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Resumen

Este proyecto se enfocó en desarrollar modelos continuos y discretos de redes neuronales

basados en principios f́ısicos para resolver un problema de ecuación diferencial parcial

conocido como ecuación de conjunto de nivel; en el contexto del método de conjunto de

nivel , sin condiciones de borde. La red neuronal se entrena utilizando datos de soluciones

numéricas obtenidas a partir de métodos de diferencias finitas, incluyendo el método de di-

fusión ascendente de primer orden y los métodos de orden superior, como el esencialmente

no oscilatorio y el esencialmente no oscilatorio ponderado para la discretización espacial,

aśı como el método Runge-Kutta de tercer orden con disminución de variación total para

la discretización temporal. Además, se emplea el método de caracteŕısticas para obtener la

solución anaĺıtica del problema, que se utiliza para comparar con las soluciones numéricas

y las predicciones de la redes neuronales desarrolladas. Las soluciones inferidas por los

modelos son relativamente buenas desde el punto de vista de los errores L1 y L2; pero

la calidad de los datos en el modelo discreto no fue significativa para mejorar la inferen-

cia, a diferencia del modelo continuo el cual presentó una mejora adecuada cuando la red

neuronal se entrenó con datos ENO. Sin embargo, estos resultados no tiene una apropi-

ada aproximación de la solución exacta; y esto se debe a que el error cuadrático medio

de las condiciones de borde no fueron consideradas en la formulación de la función de

costo. Las condiciones de borde conocidas como salida y entrada se implementarán en tra-

bajos futuros para mejorar la inferencia de soluciones para la ecuación de nivel de conjunto.

Palabras Clave:

Método de conjunto de nivel , Ecuación de conjunto de nivel, Redes neuronales informadas

por la f́ısica, Difusión ascendente, Método esencialmente no oscilatorio, Método esencial-

mente no oscilatorio ponderado, Runge Kutta de disminución de variación total.
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Abstract

This project focused on developing continuous and discrete time models of neural net-

works based on the physics-informed neural network (PINNS) to solve a one-dimensional

partial differential equation problem known as the level set equation; in context of level

set method, without boundary conditions. The neural network is trained using data from

numerical solutions obtained from finite difference methods, including the the first-order

accuracy upwind method and high-order Essentially Non-oscillatory (ENO) and Weighted

Essentially Non-oscillatory (WENO) methods for discretizing space, as well as third-order

accuracy TVD-Runge-Kutta method for the discretizing time. The method of character-

istics is also employed to obtain the analytical solution to the problem, which is used for

comparison with the numerical solutions and the predictions of the developed neural net-

work. The inferred solutions by models are relatively good from the point of view of L1

and L2 errors; but the quality of data for the discrete-time model was not significant to

improve the inference, in contrast, the continuous model presented a suitable improvement

when the neural network was training by ENO data. However, these results in the context

of the accuracy of approximation for exact solution are poor; and this is because the mean

square error of boundary conditions in the loss function was not considered. Inflow and

outflow boundary conditions will be implemented in future works to improve the inference

of solutions for the level-set equation.

Keywords:

Level Set Method, Level Set Equation, Physics Informed Neuronal Networks, Upwind ,

Essentially Non-oscillatory, Weighted Essentially Non-oscillatory, Total Variation Dimin-

ishing Runge Kutta.
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Chapter 1

Introduction

1.1 Background

The growth of numerical methods within the field of mathematics has transformed the

way to solve complex problems. Along with the development of computer programs and

sophisticated algorithms, numerical methods play a crucial role within modern-day math-

ematical modeling [10]. One of the significant parts of numerical methods is the partial

differential equation (PDE), which entails partial derivatives of an unknown function of

two o more free variables. A typical example of a PDE is the wave equation, which gov-

erns various physical phenomena, such as aerodynamics, electrodynamics, acoustics, and

elasticity [11]. The finite element, finite volume, and finite difference methods are some of

the traditional numerical methods that have emerged to tackle an approximate solution

of particular PDEs. These methods are widely used in different fields, including physics,

engineering, and mathematics, to solve complex real-world problems [12]. As technology

evolves, numerical methods will also advance, founding more accurate and efficient solu-

tions to complex mathematical problems.

The research of partial differential equations is necessary for understanding the behavior

of complex physical phenomena. There are three principal categories of PDEs depending on

the behavior of their solutions; parabolic, hyperbolic, and elliptic. Hyperbolic equations are

often linked with wave propagation phenomena, including sound, electromagnetic, seismic,

etc. Also, their solutions can show wave-like behavior and finite propagation speed [13].

On the other hand, elliptic equations govern steady phenomena, such as the deformation

1
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of elastic material under equilibrium conditions and the static temperature distribution,

among others [14, 15]. Finally, parabolic equations govern time-dependent diffusion or heat

transfer process, and their solutions are smooth every time [14]. Classifying PDEs based

on their behavior is crucial to choosing suitable numerical problem-solving methods.

The Hamilton Jacobi equations are hyperbolic partial differential equations involving

some applications of optics, mechanics, and semi-classical quantum theory. Mainly, this

type of equation allows us to model the motion of fronts propagation on fluid dynamics

[1]. For example, Kun Lao, Changxiao Shao et el. [16] simulated the impact of a droplet

on a hot plate to track the behavior of the droplet was represented as an interface. The

tacking of the motion of interface through Hamilton Jacobi formulation is most used in

computational fluid dynamics [17].

Two significant cases of Hamilton Jacobi formulation are studied in [1, 18]. First,

when the motion of the interface depends on its local curvature, Osher and Sethian [1]

developed numerical experiments to track and capture, at different times, the evolution of

the interface. Second, when the motion of the interface depends on an external velocity

field, Israel Pineda and Oubong Gwun [19] simulated the growth process of leaves where

a vector field leads the evolution of the leaf growth. In any of the two contexts, the term

Level set method is described as a technique used to capture the interface; then LSM is a

Hamilton Jacobi formulation.

The level set method is a powerful tool for tracking and capturing the interface in

simulations involving local curvature and external velocity fields. The advantages of this

method are based on defining the interface as a level set of an initial high-dimensional

function, which typically is a signed distance function; this formulation allows captures the

evolution of an interface if it suffers severe changes in topology, for example, two interfaces

split or merge under a vector field [1, 18, 7]. The level set method is suitable to simulate

two-phase flow [20]; mainly, the simulation of cysts can be described as dual-fluid entities

delineated by a bi-layer membrane. Moreover, Vincent Doyeux, Yann Guyot, et al. in [20]

used Finite Elements Method to solve LSM, which is more flexible.

To solve LSM, the level set equation must be resolved because this PDE is responsible

for evolving the interface. Three main methods for approximating the spatial derivatives

are studied; finite differences method (FDM), finite elements method (FEM), and finite

Mathematician 2 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

volume method (FVM). Jiang and Shu [21] developed high-order schemes based on the

finite differences method, which are called ENO and WENO, to achieve third-order and

fifth-order accuracy. However, the traditional upwind procedures are suitable for solving

simple simulations. In the context of FEM, Vorgelegt Von [22] developed the variational

formulation (VF) of the level set method for capturing interfaces with applications in two-

phase flow problems; to find solutions of VF, the author used the Standard Galerkin method

and Discontinuous Galerkin method which are classical finite elements methods. On the

other hand, Néstor Balcázar, Llúıs Jofre, Oriol Lehmkuhl, et al. [23] used a conservative

finite-volume approximation to discretize the traditional level set equation. Moreover,

LSE involves derivatives concerning time; Shu and Osher [24] developed a total variation

diminishing Runge Kutta (TVD- RK) method that, together with FDM, solves the LSE,

in the same way, the numerical experiments proposed in [22] using the combination Crank-

Nicolson method and Standard Galerkin method to make simulations of two-phase flow.

On the other hand, a new method was introduced by [25] to infer solutions of partial

differential equations based on neuronal networks. Dissanayake and Phan-Thien [26] first

introduced neural-network-based approximations to solve partial differential equations; and

in recent years, with the development of new techniques of machine learning, this topic

began to emerge with intensity [27]. Raissi et al. [25] developed a new method that allows

the conservation of the laws in physics imposed by PDEs. PINNs are deep neural networks

that are trained with few data generated by traditional numerical methods; the key idea is

to define the loss function based on mean squared errors (MSE) of initial data, boundary

condition, and residual of PDEs; it allows to minimize the loss function to obtain suitable

inferences for solutions of PDEs [25]. In the context of tracking problems, several research

has been developed in [28, 29, 30, 31, 32] using PINNs.

1.2 Problem Statement

The level set method allows us to study the motion of curves or surfaces represented by

a zero-level set of an implicit high-dimensional function. This is achieved by tracking

the evolution of this function using a partial differential equation (PDE) called the level

set equation. Sethian [33] introduced this approach to solve problems involving complex
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geometries in various areas such as fluid dynamics, control theory, and microchip man-

ufacturing. In this context, finite differences and finite element methods are the most

commonly used numerical methods for tracking problems.

Various numerical methods involve finite differences to solve the spatial derivatives in

the level set equation. High-order schemes are predominantly used to study the evolution

of complex interfaces subjected to severe topology changes, for example, in the simulation

of two-phase flows. However, these methods may present potential challenges related to

computational costs, accuracy, efficiency, and stability [34, 35]. Therefore, research in this

field is of significant importance in finding new variations of existing numerical methods

to improve simulations of real-world problems [36].

This project proposes two feed-forward neural network models to infer one-dimensional

solutions of the level set equation based on physics-informed neural networks (PINNs).

The project also aims to establish foundations for studying two- and three-dimensional

cases of the level set method. Furthermore, the data to train the neural network will

be obtained by solving the level set equation using finite differences methods such as up-

winding, high-order ENO, and WENO. The proposed models will be evaluated using the

exact solution of the level set equation as well as numerical solutions generated by finite

differences methods and total variation diminishing (TVD) Runge-Kutta methods for space

and time discretization, respectively. This will allow us to assess the effectiveness of the

machine learning technique compared to traditional methods.

1.3 Objectives

1.3.1 General Objective

Infer solutions of the level set equation with free boundary conditions using a deep neural

network that learns from the level set equation and data generated by finite differences

schemes, including upwinding, ENO, and WENO methods.

1.3.2 Specific Objectives

1) Implement the finite differences, upwind, ENO, and WENO schemes coupled with

the third-order TVD-Runge Kutta schemes to discretize space and time. Hence,
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generating numerical solutions of LSE to feed the neural network.

2) Study the accuracy of inferred solutions by neural networks by comparing them with

the numerical solutions from the finite differences methods.

3) Compare the results of proposed models with the exact and numerical solutions using

L1 and L2 errors.
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Chapter 2

Theoretical Framework

This chapter will explain in detail the theory needed to understand this project.

2.1 Hamilton Jacobi Equations

Hamilton-Jacobi equations are a family of hyperbolic partial differential equations (PDEs)

in classical mechanisms to describe the evolution of systems under an action. The duality

between trajectories and wavefronts is a crucial property of HJ in many areas of physics

such as optics, quantum mechanism, and fluid dynamics; mainly, it helps to understand

the behavior of waves and particles in physical systems [37]. In tracking problems, Osher

and Sethian [1] studied the propagation of the front with curvature-dependent speed using

HJ formulation to describe the motion of the front (Fig.2.1). The general HJ equation is

given by [9]

ϕt + H(∇ϕ) = 0, ϕ(x, 0) = ϕ0(x), (2.1)

where x ∈ Rn, t > 0. The solutions of (2.1) are not continuously differentiable even

when the initial function ϕ0(x) is smooth; the analytic study of uniqueness, stability, and

existence of the viscosity solution for (2.1) is proved under suitable assumptions on the

Hamiltonian H [9].

The HJ approach has significant advantages in applications. One of the most important

advantages is its capacity to tackle severe topological changes of the front, which makes

it appropriate for propagating the interface. Another advantage in control problems is to

allow generating of optimal trajectories that minimize a given cost function. Making it

7
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useful for applications such as path planning, where the objective is to find the optimal

path between two points while avoiding obstacles and minimizing energy consumption

[1, 38].

Figure 2.1: Motion under curvature of the front. Source [1]

2.2 Level Set Method

The level set method is a numerical technique to track and simulate the motion of interface

or fronts between two regions of a physical system. This method was first devised by Osher

and Sethian in 1988 [1] and has been used in diverse areas such as image processing, fluid

dynamics, and computational geometry. One of the most essential ideas is to represent

the interface as a level set of a higher-dimensional function. For example, if considering

the zero level set of a three-dimensional function, the interface is represented in two di-

mensions (Fig.2.2). Consequently, this representation allows evolving the interface as a

higher-dimensional function using the level set equation [18].

In order to evolve the interface, Osher and Fedkiw [18] considered a specific case of the

Hamilton Jacobi Equation, taking

H(∇ϕ) = V · ∇ϕ, (2.2)
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Replacing (2.2) in (2.1), they obtained the simple advection equation (or the level set

equation) given by

ϕt + V · ∇ϕ = 0, ϕ(x, 0) = ϕ0(x), (2.3)

with x ∈ Rn, t > 0. Moreover, V is the velocity field that is defined in all domain Rn

and the initial interface ϕ0(x) = 0 is usually represented as the zero level set of the signed

distance function. This is known as the Eulerian formulation for describing the interface

evolution since capturing the interface is led to high-dimensional function.

The main advantage of the level set method is capturing complex topological changes

in the interface, such as splitting, merging, and re-connection, without meshing methods.

The method also allows for the accurate tracking of the interface even in the presence

of strong gradients and shocks, and it can handle arbitrary geometries. In this sense, the

equation (2.3) is solved using numerical techniques such as finite differences, finite elements,

or spectral methods. Additionally, the method also requires various numerical techniques

to handle the interface, such as reinitialization, advection, and curvature computation [18].

(a) (b)

Figure 2.2: a. Representation of interface by zero level of signed distance function, b. The
interface of (a). Source [2, 3]

2.3 Signed Distance Function

Signed-distance functions (SDFs) are a subset of implicit functions that emerge from adding

an extra property, |∇ϕ| = 1, to the level set function by defining the distance function
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(Fig.2.3). Mainly, a signed distance function gives the distance from an arbitrary point

in the domain to the closest point on the interface [18]. This type of function is used in

computer vision, mostly in real-time computer graphics, to describe the object geometry.

Figure 2.3: On the left side is a representation of a signed distance function, and on the
right side is the interface of SDF. Source [4]

Let’s consider a continuous scalar function ϕ with a free surface Γ defined by zero level

set of ϕ, i.e,

Γ =
{
x : ϕ(x, t) = 0

}
.

Then, the level set function is defined as [39] (Fig. 2.4)

ϕ(x, t) =


> 0, in x ∈ Ω+

= 0, in x ∈ Γ

< 0. in x ∈ Ω−

(2.4)

Now, define the distance function as the minimum distance from an arbitrary point x ∈ Ω

to the closest point xΓ ∈ Γ, i.e.,

d(x) = min(|x − xΓ|). (2.5)

Notice that if the point x is on the interface, d(x) = 0. Therefore, using (2.5) can define a
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Figure 2.4: Representation of level set function

signed distance function of (2.6), as follows;

ϕ(x, t) =


d(x), in Ω+

−d(x). in Ω−
(2.6)

As a result of definition (2.6), signed distance functions have some interesting properties

like [18];

(1) |∇ϕ| = 1

(2) Let ϕ1 and ϕ2 be SDFs, min(ϕ1, ϕ2) is the union of two interior regions.

(3) Let ϕ1 and ϕ2 be SDFs, max(ϕ1, ϕ2) is the intersection of two interior regions.

(4) Let ϕ be SDF, define −ϕ as complement of ϕ

Example 1 Let ϕ(x, y) = x2 + y2 − 1 be an implicit function of a circle centered at the
origin with unit radius, then the signed distance function for ϕ is defined as;

ϕ(x, y) =
√

x2 + y2 − 1.
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2.4 Finite Differences Methods

Finite difference methods are numerical techniques that help to solve partial differential

equations. The idea of FDM is to compute the finite differences between values of a

function at discrete points for approximating its derivatives at a point [5]. The discrete

points xi, i = 0, ..., M represent a partition of a interval [a, b] with M + 1 points (Fig. 2.5),

and a finite difference between points is defined by (2.7)

Figure 2.5: Uniform partition of interval [0, 1]. Source [5]

∆+fi = fi+1 − fi

∆x
, (2.7)

with i represents point in partition, fi represents the value of function at point i and

∆x is the spacing between two discrete points. The formula (2.7) is a discrete expression

for computing the following derivative;

d

dx
f ≈ f(x + h) − f(x)

h
.

This is a brief description to understand finite differences methods. In literature, the

first-order numerical methods for solving hyperbolic PDEs [40]:

(a) Upwind scheme;

(b) Lax-Friedrichs method;

(c) Lax-Wendroff method;

and high-order methods;

(a) Second-order Lax-Wendroff

(b) Third-order essentially non-oscillatory (ENO)

(c) Fifth-order weighted essentially non-oscillatory (WENO)
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In the following sections, upwind, ENO, WENO, and TVD-Runge Kutta schemes are

described in a general way in order to solve the level set method.

2.4.1 Upwind Method

Let’s define the motion of the interface by PDE [18];

ϕt + −→
V · ∇ϕ = 0. (2.8)

In order to find the solution at time tn+1, a first-order accurate method is used to discretize

the time in equation (2.8), which is the forward Euler method given by

ϕn+1 − ϕn

∆t
+ −→

V n · ∇ϕn = 0, (2.9)

where −→
V n is the externally generated velocity field at time tn, and ∇ϕn is the gradient

operator applies to ϕ at time tn. Then equation (2.9) can be written as [18];

ϕn+1 − ϕn

∆t
+ unϕn

x + vnϕn
y + wnϕn

z = 0.

In order to approximate ϕn
x at the point xi. The method of characteristics is described as

(a) If ui > 0, then ϕx is approximated by

∂

∂x
ϕ ≈ ϕi − ϕi−1

∆x
.

This is called a first-order accurate backward difference.

(b) If ui < 0, then ϕx is approximated by

∂

∂x
ϕ ≈ ϕi+1 − ϕi

∆x
.

This is called a first-order accurate forward difference.

Similarly, the terms ϕy and ϕz are independently approximated with forward and backward

differences. The above description is the idea of the upwind method.
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2.4.2 Essentially Non-oscillatory

The Essentially Non-oscillatory method (ENO) was first introduced by Harten et al. [41] as

an improvement for forward and backward differences. This high-order numerical approach

is used to solve hyperbolic partial differential equations in various applications such as

image processing, computational fluid dynamics, etc.

The ENO idea is to define a partition of an interval [a, b] and consider a subset around

a point in the partition, mainly; for the third-order accurate ENO, to approximate a

derivative at point xi by left, the left-based stencil is given by

S = {xi−3, xi−2, xi−1, xi, xi+1, xi+2} ,

using this stencil, Harten et al. [1] defined sub-stencils as

S0 = {xi−3, xi−2, xi−1, xi} ,

S1 = {xi−2, xi−1, xi, xi+1} ,

S2 = {xi−1, xi, xi+1, xi+2} .

Then the strategy is to construct an interpolation polynomial using each sub-stencil; papers

[1, 18, 42] built this procedure based on Newton divided differences. Now, the aim is to

choose the suitable interpolation polynomial based on the local smoothness of the function

to be an approximation of derivative [9]. For example;

(a) If the discontinuity is in the point xi−2, then the interpolation polynomial built by

S2 is suitable.

This shows the capacity of the ENO method to precisely represent sharp changes and

abrupt shifts in the solution while minimizing any false oscillations [42].

2.4.3 Weighted Essentially Non-Oscillatory

The Weighted Essentially Non-Oscillatory (WENO) was first introduced by Liu, Osher,

and Chan [43] as an improvement for the ENO method. This high-order method is the

most used in various applications such as computational fluid dynamics, astrophysics, and

computational electromagnetic [42].
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The WENO idea developed by [43] involved combining three ENO approximations in

a convex manner. In cases where any of the approximations go across a discontinuity, it

is assigned a small weight to minimize its impact and errors. All three approximations

are given a substantial role in smooth flow areas, thereby enhancing local accuracy from

third order to fourth order. Later, Jiang and Shu [21] developed optimal weights for the

convex combination of ENO approximations which caused a fifth-order accuracy in smooth

regions. Below is a description of WENO’s idea by [18];

Let ϕ0
x, ϕ1

x and ϕ2
x be ENO approximations, the convex combination to approximate a

derivative is given by

ϕx = ω0ϕ
0
x + ω1ϕ

1
x + ω2ϕ

2
x,

where the weights must satisfy the following

ω0 + ω1 + ω2 = 1.

Jiang and Shu [21], proposed the following weights; ω0 = 0.1, ω1 = 0.6 and ω2 = 0.3 to

achieve the fifth-order accuracy in smooth regions. While in regions with discontinuities,

the weights are chosen to be ωk = 0 or ωk = 1, this procedure gives a single approximation

to ϕx,i.e., one of the ENO approximations [18].

2.4.4 Total Variation Diminishing Runge Kutta

Gottlieb and Shu [44] described TVD/RK as a method to solve a system of ODEs;

ϕt = L(u).

Coupled with suitable initial conditions emerges from a method of lines approximation to

hyperbolic conservation law:

ϕt = −f(ϕ)x,

where the spatial derivative f(ϕ)x is approximated by finite differences schemes and is

denoted by -L(ϕ). Then, the firs-order TVD/RK is the Euler forward stepping;

ϕn+1 = ϕn + ∆tL(ϕn),
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under suitable restriction;

∆t ≤ ∆t1.

Then the aim of high-order TVD Runge Kutta time discretization is to keep the TVD

property:

TV (ϕn+1) ≤ TV (ϕn),

where TV is the total variation of the numerical solution defined as;

TV (ϕ) =
∑

j

|ϕj+1 − ϕj|.

In order to achieve higher order accuracy in time, the restriction with a different time step

is given by

∆t ≤ c∆t1, (2.10)

where c is the CFL coefficient for the high-order time discretization. Then the following

Lemma describes the necessary condition to be TVD [44].

Lemma 1 The general Runge-Kutta method describe in [44] is TVD under the CFL coef-
ficient (2.10):

c = min
i,k

αik

βik

, (2.11)

provided that αik ≥ 0, βik ≥ 0.

Under this condition, Gottielb and Shu [44] described the third-order TVD Runge Kutta;

Proposition 1 If we require αik ≥ 0, and βik ≥ 0, then the optimal third-order TVD
Runge Kutta method [44] is given by

ϕ(1) = ϕn + ∆tL(ϕn),

ϕ(2) = 3
4ϕn + 1

4ϕ(1) + 1
4∆tL(ϕ(1)),

ϕn+1 = 1
3ϕn + 2

3ϕ(2) + 2
3∆tL(ϕ(2)),

with a CFL coefficient c = 1.
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2.5 Neural Networks

Neural Network is a model that simulates the function of the human brain, which contains

layers where each one has interconnected neurons to each other. Each neuron contains

parameters called weights and biases that help process the input information. Moreover,

the out-of-neuron is controlled by nonlinear functions called activation functions [45]. For

example, Figure 2.6 represents that the neuronal network contains two layers with two

neurons, each one. Kunihiko Fukushima and Sei Miyake [46] developed an important

neuronal network called Neocognitron. It was used for visual pattern recognition, mainly

classifying and recognizing patterns on objects according to their shapes. The successor of

this neural network is the famous Convolutional Neural Network (CNN) used today in the

segmentation and recognition of images. In this context, a complex neural network with

more than two layers is called a deep neural network.

The traditional architectures in deep learning are fully connected feed-forward networks

(FFN), convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

However, a recent work [47] described that there are new deep neural networks based on

unsupervised learning and Bayesian probabilistic. In the same way, the activation function

plays a crucial role in DNN training performance, and the most used are ReLU, Sigmoid,

and Tanh [48]. For example, the suitable activation functions in physics-informed neuronal

networks (PINNs) are smooth activation functions such as the sigmoid and hyperbolic tan-

gent [27]. Therefore, all these concepts can be represented by a mathematical framework.

Caterini and Chang [45] proposed a mathematical model of neural network with n

layers as the composition of n functions; i.e,

ϕθ(x) = fn(fn−1(...(f1(x)))).

Each function fi(xi, θi) is defined as

fi : Ei × Hi → Ei+1,

where Ei, Hi and Ei+1 are inner products spaces for all i = 1, ..., n. Moreover, xi ∈ Ei are
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Figure 2.6: Representation of a simple neuronal network

state variables, and θi ∈ Hi is the set of parameters for i-th layer.

2.5.1 Physics Informed Neural Networks

In recent years, physics-informed neural networks (PINNs) are feed-forward neural net-

works that have experienced significant growth in applications involving partial differential

equations such as fluid dynamics, material science, solid mechanism, etc. PINNs infer

PDE solutions based on minimizing a loss function when the neural network is trained.

The training can address problems that contain little data or noisy data; in this context,

the main advantage of PINNs is that they are neural networks that handle supervised

learning problems since they can utilize available data while following specific physical

laws imposed by non-linear or linear partial differential equations [27, 49].

Cuomo et al. 2022 [27] described the most general form of differential equations that

PINNs can solve;

F (f(x); γ) =u(x), x ∈ Ω

B(f(x)) =g(x), x ∈ ∂Ω

defined on the domain Ω ⊂ Rn. Where the vector x represents the variables in space and

time, f is the unknown solution, γ are the parameters related to physics such as pressure

(ρ), viscosity constant (ν), velocity field and so on. Moreover, F represents a linear or
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non-linear operator depending on the problem involving partial derivatives, and B are

the boundary conditions defined as Dirichlet, Neumann, or periodic boundary conditions

[27, 49].

In order to solve the above problem, the general idea of PINNs is to computationally

approximate a function f(x) by a NN, which is parameterized by a set of parameters θ;

then the approximation is defined by

f̂θ(x) ≈ f(x),

where f̂θ is a NN approximation of f under parameters θ. These parameters are known as

weights (W) and biases (b). In the context of FF-NN, the NN approximation is defined

as a matrix form;

f̂(x; θ) = f̂(x; W, b) = α · (W · x + b),

where α is the activation function which can be ReLU, sigmoid, etc.

On the other hand, in order to find the suitable parameters θ of the f̂θ, θ is obtained

by the process of minimization of loss function L(θ) [27];

θ = arg min
θ

L(θ),

where the loss function is defined as

L(θ) = ωF LF (θ) + ωBLB(θ) + ωdLdata(θ).

In papers developed by He et al., [50] and Stiller et al. [51], described that LF is the

loss produced by a mismatch with the governing differential equations F , i,e, this terms

imposed the physical constraints by automatic differentiating applied on differential op-

erator F using chain rule; mainly, this helps to compute the derivative of NN (f̂θ)[52].

Kollmannsberger at al. [53] defined the Lθ based on mean square error as;

LF (θ) = MSEF = 1
Nc

Nc∑
i=1

∥∥∥F (f̂θ(xi)) − u(xi)
∥∥∥2

,

where Nc are randomly selected collocation points inside the domain. In the same way, he
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defined the boundary and initial conditions as;

LB(θ) = MSEB = 1
Nb

Nb∑
i=1

∥∥∥B(f̂θ(xi)) − g(xi)
∥∥∥2

,

Ldata(θ) = MSEdata = 1
Nd

Nd∑
i=1

∥∥∥f̂θ(xi) − fi

∥∥∥2
,

where fi is a known data point, this helps to compute the error of the approximation

f . Notice that Nc, Nb, Nd are chosen randomly. Moreover, LF penalizes the discrepancy

between the predicted left-hand side of a partial differential equation (PDE) and the actual

right-hand side of the PDE [53].

Various optimization methods are used to reduce the computational cost of minimiz-

ing the loss function in physics-informed neural networks (PINNs). The most commonly

used optimization methods in PINNs are minibatch sampling with Adam and the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, which is a type of quasi-

Newton optimization algorithm. Mathews et al. [52] pointed out that this method is op-

timum for increasing the sample size of data training. However, there is another method

called stochastic gradient descent (SGD) to increase converge speed [27].

Raissi et al. [25] studied particular PDEs that have the form;

ut + N [u; λ] = 0, x ∈ Ω, t ∈ [0, T ], (2.12)

where the authors defined the loss function L(θ) for training as;

L(θ) = 1
Nc

Nc∑
i=1

∥∥∥∥∥ ∂

∂t
ûθ(x, t) + Fx[ûθ(x, t)] − ri

∥∥∥∥∥
2

+ 1
Nd

Nd∑
i=1

∥∥ûθ(xi, ti) − ui

∥∥2 .

Example 2 For example, in one-dimensional Burger’s equation with Dirichlet boundary
conditions given by [25]:

ut + uux − (0.01/π)uxx =, x ∈ [−1, 1], t ∈ [0, 1]

and
u(0, x) = − sin(πx), u(t, −1) = u(t, 1) = 0.
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For this case, the physics-informed neural network is defined as;

f(t, x) = ut + uux − (0.01/π)uxx.

Moreover, the implementation of f(t, x) in Example 2 using programming language Python

and library TensorFlow;

1 def u(t, x):

2 u = neural_net (tf. concat [t, x], 1), weights , biases

3 return you

4

5 def f(t, x):

6 u = u(t, x)

7 u_t = tf. gradients (u, t)[0]

8 u_x= tf. gradients (u, x)[0]

9 u_xx = tf. gradients (u_x , x)[0]

10 f = u_t + u*u_x - (0.01/ tf.pi)*u_xx

11 return f

Convergence Aspects

De Ryck et al. [54] studied the convergence of PINNs based on when a sequence of predic-

tive solutions f̂θ converges to the solution of the physical problem, i,e.

(f̂θ)n →, n → ∞.

The researchers demonstrated that as the width of a pre-defined neural network (NN)

with the activation function tanh increases to infinity, the difference between the estimated

function f̂θ and the actual function f will approach zero. Therefore, the width corresponds

to the number of parameters or weights the neural network learns during the training

phase. It should be selected based on the problem’s complexity, the dataset’s size, and the

computational resources available to guarantee convergence [54].
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Chapter 3

State of the Art

3.1 Studies on High-order Finite Differences Methods

The level set method is a field where various authors have developed studies to improve

the numerical methods advised in [1] to solve tracking problems using Hamilton- Jacobi

equations involving formulation of fronts propagating with local curvature speed. Osher

and Sethian [1] introduced the concept Level Set Method by defining the acts using a level

set of high-order dimensional functions; it helped to track the propagation of fronts easily;

because, from this point of view, the severe topological changes subject to the shows as

they evolve were successfully tracked.

For hyperbolic partial differential equations, Harten, Osher, et al. [41] developed nu-

merical approximations to weak solutions of the hyperbolic initial value problem (2.1) to

approximate the derivatives concerning spatial variables based on high-order differences

method; Essentially non-oscillatory schemes use an adaptive stencil to avoid interpolations

through discontinuities, i.e., piece-wise polynomial reconstruction of the solution from its

cell averages. Moreover, the discretization of time developed in [41] was the total variation

diminishing schemes that have at most first-order accuracy in truncation error. Still, it

can cause smoothing of certain areas using this technique could result in pollution and

potentially create nonlinear instability, ultimately causing the schemes to fail [24]. This

approach prevents spurious oscillations near discontinuities called the Gibbs phenomenon,

in contrast to traditional high-order accurate finite difference, finite volume, finite element,

or spectral schemes [42]. Therefore, the studies [41, 1, 24] have been improving to solve
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Hyperbolic PDEs, which positively affects the level set method to obtain suitable capturing

interfaces.

The challenge remains which numerical method gives the best approximation to solu-

tions of hyperbolic PDEs. In the context of LSM, this is important because allowing to

capture the interface preserving the geometry; Pineda et al. [7] developed various test-

ing examples to analyze the accuracy of upwind and ENO schemes when the interface is

passively advected in a flow field. The results showed that the ENO schemes keep the ge-

ometry interface, in contrast to upwind produces deformation of the interface; the grid size

is significant to obtain good results; consequently, the computational cost grows. However,

the ENO approach is third-order accurate, then Liu, Osher, and Chan [43] developed a new

type of ENO scheme called weighted ENO (WENO) based on a convex combination of in-

terpolating polynomials of ENO for smooths regions and keeping the third order of ENO on

discontinuities regions. It produces an arbitrarily high order of improvement in accuracy;

mainly, the fifth order WENO (WENO5), is more used in flow simulation applications.

Luo et al. [8] developed a comparison between WENO5 and Finite Volume WENO5 when

the simulation involved smooth vortex propagation to the intense shock interaction; in con-

text, Navier-Stokes equations, the results showed similar solutions; however, the number

of points on mesh played a significant role because the reduction of mesh points involving

problems with accurate of WENO5. In the same way, Gu et al. [55] developed a comparison

between the traditional WENO5 and a new version called dispersion-relation-preserving

which is compact-reconstruction weighted essentially non-oscillatory (DRP-CRWENO4)

to preserve the interface that captures level set method in simulation of dam-break flows;

the results showed greater precision with DRP-CRWENO4. Therefore, ENO and WENO

schemes are suitable to solve problems for capturing and preserving the interface; however,

the two and three dimensions of the level set method involve extra computational cost

[55, 34].

3.2 Extensions on Level Set Method

The efficiency of the level set method is based on numerical methods to preserve the

interface with low computational cost. ENO and WENO schemes effectively solve the
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problem involving the external velocity field; however, other methods or versions show the

best properties to preserve the interface. Enright et al. [56] developed a numerical method

based on Lagrangian market particles to conserve the properties of the level set method; it

allows the reconstruction of the interface in regions that are underresolved. This procedure

improves the interface-preserving in two and three dimensions, unlike WENO5; however,

constructing particles involves an extra computational cost. On the other hand, Sussman

et al. [57] developed a reinitialization level set method that maintains the signed distance

property; in other words, the level set function is typically initialized into a signed distance

function, which the zero level set of this function represents the interface; it satisfies as a

unique viscosity solution of the Eikonal equation; however, after being set up as a signed

distance function, the level set function typically loses this property as it evolves according

to Eikonal equation, and therefore requires regular reinitialization. This procedure allows

to improve the conservation of properties of LSM, and these previous methods still entail

the WENO5 schemes to solve the evolution of interfaces [58]. From another point of view,

Vorgelegt von [22], in his doctoral work, developed the theory of finite elements method to

solve the level set equation; in this context, Dag lindbo [59] designed numerical experiments

based on the variational formulation for level set equation, this method is more suitable

than finite differences in terms of stability and converge; moreover, Long and Hyoung

[60] mentioned that the computational cost is low with Finite element compared with

reinitialization LSM even if refinement meshes are used. Therefore, various studies showed

improvements in solving the initial value LSM, aiming to preserve the interface and have

low-cost computational.

3.3 Physics Informed Neuronal Networks on Fluid
Dynamics

In recent years, neural networks have played an essential role in inferring solutions of

ordinary or partial differential equations. Kossacka et al. [28] used deep learning tech-

niques to improve the fifth-order WENO scheme; they trained a neural network to modify

the smoothness indicators and achieve suitable numerical results at discontinuities; how-

ever, there are other methods based on training a deep neural network using a few data
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and the information of PDEs to inference solutions; Raissi et al. [25] developed a new

idea based on neural networks can be trained to perform supervised learning tasks while

respecting laws of physics that are described by nonlinear partial differential equations.

These are called Physics informed neural networks (PINNs). The authors showed the

proposed framework’s efficacy by solving various traditional problems in fluid dynamics,

quantum mechanics, reaction-diffusion systems, and the transmission of nonlinear shallow-

water waves. Erik Laurin Strelow et al. [29] used PINNs to study gas transport problems

to avoid redundant computations, is fast for similar simulations, and can maintain high

accuracy. According to their experiments, achieving exact approximations requires solving

the optimization problem during the training phase with exceptional accuracy. However,

conventional machine-learning tasks typically avoid solving the training problem with ex-

cessive accuracy to prevent overfitting.

On the other hand, Qiu [30] led a complex flow modeling based on PINNs to tackle the

challenge by solving high-order derivate terms and capturing the interface adaptively; they

developed a different test to show the interface-capturing ability of PINNs; the outcomes

indicated that PINNs utilize automatic differentiation while retaining the exceptional ac-

curacy of the phase-field method, it causes that under the influence of the mobility, the

capturing accuracy is significant. In addition, Jiaewi Li, Wei Wu, et al. [61] improved

PINNs to solve two-dimensional Stefan problems; through examples of unstable regions

and free boundaries, this paper illustrated that the proposed method yielded accurate and

effective predictions. A leading property of PINNs is the mesh-free approach for solving

partial differential equations (PDEs), in contrast to classical numerical techniques. Shibo

Li, Michael Penwarden, et al. [62] mentioned this property could mitigate the complex-

ity of the interface, reduce the computational cost and allow parallelization; in addition,

Aaron B. Buhendwa, Stefan Adami, et al. [32] applied physics-informed neural networks to

tackle problems involving incompressible two-phase flows. Specifically, they focused on the

forward problem [63], which entails solving governing equations based on given initial and

boundary conditions; here, the level set method is used to capture the interface generated

by a numerical simulation for training the neuronal network. However, in the literature,

studies about PINNs focus on track problems, such as the level set method.
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3.4 Preliminaries Studies on Tracking Problems

To study the level set method, there are works focused on finding solutions to advection

equations. In section 2, the level set equation is called the advection equation when the

velocity field is constant. From this point of view, in the paper of Shashank Reddy Vadyala

and Sai Nethra Betgeri [64], various finite-difference approximations and physics-informed

neural networks (PINNs) are utilized to compute numerical solutions of the advection equa-

tion under circumstances that permit an analytical solution. In the same way, Qi Zhi He

and Alexandre M Tartako; theyciteHe2021 suggested a technique for solving the coupled

advection-dispersion equation (ADE) and Darcy flow equation with hydraulic conductiv-

ity that changes in space involves utilizing the physics-informed neural network (PINN)

approach, which does not require discretization. Vincent Liu and Hongkyu Yoon [65]

employed physics-informed neural networks to forecast fluid flow in a limited space and

compared their outcomes with analytical and numerical solutions acquired from fluid dy-

namics simulations. They evaluated their models by analyzing diverse flow and transport

scenarios in 2D domains utilizing the Navier-Stokes and advection-diffusion differential

equations. For example, Chulin Wang, Eloisa Bentivegna et al. [66] studied a model of

atmospheric pollution plumes that incorporates advection-diffusion; they investigated a

super-resolution (SR) technique for reconstructing high-resolution images (4x) from low-

resolution ones based on PINNs; the results compared to conventional super-resolution

techniques, physics-informed neural networks (NNs) are more successful at rebuilding de-

graded images and producing superior outcomes. All the studies developed so far do not

show foundations to solve the level-set method with PINNs.
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Chapter 4

Methodology

4.1 Description Problem

In 1988, Osher and Sethian [1] introduced new propagation of surfaces under curvature

algorithms (PSC) to track interfaces propagating, such as flame propagating and crystal

growth, in which the speed depends on the local curvature of fronts. They defined the

motion of the interface by the initial-value Hamilton-Jacobi equation and the surface as

a level set of a signed distance function. This formulation allowed to track of severe

topological changes in the front, in contrast to a technique based on parametrizing the

moving interface and a set of marker points to discretize the parametrization produced an

accurate tracking of the front when the moving involves small perturbations. Still, with

the large complex motion the result of precision decreases. Therefore, the level set method

defines the tracking of the interface based on a level set of signed distance functions.

In this context, a level set method is a type of Hamilton Jacobi formulation for track-

ing an interface. The motion is defined by a level set equation and the speed depends

on an externally generated velocity field (Fig.4.1). Thus, the numerical schemes must be

chosen appropriately to avoid spurious oscillations in numerical solutions leading to poor

accuracy and the non-convergence to solution. Following this, the main papers focused on

traditional numerical methods to approximate the partial derivatives with respect to space

variables; [9, 67, 21, 24] in which the authors developed schemes based on finite differences

for hyperbolic systems of conservation laws. Osher and Salomon [67] proposed upwind

differences schemes to discretize space on hyperbolic equations, and they pointed out that
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these schemes accomplish the properties of conservation form; no spurious oscillations,

low computational cost, but these methods are limited to first-order; it causes problems

when the front contains many discontinuities. In order to solve it, Osher and Sethian [1]

proposed a non-oscillatory numerical method based on polynomial interpolation; this fea-

ture allowed the construction of an arbitrary high-order method called ENO. This type of

approach accomplishes conservation laws, and above all, if the initial function is discon-

tinued, it produces an accurate solution. In this same sense, Jiang and Shu [21] improved

WENO schemes developed in [43]; this method is formulated to work with fifth-order in

the smooth region and third-order accuracy of ENO schemes at discontinuities. This kind

of approach has significant features such as the accuracy and the convergence of solutions,

and computing time is faster than the ENO approach and so on. Therefore, each scheme

has advantages and disadvantages that can result in better or worse depending on the

analyzed situation.

(a) (b)

Figure 4.1: Tracking the zero level of explicit function ϕ(x, y) = x2 + y2 − 1 using Level
Set Method

Another important part of solving the level set method is to identify suitable numerical

methods to approximate the derivative of a function with respect to time; it is crucial to

obtain linear stability coupled with upwind, ENO, and WENO schemes. Wang and Spiteri

[68] argued that the forward Euler method joined with WENO leads to linear unstable;

consequently, it is not convergent. For this reason, Shu and Osher [1] proposed a total

variation diminishing (TVD) Runge-Kutta(RK); in this fact, the three-order TVD-Runge

Kutta coupled with WENO is linearly stable. Additionally, this technique enhances the

precision of the method of lines; which is used to find the solution of the level set equation
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at t+∆t; this is particularly important when solving the level set method that depends on

the external velocity field. This method assumes that the temporal discretization can be

separated from the spatial discretization in a semi-discrete manner, allowing the temporal

discretization of the PDE to be treated independently as an ODE. Therefore, the accuracy

of solutions depends on suitable numerical methods.

Due to the nature of numerical methods, the research in this field is based on studies for

obtaining an efficient numerical technique to apply a specific real-world problem, such as

simulations of fluids, image processing, and so on. TVD-RK-ENO and TVD-RK-WENO

developed in [1, 43] showed appropriate properties to achieve the conservation laws of

hyperbolic equations; however, later studies [69, 21, 3] proposed significant changes for

ENO and WENO schemes to improve the computational cost. For example, Henrick et al.

[70] developed a new idea for maintaining the fifth-order of WENO near critical points.

Still, this extra process involves extra computational cost, unlike the method, improved in

[21]. In fact, some proposed schemes of WENO or ENO that exist in literature [70, 61]

involve a high precision and high cost computational using uniform meshes; consequently,

two and three dimensions of level set equation is increased by the number of points in grids.

Nevertheless, there are techniques based on adaptive meshes [69] and triangular meshes

[71] to decrease computational cost; moreover, using another numerical approach to solve

this issue, Teng et al. [72] compared finite volume WENO schemes with uniform WENO

schemes obtaining low cost for finite volume schemes. Therefore, the challenge remains to

find an efficient method to address the tracking problem using the level set equation.

On the other hand, the sensitivity of parameters of these numerical methods is signifi-

cant for study. Mainly, the smoothness indicator ϵ proposed by Lian, Osher, and Chan [43]

produces slight oscillations near shock waves; it propagates to smooth regions, causing the

increment of truncation error. However, Zhang and Shu [6] modified the smooth indicator

near shock regions to improve the fifth-order WENO schemes. In fact, this variation helps

to reduce the slight oscillation near discontinuities, also the convergence to the optimal

solution (Fig.4.2). Therefore, this parameter is crucial to improve the geometry of the

interface.

All previous studies in aspects such as linear stability and convergence, types of meshes,

the sensitivity of parameters, and computational cost are crucial to obtain meaningful
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Figure 4.2: Spurious oscillation on the numerical solution. Source [6]

numerical simulations for free surface flow using Level Set Method. Studies [3, 73, 2, 7, 74,

75] developed a numerical simulation using the two and three dimensions of the level Set

Equation with external vector field. L1 and L∞ are used to measure the error produced by

a numerical method in simulations. In fact, Pineda et al. [7] developed various examples of

interfaces to show the efficiency of upwind and ENO schemes proposed in [18, 9]; Figure 4.3

represents the one evolution of circle through circular vector field using a mesh resolution

of 502, the results showed a deformation of shape. Furthermore, a complex numerical test,

Henri et. at. [3], developed an interface shape for the single vortex test case using a

resolution mesh of 10242 to compare the original fifth-order WENO [43] with High-Order

Upstream Central (HOUC5) scheme; figure (4.5) shows high preservation of the interface

and they emphasized that the combination of WENO5 and HOUC5 reduce a 50% of

the computational cost of WENO5. Therefore, analyzing spatial and temporal numerical

methods is critical to lead a real simulation.

Although significant advancements have been made in simulating physics phenomena

through the discretization of PDEs, the process of mesh generation remains complex, and

solving some high-dimensional problems cannot be tackled because of stability, computa-

tional cost, and so on. Deep neural networks have been used recently to tackle classical

mathematical problems involving partial differential equations (PDEs) based on techniques

of machine learning and artificial intelligence [27]. Raissi et al. [25] proposed a new nu-

merical method called Physics Informed Neural Networks (PINNs); it is an architecture of
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(a) (b)

Figure 4.3: a. Initial interface. b. One revolution of the circle using the forward Euler
method and upwind differences. Source [7]

Figure 4.4: Single vortex test to show the efficiency of WENO5. Souce [8]

DNN to infer a solution of PDE by minimizing a loss function that depends on physical

information of PDE, initial and boundary conditions. In this sense, defining a suitable

loss function for a specific PDE is crucial; it allows it to converge to a desirable solu-

tion [27]. Therefore, this project developed two models of DNN to infer solutions in a

one-dimensional level Set equation based on an architecture developed by Raissi in [25],

discrete and continuous models are considered. The discrete model defines the physics-

informed neural network based on the second term of the equation as a linear differential

operator, i.e., it only depends on spatial derivative and velocity field. In order to compute

the predictive solution, it uses n steps of Runge Kutta methods, and the loss function for

training is defined only mean square error (MSE) of data (Ldata(θ)) and MSE of the dif-

ferential operator. On the other hand, the continuous model is today the most used where
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PINNs are defined by the left side of the equation. It contributes to the physical constraint

of PDE and the loss function; for this case, it is defined by MSE of PDEs (LF (θ)) and

MSE of data (Ldata(θ)). For either of the two cases, the mean square error of the boundary

condition is not considered. This allows one to evaluate the proposed models based on

their effectiveness if one considers a problem with free boundary conditions versus numer-

ical methods. The training data are numerical solutions generated by upwind, ENO3, and

WENO5. However, the problem has an analytic solution described in [76], allowing us

to compare the analytic solution, traditional numerical methods (upwind, ENO, WENO

schemes), and the proposed model. Finally, this is the first study to help build a significant

foundation for tracking of the interface in two and three dimensions; mainly to investigate

which parameters can be considered to infer solutions of LSE both in the training and in

the formulation of the loss function.

Let’s consider the following problem (4.1); one-dimensional level set equation (advection

equation) with the initial condition given by signed distance function and constant velocity

field u(t, x) = 0.01,


∂
∂t

ϕ(x, t) + u(x, t) · ∂
∂x

ϕ(x, t) = 0, in R × [0, T ]

ϕ(x, 0) = ϕ0(x), in R
(4.1)

where

ϕ0(x) = |x| − 1. ∀x ∈ R

Note that no boundary conditions are needed in this case as the PDE holds in the whole

domain R.
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4.2 Analytic Solution of 1D Level Set Equation

Let’s consider the following one-dimensional level set equation, which is called the advection

equation; the following description to find the analytic solution is based on [76]:

In order to solve (4.1) with initial condition ϕ0(x), we will use the method of char-

acteristic; that is, let us reduce this problem to an ordinary differential equation case.

Figure 4.5: A characteristic curve.

Let x(t) ∈ Γ(t) be a curve with x(0) = ϵ (Figure 4.5) where Γ is a surface and the slope

of x(t) is given by:
d

dt
x(t) = c, (4.2)

and let’s define the curve x(t) such that

d

dt
ϕ(t, x(t)) = ∂

∂t
ϕ(t, x) + u · ∂

∂x
ϕ(t, x) = 0. (4.3)

Applying the chain rule of differentiation on the left side of (4.3), we get

d

dt
ϕ(t, x(t)) = ∂ϕ

∂t

dt

dt
+ ∂ϕ

∂x

dx

dt
= ∂ϕ

∂t
+ ∂ϕ

∂x

dx

dt
. (4.4)

By Lagrangian formulation, assume that velocity field u(x, t) is given for each x(t) ∈ Γ(t),

then the movement of Γ is described by solving the EDO

d

dt
x(t) = u(x, t). (4.5)
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If we consider a constant velocity field, the slope of x(t) described by (4.5) matches with

(4.2); that is,
d

dt
x(t) = u(x, t) = c, (4.6)

then the equation (4.4) is equivalent to (4.3), in other words, the ODE on the left-hand

side of (4.3) is equal to PDE. By (4.4) and (4.6), we have that

d

dt
ϕ(t, x(t)) = ∂ϕ

∂t
+ c

∂ϕ

∂x
, (4.7)

It follows that the solution of the level set equation can be obtained from the ODE;

d

dt
ϕ(t, x(t)) = 0, (4.8)

along any associated curves to x(t), which are the solution curves of equation given by

d

dt
x(t) = c. (4.9)

A characteristic curve of LSE is a curve given by x = x(t), where x(t) is a solution of the

differential equation (4.9). Clearly, the value of ϕ stays constant along such curves. Thus

the solution of (4.1) is reduced to find the solution from the system of EDOs given by

dϕ

dt
= 0, (4.10)

dx

dt
= 0. (4.11)

Integrating (4.11), we get ∫ d

dt
x(t)dt =

∫
cdt = ct + ϵ,

where ϵ is the x-intercept of the curve. It shows that the characteristic curves are straight

lines (Fig. 4.5) with slope given by (4.2). Moreover, we know that ϕ is a constant along a

given characteristic curve its value can be defined from the initial condition, that is;

ϕ(t, x) = ϕ(0, ϵ) = ϕ0(ϵ).
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Since ϵ = x − ct, the solution of PDE in (4.1) is given by

ϕ(t, x) = ϕ0(x − ut). (4.12)

4.3 Finite Difference Method

4.3.1 Upwind Schemes

Let us define a grid of points in the (x, t)−plane. Let ∆x and ∆t be positive numbers;

then the points on the grid is defined by

(xi, tn) = (i∆x, n∆t),

with uniform spacing ∆x, some time step ∆t, and arbitrary integer number i and n (Fig.

4.6). Moreover, a function ϕ is defined on the grid as

ϕn
i = ϕ(xi, tn).

Figure 4.6: Grid for the discretization of Level Set Equation

Using the method of characteristic [18], the discretization of (4.1) is based on two cases;

u > 0 and u > 0, since u is constant.

Case: u > 0. First, let us consider a first-order accurate method to approximate the

time derivative ϕt = ∂ϕ/∂t; it is called the forward Euler method; i.e,

∂ϕ

∂t
≈ ϕn+1

i − ϕn
i

∆t
. (4.13)
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Since the solution to the level set equation depends on u, we have that

ϕ(xi, tn+1) = ϕ(xi − u∆t, tn).

Since u > 0, it follows

xi − u∆t < xi.

In this sense, ϕn−1
i is necessary to find the value ϕn

i . Therefore, Backward schemes is used

to approximate ∂ϕ/∂x, i.e.,
∂ϕ

∂x
≈

ϕn
i − ϕn

i−1
∆x

, (4.14)

so, the discretization of (4.1) defined by (4.19) and (4.20);

ϕn+1
i − ϕn

i

∆t
+ u

ϕn
i − ϕn

i−1
∆x

= 0, (4.15)

with ϕ0
i = ϕ(xi, t0) that is the initial data. By (4.22), in order to find the numerical solution

ϕn+1
i at tn + ∆t is given by

ϕn+1
i = ϕn

i + u
∆t

∆x
(ϕn

i − ϕn
i−1).

Case: u < 0. In the same way, if u < 0, then

ϕ(xi, tn+1) = ϕ(xi + u∆t, tn),

it follows that

xi + u∆t > xi.

The information of ϕn
i is necessary to find the value of ϕn+1

i , here Forward scheme is used

to approximate ∂ϕ/∂x, i.e.,
∂ϕ

∂x
≈

ϕn
i+1 − ϕn

i

∆x
. (4.16)

By (4.19) and (4.23), the discretization of (4.1) when u < 0 is given by

ϕn+1
i − ϕn

i

∆t
+ u

ϕn
i+1 − ϕn

i

∆x
= 0,
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then, the numerical solution ϕn+1
i is given by,

ϕn+1
i = ϕn

i + u
∆t

∆x
(ϕn

i+1 − ϕn
i ).

Summary about numerical solutions of Level set equation based on upwind schemes;

(a) If u > 0, then

ϕn+1
i = ϕn

i + u
∆t

∆x
(ϕn

i − ϕn
i−1). (4.17)

(b) If u < 0, then

ϕn+1
i = ϕn

i + u
∆t

∆x
(ϕn

i+1 − ϕn
i ). (4.18)

4.3.2 Essentially Non-oscillatory Schemes

One dimensional scheme

We describe ENO method basen on [21, 9];

Let us consider a partition of interval [a, b] defined as;

a = x0 < x1 < . . . < xi−1 < xi < xi+1 < . . . < xn = b,

with uniform spacing ∆x. Let’s consider the discretize function ϕ as

ϕn = ϕ(xn),

and define the following differences based on forward and backward differences;

∆+ϕn =ϕn+1 − ϕn, (4.19)

∆−ϕn =ϕn − ϕn−1. (4.20)

In order to approximate ϕx with ϕ−
x , let’s consider a left-based stencil (Fig.4.21) given by

the subset of partition;

{xn, n = i − 3, i − 2, i − 1, i, i + 1, i + 2} . (4.21)

Mathematician 39 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.7: Left based stencil and sth stencils for construct ϕ−
x,i. Source [9]

Then, Jian [9] defined suitable three order approximations for ϕ−
x,i as follows

ϕ−,0
x,i = a0

∆+ϕi−3

∆x
+ b0

∆+ϕi−2

∆x
+ c0

∆+ϕi−1

∆x
, (4.22)

ϕ−,1
x,i = a1

∆+ϕi−2

∆x
+ b1

∆+ϕi−1

∆x
+ c1

∆+ϕi

∆x
, (4.23)

ϕ−,2
x,i = a2

∆+ϕi−1

∆x
+ b2

∆+ϕi

∆x
+ c3

∆+ϕi+1

∆x
. (4.24)

The appropriate coefficients as, bs, cs, s = 0, 1, 2 developed by Jiang [21] (Table. 4.1). In

general, ϕ−,s
x,i , gives the three order accurate ENO method to approximate ϕx,i based on

the sth sub-stencil of (4.21);

{xn, n = i + s − 3, i + s − 2, i + s − 1, i + s} .

Now, in order to choose which between (4.22), (4.23) and (4.24) are suitable, it is based

s as bs cs

0 1/3 −7/6 11/6
1 −1/6 5/6 1/3
2 1/3 5/6 −1/6

Table 4.1: Coefficients for ϕ−,s
x,i and ϕ+,s

x,i for s = 0, 1, 2

on the relative ”smoothness” of ϕ on the sub-stencils. In this sense, Jiang [9] described the

Mathematician 40 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

Figure 4.8: Right based stencil and sth stencils for construct ϕ+
x,i. source [9]

following smooth condition as follows

α = |∆−∆+ϕi−1| < |∆−∆+ϕi|,

β = |∆−∆−∆+ϕi−1| < |∆+∆−∆+ϕi−1|,

γ = |∆−∆+ϕi−1| > |∆−∆+ϕi|,

ν = |∆−∆−∆+ϕi| > |∆+∆−∆+ϕi|.

By these conditions and ϕ−,s
x,i , s = 0, 1, 2. The three order ENO approximation for ϕx,i with

ϕ−
x,i is given by

ϕ−
x,i =


ϕ−,0

x,i , if α and β are satisfied

ϕ−,2
x,i , if γ and ν are satisfied

ϕ−,1
x,i , otherwise

(4.25)

In the same way, let us describe the approximation of ϕx,i with ϕ+
x,i. Now, let us consider

a right-biased stencil (Fig.4.8) given by

{xn, n = i − 2, i − 1, i, i + 1, i + 2, i + 3} .
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So, the third order approximations to ϕ+
x,i as follows

ϕ+,0
x,i = a0

∆−ϕi+3

∆x
+ b0

∆−ϕi+2

∆x
+ c0

∆−ϕi+1

∆x
, (4.26)

ϕ+,1
x,i = a1

∆−ϕi+2

∆x
+ b1

∆−ϕi+1

∆x
+ c1

∆−ϕi

∆x
, (4.27)

ϕ+,2
x,i = a2

∆−ϕi+1

∆x
+ b2

∆−ϕi

∆x
+ c3

∆−ϕi−1

∆x
. (4.28)

The coefficients are equal to ϕ−,2
x,i , s = 0, 1, 2. By (4.26), (4.27), (4.28), and same

conditions, one can approximate ϕx,i by ϕ+
x,i as follows;

ϕ+
x,i =


ϕ+,0

x,i , if α and β are satisfied

ϕ+,2
x,i , if γ and ν are satisfied

ϕ+,1
x,i , otherwise

(4.29)

4.3.3 Weighted Essentially Non-oscillatory Schemes

One dimensional scheme

We describe the WENO approach proposed by [21, 9]. Let’s define WENO approximation

of ϕx,i as convex combination of ϕ−,s
x,i , s = 0, 1, 2, i,e.,

ϕ−
x,i = ω0ϕ

−,0
x,i + ω1ϕ

−,1
x,i + ω2ϕ

−,2
x,i , (4.30)

with ωs ≥ 0 which are the weights associated with sth sub-stencil and they satisfy the

following condition

ω0 + ω1 + ω2 = 1. (4.31)

Jiang [21] mentioned that the formula (4.30) is the fifth order approximation to ϕx,i and

it produces the smallest truncation error on such a six-point stencil.

In order to find optimal weights that satisfy the ENO properties and the fifth-order

accuracy, the authors proposed two fundamental features on weights to build the WENO

schemes;

(1) If ϕ remains smooth on the entire stencil, then the weights must satisfy ωs = Cs +

O(∆x2), in this case, the WENO approximation 4.30 is uniformly fifth order accurate.
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(2) If ϕ contains a discontinuity on the stencil, the weights approach to ENO with 1 or

0 to avoid oscillations.

So, the WENO schemes are described as follows;

From (4.31), we get

ω1 = 1 − ω0 − ω2. (4.32)

Replacing (4.32) into 4.30, we have that

ϕ−
x,i = ω0ϕ

−,0
x,i + (1 − ω0 − ω2)ϕ−,1

x,i + ω2ϕ
−,2
x,i

= ω0ϕ
−,0
x,i + ϕ−,1

x,i − ω0ϕ
−,1
x,i − ω2ϕ

−,1
x,i + ω2ϕ

−,2
x,i

= ω0ϕ
−,0
x,i + 1

2ϕ−,1
x,i + 1

2ϕ−,1
x,i − ω0ϕ

−,1
x,i − ω2ϕ

−,1
x,i + ω2ϕ

−,2
x,i + 1

2ϕ−,2
x,i − 1

2ϕ−,2
x,i

= 1
2(ϕ−,1

x,i + ϕ−,2
x,i ) + ω0(ϕ−,0

x,i − ϕ−,1
x,i ) +

(
ω2 − 1

2

)
(ϕ−,2

x,i − ϕ−,1
x,i ). (4.33)

Note that 1
2(ϕ−,1

x,i + ϕ−,2
x,i ) does not depend on ωs. Replacing ϕ−,s

x,i , s = 0, 1, 2 into (4.33);

we have that

ϕ−
x,i = 1

12

(
−∆+ϕi−2

∆x
+ 7∆+ϕi−1

∆x
+ 7∆+ϕi

∆x
− ∆+ϕi+1

∆x

)

+ω0

(
1
3

∆+ϕi−3

∆x
− ∆+ϕi−2

∆x
+ ∆+ϕi−1

∆x
− 1

3
∆+ϕi

∆x

)

+
(

ω2 − 1
2

)(
1
6

∆+ϕi−2

∆x
− 1

2
∆+ϕi−1

∆x
+ 1

2
∆+ϕi

∆x
− 1

6
∆+ϕi+1

∆x

)
.

Using (4.19) and (4.20), the last terms can be rewritten as function called ϕW ENO given

by

ϕW ENO(a, b, c, d) = 1
3ω0(a − 2b + c) + 1

6

(
ω2 − 1

2

)
, (4.34)
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where

a = ∆−∆+ϕi−2

∆x
,

b = ∆−∆+ϕi−1

∆x
,

c = ∆−∆+ϕi

∆x
,

d = ∆−∆+ϕi+1

∆x
.

Therefore, the approximation of ϕx,i by ϕ−
x,i as follows;

ϕ−
x,i = 1

12

(
−∆+ϕi−2

∆x
+ 7∆+ϕi−1

∆x
+ 7∆+ϕi

∆x
− ∆+ϕi+1

∆x

)
− ϕW ENO(a, b, c, d). (4.35)

Moreover, Jiang [9] proposed the general computed weights for (4.35) as;

ω0 = α0

α0 + α1 + α2
,

ω2 = α2

α0 + α1 + α2

where

α0 = 1
(ϵ + IS0)2 ,

α1 = 6
(ϵ + IS1)2 ,

α2 = 3
(ϵ + IS2)2

and

IS0 = 13(a − b)2 + 3(a − 3b)2,

IS1 = 13(b − c)2 + 3(b + c)2,

IS2 = 13(c − d)2 + 3(3c − d)2.

Notice that ϵ is used to prevent denominators are zero and the optimal ϵ = 10−6.
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In the same way, the approximation of ϕx,i by ϕ+
x,i as follows

ϕ+
x,i = 1

12

(
−∆−ϕi−2

∆x
+ 7∆−ϕi−1

∆x
+ 7∆−ϕi

∆x
− ∆−ϕi+1

∆x

)
− ϕW ENO(a, b, c, d). (4.36)

4.3.4 TVD-Runge Kutta Scheme

One dimensional scheme

We describe the third order accurate TVD-Runge Kutta scheme proposed in [24, 18].

Let us consider an Euler step to find the solution at time tn + ∆t;

ϕn+1 − ϕn

∆x
+ u · ϕn

x = 0, (4.37)

followed by a second Euler step to find the solution at time tn + 2∆t as follows

ϕn+2 − ϕn+1

∆t
+ u · ϕn+1

x = 0. (4.38)

Taking the average of (4.38) and ϕn at time tn, we have that

ϕn+ 1
2 = 3

4ϕn + 1
4ϕn+2, (4.39)

where ϕn+ 1
2 is an approximation of solution at time tn + 1

2∆t. So, using another Euler step

to find the solution to time tn + 3
2∆t, it is the second step of the Runge Kutta method,

ϕn+ 3
2 − ϕn+ 1

2

∆t
+ u · ϕ

n+ 1
2

x = 0. (4.40)

Again, taking the average of (4.40) and ϕn at time tn; we get the solution at tn + ∆t given

by

ϕn+1 = 1
3ϕn + 2

3ϕn+ 3
2 . (4.41)
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4.4 Physics Informed Neural Networks for Level Set
Method

In this section, we described two models to infer solutions to the problem (4.1) using the

syntaxis of models developed by Raissi et al., in [25]. Mainly, we defined the physics-

informed neural networks for two cases and loss functions; for the level set equation of the

problem (4.1), which is given by;

ϕt + u · ϕx = 0, t ∈ [0, T ], x ∈ [−2, 2] (4.42)

with constant velocity field u and ϕ0(x) a signed distance function.

4.4.1 Discrete Time Model

First, let us assume that ϕ(x, t) is a signed distance function, which is approximated by a

neural network ϕ̂(x, t; θ), i.e.,

ϕ(x, t) ≈ ϕ̂(x, t; θ) = ϕ̂θ(x, t), (4.43)

and it satisfies the Eikonal equation

∣∣∣∇ϕ̂θ(x, t)
∣∣∣ = 1.

From (4.43), we can rewritten the equation (4.42) as;

∂

∂t
ϕ̂θ(x, t) + u · ∂

∂x
ϕ̂θ(x, t) = 0. (4.44)

Now, let us define a linear differential operator F as;

F (ϕ̂θ(x, t), u) = u · ∂

∂x
ϕ̂θ(x, t). (4.45)

Replacing (4.45) onto (4.44), we get

∂

∂t
ϕ̂θ(x, t) + F (ϕ̂θ(x, t), u) = 0. (4.46)
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Applying the general form of Runge-Kutta methods with q stages [77] to equation (4.46),

we obtain

ϕ̂
n+cj

θ = ϕ̂n
θ − ∆t

q∑
j=i

aijF (ϕ̂n+cj

θ , u), i = 1, ..., q (4.47)

ϕ̂n+1
θ = ϕ̂n

θ − ∆t
q∑

j=1
bjF (ϕ̂n+cj

θ , u), (4.48)

where ϕ̂
n+cj

θ (x, t) = ϕ̂θ(x, tn + cj∆t) for j = 1, ..., q. This general form encapsulates both

implicit and explicit time-stepping schemes, depending on the choice of the parameters{
aij, bj, cj

}
. The formulas (4.47) and (4.48) can be equivalently expressed as

ϕ̂n
θ = ϕ̂n

θ,i, i = 1, ...q,

ϕ̂n
θ = ϕ̂n

θ,q+1,

where

ϕ̂n
θ,i := ϕn+ci

θ + ∆t
q∑

j=1
aijF (ϕ̂n+cj

θ , u), i = 1, ..., q. (4.49)

ϕ̂n
θ,q+1 := ϕn+1

θ + ∆t
q∑

j=1
bjF (ϕ̂n+cj

θ , u). (4.50)

We proceed by placing a multi-output neural network prior on

[
ϕ̂n+c1

θ (x), . . . , ϕ̂
n+cq

θ (x), ϕ̂n+1
θ (x)

]
. (4.51)

This prior assumption coupled with formulas (4.49) and (4.50) result in a physics in-

formed neural network that takes x as an input and outputs

[
ϕ̂n

θ,1(x), . . . , ϕ̂n
θ,q(x), ϕ̂n

θ,q+1(x)
]

. (4.52)

Moreover, the adjustment of shared parameters between the neural networks (4.51) and

(4.52) by minimizing a loss function L(θ), i.e.,

θ∗ = arg min
θ

L(θ),
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where L(θ) = SSEF n + SSEn; SSEn is defined by

SSEn =
q+1∑

j

Nn∑
i

∥∥∥ϕ̂n
θ,j(xn,i) − ϕn,i

∥∥∥2
,

where the finite set
{
xn,i, ϕn,i

}Nn

i=1
is the data at time-step tn.

Figure 4.9: Neuronal Network Structure of Level Set Method for One-Dimensional

4.4.2 Continuous Time Model

In the same way, let us assume that ϕ(x, t) is a signed distance function, which is approx-

imated by a neural network ϕ̂(x, t; θ), i.e.,

ϕ(x, t) ≈ ϕ̂(x, t; θ) = ϕ̂θ(x, t), (4.53)

and it satisfies the Eikonal equation. θ are weights and biases of the neural network (Fig.

4.9). Now, let us define the linear operator differential F (ϕ̂(x, t; θ), u) by the left-hand-side

of equation (4.42) as;

F (ϕ̂(x, t; θ), u) = ∂

∂t
ϕ̂θ(x, t) + u · ∂

∂x
ϕ̂θ(x, t). (4.54)

The assumption (4.53) coupled with definition (4.54) result in a physics informed neural

network F (ϕ̂(x, t; θ), u). Then, the equation (4.42) can be rewritten as;

F (ϕ̂(x, t; θ), u) = ∂

∂t
ϕ̂θ(x, t) + u · ∂

∂x
ϕ̂θ(x, t) = 0. (4.55)
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In order to compute the partial derivatives of neural network ϕ̂(x, t; θ), automatic differen-

tiation is used. Moreover, the adjustment of shared parameters between the neural network

ϕ̂(x, t; θ) and F (ϕ̂(x, t; θ), u) by minimizing a loss function L(θ), i.e.,

θ∗ = arg min
θ

L(θ),

where L(θ) = MSEϕ + MSEF , and the terms MSEϕ, MSEF are defined by;

MSEF = 1
Nc

Nc∑
i=1

∥∥∥F (ϕ̂θ(xi
F , ti

F ), u) − 0
∥∥∥

= 1
Nc

Nc∑
i=1

∥∥∥F (ϕ̂θ(xi
F , ti

F ), u)
∥∥∥

and

MSEϕ = 1
Nϕ

Nϕ∑
i=1

∥∥∥ϕ̂θ(xi
ϕ, ti

ϕ) − ϕi
∥∥∥

where the finite set
{
xi

θ, ti
ϕ, ϕi

}Nϕ

i=1
denotes the initial training data generated by numerical

methods. Moreover, the finite set
{
xi

F , ti
F

}Nc

i=1
are the collocations points for F .The term

MSEϕ represents the loss function associated with the initial data and measures how well

the model fits the training set. On the other hand, MSEF corresponds to a loss function

that enforces the structure imposed by equation (4.42) at a limited number of collocation

points. This helps ensure that the model’s predictions exhibit the desired behavior specified

by the equation and fit the training data [25].

4.5 Data

In this section, we described the data structure of solutions generated by Upwind schemes

for training neural networks, similarly for TVD/RK3 with ENO3 and WENO5.

In case 1D, the level set method is

ϕn+1 − ϕn

∆t
+ unϕn

x = 0

ϕn+1 − ϕn

∆t
= −unϕn

x

ϕn+1 = ϕn − ∆tunϕn
x
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We generate solutions from 0 to n + 1 time:

ϕ0 = Initial function

ϕ1 = ϕ0 − ∆tu0ϕ0
x

ϕ2 = ϕ1 − ∆tu1ϕ1
x

· = ·

· = ·

· = ·

ϕn+1 = ϕn − ∆tunϕn
x

Table 4.2 shows the data structure to train the Neural Networks has matrix form where the

first column ϕ0 represents the values of initial functions, and ϕ1, . . . , ϕn+1 are the columns

with solutions that have been calculated by numerical methods mentioned in section 4.

ϕ0 ϕ1 ϕ2 ϕ3 · · · ϕn+1

Table 4.2: Data Structure
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Chapter 5

Results and Discussion

In this section, we will present numerical solutions to the problem (4.1) at time T = 50;

moreover, to compute the solution, we consider a computational domain on [−2, 2] and a

constant velocity field u(x, t) = 0.01, then (4.1) is redefined as:


∂
∂t

ϕ(x, t) + 0.01 · ∂
∂x

ϕ(x, t) = 0, in [−2, 2] × [0, 50]

ϕ(x, 0) = ϕ0(x) in [−2, 2]
(5.1)

and the initial condition is defined as

ϕ0(x) = |x| − 1, ∀x ∈ [−2, 2].

Figure 5.1 shows the initial condition at T = 0 and the red points represents the interface

Γ = {−1, 1} given by zero level set ϕ0(x) = 0. Moreover, Figure 5.2 represents the property

of the signed distance function, i.e., it satisfies the Eikonal equation;

|∇ϕ| = 1.

Figure 5.3 shows the exact solution at time 50 that is given by

ϕ(x, 50) = ϕ0(x − 0.5).

51
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Figure 5.1: A initial condition given by a signed distance function ϕ0(x).

Figure 5.2: Derivative of the signed distance function ϕ0(x) respect to x.

5.1 Numerical Solutions of Upwind Schemes

In this section, we presented the results obtained by upwind schemes to approximate the

solution at T = 50 of the problem (5.1). Table 5.1 shows the values obtained by computing
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Figure 5.3: The exact solution of (4.1) at time 50.

the L1, L2, and L∞ errors between the exact and approximated solutions; the experiments

were carried out by increasing the grid size, and the same way the execution time was

determined to for each N . The order of convergence L∞ and L1 to measure how fast the

algorithm converges to solution as the grid size increases.

Figure 5.4a shows the exact solution represented with a black line and the approximated

solution with a red dashed line at T = 50 using N = 20 the grid size; moreover, under the

CFL restriction 5×10−4, and Figure 5.4b shows the representation of error L1 computed for

each point between exact and numerical solution. In the same way, Figures 5.5a, 5.6a, 5.7a,

and 5.8a shows the approximation of solution at T = 50 for N = 40, N = 80, N = 160,

and N = 320, respectively. Moreover, Figures 5.5b, 5.6b, 5.7b, and 5.8b represent their L1

error in each point of exact solution.

Finally, Figure 5.9 shows the evolution of L1 error as the grid size increases 2 × N for

upwind schemes.
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Method N L∞ error L∞ order L1 error L1 order L2 error Exec. time

Upwind

20 0.169 - 0.134 - 0.067 3.29 s
40 0.099 0.77 0.073 0.88 0.035 6.45 s
80 0.074 0.42 0.036 1.02 0.021 11.83 s
160 0.055 0.43 0.018 1 0.012 23.84 s
320 0.040 0.46 9×10−3 1 0.007 45.96 s

Table 5.1: Results of numerical experiments for the first-order upwind scheme.
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Figure 5.4: (a) Numerical and exact solution at T = 50 for N = 20 (b) The L1 error for
each point between the exact and numerical solution T = 50.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1

-0.5

0

0.5

1

1.5

2

?

CFL=1#10-3, "x=0.1, "t=0.01, u=0.01, N=40, T=50

Exact Solution
Upwind Solution

(a) Approx. vs Exact

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.02

0.04

0.06

0.08

0.1

E
rr

or

T=50

L
1
 error

(b) L1 error

Figure 5.5: (a) Numerical and exact solution at T = 50 for N = 40 (b) The L1 error for
each point between the exact and numerical solution at T = 50.
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Figure 5.6: (a) Numerical and exact solution at T = 50 for N = 80 (b) The L1 error for
each point between the exact and numerical solution at T = 50.
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Figure 5.7: (a) Numerical and exact solution at T = 50 for N = 160 (b) The L1 error for
each point between the exact and numerical solution at T = 50.
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Figure 5.8: (a) Numerical and exact solution at T = 50 for N = 320 (b) The L1 error for
each point between the exact and numerical solution at T = 50.
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Figure 5.9: L1 error for each solution at T = 50 that depends on size of grid; N = 20,
N = 40, N = 80, N = 160, N = 320 using Upwind Schemes.
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5.2 Numerical Solutions of ENO Schemes

In a similar way, Table 5.5 described the results obtained by the third-order TVD/Runge

Kutta coupled the third-order essentially non-oscillatory schemes to approximate the solu-

tion at T = 50 of the problem (5.1). Moreover, it shows the values obtained by computing

the L1, L2, and L∞ errors between the exact and approximated solutions; in order to ana-

lyze the approximated improvements on high-order methods, the experiments were carried

out by increasing the grid size, and the same way the execution time was determined to for

each N . The order of convergence L∞ and L1 to measure how fast the algorithm converges

to solution as the grid size increases.

Figure 5.10a shows the exact solution represented with a black line and the approxi-

mated solution with a red dashed line at T = 50 using N = 20 the grid size; moreover,

under the CFL restriction 5 × 10−3, and Figure 5.10b shows the representation of error L1

computed for each point between exact and numerical solution. In the same way, Figures

5.11a, 5.12a, 5.13a, and 5.14a shows the approximation of solution at T = 50 for N = 40,

N = 80, N = 160, and N = 320, respectively. Moreover, Figures 5.11b, 5.12b, 5.13b, and

5.14b represent the graphs of L1 error for each grid size.

Finally, Figure 5.15 shows the evolution of L1 error as the grid size increases 2 × N for

TVD/RK3 coupled with ENO3.

Method N L∞ error L∞ order L1 error L1 order L2 error Exec. time

TVD/RK3-ENO3

20 0.101 - 0.127 - 0.052 0.91 s
40 0.055 0.88 0.062 1.03 0.025 1.63 s
80 0.036 0.61 0.030 1.04 0.013 3.06 s
160 0.023 0.64 0.015 1 0.006 6.35 s
320 0.014 0.72 7×10−3 1 0.003 12.64 s

Table 5.2: Results of numerical experiments for third order accuracy of TVD/Runge Kutta
coupled with ENO3.
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Figure 5.10: (a) Numerical and exact solution at T = 50 obtained with third order TVD-
Runge Kutta and ENO3 for N = 20, (b) The L1 error for each point between the exact
and numerical solution at T = 50.
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Figure 5.11: (a) Numerical and exact solution at T = 50 obtained with third order TVD-
Runge Kutta and ENO3 for N = 40, (b) The L1 error for each point between the exact
and numerical solution at T = 50.
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Figure 5.12: (a) Numerical and exact solution at T = 50 obtained with third order TVD-
Runge Kutta and ENO3 for N = 80, (b) The L1 error for each point between the exact
and numerical solution at T = 50.
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Figure 5.13: (a) Numerical and exact solution at T = 50 obtained with third order TVD-
Runge Kutta and ENO3 for N = 160, (b) The L1 error for each point between the exact
and numerical solution at T = 50.
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Figure 5.14: (a) Numerical and exact solution at T = 50 obtained with third order TVD-
Runge Kutta and ENO3 for N = 320, (b) The L1 error for each point between the exact
and numerical solution at T = 50.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or

L1 error, N=20

L1 error, N=40

L1 error, N=80

L1 error, N=160

L1 error, N=320

TVD/RK3-ENO3

Figure 5.15: L1 error for each solution at T = 50 that depends on the size of the grid;
N = 20, N = 40, N = 80, N = 160, N = 320 using the third order TVD-Runge Kutta
and Essentially Non-oscillatory schemes.
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5.3 Numerical Solutions of WENO Schemes

In the same way, we presented Table 5.3 that describes the results obtained by the third-

order TVD/Runge Kutta coupled with the fifth-order weighted essentially non-oscillatory

schemes (WENO5) to approximate the solution at T = 50 of the problem (5.1). Moreover,

it shows the values obtained by computing the L1, L2, and L∞ errors between the exact

and approximated solutions; in order to analyze the approximated improvements on high-

order methods, the experiments were carried out by increasing the grid size, and the same

way the execution time was determined to for each N . The order of convergence L∞ and

L1 to measure how fast the algorithm converges to solution as the grid size increases.

Figure 5.16a shows the exact solution represented with a black line and the approxi-

mated solution with a red dashed line at T = 50 using N = 20 the grid size; moreover,

under the CFL restriction 5 × 10−3, and Figure 5.16b shows the representation of error L1

as a function which is computed for each point between exact and numerical solution. In

the same way, Figures 5.17a, 5.18a, 5.19a, and 5.20a shows the approximation of solution

at T = 50 for N = 40, N = 80, N = 160, and N = 320, respectively. Moreover, Figures

5.17b, 5.18b, 5.19b, and 5.20b represent the graphs of L1 error for each grid size.

Finally, Figure 5.15 shows the evolution of L1 error as the grid size increases 2 × N

for TVD/RK3 coupled with WENO5. As well as Figure 5.22 shows the solutions for each

numerical method with grid size N = 320, and Figure 5.23 shows the comparison between

L1 error of each method to approximate the exact solution at T = 50.

Method N L∞ error L∞ order L1 error L1 order L2 error Exec.time

TVD/RK3-WENO5

20 0.113 - 0.123 - 0.053 0.89 s
40 0.059 0.93 0.060 1.03 0.025 1.65 s
80 0.039 0.60 0.030 1 0.012 2.96 s
160 0.025 0.64 0.014 1.09 0.006 5.90 s
320 0.015 0.73 6.9×10−3 1.02 0.003 11.78 s

Table 5.3: Results of numerical experiments for third order accuracy of TVD/Runge Kutta
coupled with WENO5.
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Figure 5.16: (a) Numerical and exact solution of problem (5.1) at T = 50 obtained with
third order TVD-Runge Kutta and WENO5 for N = 20 (b) The L1 error for each point
between the exact and numerical solution at T = 50.
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Figure 5.17: (a) Numerical and exact solution of problem (5.1) at T = 50 obtained with
third order TVD-Runge Kutta and WENO5 for N = 40 (b) The L1 error for each point
between the exact and numerical solution at T = 50.
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Figure 5.18: (a) Numerical and exact solution of problem (5.1) at T = 50 obtained with
third order TVD-Runge Kutta and WENO5 for N = 80 (b) The L1 error for each point
between the exact and numerical solution at T = 50.
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Figure 5.19: (a) Numerical and exact solution of problem (5.1) at T = 50 obtained with
third order TVD-Runge Kutta and WENO5 for N = 160 (b) The L1 error for each point
between the exact and numerical solution at T = 50.
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Figure 5.20: (a) Numerical and exact solution of problem (5.1) at T = 50 obtained with
third order TVD-Runge Kutta and WENO5 for N = 220 (b) The L1 error for each point
between the exact and numerical solution at T = 50.
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Figure 5.21: L1 error for each solution at T = 50 that depends on the size of the grid;
N = 20, N = 40, N = 80, N = 160, N = 320 using the third order Total Variation
Diminishing (TVD)-Runge Kutta (RK) and the fifth order Weighted Essentially Non-
oscillatory (WENO).
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Figure 5.22: Solution at T = 50 for each numerical method: Upwind, TVD/RK3-ENO3
and TVD/RK3-WENO5.
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Figure 5.23: L1 error for each solution at T = 50 generated by Upwind, the TVD/RK3
coupled with ENO3 and WENO5 using a size of grid N = 320.
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5.4 Numerical Solutions of Level Set Method-Physics
Informed Neural Networks

In this section, we present some numerical solutions of LSM-PINNs based on two models,

the discrete-time model and continuous-time model described in chapter 4, in order to

infer a solution at T = 50 of the problem (4.1). The training data are numerical solutions

obtained from Upwind, Essentially Non-Oscillatory (ENO), and Weighted Essentially Non-

Oscillatory (WENO) under the following parameters; CFL = 0.08, ∆x = 0.0125, ∆t =

0.01, u = 0.01, N = 320. Moreover, the optimization method used in all training for loss

function is minibatch sampling with Adam and the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm.

5.4.1 Discrete Model

Table 5.4 shows L2 errors for measuring the accuracy of the model to approximate the

exact solution; three scenarios were presented; first, we considered a neural network with

6-layers and 4 hidden layers, 50 neurons per hidden layer; to predict the solution at T = 50

using Upwind data at T = 45, as well as the same architecture for TVD/RK3 ENO3 and

TVD/RK3 WENO5 data at T = 45. Also, the time of training was considered for each

case.

Figure 5.24 shows the exact solution, numerical solution computed by upwind schemes,

and inferred solution by the model when NN was trained with upwind data. Similarly,

Figures 5.25 and 5.26 shows the prediction of solution at T = 50 using TVD/RK3 ENO3

and TVD/RK3 WENO5 data, respectively.

Data Layers Hidden L. N◦ N. per H-L Nϕ L2 error Time T.
Upwind 6 4 50 200 5.98 × 10−2 178.93 s

TVD/RK3-ENO3 6 4 50 200 5.87 × 10−2 208.54 s
TVD/RK3-WENO5 6 4 50 200 5.86 × 10−2 248.61 s

Table 5.4: Results from training neural network with different data.

Table 5.5 shows some experiments for increasing the layers, hidden layers, number of

neurons per layer, and the number of data to minimize the loss function. Figures 5.28,
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5.29, and 5.30 show these results, in the same way, exact solution, numerical solution, and

inferred solution by model when we uses a different configuration of layers and neurons.

All training used the aspects; Latin Hypercube Sampling approach was used to gen-

erate all randomly sampled point locations, ensuring a space-filling distribution. More-

over, epochs = 10000, learning rate 0.001, and a hyperbolic tangent activation function.

Finally, Figure 5.31 shows all solutions, both numerical and inferred by discrete time

Data Layers Hidden Layers N◦ neurons per H-L Nϕ L2 error

Upwind
6 4 50 80 0.217
7 5 100 100 0.274
8 6 150 120 0.425

TVD/RK3-ENO3
6 4 50 80 0.195
7 5 100 100 0.249
8 6 150 120 0.383

TVD/RK3-WENO5
6 4 50 80 0.193
7 5 100 100 0.249
8 6 150 120 0.378

Table 5.5: Numerical experiments based on increasing layers, hidden layers, and neurons
in each hidden layer.

model; to compare the solutions at point (0.5, −1), and Figure 5.27 shows the L1 errors for

each prediction of solution in Table 5.4, the error L1 for the approximated solution from

TVD7RK3-WENO5 was considered to see the difference of errors.
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Figure 5.24: Exact, numerical and inferred solution using Upwind data.
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Figure 5.25: Exact, numerical and inferred solution using TVD/RK3-ENO3 data.

Mathematician 68 Graduation Project



School of Mathematical and Computational Sciences Yachay Tech University

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1

-0.5

0

0.5

1

1.5

2

?

T=50

Exact Solution
TVD/RK3-WENO5 Solution, N=320
Discrete Model LSM-PINNs, Data=WENO

Methods

Figure 5.26: Exact, numerical and inferred solution using TVD/RK3-WENO5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E
rr

or

L1 error; DM-LSM-PINNs, Data=Upwind

L1 error;DM-LSM-PINNs, Data=ENO

L1 error;DM-LSM-PINNs, Data=WENO

L1 error, TVD/RK3-WENO5, N=320

Error

Figure 5.27: L1 errors computed from exact solution and inferred solutions generated by
discrete time model

.
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(a) 6-L, 4-HL, 50 neurons (b) 7-L, 5-HL, 100 neurons

(c) 8-L, 6-HL, 150 neurons

Figure 5.28: Experiments of layers: (a), (b), (c) are graphs of inferred solution generated
by discrete time model when the NN is feeding with data simulated by the first-order
upwind scheme.
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(a) 6-L, 4-HL, 50 neurons (b) 7-L, 5-HL, 100 neurons

(c) 8-L, 6-HL, 150 neurons

Figure 5.29: Experiments of layers: (a), (b), (c) are graphs of inferred solution generated
by discrete time model when the NN is feeding with data simulated by TVD/RK3-ENO3.
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(a) 6-L, 4-HL, 50 neurons (b) 7-L, 5-HL, 100 neurons

(c) 8-L, 6-HL, 150 neurons

Figure 5.30: Experiments of layers: (a), (b), (c) are graphs of the inferred solution gener-
ated by the discrete time model when the NN is feeding with data simulated by TVD/RK3-
WENO5.
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5.4.2 Continuous Model

Table 5.6 shows L2 errors for measuring the accuracy of the continuous time model to

approximate the exact solution; three scenarios were presented; first, we considered a

neural network with 6-layers and 4 hidden layers, 100 neurons per hidden layer; to predict

the solution at T = 50 using Upwind data, as well as the same setting to find a solution of

the problem (5.1) when the NN is trained with TVD/RK3 ENO3 and TVD/RK3 WENO5

data. Also, the time of training was considered for each case.

Data Layers Hidden Layers N◦ N-L Nϕ L2 error Time T.
Upwind 6 4 100 100 0.489 26.18 s

TVD/RK3-ENO3 6 4 100 100 3.03 × 10−2 54.08 s
TVD/RK3-WENO5 6 4 100 100 6.67 × 10−2 78.06 s

Table 5.6: Results of training with different data for continuous time model.

Figure 5.32 shows the exact solution, numerical solution computed by upwind schemes,

and inferred solution by the continuous time model when NN was trained with upwind

data. Similarly, Figures 5.33 and 5.34 shows the prediction of solution at T = 50 using

TVD/RK3 ENO3 and TVD/RK3 WENO5 data, respectively.

Finally, Figure 5.36 illustrates all solutions, both numerical and inferred by continuous

time model for comparing the solutions at point (0.5, −1), and Figure 5.35 shows the

L1 errors for each prediction of solution in Table 5.6, the error L1 for the approximated

solution from TVD7RK3-WENO5 was considered to see the difference of errors.

All these training had the following parameters; the training set consists of a total of

Nd = 100 data as well as Nc = 10000 randomly sampled collocation points used to enforce

level set equation inside the solution domain; Latin Hypercube Sampling approach was

used to generate all randomly sampled point locations, ensuring a space-filling distribution.

Moreover, epochs = 10000, learning rate 0.001, and a 4-layer deep neural network with 100

neurons per layer and a hyperbolic tangent activation function.
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Figure 5.32: Inferred solution by the continuous model with training data generated by
Upwind.
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Figure 5.33: Inferred solution by the continuous model with training data generated by
TVD/RK3-ENO3.
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Figure 5.34: Inferred solution by the continuous model with training data generated by
TVD/RK3-WENO5
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Figure 5.35: L1 errors computed from exact solution and inferred solution generated by
continuous model; and L1 error of solution from TVD/RK3-WENO5 at T = 50.
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5.5 Discussion

In recent years, physics-informed neural networks (PINNs) are becoming a topic of exhaus-

tive study by several researchers in the field of numerical methods. PINNs emerged as a

new paradigm to solve partial differential equations that model physical phenomena; for

example, the Navier Stokes equations describe the motion of viscous fluid [27]. The level

set method is a formulation that captures interfaces or fronts by representing it as a zero

level of high dimensional function; typically, it is a signed distance function. This involves

solving a Hamilton-Jacobi formulation, mainly a PDE called level set equation or advection

equation that describes the motion of the interface in an externally generated vector field.

In this context, two and three dimensions, the main issues are the preserving geometry of

the interface; it is related to a directly signed distance function, as it evolves over time

and computational cost [7, 8]. One dimensional case is studied to understand the behavior

of numerical solutions generated by both finite different methods and discrete/continuous

models of PINNs without boundary condition defined in loss function (Fig.??, 5.36) under

certain parameters on CFL conditions and training, respectively. For the measurement of

the quality to approximate a signed distance function, we used L1, L2 and L∞ errors to

compare with the exact solution at T = 50.

The results of the study of the numerical solutions from finite difference methods to

generate relevant data to train the LSM-Physics informed neural networks present the

following situations; Tables 5.1, 5.5, and 5.3 showed that one of the aspects for obtaining

a good approximation depends on the size of the grid; in fact, the error of approximation

for an exact solution using the upwind method with N = 320 is L1 = 9 × 10−3 compared

to TVD/RK3-ENO3 and TVD/RK3-WENO5 that produced L1 = 7 × 10−3 and L1 =

6.9×10−3, respectively (Fig.5.23). In the same way, we can see that the order of numerical

methods is significantly notable if the size of the grid is small, particularly the L1 = 0.134

error for the upwind method with N = 20 reduced to L1 = 0.127 and L1 = 0.123 for ENO3

and WENO3, respectively. Therefore, Figure (5.22) illustrates the solutions at T = 50

go to near exact solution as the order of the methods increases. However, Figures 5.14

and 5.20 emerged small spurious oscillations identified by L1 error; it is caused by the

sensitivity of parameters in ENO and WENO schemes. In the case of upwind schemes,
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the solution at T = 50 with N = 320 does not satisfy the Eikonal equation; then it is a

not signed distance function; in contrast, the ENO and WENO schemes have a significant

approximation to be SDF.

To train the discrete model of LSM-PINNs, we considered relevant data generated by

each numerical method; Upwind, ENO, and WENO schemes with the size of grid N = 320;

which had good approximations to exact solution; in this context, the training of model

was led by standard numbers of hidden layer proposed in [78] for a non-complex problem.

This main observation on results is the quality of data does not present significant changes

for improving the inference of solutions. Table 5.4 shows L2 errors, which represents a

deviation in the prediction of solution at T = 50, regardless of whether the data comes

from one of the three methods used (Fig. 5.25, 5.25, 5.25). In a recent study, Shashank et

al. [64] obtained good results in the same problem by setting a smooth initial condition and

Dirichlet boundary conditions. Furthermore, we showed some predicted solutions based

on increasing the layers and hidden layers; the results show that L2 error also increases.

L2 = 0.217 increases to L2 = 0.425 with Upwind data; the same patterns happen for other

cases (Table. 5.30 and Fig. 5.28, 5.29, 5.30).

On the other hand, the continuous model of LSM-PINNs demonstrated a significant

difference between feeding to a neuronal network with Upwind data and TVD/RK3-ENO3

data. Table 5.6shows that L2 = 0.489 error corresponds to the inferred solution using

some upwind data; in contrast, L2 = 3.03 × 10−2 error obtained in feeding the NN with

ENO3 data. Consequently, the quality of data affects in a certain way improves the inferred

solution by the continuous model. However, the L2 error of the inferred solution by training

NN with some WENO data is relatively large compared to the error of continuous model

training with ENO data. These results are expected due to the lack of information on

the boundary conditions. Figure 5.36 shows how efficiency is continuous model versus the

numerical solutions; these results show that finite difference methods are more suitable to

compute the solution at T = 50 (Fig.5.27, 5.35).

Computational cost in numerical methods is directly proportional to the size of the

grid; in the same way, the time of training increases due to the data quality. However, this

project does not show if PINNs reduce the computational cost to find an approximated

solution to the problem (4.1), but we point out that once the training parameters are
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appropriate for the situation (4.1), we can save these parameters to have a predefined

neural network, and thus find the approximate solution at any instant of time without

having to train the neural network. Shashank et al. [64] mentioned that PINNs reduce

computational costs.
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Chapter 6

Conclusions

The level set method is a powerful tool to capture interfaces by using signed distance

functions; numerical methods, such as finite differences, help find solutions for the level

set equation. In this context, the challenge remains to find a method that generates good

approximations and low computational cost; consequently, this will determine a good cap-

turing interface to solve the preserving problem in LSM. The implementations of upwind,

essentially non-oscillatory, and weighted essentially non-oscillatory schemes coupled with

total variation diminishing Runge Kutta schemes under the CFL conditions to keep simu-

lation stability were successful to solve the one dimensional problem (4.1). Tables 5.1, 5.5

and 5.3 showed that as the order of the differences is increased the L∞ and L1 decrease

even if the grid size is small. Therefore the results showed good approximations for exact

solution; consequently it represents a suitable data to train the neural networks.

On the other hand, the inferred solutions by continuous time and discrete time models

had a tendency to approximate the exact solution at T = 50, however Table 5.4 and

5.6 showed that L2 error compared with L2 error of numerical solution of finite different

methods are significantly large. For the discrete time model the shape of initial function

was kept at T = 50 (Fig. 5.26), in contrast, the continuous model showed oscillations

(Fig.5.34) and it produced the large error. Moreover, the quality of data for training did

not directly affect the accuracy of the solutions. Therefore, the inaccuracy of prediction

was due to define the loss function without the mean square error in boundary conditions.
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6.1 Recomendations

Consider other measurements mentioned in [27] to evaluate the quality of solutions gen-

erated by models. Moreover, one can study convergence for the models to create suitable

training parameters and improve results. However, the necessary information developed in

this project allows us to identify possible approaches to improve the neural network and

apply it in two-dimensional cases. The following are possible improvements:

(a) Externally generated velocity field is defined in all domain; then, we can define the loss

function with inflow and outflow boundary conditions. Therefore, it allows leading

experiments for the two-dimensional case.

(b) To maintain a signed distance function as it evolves over time, we can add an extra

term in the loss function defined by the Eikonal equation. This allows for preserving

the interface’s geometry involving severe interface testing.

6.2 Future Works

These preliminaries results allowed to find possible solutions, the first step, we will imple-

ment these features en loss functions, and the second step is to create a functional neural

network for the two-dimensional case of the level set method for developing numerical

testing to evaluate PINNs and find applications in computational fluid dynamics.

6.3 Limitations

This study is limited to a one-dimensional level set method with a constant velocity field,

but what happens when the velocity field depends on time? It is possible to study with

physics-informed neural networks the setting of a suitable loss function will play an essential

role in investigating this case.

All these algorithms are robust where we used an old version of TensorFlow 1.14;

new versions help to reformulate these approaches. Nowadays, there is a simple way to

code PINNs using PyTorch [64] and solve the same problem. Moreover, new optimization
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methods to minimize the loss function, such as stochastic gradient descent, Wasserstein

GANs with gradient penalty, and so on [27], must be considered.

On the other hand, we used standard layers described in [78] for feed-forward neural

networks. However, the approaches described above need a deep study to find several

layers in which each hidden layer contains an optimal number of neurons for this problem.

Moreover, this project helps to understand the processing and structure of data on the

training of PINNs; it is a crucial aspect that will allow developing ideas for setting data on

two dimensions to use the neural network built for the one-dimensional case without the

need to code another PINNs for the two-dimensional case of LSM.
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