e

th
e

gr
ad

ie
nt

by
a

ru
nn

in
g

av
er

ag
e

of
its

re
ce

nt
m

ag
ni

tu
de

.
co

ur
se

ra
:

N
eu

ra
ln

et
wo

rk
s

fo
r

m
ac

hi
ne

le
ar

ni
ng

[4
7]

20
12

A
da

de
lta

Ze
ile

r,
M

.
A

da
de

lta
:

an
ad

ap
tiv

e
le

ar
ni

ng
ra

te
m

et
ho

d
[4

8]
20

12

A
da

m
&

A
da

m
ax

K
in

gm
a,

D
.,

an
d

Ba
,J

.
A

da
m

:
A

m
et

ho
d

fo
r

st
oc

ha
st

ic
op

tim
iz

at
io

n
[1

7]
20

14

N
ad

am
D

oz
at

,T
.

In
co

rp
or

at
in

g
ne

st
er

ov
m

om
en

tu
m

in
to

ad
am

[1
8]

20
16

A
M

SG
ra

d
R

ed
di

,S
.e

t
al

.
O

n
th

e
co

nv
er

ge
nc

e
of

ad
am

an
d

be
yo

nd
[1

9]
20

19

Ta
bl

e
3.

2:
O

pt
im

iz
er

s’
re

la
te

d
wo

rk
s

23

24

Chapter 4

Methodology

4.1 Description of the Problem

4.1.1 Dropout Layers

In this approach, we slightly modify the DC-UNet [1] architecture by simply adding dropout

layers in the model, as the unique regularizer used in their work is batch normalization.

Dropout [49] is a technique used in neural networks that randomly deactivate units with a

probability of p. This deactivation is temporary, so new units are sampled at each iteration

during training. Dropout helps the model to generalize some features avoiding the model

from doing too well on training data. We use these layers just in between DC-Blocks and

Res-Paths to generalize encoding features.

4.1.2 Loss Function

This problem can be seen as a binary classification for each pixel in the medical images

as we predict if they belong to a polyp or not. So, the loss function used is the binary

cross-entropy loss, and its mathematical representation is:

CrossEntropy(y, ŷ) =
∑
x∈X

−(y × log(ŷ) + (1− y)× log(1− ŷ)) (4.1)

where x ∈ X are pixels in the input image, ŷ is the model prediction and y is the ground

truth [50]. This function is optimized with respect to the model weights w as seen in section

2.1 during training, and it is represented as L(xi, w) for image xi on those optimizing

25

algorithms.

4.1.3 Performance Metric

After the optimization for the loss function is done, we need to evaluate the model predicted

solutions. Nevertheless, all pixel values in the output are related to the probabilities of

belonging to a specific object. Consequently, it can be seen as a grayscale image instead of

a binary one. According to [1], binarizing the predicted images to compute the performance

binary vs. binary would result in a loss of information. So, the performance metric used

to evaluate predicted results in the validation set is Tanimoto similarity [51], that is for

grayscale images. It is considered an extension of Jacard similarity because Tanimoto

similarity obtains the same results when pixel values are in {0, 1}. Considering images A

and B to be two sets, Tanimoto similarity T (A, B) can be described as:

|A ∩B| =
∑

aibi (4.2)

|A ∪B| = |A|+ |B| − |A ∩B| =
∑

(a2
i + b2

i − aib1) (4.3)

T (A, B) = |A ∩B|
|A ∪B|

(4.4)

where ai ∈ A and bi ∈ B.

4.1.4 Dataset Description

The dataset used in this work is the CVC-ClinicDB that was introduced in [52]. This

dataset contains several images corresponding to frames from colonoscopy videos, and it

is one of the most challenging datasets as the objective may have different sizes. The

segmenting objective in the dataset is polyps, they are lesions that can vary in size from

a few millimeters to several centimeters [53]. Additionally, it is fully annotated where the

ground truth images consist of a segmentation of the polyp and the background. In Figure

4.1, there are some examples of how the dataset looks like, where the first and second rows

stand for original images and annotated images respectively.

26

Figure 4.1: CVC-ClinicDB dataset examples, with original images (first row) and their
corresponding ground truths (second row).

4.1.5 Data Preprocessing

Here, we use the same rescaling procedure as in [1] where images are resized from 384×288

to 128 × 96 pixels. This process considerably reduces memory usage and computational

cost during the training of the model.

4.2 Model Proposal

4.2.1 Sampling

To sample the first generation, we use discrete and continuous uniform distribution as

we have integer and real variables to optimize. For discrete variables, all possible values

have the same probability of occurrence. Then, the probability mass function for them is

illustrated in equation 4.5 [54]. Besides, the continuous distribution is used to model the

occurrence of events with constant probabilities over intervals of the same size. Further,

the probability density function for real variables is shown in equation 4.6 [54], where a

and b are the low and up variable boundaries respectively.

P (X = xi) = 1
n

, i = 1, 2, .., n (4.5)

f(x) =

1

b− a
, if a ≤ x ≤ b

0 , otherwise
(4.6)

27

4.2.2 Selection

This operator is quite straightforwardly implemented, as we use a fitness-based truncated

selection approach which ensures the survival of the most adapted solutions. In this ap-

proach, parent and offspring solutions are sorted by their fitness value, then the truncation

operation selects the n-th fittest individuals for the next generation, and each generation

will have the same population size [55]. After that, the algorithm performs a permutation

among all individuals in the current population so that the arrangement is not the same

for the next generation, and then we form pairs with all of them. Therefore, all individu-

als in that generation take part in the mating process once. For example, if we have the

permutation of the n-th fittest individuals [a, b, c, d, e, f], the parent selection will be the

pairs [(a, b), (c, d), (e, f)].

4.2.3 Crossover

For mating, the simulated binary crossover [56] (SBX) operator is used, which is a technique

used for real parameter values. However, in our implementation, we use this operator

also for integer values which are rounded after the crossover. As we know, each parent

solution is a vector, so the SBX operator is applied variable by variable. This operator

uses a parameter ηc which defines the spread of offspring solutions. Over a probability

distribution around parent solutions, large values for ηc tend offsprings to be close to their

parents while small values tend to create them away. Considering a problem with the i-th

variable to be real xi ∈ [0, 1], and the parent solutions to be x
(1,t)
i = 0.2 and x

(2,t)
i = 0.8 for

that variable. Then, probability density functions follow a polynomial distribution, and

they can be seen in Figures 4.2 and 4.3 for offspring solutions with ηc = 1 and ηc = 10

respectively.

The procedure to compute two offspring solutions from parents is described next. Sup-

pose we have x
(1,t)
i ≤ x

(2,t)
i , then the spread factor β

(1,t)
i and β

(2,t)
i are calculated as in

equations 4.7 and 4.8.

β
(1,t)
i = 1 + 2(x(1,t)

i − xl
i)

x
(2,t)
i − x

(1,t)
i

(4.7)

β
(2,t)
i = 1 + 2(xu

i − x
(2,t)
i)

x
(2,t)
i − x

(1,t)
i

(4.8)

28

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

Figure 4.2: Probability density function
for x

(1,t+1)
i and x

(2,t+1)
i with ηc = 1.

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

Figure 4.3: Probability density function
for x

(1,t+1)
i and x

(2,t+1)
i with ηc = 10.

where xl
i and xu

i are the lower and upper bounds for that variable. After that, we sample ui

for the uniform distribution explained before between 0 and 1, and we compute the values

β
(1,t)
qi and β

(2,t)
qi as:

β
(k,t)
qi =

(uiα)

1
ηc+1 , if ui ≤ 1/α

1
(2− uiα)

1
ηc+1

, otherwise
(4.9)

where α = 2−
(
β

(k,t)
i

)−(ηc+1)
and k ∈ {1, 2}. In our implementation, we choose ηc = 15 fixed

to generate offspfing variable solutions close to their parents, as they are meant to have

successful chromosomes. Finally, the offspring solutions x
(1,t+1)
i and x

(2,t+1)
i are computed

(see equation 4.10).

x
(k,t+1)
i = 0.5 ∗

(
x

(1,t)
i + x

(2,t)
i + β

(k,t)
i ∗

(
x

(1,t)
i + x

(2,t)
i

))
(4.10)

Soon, we sample bi from a uniform distribution, then if bi > 0.5 we swap values from

x
(1,t+1)
i and x

(2,t+1)
i . So, we have a 50% probability of being from the first or second parent.

Finally, there is a repair operation in case x
(k,t+1)
i were out of boundaries.

x
(k,t+1)
i = xl

i , if x
(k,t+1)
i < xl

i (4.11)

x
(k,t+1)
i = xu

i , if x
(k,t+1)
i > xu

i (4.12)

29

4.2.4 Mutation

In this case, we use a polynomial mutation analyzed in [57], with an index parameter η = 20

to perturb a solution in a parent’s vicinity. This operator behaves very similarly to crossover

as both of them have a polynomial distribution function. The polynomial mutation is for

real variables, however, for integer values we applied the mutation with a rounding repair.

As in [57], we set the mutation parameters as follows. Operator probability is set pc = 0.9

so that 90% of the current population is likely to mutate. Mutation probability for each

variable is pm = 1/n, where n is the number of variables of the genetic algorithm. Thus,

on average, one variable gets mutated per mutating individual. With our approach, the

probability density function for a mutating variable with ηc = 20 is shown in Figure 4.4.

0.0 0.2 0.4 0.6 0.8 1.00.0

2.5

5.0

7.5

10.0

Figure 4.4: Polynomial mutation with ηc = 20.

Next, the computation of the polynomial mutation we use is explained. First, we sample

a value bp from a uniform distribution between 0 and 1 per individual such that if bp < pc,

the correspondent individual is considered for mutation. In the same way, we sample a

value bm for each variable in mutating individuals so that if bm < pm, the correspondent

variable in that individual mutates. Now, lets consider δ1i and δ2i to be as follows:

δ1i = xi − xl
i

xu
i − xl

i

, δ2i = xu
i − xi

xu
i − xl

i

(4.13)

Then, a variable ui is also sampled in uniform distribution between 0 and 1 for i-th variable

that is mutating. So, we compute the parameters δq1i and δq2i as in equations 4.14 and

30

4.15.

δq1i =
[
2ui + (1− 2ui)(1− δ1i)ηc+1

] 1
ηc+1 − 1 (4.14)

δq2i = 1−
[
2(1− ui) + 2(ui − 0.5)(1− δ2i)ηc+1

] 1
ηc+1 (4.15)

So, the mutation rule for the i-th variable is in equation 4.16. Finally, there is a repair

operation if xi were outside boundaries just like in the crossover operation at equations

4.11 and 4.12.

Pm(xi) =

xi + δq1i(xu − xl) , if ui ≤ 0.5

xi + δq2i(xu − xl) , otherwise
(4.16)

4.2.5 Fitness function

The fitness function for the genetic algorithm will be based on the Tanimoto similarity

introduced in section 4.1.3. This metric is applied to a test set that the model has not

seen during training. Additionally, we use the k-fold cross-validation technique, where the

dataset X is randomly shuffled and split into mutually exclusive subsets X1, X2, ..., Xk of

approximately the same size [58]. Then, the training is carried out k times such that at

time t the training set is X\Xt and the test set on Xt. Next, the model cross-validation

accuracy (Acccv) is estimated as the mean accuracy of all k-folds. This approach gives the

model parameters more reliability as the resulting accuracy is the average evaluation of

every single fold on the dataset. In our implementation, we set k = 5, and we can see how

the 5-fold cross-validation looks like in Figure 4.5.

Fold 1

Fold 2

Fold 5

Test 1 Train 1

. .
 .

Figure 4.5: 5-Fold cross validation.

31

Finally, as the software used for genetic algorithms is specifically for minimization, we

need to transform our fitness value Acccv into 1− Acccv to maximize Acccv.

4.3 Experimental setup

4.3.1 Hardware and Software

As hyperparameter tuning requires high computational capabilities, the research was car-

ried out in an HPC cluster provided by CEDIA where the hardware we used envelops

AMD EPYC 7742 64-Core Processor (2.25 GHz), 128GB RAM, with 4 NVIDIA A100

SXM4 40GB GPUs. Additionally, the implementation was done in Python 3 and, we use

Tensorflow [59] as the main deep learning framework. Therefore, the framework used for

genetic algorithms is Pymoo introduced in [60]. This is a powerful tool that provides the

use of several multi-objective and single-objective genetic algorithms and customizes them

to the user’s needs. Last but not least, frameworks used for parallelization are Dask [61]

and Dask-cuda which are compatible with Tensorflow and Pymoo. With these frameworks

together, the evaluation function can be distributed into a couple of workers, where each

GPU is a worker itself. In this way, the evaluation function for each individual in the

population can be performed 4 at a time, paralleling the training over available GPUs.

4.3.2 Hyperparameter Tuning

In the genetic configuration for hyperparameter tuning, we considered 8 experiments. We

used population sizes of 25 and 50, and we ran 500 fitness evaluations for each configuration.

Thus, there will be 20 and 10 generations as the termination rule for the population size of

25 and 50 respectively. With both configurations, we try to figure out which is the best in

our case because there is a trade-off between population size and the number of generations

in genetic algorithm optimization. On one hand, large population sizes give the algorithm

more diversity of solutions, so the algorithm is more likely to avoid local minima. On the

other hand, small numbers of generations sometimes are not enough for the algorithm to

converge.

Each pair of configurations uses a different optimizer which are RMSProp, Adam,

Nadam, and AMSGrad (see section 2.1) to figure out which of them performs better for

32

this specific model and dataset. The configuration for each experiment can be seen in Table

4.1. Additionally, the hyperparameters taken into account for optimization are learning

rate, dropout, and batch size whose upper and lower bounds are shown in Table 4.2.

Thus, we have a mixed variable problem with 1 integer and 2 real variables. Learning

rate and dropout are real-valued variables while batch size is an integer value which in our

implementation is transformed into 2x, similar as in [42].

Id Population size Generations Optimizer
1 25 20 RMSProp
2 50 10 RMSProp
3 25 20 Adam
4 50 10 Adam
5 25 20 Nadam
6 50 10 Nadam
7 25 20 AMSGrad
8 50 10 AMSGrad

Table 4.1: Experiment configurations.

Parameter xl xu

Learning rate 10−4 10−2

Dropout 0 1
Batch size (2x) 1 3

Table 4.2: Parameters’ lower and
upper bounds.

The configuration for each optimizer algorithm was their default recommended by Ten-

sorflow [59]. Additionally, boundaries for the learning rate hyperparameter were based to

be around their recommended value, that is 10−3. In the case of batch size, the bound-

aries were based on the configuration used in [1], which is equal to 22. It is important to

mention that batch size values are too short for this model because of the memory usage

that medical images require.

33

34

Chapter 5

Results and Discussion

In this section, we will show the performance of different genetic configurations, and we

will provide the best hyperparameter configuration found for the DC-UNet model. Ad-

ditionally, we will show which is the optimal optimizer for this specific task. Our results

will demonstrate the power of genetic algorithms for the hyperparameter tuning of a deep

learning model. Then, we present time and memory consumption for the genetic optimiza-

tion, and we show some segmentations for the best configuration to see how well this model

behaves. We analyzed our results dividing them into two groups of genetic configurations:

a population size of 25 with 20 generations, and a population size of 50 with 10 generations.

5.1 Population size of 25 with 20 generations

In these configurations, the Adam optimizer had the best optimal solution. After 20

generations, the best Adam individual reached 80.80% accuracy while the average accuracy

for the last generation was 80.29%. Nadam also had a really good performance, with

maximum accuracy very close to Adam as its best result reached 80.73%. In the last

generation’s average accuracy, Nadam got 80.32% which is superior to Adam. Relatively

far from being the best, AMSGrad got its best individual with 80.11% accuracy and an

average accuracy at the last generation of 78.81%. Further, RMSProp had the worst

performance with 79.59% and 79.00% maximum and average accuracies respectively.

In Figure 5.1, we can see the fitness values of the fittest individuals after a certain

number of generations. The maximum values of optimizers at first generation are 77.47%

77.52%, 79.16%, and 79.32% for AMSGrad, RMSProp, Adam, and Nadam respectively. In

35

the case of AMSGrad, the improvement of the maximum value generation by generation

is the largest in comparison with the others. This could be because populations do not

lose diversity too quickly in this configuration. In the same way, Adam has better growth

in comparison with Nadam as it starts with a smaller value and finishes with the fittest

individual over this configuration.

AMSGrad and Adam seem to converge first because their maximum accuracy stops

growing earlier than the others. Unfortunately, we can not assert they found their global

optimum solution, in fact, all of them probably get stacked in a local minima. This

is because this configuration has only 25 individuals in each generation which may not

be enough to cover all solution space, and adding more generations for them could be

unworthy. We can see the best hyperparameters found for each optimizer regarding this

kind of configuration in Table 5.1, where the batch size of 22 was the optimum value for

all of them.

2 4 6 8 10 12 14 16 18 20
Generations

0.775

0.780

0.785

0.790

0.795

0.800

0.805

M
ax

im
um

 A
cc

ur
ac

y

Population size of 25

Adam
AMSGrad
Nadam
RMSProp

Figure 5.1: Accuracy values of fittest individuals per generation for each optimizer config-
uration with a population size of 25.

Additionally, we can see how populations evolve over generations by their average ac-

curacy in Figure 5.2. Despite we saw Adam had the fittest individual over all optimizers,

Nadam has on average better populations at every single generation which means the

configuration for this optimizer may not finish to converge at all. Besides that, AMS-

36

Optimizer Batch size (2x) Dropout Learning rate
RMSProp 2 0.5748 7.06× 10−4

Adam 2 0.6050 4.51× 10−4

Nadam 2 0.7051 6.21× 10−4

AMSGrad 2 0.7755 6.97× 10−4

Table 5.1: Optimum hyperparameters for population size of 25.

Grad populations evolve better than RMSProp at each generation, finishing with better

average accuracy even when its initial population has the worst mean accuracy among all

optimizers.

2 4 6 8 10 12 14 16 18 20
Generations

0.75

0.76

0.77

0.78

0.79

0.80

Av
er

ag
e

Ac
cu

ra
cy

Population size of 25

Adam
AMSGrad
Nadam
RMSProp

Figure 5.2: Populations’ average accuracy values per generation for each optimizer config-
uration with a population size of 25.

For all configurations in this section, the initial population was the same, where the

standard deviations for each variable were 0.8158, 0.2814, and 2.80 × 10−3 for batch size,

dropout, and learning rate respectively. Next, can see the standard deviation of each

variable for the last generation in Table 5.2. The standard deviation for each variable

was reduced significantly in comparison with the first generation, which means the genetic

algorithm succeeded in convergence, especially with the learning rate where the standard

deviation was reduced more than 10 times. In batch size, those configurations discarded

batch size of 21, which means this value does not perform well.

37

Optimizer Batch size (2x) Dropout Learning rate
RMSProp 0.3666 0.0717 1.81× 10−4

Adam 0 0.0846 2.17× 10−4

Nadam 0.3666 0.1078 1.63× 10−4

AMSGrad 0.4963 0.1083 1.83× 10−4

Table 5.2: Hyperparameters’ standard deviation for population size of 25.

Finally, we can see the mean values for each population at the last generation in Table

5.3. All configurations converged to similar values in every single hyperparameter. In the

case of learning rate, their values are relatively near to the default configuration in Ten-

sorflow which is 10−3. Furthermore, for all optimizers, batch size of 22 seems to have the

best performance as individuals in the last generation tended to this value. The configu-

ration for Adam optimizer completely converged to this value. In the case of dropout, all

configurations converged around 0.65.

Optimizer Batch size (2x) Dropout Learning rate
RMSProp 2.16 0.6266 7.09× 10−4

Adam 2 0.6547 7.22× 10−4

Nadam 2.16 0.6416 7.20× 10−4

AMSGrad 2.44 0.6109 7.65× 10−4

Table 5.3: Hyperparameters’ mean for population size of 25.

5.2 Population size of 50 with 10 generations

Regarding this type of configuration, Nadam reached the best accuracy result in the last

generation. Nadam configuration got 80.89% and 80.01% for maximum and average ac-

curacies respectively. Although Adam’s optimizer beat Nadam in average accuracy with

80.07%, its maximum accuracy was 80.82%, with no significant difference between these

numbers. They are followed by AMSGrad with 80.19% maximum accuracy and 79.60%

average accuracy. RMSProp is last again in both maximum and average accuracy with

79.34% and 78.68% respectively.

The maximum values for each optimizer per generation are shown in Figure 5.3. Nadam

and Adam do not improve so much in comparison with the initial population’s maximum

values which were 80.19% and 80.46% respectively. They may already fall near their

38

optimum values since the first generation as the population size in this case is bigger.

AMSGrad and RMSProp had better improvement starting from 79.19% and 78.39%. These

optimum values may not finish converging, as the number of generations is very low here,

and adding some generations to this configuration would improve the results even more.

Additionally, we can see optimum values for each optimizer after 10 generations in Table

5.4. Same as previous configurations, all optimizer’s maximum values have batch size

equals 22, which means this is a good default value and is preferred over 21 and 23. Also,

there are no similarities in dropout values between them.

1 2 3 4 5 6 7 8 9 10
Generations

0.785

0.790

0.795

0.800

0.805

0.810

M
ax

im
um

 A
cc

ur
ac

y

Population size of 50

Adam
AMSGrad
Nadam
RMSProp

Figure 5.3: Accuracy values of fittest individuals per generation for each optimizer config-
uration with a population size of 50.

Optimizer Batch size (2x) Dropout Learning rate
RMSProp 2 0.2433 9.70× 10−4

Adam 2 0.5735 7.95× 10−4

Nadam 2 0.6377 6.85× 10−4

AMSGrad 2 0.3510 6.14× 10−4

Table 5.4: Optimum hyperparameters for population size of 50.

The average accuracy per generation is shown in Figure 5.4, where we can see similar

behavior in the evolutions in Adam and Nadam populations. RMSProp population poorly

improves their fitness values, being by far the worst optimizer in this kind of configuration.

39

1 2 3 4 5 6 7 8 9 10
Generations

0.75

0.76

0.77

0.78

0.79

0.80
Av

er
ag

e
Ac

cu
ra

cy

Population size of 50
Adam
AMSGrad
Nadam
RMSProp

Figure 5.4: Populations’ average accuracy values per generation for each optimizer config-
uration with a population size of 50.

The first 50 individuals were the same for all optimizers regarding this configuration.

The initial standard deviations were: 0.7705 for batch size, 0.2752 for dropout, and 2.68×

10−3 for learning rate. After 10 generations, the standard deviation is very similar for

each parameter except RMSProp batch size and dropout. Despite not converging at all

in dropout, RMSProp converged better than others at batch size. Standard deviations for

the last generation are listed in Table 5.5 for every optimizer.

In addition, average values for each optimizer are shown in Table 5.6. Again, all

populations in the last generation converged to similar values at all hyperparameters.

None of them even had one configuration with 21 batch size. AMSGrad population tended

to 23 batch size while the others to 22. Dropout values are around 0.5 while learning rates

are around 7.5× 10−4

Optimizer Batch size (2x) Dropout Learning rate
RMSProp 0.2375 0.2072 1.83× 10−4

Adam 0.4854 0.1253 1.58× 10−4

Nadam 0.4964 0.1339 2.24× 10−4

AMSGrad 0.4271 0.1348 2.24× 10−4

Table 5.5: Hyperparameters’ standard deviation for population size of 50.

40

Optimizer Batch size (2x) Dropout Learning rate
RMSProp 2.06 0.4708 7.21× 10−4

Adam 2.38 0.4960 7.16× 10−4

Nadam 2.44 0.5338 8.14× 10−4

AMSGrad 2.76 0.5363 8.44× 10−4

Table 5.6: Hyperparameters’ mean for population size of 50.

5.3 Overall analysis

The computation time of fitness values per generation was high even with a parallelization

with 4 GPUs. This is because every evaluation includes 5-fold cross-validation which

implies training the model 5 times. On average, it took about 7.5 hours for a population

size of 25, and 14 hours for a population size of 50. Initial populations were most time-

consuming because they also included some individuals with a batch size of 21 that need

more computations as they make the model upgrade parameters most frequently during

training. The total RAM used for the genetic algorithms in this research was about 80

GB. This is because Tensorflow does not manage memory very well, and the memory used

to store graphs for each model can not be released completely when collecting garbage

memory. Moreover, medical images require a lot of memory, especially when batch size

becomes larger.

The configurations with a population size of 50 found the best optimum values, with

the only exception of RMSProp. This means more diversity is needed for this specific

problem. In both kinds of configurations, Adam behaves similarly to Nadam, so Nesterov’s

momentum does not make a great difference in this case. Regarding the optimizers we use

in this work, RMSProp is the unique optimizer that is not based on first order moments,

and it had the worst performance. Therefore, combining first and second order moments

may contribute a lot to finding the optimum solution for this specific task. Then, the

property of the non-increasing step size of AMSGrad worsens the results as it is behind

Nadam and Adam in accuracy. So, the variance between loss function and time is far from

being large as it is the kind of scenario where AMSGrad outperforms Adam.

Dropout mean values at the last generation differ from both configuration types. This

means the dropout layers for encoding features may not be enough to influence the model

significantly. It would be better to add more dropout layers inside the model, for instance,

41

before each down-sampling and up-sampling operation.

The best hyperparameter configuration reached 80.89% accuracy which is slightly be-

hind the value tested with the same model in [1] which was 80.94%. However, they used

150 epochs in their optimization while in this research only 100 epochs were used, obtain-

ing almost the same performance. A smaller number of epochs is beneficial to reduce the

training time for the model, but sometimes it reduces the accuracy as it is more likely not

to converge. Finally, we can see some examples of the segmented medical images through

the use of semantic segmentation in Figures 5.5, 5.6, and 5.7. Here, the parameters of

the best model were used, with the model performing a great job recognizing even small

regions.

(a) Input image (b) Ground truth segmentation (c) Predicted segmentation

Figure 5.5: Segmentation with DC-UNet model on image 29: (a) Original image, (b)
Ground truth image, (c) Predicted image.

(a) Input image (b) Ground truth segmentation (c) Predicted segmentation

Figure 5.6: Segmentation with DC-UNet model on image 385: (a) Original image, (b)
Ground truth image, (c) Predicted image.

42

(a) Input image (b) Ground truth segmentation (c) Predicted segmentation

Figure 5.7: Segmentation with DC-UNet model on image 514: (a) Original image, (b)
Ground truth image, (c) Predicted image.

43

44

Chapter 6

Conclusions

1. Nadam optimizer reached the most optimum value with 80.89% accuracy, batch size

of 22, dropout of 0.6377, and learning rate equals 6.85 × 10−4. In addition, Adam

performed very similarly to Nadam in both configurations showing that Nesterov

momentum slightly improved the model optimization.

2. We found that the combination of first and second order moments is a good option

to optimize the DC-UNet model. That is the case of Adam, Nadam, and AMSGrad

who use this approach. On the contrary, RMSProp was the worst optimizer regarding

this task as it does not use first order moments for weight updates.

3. In most cases, a bigger number of individuals per generation performed better even

with fewer generations because it gives populations greater diversity and scope in the

whole search space. Thus, we recommend at least 50 individuals per generation for

hyperparameter tuning of deep learning models.

4. Although batch size is one of the most influential hyperparameters in deep learning

models, for this specific case we recommend setting its value at 22 unless we have

enough memory to try with higher ones. As in [1], this batch size has shown to be a

good default value most of the time.

5. The optimization of deep learning models in medical image segmentation usually

is a time-consuming task that also uses a lot of memory. So, we suggest the use

of sophisticated hardware for the hyperparameter tuning of this kind of model and

parallelization techniques as well.

45

6.1 Future works

Further research can improve the implementation of dropout in the DC-UNet model as we

found dropout layers before Res-Paths were not enough to make significant improvements

on its performance at testing data, so this hyperparameter did not converge to similar values

for different genetic configurations. Additionally, researchers can consider improving the

selection operator by adding a kind of tournament selection (e.g. binary) to help the model

to converge faster. Also, they could evaluate the performance of multi-objective genetic

algorithms for the CVC-ClinicDB dataset by evaluating the model on different metrics at

a time. Furthermore, it would be useful to add more hyperparameters for tuning such as

β1 and β2 for the first and second order moments that may improve the results even more.

Finally, pre-training the DC-UNet model with annotated medical images containing polyps

would be beneficial in optimizing this model for the CVC-ClinicDB dataset, and it would

improve its performance through the use of transfer learning and fine-tuning techniques.

46

Bibliography

[1] A. Lou, S. Guan, and M. Loew, “Dc-unet: rethinking the u-net architecture with

dual channel efficient cnn for medical image segmentation,” in Medical Imaging 2021:

Image Processing, vol. 11596. SPIE, 2021, pp. 758–768.

[2] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image

analysis,” Ieee Access, vol. 6, pp. 9375–9389, 2017.

[3] J. Gao, Q. Jiang, B. Zhou, and D. Chen, “Convolutional neural networks for computer-

aided detection or diagnosis in medical image analysis: an overview,” Mathematical

Biosciences and Engineering, vol. 16, no. 6, pp. 6536–6561, 2019.

[4] M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical

image segmentation: achievements and challenges,” Journal of digital imaging, vol. 32,

pp. 582–596, 2019.

[5] R. Golan, C. Jacob, and J. Denzinger, “Lung nodule detection in ct images using

deep convolutional neural networks,” in 2016 international joint conference on neural

networks (IJCNN). IEEE, 2016, pp. 243–250.

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-

cal image segmentation,” in International Conference on Medical image computing and

computer-assisted intervention. Springer, 2015, pp. 234–241.

[7] M. Kumar, D. Husain, N. Upreti, D. Gupta et al., “Genetic algorithm: Review and

application,” Available at SSRN 3529843, 2010.

[8] S. Sivanandam, S. Deepa, S. Sivanandam, and S. Deepa, Genetic algorithms. Springer,

2008.

47

[9] B. Kayalibay, G. Jensen, and P. van der Smagt, “Cnn-based segmentation of medical

imaging data,” arXiv preprint arXiv:1701.03056, 2017.

[10] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.

[11] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[12] M. Minsky and S. Papert, “An introduction to computational geometry,” Cambridge

tiass., HIT, vol. 479, p. 480, 1969.

[13] A. Abraham, “Artificial neural networks,” Handbook of measuring system design, 2005.

[14] P. M. Radiuk, “Impact of training set batch size on the performance of convolutional

neural networks for diverse datasets,” 2017.

[15] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochas-

tic optimization,” in Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, 2014, pp. 661–670.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[18] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[19] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” arXiv

preprint arXiv:1904.09237, 2019.

[20] J. Baskauf, G. Brookman, T. Eidmann, M. Gorra, H. Pearson, and B. Richter, “A

comparison of image segmentation algorithms.”

[21] J. Wu, “Introduction to convolutional neural networks,” 2017.

48

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[23] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolu-

tional architectures for object recognition,” in International conference on artificial

neural networks. Springer, 2010, pp. 92–101.

[24] D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber, “Deep neural networks

segment neuronal membranes in electron microscopy images,” Advances in neural

information processing systems, vol. 25, 2012.

[25] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 3431–3440.

[26] N. Ibtehaz and M. S. Rahman, “Multiresunet: Rethinking the u-net architecture for

multimodal biomedical image segmentation,” Neural networks, vol. 121, pp. 74–87,

2020.

[27] S. C. Pereira, J. Rocha, A. Campilho, P. Sousa, and A. M. Mendonça, “Lightweight

multi-scale classification of chest radiographs via size-specific batch normalization,”

Computer Methods and Programs in Biomedicine, vol. 236, p. 107558, 2023.

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and

the impact of residual connections on learning,” in Proceedings of the AAAI conference

on artificial intelligence, vol. 31, no. 1, 2017.

[29] O. Kramer and O. Kramer, Genetic algorithms. Springer, 2017.

[30] L. Kallel and M. Schoenauer, “Alternative random initialization in genetic algorithms.”

in ICGA. Citeseer, 1997, pp. 268–275.

[31] X. Yu and M. Gen, Introduction to evolutionary algorithms. Springer Science &

Business Media, 2010.

49

[32] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, “Deep learning

for brain mri segmentation: state of the art and future directions,” Journal of digital

imaging, vol. 30, pp. 449–459, 2017.

[33] G. Li, D. Jin, Q. Yu, and M. Qi, “Ib-transunet: Combining information bottleneck

and transformer for medical image segmentation,” Journal of King Saud University-

Computer and Information Sciences, vol. 35, no. 3, pp. 249–258, 2023.

[34] L. Zhi, W. Jiang, S. Zhang, and T. Zhou, “Deep neural network pulmonary nodule seg-

mentation methods for ct images: Literature review and experimental comparisons,”

Computers in Biology and Medicine, p. 107321, 2023.

[35] R. Nachmani, I. Nidal, D. Robinson, M. Yassin, and D. Abookasis, “Segmentation

of polyps based on pyramid vision transformers and residual block for real-time en-

doscopy imaging,” Journal of Pathology Informatics, vol. 14, p. 100197, 2023.

[36] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal representa-

tions by error propagation,” 1985.

[37] B. E. Sakar, G. Serbes, and N. Aydin, “Emboli detection using a wrapper-based

feature selection algorithm with multiple classifiers,” Biomedical Signal Processing

and Control, vol. 71, p. 103080, 2022.

[38] R. Valarmathi and T. Sheela, “Heart disease prediction using hyper parameter opti-

mization (hpo) tuning,” Biomedical Signal Processing and Control, vol. 70, p. 103033,

2021.

[39] D. Karimi and S. E. Salcudean, “Reducing the hausdorff distance in medical image

segmentation with convolutional neural networks,” IEEE Transactions on medical

imaging, vol. 39, no. 2, pp. 499–513, 2019.

[40] V. Nguyen, “Bayesian optimization for accelerating hyper-parameter tuning,” in 2019

IEEE second international conference on artificial intelligence and knowledge engi-

neering (AIKE). IEEE, 2019, pp. 302–305.

50

[41] P. Liu, M. D. El Basha, Y. Li, Y. Xiao, P. C. Sanelli, and R. Fang, “Deep evolutionary

networks with expedited genetic algorithms for medical image denoising,” Medical

image analysis, vol. 54, pp. 306–315, 2019.

[42] I. Loshchilov and F. Hutter, “Cma-es for hyperparameter optimization of deep neural

networks,” arXiv preprint arXiv:1604.07269, 2016.

[43] R. Guido, M. C. Groccia, and D. Conforti, “A hyper-parameter tuning approach for

cost-sensitive support vector machine classifiers,” Soft Computing, vol. 27, no. 18, pp.

12 863–12 881, 2023.

[44] S. Kumar and S. Ratnoo, “Multi-objective hyperparameter tuning of classifiers for

disease diagnosis.”

[45] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of math-

ematical statistics, pp. 400–407, 1951.

[46] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization.” Journal of machine learning research, vol. 12, no. 7,

2011.

[47] T. Tieleman and G. Hinton, “Rmsprop: Divide the gradient by a running average of

its recent magnitude. coursera: Neural networks for machine learning,” COURSERA

Neural Networks Mach. Learn, vol. 17, 2012.

[48] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[50] C. Guo, X. Chen, Y. Chen, and C. Yu, “Multi-stage attentive network for motion

deblurring via binary cross-entropy loss,” Entropy, vol. 24, no. 10, p. 1414, 2022.

51

[51] D. J. Rogers and T. T. Tanimoto, “A computer program for classifying plants: The

computer is programmed to simulate the taxonomic process of comparing each case

with every other case.” Science, vol. 132, no. 3434, pp. 1115–1118, 1960.

[52] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodŕıguez, and F. Vi-

lariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.

saliency maps from physicians,” Computerized medical imaging and graphics, vol. 43,

pp. 99–111, 2015.

[53] R. Jain and R. Chetty, “Gastric hyperplastic polyps: a review,” Digestive diseases

and sciences, vol. 54, pp. 1839–1846, 2009.

[54] L. P. Fávero and P. Belfiore, “Chapter 6 - random variables and probability

distributions,” in Data Science for Business and Decision Making, L. P. Fávero

and P. Belfiore, Eds. Academic Press, 2019, pp. 137–165. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780128112168000069

[55] R. Lange, T. Schaul, Y. Chen, C. Lu, T. Zahavy, V. Dalibard, and S. Flennerhag,

“Discovering attention-based genetic algorithms via meta-black-box optimization,” in

Proceedings of the Genetic and Evolutionary Computation Conference, 2023, pp. 929–

937.

[56] K. Deb, K. Sindhya, and T. Okabe, “Self-adaptive simulated binary crossover for real-

parameter optimization,” in Proceedings of the 9th annual conference on genetic and

evolutionary computation, 2007, pp. 1187–1194.

[57] K. Deb and D. Deb, “Analysing mutation schemes for real-parameter genetic algo-

rithms,” International Journal of Artificial Intelligence and Soft Computing, vol. 4,

no. 1, pp. 1–28, 2014.

[58] M. Stone, “Cross-validation: A review,” Statistics: A Journal of Theoretical and

Applied Statistics, vol. 9, no. 1, pp. 127–139, 1978.

[59] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

52

https://www.sciencedirect.com/science/article/pii/B9780128112168000069

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:

Large-scale machine learning on heterogeneous systems,” 2015, software available

from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[60] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,” IEEE Access,

vol. 8, pp. 89 497–89 509, 2020.

[61] M. Rocklin, “Dask: Parallel computation with blocked algorithms and task schedul-

ing,” in Proceedings of the 14th Python in Science Conference, K. Huff and J. Bergstra,

Eds., 2015, pp. 130 – 136.

53

https://www.tensorflow.org/

	=Dedication
	=Acknowledgment
	=Resumen
	=Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework
	Artificial Neural Networks and Optimization
	RMSProp
	Adam
	Nadam
	AMSGrad

	Medical Image Segmentation
	Convolutional Neural Networks
	CNN-based Semantic Segmentation
	U-Net Architecture
	DC-UNet

	Genetic algorithms
	Sampling
	Selection
	Crossover
	Mutation
	Fitness

	State of the Art
	Methodology
	Description of the Problem
	Dropout Layers
	Loss Function
	Performance Metric
	Dataset Description
	Data Preprocessing

	Model Proposal
	Sampling
	Selection
	Crossover
	Mutation
	Fitness function

	Experimental setup
	Hardware and Software
	Hyperparameter Tuning

	Results and Discussion
	Population size of 25 with 20 generations
	Population size of 50 with 10 generations
	Overall analysis

	Conclusions
	Future works

	Bibliography

		2023-11-18T12:46:34-0500

		2023-11-18T12:49:21-0500

