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Abstract
The rise of extreme polarization of opinions in societies is a problem of much interest that has recently been

approached in the context of complex systems. In this work, we investigate the dynamics of opinion formation using
agent-based models to understand the processes underlying polarization in social networks. To study the dynamics
of interactions between agents, we employ the Attraction-Repulsion Agent-Based Model that leads to polarization
recently proposed by R. Axelrod and his collaborators. We introduce two di�erent mechanisms for controlling and
preventing extreme polarization in this model. First, we study the influence of mass media, considered as an external
global field, on opinion formation dynamics. Secondly, we consider an extension of the Attraction-Repulsion Model
as a coevolutionary network dynamics, where both the opinions of the agents and their mutual connections vary over
time. Our results reveal that, in a social system capable of extreme polarization, mass media messages located around
the middle of the opinion spectrum can slow down and even prevent the polarization process. In contrast, extremist
messages push agents’ opinions toward the opposite extreme, leading to asymmetric polarization within the system.
For the coevolutionary model, we found that the rewiring of connections based on the principle of homophily can
lead to the emergence of a central-opinion group, thus avoiding polarization in a low-tolerant network.

Keywords: Complex Systems, Opinion Dynamics, Agent-Based Modeling, Polarization, Mass Media, Coevo-
lution.
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Resumen
El aumento de la polarización extrema de opiniones en las sociedades es un problema de gran interés que

recientemente se ha abordado en el contexto de sistemas complejos. En este trabajo, investigamos la dinámica de
la formación de opiniones utilizando modelos basados en agentes para comprender los procesos subyacentes a la
polarización en las redes sociales. Para estudiar la dinámica de interacciones entre agentes, empleamos el Modelo
de Agentes de Atracción-Repulsión que conduce a la polarización, propuesto recientemente por R. Axelrod y sus
colaboradores. En este modelo, introducimos dos mecanismos diferentes para controlar y prevenir la polarización
extrema. En primer lugar, estudiamos la influencia de los medios de comunicación masivos, considerados como un
campo global externo, en la dinámica de formación de opiniones. En segundo lugar, consideramos una extensión
del Modelo de Atracción-Repulsión con una dinámica de red coevolutiva, donde tanto las opiniones de los agentes
como sus conexiones mutuas varían con el tiempo. Nuestros resultados muestran que, en un sistema social capaz de
polarización extrema, los mensajes de los medios de comunicación ubicados alrededor del punto medio del espectro
de opiniones pueden frenar e incluso prevenir el proceso de polarización. Por el contrario, los mensajes extremistas
impulsan las opiniones de los agentes hacia el extremo opuesto, lo que lleva a una polarización asimétrica dentro
del sistema. Para el modelo coevolutivo, encontramos que el recableado de las conexiones basado en el principio de
homofilia puede llevar a la emergencia de un grupo de opinión central, evitando así la polarización en una red con
baja tolerancia.

Palabras clave: Sistemas Complejos, Modelos Basados en Agentes, Dinámica de Opiniones, Polarización,
Medios de Comunicación, Coevolución.
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Chapter 1

Introduction

In recent years, the study of complex systems has garnered increasing interest, particularly when examining phenom-
ena characterized by collective behavior. Complex systems are systems with multiple interacting components whose
collective behavior cannot be simply inferred from the behavior of the components but emerge from its interactions”1.
These systems show distinctive features, including synchronization, self-organization, adaptive interaction, chaotic
behavior, ’fat-tailed’ distributions, and emergent behavior2. The phenomenon of emergence itself occurs when the
non-linear coupling of many elements induces the system’s collective behavior, that is, the whole is di�erent from
the sum of the parts3, while self-organization refers to a dynamic process through which a system spontaneously
generates complex macroscopic structures and behaviors as time progresses4. This contemporary perspective has
opened up new routes for exploring challenges beyond the traditional confines of Physics.

Specifically, Statistical Physics o�ers diverse concepts and methodologies that align closely with the objectives of
complex systems science. Both fields share a common aim: understanding the macroscopic characteristics of physical
systems through microscopic interactions among their constituent particles. Applications of complex systems
extend across various disciplines, including the social sciences, where this field has been called Sociophysics and
Computational Social Science. Numerous processes deserve exploration in this context, such as opinion formation,
group dynamics, language evolution, pedestrian patterns, migration trends, and cultural dynamics. In particular,
opinion formation has been a central topic of interest in social dynamics5. The study of agreement or consensus is a
key aspect to understand since it is necessary for a social group to reach a shared decision. However, the dynamics of
agreement or disagreement in a social group is complex6. Two main approaches to model spontaneous consensus are
game theory and dynamical opinion formation. A limitation of the first is that due to the unrealistic assumptions about
individuals’ information access and processing capabilities. For the dynamic approach, we employ the concepts of
emergence and self-organization that have been advanced in the field of statistical physics to understand the global
consequences of individual adaptive behaviour7.

In the context of Sociophysics, agent-based modeling is a frequently employed technique for deriving macroscopic
states through the interactions of individual agents at the microscopic level. Indeed, we can apply agent-based models
(ABM) to understand the emergent behavior of societies by building "artificial societies." An artificial society has

1



2 �.�. RESEARCH PROBLEM

a set of autonomous agents that act in parallel and communicate with each other. This allows us to run virtual
experiments by configuring a series of simulations to investigate specific research questions. These simulations
involve activating all agents within the system and observing the resulting macro-level behaviors that arise as these
agents interact8.

The rise of extreme polarization of opinions in social groups is a problem of great interest that has recently been
approached in the context of complex systems. Agent-based modeling techniques have been applied to investigate
the mechanisms underlying the phenomenon of polarization of opinions9.

1.1 Research Problem

Polarization of opinions is related to the divergence of opinions and the reduction of communication with those
holding di�erent points of view10. In today’s data-rich environment, numerous studies have documented the presence
of extreme polarization in real-world scenarios, such as on social media platforms like X (former Twitter)11 or Face-
book12. Polarization of opinions can result in adverse outcomes, as evidenced by the democratic erosion in Hungary
and the United States, the rise of authoritarianism in Turkey, Nicaragua, and Venezuela13, or the intensification of
political polarization in Ecuador, where state crises and strategic populist maneuvers have significantly contributed
to the political divide14.

Various theoretical models have been proposed to elucidate the processes leading to polarization, with negative
influence or repulsion being considered as a mechanism contributing to its emergence15. Consequently, once these
models have shed light on the polarization process, nowadays, there is a critical need to identify interventions capable
of controlling the rise of extreme polarization of opinions in a society.

Motivated by the relevance of the present problem of extreme polarization of opinions and the search for possible
control strategies, in this thesis, we investigate mechanisms for controlling or preventing polarization in a social
network. To understand the dynamics of interaction that leads to polarization, we employ the Attraction-Repulsion
Agent-Based Model recently proposed by the prominent social scientist Robert Axelrod and his collaborators15.

Specifically, we explore two mechanisms for controlling polarization. First, we study the influence of mass
media, considered as an external global field, on opinion formation dynamics. Secondly, we introduce coevolutionary
network dynamics as a generalization of the Attraction-Repulsion Model, where both the agent’s opinions and their
connections vary over time.

1.2 Objectives

1.2.1 General Objective

To investigate mechanisms to control or avoid the emergence of extreme polarization of opinions in a
sociophysical model of interacting agents.
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1.2.2 Specific Objectives

• Investigate the e�ects of mass media, incorporated as an external global field, on the polarization
of opinions in Axelrod’s Attraction-Repulsion Model.

• Generalize Axelrod’s Attraction-Repulsion Model by introducing a coevolutionary dynamics
where both the agents’ opinions and their connections are coupled and can evolve in time.

• Explore the e�ects of coevolutionary dynamics on the emergence of polarization of opinions.

Through these objectives, we show that Sociophysics can contribute valuable insights and strategies for addressing
the challenge of extreme polarization in social networks.

1.3 Overview

This thesis comprises five chapters, organized as follows.
Chapter 2 lays the foundation by introducing key concepts and prior research upon which this project builds.

We begin by discussing agent-based models, di�erent kinds of networks, and opinion dynamical models. Then, we
focus on the Attraction-Repulsion Model (ARM) proposed by Robert Axelrod15 for studying polarization. Next, we
review how to include an external global field representing mass media in opinion dynamical models. Lastly, we
examine the process of extending a model initially focused solely on network dynamics to a coevolutionary model,
encompassing both network dynamics and agent interactions.

In Chapter 3, we present our extension of the Attraction-Repulsion Model to include mass media. Mass media
is considered an external global field characterized by two parameters: the mass media message position xM and its
intensity B. Then, we investigate the impact of the field in a highly and in a low-tolerant population. We explore
their role in the polarization of opinions, the size of the largest cluster, and its di�erence with the cluster containing
the same opinion as the media. We further extend these investigations across various network structures, global,
circulant, and small-world networks.

In Chapter 4, we develop the concept of coevolution within the Attraction-Repulsion Model (ARM). This involves
simultaneous variations in the actors’ states and their connections. To achieve this, we initiate extending the ARM
computation from a global to a random network. The coevolutionary model integrates ARM for node dynamics
and incorporates the Holme-Newman conditions for the network dynamics. Our in-depth analysis is centered on
examining how the rewiring parameter (Pr) influences the system’s polarization dynamics.

Chapter 5 serves as the culmination of our research e�orts, presenting a comprehensive summary of our findings
and drawing meaningful conclusions from our work. Additionally, we o�er valuable insights into potential avenues
for future research, building upon the models and discoveries presented in this thesis.

Two Appendices containing the computational codes elaborated in Python for our simulations are included at
the end of this thesis; the first corresponds to the mass media model, and the second to the coevolutionary network
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dynamics.
Simulations are also accessible in video format on the GitHub repositories attached in the Appendices for both

the Attraction-Repulsion Model with Mass Media and the Coevolutionary Attraction Repulsion Model.



Chapter 2

Theoretical framework

2.1 Agent-Based Modeling

Agent-based modeling is a novel approach to understanding nature that has emerged from the field of Complex
Systems. The fundamental concept behind agent-based models (ABM) is that numerous phenomena in the world
can be aptly represented through the utilization of discrete elements or agents, an environment, and an articulation
of the interactions between the agents themselves and between the agents and their environment16. Then, we can
examine how these simple local rules lead to emergent complex patterns and structures. This simulation strategy
represents a research methodology that transcends traditional methods of deriving a general theory from empirical
data or working from a set of axioms. In ABM, we begin by establishing a set of foundational principles, from which
we generate specific data, thereby enabling the formulation of theory17.

In ABM, agents represent individuals who have been assigned state variables that describe their particular states.
At each step of time, the behavior of an agent follows a computational rule18. Some states are fixed in time, while
others change by interactions with other agents or external factors19. For example, in Figure 2.1, the agent i has the
state variables T , R, and E, which are fixed in time, while the opinion variable xi(t) changes in time.

� ToleranceTi =
� Opinionxi =

� ResponsivenessRi =
� ExposureEi =i

Figure 2.1: State variables of an agent, i.

5



6 �.�. REVIEW OF REGULAR AND COMPLEX NETWORKS

The environment serves as the background upon which agents interact, and it can take various forms, such as
geometric, network-based, or derived from empirical data. In Section 2.2, we review some networks upon which
the agents can interact. The agents’ actions depend specifically on the phenomenon we are interested in modeling.
Examples are shown in Sections 2.3 and 2.4. In these sections, we mention models where the state variable of the
nodes, called opinion, changes in time according to some specific social rules.

Indeed, when the action assumptions for the agents align with human behavior, these models become valuable
for modeling and simulating social systems. The idea is to build models where the agents are assigned some social
properties and then to simulate their interactions. The aim is to address the problem from a lower level to a higher
level in the social system6. Rather than accurately representing an empirical application as a historical or future event
prediction, ABM tries to give us insights about fundamental processes or mechanisms applicable across various
social scenarios17.

2.2 Review of regular and complex networks

We represent a network by a graph G = (V, E) where V = {1, 2, . . . ,N} is the set of nodes (or vertices) and E is the
set of the m total edges that connects two nodes. We say that node j is a neighbor of node i if i is connected to node
j4. It is important to note that we can have directed edges in cases where there is an asymmetric relationship from
one node to another. Even if node i has an incident edge connecting to node j, this does not imply the existence of an
incident edge from node j to node i. Then, we can denote the set of neighbors of i as ⌫i. Within this context, we can
distinguish several graph properties with unique characteristics. One measure is the degree ki of the node i, which
is the number of links connected to the node i20 or the size of the set ⌫i. Thus, the average degree of the network is
given by

hki = 1
N

NX

i=1

ki. (2.1)

With this characteristic, we can identify regular graphs where all the nodes have the same degree. An example
is a global or complete graph where any pair of nodes is connected4 as we can see in Figure 2.2 (a). In this network,
all the agents have degree ki = N � 1, and the mean degree is hki = (N � 1)/N. Another example is the ring layout,
where node i is connected to nodes i � 1 and i + 1 considering boundary conditions. This is a one-dimensional
network, and it is shown in Figure 2.2 (b). For this network, an agent i has degree ki = 2, so the mean degree is
also hki = 2. Another network is the one proposed by Erd�s and Rényi21 that considers N nodes and m edges. The
m edges are randomly placed among the N nodes, uniformly distributed from all possible edges. Then, the average
degree for this network is hki = 2m/N. Figure 2.2 (c) shows the outcome of this topology.

We can also characterize a network with the average path length. This parameter measures how long it takes, on
average, to go from one node to another, considering all possible pairs of nodes. Another measure is the clustering
coe�cient. This coe�cient measures the extent to which the neighbors of a particular node are interconnected. It
assesses the local cohesiveness or clustering of connections around a node. A small-world network is characterized
by high local clustering (like regular graphs) and short average path lengths (like random graphs), making it an
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essential model for understanding real-world networks22. Figure 2.2 (d) represents this more realistic network since
real networks are neither random nor completely regular but combine their characteristics.

In a social context, the nodes of a network represent social actors, while the edges, also referred to as ties,
represent some form of connection between them, such as friendships20.

(a) (b)

(c) (d)

Figure 2.2: Illustrations of di�erent types of network. (a) Global, (b) ring, (c) Erd�s–Rényi or random, and (d)
small-world networks.

2.3 Opinion dynamics models

One important application of ABM is the study of opinion dynamics in a society. These models have the objective
to investigate the dynamical processes involved in the di�usion and evolution of opinions within a population. The
actions of the actors in these models are based on principles of social interaction developed in social psychology
and sociology23. For instance, they incorporate concepts such as imitating the behavior and opinions of others in
situations of high uncertainty24, the persuasive argument theory where interaction partners exchange arguments and
convince each other that certain views are more appropriate25, or the phenomenon of homophily, where individuals
tend to interact with those who are similar to them26.

These sociodynamical models aim to understand the elementary processes determining the transition between



8 �.�. THE ATTRACTION-REPULSION MODEL �ARM�

agreement and disagreement6, or even polarization in a population. A classical opinion model is the voter model27

where an agent i can have the state variable xi = ±1. The state variable of an agent i is updated by choosing a
neighbor j randomly and setting xi = x j. That is, opinion formation is based on imitation. Although it is one of the
simplest models, it could lead to emergent patterns28. This model has been extended depending on the phenomena
we are interested in modeling. For example, including a third option29, including a set of possible choices30 or even
providing unlimited possible choices in the form of a continuous opinion31.

Based on the type of variables used for agents, we can categorize opinion dynamics models into two main classes:
discrete and continuous models. Discrete models are employed when individuals have a finite set of choices. For
instance, in the Dissemination of Culture Model of Axelrod32, culture is represented as a discrete vector with each
component having one of q possible values. In this model, interactions are influenced by the similarity of agents’
culture vectors (homophily), and during each interaction, agents tend to adopt one another’s cultural components
(assimilation).

On the other hand, considering continuous opinions is helpful for cases where the state variable of an agent can
vary smoothly from one extreme of the range of possible choices to the other, for example, to model ideological
position such as political orientation6. One of the first models with these considerations was the one proposed by
DeGroot33. This model demonstrated how individuals in a network adjust their opinions iteratively, capturing the
complex processes involved in reaching a consensus within a social network.

Another example of a continuous model is the one proposed by De�uant34. This model includes a parameter Ti

that represents bounded confidence for the agents. By simplicity, the original model considers the same threshold
value Ti = T 8 i, which is also constant in time. This means that an agent i with position xi only interacts with
neighbors whose opinion positions fall within the range [xi � T, xi + T ]. The dynamics of the model implies that
if the di�erence between the opinions of agents i and j is inside the bounded limit, they will approach R times its
opinion distance. This parameter R is also uniform for all agents, Ri = R 8 i, and remains constant in time. The
result of this work was that for values greater than T � 0.5, the consensus is always obtained independent of the
social topology. For values T < 0.5, two or more clusters with di�erent opinions in the spectrum [0� 1] can emerge
during the time evolution. On the other hand, the parameter R controls the convergence speed of the model.

An extension of this bounded confidence model can be obtained if we consider repulsive interactions when
their opinion distance is outside the bounded limits of the agent rather than only ignoring them. This consideration
is derived from the growing hypothesis that repulsive e�ects play a role in interactions among individuals with
dissimilar opinions35. Indeed, evidence of such repulsion dynamics has been observed in real-world systems36, 37.
R. Axelrod and collaborators proposed a model with this consideration, which we will review in the following
section.

2.4 The Attraction-Repulsion Model (ARM)

Wondering if there is a level of ideological polarization above which polarization feeds upon itself to become a
runaway process and what policy interventions could prevent such a dangerous positive feedback loop, Axelrold et
al.15 proposed an agent-based model that includes both attraction and repulsion interactions between nodes. The



CHAPTER �. THEORETICAL FRAMEWORK 9

model considers a state variable xi(t) 2 [0, 1] that represents the opinion of the agent i at time t for i = 1, 2, . . .N where
N is the total number of agents. Also, the agents have the variables tolerance Ti, exposure Ei, and responsiveness Ri.
This model assumes homogeneity, i.e., Ti = T , Ei = E and Ri = R, 8 i. Also, these parameters will be considered
constant in time.

The model has two rules that intervene in the dynamics of the actors. The first rule is related to the selection
of the agents, and it states that agents with similar views tend to interact. In a social context, this rule is based
on the principle of social interaction called homophily, where individuals prefer to interact with others similar to
them. This is represented in Figure 2.3, where interactions between agents with similar opinions (Figure 2.3 (a)) are
more frequent than interactions between actors with di�erent points of view (Figure 2.3 (b)). On the other hand, the
second rule is related to the dynamics of the agents (represented in Figure 2.4), and it states that interactions between
agents with similar points of view reduce their di�erence (Figure 2.4 (a)). In contrast, interactions between actors
with di�erent opinions increase their di�erences (Figure 2.4 (b)). This negative influence di�erentiates the model
from other agent opinion models.

More precisely, the dynamics of the system is as follows: a randomly selected agent i randomly chooses a
neighbor j, and with probability

pi j = (1/2)di j/E , (2.2)

an interaction between i and j will happen, where di j =
���xi � x j

��� is the distance between their opinions and E is a
parameter that represents the exposure of the agents to others’ opinions. Figure 2.3 (c) shows the behavior of this
probability value and the role of the E parameter. We can notice that for low values of E, actors with dissimilar
opinions are almost unlikeable of interaction, while for high values of E, this probability increases considerably.

i j

(a)

j i

(b)
(c)

Figure 2.3: Interactions (represented as the number of lines) are more likely between actors with (a) similar opinions
than (b) di�erent ones. (c) Behavior of the probability pi j of interaction between agents i and j for di�erent values
of exposure E.
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Then, if the interaction occurs, we consider the Attraction-Repulsion rule for the dynamics of the agents,

xi(t + �t) =

8>>><
>>>:

xi(t) + R(x j(t) � xi(t)), i f
���xi � x j

���  T,

xi(t) � R(x j(t) � xi(t)), i f
���xi � x j

��� > T,
(2.3)

where T is the parameter that measures the tolerance among the population. Notice that in Eq (2.3), the first condition
implies that the agent i approaches agent j an amount of R times their distance while the second condition means
that agent i moves away from j a number of R times their distance as illustrated in Figure 2.4. Here, R represents
the responsiveness of the actors to others’ opinions. Since repulsion interactions could lead to opinions leaving the
interval [0, 1], we correct this by employing the boundary conditions,

i f xi(t + �t) < 0, xi(t + �t) = 0, (2.4)

i f xi(t + �t) > 1, xi(t + �t) = 1. (2.5)

.
Here �t� representing a time step where an agent is activated.

1

(a) �T
�dij

�T

0 1 0
�xi�xj �xj�xi

0 1 0 1
�xi�xj�xi�xj

(b)
�dij

�Rdij �Rdij

Figure 2.4: Dynamics of the Attraction-Repulsion Model. (a) Interactions between similar actors reduce their
di�erence R times, and (b) interactions between dissimilar actors increase their di�erence R times.

At each time step �t, the system follows this iterative algorithm:

1. Randomly chose an active agent i.

2. Randomly chose the source of attention from one of its neighbors j.

3. Calculate the probability of interaction between agents i and j given by pi j = (1/2)di j/E where di j =
���xi � x j

���.
�There is no obvious calibration of time in the model, but we can use an agent activation, called step, as unit of time.
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4. For a successful interaction, if di j  T , agent i approach agent j R times di j. Otherwise agent i moves away
agent j R times di j.

Figure 2.5 shows a flowchart of the model dynamics.

No

Select randomly an agent !  from 
the network  

i Select the source of attention from the 
neighbors !j � �i

Calculate probability of interaction: 
! ,  where !pij = (1/2)dij/E dij = xi � xj

No

Successful 
interaction?  

!  ?dij � T

!     xi(t + �t) = xi(t) + R(xj(t) � xi(t))
Yes

!     xi(t + �t) = xi(t) + R(xj(t) � xi(t))
Yes

Figure 2.5: Flowchart of the algorithm of the Attraction-Repulsion Model.

Initially, the actors’ opinions follow a Gaussian distribution, with mean µ0 = 0.5 and �0 = 0.2. This assumption
is motivated by empirical data, which suggests that a normal distribution is more appropriate for modeling political
opinions38. This model has been also tested for empirical distribution39, showing that there is not a meaningful
di�erence between Gaussian and empirical distributions15. The measure used to analyze the polarization of the
system is the variance. The initial variance given by the initial conditions is �2

0 = 0.04. As the system evolves, the
variance can go from �2 = 0, which means convergence to a particular opinion, until �2 = 0.25, which means half
of the population is at one extreme and the other half in the opposite extreme.

We then replicated the results of the attraction-repulsion model, but we explored more scenarios in terms of T ,
R, and E. First, we can identify three scenarios in terms of tolerance, as shown in Figure 2.6 (a). This parameter
controls when the e�ective interactions are attractive or repulsive. As expected, we get the maximum polarization for
low tolerance (T  0.25) where all the agents have extremist positions. In this case, most interactions are repulsive,
leading to polarization. On the other hand, there are more attractive interactions for high enough values of T , and the
system converges to a particular position for T � 0.45. That is, agreement emerges from a high-tolerance population.
Finally, for intermediate values such as T = 0.35, neither consensus nor extreme polarization is reached; instead, we
get a slight variance due to an intermediate majority with some actors at each extreme.

For the responsiveness parameter that modifies how far an actor moves in a successful interaction, whether
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this interaction is attractive or repulsive, we can see the e�ects on the variance as a function of the tolerance after
1.0 ⇥ 106 steps† in Figure 2.6 (b). Notably, tolerance predominantly determines the transition from polarization to
non-polarization, as indicated by the shift from the yellow to the dark zone. On the other hand, the value of R plays
a more significant influence on the systems with low tolerance values. Since R controls how far an agent moves,
for low values of R, it will be more delayed to reach a complete polarization state in an intolerant population. This
explains the smooth transition from a highly polarized to an extremely polarized state as we increase R in populations
with low T values.

(a) (b)

Figure 2.6: (a) Variance as a function of time for di�erent values of tolerance with fixed values R = 0.25 and
E = 0.10. (b) The phase diagram represents responsiveness R and tolerance T with fixed E = 0.1 in the polarization
of opinions given by the variance. The results were obtained after 1.0 ⇥ 106 steps, averaging over 20 iterations
for each (T,R) pair in a network of N = 100 agents. Yellow means extreme polarization, while dark blue means
convergence to a single opinion. The results are based on replicating Axelrod’s ARM model15, incorporating a
wider range of R and T values in the phase diagram.

For the exposure, the parameter that measures if actors are willing to listen to distant or similar opinions,
simulations show that low values of E help to prevent polarization. In contrast, high values increase the polarization
of the system. This is supported by the fact that when the population is considerably intolerant, most interactions
are repulsive, and increasing exposure only makes these interactions more frequent. This is shown in Figure 2.7 (a),
where it is possible to see how the variance evolves in time for a fixed value of tolerance (T = 0.3) for di�erent values
of E. Here low exposure values (E  0.1) reach lower variance values than high values (E � 0.15). The explanation
is that increasing exposure only makes repulsive interactions more recurrent for a given low-tolerant system.

This result is corroborated in the phase diagram (E,T ) shown in Figure 2.7 (b), where we can understand in a
more general way the role of the exposure in the model. Again, the parameter T dominates the outcome, especially
for high values (T � 0.40) where the population reaches consensus. In the region for values 0.25  T < 0.40, we

†As an example, if an agent becomes active once a day, then one day would correspond to N time steps. Therefore, with N = 100 agents, we
would have 100 steps per day and 36500 steps in a year. Consequently, 1.0 ⇥ 106 steps would be equivalent to over 27 years.
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reach a transition region between consensus and extreme polarization with intermediate polarization values. Finally,
for the region of intolerant agents (T  0.25), we see that high exposure values always lead to extreme polarization,
while for values E  0.1, it is possible to reduce polarization.

(a) (b)

Figure 2.7: (a) Variance as a function of time for di�erent exposure values and with fixed values R = 0.25 and
T = 0.25. (b) The phase diagram represents exposure E and tolerance T with fixed R = 0.25 in the polarization of
opinions given by the variance. The results were obtained after 2.0 ⇥ 106 steps by averaging over 20 iterations for
each (T, E) pair in a network of N = 100 agents. The yellow color means extreme polarization, while the dark blue
means convergence. The results are based on replicating Axelrod’s ARM model15, incorporating a wider range of
E and T values in the phase diagram.

In summary, this model is based on two rules: one for the selection of the interaction of the agents and the other
for the dynamics of the interaction. The main contribution is the addition of repulsion, which is usually forgotten
in polarization models. Similar to De�uant’s model31, the system tends to converge to a singular opinion for a high
value of tolerance (T � 0.40) regardless of the values of E and R. Interesting results arise when we explore the
system for lower values of T . One remarkable result occurs when we have more repulsive interactions than attractive
ones. In this region of intolerant agents, high values of E lead to extreme polarization, while R makes these repulsive
interactions more pronounced, leading to extreme polarization more easily. On the other hand, low values of E
prevent these repulsive interactions, while low values of R delay the polarization.

We were able to reproduce the original Axelrold et. al. results from scratch and with another programming
methodology‡. This replication procedure is a fundamental stage in the process of performing simulations in the
computer social sciences17. Also, we improve the resolution in the results in the phase diagrams (T,R) and (T, E)
to calculate the final state variance. We increase the grids from (20 ⇥ 20) and (20 ⇥ 10) to (50 ⇥ 50) and (50 ⇥ 25),
respectively. At the end, we corroborate the results obtained by Axelrold. et al. with ours.

With these results, Axelrod et al. propose extensions to the model, such as geography modifications or considering
‡For performing the simulations, we incorporate Python’s library NetworkX.

https://networkx.org/
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significant social influence with unchangeable opinions. The first extension could be achievable by changing the
network where the nodes interact. Notice that in the original model, all the agents have a certain probability of
interacting with each other. That is, all are connected in a global network. However, we can consider a new kind
of network. Also, we can vary the connection of the agents over time. For the second extension, we can consider
an external global field acting over all the agents analogically to a mass media. So, let us briefly comment on these
kinds of models.

2.5 Models of social dynamics with mass media

The dynamics of opinions of social agents in a network does not always depend on the agent-agent interaction, but
it could also be a�ected by external factors such as an external global field. Indeed, we can distinguish both local
and global interactions in dynamical systems. In local interactions, an individual is a�ected by the elements from its
local environment while in global interactions, all the individuals are a�ected by a common influence that is acting
in the whole system. In a social context, adding a field to the system can be understood as mass media and the
information it gives to the system as propaganda. The aim of including mass media is to understand under what
condition propaganda changes the opinion dynamics of the system40. Indeed, the role of the media in the polarization
of opinions has been extensively discussed, especially for political opinions41, 42.

Mass media is mainly characterized by the message it gives and its intensity (or frequency)43. It can be
distinguished in various ways. Spatially, it may be either uniform, representing global media, or non-uniform,
representing local media. Additionally, media can be categorized based on whether the message remains constant
or changes over time. If it is constant in time, it can be understood as specific advertising imposed by the media.
This case corresponds to a driven spatiotemporal dynamical system. On the other hand, if the message conveys
information obtained from the system, it could be understood as an autonomous dynamical system. A way to update
the message is by choosing the most abundant position in the population. This kind of autonomous field could be
understood as a media that takes the position of the trending topic44.

Several works have investigated the role of mass media on di�erent opinion dynamical models. For example,
there are studies of including media in Axelrold’s cultural model43� 45 or in the De�uant model40, 46.

2.6 Models of coevolutionary dynamics

The models that we have described in this chapter are developed in static networks where only agents’ opinions, not
links between them, change over time. We can distinguish between the dynamics ON the network (as in the ARM
model) and the dynamics OF the network. In the first one, each node of the network represents a dynamical system
while in the second one, the topology of the network is treated as a dynamical system changing in time according
to specific rules47. Many real systems lie between these two cases, where both state variables of the nodes and
their connections vary on time. By combining these notions, we encounter networks whose connections adaptively
change according to their states. As a result, a dynamic interplay emerges between the nodes’ states and the network’s
topology, resulting in a feedback e�ect between them48.
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A coevolution model consists of three main components. First, the agents’ dynamics describes how the actors’
state variable will change. Some examples were described in Section 2.3 and Section 2.4, like the voter, bounded
confidence, or attraction-repulsion models.

Second, we have the dynamics of the connections among the agents. This dynamics is based on a rewiring
process that involves two simple actions: disconnection and connection between nodes49. The disconnections can
be seen as a repulsion between agents and are characterized by a parameter d that represents the probability that two
nodes with similar states get disconnected. Thus, the probability that two nodes with di�erent states disconnect will
be 1 � d. On the other hand, connections can be seen as attractions between nodes and they are determined by the
parameter r, representing the probability that two similar nodes will create a link. So, 1 � r will be the probability
that two nodes with di�erent states create a new link.

It is possible to construct a phase plane for (d, r) that includes all possible rewiring processes consisting of
disconnection and connection49. Figure 2.8 represents this phase plane, where we can identify regions of homophily
and heterophily. Maximum homophily is achieved at the values (d, r) = (0, 1) where an agent disconnects from
an opposite and connects to a similar. On the other hand, maximum heterophily is reached at (d, r) = (1, 0),
implying disconnection from similar individuals and connection to dissimilar ones. The transition from heterophily
to homophily can be observed by following the arrow in the figure. In this transition, we can have, for example, values
of (d, r) = (0.5, 0.5), which means that connections and disconnections are random. Other well-used criteria for d and
r are the Holme-Newman condtions30, which correspond to values (d, r) = (0.5, 0.5) meaning that disconnections
are random, but connections are created with the similar ones. Holme-Newman conditions fall within the homophily
region.

Figure 2.8: A specific adaptive rewiring process can be characterized by two values, r and d, which correspond to a
point in the plane (d, r). The point (0, 1) corresponds to total heterophily while the point (1, 0) represents complete
homophily. Additionally, point (0.5, 0.5) means that both connections and disconnections are random, while point
(1, 0.5) implies that disconnections are random, but connections are created with similar ones. The arrow shows the
transition between heterophily and homophily along the diagonal d = 1 � r.

The last component for coevolutive models involves a functional relation Pc = f (Pr) between the probability of
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applying rewiring, Pr, and the probability that the node state changes, Pc
49. A simple and very common function is

Pc = 1 � Pr. The main role of these parameters is to control the rate at which the dynamical processes occur. The
competition between their time-scales can lead to a phase transition and directly influence the system’s emergent
behavior. For example, for a system whose node dynamics leads to consensus, we can expect to reach a single
network with all the agents in the same state for low values of Pr. Contrary, for high Pr values, the rewiring process
can break the network into di�erent components that will separately reach consensus6. These two topological
outcomes are separated by a critical value P⇤r .

Coevolutionary dynamical systems or adaptive networks have been studied in several social dynamics and opinion
formation models by mixing di�erent node and topology dynamics criteria. An example is the coevolution extension
of a non-linear voter model50 or of the De�unat model51, 52.



Chapter 3

Non-trivial e�ects of mass media on
polarization of opinions

3.1 The Attraction-Repulsion Model with Mass Media

We base this chapter on the ARM presented in Section 2.4, where we introduce mass media, labeled as M, as an
external global field similar to previous works43, 45. The media is characterized by its opinion position xM with a
given value in the spectrum [0, 1]. This opinion position is unchangeable over time, so we have that xM = constant.
We can understand the media as a driven force acting over a network of N agents {i = 1, 2, . . . ,N}, which represent
social actors. Then, the state variable xM is the media’s opinion, message, or advertising transmitted to the network.
The external global field is uniform across the networks since it acts over all the nodes with the same intensity. The
strength of the media’s influence is characterized by the parameter B, which represents the probability of an agent i
considering the media as the source of attention. Here, B takes values within the range [0, 1].

In the model, each agent i has a set of neighbors ⌫i unchangeable in time. Also, each actor i has a state variable
xi(t) 2 [0, 1] representing its opinion on a continuous spectrum at time t. At the beginning, the agents have an initial
opinion xi(t = 0) in such a way that all of them follow a Gaussian distribution between 0 and 1 with a mean of
µ0 = 0.5 and a standard deviation of �0 = 0.2 (for an explanation behind these initial conditions, refer to Section
2.4). For a more illustrative image of the system, the action of the media on the actors is represented in Figure 3.1. It
is important to notice that the directional arrows originating from the media and reaching the agents indicate that the
media influences the actors’ opinion states, but not the other way around. This represents a non-autonomous system.

The agents’ opinions evolve according to the dynamics of the model. This dynamic process starts by randomly
choosing an agent i. The second step, which is the process of choosing the source of attention, includes the presence
of the external global field. The source of attention for an agent i with probability B will be j = M (the media), and
with probability 1 � B, it will be j = k such that k 2 ⌫i (a neighbor of i). This means that either a neighbor or the
external field could influence the opinion of an agent i. In the limit B ! 0, the social actor only interacts with its

17
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Figure 3.1: The diagram illustrates the mass media, denoted as M, acting with an intensity B on a fully connected
network. The colors on the diagram characterize the opinions held by the agents. The arrows pointing from the
media towards the agents signify that the advertising media exclusively influences the agents rather than the agents
influencing the media.

neighbors. In the opposite limit, B! 1, all the agents’ interactions occur with the media.
Once the source of attention is selected, we calculate the probability that the interaction occurs, which is given

by
pi j = (1/2)di j/E , (3.1)

where di j =
���xi(t) � x j(t)

��� is the distance between the opinions, and E is a parameter that represents the exposure of
the agents to others opinion. When j = M, this probability becomes in

piM = (1/2)diM/E , diM = |xi � xM | . (3.2)

We can notice that although the probability B that the media is the source of attention is the same for all the
actors, the probability of a successful interaction is greater for those near the media position. This agrees with what
Robertson et al.53 found where people’s actions tend more to interact with their partisan news than the platform’s
algorithmic suggestions. Then, if the interaction does not occur, we return to the first step. On the other hand, if
there is a successful interaction, we consider the following attraction-repulsion rule for the dynamics of node i,

xi(t + �t) =

8>>><
>>>:

xi(t) + R(x j(t) � xi(t)), i f
���xi � x j

���  T,

xi(t) � R(x j(t) � xi(t)), i f
���xi � x j

��� > T,
(3.3)

where j 2 ⌫i or j = M. In this equation, T is the parameter that measures the tolerance among the population, and R
represents the responsiveness of the actors to others’ opinions. Notice that the first condition in Eq. (3.3) implies that
the agent i approaches j a number of R times their distance if their opinions distance is less than a threshold value
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T , while the second condition means that agent i moves away j an amount of R times their distance if the distance is
outside the threshold. This implies that when j = M, the dynamics of the agent i will be

xi(t + �t) =

8>>><
>>>:

xi(t) + R(xM(t) � xi(t)), i f |xi � xM |  T,

xi(t) � R(xM(t) � xi(t)), i f |xi � xM | > T.
(3.4)

Therefore, the media could have attractive or repulsive e�ects on the agent i. The fact that the media could
have repulsive e�ects on actors in opposite positions than the media agrees with what Bail et al.37 found, where
interactions between Twitter users with contrary political views increased their beliefs rather than convinced them.

In summary, the dynamics of the system follows this iterative algorithm:

1. Randomly chose an active agent i.

2. Chose the source of attention j with probability B to be the mass media and with probability (1� B) to be one
of the neighbors of i.

3. Calculate the probability of interaction between i and j given by pi j = (1/2)di j/E where di j =
���xi � x j

���.

4. For a successful interaction, if di j  T , agent i approach j an amount of R times di j. Otherwise, agent i moves
away agent j a number of R times di j.

Figure 3.2 shows a flowchart of the dynamics for our model.

Select source of attention ! . With probability 
!  to be Mass Media !  , and with 

probability !  to be a neighbor !

j
B j = M

1 � B j � �i

No

Select randomly an agent !  from 
the network  

i

Calculate probability of interaction: 
! ,  where !pij = (1/2)dij/E dij = xi � xj

No

Successful 
interaction?  

!  ?dij � T

!     xi(t + �t) = xi(t) + R(xj(t) � xi(t))
Yes

!     xi(t + �t) = xi(t) + R(xj(t) � xi(t))
Yes

Figure 3.2: Flowchart of the algorithm of the Attraction-Repulsion Model including mass media.
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Our source code for this model can be found in Appendix A. This code includes a timer to monitor the time
expended for each simulation. Due to the probabilistic nature of the model, the duration of a full simulation may
vary based on the parameters used�. On average, the program processes around 8000 steps per second. For instance,
a complete simulation of 2 ⇥ 106 steps typically takes approximately 4 minutes, with some variability (±1 minute).

All the parameters that intervene in the model dynamics are summarized in Table 3.1. In our pursuit of preventing
polarization, we configure the parameters to ensure that without media intervention, the system would tend toward
a polarized state. Specifically, we set R = 0.25, E = 0.1, and T = 0.25 in the model discussed in Section 2.4. As
illustrated in Figure 2.6 and Figure 2.7, these parameter values position the model just before the transition region
between polarization and consensus. Additionally, we examine the system for the parameters R = 0.25, E = 0.1, and
T = 0.40, where the model is already located within the consensus region.

Parameter Symbol Meaning Default Value
Mass media message xM Opinion of the mass media [0 � 1]
Mass Media Intensity B Probability of the media to be the source of attention [0 � 1]
Tolerance T Distance within interactions are attractive and beyond

are repulsive
0.25 & 0.40

Responsiveness R The fractional distance an actor’s ideological position
moves as a result of an interaction

0.25

Exposure E The degree to which actors interact with dissimilar
points of view expressed as the halving distance

0.1

Number of Agents N Actor that belong to the network 100
Initial Mean and
Standard Deviation

µ0, �0 Characterized the initial distribution of the agents
opinion’s

0.5, 0,2

Table 3.1: Parameters used in the Attraction-Repulsion Model including mass media.

Once we have described the dynamics of the model, let us introduce the statistical parameters that will help us
to characterize the system both during the time evolution of the agents and the asymptotic behavior.

3.2 Statistical parameters

To measure the polarization, we employ the variance of the system �2(t), defined as the square of the standard
deviation. It is given by

�2(t) =
1
N

(
NX

i=1

(xi(t) � µ(t))2), (3.5)

�Systems with less frequent successful interaction expends less time.
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where µ(t) is the mean value of the opinion attribute of the N agents at time t. Maximum polarization is reached
when �2 = 0.25, that is, exactly half of the population opinions in one extreme, and the other half of opinions located
in the other extreme. Minimum polarization occurs when �2 = 0. This happens when all the opinions converge to
a single point, so we call this state a complete consensus. Also, we study the system’s behavior after a considerable
pass of time ⌧ to ensure that we are in a more stable state without abrupt changes in the mean values. For this reason,
we use the averaged standard deviation over a long time t f

� after ⌧ transients. It is given by

�2 =
1

t f � ⌧

t fX

t=⌧

�2(t). (3.6)

Since we are treating stochastic components, we can have anomalous behavior if we run the simulation only
once. So, to ensure we have characterized the system correctly, we have to run the model several times16. Thus, we
consider h�2i as the averaged variance over n di�erent realizations of a simulation

h�2i = 1
n

nX

i=1

�2
i . (3.7)

We call a cluster s⇠ to the set of elements that share the same state. We use the criteria of the same state for the
nodes if their state variables belong to the same interval I⇠ of size ✏,

✏ =
1
K
. (3.8)

where K † is the total number of clusters in the range [0, 1].
Then, the set of elements that correspond to a cluster s⇠ is

s⇠ =
n
xi 2 [0, 1] : xi 2 I⇠, i 2 {1, 2, . . . ,N}, ⇠ 2 {1, 2, . . . ,K}

o
, (3.9)

where N is the total number of nodes. In this way, the normalized size of the set of elements belonging to a cluster
s⇠ at time t will be

S ⇠(t) =
1
N
|s⇠ |. (3.10)

In this context, we use S max(t) as the normalized size of the largest cluster at time t given by:

S max(t) = max {S ⇠(t), ⇠ 2 {1, 2, . . . ,K}}. (3.11)

If the normalized quantity S max(t) is one, the system reaches consensus in a single point. On the other hand, if
this quantity tends to zero, the system has diverse opinions. We can define the averaged normalized largest cluster
of the system over a long time t f after ⌧ transients given by

S max =
1

t f � ⌧

t fX

t=⌧

S max(t), (3.12)

�In this chapter, to measure the final state, we use a total of 2.0 ⇥ 106steps.
†In this work, we set K = 50 di�erent clusters. We made this choice because it provides a fine-grained view that allows us to observe

meaningful distributions without encountering visibility issues. Additionally, we believe that this quantity e�ectively covers a wide range of
possible clusters that can form in the opinion spectrum.
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and the averaged over n realizations of the experiment will be

hS maxi =
1
n

nX

i=1

S i
max. (3.13)

Also, we use the quantity S M(t) as the normalized size of the set of agents possessing the same state that the field
at time t. Then, we define the quantity

�M = S max(t) � S M(t), (3.14)

as the di�erence in normalized sizes between the largest cluster and the cluster containing the media. The averaged
quantity over a long time t f after ⌧ transients will by

�M =
1

t f � ⌧

t fX

t=⌧

�M(t). (3.15)

We then define the di�erence of sizes between the largest cluster and the cluster containing the media averaged
over n realizations as

h�Mi =
1
n

nX

i=1

�i
M . (3.16)

If this quantity equals zero, it implies that the largest cluster contains the same position as the media. On the
other hand, if this quantity is equal to the size of the largest cluster, any actor follows the position of the media. For
better clarity, Table 3.2 summarizes the statistical parameters used to analyze the system.

Parameter Symbol Meaning Values range
Instantaneous variance �2(t) Measure polarization at time t [0 � 0.25]
Averaged variance over realizations h�2i Measure polarization over n realizations of the

same experiment
[0 � 0.25]

Instantaneous size of the largest
cluster

S max(t) Measure the size of the largest cluster with the
same opinion at time t

[0-1]

Averaged size of the largest cluster
over realizations

hS maxi Measure the size of the largest cluster over n
realizations of an experiment

[0-1]

The size di�erence between the
largest cluster and the cluster
containing the media at time t

�M(t) Measure the di�erence between the largest
cluster and the cluster with the same opinion
that the media at time t

[0-1]

Averaged size di�erence between
the largest cluster and the cluster
containing the media over
realizations

h�Mi Measure the size of the largest cluster and the
cluster with the same opinion that the media
over n realizations of an experiment

[0-1]

Table 3.2: Statistical parameters used for studying the Attraction-Repulsion Model including mass media.
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3.3 Results for low tolerant population

For this section, the parameter values of the system were chosen so that, without applying the field, it would evolve
to a state just before the transition point between polarized and non-polarized systems (refer to Figure 2.6). The
system is characterized by the default parameters T = 0.25, R = 0.25, and E = 0.10, as shown in Table 3.1. In fact,
without considering the field, the system exhibits a high degree of polarization h�2i = 0.245. We then investigate
the impact of varying both xM and B on the system’s dynamics.

3.3.1 Global network

We started studying a global network where all nodes are connected, so each agent has N � 1 neighbors. Within this
network, all actors possess a certain probability of interaction with each other. Also, all the nodes can interact with
the field, as it was mentioned.

Figure 3.3 illustrates di�erent population snapshots at various time points. Each column corresponds to di�erent
B values, and the rows to di�erent time steps. The colors of the bins represent the opinion position that ranges from
zero (blue) to one (red). The yellow represents the cluster with the same opinion as the media. Figure 3.3 (a) shows
the evolution of the system without applying the field (B = 0.00) (from up to down). We corroborate that at the final
state after 2.0 ⇥ 106 steps, half of the population aligns with one extreme viewpoint while the other half adheres to
the opposing perspective. The system reaches extreme polarization, as expected. However, patterns emerge as we
introduce the field’s influence.

Our initial focus was analyzing scenarios where the media holds a central position, with xM = 0.50 while
changing the values of B. For instance, when B = 0.10 (Figure 3.3 (b)), initially, a majority of agents align with
the media message, and there are some actors at each extreme. Yet, over time, a significant portion of the agents
following the media gradually adopt the extreme positions, culminating in complete polarization after 2.0⇥106 steps.
Similarly, when we examine the case of B = 0.50 (Figure 3.3 (c)), we observe a similar trend. In the early stages,
a substantial fraction of agents follow the media’s message, but as time progresses, some of them go to extreme
positions. Nonetheless, the media is strong enough to retain many actors aligned with its position for an extended
duration. These results show us that the field can attract the actors’ opinions, especially for short periods of time.
However, it loses attraction as time goes on.

To analyze the temporal evolution of polarization, we can examine the agents’ behavior by considering the
variance of the system over time. In Figure 3.4 (a), we can see that without the intervention of the field (B = 0), the
system reaches maximum polarization after about 1.0⇥ 106 steps. However, upon introducing the field, the variance
curve begins to flatten. We see that for B = 0.20, the maximum polarization is reached after more than 2.0 ⇥ 106

steps, while for higher values, the system does not reach this extreme state even after 2.5 ⇥ 106 steps.
Also, Figure 3.4 (b) shows the behavior of the di�erence between the largest cluster and the cluster with the same

opinion that the media over time. When we apply the field, we see that the group with the same opinion as the media
becomes the largest cluster. Nevertheless, there comes a point where this cluster is no longer the largest. This shift
occurs later in time as we increase the value of B, and it becomes negligible for high field intensities. For example,
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B = 0.10B = 0.00 B = 0.50(a) (b) (c)

Figure 3.3: Snapshots of the system’s time evolution including mass media with central message xM = 0.5. Each
column represents a di�erent intensity field B, (a) B = 0.00, (b) B = 0.10, and (c) B = 0.50. Each row represents
the times at which the snapshots were obtained 0, 1.0 ⇥ 105, 1.0 ⇥ 106, and 2.0 ⇥ 106 of steps, respectively. Results
obtained for a global network of N = 100 agents with T = 0.25, E = 0.1 and R = 0.25.
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for B = 0.30, it happens after 7.0 ⇥ 105 steps, but for B = 0.40, this occurs after 1.6 ⇥ 106 steps, and for greater
values, it is not reached in 2.5 ⇥ 106 steps.

(a) (b)

Figure 3.4: E�ects of the field intensity B and central message position xM = 0.50 in the system over time. (a)
Variance �2(t) as a function of time. (b) Di�erence �M(t) between the largest cluster and the cluster with the same
opinion that the media over time. Results for N = 100 agents with T = 0.25, E = 0.1 and R = 0.25.

Another interesting observation arises when the media adopts an extremist position. These values are around
xM = 0.0 or xM = 1.0. For instance, in Figure 3.5, we observe the progression of agents’ opinions when the media
adopts an extremist position xM = 0.0. In Figure 3.5 (a), we see the results for B = 0.10. For 1.0 ⇥ 105 steps, a
group is formed in the extreme where the media is located, some actors are in the middle region, and the rest are
located around the other extreme. After 1.0⇥106 steps, the system converges to a state with two extreme groups with
asymmetrical sizes. Counterintuitively, we find that the largest cluster opinion is located opposite to the opinion of
the field. As time passed, the other extreme capitalized more actors that previously were in the middle region. This
e�ect gets more pronounced for high field intensities, as can be observed when comparing Figure 3.5 (a) and Figure
3.5 (b). Indeed, for B = 0.5, rapidly (1.0 ⇥ 105 steps), most of the population is located near one. Then, the media
repels even more this group, and in the end, most of the population is located in the other extreme. The cluster of red
nodes expands from around 0.6 of the population for B = 0.1 to over 0.8 for B = 0.5, exemplifying this heightened
shift.

For a more general study, we can analyze the e�ect of di�erent media positions and field intensities in the system’s
configuration after 2.0 ⇥ 106 steps. In Figure 3.6 (a), we plot the averaged variance over 50 realizations h�2i against
the intensity of the field B for di�erent message positions xM . As we can see, in general, the media’s intervention
reduces the system’s variance as we increase B. For intermediate values of the media (xM = 0.5), we have that the
variance is not reduced for weak-intensity media. However, as we increase the intensity, at around B = 0.20, it starts
to reduce the system’s polarization. In fact, central messages depolarise the most until a variance of h�2i = 0.05 for
strong values of B.
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B = 0.10 B = 0.50(a) (b)

Figure 3.5: Snapshots of the system’s time evolution including mass media with an extremist message xM = 0.00.
Each column represents a di�erent intensity field B, (a) B = 0.10, and (b) B = 0.50. Each row represents the times at
which the snapshots were obtained 0, 1.0 ⇥ 105, and 1.0 ⇥ 106 of steps, respectively. Parameters: T = 0.25, E = 0.1
and R = 0.25 for a global network of N = 100 agents.

On the other hand, for an extreme position such as xM = 1.0, it reduces more than the central message case for a
low-intensity field, and for a high-intensity field, it reduces less than in the central case. This phenomenon is due to
the fact that we are reaching a majority in the opposite extreme that is intensified with high values of B.

Finally, for a central right position xM = 0.76, we have a rapid reduction of the polarization for low values of B.
The variance is reduced until half of the value of the system without the field for B = 0.08. Then, as we increase B,
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we get a slight variance increase until around h�2i = 0.15. However, after arriving at a threshold B value (around
B = 0.20), it does not vary anymore, although we increase the intensity of the field.

A more general description of h�2i is shown in Figure 3.6 (b), where we calculate this parameter for a grid of
parameters as a function of xM and B. First, in this graph, we can notice that the results are symmetric with respect
to xM = 0.50. Also, we notice that the system has di�erent regions. First, we see that for central message values
from xM = 0.30 to xM = 0.70, we get polarized systems for low values of B, but as we increase B, the polarization
decreases considerably. This becomes the best policy to consider for the media to reduce polarization in a network.
Also, we have the region for central left (or right) messages where we have a rapid decrease in the polarization for
low values of B. Then, it stabilizes in an intermediate value of h�2i although we increase B. For the region of
extremist messages, we get that for low B values, the system is polarized. However, as we increase it, the system
reduces the polarization since we get the asymmetrical extremist groups described in Figure 3.5.

(a) (b)

Figure 3.6: E�ects of the field intensity B and the message position xM in the polarization of the opinions after
2.0 ⇥ 106 steps. (a) Averaged variance h�2i over 50 iterations as function of B for di�erent values of xM . (b) A heat
map where the color represents the averaged variance h�2i over 20 iterations, and the grid depends on B and xM .
The dark zones mean low polarization, while the yellow zones mean high polarization. Results obtained for a global
network of N = 100 agents with T = 0.25, E = 0.1 and R = 0.25.

For a better understanding of the size of the largest cluster formed, we analyze the quantities hS maxi and h�Mi as
functions of B and xM . The results are shown in Figure 3.7 (a) and Figure 3.7 (b). We can notice some remarkable
results summarized in four regions. First, for weak central messages, we get that the largest cluster is around half of
the population, and any of the actors follow the position of the media. Also, considering that the variance is maximum
in this region, we are in the region where, after 2.0 ⇥ 106 steps, the population becomes extremely polarized.

Second, for a strong central message region with the lowest variance, we get that the largest cluster is over half of
the population and follows the mass media message. So, we are in a region where the media attacks a considerable
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part of the network. Third, for extreme values of xM , we notice that the largest cluster is over half of the population,
and this size increases with B. However, it does not follow the media message. In fact, we found an asymmetric
polarization in this region, with some actors following the media and most of the population on the other extreme
position.

Finally, for the central right (or left) media message, we corroborate that the main change of the statistical
parameters is for low values of B, and then these stabilize. So, for high intensities, they have no new e�ects. Here,
we see that the size of the largest cluster is slightly larger than half of the population. Also, the di�erence with the
group with the same opinion that the media is small. This means that we have two main clusters, one being the
largest and the other a little smaller, which possess the same opinion as the media.

(a) (b)

Figure 3.7: (a) Normalized size of the largest cluster hS maxi as a function of the field intensity B and the message
position xM . (b) Di�erence �M of sizes between the largest cluster and the cluster with the media opinion on the
plane (xM , B). Results averaging 1000 steps after 2.0 ⇥ 106 transients, averaging over 20 realizations for each data
point.

3.3.2 Local network

To explore the global field’s role on a local network, we consider a ring network where the agents have two neighbors,
one on each side, considering boundary conditions. All the agents will be under the influence of an external global
field. Figure 3.8 (a) shows the scheme of the resulting network.

The results of the simulations for a system that, without the intervention of the media, would lead to extreme
polarization are shown in Figure 3.8. In general, we found that the outcomes of the system are very similar to the
ones obtained for the global network. However, there are some di�erences in the intensity of the statistical quantities
calculated. In Figure 3.8 (a), we calculated h�2i as a function of xM and B. We can notice that the regions with
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extreme polarization for low values of B and central and extremist values of xM are lower than in the global network
case. Also, we see that the results for the central right or left regions are more homogenous across B than in the
global network. So, low or high values of B have the same e�ect on the polarization outcome.

Figure 3.8 (b) shows the normalized size of the largest cluster hS maxi. We see similar results to the fully-connected
network. A di�erence is that we have slightly lower values from central to the central left (or right) xM values.
Another di�erence is presented in Figure 3.8 (c), where we calculate h�Mi, we see that for central xM and low B
values, h�Mi is lower than in the global case, so there is a greater tendency to follow these kinds of mass media
messages. As a result, we can say that the media is more convincing in a local network than in a global one for a
central message.

(a)
(b)

(c) (d)

Figure 3.8: (a) Diagram of a ring network including mass media. Statistical quantities as a function of the field
intensity B and the message position xM , (b) variance h�2i, (c) the normalized size of the largest cluster hS maxi, and
(d) di�erence h�Mi of the normalized sizes between the largest cluster and the cluster containing the media. Results
were obtained for a ring network of N = 100 node by averaging 1000 steps after 2.0 ⇥ 106 transients and averaging
over 20 realizations.
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3.3.3 Small world network

Finally, we explore a complex network. Specifically, we reproduce the results for a small world network of N = 100
agents with average degree hki = 4. Figure 3.9 (a) shows a representation of this network, including the media.

We can see the results in Figure 3.9 for the statistical quantities as a function of B and xM . In Figure 3.9 (b),
we calculated the averaged variance h�2i. Figure 3.9 (c) shows the averaged normalized size of the largest cluster
hS maxi while Figure 3.9 (d) represents the di�erence h�Mi of the largest cluster with the size of the cluster having
the media opinion. We notice that the results are similar to those obtained for the global and local networks. In fact,
for the mentioned di�erences between the global and ring networks, we can notice that the small-world network is
in the transition between these di�erences.

(a)
(b)

(c) (d)

Figure 3.9: (a) Diagram of a small-world network including mass media M with intensity B. Statistical quantities as
a function of the field intensity B and the message position xM , (b) variance h�2i, (c) normalized size of the largest
cluster hS maxi, and (d) di�erence h�Mi of the normalized sizes between the largest cluster and the cluster containing
the media. Results were obtained for a small-world network of N = 100 nodes by averaging 1000 steps after 2.0⇥106

transients and averaging over 20 realizations.
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3.4 Results for a highly tolerant population

We can now study the system for a population that, without the media’s intervention, would reach a consensus. That
is a highly tolerant population. Specifically, we study the system’s evolution for T = 0.40, E = 0.1, and R = 0.25 in
a global network, including an external global field like the one shown in Figure 3.1.

Figure 3.10 (a) shows the e�ects on the polarization measure in terms of xM and B. We notice that in the range
from xM = 0.4 to xM = 0.6 (central media opinions), the system still converges to about a single opinion for all
values of B. This is corroborated with Figure 3.10 (b) where hS maxi tends to one for this region. The same result
is repeated for low values of B and all the messages’ positions of the media. However, as we increase B for central
left (or right) to the extremist media messages, we get that the variance of the system starts to grow, increasing the
polarization. Also, in Figure 3.10 (b), we notice that from central left (or right) to extremist messages and high
values of B, the consensus (hS maxi ⇠ 1) disappears, and the largest cluster now has a smaller number of agents.

a)

b)

c)

Figure 3.10: E�ects of the field intensity B and its message position xM for each pair (xM , B) in the (a) variance
h�2i, (b) average size of the largest cluster hS maxi, and (c) di�erence h�Mi with the size of the cluster containing the
media. Results were obtained for each data point by averaging 1000 steps after 2.0 ⇥ 106 transients and averaging
over 20 realizations.

Figure 3.10 (c) shows another finding about the opinion that dominates the system. First, without applying the
field (B = 0), the system reaches consensus in di�erent opinion positions for each simulation. Then, when we include
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the field, we notice that it attracts most of the population from xM = 0.16 to xM = 0.84. For this reason, h�Mi is
zero. For the extreme message values, we have the opposite e�ect. Although it attracts some actors, the majority
group is formed in another cluster, similar to the result of the low-tolerant population.



Chapter 4

The Coevolutionary Attraction-Repulsion
Model

In this chapter, we incorporate the rewiring process into the ARM of Axelrold. In Section 2.4, we reviewed the model
considering only changes in the opinions of the agents, which means that we had only dynamics for the state variable
of the actors. In that model, the links between the nodes were always the same, and the nodes had a certain probability
of interacting between them. As discussed in Section 2.6, a system can also have dynamics in the network itself.
In this chapter, we create a model with co-evolution where the node dynamics includes the attraction-repulsion rule
while the rewiring process is motivated by the Holme-Newman conditions30 where the disconnections are random,
and new links are formed with those with whom the agent is tolerant.

We start the chapter by considering the ARM for a random network, which will be the base topology for applying
the rewiring process. Then, we introduce the coevolutive extension of the model. Finally, we analyze the results
of the model in terms of the rewiring parameter and the tolerance bound and their impact on the polarization of
opinions.

4.1 The Attraction-Repulsion Model in a random network

In the model described in Section 2.4 we explored a global network. Since all the agents were connected between
them, it is not possible to apply a rewiring process in this system if we keep constant the number of links in the
network. For this reason, we start this chapter by exploring the ARM in another network where each node i has a
di�erent set of neighbors ⌫i that allows us to break edges and then create new connections.

First, we simulate the di�erent scenarios without changes in the topology in a random network with an average
degree hki = 4. This means that all the nodes have, on average, four neighbors, creating a local network. A particular
case is shown in Figure 4.1 where we simulate the system for the parameters T = 0.20, E = 0.1 and R = 0.25 for
a random network of N = 100 actors. As observed, this system evolves from an initial Gaussian distribution in the

33
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actors’ opinions (Figure 4.1 (a)) to a state of maximum polarization (Figure 4.1 (b)) after approximately 5.0 ⇥ 105

steps. In the final network, coexistence between extreme positions is evident, with half of the population adopting
an extremist left position and the other half holding an extremist right position. Nevertheless, there are many links
joining agents with these contrary opinions.

(a) (b)

Figure 4.1: Initial and final states of a system of the Attraction-Repulsion Model in a random network of 100 agents
with hki = 4 considering R = 0.25, T = 0.20, and E = 0.1. The system underlies an evolution of the distribution of
opinions from (a) a Gaussian distribution at the beginning to (b) an extremely polarized at the convergent state.

The general results for these systems are shown in Figure 4.2. Similar to previous chapters, we quantify the
polarization by the averaged variance over realizations h�2i for the asymptotic state. h�2i = 0 means convergence to
a single opinion while h�2i = 0.25 implies an extreme polarization. Figure 4.2 (a) shows the variance after 1.0⇥ 106

steps in terms of the responsiveness R and tolerance T , keeping fixed the exposure E. Figure 4.2 (b) shows the
variance after 2.0 ⇥ 106 steps in terms of E and T , keeping fixed R. We can notice that both phase diagrams (R,T )
and (E,T ) are almost equal to the ones calculated for the global network in Section 2.4 in Figure 2.6 (b) and Figure
2.7 (b), respectively. This implies an interesting result: the polarization outcomes in the ARM are independent of
whether the network is local or global.

A motivating result for considering rewiring based on homophily is shown in Figure 4.2 (b). Here, the polarization
in the region for low tolerance T  0.30 has an interesting dependence on the exposure E. As we see, in the region
of low values of E, we get less polarization than for high values of E, where we reach extreme polarization. Thus,
adding rewiring could be an e�ective mechanism that can reduce polarization by limiting repulsive interaction among
intolerant actors with di�erent opinions.
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(a) (b)

Figure 4.2: Phase diagrams representing the averaged variance over 20 realizations for a random network of N = 100
agents with hki = 4 for (a) (R, T ) and (b) (E, T ) grids after 1.0 ⇥ 106 steps and 2.0 ⇥ 106 steps respectively. Yellow
means extreme polarization, while dark blue means convergence to a single opinion.

4.2 The Coevolutionary Attraction-Repulsion Model

We consider an Erd�s–Rényi or random network of N nodes {i = 1, · · · ,N} with mean degree hki = 4 that represents
social agents. Each node i has a set of neighbors ⌫i(t) of degree ki which may vary in time. Also, each agent has
a state variable xi(t) 2 [0, 1] that represents an opinion. In the beginning, all the opinions are initiated following a
Gaussian distribution with a mean of 0.5 and a standard deviation of 0.2 (see Section 2.4 for an explanation of these
conditions). Then, at each step time, an agent, i, can have both changes in its set of neighbors or in its state. So, we
introduce the probability of rewiring Pr to control how many interactions occur in the topology. With a probability
Pr, we apply the link update process, and with probability (1 � Pr), the interactions are in the nodes’ opinions. In
the limit Pr ! 1, we have only updates in the network links. On the other hand, in the limit Pr ! 0, we have only
changes in the opinions. This limit case corresponds to the system studied in Section 4.1 given by only the ARM.

For the topology dynamics of an agent i, we randomly select an agent j from its neighbors and cut their link.
Subsequently, we choose an agent l such that |xi � xl| < T , and we create a link between them. Each disconnection
process is followed by creating a new link, so we keep both the total number of links and the average degree of the
network hki constant. This rewiring process is based on the homophily principle, where agents only connect with
the actors whose opinion is inside their confidence threshold. In the space of parameters (d, r) discussed in Section
2.6, these criteria of disconnection and connection correspond to the values (d, r) = (0.5, 1), commonly referred to
as the Holme-Newman conditions30.

An illustration of the rewiring mechanism is provided in the upper part of Figure 4.3. In the figure, the color
of the nodes represents their opinions, ranging from the bluest nodes representing an opinion x = 0 to the reddest
representing an opinion x = 1. As we see, with probability Pr, the agent i (sky blue) disconnects from a randomly
selected neighbor j and then connects with a similar node l (blue).
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On the other hand, for the opinions dynamics, we consider the two rules of the ARM mentioned in Section 2.4.
The first is that the probability of interaction between two agents i and j is given by (1/2)di j/E where di j is their
opinion distance. The second is the attraction-repulsion rule, where interactions are attractive if di j is inside the
tolerance threshold (di j  T ) and repulsive if it is outside (di j > T ). For simplicity, we use the same parameter of
tolerance T for both the node and the rewiring dynamics. So, agents will use the same confidence-bounded threshold
for having attractive interactions and creating new connections.

An illustration of the nodes’ dynamics is presented in the lower section of Figure 4.3. As we see, with probability
1 � Pr, we calculate the probability of interaction between agent i and a randomly selected neighbor j. Then, we
apply the attraction-repulsion rule where we notice that agent i approaches agent j if their opinion distance is inside
the threshold; otherwise, it moves away.

!  
Rewiring

Pr

!  1 � Pr

!dij � T !dij > T

i
j

i
j

l

i
j i

j

!dil � T

!( 1
2 )dij/E

Figure 4.3: Schematic illustration of the coevolutive model. With probability Pr, the rewiring process takes place
where the agent i breaks random a link with one of its neighbors and creates a new link with an agent l that has a similar
opinion inside its confidence bound T . On the other hand, with probability 1 � Pr we apply the attraction-repulsion
rule.

The dynamics of the system follows this iterative algorithm:

1. Randomly chose an active agent i.

2. With probability Pr apply the rewiring process. Select randomly an agent j 2 ⌫i such that k j � 2�. Then, (i)
break the link between agents i and j†. (ii) Select random an agent l < ⌫i such that |xi � xl| < T and create the
link between nodes i and l.

�We apply this condition to prevent isolated nodes.
†In this step, we have to ensure that there exists a node l < ⌫i such that |xi � xk | < T , to create a new link and complete the rewiring process.

Otherwise, we proceed to select another agent i.
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3. With probability 1 � Pr apply the node dynamics. (i) select the source of attention j. (ii) Calculate the
probability of interaction between agents i and j given by (1/2)di j/E where di j =

���xi � x j
���. (iii) For a successful

interaction, if di j  T , agent i approach agent j an amount of R times di j. Otherwise agent i moves away from
agent j, a number of R times di j

A flowchart that illustrates this algorithm is shown in Figure 4.4.

Select randomly an agent !  from 
the network  

i

With probability !  apply  node 
dynamics 

1 � Pr With probability !  apply rewiring 
process 

Pr

Select a neighbor !  and break 
the link between !  and !  

j � �i
i j

Create the link between !  and !i l

Is there an agent !  such 
that !  ?

l � �i
xi � xk < T

Yes

No

Calculate probability of interaction: 
!   where !(1/2)dij/E dij = xi � xj

No

Yes

Successful 
interaction?  

!  ?dij � T

!xi(t + �t) = xi(t) � R(xj(t) � xi(t))

Yes

Select source of attention !j No

!xi(t + �t) = xi(t) + R(xj(t) � xi(t))

Figure 4.4: Flowchart of the algorithm for the Coevolutionary Attraction-Repulsion Model.

Our source code for this model can be found in Appendix B. To optimize the code, we implement a stop
condition where if the variance of the system does not change within a range of 10�6 over 5⇥ 104 steps, the program
stops. Therefore, the computational cost depends on whether the system reaches a converged state or not�. The
time expenses also vary depending on whether it is interested in studying the entire simulation history or just the
asymptotic state†. The source code includes a function to measure the time of each simulation.

All the parameters that intervene in the model dynamics are summarized in Table 4.1. In our pursuit of preventing
�For example, using the parameters T = 0.20, E = 0.1, and R = 0.25, a system with Pr = 5 ⇥ 10�3 takes around 30 seconds to complete a

simulation, while a system with Pr = 5 ⇥ 10�4, takes around 3 minutes. Due to the stochasticity of the model, each repetition of a simulation has
a slightly di�erent convergence time.

†For reference, in the mentioned system with Pr = 5 ⇥ 10�3, the simulation time can increase from 30 seconds to around a minute and a half
if we save the entire history. Similarly, for the scenario with Pr = 5 ⇥ 10�4, the simulation time extends from approximately 3 minutes to around
9 minutes when the entire history is saved.
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polarization, we configure the parameters to ensure that without rewiring, the system would tend toward a polarized
state. We will then study the evolution of the system for di�erent values of probability of rewiring Pr and tolerance
T , which are the parameters that mainly intervene in the topology dynamics.

Parameter Symbol Meaning Default Value
Rewiring Probability Pr Probability of having dynamics on the topology [0 � 1]
Tolerance T Distance threshold within which two agents can get

connected. Also, distance within interactions are attractive
and beyond are repulsive

[0.1 � 0.25]

Responsiveness R The fractional distance an actor’s ideological position moves
as a result of an interaction

0.25

Exposure E The degree to which actors interact with dissimilar points of
view expressed as the halving distance

0.1 & 0.5

Number of Agents N Actor that belong to the network 100
Initial Mean and
Standard Deviation

µ0, �0 Characterized the initial distribution of the agents opinion’s 0.5, 0,2

Table 4.1: Parameters used in the Coevolutionary ARM.

4.3 Results

We initiate our analysis with a system that would naturally evolve into maximum polarization if rewiring links were
not introduced (T = 0.2, R = 0.25, E = 0.1). Figure 4.5 shows snapshots of the network for di�erent values of Pr

for each column and di�erent time steps for each row.
For a low rewiring probability Pr = 5.0⇥10�4, shown in Figure 4.5 (a), the system exhibits the following behavior.

Initially, after 1.0 ⇥ 105 steps, polarized opinions coexist in the same network. Subsequently, after 1.0 ⇥ 106 steps,
two distinct clusters with opposing viewpoints emerge, displaying strong internal connectivity but limited inter-
cluster links. Such clusters, characterized by sharing and disseminating the same content, are often called "echo
chambers"54. Echo chambers have been experimentally observed in social networks11, 12, and there is currently
significant interest in developing theoretical models to understand them55, 56. In this regard, an extension of our
model can provide a theoretical framework for studying the formation of echo chambers. Finally, at 2.0 ⇥ 106 steps,
the system has already converged into a fragmented network, with approximately half of the population embracing
one extremist viewpoint and the other half adopting the totally opposite opinion.

However, a central group starts to emerge as we increase the rewiring probability, e.g., for Pr = 5.0 ⇥ 10�3. In
Figure 4.5 (b), we see that after 5.0⇥ 104 steps, the system coexists with two extremist groups and a cluster of actors
with central opinions. At 1.5 ⇥ 105 steps, the system forms three distinct communities, with two of them leaning
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Pr = 0.0050Pr = 0.0005 Pr = 0.0500(a) (b) (c)

Figure 4.5: Snapshots of the system’s time evolution for di�erent rewiring probabilities. Each column represents a
di�erent Pr, and each row represents the times at which the snapshots were obtained. (a) For Pr = 5.0 ⇥ 10�4, (b)
Pr = 5.0⇥ 10�3, and (c) Pr = 5.0⇥ 10�2. Parameters: T = 0.20, E = 0.1 and R = 0.25 for an initial random network
with hki = 4 of N = 100 agents.
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toward extremist opinions and the third cluster maintaining central viewpoints. These communities have limited
interconnections. Finally, after 5.0⇥105 steps, the communities break their links, and the system converges in a state
with three network fragments, where two of them have opinions at each extreme, and the largest one has a central
opinion.

This e�ect intensifies by increasing Pr. Figure 4.5 (c) displays snapshots of the system’s evolution for Pr =

5.0⇥10�2. After 2.5⇥104 steps, a predominant central group coexists with actors close to x = 0 and x = 1 opinions.
Then, at 7.5 ⇥ 104 steps, these groups give rise to the presence of three communities. Finally, at 1.15 ⇥ 105 steps,
the communities fragment into three components. We see that the cluster possessing a central opinion becomes the
majority of the population. Notice that this emergent central group has substantially increased its size from around
40% of the population in the Pr = 5.0 ⇥ 10�3 case to about 70% of the actors for Pr = 5.0 ⇥ 10�2.

Comparing the three scenarios, we notice that there is a faster convergence to the final state as we increase Pr.
Also, interestingly, we observe that the emergent central group varies its location near the opinion position x = 0.5
in each repetition of the simulation. For example, if we repeat the simulation 50 times with Pr = 5.0 ⇥ 10�2, the
central group, on average, is located at x = 0.494 ± 0.102, where the error 0.102 represents the standard deviation
across realizations. When Pr = 5.0 ⇥ 10�3, the central group is located at x = 0.493 ± 0.083 on average.

To gain deeper insights into how the emergent central group contributes to the reduction in system polarization
over time, we examine the evolution of variance�2(t) over time for di�erent Pr values in Figure 4.6. In Figure 4.6 (a),
which corresponds to T = 0.20, we observe several trends. Initially, without rewiring (Pr = 0), the system reaches
maximum polarization after 1.0 ⇥ 106 steps. For low Pr values ( 1.0 ⇥ 10�3), the system exhibits near-maximum
polarization and converges at approximately 4.0 ⇥ 105 steps. Here, we do not have the presence of the central
group, and the system only fragments into two clusters. However, as we increase the rewiring to Pr � 5.0 ⇥ 10�3,
the reduction in polarization becomes apparent, with this e�ect becoming more pronounced with higher Pr values.
Notably, for Pr � 5.0 ⇥ 10�2, the variance decreases to �2  0.10. Additionally, we observe that increasing Pr leads
to quicker convergence to a stable state.

We have also studied the case for T = 0.25 in Figure 4.6 (b). We see that the network for Pr = 0.0 converges to
a state of maximum polarization after 1.5 ⇥ 106 steps. As expected, when we apply the rewiring, the polarization
levels decrease more significantly than in the case of T = 0.20. We see that for values Pr � 5.0⇥ 10�3, we get values
�2  0.10, and these continue decreasing with Pr. This region corresponds to the emergence of the central cluster
with high levels of population.

We proceed to quantify the size of the emergent central group. Similar to Section 3.2, we define a cluster s⇠
as the set of elements belonging to the same interval I⇠ of size ✏ = 1/K, where K represents the total number of
clusters within the range [0, 1]. In this context, a cluster ⇠ has a central opinion if its interval lies in the central
region. We consider that an interval is located in a central region when I⇠ 2 [0.24, 0.76]. We then define S central(t)
as the normalized size of the largest cluster with a central opinion at time t. S central(t f ) represents this largest cluster
at the asymptotic state. Additionally, we define hS centrali as the average normalized size of the largest central cluster
size over n realizations at the asymptotic state, given by:

hS centrali =
1
n

nX

i=1

S i
central(t f ). (4.1)
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(a) (b)

Figure 4.6: Variance �2(t) as a function of time for di�erent values of rewiring Pr, for (a) T = 0.20 and (b) T = 0.25.
Default parameters are E = 0.1 and R = 0.25 for a random network of N = 100 agents with hki = 4.

In Figure 4.7 (a), we observe the behavior of hS centrali at the asymptotic state in relation to the probability of
rewiring Pr. We notice that for di�erent values of tolerance, there is a critical P⇤r value where the central group
emerges. This suggests a phase transition, where there is a critical value P⇤r for each T value. Lower tolerance
populations require a higher P⇤r value for this transition. Furthermore, after the emergence of this cluster, its size
increases with Pr. In fact, the size of this group can overcome half of the population for su�ciently high rewiring
values. For a highly tolerant population, this group could become the whole population. As previously mentioned, the
central group’s location can fluctuate around the center, leading to di�ering consensus opinions across simulations.
These fluctuations arise from the probabilistic dynamics of the model and the variability in initial conditions. On
average, the central group is situated at x = 0.5 with a standard deviation of approximately ±0.1.

The emergence of this central group directly impacts the system’s polarization. Figure 4.7 (b) shows the averaged
variance over realizations h�2i as a function of Pr for di�erent tolerance values. The e�ect of reducing polarization
by introducing rewiring becomes evident, particularly as Pr increases. This e�ect leads to a decreasing curve,
transitioning from extreme polarization to low values h�2i  0.05. This e�ect is also achieved for low values of
tolerance. The logarithmic scale we are using for Pr is due to the high sensitivity that the variance has for low values
of Pr.

In Figure 4.7 (c) and Figure 4.7 (d), we repeat these calculations with a higher exposure value, E = 0.50. The
increased exposure implies a higher likelihood of agent-agent interaction, increasing the rate of opinion dynamics.
In Section. 2.4 we see how this probability of interaction behaves in Figure 2.3 (c).

As we see in Figure 4.7 (c), with the exposure value E = 0.50, the transition for having a central cluster occurs
in the Pr range of 10�1, in contrast to the E = 0.1 case where transitions occur within the range of 10�4 to 10�2. In
Figure 4.7 (d), we see that also the variance starts to reduce significantly in the range of 10�1. Although we need a
higher Pr value, we can decrease the polarization of the network significantly.

This reflects the competition between the dynamics of the nodes and the topology. While the first converges
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(a)
(b)

(c)
(d)

Figure 4.7: Averaged normalized size of the largest cluster belonging to a central group over realizations hS maxi as
a function of Pr for (a) E = 0.1 and (c) E = 0.5. Averaged variance over realizations h�2i as a function of Pr for (b)
E = 0.1 and (d) E = 0.5. Results calculated for N = 100 averaged over 50 realizations on a random network with
hki = 4 for constant R = 0.25.

to maximum polarization, the second converges to agreement. Thus, these findings align with the hypothesis that
minimizing interactions between dissimilar agents is an e�ective way to prevent or control polarization. In summary,
our model predicts that a high degree of rewiring based on homophily can prevent a system that would otherwise
undergo extreme polarization.



Chapter 5

Conclusions & Outlook

In this work, we have been able to implement and reproduce the results of the recent Attraction-Repulsion Model
(ARM) for the polarization of opinions proposed by Axelrod. et al. This agent-based model considers that actors
with similar opinions are more likely to interact, and those interactions are attractive, while dissimilar agents have less
probability of interacting, and those interactions are repulsive. Low tolerance leads to extreme polarization, while
high tolerance converges to consensus. Responsiveness (R) mainly influences the speed of reaching a convergence
state. Exposure (E) a�ects polarization, with low values preventing it and high values exacerbating it, particularly
among intolerant agents. After analyzing that model, we have extended it in two ways: i) adding a global field and
ii) making it coevolutive in opinions and connections.

First, we include the mass media as an external global field characterized by its intensity B and message position
xM . The model incorporates the feature that media is more likely to interact with agents with similar opinions than
those with di�erent views. Also, the model allows the mass media to have attractive or repulsive e�ects on the
agents, depending on their bounded confidence.

We found that a central mass media message can slow down the process of polarization for a system that, without
the action of the field, would evolve to maximum polarization. This is achieved by attracting actors to take an
opinion similar to the media. On the other hand, when the media takes an extremist message, it repels actors to the
other extreme, generating an asymmetric polarization with most of the population located in the opposite position of
the media message. Local networks exhibited similar trends, but the media’s persuasiveness was higher for central
messages. Complex networks, such as small worlds, fall between global and local networks in terms of polarization
behavior.

For a highly tolerant population that reaches agreement without the field’s intervention, we found that when
the media had central opinions (between xM = 0.4 and xM = 0.6), the system consistently achieved consensus,
irrespective of the field’s strength (B). In this region, we observed that the field attracted the population to its
opinions for central media messages, resulting in no di�erence (h�Mi = 0) between the cluster having the media
opinion and the largest cluster. However, for extremists and central left or right messages, increasing the field
intensity leads to higher variance and a more polarized population composition. In this case, the majority forms a
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distinct cluster from the media messages, similar to low-tolerant populations.
We have also introduced a Coevolutionary Attraction-Repulsion Model as a general framework for investigating

the interplay between opinion dynamics and topology evolution. We have presented a detailed algorithm for the
coevolutionary model, combining opinion dynamics based on attraction and repulsion with a rewiring process to
connect agents with similar opinions. We have examined the impact of varying the rewiring probability (Pr) on the
system behavior through several simulations. We have observed that by varying the probability of network rewiring
(Pr), we could e�ectively control the polarization dynamics in the system. Specifically, as Pr increases, a central
group of moderate opinions emerges, significantly reducing overall polarization. This phenomenon is accompanied
by a faster convergence to stable states, highlighting the importance of network rewiring in mitigating polarization.
Furthermore, our results revealed the occurrence of phase transitions depending on Pr and tolerance levels, shedding
light on the critical parameters that influence polarization dynamics. Overall, the coevolutive model o�ers valuable
insights into strategies for managing polarization in complex social networks, emphasizing the role of network
dynamics in shaping collective opinions.

In summary, the main contribution of the present thesis is that we have found two mechanisms that can control
or eliminate polarization of opinions: i) Global mass media with moderate messages in the opinion spectrum, ii)
Rewiring the social network based on homophily.

For future work, it would be valuable to extend the study to investigate the dynamics of polarization in heteroge-
neous populations, where individuals possess varying levels of tolerance. Exploring how polarization patterns emerge
in networks with diverse tolerance parameters could provide insights into real-world scenarios where individuals
exhibit varying degrees of open-mindedness.

Another interesting feature for exploring is to incorporate alternative criteria for network rewiring. By introducing
lower levels of homophily during the establishment of new connections, we can avoid network fragmentation. This
approach may yield diverse outcomes within the system. For example, it could result in the coexistence of a minority
of extremists alongside a predominant central group for high values of rewiring. Conversely, when rewiring occurs
less frequently, it may preserve the formation of echo chambers over time. Consequently, the Coevolutionary
Attraction-Repulsion Model can serve as a valuable theoretical mechanism for the formation of echo chambers, a
topic highly discussed nowadays.



Appendix A

Computer Code for the
Attraction-Repulsion Model with a Mass
Media

In this appendix, we provide our own code for simulating the Attraction-Repulsion Model, including mass media
as an external global field. This code was developed in Python by using the library NetworkX. The program can
generate data for only the asymptotic data or save the complete simulation history. Consequently, the code’s outputs
can be a text file containing nodes’ opinions for the last one thousand steps or a text file that records the history of
nodes’ opinions for every N steps. To obtain estimates of computational time, you can enable time measurement by
modifying the trange function as follows: disable=False.

The program includes functions for creating global, ring, and small-world networks with mass media. All our
statistical calculations were conducted using these output files. In the final section, the script incorporates the
experiment expA_grid that generates the data for the asymptotic states data for a grid 50 ⇥ 50 for B and xM over
twenty iterations. The code is parallelized using the multiprocessing library.

A more comprehensive version of the code that also adds the statistical analysis with the respective instructions
can be found in the GitHub repository https://github.com/mateocarpio/ARM-Global-Field.

1 #!/usr/bin/env python

2

3 #import libraries

4 import networkx as nx

5 import numpy as np

6 from tqdm import trange

45
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7 import math

8 from itertools import product

9 import os

10 import multiprocessing as mp

11

12 #Class to run and save the simulatios

13 class ARM_MM():

14 def __init__(self, params, iters, seed, savehist=True):

15 defaults = {’B’ : [0.25], ’XM’ : [0.0], ’N’ : [101], ’E’ : [0.1], ’T’ :

[0.25], ’R’ : [0.25], ’S’ : [500000]}

16 plist = [params[p] if p in params else defaults[p] for p in defaults]

17 self.params = list(product(*plist))

18 self.iters = iters

19 self.rng = np.random.default_rng(seed)

20 self.savehist = savehist

21

22 #Create intial opinions with the Mass Media opinion as the last node

23 def initializing(self, N, XM):

24 config = np.zeros(N)

25 config[N-1] = XM

26 for i in np.arange(N-1):

27 #initial Gaussian distribution

28 while True:

29 config[i] = self.rng.normal(0.5, 0.2)

30 if 0 <= config[i] and config[i] <= 1:

31 break

32 config = config.reshape(-1, 1)

33 init_config = config

34 return config

35

36 #Create complete network with MM

37 def complete_graph_MM(self, N, config):

38 G=nx.complete_graph(N)

39 for i in G.nodes:

40 G.add_nodes_from([i], opinion=config[i])

41 return G

42

43 #Create ring network with MM

44 def circulantMM(self, N, config):

45 G=nx.circulant_graph(N, [1])

46 for i in G.nodes:
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47 G.add_nodes_from([i], opinion=config[i])

48 #Including Mass Media

49 G.add_nodes_from([N-1], opinion=config[N-1])

50 #Add connections between the MM and all the nodes

51 for i in G.nodes:

52 if i!=N-1:

53 G.add_edge(N-1, i)

54 return G

55

56 #Small-world network including Mass Media

57 def small_world_MM(self, N, config):

58 G=nx.watts_strogatz_graph(N - 1, 4, 0.3)

59 contador=0

60 for i in G.nodes:

61 G.nodes[i][’opinion’] = config[i]

62 contador=contador+1

63 #Including Mass Media

64 G.add_nodes_from([N-1], opinion=config[N-1])

65 for i in G.nodes:

66 if i!=N-1:

67 G.add_edge(N-1, i)

68 return G

69

70 #Save the data in a .txt file

71 def save_data(self, G, iters, step, directory_name):

72 if step == 0:

73 with

open(f"./outputfolder/{directory_name}/history_iteration -{iters}.txt",

"w") as f:

74 for k in G.nodes:

75 f.write(str(k) + "\t")

76 f.write("\n")

77 with open(f"./outputfolder/{directory_name}/history_iteration -{iters}.txt",

"a") as f:

78 for k in G.nodes:

79 f.write("{:.6f}\t".format(G.nodes[k]["opinion"][0]))

80 f.write("\n")

81

82 #Save the last 1000 steps

83 def asymptotic_data(self, G, iters, step, S, directory_name):

84 if step == S-1000:
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85 with

open(f"./outputfolder/{directory_name}/asymp_steps_iter -{iters}.txt",

"w") as f:

86 for k in G.nodes:

87 f.write(str(k) + "\t")

88 f.write("\n")

89 with open(f"./outputfolder/{directory_name}/asymp_steps_iter -{iters}.txt",

"a") as f:

90 for k in G.nodes:

91 f.write("{:.6f}\t".format(G.nodes[k]["opinion"][0]))

92 f.write("\n")

93

94 #Dynamics of the network

95 def arm_MM(self):

96 for param in self.params:

97 B, XM, N, E, T, R, S = param

98 directory_name = "B_{:.2f}-XM_{:.2f}".format(round(B, 2), round(XM, 2))

99 if not os.path.exists("./outputfolder/"+str(directory_name)):

100 os.makedirs("./outputfolder/" + str(directory_name))

101 for it in range(self.iters):

102 config = self.initializing(N, XM)

103 G = self.circulantMM(N,config)

104 for step in trange(S, desc=’Simulating interactions’, disable=True):

105 #Choose a random node except mass media

106 i = self.rng.choice(np.delete(G.nodes,-1))

107 #Choose j as Mass Media with probability B

108 if self.rng.random() <= B:

109 j = N-1

110 else:

111 #Choose a random neighbor with probability 1 - B

112 j = self.rng.choice(np.delete(G[i],len(G[i])-1))

113 #Calcualte distance between opinions

114 dist = (abs(G.nodes[i]["opinion"] - G.nodes[j]["opinion"]))

115 #Calculate probability of interaction

116 prob = math.pow(0.5, dist/E)

117 if self.rng.random() <= prob:

118 #Condition for atrarction d < T

119 if dist <= T:

120 #i get closer to j, R times their distance

121 G.nodes[i]["opinion"] = G.nodes[i]["opinion"] + R *

(G.nodes[j]["opinion"] - G.nodes[i]["opinion"])
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122 else:

123 #Condition for repulsion d > T

124 G.nodes[i]["opinion"] = G.nodes[i]["opinion"] - R *

(G.nodes[j]["opinion"] - G.nodes[i]["opinion"])

125 #Set limits [0-1]

126 G.nodes[i]["opinion"] = np.maximum(0,

np.minimum(1,G.nodes[i]["opinion"]))

127 #Save history each N steps if requested

128 if self.savehist == True and step%N == 0:

129 self.save_data(G, it, step, directory_name)

130 #Save last 1000 steps

131 if step >= S-1000:

132 self.asymptotic_data(G, it, step, S, directory_name)

133 return G

134

135 def expA_grid(B = 0.5, XM = 0.5):

136 params = {’B’ : [B], ’XM’ : [XM], ’N’ : [101], ’E’ : [0.1], ’T’ : [0.25], ’R’ :

[0.25], ’S’ : [2000000]}

137 exp = ARM_MM(params, iters=20, seed=None, savehist=False)

138 exp.arm_MM()

139

140 if __name__ == "__main__":

141 #Number of laptop CPUs to be used

142 n_cpu = mp.cpu_count()

143 # Call Pool

144 pool = mp.Pool(processes=n_cpu)

145 # Define ranges of XM and B values

146 B_range = np.arange(0, 1.0 + 1/50, 1/50)

147 XM_range = np.arange(0, 1.0 + 1/50, 1/50)

148 # Create a list of tuples containing all combinations of XM and B values

149 param_tuples = [(B, XM) for B in B_range for XM in XM_range]

150 # Call expC_grid for all parameter tuples using pool.map

151 results = pool.starmap(expA_grid , param_tuples)

152 # Close the pool

153 pool.close()





Appendix B

Computer code for the Coevolutionary
Attraction-Repulsion Model

In this Appendix, we share our code for the simulation of the Coevolutionary Attraction-Repulsion Model. This
code was developed in Python by using the library NetworkX. The program can save the network data for the entire
simulation history or only in the asymptotic state, stored in a folder called "networks." The networks are saved using
the pickle library. When saving the complete history, the networks will be generated at intervals of every N steps
until the system reaches either a convergence state or the maximum time steps limit. When only the asymptotic state
is needed, the program will save only the last network if the system reaches convergence. Otherwise, it will save
the last one thousand networks before reaching the time steps limit. To obtain estimates of computational time, you
can enable time measurement by modifying the trange function as follows: disable=False. All our statistical
calculations were performed using these output files.

In the final section, the script includes the experiment expA_Pr_T, which generates data for asymptotic states
across a range of Pr values for di�erent T values over fifty iterations. The code is parallelized using the multipro-
cessing library.

A more comprehensive version of the code that includes the statistical analysis with the respective instructions
can be found in the GitHub repository https://github.com/mateocarpio/Coevolutionary-ARM.

1 #!/usr/bin/env python

2

3 #import libraries

4 import networkx as nx

5 import numpy as np

6 from tqdm import trange

7 import math
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8 from itertools import product

9 import os

10 import pickle

11 import multiprocessing as mp

12

13 class ARM_Coevolution():

14 def __init__(self, params, iters, seed, savehist=True):

15 defaults = {’N’ : [100], ’E’ : [0.1], ’T’ : [0.25], ’R’ : [0.25], ’S’ :

[500000], ’Pr’ : [0.5]}

16 plist = [params[p] if p in params else defaults[p] for p in defaults]

17 self.params = list(product(*plist))

18 self.iters = iters

19 self.rng = np.random.default_rng(seed)

20 self.savehist = savehist

21 self.directory_name = "Pr_{:.5f}-T_{:.2f}".format(round(plist[5][0], 5),

round(plist[2][0], 2))

22

23 #Create intial opinions

24 def initializing(self, N):

25 config = np.zeros(N)

26 for i in np.arange(N):

27 #initial opinions follows a Gaussian distribution

28 while True:

29 config[i] = self.rng.normal(0.5, 0.2)

30 if 0 <= config[i] and config[i] <= 1:

31 break

32 config = config.reshape(-1, 1)

33 init_config = config

34 return config

35

36 #Create the random network

37 def random_network(self, N, config):

38 G = nx.random_regular_graph(4, N)

39 for i in G.nodes:

40 G.add_nodes_from([i], opinion=config[i])

41 return G

42

43 #Save the network

44 def save_network(self, G, step, directory , it):

45 if not os.path.exists("./outputfolder/"+str(directory)+"/networks"):

46 os.makedirs("./outputfolder/" + str(directory)+"/networks")
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47 with open(f"./outputfolder/{directory}/networks/net_iter -{it}_step-{step}",

’wb’) as f:

48 pickle.dump(G, f)

49

50 #Save the asymptotics networks

51 def save_asymp_network(self, G, step, directory , it):

52 if not os.path.exists("./outputfolder/"+str(directory)+"/networks"):

53 os.makedirs("./outputfolder/" + str(directory)+"/networks")

54 with

open(f"./outputfolder/{directory}/networks/asympNet_iter -{it}_step-{step}",

’wb’) as f:

55 pickle.dump(G, f)

56

57 #stop conditon

58 def test_if_can_stop(self, G, vars):

59 opinions = nx.get_node_attributes(G, "opinion").values()

60 variance = np.var(list(opinions))

61 vars.append(variance)

62 _res = False

63 _reason = None

64 counter = 0

65 if len(vars) > 100:

66 for i in range(100):

67 if abs(vars[-1] - vars[-(i+1)]) < 10**(-6):

68 counter +=1

69 if counter == 100:

70 _res = True

71 _reason = ’No variance change’

72 return _res, _reason, vars

73

74 #Dynamics based on the attraction -repulsion rule

75 def node_dynamics(self, G, i, T, R, E):

76 if len(G[i])>0:

77 j = self.rng.choice(G[i]) #choose a random neighbor

78 dist = (abs(G.nodes[i]["opinion"] - G.nodes[j]["opinion"])) #calcualte

distance between opinions

79 prob = math.pow(0.5, dist/E)

80 if self.rng.random() <= prob:

81 if dist <= T: #condition for atrarction d < T

82 #i get closer to j R times their distance

83 G.nodes[i]["opinion"] = G.nodes[i]["opinion"] + R *
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(G.nodes[j]["opinion"] - G.nodes[i]["opinion"])

84 else: #condition for repulsion d > T

85 G.nodes[i]["opinion"] = G.nodes[i]["opinion"] - R *

(G.nodes[j]["opinion"] - G.nodes[i]["opinion"])

86 G.nodes[i]["opinion"] = np.maximum(0,

np.minimum(1,G.nodes[i]["opinion"])) #set limits [0-1]

87 return G

88

89 #Disconnect of any neighbor

90 def disconect(self, G, i, T):

91 condition = False

92 choices = []

93 #To prevent isolated nodes

94 for k in G[i]:

95 if len(G[k])>1:

96 choices.append(k)

97 if len(choices) > 0:

98 j = self.rng.choice(choices)

99 G.remove_edge(i,j)

100 condition = True

101 return G, condition

102

103 #Connect to a neighbor that is incide the confidence bound

104 def rewiring(self, G, i, T):

105 # To control if there is possible the rewiring

106 condition = False

107 possible_choices = list(set(G.nodes) - set(G.neighbors(i)) - set({i})) #No

neighbors

108 set_choice = []

109 #Select neighbors between the tolerance T

110 for k in possible_choices:

111 if abs(G.nodes[i]["opinion"] - G.nodes[k]["opinion"]) < T:

112 set_choice.append(k)

113 if len(set_choice) > 0:

114 condition = True

115 l = self.rng.choice(set_choice)

116 G.add_edge(i, l)

117 return condition , G

118

119 def perform_time_step(self, G, T, R, E, pr):

120 i = self.rng.choice(G.nodes) #choose a random node
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121 if self.rng.random() <= pr:

122 condition_1 , G = self.rewiring(G, i, T)

123 if condition_1 == True:

124 G, condition_2 = self.disconect(G, i, T)

125 if condition_2 == False:

126 G.remove_edge(i, l)

127 else:

128 G = self.node_dynamics(G, i, T, R, E)

129 return G

130

131 def arm_coe(self):

132 for param in self.params:

133 print(param)

134 N, E, T, R, S, Pr = param

135 directory_name = "Pr_{:.5f}-T_{:.2f}".format(round(Pr, 5), round(T, 2))

136 if not os.path.exists("./outputfolder/"+str(directory_name)):

137 os.makedirs("./outputfolder/" + str(directory_name))

138 for it in range(self.iters):

139 config = self.initializing(N)

140 G = self.random_network(N, config)

141 pos = nx.spring_layout(G, scale=2, seed=213123)

142 vars = []

143 _res = False

144 inner_loop_terminated = False

145 for step in trange(S, desc=’Simulating interactions’, disable=False):

146 G = self.perform_time_step(G, T, R, E, Pr)

147 if step%N==0:

148 if self.savehist == True:

149 self.save_network( G, step, directory_name , it)

150 #evaluete the stop condition

151 _res, _reason, vars = self.test_if_can_stop(G, vars)

152 if _res == True:

153 self.save_asymp_network(G, step, directory_name , it)

154 inner_loop_terminated = True

155 self.save_asymp_network(G, step, directory_name , it)

156 break

157 #save the last 1000 steps

158 if step >= S-1000:

159 self.save_asymp_network(G, step, directory_name , it)

160 return G, step

161
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162

163 def expA_Pr_T(Pr=0.1, T=0.25):

164 params = {’N’ : [100], ’E’ : [0.1], ’T’ : [T], ’R’ : [0.25], ’S’ : [2000001],

’Pr’ : [Pr]}

165 exp = ARM_Coevolution(params, iters=50, seed=None, savehist=False)

166 exp.arm_coe()

167

168 if __name__ == "__main__":

169 #Number of laptop CPUs to be used

170 n_cpu = 1

171 # Call Pool

172 pool = mp.Pool(processes=n_cpu)

173 # Define ranges of XM and B values

174 Pr_range = np.logspace(np.log10(0.0001), np.log10(0.9), num=100)

175 T_range = [0.20,0.25]

176 # Create a list of tuples containing all combinations of XM and B values

177 param_tuples = [(Pr, T) for Pr in Pr_range for T in T_range]

178 # Call expC_grid for all parameter tuples using pool.map

179 results = pool.starmap(expA_Pr_T , param_tuples)

180 # Close the pool

181 pool.close()
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