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Resumen

El caos colectivo es un comportamiento colectivo no trivial que consiste en la persistencia del comportamiento caótico

a nivel macroscópico en sistemas de elementos dinámicos en interacción que poseen un comportamiento periódico indi-

vidual. Este fenómeno se manifiesta por la existencia de supertransitorios caóticos en el tiempo antes de que el sistema

sincronice en su atractor periódico. Investigamos el papel del rango de interacciones en la emergencia del caos colectivo

en redes dinámicas espacio-temporales considerando una red en anillo de elementos acoplados con un rango variable de

interacciones. Encontramos un rango crítico de alrededor del 20% del tamaño del sistema, por encima del cual no se ob-

serva caos colectivo y la red inevitablemente sincroniza en la órbita periódica de los elementos constitutivos. Descubrimos

que el caos colectivo no ocurre en redes globalmente acopladas de sistemas de tiempo continuo cuando la intensidad del

parámetro de acoplamiento está por debajo de cierto valor crítico. Caracterizamos el estado sincronizado de un sistema

a través de una medida de la desviación estándar de los estados de los elementos. Nuestros resultados indican que la

topología de conectividad de la red, así como la fuerza del acoplamiento entre los elementos, son factores cruciales para

la emergencia del caos colectivo en sistemas dinámicos espacio-temporales.

Palabras Clave: Sistemas complejos; redes globalmente acopladas; caos transitorio; caos colectivo; sincronización; redes

dinámicas.
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Abstract

Collective chaos is a nontrivial collective behavior consisting of the persistence of chaotic behavior at the macroscopic level

in systems of interacting dynamical elements possessing individual periodic behavior. This phenomenon is manifested by

the existence of chaotic supertransients in time before the system synchronizes into its period attractor. We investigate the

role of the range of interactions on the emergence of collective chaos in spatiotemporal dynamical networks by considering

ring network of coupled elements with a varying range of interactions. We encounter a critical range of about 20% of the

system size above which no collective chaos is observed and the network invariably synchronizes in the periodic orbit of

the constitutive elements. We find that collective chaos does not occur in globally coupled networks of continuous time

systems when the intensity of the coupling parameter is below some critical value. We characterize the synchronized

state of a system through a measure of the standard deviation of the states of the elements. Our results indicate that the

topology of connectivity of the network, as well as the strength of coupling between the elements, are crucial factors for

the emergence of collective chaos in spatiotemporal dynamical systems.

Keywords: Complex systems; globally coupled networks; transient chaos; collective chaos; synchronization; dynamical

networks.
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Chapter 1

Introduction

The investigation of collective behaviors in networks of interacting dynamical elements has fundamental implications for

understanding universal properties arising in complex systems. In this sense, of special interest is the phenomenon of

nontrivial collective behavior, which consists of the coexistence of dissimilar time evolution of macroscopic quantities

and microscopic variables in a system4,5. This behavior manifests itself in two ways. On the one hand, it has been

discovered the emergence of order in the temporal evolution of the dynamics of macroscopic quantities of a system of

coupled chaotic elements. For example, the average of the states of the system can be periodic in time, while the evolution

of the individual components is chaotic and desynchronized. This phenomenon has been widely studied6–9. On the other

hand, this phenomenon has also been observed: spatiotemporal. This nontrivial behavior has been nominated collective

chaos10–12 and is one of the least understood emergent phenomena in complex systems.

The irregular or disordered collective behavior that emerges from coupled periodic elements can be classified into two

types: (i) Transient chaos, which consists of a truly chaotic regime with a finite life time, and it is characterized by the

coexistence of stable attractors and non-attractive chaotic sets (called repellers) in the phase space of a system. In this

type of systems, a generic initial configuration produces a trajectory typically irregular until it abruptly collapses into a

non-chaotic attractor13–15. (ii) Collective stable chaos; that constitutes an irregular behavior that cannot be described by

the presence of repellers in the space phase of the system, resulting in the divergence of nearby trajectories. In this type of

systems, the time spent during the transient regime can scale exponentially with the size of the system, and the asymptotic

stable attractor cannot be reached in practical terms for large enough systems1,10,16–19.

Transient spatiotemporal chaos has been studied in reaction-diffusion systems, such as Gray-Scott’s equations13–15,20,

where it has been found that the spatial boundary conditions can induce the collapse of transient chaos towards a fixed

point. On the other hand, long transients appear in networks of model neurons when the number of connections per neuron

is small21.

In the case of stable collective chaos, the transient collective behavior, which is usually considered irrelevant, becomes

statistically stationary and chaotic. The behavior of the system in the transient regime could not be distinguished from a

typical chaotic behavior. There exist supertransients in these systems, since the chaotic collective behavior results, even

for a moderately small system size, the only practically observable behavior. This phenomenon was first reported in a

network of coupled chaotic maps1,16. In these works, the authors studied models of coupled map network showing that,

for a network of moderate size of 128 elements and, taking into account the speed and precision of the computer, they

obtained that the characteristic time of the supertransient regime can be of the order of 1064 years. As a reference, consider

that the current estimated age of our Universe, corresponds to 13.7 × 109 years, based on the recent data and analysis

of the WMAP satellite (Wilkinson Microwave Anisotropy Probe)22. This result has a profound impact on some physical

phenomena that have not yet been fully understood, as in the case of turbulence or the observation of aperiodic behaviors

in complex systems, since such behaviors could correspond, from a strictly mathematical point of view, to a transitory

state. From a practical point of view, we never will observe the regular asymptotic behavior, and what is truly stationary
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will in fact be the supertransent regime of collective chaos1,11,12,17,18.

The presence of local couplings between the elements in a network seems to be a common ingredient in all systems

where collective chaos has been observed19. Thus, the role of the topology of the network on the occurrence of this

collective phenomenon has not been fully investigated.

1.1 Research problem

In this Thesis we shall explore the influence of the network connectivity on the emergence of collective spatiotemporal

chaos. In particular, we shall investigate this phenomenon in globally coupled networks where the coupling between the

elements is all-to-all. Since most work on collective chaos have been carried out in coupled map networks where time

is discrete, we shall study time-continuous dynamics on networks in order to explore the generality of the phenomenon.

In this regard, we shall employ an elementary time-continuous chaotic system as local dynamics in order to search for

minimal conditions for the emergence or collapse of collective spatiotemporal chaos.

1.2 Objectives

1.2.1 General objective

To explore the effect of the network connectivity on the emergence of spatiotemporal collective chaos in continuous-time

dynamical networks.

1.2.2 Specific objectives

1. To investigate the occurrence of spatiotemporal collective chaos in globally coupled networks.

2. To employ time-continuous dynamical systems as the coupled units in networks exhibiting spatiotemporal collective

chaos.

3. To investigate the role of the range of interaction on the emergence of spatiotemporal collective chaos in dynamical

networks.

Physicist 14 Final Grade Project



Chapter 2

Theoretical framework

2.1 Supertransient chaos

Chaos occurs commonly in nonlinear spatially extended dynamical systems that can be typically described by partial

differential equations, coupled ordinary differential equations, coupled coupled map networks, or cellular automata. In

systems described by partial differential equations, the state variables, space, and time, are all continuous. Coupled

differential equations possess continuous states, discrete space corresponding to the coupling network, and continuous

time. Coupled map networks are spatiotemporal dynamical systems where space and time are discrete, but the state

variables are continuous. Cellular automata are characterized by having discrete states, discrete space and discrete time.

If the patterns generated by such a system are ordered in space, we speak of a pattern formation process. If the patterns

are spatially irregular, we speak of spatiotemporal chaos.

In many dissipative spatiotemporal systems, chaos appears as a transient phenomenon. The reason is that spatial

coupling is typically diffusive, so that neighboring sites tend to behave similarly or synchronize. The asymptotic attractors

are often periodic in time or stationary. It is the approach towards these attractors which is chaotic. In this sense,

spatiotemporal chaos often collapses after some time, and a regular behavior then takes over. Thus, we are naturally

interested in the scaling law of the transient lifetime, or the escape rate (the inverse of the lifetime), with the system

size. If the lifetime increases rapidly with the system size, we speak of supertransients. An important physical example

of supertransients is turbulence in fluid flows. Here the well-known stationary laminar solution is the only asymptotic

attractor, and the observed turbulent behavior appears to be a kind of transient chaos.

In large size systems exhibiting supertransients, it is not possible to determine whether the observed “turbulence” is

transient unless an asymptotic time regime is reached. If the transient time is much longer than any physically realizable

time, the system is effectively “turbulent,” regardless of the nature of the asymptotic attractor. In this case, the transients

hide the real attractor, and pose a fundamental difficulty for observing the asymptotic state of the system. In this sense,

attractors are irrelevant to “turbulence”16. Supertransients are considered the most surprising applications of the concept

of transient chaos to spatially extended dynamical systems19.

The first observation of supertransient behavior in spatiotemporal dynamical systems was reported by Crutchfield and

Kaneko16 in a model of coupled map ring lattice with nearest-neighbor coupling, where the local maps possess a stable

periodic orbit. A simpler system was employed by Kaneko1 to show this phenomenon in the following one-dimensional

coupled map lattice,

xn+1(i) = (1 − ϵ) f (xn(i)) +
ϵ

2

[

f (xn(i + 1) + f (xn(i − 1)
]

. (2.1)

where i = 1, 2, . . . ,N; N is the size of the system, xn(i) is the state of the ith element at discrete time n = 0, 1, 2, . . ., ϵ is

a parameter expressing the strength of the coupling, and the function f (xn(i)) = 1 − axn(i)2 describes the local dynamics

that depends on the parameter a. Periodic boundary conditions are assumed in the system Eqs. (2.1); that is the lattice

15



School of Physical Sciences and Nanotechnology UNIVERSITY YACHAY TECH

corresponds to a one-dimensional ring. The coupling scheme in Eqs. (2.1) is called diffusive, because it corresponds to

the discrete form of the Laplacian operator in a diffusion equation.

For the parameter value a = 1.752 there exists a stable period-3 orbit x∗
1
→ x∗

2
,→ x∗

3
in the local map, such that

f (3)(x∗
1
) = x∗

1
, f (3)(x∗

2
) = x∗

2
, f (3)(x∗

3
) = x∗

3
. The synchronized, collective period−3 state is stable for values of the coupling

ϵ > 10−3. However, if the size of the system is sufficiently large, this synchronized state is never reached from arbitrarily

chosen initial conditions. Figure 2.1 shows the spatiotemporal pattern resulting in the system Eqs. (2.1) for parameter

values a = 1.752 and ϵ = 1.05 × 10−3, for which a stable synchronized state exists. We can see that for large times, the

system has not yet settled into the synchronized period−3 state.

Figure 2.1: States xn(i) of N = 50 maps as functions of discrete time n for the system Eqs. (2.1) with parameter values

a = 1.752 and ϵ = 1.05× 10−3, plotted every 90 time steps. Color code is as follows: if
∣

∣

∣xn(i + 1) + xn(i)
∣

∣

∣ < 0.3 the ith site

is white, otherwise it is black. Taken from Ref.1

Kaneko1 found that the average transient time T to reach the synchronized, spatially homogeneous state, increases

exponentially with the system size N, for coupling parameter values ϵ > 10−3, as Fig. 2.2 shows. That is, T ∝ eN .

Figure 2.2: Semi-log plots of the average transient times T versus the logarithm of the system size N of the system

Eqs. (2.1), for different values of the coupling strength ϵ. Fixed parameter a = 1.752. The symbols indicate different

values, ranging from ϵ = 0.0011 (open circles) to ϵ = 0.005 (full black circles). Taken from Ref.1

Supertransient behavior with lifetimes scaling exponentially with the system size have been found in a variety of systems

possessing local or near-neighbor couplings, other than coupled map networks, such as the Kuramoto–Shivashinsky
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equation23, Complex Ginzburg–Landau equation24, reaction–diffusion systems13, turbulent shear flow25.

2.2 Collective stable chaos

In certain systems, supertransients are characterized by the a negative maximum Lyapunov exponent even during the

transient behavior, resulting in the divergence of nearby trajectories. This phenomenon has been denoted as stable

chaos10. Stable chaos constitutes a non-trivial collective behavior, where an irregular unpredictable behavior emerges in

the macroscopic variables of a system emerges from a regular local behavior of its interacting elements.

A local map possessing minimal ingredients for displaying stable collective chaos in a coupled map lattice system

Eqs. (2.1) is the following10

f (x) =















bx, 0 < x < 1/b,

a + c (x − 1/b) , 1/b < x < 1,
(2.2)

where x ∈ (0, 1) and the parameters a, b are chosen so that the map dynamics yields a superstable period−3 orbit,

corresponding to the points x∗
1
= a → x∗

2
= ab → x∗

3
= ab2. A superstable orbit has a Lyapunov exponent equal to ∞. It

can be achieved with parameter values a = 0.1, b = 2.5 and c = 0. Figure 2.3 shows the function Eq. 2.2 for these values

of parameters and the bifurcation diagram of the map xn+1 = f (xn) as a function of b.

Figure 2.3: Left: Local map Eq. 2.2 with a = 0.1, b = 2.5 and c = 0. Right: Bifurcation diagram of map Eq. 2.2 as a

function of b for fixed parameter values a = 0.1 and c = 0. The values of the period−3 superstable orbit are indicated by

black dots.

The stability of the superstable periodic orbit of the local map (2.2) implies the stability of the synchronized orbit

system Eqs. (2.1), whose maximum Lyapunov exponent becomes negative for all values of ϵ. As a consequence, the long

time evolution of the coupled system Eqs. (2.1) is constrained to its periodic attractor.

Following Ref.2, the collective behavior of the coupled map system Eqs. (2.1) can be characterized by the mean field

of the system, defined as

Ht =
1

N

N
∑

j=1

xn( j). (2.3)

Similarly, the synchronization of the elements in the system Eqs. (2.1) can be measured by the asymptotic time average

⟨σ⟩ of the standard deviation σt at time t = n of the distribution of the map state variables xn(i), given by

σt =



















1

N

N
∑

i=1

(

xn(i)
)2
− H2

n



















1/2

. (2.4)

A synchronized state corresponds to ⟨σ⟩ = 0. In practice, the criterion ⟨σ⟩ ≤ 10−7 is employed for synchronization.

In the present case, the system Eqs. (2.1) can sycnchronize in the superstable period−3 orbit of the local map Eq. 2.2.

Physicist 17 Final Grade Project



School of Physical Sciences and Nanotechnology UNIVERSITY YACHAY TECH

Figure 2.4 shows the quantities Ht and the average dispersion ⟨σ⟩ as functions of the coupling parameter ϵ for the

system of maps Eqs. (2.1). Note that Ht does not reach a collective period−3 motion and the system never synchronize

(⟨σ⟩ = 0) over a range of ϵ.

Figure 2.4: Bifurcation diagram of the mean field Ht and the average dispersion ⟨σ⟩ as functions of ϵ for the system

Eqs. (2.1) with size N = 103. For each value of ϵ 103 values of Ht are plotted, after discarding 104 transients. The quantity

⟨σ⟩ is calculated as the average of 103 values of σt, after discarding 104 transients. Taken from Ref.2.

In all the systems where collective chaos has been observed, the presence of local couplings between the elements

seems to be a common condition19. In this Thesis we shall explore the influence of the topology of connectivity between

the elements on the emergence of collective spatiotemporal chaos. In particular, we shall investigate this phenomenon in

globally coupled systems where the coupling between the elements is all-to-all.

Since most work on this phenomenon have been carried out in coupled map systems, we shall study collective chaos

in time-continuous dynamics. In this regard, we shall employ an elementary time-continuous chaotic system as local

dynamics in order to search for minimal conditions for the emergence of collective spatiotemporal chaos.

2.3 Globally Coupled Systems

Globally coupled dynamical networks, where each element interacts with each other in the system, constitute paradigmatic

models for the current research of complex systems that possess global interactions26. A global interaction occurs

when all the elements in the system are subject to the same influence or share the same information. Many physical,

chemical, biological, social, and economic systems are subject to global interactions. Global interactions can provide

useful descriptions in networks possessing highly interconnected elements or long-range interactions. The origin of a

global interaction can be either external, as in a forcing field; or autonomous, such as a mean field or a feedback coupling

function that depends on the elements of the system27. Global interactions appear, for example, in parallel electric circuits,

coupled oscillators28,29, charge density waves30, Josephson junction arrays31, multimode lasers32, neural networks,

evolution models, ecological systems33, social networks34, economic exchange35, mass media influence36–38, and cultural

globalization39. Diverse collective behaviors have been observed experimentally in globally coupled oscillators, such as

complete and generalized chaos synchronization, dynamical clustering, nontrivial collective behavior, chaotic itinerancy,

quorum sensing, and chimera states40–45.
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In this Thesis we shall investigate the phenomenon of spatiotemporal collective chaos in systems possessing global

interactions.

2.4 Elementary chaotic flow

Poincarè-Bendixson theorem prevents the existence of chaos in two-dimensional dynamical system, since the only possible

asymptotic solutions in this case are fixed points or limit cycles (i. e. periodic orbits). Thus, chaotic behavior requires a

phase space of dimension 3 at least. The other necessary condition is the presence of non-linearity in the equations that

describe the dynamics.

In 1999, Linz and Sprott reported the simplest known 3-dimensional continuous-time dynamical system exhibiting

chaos3,
...
x + aẍ + ẋ − |x| + 1 = 0, (2.5)

where a is a real parameter. This a differential equation of third order which can be written as a system of three differential

equations of first order as follows,

ẋ = y,

ẏ = z,

ż = −az − y + |x| − 1.

(2.6)

The system has 3 dimensions in phase space and possess only one parameter. It has only one non-linearity given by

the modulus of x, which is the simplest nonlinear function one may consider. Figure 2.5 shows an image of the strange

attractor arising in the Linz-Sprott system Eqs. (2.6).

Figure 2.5: View of the chaotic attractor of the system Eqs. (2.6) for the parameter value a = 0.6. Initial conditions are

ẍ = ẋ = x = 0. Taken from Ref.3.

Figure 2.5 shows a bifurcation diagram of the solutions of the Linz-Sprott system as a function of the parameter a.
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Figure 2.6: Successive maxima of the asymptotic time evolution of x(t) generated by Eq. (2.6) as function of the parameter

a. Initial conditions are ẍ = ẋ = x = 0. Taken from Ref.3.

In next chapter, we shall use a network of coupled Linz-Sprott systems to study the emergence of collective spatiotem-

poral chaos in continuous-time systems.
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Chapter 3

Spatiotemporal chaos in continuous-time

dynamical networks

3.1 Numerical solution of Linz-Sprott’s Equations

In this chapter, we present the main results of our work. We investigate the role of the connectivity of the network on the

emergence of collective spatiotemporal chaos in systems possessing continuous-time dynamics. Since we are searching

for the minimal conditions for the occurrence of this collective phenomenon, we shall employ, as local continuous-time

dynamics, the Linz-Sprott equations3.

To validate our numerical approach, it is essential to first reproduce the behavior of the Linz-Sprott equations. This

equation is notably known as the simplest chaotic system with continuous time4. Successful reproduction of the solutions

of the Linz-Sprott equation affirms the accuracy of our numerical approach to be used in subsequent calculations of our

study.

The Linz-Sprott system is represented by the following three coupled first order differential equations3

ẋ = y,

ẏ = z,

ż = −az − y + |x| − 1.

(3.1)

The Linz-Sprot system is three-dimensional in phase space and possess only one parameter. It has only one non-

linearity given by the modulus of x, which is the simplest nonlinear function one may consider. In comparison, the famous

Lorenz equations, where chaos was discovered, have two non-linear terms of quadratic order.

In this form, we can implement a Four-order Runge-Kutta method to numerically integrate the system Eqs.(3.1).

We examine the behavior of the Linz-Sprott system for two distinct parameter settings leading to chaotic and to periodic

solutions. Figure 3.1 shows the solutions of the Linz-Sprott system for the parameter value a = 0.6, for which chaotic

behavior takes place.

Figure 3.2 shows the solutions of the Linz-Sprott system for the parameter value a = 0.553, which, according to

Fig. (2.6), should yield a periodic orbit. In fact, we observe periodic behavior in the time evolution of x(t), y(t), and z(t).

The maxima of these variables display a period−3 orbit.
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Figure 3.1: a) Time evolution of the variables x(t), y(t), and z(t) for the Linz-Sprott system Eqs.(3.1) with parameter

a = 0.6. b) Corresponding chaotic attractor in the three-dimensional phase space. Integration was performed using the

Runge-Kutta 4 (RK4) method with a time step h = 0.1 and t = 100000 iterations.

Figure 3.2: a) Time evolution of x(t), y(t), and z(t) for the Sprott system with parameter a = 0.553. b) Corresponding

periodic attractor in phase space. Integration was performed using the Runge-Kutta 4 (RK4) method with a time step

h = 0.1 and t = 100000 iterations.

3.2 Globally coupled network

Consider a set of N Sprott systems, each described by 3 state variables xi, yi, zi, where i = 1, 2, . . . ,N. To introduce a

global interaction, we incorporate a term in the third equation, which essentially captures the average behavior of the set

of N systems. We consider a globally coupled system described as
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ẋi = yi,

ẏi = zi,

żi = (1 − ϵ)(−azi − yi + |xi| − 1) + ϵ zmean,

(3.2)

where ϵ is the coupling coefficient representing the strength of the interaction between the systems. The term zmean

represents the mean of all the variables zi values in the system, defined as

zmean(t) =
1

N

N
∑

j=1

z j(t). (3.3)

The factor (1 − ϵ) affecting the local variable zi is typical of diffusive coupling. It also contributes to compensate the

additional term and to keep the orbits bounded in phase space. The globally coupled network Eq. (3.2) consists of 3N

coupled fisrt order differential equations.

Through the modified third equation, each system is influenced by the average behavior of all systems, then sharing a

global interaction. Figure 3.3 provides a visual representation of this global coupling mechanism, illustrating how each

individual system is influenced by the average behavior of all systems, through the term zmean.

Figure 3.3: Representation of the global coupling mechanism in the system Eq. (3.2).

3.2.1 Collective synchronization of periodic orbits

The introduction of even minimal coupling can induce behaviors that remain elusive in isolated systems. Thus, we search

for coupling parameter values promoting synchronization that would represent the collapse of supertransient spatiotemporal

chaos.

Figure (3.4) shows the time evolution of a subset of randomly chosen 10 Linz-Sprott systems in the globally coupled

network Eq. (3.2) with size N = 100. The local parameters of all elements are fixed at the value a = 0.553 for which

a stable periodic orbit exists in a single Linz-Sprott system. Note that, after some transients, the globally coupled

system synchronizes to this periodic orbit, in contrast to the supertransient behavior observed in locally coupled networks.

Synchronization here is characterized by the time evolution zmean(t) = zi(t), ∀i.
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Figure 3.4: a) Time evolution of 10 variables zi(t) (color lines) for the globally coupled system Eqs. (3.2) over the first 2000

iterations. The thick black line represents the corresponding time evolution of zmean. b) Time evolution of of 10 variables

zi(t) (color lines) and zmean (black line) after transients. The trajectories overlap, indicating a collective synchronized state.

Parameter values are a = 0.553, ϵ = 0.0001, step h = 0.1, and number of iterations t = 100000. System size N = 100.

In Fig. 3.4a, which portrays the evolution of 10 zi(t) variables across the first 2000 iterations, it becomes apparent

that each of the 10 systems, endowed with distinct initial conditions, unfolds its own individual periodic trajectory. This

indicates a difference among these trajectories, underscoring the absence of synchronization during the early iterations.

On the other hand, transitioning to a longer temporal scale, Figure 3.4b shows the dynamics for the last 2000 iterations.

A stark difference with the initial stages is observed. The trajectories, instead of diverging, seem to converge, overlapping

in phase and amplitude. This synchronization is indicative of the systems having attained a common state, with each
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equation oscillating coherently with the others. The observation of this collective synchronized state, achieved in the

latter iterations, reveals that the chosen coupling value, ϵ = 0.0001, resides within the threshold necessary to facilitate

synchronization in the globally coupled network Eq. (3.2).

To visualize the emergent synchronization in the globally coupled network, we present Figure 3.5. This figure shows

the trajectory of the mean variables in the phase space constructed using the mean values xmean, ymean, and zmean over an

extended time span. Clearly discernible within this representation is a periodic-−3 trajectory. Such an evident periodicity in

the average values indicates that the synchronization within the system has indeed been achieved and that any supertransient

behavior has disappeared in a finite time.

Figure 3.5: Collective period attractor for the globally coupled system Eqs. (3.2), obtained by plotting the mean values

xmean, ymean, and zmean over an asymptotic time interval. This corresponds to a synchronized collective periodic orbit for

the system. Parameter values are a = 0.553, time step h = 0.1.

3.2.2 Characterizing synchronization.

Determining the appropriate values of ϵ was essential to comprehend how minimal coupling could lead to synchronization

and the collapse of collective chaos. With this in mind, we set out to identify the coupling values for which the globally

coupled network Eq. (3.2) synchronizes.

To ascertain synchronization, we employ the standard deviation, represented as σ. The standard deviation quantifies

the dispersion or variation in a dataset. For a set of N numbers z1, z2, . . . , zN , the instantaneous standard deviation, σ(t),
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of the zi variables is determined by:

σ(t) =

√

√

√

1

N

N
∑

j=1

[

z j(t) − zmean(t)
]2

(3.4)

For the purpose of our analysis, it is important to note that we compute the standard deviation solely for the zi variables,

similar to our approach with global coupling. With this understanding, we observe the following results.

Figure 3.6 displays the relationship between the time-averaged standard deviation σ and the coupling parameter ϵ for

the globally coupled network Eqs. (3.2). Here, the fixed parameters are a = 0.53 and N = 100. An observation of values

σ→ 0 indicates the emergence of synchronization among the systems.

Figure 3.6: Time-averaged standard deviation σ as a function of the coupling parameter ϵ in the globally coupled network

Eqs. (3.2) for fixed a = 0.533, N = 100. Values σ→ 0 indicate synchronization.

Figure 3.6 shows that there exists a critical threshold value of ϵ at which synchronization arises. Specifically, the figure

indicates a critical value for synchronization at ϵc = 0.0037. For values ϵ ≥ ϵc, the network exhibits full synchronization,

with the average standard deviation σ equating to zero.

This behavior underscores the significance of the coupling strength in globally coupled systems. The observed

ϵ = 0.0037 effectively serves as a bifurcation point where emergent synchronized behavior initiates. This is a testament to

wherein even minimal interactions, when they surpass a certain critical threshold, can lead to the emergence of collective

coherent behaviors in complex dynamical systems subject to global interactions.

The above results suggest that the phenomenon of supertransients is related to the presence of local interactions; it

does not prevail in systems possessing global interactions. Thus, we shall investigate next the influence of the topology of

the connectivity on the emergence of collective stable chaos.
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3.3 Networks with varying range of interactions

After understanding the effect of global interactions in the phenomenon of collective chaos, we turn to study networks

with local couplings. Here, unlike the global system where each part interacts with every other, in local coupling, they

interact mainly with their neighborhood.

We consider a ring network where each element is coupled to its M neighbors on each side, as Fig. 3.7 a) illustrates.

Figure 3.7: a) Representation of local dynamics in a network with M = 2 for a randomly selected agent i. Ring network

with local couplings and periodic boundary conditions. Each element is coupled to M neighbors on each side. Here

M = 2. b) Representation of the globally coupled dynamics with M = N
2

for a randomly selected agent i.

Then, we define the following equations for the locally coupled ring network of Linz-Sprott systems:

ẋi = yi,

ẏi = zi,

żi = (1 − ϵ)(−azi − yi + |xi| − 1) + ϵ Zi

(3.5)

with

Zi =
1

2M + 1

i+M
∑

j=i−M

z j (3.6)

where ϵ is the coupling strength, i = 1, 2, . . . ,N, and Zi represents the interactions of the element i with its nearest M

immediate neighbors on each side. The quantity Zi computes the local average of the zi variables in the vicinity of the i-th

element.

We begin by analyzing the minimal local network configuration where M = 1. In this setup, each element has only

two neighbors: one to its left and one to its right. This corresponds to the connectivity of the coupled map lattices where

supertransient behavior was discovered.

Figure 3.8 a) shows the time evolution of the zi variables of three randomly chosen elements and the quantity zmean for

the locally coupled ring network of Linz-Sprott systems Eq. (3.5). The local parameters are fixed at the value a = 0.553,

for which the Linz-Sprott system is periodic. Figure 3.8b shows the time evolution of instantaneous standard deviation

which does not fall to the value 0.
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.

Figure 3.8: a) Time evolution of the variables zi for three elements (color lines) and the mean zmean (black line) in a locally

coupled system Eq. (3.5) with a = 0.553, coupling strength ϵ = 0.004, M = 1 (one neighbor on each side), N = 100. b)

Time evolution of the time-averaged standard deviation, σ for the locally coupled system Eq. (3.5) and same parameters

as (a).

Figure 3.8 reveals the lack of synchronization amongst the zi values. The depicted trajectories of three distinct elements

noticeably deviate from the overall mean trajectory zmean, emphasizing the incoherent state of the network.
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In the globally coupled network we have observed synchronization. To assess whether a similar behavior emerges in

the locally coupled network in the limit of all-to-all interactions, we simulated it with the value M = 50.

Figure 3.9: Time evolution of the standard deviation σ in the locally coupled system Eq. (3.5) with a = 0.553, coupling

strength ϵ = 0.004, N = 100 and M = N/2 (global limit).

Figure 3.9 shows the behavior of the locally coupled network Eq. (3.5) with M = 50. Specifically, the time evolution

of the standard deviation σ steadily decreases towards zero, emphasizing the emergence of synchronization.

Building on these observations, we conduct a more in-depth analysis. It’s essential to underscore that throughout this

examination, all parameters known to induce synchronization are held constant. The only variable we adjust is the number

of neighbors, M, to discern the influence of the range of interaction on the standard deviation σ, and therefore on the

collapse of the spatiotemporal chaos.

This motivated us to investigate the relationship between the range of the interactions M and the standard deviation σ.

Figure 3.10 shows the average standard deviation σ as a function of the coupling range M in the locally coupled

network Eq. (3.5). This plot serves as an indicator of the minimum number of neighbors or coupled equations required

to achieve synchronization. From the figure, it is evident that approximately M = 20 is the threshold for the number of

equations that need to be coupled for the given parameter value of ϵ.
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Figure 3.10: Average standard deviation σ as a function of the coupling range M in the locally coupled network Eq. (3.5).

Fixed parameters are a = 0.553, ϵ = 0.0038, size N = 100. The globally coupled limit corresponds to M = 50.

3.3.1 Synchronization and range of interaction

Armed with this knowledge, our next aim was to elucidate the interplay between M, ϵ, and synchronization in the locally

coupled network Eq. (3.5). The goal is to find how these variables determine the regions of synchronization, contingent

on the number of agents and the intensity of the coupling.

Figure 3.11 shows the averaged standard deviation on the space of parameters (Mnormalized, ϵ) according to a color code,

where Mnormalized ≡ 2M/N. Then, the globally coupled limit corresponds to the value Mnormalized = 1.

The figure provides a representation of the relationship between the number of neighbors and the coupling strength,

tracing the shift from a local coupling to a global coupling as M increases. It becomes evident that the value ϵ = 0.0035

the is threshold for achieving synchronization, a finding consistent with our observations in Figure 3.6. Intriguingly, the

data indicates that for successful synchronization, the minimum proportion of agents needed is within the range of 20%

of the overall population size N, corroborating insights from Figure 3.10. The chart further emphasizes that increasing

the number of neighbors interacting in the coupling, allows for the possibility of a marginally smaller ϵ to instigate

synchronization, reflected in a σ value approaching zero. This visualization underscores the intricate dynamics between

ϵ and M, identifying the critical values needed for synchronization in the network.
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Figure 3.11: Average standard deviation σ as a function of the normalized coupling range Mnormalized and the coupling

strength ϵ for the locally coupled network Eq. (3.5). Color code is shown on the right bar. Darker regions represent areas

of low dispersion or synchronization, while bright regions indicate higher dispersion. This visualization provides insights

into the combined effects of local interaction range and coupling strength on the system’s dynamics. Fixed parameters are

a = 0.553, size N = 100.
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Chapter 4

Conclusions

Collective chaos is a nontrivial collective behavior consisting of the persistence of chaotic behavior at the macroscopic level

in systems of interacting dynamical elements possessing individual periodic behavior. This phenomenon is manifested by

the existence of chaotic supertransients in time before the system synchronizes into its period attractor. Thus, in practical

terms, the observable collective state of the system is spatiotemporal chaos.

In this Thesis we have investigated the role of the connectivity on the emergence of collective chaos in spatiotemporal

dynamical networks. Since most studies on this phenomenon have been carried out in coupled map lattices, where time

is discrete, we have employed differential equations with continuous time as dynamical units on a coupled network.

Furthermore, we have chosen the Linz-Sprott equations which are simplest known nonlinear time-continuous system

capable of exhibiting chaos. The Linz-Sprott system possesses a single control parameter which facilitates the search for

minimal conditions for observing collective chaos in coupled networks.

Previous studies have shown the emergence of collective chaos mainly in networks with local connections. We have

found that collective chaos does not occur in globally coupled networks of continuous time systems, where all elements

are coupled together. In this case, synchronization on the periodic orbit of the constitutive elements is achieved. We have

characterized the collective synchronized state through a measure of the standard deviation of the states of the elements.

Our result indicates that the topology of connectivity of the network is a fundamental factor affecting the occurrence of

collective chaos.

On the other hand, we have found that the intensity of the coupling between the elements determines the onset of

synchronization. There is a critical value of the coupling parameter above which synchronization occurs and therefore

collective chaos collapses.

We have considered a ring network of coupled elements with a varying range of interactions given by the numbers

of connected neighbors each element possesses on either side. We have discovered that the range of interactions does

play a crucial role on the occurrence of collective chaos. For nearest neighbor couplings collective chaos occurs, in

agreement with previous studies. However, there is a critical number of coupled neighbors above which no collective

chaos is observed and the network invariably synchronizes in the periodic orbit of the elements.

By normalizing the number of neighbors with respect to the size of the network, we have found that the critical range

of interaction for achieving synchronization is about 20% of the size of the network.

The main results of this Thesis are contained in Figure 3.6. This figure unveils the interplay between the intensity of

the coupling and the range of interaction required for synchronization in the network.

In summary, our findings illuminate the profound influence that the structure and connectivity of a network have on

the emergence of collective behaviors, specifically spatiotemporal chaos, in continuous-time dynamical systems. The

incorporation of global and local interactions, along with variations in the coupling strength and interaction range, plays

a pivotal role in steering the system towards or away from synchronization. Notably, even in scenarios where individual

systems exhibit simplistic or predictable behaviors, their collective dynamics can manifest complex patterns, contingent
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on the network’s architecture. This intricate interplay between individual units and their connectivity has profound

implications, especially in real-world systems where heterogeneity and diversity are not exceptions but the norm, such as

in ecological, neurological, or social networks.
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Appendix A

Python code for globally coupled network of

Linz-Sprott equations

The following code is made in Python.

The following code is made in Python.

The globally coupled map network with The local dynamics.

"""@author: David"""

## First we solve one equation in chaotic behabior

#5/09/2023

# First we import lybraries:

import sympy as sp

import numpy as np

import matplotlib.pyplot as plt

#Initial conditions

a = 0.6

h = 0.01

t0 = 0

tf = 40000

t = np.arange(t0, tf+h, h)

# Defining the array resulting function

S = np.array([np.zeros(len(t)),np.zeros(len(t)),np.zeros(len(t))])

#Defining the ODE-function

F = lambda t, s: np.dot(np.array([[0,1,0],[0,0,1],

[0, -1, -a]]), s) + np.array([0 ,0 , np.abs(s[0]) - 1])

#Runge kutta 4

for i in range(len(t)-1):

k1 = F(t[i], S[:,i])
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k2 = F(t[i] + h/2, S[:,i] + h*k1/2)

k3 = F(t[i] + h/2, S[:,i] + h*k2/2)

k4 = F(t[i] + h, S[:,i] + h*k3)

S[:,i+1] = S[:,i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)

if np.abs(S[2, i+1]) > 10:

break

#Define start and end indexes

inicio_idx = int((39500))

fin_idx = int((40000)) + 1

# Plot data over the selected time range

plt.figure(figsize=(18, 13))

# Data series

plt.plot(t[inicio_idx:fin_idx], (S[0]+5)[inicio_idx:fin_idx]

, "b", linestyle =’solid’, label = r"$x(t) + 5$ (RK4)")

plt.plot(t[inicio_idx:fin_idx], S[1][inicio_idx:fin_idx],

"g", linestyle =’solid’, label = r"$y(t)$ (RK4)")

plt.plot(t[inicio_idx:fin_idx], (S[2]-4)[inicio_idx:fin_idx],

"r", linestyle =’solid’, label = r"$z(t) - 4$ (RK4)")

# Labels

plt.xlabel(’Time ($t$)’, fontsize=28)

plt.ylabel(’Functions $x(t), y(t), z(t)$’, fontsize=28)

# Adjust tick label size

plt.xticks(fontsize=21)

plt.yticks(fontsize=21)

# Add "a)" label to the top right

plt.annotate(’a)’, xy=(0.99, 0.99), xycoords=’axes fraction’,

fontsize=20, ha=’right’, va=’top’)

# Legend

plt.legend(fontsize=18, loc="upper left")

# Save and display the graph

plt.savefig("Imagenes/Chaotic_behavior_of_x(t)_y(t)_z(t).png")

plt.show()

## Second we solve one equation in period 3

#Initial conditions

a = 0.553
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h = 0.01

t0 = 0

tf = 40000

t = np.arange(t0, tf+h, h)

# Defining the array resulting function

S = np.array([np.zeros(len(t)),np.zeros(len(t)),np.zeros(len(t))])

#Defining the ODE-function

F = lambda t, s: np.dot(np.array([[0,1,0],[0,0,1],[0, -1, -a]]),

s) + np.array([0 ,0 , np.abs(s[0]) - 1])

#Runge kutta 4

for i in range(len(t)-1):

k1 = F(t[i], S[:,i])

k2 = F(t[i] + h/2, S[:,i] + h*k1/2)

k3 = F(t[i] + h/2, S[:,i] + h*k2/2)

k4 = F(t[i] + h, S[:,i] + h*k3)

S[:,i+1] = S[:,i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)

if np.abs(S[2, i+1]) > 10:

break

### Hacemos el acoplamiento con valor $\epsilon = 0.0001$

# Constants

Nit = 100000

Nm = 10

a = 0.553

epsilon = 0.0001

delta_t = 0.05

delta_u0 = 0.6

# Function definition

def f(xyz, u_mean=0):

x, y, z = xyz

# Applying matrix transformation

M = np.array([

[0, 1, 0],

[0, 0, 1],

[0, -1, -a]

])

V = np.array([x, y, z])

result = np.dot(M, V)
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# Adding the additional components

result += (1 - epsilon) * np.array([0, 0, np.abs(x) - 1])

+ epsilon * np.array([0, 0, u_mean])

return result

# Initialization

u0 = np.array([0.3077, -0.8528, -0.1290]) + np.random.uniform

(-delta_u0, delta_u0, (Nm, 3))

Sold = np.zeros((Nit, Nm, 3))

fmean = np.zeros(Nit)

# Main loop

for n in range(Nit):

Sold[n] = u0

ui = []

u_mean = np.mean(u0[:,2])

for i in range(Nm):

k1 = delta_t * f(u0[i], u_mean)

k2 = delta_t * f(u0[i] + 0.5 * k1, u_mean)

k3 = delta_t * f(u0[i] + 0.5 * k2, u_mean)

k4 = delta_t * f(u0[i] + k3, u_mean)

ui.append(u0[i] + 1 / 6 *

(k1 + 2 * k2 + 2 * k3 + k4))

ui = np.array(ui)

um = np.mean(ui[:,2])

fmean[n] = um

u = (1 - epsilon) * ui + epsilon *

np.array([[0, 0, um]] * Nm)

u0 = u

# Calcula las medias de x y y para cada paso de tiempo

x_mean = np.mean(Sold[:,:,0], axis=1)

y_mean = np.mean(Sold[:,:,1], axis=1)

# Create time vector

t = np.arange(0, Nit)

# Set the figure size

plt.figure(figsize=(18, 12)) # Adjust width and height as needed

# Define indices for the time range

inicio_idx = 98000

fin_idx = 100000

# Plot individual z functions for specified time range

for i in range(Nm):
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plt.plot(t[inicio_idx:fin_idx], Sold[inicio_idx:fin_idx, i, 2],

label=f’z_{i}(t)’)

# Plot mean z function for specified time range

plt.plot(t[inicio_idx:fin_idx], fmean[inicio_idx:fin_idx], ’k’,

linewidth=3, label=’z_mean(t)’)

# Labels

plt.xlabel(’Time ($t$)’, fontsize=22)

plt.ylabel(’z_i(t), z_mean(t)’, fontsize=22)

# Adjust tick label size

plt.xticks(fontsize=18)

plt.yticks(fontsize=18)

# Add "b)" label to the top right

plt.annotate(’b)’, xy=(0.99, 0.99), xycoords=’axes fraction’, fontsize=20,

ha=’right’, va=’top’)

# Legend

plt.legend(fontsize=16, loc="upper left")

# Ensure everything fits well

plt.tight_layout()

# Adjust the plot to prevent clipping

plt.subplots_adjust(bottom=0.15) # Ajusta el 0.15 según sea necesario

# Save the figure to a file before displaying it

plt.savefig("Imagenes/Evolution_of_z_functions.png", bbox_inches=’tight’)

# Display the figure

plt.show()

## We define a function for epsilon

def simulate_for_epsilon(epsilon):

# Constants

Nit = 20000

Nm = 100

a = 0.553

delta_t = 0.05

delta_u0 = 0.5

p = 0.25
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# Function definition

def f(u):

x, y, z = u

return np.array([y, z, -a*z - y + abs(x) - 1])

def F(u):

k1 = f(u)

k2 = f(u + 0.5 * delta_t * k1)

k3 = f(u + 0.5 * delta_t * k2)

k4 = f(u + delta_t * k3)

return (1/6.0) * delta_t * (k1 + 2*k2 + 2*k3 + k4)

# Initialization

u0 = np.random.uniform(-delta_u0, delta_u0, (Nm, 3))

Sold = []

fmean = []

sigma = []

# Main loop

for n in range(Nit):

Sold.append(np.copy(u0))

ui = np.array([u + F(u) for u in u0])

um = np.mean(ui[:, 2])

fmean.append(um)

sigma.append(np.std(ui[:, 2]))

if np.random.rand() <= p:

u = (1-epsilon) * ui + epsilon *

np.array([[0,0,um] for _ in range(Nm)])

else:

u = (1-epsilon) * ui + epsilon *

np.array([[0,0,um] for _ in range(Nm)])

if um < -100 or um > 100:

break

u0 = u

# Descartar los primeros 2000 valores y sumar el resto

sum_sigma = sum(sigma[2000:])

# Calcular el promedio dividiendo por 8000

avg_sigma = sum_sigma / 8000

return avg_sigma

# Rango de valores de epsilon
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epsilons = np.linspace(0, 0.01, 50)

epsilons = np.round(epsilons, 5)

avg_sigmas = [simulate_for_epsilon(epsilon) for epsilon in epsilons]

# Gráfica de avg_sigma vs epsilon

plt.figure(figsize=(10,6))

plt.plot(epsilons, avg_sigmas, ’-o’, label=’avg_sigma’)

plt.xlabel(’epsilon’)

plt.ylabel(’avg_sigma’)

plt.legend()

plt.grid(True)

plt.title(’avg_sigma vs epsilon’)

plt.show()

## Now for the local dynamics

import numpy as np

import matplotlib.pyplot as plt

Nit = 10000

Nm = 100

M = 2

a = 0.553

epsilon = 0.004

delta_t = 0.05

delta_u0 = 0.5

u0 = np.random.uniform(-delta_u0, delta_u0, (Nm, 3))

def f(u):

return np.array([u[1], u[2], -a*u[2] - u[1] + abs(u[0]) - 1])

def F(u):

k1 = f(u)

k2 = f(u + 0.5 * delta_t * k1)

k3 = f(u + 0.5 * delta_t * k2)

k4 = f(u + delta_t * k3)

return (1/6.0) * delta_t * (k1 + 2*k2 + 2*k3 + k4)

Sold = []

fmean = []

sigma = []

for n in range(Nit):

Sold.append(u0)

ui = np.array([u0[i] + F(u0[i]) for i in range(Nm)])

uj = np.concatenate((u0[-M:], u0, u0[:M]))
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um = np.array([1/(2.0*M + 1) *

np.sum(uj[j-M:j+M+1, 2]) for j in range(M, M+Nm)])

umean = np.mean(ui[:,2])

fmean.append(umean)

sigma.append(np.std(ui[:,2]))

u = (1-epsilon)*ui + epsilon*np.array([[0,0,um_i] for um_i in um])

if any(val > 100 or val < -100 for val in um):

break

u0 = u

# Create time vector

t = np.arange(0, Nit)

# Define indices for the time range

inicio_idx = 8000

fin_idx = 10000

# Plotting

plt.figure(figsize=(14, 12))

# Create a new range for x-axis to reflect

the number of data points being plotted

x_range = range(fin_idx - inicio_idx)

colors = [’blue’, ’green’, ’red’]

# Define a list of colors for better distinction

for i in range(3):

plt.plot(x_range,

[sold[i][2] for sold in Sold[inicio_idx:fin_idx]],

color=colors[i],

label=f’z_{i}(t)’) # Add label for each z_i(t)

plt.plot(x_range, fmean[inicio_idx:fin_idx], ’k’,

linewidth=3, label=’z_mean(t)’)

plt.xlabel(’Time (t)’)

plt.ylabel(’z_i(t) and Mean z’)

plt.title

(’Globally coupled time evolution of individual z-values and z-mean’)

plt.legend()

plt.grid(True)
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plt.tight_layout()

# Guardar el gráfico

plt.savefig("Imagenes/Time_Evolution_of_z_Values.png", dpi=300) Appendix A

Python code for globally coupled network of

Linz-Sprott equations

#Initial conditions

a = 0.6

h = 0.01

t0 = 0

tf = 40000

t = np.arange(t0, tf+h, h)

# Defining the array resulting function

S = np.array([np.zeros(len(t)),

np.zeros(len(t)),np.zeros(len(t))])

#Defining the ODE-function

F = lambda t, s:

np.dot(np.array([[0,1,0],[0,0,1],[0, -1, -a]]), s)

+ np.array([0 ,0 , np.abs(s[0]) - 1

#Runge kutta 4

for i in range(len(t)-1):

k1 = F(t[i], S[:,i])

k2 = F(t[i] + h/2, S[:,i] + h*k1/2)

k3 = F(t[i] + h/2, S[:,i] + h*k2/2)

k4 = F(t[i] + h, S[:,i] + h*k3)

S[:,i+1] = S[:,i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)

if np.abs(S[2, i+1]) > 10:

break

#Define start and end indexes

inicio_idx = int((39500))

fin_idx = int((40000)) + 1

# Plot data over the selected time range

plt.figure(figsize=(18, 13))

# Data series

plt.plot(t[inicio_idx:fin_idx],

(S[0]+5)[inicio_idx:fin_idx], "b", linestyle =’solid’, label = r"$x(t)

plt.plot(t[inicio_idx:fin_idx],

S[1][inicio_idx:fin_idx], "g", linestyle =’solid’, label = r"$y(t)$ (RK

plt.plot(t[inicio_idx:fin_idx],

(S[2]-4)[inicio_idx:fin_idx], "r", linestyle =’solid’, label = r"$z(t)

# Labels

plt.xlabel(’Time ($t$)’, fontsize=28)

plt.ylabel(’Functions $x(t), y(t), z(t)$’, fontsize=28)

# Adjust tick label size
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plt.xticks(fontsize=21)

plt.yticks(fontsize=21)

# Add "a)" label to the top right

plt.annotate(’a)’, xy=(0.99, 0.99),

xycoords=’axes fraction’, fontsize=20, ha=’right’, va=’top’)

# Legend

plt.legend(fontsize=18, loc="upper left")

# Save and display the graph

plt.savefig("Imagenes/Chaotic_behavior_of_x(t)_y(t)_z(t).png")

plt.show()

## Second we solve one equation in period 3

#Initial conditions

a = 0.553

h = 0.01

t0 = 0

tf = 40000

t = np.arange(t0, tf+h, h)

# Defining the array resulting function

S = np.array([np.zeros(len(t)),np.zeros(len(t)),np.zeros(len(t))])
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#Defining the ODE-function

F = lambda t, s:

np.dot(np.array([[0,1,0],[0,0,1],[0, -1, -a]]), s)

+ np.array([0 ,0 , np.abs(s[0]) - 1

#Runge kutta 4

for i in range(len(t)-1):

k1 = F(t[i], S[:,i])

k2 = F(t[i] + h/2, S[:,i] + h*k1/2)

k3 = F(t[i] + h/2, S[:,i] + h*k2/2)

k4 = F(t[i] + h, S[:,i] + h*k3)

S[:,i+1] = S[:,i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)

if np.abs(S[2, i+1]) > 10:

break

# Constants

Nit = 100000

Nm = 10

a = 0.553

epsilon = 0.0001

delta_t = 0.05

delta_u0 = 0.6

# Function definition

def f(xyz, u_mean=0):

x, y, z = xyz

# Applying matrix transformation

M = np.array([

Physicist 50 Final Grade Project



School of Physical Sciences and Nanotechnology UNIVERSITY YACHAY TECH

[0, 1, 0],

[0, 0, 1],

[0, -1, -a]

])

V = np.array([x, y, z])

result = np.dot(M, V)

# Adding the additional components

result += (1 - epsilon) * np.array([0, 0, np.abs(x) - 1])

+ epsilon * np.array([0, 0, u_mean])

return result

# Initialization

u0 = np.array([0.3077, -0.8528, -0.1290])

+ np.random.uniform(-delta_u0, delta_u0, (Nm, 3))

Sold = np.zeros((Nit, Nm, 3))

fmean = np.zeros(Nit)

#Initial conditions

a = 0.6

h = 0.01

t0 = 0

tf = 40000

t = np.arange(t0, tf+h, h)

# Defining the array resulting function

S = np.array([np.zeros(len(t)),

np.zeros(len(t)),np.zeros(len(t))])

#Defining the ODE-function

F = lambda t, s:

np.dot(np.array([[0,1,0],[0,0,1],[0, -1, -a]]), s)

+ np.array([0 ,0 , np.abs(s[0]) - 1

#Runge kutta 4

for i in range(len(t)-1):

k1 = F(t[i], S[:,i])

k2 = F(t[i] + h/2, S[:,i] + h*k1/2)

k3 = F(t[i] + h/2, S[:,i] + h*k2/2)

k4 = F(t[i] + h, S[:,i] + h*k3)

S[:,i+1] = S[:,i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)

if np.abs(S[2, i+1]) > 10:

break

#Define start and end indexes

inicio_idx = int((39500))

fin_idx = int((40000)) + 1

# Plot data over the selected time range

plt.figure(figsize=(18, 13))

# Data series

plt.plot(t[inicio_idx:fin_idx],

(S[0]+5)[inicio_idx:fin_idx], "b", linestyle =’solid’, label = r"$x(t)
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plt.plot(t[inicio_idx:fin_idx],

S[1][inicio_idx:fin_idx], "g", linestyle =’solid’, label = r"$y(t)$ (RK

plt.plot(t[inicio_idx:fin_idx],

(S[2]-4)[inicio_idx:fin_idx], "r", linestyle =’solid’, label = r"$z(t)

# Labels

plt.xlabel(’Time ($t$)’, fontsize=28)

plt.ylabel(’Functions $x(t), y(t), z(t)$’, fontsize=28)

# Adjust tick label size

plt.xticks(fontsize=21)

plt.yticks(fontsize=21)

# Add "a)" label to the top right

plt.annotate(’a)’, xy=(0.99, 0.99),

xycoords=’axes fraction’, fontsize=20, ha=’right’, va=’top’)

# Legend

plt.legend(fontsize=18, loc="upper left")

# Save and display the graph

plt.savefig("Imagenes/Chaotic_behavior_of_x(t)_y(t)_z(t).png")

plt.show()

## Second we solve one equation in period 3

#Initial conditions

a = 0.553

h = 0.01

t0 = 0

tf = 40000

t = np.arange(t0, tf+h, h)

# Defining the array resulting function

S = np.array([np.zeros(len(t)),

np.zeros(len(t)),np.zeros(len(t))])

F = lambda t, s: np.dot(np.array([[0,1,0],[0,0,1],

[0, -1, -a]]), s) + np.array([0 ,0 , np.abs(s[0]) - 1

#Runge kutta 4

for i in range(len(t)-1):

k1 = F(t[i], S[:,i])

k2 = F(t[i] + h/2, S[:,i] + h*k1/2)

k3 = F(t[i] + h/2, S[:,i] + h*k2/2)

k4 = F(t[i] + h, S[:,i] + h*k3)

S[:,i+1] = S[:,i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)

if np.abs(S[2, i+1]) > 10:

break

### Hacemos el acoplamiento con valor $\epsilon = 0.0001$

# Constants

Nit = 100000

Nm = 10

a = 0.553

epsilon = 0.0001
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delta_t = 0.05

delta_u0 = 0.6

# Function definition

def f(xyz, u_mean=0):

x, y, z = xyz

# Applying matrix transformation

M = np.array([

[0, 1, 0],

[0, 0, 1],

[0, -1, -a]

])

V = np.array([x, y, z])

result = np.dot(M, V)

# Adding the additional components

result += (1 - epsilon) * np.array([0, 0, np.abs(x) - 1])

+ epsilon * np.array([0, 0, u_mean])

return result

# Initialization

u0 = np.array([0.3077, -0.8528, -0.1290])

+ np.random.uniform(-delta_u0, delta_u0, (Nm, 3))

Sold = np.zeros((Nit, Nm, 3))

fmean = np.zeros(Nit)
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plt.show()

# Plotting standard deviation

plt.figure(figsize=(10, 5))

plt.plot(range(len(sigma)), sigma, color=’red’)

plt.xlabel(’Time’)

plt.ylabel(’Standard Deviation’)

plt.grid(True, which=’both’, linestyle=’--’, linewidth=0.5)

plt.title(’Standard Deviation over Time’)

# Guardar el gráfico

plt.savefig("Imagenes/Standard_Deviation_over_Time.png", dpi=300)

plt.show()

# Descartar los primeros 2000 valores y sumar el resto

sum_sigma = sum(sigma[2000:])

# Calcular el promedio dividiendo por 8000

avg_sigma = sum_sigma / 8000
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print(avg_sigma)

## We define a function for M

def run_simulation(M):

Nit = 25000

Nm = 100

a = 0.553

epsilon = 0.0038

delta_t = 0.05

delta_u0 = 0.5

u0 = np.random.uniform(-delta_u0, delta_u0, (Nm, 3))

def f(u):

return np.array([u[1], u[2], -a*u[2] - u[1] + abs(u[0]) - 1])

def F(u):

k1 = f(u)

k2 = f(u + 0.5 * delta_t * k1)

k3 = f(u + 0.5 * delta_t * k2)

k4 = f(u + delta_t * k3)

return (1/6.0) * delta_t * (k1 + 2*k2 + 2*k3 + k4)

sigma = []

for n in range(Nit):

ui = np.array([u0[i] + F(u0[i]) for i in range(Nm)])

uj = np.concatenate((u0[-M:], u0, u0[:M]))

um = np.array([1/(2.0*M + 1) *

np.sum(uj[j-M:j+M+1, 2]) for j in range(M, M+Nm)])

if any(val > 100 or val < -100 for val in um):

break

sigma.append(np.std(ui[:,2]))

u0 = (1-epsilon)*ui +

epsilon*np.array([[0,0,um_i] for um_i in um])

# Descartar los primeros 2000 valores y sumar el resto

sum_sigma = sum(sigma[3000:])

avg_sigma = sum_sigma / 22000

return avg_sigma
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# Ejecuta la simulación para diferentes valores de M

M_values = list(range(0, 51))

avg_sigma_values = [run_simulation(M) for M in M_values]

# Haz un plot de los resultados

plt.figure(figsize=(10, 6))

plt.plot(M_values, avg_sigma_values, ’-o’)

plt.xlabel(’M’)

plt.ylabel(’avg_sigma’)

plt.title(’avg_sigma vs M’)

plt.grid(True, which=’both’, linestyle=’--’, linewidth=0.5)

plt.show()

## Fusiona las dos funciones para

simular con un epsilon y M específicos

def simulate_for_epsilon_and_M(epsilon, M):

Nit = 20000

Nm = 100

a = 0.553

delta_t = 0.05

delta_u0 = 0.5

# Function definition

def f(u):

x, y, z = u

return np.array([y, z, -a*z - y + abs(x) - 1])

def F(u):

k1 = f(u)

k2 = f(u + 0.5 * delta_t * k1)

k3 = f(u + 0.5 * delta_t * k2)

k4 = f(u + delta_t * k3)

return (1/6.0) * delta_t * (k1 + 2*k2 + 2*k3 + k4)

# Initialization

u0 = np.random.uniform(-delta_u0, delta_u0, (Nm, 3))

sigma = []

for n in range(Nit):

ui = np.array([u0[i] + F(u0[i]) for i in range(Nm)])

uj = np.concatenate((u0[-M:], u0, u0[:M]))

um = np.array([1/(2.0*M + 1)
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* np.sum(uj[j-M:j+M+1, 2]) for j in range(M, M+Nm)])

if any(val > 100 or val < -100 for val in um):

break

sigma.append(np.std(ui[:,2]))

u0 = (1-epsilon)*ui

+ epsilon*np.array([[0,0,um_i] for um_i in um])

# Descartar los primeros 2000 valores y sumar el resto

sum_sigma = sum(sigma[2000:])

avg_sigma = sum_sigma / 8000

return avg_sigma

# Rango de valores

epsilons = np.linspace(0, 0.01, 100)

M_values = list(range(1, 51))

# Crear una matriz 2D para almacenar los valores de sigma

sigma_matrix = np.zeros((len(M_values), len(epsilons)))

# Llenar la matriz con valores de sigma para cada par (M, epsilon)

for i, M in enumerate(M_values):

for j, epsilon in enumerate(epsilons):

sigma_matrix[i, j] = simulate_for_epsilon_and_M(epsilon, M)

# Visualizar la matriz como un mapa de calor

plt.imshow(sigma_matrix, origin=’lower’, aspect=’auto’,

extent=[epsilons[0], epsilons[-1],

M_values[0], M_values[-1]], cmap=’viridis’)

plt.colorbar(label=’Average Sigma’)

plt.xlabel(’Epsilon’)

plt.ylabel(’M’)

plt.title(’Average Sigma as a function of M and Epsilon’)

plt.show()
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