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Abstract

Currently, artificial intelligence (AI) has taken an essential role in many fields of scientific

research. AI has proven to be useful for developing powerful algorithms for the control

and assembling of complex robotic systems based on neural networks, in particular in the

Creation of self-motivated agents capable of exploring new solutions in arbitrarily complex

electromechanical environments.

This project proposes the study and improvement of a virtual multi joint robot driven by

a self-motivated neural agent, capable of learning efficient protein folding policies by itself.

The robot represents a peptide chain belonging to the human coronavirus Hemagglutinin-

Esterase (HEs) protein, and the associated agent acquires through reinforcement learning

the capacity to fold itself into a 3D shape that mimics the structure of mentioned protein.

This knowledge could be very important in the manufacture of drugs that counteract virus

infection.

In the operational phase of the project, the neural agent will be complemented with

neural networks that support its protein folding memory. These neural networks are trained

with look in to the future principies to satisfy the Bellman equation. The final goal is to

create an intelligent protein folding robot with the capacity to resolve a selected section of

the HEs protein.

Keywords: Protein Folding, Deep Neuronal Networks (DNN), Deep Rein-

forcement Learning (DRL), Sparse Code.
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Resumen

Actualmente la inteligencia artificial (IA) ha tomado un papel fundamental en muchos

campos de la investigación cient́ıfica. La IA ha demostrado ser útil para desarrollar potentes

algoritmos para el control y montaje de sistemas robóticos complejos basados en redes

neuronales, en particular en la creación de agentes automotivados capaces de explorar

nuevas soluciones en entornos electromecánicos arbitrariamente complejos.

Este proyecto propone el estudio y mejora de un robot virtual multiarticular impulsado

por un agente neuronal automotivado, capaz de aprender por śı mismo poĺıticas eficientes

de plegamiento de protéınas. El robot representa una cadena pept́ıdica perteneciente a

la protéına hemaglutinina-esterasa (HEs) del coronavirus humano, y el agente asociado

adquiere mediante aprendizaje por refuerzo la capacidad de plegarse en una forma 3D que

imita la estructura de dicha protéına. Este conocimiento podŕıa ser muy importante en la

fabricación de fármacos que contrarresten la infección por virus.

En la fase operativa del proyecto, el agente neuronal se complementará con redes neu-

ronales que respaldan su memoria de plegamiento de protéınas. Estas redes neuronales

se entrenan con miras a los principios futuros requeridas por la ecuación de Bellman. El

objetivo final es crear un robot inteligente de plegamiento de protéınas con capacidad para

resolver una sección seleccionada de la protéına HEs.

Palabras Clave: Plegamiento de Proteinas, Doblamiento de Proteinas, Redes

Neuronales Profundas, Apredizaje Profundo por Refuerzo, Código Esparsido.
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Chapter 1

Introduction

1.1 Background

Among the chemicals that make up living things, proteins hold the position of greatest

significance (bio-molecules). Almost all biological functions rely on this kind of substance’s

presence or action. All biological functions, including protein production, are governed by

your synthesis [10]. It is understood that DNA and RNA work together to generate proteins

within the cell. This process results in a linear chain of distinctive amino acids for each

protein, whose structure resembles a one-dimensional thread suspended in a liquid.

Complex combinatorial optimization issues about protein folding appear in various

scientific disciplines, including biology, engineering, and medicine [11]. Due to the extreme

difficulty in addressing them, these issues are referred to in the computing sciences as

NP-hard (there is no known algorithm capable of solving them in polynomial time).

Understanding and treating diseases brought on by improper protein folding, success-

fully deciphering entire genomes, and the ability to predict the function of a protein by

learning its three-dimensional structure from only its linear amino acid sequence serve as

the driving forces behind the study of protein folding.

The current study of protein folding relies heavily on artificial intelligence (AI). Qin et

al [12]. developed a neural network model to learn how a certain amino acid sequence folds

into a protein structure. Similarly, by 2020, DeepMind, an artificial intelligence research

facility in the UK, had already made several significant strides. Furthermore, scientists

were astounded by the accuracy of the team’s method for predicting protein folding when

1



it was made public in November of the same year [13].

1.2 Problem statement

The so-called protein folding problem is one of these issues that has been researched for

more than 50 years in the domains of biochemistry and biophysics, including engineering

and medicine.

The study of protein folding has significant implications from a physical and/or bio-

logical point of view and in various other disciplines. Recent research has demonstrated a

direct link between protein misfolding and particular cell dysfunction for several diseases,

including cystic fibrosis and familial pulmonary emphysema [14]. Effective infection de-

pends on interactions between the viral and host cells, specifically the structure of the viral

and host proteins.

As with viruses, the infectious agent in infectious illnesses is typically viewed as a

macromolecular complex made up of nucleic acids and proteins. Today, viral infection

is a major worry because, if it spreads widely, it could negatively affect society’s ability

to function. Seven coronaviruses are known to infect humans, tragically shown with the

devastating COVID-19 effect of the SARS-CoV-2 virus (severe acute respiratory syndrome

coronavirus-2),[15]. In order to develop a viral control strategy, it is crucial to comprehend

the protein folding mechanisms of infection.

1.3 Objectives

1.3.1 General Objective

• To propose a virtual robot driven by a self-taught neural agent that has the ability

to predict and resolved protein folding.

1.3.2 Specific Objectives

• To codify the angles between amino acids in a sparse code to enhance the learning

possibilities of the robot.

• To increase the dimensions of the sensors used to detect the near molecular forces.

2



• To rise the number of sensors of each amino acids.

• To use deep reinforcement learning so that a simulated virtual robot formed by an

aminoacid chain, learns to bend itself following protein rules and energy minimization.
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Chapter 2

Theoretical Framework

This chapter provides a brief theoretical overview of protein folding and artificial neural

networks.

In order to achieve this, a few questions were proposed:

• What proteins are?

• How do proteins fold?

• What are neural networks?

• What is a deep neural network?

To answer these previous queries, the chapter starts with some important concepts that

need to be clarified to understand this work.

2.1 Amino acids.

Amino acids are fundamental molecules of life [16]. An amino acid is a molecule in chem-

istry that contains an amino (-NH2) group, a carboxylic acid (-COOH) group, and a specific

R side chain [1], as it is shown in Figure 2.1. There are twenty different amino acids. They

are classified according to their polarity and charge, see Figure 2.2, or essentiality in the

human diet, see Figure 2.3.
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Figure 2.1: Chemical Structure of an Amino acid [1].

Figure 2.2: Classification of amino acids by polarity and charge [2].

Figure 2.3: Essential and Nonessential Amino Acids [3].
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Amino acids are the basic building blocks of proteins and peptides linked together by

peptide bonds [17]. Proteins have several thousand amino acid residues, while peptides are

shorter chains of a few amino acid residues [18].

The chemistry of amino acid side chains is important in protein structure because these

side chains can form covalent bonds to keep a protein structure’s shape or conformation

[19]. Charged amino acid side chains could form ionic interactions, while polar amino acids

can form hydrogen bonds. Hydrophobic side chains interact with one another through weak

Van der Waals forces. The great majority of these side chains’ bonds are non-covalent. Due

to side chain interactions, the sequence and placement of amino acids in a certain protein

determine where its bends and folds occur.

The three-dimensional shape of a protein is ultimately determined by its primary struc-

ture (its amino acid sequence). Hydrogen bonds between amino and carboxyl groups in

adjacent regions of a protein chain can occasionally result in forming particular folding pat-

terns [4]. These stable folding patterns, known as alpha helices and beta sheets, constitute

the secondary structure of a protein. Most proteins contain multiple helices, sheets, and

other less frequent patterns. Tertiary structure is the collection of formations and folds

in a single amino acid linear chain, also known as a polypeptide. A protein’s quaternary

structure refers to macromolecules made up of multiple polypeptide chains or subunits [4].

As it is shown in Figure 2.4.

Figure 2.4: The hierarchical structure of proteins [4].
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2.2 Proteins.

In reality, proteins are lengthy polypeptide chains consisting of 50 or more ”residues”,

which are not rigid structures.

Many scientists believe that the amino acid sequences of proteins influence the specific

structures they will take on [20].

On the other hand, proteins do not exist solely in one fixed conformation but rather in

a variety of related ones that create ensembles.

Such transitions have been connected to functionally important phenomena, including

enzyme catalysis [21] and allosteric signaling [22]. They occur on length scales ranging

from tens of angstroms to nanometers with timespan from nanoseconds to seconds.

While the transitions between these states are the primary focus of protein dynamics

research, the nature and equilibrium populations of these states are also relevant aspects

of the field.

Energy landscapes provide a conceptual unification of kinetics and thermodynamics

energies, wherein the depth of energy wells and the height of energy barriers characterize

densely populated states and the kinetics of transitions between them, respectively [23].

The study of proteins, their structure, function, and impact as enzymes, etc., is called

”Protein Science.” In order to fully grasp how proteins work, one must have an in-depth

understanding of their dynamics or the possible configurations the system might take on.

2.3 Protein Folding.

The folding of a polypeptide chain into its native three-dimensional shape is the process

through which proteins are created. There is a strong correlation between the structure

and function of proteins. A wide variety of molecular interactions stabilizes protein folds.

Thermodynamics explains the factors that lead to protein folding, while kinetics pro-

vides insight into the folding process. Protein structure is formed via H-bonds, hydrostatic

interactions, hydrophobic effects, and Van der Waals forces.

Different types of interactions can have radically different energy profiles. Folding is

enabled by several beneficial interactions, including Vander Waals packing interactions

and the Hydrophobic enthalpy effect (H20 entropy) III. Accumulation of H bonds between

8



proteins Impact of electricity [20].

Protein folding into its correct native structure is critical to its function. Failure to fold

properly results in inactive or toxic proteins that cause various diseases [5].

Protein folding is a complex four-stage process that results in various 3D protein struc-

tures required for various human body functions. A protein’s structure is organized hier-

archically, from primary to quaternary. The various conformations in protein structure are

explained by the wide variation in amino acid sequences.

• Primary structure refers to the linear sequence of amino-acid residues in the

polypeptide chain [5].

• Secondary structure is generated by forming hydrogen bonds between atoms in the

polypeptide backbone, which folds the chains into either alpha helices or beta-sheets

[5].

• Tertiary structure of a protein is the geometric shape of the protein. It usually

has a polypeptide chain as a backbone, with one or more secondary structures. A

tertiary structure is formed by folding the secondary structure sheets or helices into

one another. The tertiary structure is determined by the interactions and bonding

of the amino acid side chains in the protein [5].

• Quaternary structure results from folded amino-acid chains in tertiary structures

interacting further to give rise to a functional protein such as hemoglobin or DNA

polymerase [5].
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Figure 2.5: Four stages of protein folding [5].
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2.4 Bellman Equation.

The Bellman equation expresses the relationship between a state’s value and the values of

its successor state [24]. Moreover, this is how it is defined:

υπ (S) = Eπ
[
Gt|St = s

]
= Eπ

 ∞∑
k=0

γkRt+k+1|St = s

 (2.1)

Where Eπ [·] denotes the expected value of a random variable if the agent follows policy π

and t is any time step, the function υ is known as the state-value function for policy.

Similarly, for policy π, the action-value function defined as qπ (s, a) defines the value of

taking action a in state s under a policy π. This function is defined as follows:

qπ (s, a) = Eπ
[
Gt|St = s, At = a

]
= Eπ

 ∞∑
k=0

γkRt+k+1|St = s, At = a

 (2.2)

As a result, the general equation used in reinforcement learning problems is as follows:

Q (s, a) = r + γmax
a′

Q
(
s′, a′

)
(2.3)

2.5 Q-Learning.

The model-free reinforcement learning technique known as Q-learning was introduced in

1989, which can also be considered an approach to asynchronous dynamic programming

[25]. Every state-action pair has one entry in the lookup table of values Q (s, a) (Equation

2.5) maintained by the basic form of Q-learning. It is another reinforcement learning

technique that can teach complex task execution without needing an environment model

[25]. It functions by gradually improving its assessments of the effectiveness of specific acts

in specific states. Therefore, Q-Learning aspires to learn a set of guidelines that instructs

an agent on what to do and when to do it. The value of taking action at in a state st
is represented by Q (st, at). The foundation of the Q-learning algorithm is equation 2.3,

which allows for the decomposition of the value Q (st, at) of a current state and action into

the immediate reward r and the discounted maximum future predicted reward following

the transition to a next state st+1. The Bellman equation can be expressed as the following

11



[26]:

Q (st, at) = r + γmax
a

Q (st+1, at+1) (2.4)

Where γ represents the discount factor. The agent computes the value Q (st+1, at+1)

and then uses the following equation 2.4 to update its estimate of Q∗ (st, at). The equation

is defined as follows:

Q∗ (st, at) = Q (st, at) + α
[
r + γmax

a
Q (st+1, at+1)−Q (st, at)

]
(2.5)

α represents the rate of learning. The maximum value for all actions in the following

state is provided by the maxaQ (st+1, at+1). Since Q-learning changes the Q-values without

assuming anything about the policy being followed, it is an off-policy algorithm [26].

2.6 Neural Networks (NN).

A simplified representation of the nervous system’s operation is a neural network. The

neuron, the fundamental unit, is self-organized, as depicted in the diagram below.

Figure 2.6: Neuronal Network Structure.

A neural network is a streamlined representation of how the human brain functions and

are also known as artificial neural networks (ANNs) or simulated neural networks (SNNs)
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[27].

Like an abstract neuron, it operates by simultaneously joining several interconnected

processing units. Levels are used to organize the processing units. Typically, a neural

network is made up of three components [27]. An input level where the units correspond

to input fields. A hidden level or levels. A layer of output includes units that stand in for

the intended area. The devices are coupled together using various coupling pressures (or

weights). At the first level, the inputs are visible, and each neuron in the following level

propagates the values. The output file then sends the outcomes [28].

2.7 Deep Neural Network (DNN).

We must first describe the idea of a credit allocation path (CBT) or the number of layers

a system needs to finish a task to comprehend deep neural networks. The neural network

is considered deep if the CAP index is higher than [29]. Deep neural networks are helpful

when independent tasks must take the place of human tasks without sacrificing efficiency.

Numerous real-world applications for deep neural networks can be found used.

Figure 2.7: Deep Neural Network.

2.8 Convolutional Neural Network (CNN).

Convolutional Neural Networks (CNN) are primarily used for image recognition and are

only infrequently used for speech recognition. This CNN is especially true for images since
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you do not have to check each pixel individually. A CNN analyzes an image block by

block. Start at the top left corner and move pixel by pixel until you get the image. The

result of each check is passed through resolution levels with and without associated data

functions. Based on this data, the system can generate test results and conclude what the

image shows.[29]

2.9 Sparse code.

Sparse coding is a representation in which a small number of neurons are active, with the

bulk of neurons showing low activity or even inactive [6]. However, this definition is quite

simple. So, taking a deeper look into sparse code, it is possible to view it as a class of

unsupervised algorithms for learning sets of over-complete bases to represent data as brain

neurons efficiently. In this way, the percentage of actively firing neurons is a crucial and

straightforward feature of this code. The density of the code is defined as the average

of this proportion of overall information items for a set of N binary neurons (which can

be either active or inactive). A sparse code is one with a low density. Nevertheless, this

is extremely difficult to understand with just concepts. So, in the next Figure 2.8. it is

possible to take a simpler view of the goals of sparse representation.
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Figure 2.8: Sparse Distributed Coding [6]

Then, in the next Figure 2.9 it is possible to see what a sparse representation looks like

in real life.
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Figure 2.9: Sparsely encoding basis functions learned from natural images.

In its basic form, sparse coding yields a representation known as a grandmother cell

code. Every material thing can be reduced to a single cell in this code. One may say that

a huge brain with billions of neurons can probably manage a few hundred thousand at the

object level. Further, numerous studies have demonstrated the existence of neurons that

are exceptionally selective to faces, and other objects [30].

Local codes, in which each item is represented by a single neuron or a small network of

neurons, fall on the low end of the average activity fraction spectrum. This code ensures

that no neuron is involved in representing more than one object, preventing any potential

for confusion between the representations of different items. Similarly, each key on a

standard computer keyboard (one lacking the Shift and Control buttons) represents a single

character in a code [31]. It is important to remember that the ”locality of coding” indicates

that the neurons are highly selective, with each neuron encoding only a single, critically

important feature of the environment. The simplicity and readability of this design are two

of its main selling points. Hebbian strengthening of synaptic connections between their

neural representations in a neural network allows for the formation of associations between

a locally stored item and any output with only a single trial. With local encoding, your

memories will not accidentally mix. Multiple locally coded things can often be represented
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unambiguously by the sum of the activities of the relevant neurons [30].

Dense coding is present on the other end of the spectrum. Here, the neurons’ actions

reflect a single bit of information. This means that N binary neurons can store 2N bits

of information. Given that the human brain has billions of neurons, 2N is ridiculously

large. Since, there are many more neurons than receptor cells in the brain (or even in a

single cortical area, such as the primary visual cortex), sensory processing is hampered.

The sparse codes (low average activity ratio) represent a happy medium between the two

extremes of dense and local codes [31].

Those who argue for the value of sparse representations are not arguing that the end

aim should be one neuron per object or even each view of each object. However, being

overly detailed or ambiguous can affect learning [32]. We argue that even in the earliest

phases of sensory processing, sparseness aids learning and prediction.

2.10 Reinforcement Learning.

Reinforcement learning (RL) is a machine learning technique inspired by behavioral psy-

chology that sets the parameters of an artificial neural network where no data is normally

provided but is generated through interaction with the environment [33]. It has been used

to solve various problems, including robot control, telecommunications, and games like

chess and other sequential decision-making activities [33]. Furthermore, the neural net-

work reinforcement learning approach allows resolving difficult temporal (time-dependent)

problems [34].

RL is the problem of a learning agent interacting with its environment to achieve a goal

[35]. It primarily combines two tasks; the first is the discovery of new situations because

the agent receives no examples or instructions of the desired behavior; this is accomplished

through trial and error. The second step is to apply that knowledge to make the best

decisions and reap the greatest rewards. In other words, the agent must exploit what it

already knows to be rewarded, but it must also explore to make better action decisions in

the future [24].

Aside from the agent and the environment, four major components of an empowering

learning system can be identified: the policy, the reward signal, the value function, and,
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optionally, the model [24].

• The policy of a reinforcement learning agent is at its heart because it defines how to

behave at any given time. Policies are typically simple functions or lookup tables,

whereas others, such as lookup processes, may involve complex calculations [24].

• The reward signal in a reinforcement learning problem, signal, defines the good and

bad events for the agent. As a result, in the long run, the agent’s sole goal is to

maximize the total reward [24].

• The value function determines how the agent chooses which actions to perform.

• The model of the environment, which is used in some reinforcement learning systems,

is something that simulates the behavior of the environment and allows inferences

about how the environment will behave. Given a state and an action, for example,

the model could predict the next, resulting state and the next reward [35].

Figure 2.10: Reinforcement Learning [7].

2.10.1 Exploration

During the exploration phase, the agent must test actions to gather information and, as a

result, make better action selections in the future to obtain the highest reward.
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2.10.2 Exploitation

During the exploitation phase, the agent selects actions that it has previously performed

and learned, and that maximize its accumulated reward, where it has proven to be more

efficient.

2.11 Deep Reinforcement Learning.

Deep Reinforcement Learning (DRL) is one of the most rapidly growing areas of industry

and research. It is a step toward developing self-contained systems with a deep under-

standing of the visual world. DRL combines deep networking and reinforcement learning

to solve previously unsolved problems, such as learning to play video games directly from

pixels [36].

Figure 2.11: Deep Reinforcement Learning [8]

One of DRL’s goals is to create systems that can learn to adapt to their surroundings.

As a result, several previous studies and DRL studies relied on extending previous RL

studies to higher dimensional issues. This DRL includes learning low-dimensional feature

representations and neural networks’ powerful feature approximation properties. For ex-

ample, convolutional neural networks (CNNs) can be used as components of RL agents

to learn directly from visual data. To approximate the optimal policy and optimal value

19



function, DRL generally relies on learning deep neural networks [36].
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Chapter 3

State of the Art

This chapter were reviewed deep reinforcement learning works, including some methods

for creating a neural agent that learns how to fold a specific protein.

3.1 Chang, Zhinin-Vera & Quinga

This work by Chang, Zhinin-Vera, and Quinga [37] proposes a Tic-Tac-Toe learning en-

vironment based on a self-motivated neural agent that learns the game scenarios before

using the information in actual competitions, where it imitates a Markov model. The au-

thors’ work attempted to create self-taught agents that adopt a future view of the game,

or an ”I already won” or IAW+4 game vision, which is a brilliantly foreseen sequence of

movements. Nine sigmoidal neurons connected in a chain that operates in real-time and

inhibits one another with modest shared negative weights make up their implementation

of the model of the self-motivated neural agent. A repetitive ramp K excites all neurons

in the same way. On each repetition, the agent burns ”dark energy,” fires, and declares a

single winner, which is used to select a tile from the board. Even if it is disconnected from

the (external) advisory neurons, the agent will continue to make the right moves.

In addition, they initially took the state of each tile for the learning networks, rep-

resented by the three neural signals 010, 001, and 100, which stand for filled and empty

tiles, ”O” and ”X,” respectively. The resulting 27 signals are routed into a network of 27

inputs, 67 hidden, and 9 output neurons. They serve as a sparse encoding representation

of the board’s state. Many of these subnets are used and educated as indexable advisers

that suggest prudent actions to the agent. The agent learns game patterns that guarantee
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winning scenarios by exploring potential plays based on the Bellman equation, which uses

the equation’s first three terms. After training, the most intriguing output neuron will

show what should be filled, or, in other words, what move should be made, as the optimal

policy indicated by the network.

Finally, during the operation phase, the neural agent recognizes and executes IAW+4

game circumstances with high security after receiving guidance from the trained networks.

The authors have thus successfully demonstrated how the self-motivated neural network

could be utilized as a free-running random agent that investigates all potential game sce-

narios and is trained with backpropagation to memorize excellent game sequences using

advisory indexable subnets. Additionally, the reinforcement learning technique supports

a successful future quest for maximal rewards. This thesis suggests that the work be

improved by incorporating deep reinforcement learning into the model.

3.2 Chang & Zhinin-Vera

Chang and Zhinin-Vera [38] described a creative robot that could independently pick up

complex tic-tac-toe game rules and use them to compete favorably against people. A

robotic arm, a machine vision system, and a self-driven neural agent were used to construct

the robot. The self-taught neural agent has made logical conclusions that the robot has

been programmed to carry out physically.

The Bellman equation with three terms has been presented to search for future rewards,

and the agent is built on the architecture used in the related work of section 3.1. The robot’s

mechanical design incorporates three axes, a power supply, an Arduino board, connections

from the computer to the servo motor, and shoulder, elbow, and finger servo motors.

Artificial vision has been implemented using a camera that records color images of the real

world. OpenCV is used to process these images before sending them to a neural network

trained to recognize Xs, Os, and blank spaces.

As a result, the authors created a robot that observes the game board and moves using

its robotic arm. These actions are made possible by the neural agent, who has learned

to play tic-tac-toe in an unusual manner, and the artificial vision system, which looks at

the board in the real world. The robot created can be used to test the deep reinforcement
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learning software that will be utilized in this thesis. Hence this work has been considered

as it relates to 3.1.

3.3 Senior, Evans, Jumper, Kirkpatrick, Sifre, et al.

Senior et al [39]. demonstrate how a neural network can be trained to make accurate pre-

dictions of distances between pairs of residues, which provide more structural information

than contact predictions. Furthermore, the authors used this information to optimize the

resulting mean force potential using a simple gradient descent algorithm, which can gen-

erate structures and accurately describe the shape of a protein without the use of complex

sampling procedures.

The system that emerged from this research, AlphaFold, was created by Google and

can make extremely accurate predictions about the folding of unknown proteins. Its main

component is a convolutional neural network that has been trained using a database of

protein structures, even in cases when there are fewer homologous sequences. The ap-

proach’s foundation is the notion that by examining covariation in homologous sequences,

we can learn about the evolution of the genome. It is possible to determine which amino

acid residues are in contact, making it easier to predict protein structures.

Finally, the authors concluded that the AlphaFold results show that a neural network

can be trained to quickly and accurately estimate the lengths between pairs of residues.

In addition, the system is optimized using the gradient descent algorithm and represents

a significant advancement in protein structure prediction. Compared to the competition,

AlphaFold’s score of 68.3 was significantly higher.

3.4 Kuo-Chen Chou

The review’s primary emphasis was on developing methods for anticipating and classifying

tight bends. Chou [40] focused mostly on recent developments in this field, grounded in

the sequence-coupled model developed from Markov chain theory.

The smallest tight turn is a δ − turn. Variously referred to as the C8 form, the 1→ 2

type, and the 2 → 3 type, this structure has only two amino acid residues. A γ − turn,
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involving only three amino acid residues, is the next-smallest tight turn. The backbone’s

CO(i+1) and NH(i) establish the intraturn hydrogen bond in a γ − turn (i+2).

They discovered that the sequence of a protein with a tight-turn shape might be ex-

pressed typically in terms of oligopeptides (groups of two to six consecutive residues) using

the formula:

RiRi+1Ri+2 · · ·Ri+n (3.1)

Where n = 1 for a δ − turn, n = 2 for a γ − turn, n = 3 for a β − turn, n = 4 for an

α− turn, and n = 5 for a π − turn; Ri represents the amino acid at the protein sequence

position i, Ri+1 represents the amino acid at the protein sequence position i + 1, and so

forth.

So they proposed to focus on the correlation effect between the first and fourth residues

along a tetrapeptide to forecast β − turns; the same effect was claimed for predicting β −

turns between the second and third residues. The most common sequence of residue types

for β − turns was found to be hydrophobic, hydrophilic, hydrophobic, and hydrophobic.

The authors conclude that the sequence-coupled algorithm they formulate in their re-

view is a universal one that may be used to anticipate not only the β − turns, α− turns,

and their kinds as shown here but also additional tight turns and their types.

In reality, users can forecast any tight turns they care about using their training data-

set.

3.5 Chang, Gonzales, Zhinin, Valencia, Pineda & Diaz

Chang et al [9]. Research details a robotic construction mimics the Hemagglutinin Es-

terase’s internal structure, functioning as a stable peptide chain. Where a self-guided

agent is created which can anticipate its own needs and learn on its own is the brain

behind this robotic framework.

Robotics, ANNs, PD, and RL all come together in this approach for effective machine

learning. Using a robot’s underlying structure, they showed that a self-taught agent is

capable of learning a protein-folding procedure that is both efficient and effective. To start

the training, they used a protein with a straight position, and then they used the neural

agent to generate new positions and find rewards.
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The maximum duration of the agent’s training episodes is 4000 iterations. Each episode

sees the agent place the peptide chain in a known initial condition before venturing into un-

charted territory by generating numerous angles and folding variations in the surrounding

area.

Finally, they show the extensive results acquired, demonstrating that their agent oper-

ating on this robot-like structure can learn to solve protein folding challenges. It was also

discovered that folding knowledge could be retained in stable weights parameters.
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Chapter 4

Methodology

This chapter describes the entire process used to achieve the project’s goals. It describes

the implementation of a neural agent that learns policies for accurately folding proteins.

4.1 Phases of Problem Solving

1. To expand and debug the code used in previously developed work to improve the

virtual robot learning capacities. This required the development of new operating

routines [9].

2. To create sparse code (more 0’s that 1’s) to represent the 17 individual angles existing

between each pair of amino acids. This generate a 16x17 neurons matrix, excited with

sparse code patterns and used as the first input information to the folding agent.

3. To enlarge the size of the cysteine sensors, simulating the iterations of the amino

acids that exist between them and improving the sensibility of the model.

4. To implement the deep neural network architecture by defining the number of con-

volutional layers, filters, top group layer, inputs (input layer), the number of hidden

neurons (hidden layer), and the number of output neurons (output layer).

5. To implement the architecture’s graphical model to visualize the agent’s behavior

during the deep neural network training process.

6. To use deep network training during the exploitation stage to analyze the behavior

of the agent, its movements, its convergence to a stable and efficient solution, and its
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ability to generate movements in anticipation of protein folding.

4.1.1 Description of the Problem

Significant advancements in deep reinforcement learning have enabled extracting high-level

features from raw pixels sensory data, resulting in significant advances in artificial intelli-

gence [41]. These methods employ various neural network models, such as convolutional,

perceptron, multilayer, and recurrent neural networks. These methods have already found

use in various problems, including robotics, where control policies for robots can now be

learned from the neural network directly from either complete or incomplete (pixel) image

inputs [36]. This is the challenge this work presents: a neural agent must learn protein

folding policies from a raw pixel image to fold the protein. The first problem is to create

a sparse matrix from the sparse code angles and amino acids. The second problem is that

complex forces determine how the cysteines will interact with each other; another issue is

to increase the number of sensors to the amino acids to improve the bending capacities

for the model. The third problem is to develop a reinforcement learning agent that can

learn an optimal protein folding policy using the information expressed in raw pixel images

and a fully connected network. For this policy to function at its best, it must recognize

protein folding characteristics and apply this knowledge in its decision-making process,

beginning with the agent’s initial bends and ending with the cysteine joining. Finally, the

agent’s ability to fold proteins will be evaluated by previous work [9]. The main goal of

reinforcement learning is to link current and future states.

4.1.2 Analysis of the Problem

To solve the previous problems, we have a robot with bending joints representing the union

between amino acids; each joint is controlled by a ”muscle” and one neuron, which is the

output of a deep neural network. This network will train with reinforcement learning so

that the robot bends following some properties of proteins.

The input to the Deep Neuronal Network is two raw pixels images representing the

angles between sparse code and amino acids codified in sparse code. Following a simplified

model of the HEs protein, the immediate reward is that the two cysteines in the chain
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become closer.

The maximal reward is given when the cysteines touch each other.

4.1.3 Reinforcement Learning Algorithm

This work uses a learning algorithm in which the estate of the robot is defined by the angle

matrix and the sensor matrix. From here, the robot does a future exploration movement

by using a set of competing neurons which defines how much each angle in the robot is

going to chain; if the movement brings the cysteines closer to each other, the agent receives

a reward, and a backpropagation cycle is done with the targets announced by the racing

neurons. This cycle is executed several times until the agent learns to bend the chain until

the cysteine touches each other. If not, a new exploring sequence is carried out.

The pseudo-code is shown in Algorithm 1.

Algorithm 1: Reinforcement Learning in Proteins Folding

1 Protein start at straight position state s(n) ;

2 fire competing neurons ;

3 check the arrival order ;

4 set the angles variation according to the arrival order s(n+1) ;

5 if cysteine distance decrease then

6 - Do backpropagation using previous state as input s(n) and angle

variation+output as targets ;

7 - Repeat until cysteines touch each other ;

8 end

9 Repeat until trained ;

This section describes the algorithm that learns to fold proteins. The protein is initially

displayed in a slightly stretched position. The neural agent expends energy to generate

new positions and investigate future rewards. When a reward is discovered, the agent

memorizes the paths leading to even greater rewards through reinforcement learning (good

protein folding).

The agent operates in episodes that last no more than 4000 training cycles. During

each episode, the agent learns by initially positioning the peptide chain in one state and
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then exploring new territory by producing several angles and folding variations in the

neighborhood. When the cysteine-cysteine bond is formed, the reward should be maximal.

In other words, the agent will learn the folding when the cysteine-cysteine bond is formed

(the stronger attraction between the given amino acids).

The maximum reward is obtained when sensors detect a close encounter between cys-

teines during cysteine bonding. Gradient descent takes the previous folding state and

sensors as input and the current delta folding vector as a target.

For each training cycle, the agent read the internal information and sensors information,

get decision (moves to a new state folding), if cysteines distances decrease, execute decision

and captures the MAX future reward. Once this is determined, a reward discount in

backpropagation cycles is applied. [38].

Algorithm 2 depicts the pseudo-code.

Algorithm 2: Folding Proteins with Self-taught Neural Agents

1 Learning Phase;

2 while cysteines do not come closer do

3 - Agent explore the future;

4 - Random moves;

5 if cysteines come closer then

6 - Agent memorizes the future;

7 - Do backpropagation;

8 end

9 end

10 Operative Phase;

11 while episode do

12 - Read the internal information and sensors ;

13 - Get decision;

14 - Execute decision until cysteines touch each other;

15 end

Algorithm 3 shows the pseudo-code of how the sparse code has been implemented to

find 180 16-bit binary numbers. Sparse coding may be a general strategy of neural systems
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to augment memory capacity [42].

The first step of the sparse code is to search for 16-bit binary numbers randomly, con-

taining more zeros than ones; a number must have at least 9 bits of zeros to be considered

a sparse number. The next step is to check that the number obtained is not repeated in

the 180 numbers; if this is the case, only the repeated number returns to look for another

random number that meets the abovementioned conditions. So, in the end, it finds the

180 numbers necessary to obtain a sparse matrix with bending angles and amino acids later.

Algorithm 3: Sparse code

1 for 180 16-bit binary numbers do

2 - Search random 16-bit numbers whit more zeros than ones ;

3 if 16-bit binary number is repeated then

4 - search another one ;

5 end

6 else

7 - save 16-bit binary number;

8 end

9 end

4.1.4 Testing

To test the agent, we first check if the robot does good protein folding based on the previous

study [9].

In the Figure 4.1, we can see the robot before and after bending.
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Figure 4.1: First test before folding/after folding. the left image shows an initial represen-
tation of the 17 amino acid peptide chain. The image on the right represents the folding of
the complete amino acid peptide chain that forms the protein (the target of the training).

Once protein folding was verified, the second important test was to implement a sparse

matrix that represent the 17 angles between the amino acids. This raw pixel matrix is

given as input to the learning agent, an a typical bending image is shown in Figure 4.2.

Figure 4.2: Sparse pixel matrix of 16x17bits representing the current angles between the
17 amino acids.

After the robot has learned to do the bending, we obtain the results shown in the Figure

4.3:
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Figure 4.3: Result of protein folding including algorithm 3. Sparse Code, to generate the
sparse matrix in the folding of the amino acid chain.

The next test we performed was to length the cysteine sensors because, in our model,

the dominant force is considered to be the covalent bond that exists between cysteine and

cysteine, due to the tight turn effect of the amino acids located between them (proline and

glycine). See Figure 4.4.

Figure 4.4: Same as Figure 4.1, but this time using the sparse matrix approach for pro-
tein folding. In addition, in this test we increase the size of the sensors to detect more
information about near molecular forces.

Another test that we carry out is the increase of the sensors to all the amino acids. As

shown in Figure 4.5
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Figure 4.5: On the left side the initial state is shown where the white lines represent the
increase of the 24 sensors, unlike the previous tests that only consisted of 6 sensors. On
the right side of the image the folded protein is shown as the final result of the training.

Finally, after completing these tests, we add the reinforcement learning training to the

input images to the network that we obtained in the Figure 4.6

Figure 4.6: As shown in the previous figures, the amino acid chain begins with its initial
state and the blue lines below this chain represent the input of the network architecture
used. On the right side of the image we can see the objective of applying Deep Reinforce-
ment Learning for successful protein folding.

4.2 Model Proposal

We proposed this model using sparse coding. From knowledge of biology bending theory,

we know that there is a tendency between the amino acids proline and glycine to create

a tight turn between them, which brings the cysteines to come close together. For this

reason, in our proposed model, we assume that the cysteines had longer sensors, enhancing
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the probability that they sense each other and come into touch. With this assumption, we

prove our main objective: to check if the reinforcement learning method works properly in

protein folding problems.

4.2.1 Sparse code

Sparse coding may be a general strategy of neural networks to increase memory capacity

[43]. To adapt to its environment, the agent must learn which stimuli are associated with

rewards or punishments and distinguish these reinforced stimuli from similar but irrelevant

ones[44].

In this model, we develop the sparse code by generating non-repetitive binary numbers

with sixteen digits each, where the number of 0s is always bigger than that of 1s. (more 0’s

than 1’s) (see Figure 4.7). These sixteen digits will represent the unique angles between

each pair of amino acids and form a sparse matrix. In other words, these sixteen digits

will represent the information about the angle at which each amino acid will bend. Thus

we have 16 analog variables converted to sparse code, which are the folding angles of the

17 amino acids, and we generate a 16x17 neuron matrix excited with sparse code patterns.

We will use this information obtained from the sparse matrix as the first input infor-

mation to the folding agent (see figure 4.2). This conversion of the 17 variables to a sparse

matrix is similar to a simulated deep network.
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Figure 4.7: Sparse code generated with more 0’s than 1’s

4.2.2 Protein Folding

To test the virtual robot/ability agent to learn efficient folding policies, a peptidic region

from the protein HCoV - HKU1, Hemagglutinin-Esterase (HEs), was chosen. (See Figure

4.8A.) HEs are made up of two identical polypeptide chains, each with three important do-

mains: the proximal membrane domain (MPD), the esterase domain (E), and the receptor

domain (R) [45].

The first step in a protein’s folding process to adopt its native structure is forming a

secondary structure. According to RCSB Protein Data Bank (www.rcsb.org), the receptor

domain comprises eleven secondary structures (one α-helix and ten β-strands) based on

the recently solved structure of HEs ([46], [47]). These two β-strands, 182LYLVPLCL189

and 218DCIYI222, form an anti-parallel β-pleated sheet structure supported by a disulfide

linkage and hydrogen bonds between the amino acids in both sequences (Figure 4.8B).
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Figure 4.8: A. Ribbon representation of the dimeric Hemagglutinin-Esterase and domains:
membrane-proximal domain (red), esterase domain (green), and receptor domain (blue);
the dotted square represents the beta-pleated used in this study. B. Hemagglutinin-
Esterase receptor domain anti-parallel beta-pleated sheet. Cysteines and amino acids are
covalently linked in yellow, and dotted lines represent hydrogen bonds between amino acids
[9].

The sequence from residue 190 to residue 217 was replaced by a β-turn structure con-

taining the amino acids GSPN to study the folding of this structure. The final peptide to

test the proposed agent’s self-teaching capacity is then: 1LYLVPLCLGSPNDCIYI17

Figure 4.9: Chemical representation of the final peptide to test the self-taught capacity of
the proposed agent.

4.2.3 The Protein Folding Robot

A robot is programmed to perform the space-time physical actions of folding a peptide

chain of 17 amino acids from the HEs protein’s receptor domain, specifically the sequence:

1LYLVPLCLGSPNDCIYI17

37



Amino acids are linked together by a strong peptide bond, and each bond has an

actuator (muscle) that controls the folding angle (angle[i]) between them; this angle is

codified in a 16-bit signal (sparse code) that spans the range from -90 to +90 degrees

from the center or aligned position. The set of folding angles is a known parameter that

defines the robot’s internal representation. This internal representation is one of the input

raw pixels matrix vectors used by the agent to generate the set of variations or delta[i]

required to produce the next folding state using the actual angle plus the delta angle

generated in Equation 4.1. Each amino acid has twenty-four sensors that detect the type

of amino acid in its neighborhood, close enough to produce short-range molecular effects

such as strong bonds or polarity arrangement. Furthermore, each cysteine has increased

the size of the sensors to improve the model’s sensitivity. Each actuator is controlled by

a single sigmoidal neuron in a larger network. Each output neuron generates a signal

that represents the increment or decrement that each angle will have in the next cycle.

The network is in charge of the strand’s overall space-time folding. Figure 4.16 depicts a

complete protein-folding robot schema.

Figure 4.10: A multi-joint robot and its associated neural blocks have to learn to fold
a peptide chain belonging to the HEs protein. The mechanical simulator is a chain of
operative joints with independent muscles and neural controllability.
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4.2.4 Controlling Network

Figure 4.11: Neural Network Architecture. A reinforcement learning trained network

This is the network that is going to be trained for protein folding with the help of an

exploring neural agent (exploration), so that it ultimately controls how the robot is going

to fold (exploitation). This network starts with random weights (raw pixels) and with

this composite ”image” the network has to learn to generate changes (predictions) in the

protein folding that improve the probability of obtaining functional structures.

4.2.5 Self-taught Neural Agent

The model proposal was refined: The peptide chain comprises 17 mobile parts, each rep-

resenting an amino acid and supported by a rigid structure (the molecular bond) and a

set of sensors that detect and process close molecular forces. Because the cysteine amino

acids lay between tight turn-forming amino acids (proline and glycine), the model assumes

that the cysteine sensors will have a longer range than the other amino acids, which will

help to achieve a proper folding goal.

The self-taught neural agent comprised 17 sigmoidal neurons, which inhibit each other

with balanced negative weights and share a common self-activating excitatory input K-

ramp (see Figure 4.12); when K grows in a ramp fashion, forces all participating neurons
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to race toward a 0.86 output. Its function is to produce random angle variations that will

be used to move the robot and produce the reward signal to train the controlling network.

Figure 4.12: Self-taugth Neural Agent. Neurons are all equally excited by a repetitive
ramp K.

Figure 4.13: Race of each participants neurons.

Figure 4.14: Negative (blue) and positive(red) angle variations obtained after a race.
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Figure 4.15: Cycle performed by the agent to obtain the values of the new bending angles
of the robot.

The structure of the self-taught neural agent is depicted in Figure 4.15. During a ramp,

after a certain amount of time, one participant (winner) crosses a threshold (end line) setup

at 0.85. The finishing order is frozen, and values are assigned to the agent outputs based

on the arrival order of the other neurons.

Taking as reference the 0.7 value, the race output is converted to a vector of bounded

positive and negative numbers, which is then used to calculate the angle variation for each

amino acid using the formula:

delta angle [i] = alpha * out agent [i]− 0.7 (4.1)

Suppose the new state of the cysteines comes close together. In that case, the vector of

a bounded positive and negative value is added to the previous value of the angle (the

outputs of the controlling network), and this new vector value is taken as the vector target

after that one cycle of backpropagation is performed. Where alpha controls the degree of

bending deformation per cycle, the value 0.7 is an offset required to generate positive and

negative quantities.

In resume (see Figure 4.15), to check the future and satisfy the Bellman equation, in

each race, the agent generates a set of random bending information (increment/decrement)

in the form of variations or ”delta” angles. These deltas are added to the current angle

values bringing the folding to a new bending state s+1. The system checks if the distance
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between cysteines decreases in this new state. If this is, the agent receives a reward,

the previous input image (raw pixels) is taken as input, and the previous network vector

output is added to the variation vector and taken as vector target. The idea is that the

most excited neurons that contribute to the approach of the cysteines are the rewarded

while the others are penalized.

4.3 Experimental Setup

Several episodes, each with a maximum of 9000 cycles, are run. The episode begins with

the peptide chain in a straight random position. In each cycle, the proximity of cysteine is

calculated if this is so, the delta angles are added to all previous angles as a reward and one

cycle, backpropagation is performed. This process is repeated until a maximal number of

cycles is completed or when the cysteines touch each other, concluding an episode. After

training, the controlling network’s knowledge is now used to calculate the path of the robot,

since now this knowledge represents a valid policy for the bending process (exploitation).

Figure 4.16: The protein folding robot.
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Chapter 5

Results and Discussion

This chapter summarizes the experimental and final results obtained by the neural agent

we created.

After calibrating, debugging, and testing all the routines, the agent was set to a self-

training session until a valid policy was obtained. Due to sparse angles code and the

cysteine sensors’ enlargement, the obtained reinforcement learning algorithm works satis-

factorily. The agent efficiently learns to fold the selected protein section according to the

rules established by the amino acids between the cysteines.

With tests and experiments carried out in the exploration phase of the agent and

after 9000 training cycles, all the possible movements that the agent can take to meet its

training objective were obtained. So that later, in the exploitation phase, it finds that

the network becomes trained. The found policies allow the robot to bend from a starting

correctly (almost stretched random). Position to a folding state that satisfies the cysteines

approaching, according to the intermediate amino acids placed between them. In other

words, the agent learns a protein folding policy in the exploitation phase, takes control of

the robot, and correctly folds it, using raw pixels as input.

We can see in Figure 5.1 depicts the program’s performance, showing how the agent’s

error decreases as it becomes a stable protein structure guided by rewards.

The measured error corresponds to the difference between the targets and the output

neurons, as calculated using the following formula:

GlobalError =
i<=n out∑
i=1

[
T (i)− out (i)

]2 (5.1)
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Where n out represents the number of output neurons.

T(i) represents the targets.

out(i) represents the output neurons.

Using the formula mentioned earlier, we obtained an error of 0.86 in the first training

cycle, and after 9000 cycles, the error was reduced to 0.0037. As illustrated in Figure 5.1.

Figure 5.1: Global Error vs Training Cycles. Self-taught agent error decreases as the
number of neural network iterations increases.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

1. This research created a virtual robot model that solves specific protein folding prob-

lems using raw pixels as input and Deep Reinforcement Learning as a training

method.

2. An algorithm that converts information about the angles between amino acids to

sparse code has been developed as a first contribution. This algorithm simulates

the effect of a deep convolutional network, creating the ambient required for deep

reinforcement learning.

3. Reinforcement learning is carried out with an agent that explores and captures re-

wards in the future, thus satisfying the bellman equation and its exploration require-

ments.

4. Compared with previous work [9], the enlargement of the cysteine sensors produces

a richer sparse matrix, which contributes to the efficient learning of bending policies.

5. Finally, the main objective of determining the correct way to fold proteins was to

test the prediction method by Deep Reinforcement Learning. In order to facilitate

the folding process in any existing piece of protein efficiently and quickly.

45



6.2 Future Work

In theory, it would be possible in the future to create more complex models. The new

models with more sensors and amino acids. Produce bindings of great computational

complexity by using a supercomputer or a CUDA-GPU ambient. And, making the creation

of synthetic proteins and medicines for viral diseases possible.

In addition, we can modify a new neural network architecture to the existing network,

adding more layers in the prediction stage. Based on theory, the more layers a network

has, the can often process information more deeply.
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Appendix 1.

Implementation

This phase consists of planning and executing the proposed model’s coding. We chose the

C++ programming language because it is a high-level language used for writing applica-

tions where performance and resource management are critical. It is commonly used in

resource-intensive applications, AI in games, and robot locomotion. Also the adviser of

this thesis and his students have developed extensive neural networks and agent libraries in

C++. The proposed model’s compiler is Borland C ++ 5.5, a C and C++ IDE (integrated

development environment) that includes our neural libraries. The neural agent’s modules

and functions are listed below; some of these modules were created from scratch for this

thesis, while others were adapted or refined from existing libraries.

• FireAgent.h

This module contains the neuronal agent, that is, a set of neurons that compete with

each other, burn energy, and behave like a horse race, where the order of arrival

determines the variation of the angles between amino acids; containing the following

functions:

– init in pesos flop function that initializes the weights with the flop inputs.

– get winner function that finds the winner of the race.

– fire agent net function where the neural agent burns dark energy, learns from

the winner and checks for bending faults.

• NeuralLibmmt.h

Module containing the network’s structure, such as its hidden layer and output layer,

as well as its hyperparameters and neural network calculation functions.

– random weights function that generates random weights.

– initialize weights function that initializes the weights of the hidden layer and

the output layer.

– clean weights function that clean the weights of the hidden layer and the

output layer.
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– correct weights function that figures out both the output layer’s and the hid-

den layer’s errors. Additionally, it adjusts the hidden layer and output layer

weights.

– sigmoide is the activation function used for network training.

– calculate hidden layer function to calculate the values of the hidden layer.

– calculate output layer function to calculate the values of the output layer.

– backpropagation function that contains the function calculate hidden layer

and calculate output layer.

• PlotItems.h

Module that graphs the parameters of the network

– plot hidden outputs function that plots the neurons of the hidden layer.

– plot hidden weights function that plots the hidden weights.

– plot inputs function that plots the neurons of the input layer.

– plot outputs function that plots the neurons of the output layer.

– plot targets function that plots the targets, that is, the output neuron that

shows the best move.

– trim weights function that trims the weights of the hidden layer

• PlotProteinLib.h

Module that graphs the parameters of the network

– erase protein function that erases the data of the path traveled by the protein

– plot sparse function that plots the sparse matrix.

– plot protein function that plot all the protein and their sensors.

– vertical protein function that plot the protein of vertical way.

– plot protein sensors function that plots the reading (pixels) of the protein

sensors.
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• SparseCode.h

It was developed from scratch for this thesis. It converts the 17 angles between amino

acids into a sparse code of 16-bit binary neurons. It mimics the effect of a deep neural

network that converts dense code to sparse code [48].

– is sparse function that check if the number is sparse.

– fill sparse function that fill the number with the 16-bit.

• ProteinFolding.cpp

It is the main program that contains all the modules described above to be able to

set up the environment and that the agent can realize the protein folding.
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